
Final Report

to

General Motors Systems Engineering Center
Troy, MI

THE REQUIREMENTS FOR AN OBJECT ORIENTED
VEHICLE MODEL

Contract # DD 492465

and

HIERARCHICAL DECOMPOSITION DESIGN METHODS
FOR AUTOMOBILES

Contract # DD 492386

J. Colton, J. Craig, G. Fadel, R. Fulton,J.E. Rogan

W. Chang, D. Heifetz, J. Lambright, A. LeBlanc, W. Mayville,
J. Preminger, E. Stephens, P. Wijntjes

College of Engineering
Georgia Institute of Technology

Atlanta, GA 30332

September 17, 1990

ABSTRACT 	 1
Chapter 1 INTRODUCTION 	 2
Chapter 2 OVERALL DESIGN STRATEGIES 	 4

2.1 Introduction 	 4
2.2 Issues in Product Development Decision-making 	6

2.2.1 Vehicle Function and System Architectures 	6
2.2.2 A View of the Automobile Design Process 	8

2.2.2.1 Problems with the Current Product
Development Process 	 8
2.2.2.2 The Impact of computing technology on
the product development process 	10
2.2.2.3 A System View of a Computing

	

Environment for Concurrent Engineering 	14
2.3 Basic Concept- A Multiview Design Approach for
Automobiles 	
2.4 Research Approach 	

Chapter 3 CUSTOMER PERSPECTIVE OF THE VEHICLE 	
3.1 Customer Perspective via QFD 	
3.2 Baseline Parameters 	

Chapter 4 OPERATIONAL PERSPECTIVE OF THE VEHICLE 	
4.1 Introduction 	
4.2 Functional Description Development 	

4.2.1 Functional Decomposition 	
4.2.2 Function Relationships 	

4.3 Conceptual Level Application 	
4.3.1 Functional Description Subset 	
4.3.2 Function Relationships 	

4.4 Summary 	
Chapter 5 PHYSICAL PERSPECTIVE OF THE VEHICLE 	

5.1 Introduction 	
5.2 Vehicle Form Description 	

5.2.1 Input Parameters 	
5.2.2 Output Parameters 	

5.3 Vehicle Form Decomposition 	
5.3.1 Form Decomposition 	
5.3.2 Form Relationships 	

5.4 Summary 	
Chapter 6 A SAMPLE OF VOICE OF THE CUSTOMER/
FUNCTION/ FORM LINKAGES 	

6.1 Introduction 	
6.2 Engine Subsystem 	
6.3 Software 	

6.3.1 The User-interface 	
6.3.2 The VOC ->Functions Translator 	
6.3.3 The Function-optimizer . 	

6.3.4 The Function -> Form Mapper 	
6.3.5 The Form-optimizer 	

6.4 Oracle Database 	
6.5 Conclusions 	

E
reI
t
t
t

t
tt

t;
-'1

;-'-'
,E

BE
SN

N
5

5
186

1
S

a3
83

81
83

fa
ia

la
R

E

6.6 References 	 70
6.A.1 Definitions 	71
6.A.2 Memory Problem using Macintosh's Think C and
ORACLE 	71
6.A.3 The Hard- and Software used 	71

Chapter 7 A THEORETICAL APPROACH TO HIERARCHICAL
DESIGN 	72

7.1 Introduction 	72
7.2 Multiobjective Optimization and Design 	 72

7.2.1 A New Technique Using Parameter Passing 	73
7.2.2 Application to an Automobile Configuration
Problem 	 74
7.2.3 Analysis of Design Methodologies 	 79
7.2.4 A Design Methodology to Support Requirements
Tradeoffs 	82
7.2.5 Hierarchical Design using Optimizing Sequences
of Decisions 	 86

7.3 Organization of a Probabilistic Decision-making Strategy 	93
7.4 Basic Concepts Underlying Taguchi and Tse Approaches
to Design 	 94
7.5 References 	 100
7.A.1 Solution of Requirements Negotiation Problem using
Methodology F. 	 101

Chapter 8 MULTIVIEW DESIGN APPLICATION 	 101
8.1 Introduction 	 104
8.4 Applications 	 104

8.4.1 Form-Function Test with Smalltalk 	 104
8.4.1.1 Future Considerations 	 107

8.4.2 Work Related to OOPM 	 108
8.4.3 Building the OOPM 	 109
8.4.4 Multiple Views 	 112
8.4.5 Example 	 112
8.4.6 Decomposition 	 115

8.5 Summary 	 119
8.6 References 	 119

Chapter 9 MULTILEVEL DESIGN APPLICATION 	 122
9.1 Description of the Automobile Door Design Example 	122
9.2 Software Infrastructure 	 123

9.2.1 Software Platform 	 124
9.1.1.5 Description and Functions of Software
Components 	 124

9.3 Multilevel Model of Door Geometry 	 126
9.3.1 Door Subsystem Modelled with ICAD 	126
9.3.2 Detail Component Modelled with IDEAS 	133

9.4 Summary 	 137
Chapter 10 SUMMARY OF ACCOMPLISHMENTS AND ISSUES 	138
Chapter 11 PLANS 	140

11.1 Planned Tasks 	140

11.1.1 Task 1- Implement and Test Prototype Software
Framework 	 140
11.1.2 Task 2- Refine and Extend Automotive Design
Methodology 	 141
11.1.3 Task 3- Develop a Database Approach for
Automotive Design 	 141
11.1.4 Task 4- Apply Prototype Software Framework to
Representative Vehicle Design 	 142

11.2 Testing Methodology 	 142
Appendix A Quality Function Deployment 	 144

A.1 What is Quality Function Deployment? 	 144
A.2 Quality Function Deployment in Japan 	 144
A.3 Quality Function Deployment in the U.S 	 145
A.4 The House of Quality 	 145
A.5 References 	 150

Appendix. B FUNCTION DATA DICTIONARY 	 151
Appendix C FUNCTION AND DESIGN SPECIFICATION
MAPPING 	 154
Appendix D OBJECT ORIENTED ANALYSIS AND DESIGN
METHODS 	 160

D.1 Why Objects? 	 169
D.2 Background 	 169

D.2.1 History of Object Oriented Programming (OOP) 	169
D.2.2 What Constitutes an OOP? 	170
D.2.3 Definitions 	 170
D.2.4 Role of Relations 	 172
D.2.5 Selection 	 173
D.2.6 Data Storage in OOP 	173

D.3 Existing Methods 	174
D.3.1 Booch Method 	174
D.3.2 Coad/Yourdon Method 	175
D.3.3 OMT - Loomis,Rumbaugh, and Shah at
GE/Calma 	 175
D.3.4 ObjectOry - Objective Systems AB 	 176
D.3.5 Shlaer/Mellor' Object Techniques 	177
D.3.6 HOOD - European Space Agency 	 177
D.3.7 OOSD - Object Oriented Structured Design 	178
D.3.8 OBA - Object Behavior Analysis 	 178

D.4 References 	 179

ABSTRACT

This report presents the results of the past year's work under
contracts entitled The Requirements for an Object Oriented Vehicle Model
(Contract # DD 492465) and Hierarchical Decomposition Design Methods for
Automobiles (Contract # DD 492386) for the GM Systems Engineering
Center, Troy, MI. The technical contacts are Dr. Steve Rohde and Dr.
Dennis Li.

This research has provided the preliminary requirements for an
object oriented vehicle model and the hierarchical decomposition strategies
for maneuvering through the design of an automobile. The model provides
an integrative focal point for all functions, so that they may each have their
own view of the design without the problems associated with multiple
views. Hierarchical design methodologies have been studied and
conclusions made as to strategies to follow.

1

Chapter 1 INTRODUCTION

The design of a complex product, such as an automobile, requires the
integration of the efforts of many different groups within a company. These
can include design, manufacturing, analysis, project management,
marketing, as well as a host of others. Each of these groups has its own
design methods and, as a result, different views of what constitutes the
vehicle and its descriptive information. This leads to redundancy and
difficulty in communication, as groups compare different information
perspectives, such as design and manufacturing descriptions. Each group
has different types of input, output, and levels of detail. By consolidating
the various models into one object-oriented representation of the vehicle
with the ability to work at different levels of detail, and combining it with
hierarchical decomposition strategies, a clear determination of a design
procedure should emerge that incorporates design decisions and processes,
multidisciplinary interactions and system optimization. This approach
also should allow the formulation of an objective function for the conceptual
design, with appropriate weighting functions to replace the current set of
inconsistent parameters. This strategy should lead to a reduction in the
time and cost of design, an improved vehicle quality, and increased market
share.

In general, the design of an automotive vehicle should proceed from
the desires of the customer (the voice of the customer, as developed within
Quality Function Deployment (QFD)) to an engineering description and on
to design, analysis and manufacturing. In the concurrent engineering
view, the design of the product and the processes for making it should be
performed at the same time. In a similar vein, design should be
approached in a multilevel, multiview approach. The functional
requirements of the vehicle should be determined from the customer
requirements. These should then be translated into the forms required to
produce these functions. The forms then need to be integrated to insure
that the functions are performed to the necessary level. A. model of the
vehicle and the design process needs to be developed so that all of the
functions involved can view the information according to their own needs,
yet provide a consistent information base. An object oriented vehicle model
will provide the integration necessary to accomplish this goal of providing a
consistent information model that allows multiple views at multiple levels.
Design methodologies, such as hierarchical decomposition strategies, will
allow the designer to traverse the design in an optimal manner by pointing
out the relationships between function and form, and the best way to
perform the design.

This report summarizes the efforts carried out over the past year
under two GM SEC contracts to utilize object oriented technology and
hierarchical decomposition methodologies to provide a consistent,
comprehensive and structured approach to the early design process for
automotive vehicles. It is to take advantage of the concept of design being

2

an information-driven process and explore how new technologies in
information management can aid the process. The first goal of the work
summarized here is to develop an appropriate vehicle model which will
integrate the multiple levels of the vehicle as well as allow each function to
view the vehicle on its own terms. The second goal is to provide an
integrative, optimal design strategy and process, which take into
consideration the interactions of the voice of the customer with the function
and form of the vehicle, via an optimizable functional description. The
approach will utilize hierarchical decomposition design methods, which
will provide an ordered way of addressing various levels of design definition
and decisions. Such a structured approach should result in a reduction in
feedback within the design process and an associated reduction in design
time.

Work in the past year has determined the preliminary, theoretical
requirements for such an Object Oriented Vehicle Model (OOVM) and
Hierarchical Decomposition Design Methods for Automobiles.. It is felt that
the OOVM will provide a consistent, integrative representation of a vehicle
for use by all functions involved in the design of automobiles and that the
Hierarchical Decomposition Methods will provide optimal strategies for the
design of the vehicle.

Chapter two presents an overview of the design process and our
overall design strategies. Chapter three discusses the customer perspective
of the vehicle as it is related to QFD and selected Baseline Parameters.
Chapter four discusses the functional decomposition of the OOVM and
chapter five discusses its form decomposition. Chapter six presents a
preliminary integration of the OOVM with a database and an expert system
to test the linkages between function and form. Chapter seven presents the
theoretical approach to hierarchical design and optimization strategies.
Chapter eight discusses the object oriented programming paradigm to
obtain multiple views of the design with applications. Chapter nine
presents a similar discourse on multiple level views of the design, again
with an example. Chapter 10 summarizes the results of this work and
chapter 11 presents our plans for the future.

3

Chapter 2 OVERALL DESIGN STRATEGIES

2.1 Introduction

The design of an automobile is a complex process of synthesis,
analysis and decision-making. The vehicle development process involves
interactions among many different disciplines and spans a chronology
from the earliest expression of the voice of the customer, through the design
and manufacture of tens of thousands of vehicles, and finally to the
operation and support of a large and widely distributed fleet. The design
and development of complex automotive vehicles requires the consideration
of numerous disciplines, complex geometries, materials and processes, the
involvement of numerous specialists, and extensive task automation.
Consideration of the entire vehicle life-cycle from the earliest phases of the
project is a key element of success in a highly competitive and rapidly
changing marketplace.

Design processes for future vehicles require a high degree of
automation, integrated into a cohesive product development environment.
Current approaches utilize computers in varied ways to automate tasks,
but do not generally address the entire process in a coherent manner. To
achieve product quality and development productivity, it is essential that
methods be developed to manage design information and to structure the
decision-making process throughout the vehicle development process. An
approach that appears to have considerable merit is one based on
hierarchical decomposition of the critical design tasks and variables into
appropriate groups consistent with the state of the design.

The present research program in hierarchical decomposition
methods and vehicle modelling is built around three inter-related efforts
that are being carried out concurrently by the research team These efforts
are focused on

• data modelling for Quality Function Deployment (QFD),
• development of an object-oriented vehicle model, and
• methods for making product development decisions.

In this approach, QFD provides a problem statement for decision-
making, which will be discussed more completely in chapter three and
appendix A.

An object-oriented vehicle model provides a description of alternative
vehicle system, subsystem, and component attributes. The initial focus for
the OOVM is conceptual design (i.e., in which major vehicle
characteristics such as length, width, and power characteristics are
determined) to examine the applicability and link of the model to detailed
design (i.e.,specification of bolt sizes, body panel thickness, etc.). The basic
concept is to identify the key design variables in conceptual vehicle design

4

and the steps required to assign values to those design variables. We also
want to organize these steps in the optimal order so as to make design
"feedforward" and minimize the need for feedback and iteration, thereby
minimizing both the complexity of the design process and the time needed
for design. Expressed another way, we must determine what design
decisions have to be made and how and in what order those decisions
should be made to optimize conceptual vehicle design.

Of course, the goal of any design is to assign values to the design
variables so that the product meets the requirements of the person (or
organization) that requested the product be designed (and also satisfies any
constraints). In our case, this person is the vehicle customer. It is our
contention that through a progressive process of analyzing and refining the
functional requirements of the customer (i.e., what the customer wants the
car "to do"), selecting and designing forms to fulfill those functional
requirements, then synthesizing (and optimizing, where necessary) those
forms into an overall vehicle, the OOVM will converge upon an optimal
solution (i.e., a vehicle design that optimally meets the customer
requirements). Specifically, the input to the model is the "voice of the
customer" (or customer attributes). These (or, more exactly, values
assigned to these attributes by the customer) are translated into functional
requirements, and in turn, the functional requirements are translated into
forms. The forms are then optimized (under the requirements of functional
and spatial constraints) and aggregated into an overall vehicle. The output
of the model is the final form and functional characteristics (or product
characteristics) of the "optimal" vehicle design. Our ultimate goal is to
show how, as the input customer attributes change, the output product
characteristics change.

In general, the decision-making task is to select values for the
attributes, which satisfies hard constraints and balance goals and
objectives. The present effort is concerned with the development and
prototype implementation of such decision-making methods. In particular,
the present approach is focused on the development of decision-making
strategies in a hierarchical design environment. Multilevel optimization
methods, deterministic decision-support processes, and probabilistic
methods, such as Taguchi methods and related developments, are
appropriate for making various design decisions and are currently within
the scope of this study.

A key idea in this approach is that the prioritization of goals,
objectives, and conflicting requirements is incorporated into the product
through the strategy for converging on final specifications for product
attributes. Hierarchical design methods can play two roles:

1. in planning a sequential or concurrent product development
decision-making process to ensure that requirements are balanced,
and

2. in providing support in making those decisions.

5

A principal tool in hierarchical design approaches has been the
iterative solution of an optimization problem decomposed into a multi-level
network of subproblems. The use of the word hierarchical refers to the
multi-level nature of this network. The techniques can be = pplied to quite
general problem structure networks, provided some care is taken to avoid
divergence. This is important, since the techniques are applied in practice
to what might be described as the "decision decomposition". The decision
decomposition rarely has a strictly hierarchical structure, since it must
reflect both the function and system hierarchy decompositions. (The
function decomposition is typically not hierarchical.)

The primary emphasis in the development of these tools has been in
solving problems, which could be posed as deterministic single-objective
multivariable constrained minimization problems. The techniques are
thus somewhat limited in their ability to deal with independent variables
taking on values in a discrete set, or to deal with objective and constraint
functions having discontinuities. Also, the set of independent variables,
objectives, and constraint relationships is generally taken as fixed. This
limits the ability of these methods to deal with qualitatively different
alternatives. Such alternatives are characterized by differences in system
architecture. Architectural differences, in this sense, involve different
function decompositions, and different choices of system elements for
implementation. Finally, the "classical" approach to hierarchical design
decision-making provides little guidance in dealing with formulation or
solution of problems where uncertainty or imprecision are important.

As a result of these issues, the present study also examines
alternative decision-making methods based on both deterministic and
probabilistic formulations. The probabilistic formulation brings with it a
strategy for integrating concurrent decisions. The result is a broad-based
approach to the development of decision-making strategies that are
appropriate to the problem of designing complex mechanical systems, such
as an automobile.

2.2 Issues in Product Development Decision-making

2.2.1 Vehicle Function and System Architectures

In the approach taken here, hierarchical design methods fit into the
context of an advanced product development methodology, based on the
concept of concurrent engineering. Concurrent engineering refers to a
product development process in which producibility and supportability
considerations can be brought into early product decision-making steps and
traded off against performance, cost, and schedule (time-to-market).

A critique of the product development process, as it is often now
conceptualized, is presented. It is shown that certain obstacles to

6

concurrent engineering are built into this view of the product development
process. Computing technology can be applied to allow substantial changes
in the structure of the product development process. In particular, high-
level languages for parametric representation of product and process
alternatives are extremely valuable.

To be effective, these languages must allow the product development
team to describe the system life cycle concept from three points of view:

• function ("what it does"),
• implementation ("what it is") and
• modelling ("how it works").

Functions are organized by a function decomposition structure, while
implementation alternatives can be organized into various system-system-
component hierarchies. Both functions and system elements have
attributes. Customer, regulatory, and internal requirements can be
applied to the life-cycle concept description by constraining the values of
these attributes. Goals and objectives, applied to these attributes, constitute
additional constraints (optimality constraints). Finally, engineering
theories and models ("how it works") link attributes of the function and
system hierarchy decompositions. These models provide still more
constraints. The decision-making task is to select values for the attributes,
satisfying the hard constraints, and balancing goals and objectives.

A key idea in the current approach at Georgia Tech is that the
customer's prioritization of goals, objectives, and conflicting requirements
is incorporated into the product through the strategy employed by the
product development team to converge on final specifications for product
attributes. Hierarchical design methods can play two roles: (1) in planning
a sequence of product development decisions to ensure that requirements
are balanced, and (2) providing support in making those decisions.

The principal tool in the hierarchical design approach has been the
iterative solution of an optimization problem decomposed into a multi-level
network of subproblems. The use of the word hierarchical refers to the
multi-level nature of this network. The techniques can be applied to quite
general problem structure networks, provided some care is taken to avoid
divergence. This is important, since the techniques are applied in practice
to what might be described as the "decision decomposition". The decision
decomposition rarely has a strictly hierarchical structure, since it must
reflect both the function and system hierarchy decompositions.

The primary emphasis in the development of these tools has been in
solving problems which are posed as deterministic single- or multi-
objective multivariable constrained minimization problems. The
techniques that have been developed are thus somewhat limited in their
ability to deal with independent variables taking on values in a discrete set,
or to deal with objective and constraint functions having discontinuities.

7

Also, the set of independent variables, objectives, and constraint
relationships is generally taken as fixed. This limits the ability of these
methods to deal with qualitatively different alternatives. Such alternatives
are characterized by differences in system architecture. Architectural
differences, in this sense, involve different function decompositions, and
different choices of system elements for implementation. Finally, the
"classical" approach to hierarchical design decision making provides little
guidance in dealing with formulation or solution of problems where
uncertainty or imprecision are important.

2.2.2 A View of the Automobile Design Process

In the following sections, a brief description of the product
development process as it is widely implemented today is presented. The
attempt here is not to try and accurately represent a development process
actually in use by GM, but rather to describe general features of a
"traditional" product development process. This description then provides
the material for a critical analysis and the basis for formulation of proposed
improvements based on hierarchical design methods.

2.2.2.1 Problems with the Current Product Development Process

One view of the current product development process is shown in
Figure 2.1 (numbers in parentheses refer to points in the figure). In this
approach, requirements are defined first. Next, (1), an initial specification
of the product is based on these requirements. An example is a drawing or
three-dimensional CAD model of a part. Since it is not known a priori
whether the product specification meets the requirements, specialists in
producibility, supportability, and other disciplines participate in a design
review, (2). Typically, problems are identified with the initial product
specification, and solutions are proposed. These changes are immediately
made, (3), if cost and schedule considerations allow modification of the
design, and other requirements need not be compromised. If compromise
is required, a conflict resolution process is invoked, (4-5), typically through
the management structure of the product development organization. This
may result in changes to the product specification, (6), or modification of
the requirements, (7). If the conflict resolution process converges on a
satisfactory design, the product specification is released for production and
support planning, (8).

8

[

Develop
Support

Plan

®

9

Define
Requirements

Specify
Product

• •

Specify
Production
Processes

Resolve
Conflicts

Review
Product

Specification

Figure 2.1. Existing Product Development Process.

Obstacles to concurrent engineering are built-in to the existing
product development process. For product development projects involving
compromise, the system life cycle concept emerging from the product
development process represents a prioritization of the requirements. This
prioritization is reflected in the sequence in which product, process, and
planning decisions are made. The sequence of decisions is particularly
important, since each decision may place severe constraints on the options
available for subsequent decisions.

This activity, matching decision-making priorities for product and
process specifications to customer requirements, is remarkably absent
from the structure of the current product development process. In the
current process, we rely on the experience of the designer and the
effectiveness of the design review process, especially the conflict resolutioh
abilities of the technical project leader, to ensure that requirements are
being met.

In fact, using existing design technologies, the flexibility to make
design changes that is available to the designer and the project leader is
often limited. The cost of generating or modifying product specifications
may make it impossible to make the necessary design changes, or there
may not be time to make them. In practice, decisions are sequenced to meet
the schedule for releasing product specification information. These

schedules are prepared before the product specification and design review
processes are initiated. Thus, it is rarely possible to ensure that the
decision-making priorities implicit in the product specification release
schedule accurately reflect the impact of these decisions on customer
requirements.

In the current product development process, design review for
producibility and supportability is decoupled from planning of the
production process and support operations. The separation of design
review from production and support planning has been necessitated by the
cost of production planning, and the need for highly detailed product
specification information before production and support planning could be
initiated. As a consequence of this separation, information is often lost in
the transition. In fact, decisions are made during the product specification
and design review process that severely restrict the options left for
production and support planning. The full implications of these decisions
may not be evident until planning for production and support is started.

Of 	 f 0 0 14 0

Process

Instantiation, constraint propagation, and the services required to
distribute computational objects to multiple physical locations and to
maintain versions of them over time are the computing technologies which
appear to have the most powerful impact on the product development
process. The most fundamental change has been in the application of the
object-oriented programming style and constraint propagation to develop
high-level languages to support parametric description of product and
process alternatives. The next step is clearly the development of distributed
objectbase capability which is one of the key elements needed to "scale up"
parametric product/process description technology for production
applications in industry.

A common initial impression is that parametric product definition
technology impacts only the product specification aspects of the
development process. In fact, parametric description makes it
economically feasible to effect fundamental changes in the structure of the
entire product development decision-making process. This is a result of the
fact that parametric description technology changes the economics of
product specification.

Computer programs for parametric description can be used to
generate detailed product specifications, based on a description of the
design in terms of system integration parameters. Such computer
programs have been in use for many years. What has changed, quite
recently, is that the object-centered programming style has been exploited to
significantly lower the number of engineering hours required to write
computer programs for parametric description. Using a high-level

10

.2 2 h

language to model elements of the product, new computer programs for
parametric description can be created for roughly the same cost (in
engineering hours) as a three-dimensional CAD model. The difference, of
course, is that if a parameter value must be changed during the system
integration process, the cost of changing a conventional CAD model is
practically the same as the cost of developing the original product
specification in CAD. Since details of a design that has been defined
parametrically can be changed by simply executing the parametric
description procedure with new values for some of the parameters, the
engineering cost of making a change in the product specification is
negligible.

Of course, this technology can be applied to execute the iterative loops
in the current product development process more quickly. However, unless
producibility and supportability can be incorporated into the procedures on
which the parametric description computer programs are based, the
increase in the speed with which design detail can be generated may
actually heighten the obstacles to concurrent engineering. Providing
designers with the ability to more rapidly generate product specifications
with poor producibility and supportability characteristics is likely to
overwhelm the design review process.

Moreover, parametric description, by itself, contributes nothing to the
solution of the problem of balancing "downstream" producibility and
supportability considerations against performance and product
specification schedule and cost. This can only be changed by modifying the
sequence in which product development decisions are made to better match
the customer's prioritization of requirements. It is important to note,
however, that parametric description technology provides the designer and
the project leader with a considerable enhancement in their flexibility to
sequence decisions. Parametric description technology frees the process
from the constraints imposed by the cost of considering several alternative
concepts for the product, as long as they can be effectively modelled using
the parametric description language.

There are thus three modifications that must be made in the
structure of the design process, in order to use parametric description
technology to accomplish some of the aims of concurrent engineering:

1. 	the "specify product" step of the existing process must be replaced by
a step in the "to-be" product development process in which
alternative product, manufacturing process, and support concepts
are parametrically modelled. The entire concurrent engineering
team must be involved in the development of computer programs for
parametric description.

11

12

2. an explicit planning step must be included to ensure that the
sequence of product development decisions reflects the prioritization
of conflicting requirements by the customer. Again, the entire
concurrent engineering team must be involved.

3. The decision-making process must balance the views of all members
of the concurrent engineering team.

The effect of these changes on the structure of the product development
process is indicated in Figure 2.2.

Computing technology, through application to parametric
description, can play a key role in making these structural changes in the
product development process possible. In order to realize these gains,
problems of "scaling" - providing a distributed environment to support the
modified product development process - must be solved. Techniques for
planning the decision-making process must also be further developed and
demonstrated.

There is one other aspect of the impact of computing technology on
the product development process which is important in the proposed
approach to hierarchical design methods. This has to do with the
development of systems. Systems are now developed hierarchically. In a
hierarchical approach, product specifications are defined in stages.
Increasing levels of detail are specified at each stage. This means that the
product is only partially specified when decisions are made.

Requirements

V
 Develop

Parametric
Product/Process

Models

_______Y •
Plan

Product Development
Decisions

• •
Make

Product Development
Decisions

Product/Process Specifications

Figure 2.2. A Product Development Process for Concurrent Engineering.

In principle, it should be possible to use parametric description
technology to fully detail the design before making any decisions. This is a
consequence of the fact that the cost of making changes to the product
specification as alternative concepts are considered is extremely low. This
approach may, in fact, be practical for some types of products which are
derivatives of similar systems.

For systems incorporating new technologies or inventions, the cost of
creating the parametric models for elements of the product and
manufacturing process is a significant portion of the product development
investment. In addition, modelling of advanced technology components
often involves significantly higher levels of technical risk. These factors in
combination necessitate the use of a hierarchical approach, even in a
parametric description environment. Thus, we must address the question
of making decisions based on a partial specification of the product.
Techniques for attacking this question are highly applicable to the

13

development of hierarchical design methods, and form a cornerstone of our
technical approach.

2.2.2.3 A System View of a Computing Environment for Concurrent
Engineering

A successful architecture for concurrent engineering (CE) must
support several possible CE computing environments. One type of CE
environment will be presented here. In this particular environment, high-
level product and process modelling languages are used to create
parametric models. The integrating technology is a distributed objectbase
containing models of the system as well as objects which are used to
manage the state of the development process. Elements of such an
environment are indicated in Figure 2.3.

A distinction between functional architecture ("what it does" or "how
it is used") and implementation architecture ("how do we build it" or "what
it is") must be made. Elements of a functional architecture are shown in
Figure 2.3. In this section of the report, the concern is almost exclusively
with the functional architecture. Thus, when the word CE architecture is
used without qualification, the reference is to the functional architecture.

Specification of an architecture includes both the decomposition of
the system into elements and a description of the interfaces between those
elements. First, it is necessary to identify and describe the elements of the
architecture of Figure 2.3. The architecture in Figure 2.3 decomposes a CE
environment into two subsystems: team interfaces and a distributed
objectbase. A team interface supports each of the steps of the CE product
development decision-making process shown in Figure 2.2. The
development of parametric product/process models is supported by a high-
level language interface. Similarly, interfaces are provided for planning
and executing the product development decision-making process.

14

Team interfaces

High level product/process
modelling language

Decision
planning

Decision
making

Distributed
Objectbase

Development
Process

I Decisions I---TradeOff

CAD VF/SP VSE

System

I Functions 	I

I Elements 	I

I Theories/Models I

Analysis
Tools

Ths,

Decision
Planning
Tools

Figure 2.3. A System View of a Computing Environment for Concurrent
Engineering.

The parametric descriptions of the system, developed using the high-
level modelling language interface, are captured in the "system" element of
the distributed objectbase. In order to support many CE objectives, the
high-level modelling language must provide for the description of system
functions ("what it does"), elements ("what it is") and theories and models.
The theories and models describe how specific system elements work
together to perform specific functions. For product development in
response to complex requirements, or incorporating risky technologies,
multiple levels of theories and models are often used to support product
development decisions. Thus, these aspects of the system life cycle concept
must be represented explicitly in the objectbase. Theory/model objects
manage the execution of analysis tools as methods. This relationship is
indicated in Figure 2.3 by a line connecting "Analysis Tools" to the box
around the "Theories/Models" object class.

The parametric nature of the system description implies that, until
product development decisions are actually made, the system description
contained in the objectbase represents a catalog of alternative choices for
product and process specifications.

15

Product development decision-making tasks are also represented
explicitly in the distributed objectbase. These decisions are instantiated by
the CE team during product development decision planning step. While the
decision planning step is of considerable relevance to issues of hierarchical
design methods, it is necessary to postpone detailed discussion of this step
to the presentation of the automobile door design example in chapter 9. In
this section, an outline of the barest elements of the process is presented.

Associated with each decision is a set of product and process
attributes to be specified by execution of the decision-making step. The CE
team identify these attributes, the required analyses, simulations, and
tests, and the team members participating in the decision as part of the
decision planning process. The CE team also develop a convergence
strategy for these decisions in such a way as to properly balance customer
requirements.

2.3 Basic Concept- A Multiview Design Approach for Automobiles

There are many different views of vehicle and each has a hierarchy.
Each of these views has benefits for some applications or perspectives. The
three views we have chosen include the customer perspective, the
operational perspective, and the physical perspective. These views are
linked together by mapping transformations. The key aspect of our work is
(1) to develop an approach that allows the customer perspective to drive the
design and (2) to allow each perspective to be continually refined to lower
levels of definition until the design is completed. We are particularly
interested in the early conceptual design phase where the design concept is
set, but we also want to be able to refine the design at least through
preliminary design. We are concerned with understanding and
characterizing the above three views, as well as building links between the
views.

2.4 Research Approach

The research approach in these two projects can be summarized in
the following list:

1. Investigate each of the three perspectives.

2. Identify the top level characteristics and parameters.

3. Refine the perspectives hierarchically to further levels.

4. Build some representative linkages among the perspectives (views).

5. Develop representative databases containing the views.

16

17

6. Develop prototype software approaches for supporting this design
approach.

7. Apply software to selected simple test situations to clarify issues and
refine concepts.

Gross vehicle characterizations
Hierarchical design of component, subcomponent, and part
Optimization strategies
Trade-off study concepts

8. Establish a baseline approach for application to vehicle design
problems.

The next several chapters provide the details for each of these areas.

Chapter 3 CUSTOMER PERSPECTIVE OF THE VEHICLE

This chapter discusses the customer perspective of the vehicle in
terms of the voice of the customer through the Quality Function Deployment
(QFD) methodology.

3.1 Customer Perspective via QFD

The customer's wants can be determined through the use of a QFD
methodology, which is discussed in further detail in Appendix A. The
results are known as the "voice of the customer" (VOC). This can be a quite
detailed list of desires, such as roominess, acceleration, and gas mileage.
Actual values can also be determined with this methodology. An extensive
list is being developed by Wei Chang at the GM Systems Engineering
Center. Therefore, we will not dwell on the results of his work. As this is a
lengthy list, we have chosen to assume that it exists and continue our work
assuming that its output values will serve as the input to the work being
performed in this study. The linkages between the QFD and our system
will be through the baseline parameters, discussed in this chapter and the
inputs discussed in chapter five. The VOC will serve as the starting point
of the design process resulting in a "customer-driven" design.

3.2 Baseline Parameters

The baseline parameters form a set of parameters that can be used to
completely define an object that can be identified as an "automobile". They
have been used to determine the input and output of the object oriented
vehicle model. The context of this research is the "conceptual" level, that
is, design of the major characteristics of a "car" (versus development of a
new mode of transportation). Accordingly, we developed a set of baseline
parameters which compose nine characteristics whose values can be used
to distinguish between instances of vehicles at the conceptual level. These
are follows:

1. Number of People
2. Number of doors
3. Engine Size
4. Cargo Capability
5. Wheel base
6. Drive type
7. Material Percentage (% Metal)
8. Silhouette
9. Clearance

18

The interactions among the baseline parameters were explored
through the use of a Quality Function Deployment (QFD) type of "House of
Quality" (see Figure 3.1). The QFD house provides a simple, effective
means by which to investigate and document qualitative relationships
among variables. It also provides an easy to comprehend, graphical way to
present these findings for review. The "roof' relationship matrix of the
house was filled in using symbols to express the strength (strong or weak)
and type (positive, negative, or none) of the interactions between the
baseline parameters, which were arrived at through group consensus. The
symbols reflect the type and degree of interaction that results from
changing a value of a baseline parameter, and the arrows beneath the
parameters indicate the direction of change. For example, if the engine
size is increased, it will have a strong positive effect on the effort to increase
the cargo capability (weightwise) of the vehicle. Note that the baseline
parameter "drive type" does not have an arrow to indicate a direction of
change. This is because a change of drive type amounts to a change in type
(rather than change in value), i.e., to front, rear, or all wheel drive.

Interestingly, we found the need to modify the QFD house roof
relationship matrix to provide indications of "directionality," because some
of the interactions are directional. Directionality is shown by splitting a
roof relationship "box" in two. When reading the relationships in the roof,
the symbol that is seen first when proceeding from one parameter to the
next is the one that should be used. For example, increasing the number of
people the vehicle can transport has a weak positive relationship with
increasing the number of doors (e.g., if it is desired to be able to
accommodate 8 passengers, this will most likely require more than two
doors), but increasing the number of doors doesn't necessarily have any
effect on the number of people the vehicle can carry.

The baseline parameters form a link between the voice of the
customer and the inputs to the functional description of the vehicle
discussed in the next chapter.

19

BASELINE PARAMETER INTERACTIONS

© STRONG POSITIVE

O WEAK POSITIVE

X WEAK NEGATIVE

* STRONG NEGATIVE

20

Figure 3.1

Chapter 4 OPERATIONAL PERSPECTIVE OF THE VEHICLE

4.1 Introduction

Functional description plays an important role in generating the
information needed in the object oriented vehicle model. The functional
description of a design specifies what the design must do, i.e., how it must
function. This description type leads to improved designs by minimizing
the information associated with the design. This minimization provides a
broad yet restricted domain of operation for the design. The restrictions
hold the design to what it must do to accomplish its goal. This eliminates
redundant work and work not related to fulfilling a design function. A
functional description allows for domain breadth by not describing how the
design is to be accomplished, but allows for innovative combinations of
function principles to attain the design goal. This chapter discusses the
achievements in applying the functional description data to date and the
plans for the future.

4.2 Functional Description Development

4.2.1 Functional Decomposition

The definition of a vehicle was established to guide the functional
decomposition development. This was accomplished by defining what a
vehicle is, as well as previous work at GM and Georgia Tech. The
definition used was as follows:

Vehicle- A personal system of safe and comfortable transportation.

This definition was chosen because it defined what a car does without
reference to what it is physically. This distinction is a purpose of functional
description.

A vehicle is defined as having three overall functions, Transport,
Please and Protect. Operate Safely forms an overall goal of any design. It is
not included specifically as a function because all products designed should
operate in a safe manner.

The hierarchical decomposition method used is based on the IDEF0
authoring process. This involves determining the possible subfunctions of
a particular function and then examining for logical groupings of these
activities. This was accomplished by asking "What does this function do?"
The groupings were given a functional name. An example of a logical
grouping is combining Start Energy Conversion and Stop Energy
Conversion into the function Control Energy Conversion. These groupings
were studied to ensure there was no overlap in the subactivities. It is
important to note that between the three functions, Transport, Please and

21

Protect, there are overlaps or directly corresponding subfunctions. For
instance, the function Accelerate Vehicle has a role in Transport, as well
as Allow for Exhilaration. These functions are defined in the function data
dictionary in Appendix B, in addition to the other functions. The vehicle
functional description consists of three levels. Upon examination, the
functions were found either to be performed directly by a passenger or
driver, or enabled the passenger or driver to perform a function. The third
level functions are categorized as either enabling or direct functions, or as
both. The following are the functions specified for a vehicle:

EINEZELOISI 	 TYPE

Fl Transport
F1.1 Provide Energy

F1.1.1 Generate Useful Energy 	Enable
F1.1.2 Distribute Energy 	 Enable

F1.2 Control Motion
F1.2.1 Monitor State of Motion 	 Direct
F1.2.2 Control Energy Conversion 	Direct
FI.2.3 Choose Direction 	 Direct
F1.2.4 Steer Vehicle 	 Direct
F1.2.5 Accelerate Vehicle 	 Direct
F1.2.6 Decelerate Vehicle 	 Direct

F1.3 Provide Space and Support
F1.3.1 Provide Passenger Space 	Enable
F1.3.2 Provide Cargo Space 	 Enable
F1.3.3 Provide Engine Space 	 Enable

F1.4 Access Vehicle
F1.4.1 Access Passenger Space 	Direct
F1.4.2 Access Cargo Space 	 Direct
F1.4.3 Access Engine Space 	 Direct

F1.5 Maintain Vehicle's Ability
F1.5.1 Repair Malfunctions 	 Direct
F1.5.2 Perform Routine Maintenance 	Direct

F2 Protect
F2.1 Provide Safety

F2.1.1 Prevent Mishaps 	 Both
F2.1.2 Mitigate Mishaps 	 Both

F2.2 Provide Security
F2.2.1 Prevent Undesirable Intrusion 	Both
F2.2.2 Prevent Vehicle Theft 	 Both

22

F3 Please
F3.1 Provide Physical Comfort

F3.1.1 Maintain Ambient Temperature 	Direct
F3.1.2 Provide Comfortable Spacing 	Enable
F3.1.3 Provide Ergonomic Interfaces 	Enable
F3.1.4 Provide Comfortable View 	Enable
F3.1.5 Provide Comfortable Air 	Enable
F3.1.6 Provide Comfortable Ride 	Both
F3.1.7 Provide Low Noise 	 Enable

F3.2 Provide Mental Comfort
F3.2.1 Perform As Expected 	 Enable
F3.2.2 Provide Feeling of Value 	Enable
F3.2.3 Provide Appropriate Look 	Enable

F3.3 Entertain
F3.3.1 Allow for Exhilaration 	 Both
F3.3.2 Allow for Stimulating Environment Both

NOTE: The function designations, such as Fl and F1.1, are read as
Function 1 and Subfunction 1 of Function 1, respectively.

4.2.2 Function Relationships

Various relationships were mapped to assist the functional
decomposition process. These relationships tested the completeness of the
decomposition and provided other information. The functions were
mapped to a list of GM functions developed in the GM report Vehicle
System Description: A Preliminary Study, the Baseline Parameters, and
the other functions. The last two sets of relationships are modeled by
adapting the body of the "House of Quality", and the roof type mapping from
the QFD. This is done because the QFD is an easy, graphical means for
understanding relationships.

The functional description was mapped to previous GM work to test
the completeness and quality of research work and to foster common
terminology. This mapping was done for both the second level and third
level functions. The second level map was used to guide the development of
the third level map and ensure continuity within the hierarchy. The
second level map was used as a guide and not a restriction because the
mapping of the third level creates new information to be considered at all
levels.

Figures 4.1 through 4.5 depict the function mappings to the second
level functional decomposition. Figure 4.1 depicts the relationship of the
GM function Transportation to the subfunctions of Fl Transport. For
Figure 4.2, the correspondence is between the GM function Safety and F2
Protect. The mapping of GM Comfort versus F3 Please is in Figure 4.3.
Also, F3 Please is mapped with the GM function Enjoyment in Figure 4.4.
Figure 4.5 depicts the correspondence of the Energy and Information

23

GM TRANSPORTATION/GT TRANSPORT
FUNCTIONAL DECOMPOSITION

CORRESPONDANCE

TRANSPORT

DEVELOP
MOTION

CONTROL
MOTION

PROVIDE
SPACE AND
SUPPORT

ACCESS
VEHICLE

MAINTAIN
VEHICLE'S

ABILITY

TR
A

N
S

PO
R

TA
T

IO
N

START
CONTROL 41 41
SHUT OFF
CONTROL 41 4/

DIRECTIONAL
SELECTION
CONTROL

ACCELERATION
CONTROL J 41
BRAKING
CONTROL 4/ 4/
STEERING

AND HANDLING
CONTROL

24

Figure 4.1

GM SAFETY/GT PROTECT
FUNCTIONAL DECOMPOSITION

CORRESPON DANCE

PROTECT

PROVIDE
SAFETY

PROVIDE
SECURITY

A
l3A

V
S

ACCIDENT
AVOIDANCE 41

HAZARD
PROTECTION 4 J

SECURITY

OCCIPANT
VISIBILITY

CRASH-
WORTHINESS 4/

25

Figure 4.2

GM COMFORT/GT PLEASE
FUNCTIONAL DECOMPOSITION

CORRESPONDANCE

PLEASE

PROVIDE
PHYSICAL
COMFORT

PROVIDE
MENTAL

COMFORT
ENTERTAIN

C
O

M
FO

R
T

CONTROLLED
CLIMATE 4 J J

BODY
SUPPORT

ENHANCED
VISION

CONTROLLED
NOISE 4 41 4,1

ENHANCED
PRIMARY
CONTROL 41 4 J

CONTROLLED
ODOR 41 J
RIDE

CONVENIENCE

4/

26

Figure 4.3

PLEASE

PROVIDE
PHYSICAL
COMFORT

PROVIDE
MENTAL

COMFORT
ENTERTAIN

E
N

JO
Y

M
E

N
T

AESTHETICS 4, 41

EXCITEMENT

ENTERTAINMENT
tt

GM ENJOYMENT/GT PLEASE
FUNCTIONAL DECOMPOSITION CORRESPONDANCE

27

Figure 4.4

GM ENERGY AND INFO. MGMT./GT FUNCTION
FUNCTIONAL DECOMPOSITION CORRESPONDANCE

VEHICLE FUNCTION

TRANSPORT PROTECT PLEASE

CONTAIN_
MOTION

ACCESS
VEHICLE

PROVIDE
SPACE AND
SUPPORT

MAINTAIN
VEHICLES

ABILITY

PROVIDE
SAFETY

PROVIDE
SECURITY

PROVIDE
PHYSICAL
COMFORT

PROVIDE
MENTAL

COMFORT
ENTERTAIN

.1N
3 N

i3 Erti N
W

I
A

D
V

3 N
3

STORE 4I II
CONVERT 4 J 41

ALLOCATE/
DISTRIBUTE

TRANSMIT 4 4/ 4 41
DISSIPATE 4 J 4 4/ 41

1.143 If e
E

N
N

V
Y1

N
O

LL
Y

M
IO

A
 NI

AcnvE
INFORmAT ION

PRESENTATION J 41 41 4 41 41 4/ 4/
STATIC

INFORMATICN
PRESENTATION J 4 4/ 41 41 4 41 41

Figure 4.5

Management subfunctions found by GM with the Transport, Protect and
Please subfunctions.

The third level maps are in Figures 4.6 through 4.10, which occur in
the same order as the previous mappings; that is, Figure 4.6 corresponds to
the same GM functions as Figure 4.1 of the second level map. A check
mark means "corresponds to" or "is a part of'.

Due to the generic nature of the GM functions Energy Management
and Information Management, their subfunctions are incorporated in
many other subfunctions in the Georgia Tech decomposition.

The next mapping involves the functions with the Baseline
Parameters. The Baseline Parameters are a set of nine characteristics by
which one can distinguish between particular instances of a vehicle. These
parameters could be viewed as the variables a designer would vary to
specify different vehicle designs. The relationships were chosen based on
the strength of effect a change in a variable in a specified direction would
have on a particular function. Figures 4.11, 4.12 and 4.13 show the
relationships for the second and third level functions, respectively. The
arrows beneath the baseline parameters show the specified direction of
change to find the effect on a function. Drive Type does not have a specified
change direction since it consists only of front wheel drive, rear wheel
drive, and four wheel drive. In addition, the QFD mapping only indicates
the strength of relationships, not the exact effect. The typical relationships
in a QFD involve only strong, moderate and weak relationships. At the
second level, certain relationships are listed as a "washout", which means
no net effect, though there is a combination of effects. These "washouts" do
not show at the third level relationships due to the increased level of detail
for the functions. Also, this relationship, as in the previous section, the
second level map was used as guide for the third level map and not a
restriction. The justification for each relationship in Figures 4.12 and 4.13
are in Appendix C.

The remaining mapping pertains to the interrelationships of
functions. This mapping is modeled after the QFD roof; the relationships
are specified in terms of strong or weak positive and negative relationships.
The relationships were completed for the complete set of second level
functions and the third level subset discussed in the application section of
this report. The second level function interrelationships are shown in
Figure 4.14. Another unusual correspondence type revealed itself in this
picture; this the concept of directional relationships. A relationship could
be strong one way and weak in the opposite. For instance, consider the
relationship between Provide Space and Support and Access Vehicle. How
one accesses the vehicle greatly influences how the vehicle space is
provided. However, how the space is provided slightly affects how access to
the vehicle is rated. This second level map provides clues for the third level
relationships needed for the conceptual level vehicle to develop optimization
relationships between functions.

29

GM TRANSPORTATION/GT TRANSPORT
FUNCTIONAL DECOMPOSITION CORRESPONDANCE

TRANSPORT

PROVIDE
ENERGY

CONTROL
MOTION

PROVIDE
SPACE AND
SUPPORT

ACCESS
VEHICLE

MAINTAIN
VEHICLE'S

ABILITY

G
E

N
E

R
A

T
E

U

SE
F

U
L

 EN
E

R
G

Y

A
O

/33N
3

am
en :Laic

M
O

N
IT

O
R

 S
TA

TE

O
F

 M
O

T
IO

N

C
O

N
T

R
O

L
 E

N
E

R
G

Y

C
O

N
V

E
R

S
IO

N

C
H

O
O

SE

DI
R

EC
TI

O
N

S
T

E
E

R

V
EH

IC
L

E

A
C

C
EL

E
R

A
T

E

V
EH

IC
L

E

3
1
0

IH
3A

111//3313030

PR
O

V
ID

E
P

A
SS

E
N

G
E

R

S
P

A
C

E

PR
O

VI
D

E
C

A
R

G
O

 SP
A

C
E

PR
O

V
ID

E

E
N

G
IN

E
 S

PA
C

E

A
C

C
E

SS

P
A

S
SE

N
G

E
R

S

PA
C
E

A
C

C
E

SS

C
A

R
G

O
 S

P
A

C
E

A
C

C
E

SS

EN
G

IN
E

 S
PA

C
E

 SN
O

LLO
N

flil dbl
1 :11V

dati PE
R

FO
R

M

R
O

U
TI

N
E

M

A
IN

T
E

N
A

N
C

E

TR
A

N
S

PO
R

TA
TI

O
N

START
CONTROL

q

SHUT OFF
CONTROL

NI .
DIRECTIONAL

SELECTION
CONTROL

ACCELERATION
CONTROL

 , I

BRAKING
CONTROL ei
STEERING

AND HANDLING
CONTROL %I

Figure 4.6

GM SAFETY/GT PROTECT
FUNCTIONAL DECOMPOSITION

CORRESPON DANCE

PROTECT

PROVIDE
SAFETY

PROVIDE
SECURITY

PR
E

V
E

N
T

M

IS
H

A
P

S

M
IT

IG
A

TE

M
IS

H
A

P
S

PR
E

V
E

N
T

U

N
D

E
SI

R
A

B
L

E

IN
T

R
U

S I
O

N

PR
E

V
E

N
T

V

EH
IC

L
E

 T
H

E
FT

A
l3

31/S

ACCIDENT
AVOIDANCE

HAZARD
PROTECTION V V

SECURITY V
OCCUPANT
VISIBILITY

CRASH-
WORTHINESS

V

31

Figure 4.7

CONTROLLED
CLIMATE

BODY
SUPPORT

ENHANCED
VISION

CONTROLLED
NOISE

ENHANCED
PRIMARY
CONTROL

CONTROLLED
ODOR

RIDE

CONVENIENCE

GM COMFORT/GT PLEASE
FUNCTIONAL DECOMPOSITION

CORRESPONDANCE

32

PLEASE

PROVIDE
PHYSICAL
COMFORT

PROVIDE
MENTAL

COMFORT

ENTERTAIN

M
A

IN
TA

IN

A
M

B
IE

N
T

TE
M

PE
R

A
TU

R
E

PR
O

VI
D

E
C

O
M

FO
R

TA
B

LE

SP
A

C
IN
G

PR
O

VI
D

E
ER

G
O

N
O

M
IC

IN

TE
R

FA
C

ES

M
3IA

31131911:i0d1400

3G

I A
O

ldd

1:1IV
318%

/ 11100
1
0

3

PR
O

VI
D

E
C

O
M

FO
R

TA
BL

E
R

ID
E

3S
IO

N
 M

O
l

301A
0lid

 PE
R

FO
R

M

A
S

 EX
PE

C
TE

D

PR
O

VI
D

E
FE

E
LI

N
G

 O
F

V
A

L
U

E

PR
O

V
ID

E
A

PP
R

O
PR

IA
TE

LO

O
K

A
LL

O
W

 F
O

R

EX
H

IL
IR

AT
IO

N

A
LL

O
W

 FO
R

ST

IM
U

LA
TI

N
G

EN

VI
R

O
N

M
EN

T

V V V Nt
V V 4/ V

St st NI V
V V st V

SI/ Nif g
V Nif

Se J st Nt
Nt q

Figure 4.8

GM ENJOYMENT/GT PLEASE
FUNCTIONAL DECOMPOSITION CORRESPONDANCE

PLEASE

PROVIDE
PHYSICAL
COMFORT

PROVIDE
MENTAL

COMFORT

 ENTERTAIN

M
AI

N
TA

IN

A
M

BI
EN

T
TE

M
PE

R
A

TU
R

E

P
RO

VI
D

E
C

O
M

FO
R

TA
B

LE

S
P

A
C

IN
G

P
RO

V
ID

E
E

R
G

O
N

O
M

IC

IN
TE

R
FA

C
E

S

P
RO

VI
D

E
C

O
M

FO
R

T
A

B
LE

VI

EW

P
RO

VI
D

E
C

O
M

FO
R

TA
B

LE

AI
R

PR
O

V
ID

E

C
O

M
FO

R
TA

B
LE

R

ID
E

P
R

O
V

ID
E

LO
W

 N
O

IS
E

PE
R

FO
R

M

A
S

 EX
PE

C
TE

D

P
R

O
VI

D
E

FE
E

U
N

G
 O

F
VA

L
U

E

PR
O

V
ID

E
A

P
PR

O
PR

IA
TE

L

O
O

K

N
O

LLVIdrIIH
X3

I :10A
 M

O
T IV A

LL
O
W

 FO
R

ST

IM
U

LA
TI

N
G

EN

VI
R

O
N

M
E

N
T

EN
JO

Y
M

E
N

T

AESTHETICS ki kle V

EXCITEMENT

i
J st 41 41

ENTERTAINMENT I I •1
Figure 4.9

GM ENERGY AND INFO. MGMT./GT FUNCTION
FUNCTIONAL DECOMPOSITION CORRESPONDANCE

TRANSPORT PRWECT KOBE

No'41T4
RIOT

OCennel ihanult PPCVIDE !►ACE MO Accts.
mina

"411IrAN
Amur, MOVE*

WET'

MAIM
NR1RY

MN=
1.14■111CAL

COMVPIT

Pft7A4
MINTAL IPIIIIITAIN

W
a
le

 T
IA

IV
I

it in
E
lm

o
 il

I
SO

LO
N

 A
O

1

1V 111
110.11■10111

II Il 1 1

ro
M

IA

a
iw

retto
v

=
M

IA
an

w
irso ma

11 1 11

M
IS

 10 10111
W

o
l k!

la
v
a

,

0
.30V

11 11 il 111

LO
A

M
 Id

&
M

a
w

&

m
o w

n

O
cism

ina
•
e

n
ri cao.n

u
w

a
ida

L
O

H
' 1131M

A
M

IAO
W

5 !
11 1

O
W

N
41111

T
r
Ilk

I0
01100

O
C IA

C
IM

I

1
0
0
f inlitm

2111113110011

1101nOwd

1
111

Mr
1 111 1

1 =
O

N
 m

ai

a
ILLi b

ela fiv
M

O
W

N

N
O

W
A

ID
 W

N
W

BO

I AO
lid ill 1 1 lit

11

(RCM 4 41 41 ./
CONVERT 4 st il tel •41
ALL= *I st 4 tl %I •1 •I J •I 41 st ■ I •I *I J •I J
WNW." •I 41 st •1 J 4 *I J •I •I •I st J •4 1 •I •I J •I 4
DINPATE J *I ■141•1 44 •I •1•1 ■1 J •1•1•1•/•/41•1

P 1 1
E I

= i ET sZ .1 - ...
4 ' 1 	14 4 1 	14 1414 J 1 J 1.1 4 J 4 q

PIEWC"Allad I I I I 4 I 	14 J J 4441 1•114 il J 4 41 •I J)
Figure 4.10

FUNCTION AND BASELINE
PARAMETERS RELATIONSHIPS

Al

IS
 31d

0
3d

d

o
 'B

a
lm

 ■r-

1 8
1'

3148 3
N

I0N
3 4

.

A
llItiV

dV
0

3
8

V
8 "O

H
M

 4
.

3A
1110

30V
1N

301:13d

4

.
3

W
ItaL

W
I

&
a
n

o
m

ie
4

3

3O
N

V
IA

V
310

.LIJO
dM

V
ELL

DEVELOP
1AOTION

©
©© © © OA

CONTROL
MOTION

()

0 6i 0 A A A
PROVIDE

SPACE AND
SUPPORT

© A ©A A00

ACCESS
VEHICLE

© © A A OA
MAINTAIN

VEHICLES
ABILITY 1\1 A 0 0

1
0

3
1
0

k1c1

PROVIDE
SAFETY

© A 0 00 0

PROVIDE SECURITY

3S
V

31d

PROVIDE
PHYSICAL
COMFORT

0 A
0 A N N

z.>

PROVIDE

MENTAL COMFORT ANOAAAA©

ENTERTAIN A ©
 N 0

©

1\1

Figure 4.11

35

A WEAK RELA

IV WASH OUT

© STRONG RELATIONSHIP

0 MODERATE

STRONG RELATIONSHIP

MODERATE RELATIONSHIP

WEAK RELATIONSHIP

31d
03d

1:13BW

IN

40 H
 	

f
•

♦

E
N

G
IN

E
 S

IZ
E

. 	 .

IA
,

C
A

R
GO

—

1
'
 C

AP
AB

IL
IT

Y

♦

W
H

EE
L

BA
SE

 3dA
l BAIUG M

AT
ER

IA
L

PER
C

EN
TA

G
E

PE
R

C
EN

TA
G

E 3
1
1
3

110H
7IS 	

R

4
 CL

EA
RA

N
C

E

T
R

A
N

SP
O

R
T

A
D

IA
3N

3
301A

0
ticl

GENERATE
USEFUL ENERGY © p O @ I 0@@ A

DISTRIBUTE
ENERGY © A ©©0©©0 A

N
CI.LOVI

1
0

}1.114
0

0

MONITOR STATE 0 A A A A A A
CONTROL ENERGY

CONVERSION

CHOOSE
DIRECTKIN 0

STEER
VEHICLE A A A A O 0 A A

ACCELERATE
VEHICLE © A @ © Q A@O A

DECELERATE
VEHICLE

©
A @A 0©

P
R

O
V

ID
E

S

PA
C

E
 A

N
D

SU

P
P

O
R

T

PROVIDE
PASSENGER

SPACE
© 0 A 0 A A A A

PROVIDE
CARGO SPACE 0 A @A A A 0

PROVIDE
ENGINE SPACE 0 © © A © 0© A

A
C

C
E

SS

V
E

H
IC

LE

ACCESS
PASSENGER

SPACE
© © A A A A A

ACCESS
CARGO SPACE AO @ 0 A

ACCESS
ENGINE SPACE 0 0 A 0

M
AI

N
TA

IN

V
E

H
IC

L
E

S
A

R
R

A
Y

 REPAIR
MALFUNCTIONS A © 0 0 0

PERFORM
ROUTINE

IAAINTENANCE A 0 @ 0 @

36

Figure 4.12 Function and Baseline Parameters for Transport, Third Level

STRONG RELATIONSHIP

0 MODERATE RELATIONSHIP

WEAK RELATIONSHIP

3
1
d

0
3d

 dim

0

M

O
W

N

kl3B
W

RN

. .

3Z
IS

 3N
IO

N
3

A
1.11113VdV

3

001:1110

♦
 WHE

E
L

 B
A

SE
 3cIA

L
 B

A
N

G

at

E
 P

E
Z

N
TRI

ALA
G

E
I

3
1
1

3
1101-11IS

 	
R

C
L

E
A

R
A

N
C

E

1
0

3
1

0
E1d

MISHAPS
PREVENT 	0 	© 	A 	00 	A 	00

1 i MITIGATE
MISHAPS 	© 	A 	00000 	A

A
ll8r103S

30IA
C

tid

PREVENT

INTRUSION
UNDESIRABLE 	 0 	0 	 A

PREVENT
VEHICLE THEFT 	 0 	 A

P
L

E
A

S
E

11:103V400
1V

3IS
A

H
d

3

0
1A

0kid

MAINTAIN

TEMPERATURE
AMBIENT 	0 	A 	A 	0
PROVIDE

SPACING
COMFORTABLE 	0 	0 	0 	0 	A 	A 	A 	A

PROVIDE

INTERFACES
ERGONDIAC 	0 	0 	0 	0 	A 	A

PROVIDE

VIEW
COMFORTABLE 	0 	A 	0 	A 	© 	A

PROVIDE

AIR
COMFORTABLE 	© 	 0

PROVIDE

RIDE
COMFORTABLE 	0 	©00 	A 	0 	0

PROVIDE
LOW NOISE 	 OO 	 O 	 0

111
0

A
V

i0
9

11/J.N

3
V1

3CUAO
kid

AsPExERPFOREcTEDM 	0 	00000 	00

PROVIDE

VALUE
FEELING OF 	0 	0 	0 	A 	00

PROVIDE

LOOK
APPROPRIATE 	 000 	A 	000O0

N
rilk

a
l.N

3

ALLOW FOR
EXHLIRATION 	0 	0 	0 	0 	00
ALLOW FOR

ENVIRONMENT
STIMULATING 	 0 	 A 	©

Figure 4.13 Function and Baseline Parameters for Please, Protect,

Third Level

37

Figure 4.14

STRONG POSITIVE

O WEAK POSITIVE

X WEAK NEGATIVE

STRONG NEGATIVE

FUNCTION INTERRELATIONSHIPS

38

DEVELOP
MOTION

CONTROL
MOTION

PROVIDE ASI SPACE AND
SUPPORT

ACCESS
VEHICLE

MAINTAIN
VEHICLE'S

ABILITY

PROVIDE
SAFETY

■•
=1

PR
(

PROVIDE
SECURITY

'L
EA

S
E

PROVIDE
PHYSICAL
COMFORT

PROVIDE
MENTAL

COMFORT

ENTERTAIN

4.3 Conceptual Level Application

This section reports the areas that have been completed in the area of
applying the conceptual level to the design of the vehicle.

4.3.1 Functional Description Subset

The third level functions were mapped to the baseline parameters to
determine the minimum set of functions necessary to describe a conceptual
level vehicle. This will allow us to test the methodology without being
burdened with the whole set. This first cut produced nine functions. It was
observed that none of the nine strongly correlated to the parameter
"Number of Doors". Therefore, the function "Access Passenger Space" was
added to the list. At this time, the overall input and output was determined
and is discussed in Chapter 5. On the basis of the overall output and group
discussions, seven more functions were added to the list. The following is a
listing of the functions:

FUNCTION
	

TYPE

F1 Transport
F1.1 Provide Energy

F1.1.1 Generate Useful Energy 	Enable
F1.1.2 Distribute Energy 	 Enable

F1.2 Control Motion
F1.2.4 Steer Vehicle 	 Direct
F1.2.5 Accelerate Vehicle 	 Direct
F1.2.6 Decelerate Vehicle 	 Direct

F1.3 Provide Space and Support
F1.3.1 Provide Passenger Space 	Enable
F1.3.2 Provide Cargo Space 	 Enable

F1.4 Access Vehicle
F1.4.1 Access Passenger Space 	Direct
F1.4.2 Access Cargo Space 	 Direct

F2 Protect
F2.1 Provide Safety

F2.1.1 Prevent Mishaps 	 Both
F2.1.2 Mitigate Mishaps 	 Both

39

F3 Please
F3.1 Provide Physical Comfort

F3.1.2 Provide Comfortable Spacing
F3.2 Provide Mental Comfort

F3.2.1 Perform As Expected
F3.2.2 Provide Feeling of Value
F3.2.3 Provide Appropriate Look

F3.3 Entertain
F3.3.1 Allow for Exhilaration

Enable

Enable
Enable
Enable

Both

40

The concept of direct/enable functions indicates a preliminary
method for translating the customer/designer data into the functional
attributes. The direct function attributes should be determined first and
then the enabling function attributes would be determined and optimized.
This would be based on the functional interrelationships and their
associated weights for the objective function. This would handle the variety
of Entertain profiles, which vary greatly from customer to customer.
Certain functions have both direct and enable subfunctions. These are
reflected in the choice of functional attributes for these functions which are
pertinent to a conceptual level vehicle. The following is a list of the function
subset with the initial functional attributes chosen:

FUNCTION

Fl Transport
F1.1 Provide Energy

F1.1.1 Generate Useful Energy
F1.1.2 Distribute Energy

F1.2 Control Motion
F1.2.4 Steer Vehicle
F1.2.5 Accelerate Vehicle
F1.2.6 Decelerate Vehicle

F1.3 Provide Space and Support
F1.3.1 Provide Passenger Space
F1.3.2 Provide Cargo Space
F1.3.3 Provide Engine Space

F1.4 Access Vehicle
F1.4.1 Access Passenger Space
F1.4.2 Access Cargo Space

ATIRB3UTE(S)

Horsepower
Type

Turn Radius
0-60 Time
60-0 Distance

Volume (L,W,H)
Volume (L,W,H)
Volume (L,W,H)

Doors, Area
Area

F2 Protect
F2.1 Provide Safety

F2.1.1 Prevent Mishaps 	 Std.-Great
Based on F1.2.4, F1.2.5, F1.2.6, and Clearance

F2.1.2 Mitigate Mishaps 	Min.-Best
Based on F1.2.4, F1.2.6, F1.3.2, and F1.3.3

F3 Please
F3.1 Provide Physical Comfort

F3.1.2 Provide Comfortable Spacing

F3.2 Provide Mental Comfort
F3.2.1 Perform As Expected
F3.2.2 Provide Feeling of Value
F3.2.3 Provide Appropriate Look

4 1

Volume,
Human Percentile

Evaluate @ end
Evaluate 43 end
Silhouette,
Layout

F3.3 Entertain
F3.3.1 Allow for Exhilaration 	Std.-Great

Based on F1.2.4, F1.2.5, and F1.2.6.

4.3.2 Function Relationships

The function subset interrelationships has been specified in the form
of a QFD roof and is presented in Figure 4.15. Note that there are no
directional relationships. Further examination will assist in the
development of the function optimization scheme. This will require the use
of a customer scenario. The scenario for this examination will concern the
previous purchase of a 1987 Chevrolet Nova. The customer's previous ideas
have been placed in the pertinent input format See Figure 4.16.

4.4 Summary

This chapter has defined the vehicle in terms of its functions to three
levels of detail. This provides the necessary information for the
preliminary assessment of the functional description of the automobile.
The selection of a subset will allow us to test our methodology by using the
function to describe a vehicle and to follow the thread from QFD to Form. It
will also allow us to set up the function vector necessary to optimize the
functional description of the vehicle. This vector will be in form of

0= a Transport + 13 Please + y Protect.

The next step is to map the customer's or designer's data to the
associated functions and determining the appropriate relationships. A
baseline car will first will be defined. This will be done by looking for the
customer data that supports each functional attribute. With this customer
scenario, the functional attributes will be determined for an example
function to develop the relationships tying the Voice of the Customer,
Baseline Parameters, and functions. Also, specifying these relationships
will lead to developing a feed forward function attribute optimization.
During form development, there may be no suitable combination of forms to
fulfill the functions. This will require further negotiation and optimization
of the functional attributes based on the customer's priorities. This process
will allow the understanding of the front end process through to functional
specification.

Figure 4.15 Second Level Function Interaction

GENERATE
USEFUL ENERGY

DISTRIBUTE
ENERGY

STEER
VEHICLE

ACCELERATE
VEHICLE

DECELERATE

;P
O

I

VEHICLE

PROVIDE
PASSENGER

SPACE

PROVIDE
CARGO SPACE

PROVIDE
ENGINE SPACE

ACCESS
PASSENGER

SPACE

ACCESS
CARGO SPACE

PREVENT
MISHAPS

R
O

"

MITIGATE
MISHAPS

PL
E

A
SE

PROVIDE
COMFORTABLE

SPACING

PERFORM
AS EXPECTED

PROVIDE
FEELING OF

VALUE

PROVIDE
APPROPRIATE

LOOK

ALLOW FOR
EXHILIRATION

42
0 STRONG POSITIVE

0 WEAK POSITIVE

X WEAK NEGATIVE

STRONG NEGATIVE

VOICE OF THE CUSTOMER INPUT
1987 Chevrolet Nova

43

jTEM

Body Type

Number of Side Doors

Overall Vehicle Size

Seating Capacity

Passenger Volume

Cargo Volume

Cost

Silhouette

Acceleration

Fuel Economy

Handling/Ride

VALUE/DESCRIPTION

(Don't Care)

(Don't Care)

Small

4

Minimum +

Normal

Economy + (10k)

Round/Streamlined

Minimum +

Good

Middle(Comfort/Response)

Figure 4.16

Chapter 5 PHYSICAL PERSPECTIVE OF THE VEHICLE

5.1 Introduction

Vehicle form description plays the other important role in the
OOVM. The form description of a design specifies how the design will do
what is required, i.e., how it meets the functional requirements. Form
description does not (and should not) describe what the design is to do, but
rather how the design is to be accomplished. This is an important point.
We want to ensure that the conceptual vehicle form characteristics follow
from the functional requirements (and, ultimately, from the customer
requirements) and not the other way around. That is, we want to design
the vehicle to fulfill the customer requirements (to the fullest extent
possible), not specify the functional requirements by the forms chosen. This
point may seem obvious, but automobile manufacturers have been accused
for years of designing vehicles with little or no regard for what the
customer wants, then relying on marketing strategies to "adapt" the
customer to the car (i.e., convince the customer this is what he or she
wants). In today's fiercely competitive automotive market, however, such
strategies are finding little success. We need to understand what the
customer wants, then "adapt" the car to the customer.

Vehicle form description plays another important role in the OOVM.
It was discussed above that we need to determine the decisions that must be
made to design the conceptual vehicle. We must also determine, however,
the information needed to make these decisions. By examining the
relationships of the vehicle forms to the functional requirements (and to
other forms), we can make this determination.

This chapter discusses the accomplishments made in vehicle form
description as well as work needed to complete the OOVM.

5.2 Vehicle Form Description

5.2.1 Input Parameters

Working from the set of baseline parameters discussed in Section 3.2,
we developed the set of input parameters to the OOVM. The input
parameters are the set of variables for which a customer specifies values to
describe the vehicle he or she wants. That is, the inputs are a description of
all the parameters that compose the "voice of the customer" (i.e., customer
attributes), at least at the conceptual vehicle level. The values specified for
the input parameters will serve as the requirements according to which
(along with constraints such as government regulations and technological
limitations), for example, the vehicle will be designed. We designed as
much flexibility into the inputs as possible, to enable a person to describe a
convertible sports-car as easily as an economy car or off-road vehicle. We

44

drew up the list of inputs by debating amongst ourselves and conducting
interviews (asking questions such as "Why did you buy that car?" and
"What are you going to look for in you next car?"). We also talked to people
in the automotive industry. For example, we went to local dealers that sell
many different makes and types of vehicles (Cadillac, Pontiac, Jaguar,
Land Rover) and got their input on what people want in their cars (and
what sells cars). All this "input" went into our input list.

The input parameter list is shown below. An asterisk (*) beside an
input parameter signifies that it is also a baseline parameter. In
parentheses next to each parameter are candidate qualitative/quantitative
values for the customer to input. For example, though, for overall vehicle
size, each qualitative size choice (small, compact, medium, large) will be
displayed with a corresponding quantitative range of wheelbase length. In
addition to asking for values to be specified for the input parameters, the
OOVM will also prompt the customer to rank the importance of all the
parameters to him or her. In this way, if conflicts between requirements
arise in the design process, we'll have a "voice" of relative importance
rankings telling us where to make trade-offs so that we may design the
optimal vehicle. This will serve as the input to the optimization vectors.

INPUT PARAMETERS

Body Type (sedan, coupe, hatchback, station wagon, minivan,
utility, sport, convertible)

Number of Side Doors* [2, 3 (2 + 1 sliding), 4]
Overall Vehicle Size (small, compact, medium, large / ranges

of wheelbase)
Seating Capacity' (2, 3, 4, 5, 6, 6+)
Passenger Volume (minimum necessary to spacious / ranges

of volume in cubic feet)
Cargo Volume* (none to maximum feasible / ranges of volume

in cubic feet)
Cost (economy to luxury / ranges of price)
Silhouette* (straight to round and box to streamlined)
Acceleration (minimum necessary to maximum feasible /

ranges of 0 to 60 mph times)
Fuel Economy (ranges of combined city and highway mpg)
Handling / Ride (maximum comfort to maximum response)
Relative Importance Ranking's of Input Variables (along with

safety and reliability)

* Baseline Parameter

Additionally, the customer should have the option to specify desired
values (or types) for any of the output variables.

45

5.2.2 Output Parameters

Again working from the set of baseline parameters, we developed the
set of output parameters from the OOVM. The output parameters are the
set of variables (i.e., product characteristics) whose values define a vehicle
in technical terms, again at the conceptual level. We formatted the output
list on the basis of what the automotive industry uses to define a car
technically. The list reflects those specifications most commonly given by
car manufacturers (e.g., in sales brochures), consumer organizations
(e.g., Consumer Reports), and enthusiast magazines (e.g., Car and Driver,
Road & Track, Motor Trend, etc.) in their descriptions of vehicles. It is the
goal of the OOVM to assign values to these "design variables" that will
fulfill the requirements specified by the customer.

The output parameter list is shown below. Additionally, we want to
have a pictorial output that shows the silhouette of the vehicle and, possibly,
the relative sizes and locations of the subsystems beneath. A single asterisk
(*) besides an output parameter signifies that it is also a baseline
parameter. The baseline parameter "Material Percentage (% Metal)" is not
defined explicitly on either the input or output parameter list. The output
parameters that have a double asterisk (**), however, are candidate
parameters from whose values material percentage may be calculated. We
have chosen a subset of the output parameters to be used to determine if our
OOVM methodology is correct. A triple asterisk (***) is shown by each of
the output parameters that compose this subset. After testing the OOVM
with the subset, the entire set will be implemented in the model.

OUTPUT PARAMETERS

VEHICLE TYPE;
Body Type*** (sedan, coupe, hatchback, station wagon,

minivan, utility, sport, convertible)
Number of Side Doors*,*** (2, 3, 4)
Seating Capacity*,*** (2, 3, 4, 5, 6, 6+)
Engine Location and Orientation (front, mid, rear and

longitudinal, transverse)
Driven Wheels*,***(front, rear, all)

PRICE;
 Estimated Cost***

GENERAL DATA;
Wheelbase*
Track (front and rear)
Length***
Width***
Height

46

Ground Clearance*,***
Weight**,***
Weight Distribution (front and rear)
Fuel Tank Capacity

=BEM
Passenger Volume*** (and height, length, width of volume)
Cargo Volume*,***(and height, length, width)

ENGINE;
Type -- then if internal-combustion, reciprocating-piston, and

four-stroke:
Subtype (spark-ignition, diesel) -- then if spark-ignition:

Aspiration Type (normal, supercharged,
turbocharged)

Engine Block Material**
Cylinder Head Material**
Number of Cylinders
Cylinder Arrangement (in-line, vee, opposed)
Number of Valves
Number of Camshafts
Camshaft Location [engine block (push-rod), cylinder head

(overhead)]
Displacement*
Bore and Stroke
Compression Ratio
Fuel Management Type (carburetor, single-point fuel

injection, multi-point fuel injection)
Cooling Type (air, water)
Horsepower***
Torque

DRDaiThAM
Transmission Type (manual, automatic)
Number of Forward Speeds
Final Drive Ratio

CHASSIS AND BODY;
Structure Type and Material**
Body Panel Material**
Suspension Type (front and rear)
Brake Type and Size (front and rear)
Wheel and Tire Type and Size (front and rear)
Steering Type
Turning Circle Diameter

PERFORMANCE DATA;
Acceleration (0 to 30 mph, 0 to 60 mph, 45 to 65 mph passing,

1/4 mile, and top speed)

47

Fuel Economy (city and highway)
Braking (60 to 0 mph)
Handling (roadholding on 300 ft diameter skidpad)

* Baseline Parameter
** Candidates to combine to determine the Baseline

Parameter "Material Percentage (% Metal)"
*** Methodology test subset

A few points about the input and output parameter lists should be
made. First, both lists contain a mixture of function and form parameters.
For example, the input list contains the form parameter "number of side
doors" and the function parameter "acceleration time" and the output list
includes the form parameter "engine type" and the function parameter
"braking distance." Our research is based on the premise that form follows
function, so the fact that the input to and output from the OOVM is a
mixture of the two is seemingly inconsistent with our proposition.
However, the rationale for specifying the lists as mixtures of function and
form is to reflect the reality that vehicle purchasers and manufacturers do,
indeed, describe cars using a mixture of both types of parameters. Our
assertions are that forms specified by customers are for functional
purposes and functions specified in technical descriptions of vehicles are
the result of chosen form parameters. For example, the input parameter
"number of side doors" can be translated into the functional. requirement
"access vehicle" and the output functional parameter "braking distance" is
a result of the "brake type" form chosen (and other factors). The OOVM
will implement the above proposition and assertions by translating all
customer requirements into functional requirements, then translate these
functional requirements into forms and, finally, derive the functional
characteristics of the vehicle from the forms (and combination of forms)
chosen.

Another point to note is that the input and output lists contain some
(seemingly) repetitive data. For example, both lists contain the parameter
"acceleration." Again, this is in part due to the nature of how customers
and manufacturers describe their vehicles -- that is, sometimes they use
the same parameters. The repetition of parameters in the input and output
lists isn't necessarily redundant. The inputs (i.e., customer requirements)
are generally qualitative, whereas the outputs are necessarily quantitative.
For example, the customer may specify as input that he or she wants "fast"
acceleration. The OOVM will translate this into a quantitative function to
be fulfilled, the appropriate forms will be chosen to fulfill this function (and
all other functional requirements) and the quantitative acceleration
characteristics of the resultant vehicle will be output. Even where an input
to the system is qualitative, the same output parameter may not have the
same qualitative value where optimization was necessary due to conflicting
requirements or constraints.

48

The final point is that the car specified by values of the output
parameters should be the "same" as the car specified by values of the input
parameters. The vehicle design process is simply a conversion of what the
customer says he or she wants into a vehicle that fulfills those
requirements. If the design is successful, the input to and output from our
system will just be different perspectives (i.e., views) of the same thing -- the
first describing the "desired" vehicle from the standpoint of the customer,
the second describing the same but "realized" vehicle in technical terms.

5.3 Vehicle Form Decomposition

As stated above, the goal of the OOVM is to assign values to the
output "design variables" such that the car designed optimally fulfills the
requirements specified by the customer and meets all constraints. Before
we can implement the OOVM, we need to structure the organization of the
design process, i.e., the decision making process through which customer
requirements are translated into product characteristics. We need to
identify all the steps the system will have to go through in order to design
the vehicle. Furthermore, we need to find the optimal sequencing of those
steps so as to make the design feedforward and minimize the iterations
necessary to converge upon an acceptable solution. This is important
because the vehicle (even at the conceptual level) is such a complex system
that its design can easily become intractable.

One way of making these determinations is by examining the
relationships among the forms that compose a vehicle. Hierarchical
decomposition (further details of which are discussed in latter chapters of
this report), given the qualitative relationships among subsystems of a
complex system, will use a sorting algorithm to sequence the order in
which the subsystems should be designed so as to localize
interdependencies and minimize the amount of feedback and iteration
required in order to converge upon an optimal solution. It has been
proposed that this method be utilized to establish the order in which the
forms should be designed, aggregated, and optimized into an overall
vehicle. Before we can put this method to use, though, we must define what
the forms are that compose a vehicle and then what the qualitative
relationships are amongst these forms.

5.3,1 Form Decomposition

The vehicle was decomposed into a form hierarchy. The hierarchical
form decomposition was developed using a systems approach, that is, the
vehicle was decomposed into groups (or "systems") of forms according to
the common functions the forms perform. Functional groupings of forms
will allow a more direct mapping from function to forms and localize the
forms within the OOVM that may have to be optimized in order to fulfill a
desired function. The decomposition also gives us a good idea of how the

4 9

forms, which are designed to fulfill the functional requirements, will be
aggregated into an overall vehicle. The top-level form is, of course, the
overall vehicle "system: The first-level decomposition of the overall vehicle
system yielded four sub-systems :

1. Transportation/Support Systems
(make the vehicle "mobile")

2. Power Generation/Transformation Systems
(make the vehicle "auto"-mobile)

3. Entertainment/Driver Interface Systems
(make the vehicle "people" mobile)

4. Computer Control Systems
(link the previous three systems)

Decomposition of the first-level forms yielded eight "sub" sub-
systems, or second-level forms:

1. Transportation/Support Systems
1.1 Structural Systems
1.2 Chassis Systems

2. Power Generation/Transformation Systems
2.1 Power Generation (Engine) Systems
2.2 Power Transmission/Transformation Systems

3. Entertainment/Driver Interface Systems
3.1 Interior Systems
3.2 Exterior Systems

4. Computer Control Systems
4.1 Integration Systems
4.2 External Interface Systems

At the conceptual level, differentiation between vehicles occurs by
varying the quality and quantity of the design variables associated with
these forms. The values assigned to the input parameters (i.e., customer
attributes) by the customer will determine the values of each of the
functions generated by the functional decomposition. These in turn will
determine the values of the form variables. Finally, these values will
determine the values of the output parameters.

The General Motors Uniform Parts Classification (UPC) was used to
test the completeness of the vehicle form decomposition. That is, we went
through the UPC and ensured that each of the parts in the list could be
"mapped" or classified into one of the vehicle systems. This check was
important -- it insures that the form decomposition for the OOVM at the
conceptual level fully describes the vehicle and will be readily expandable
for detailed design. The UPC also helped in the development of the
decomposition. We looked at each of the parts in the list and asked "What
does this part do?" By abstracting then aggregating the functions
performed by the parts, we "built-up" the systems that compose the
conceptual vehicle.

50

One question that is often asked when the decomposition is presented
for review is "Where is the electrical system?" The electrical system
performs many functions; hence, it is many places in our decomposition.
For example, the alternator converts mechanical to electrical power;
therefore, it is part of the power transmission/transformation system.
Likewise, the wiring harness is part of this system because it "transmits"
electricity from one part of the vehicle to another. The vehicle "computer"
and its associated sensors and wiring (wiring for the purpose of
transmitting and receiving information, not power) are part of the
computer control system because they "function" as controllers of the other
systems. Again, this functional grouping of forms will allow a more direct
mapping from function to form. Note that in chapter 8 we discuss
alternative views of the OOVM. This capability will allow designers
concerned with the electrical system to "view" what they are concerned
with as a whole entity and ensure its completeness and functionality.

5.3.2 Form Relationships

Similar to the baseline parameters, the interactions among the
vehicle forms were explored through the use of the QFD house roof
relationship matrix. Figure 5.1 illustrates the interactions among the first-
level forms of the vehicle decomposition. Note that there is quite a bit of
directionality present among the interactions. For example, the -power
generation/transformation system has a weak, positive effect on the
entertainment/driver interface system (e.g., with more power you can have
a bigger radio), but there is no relationship in the opposite direction. The
interactions among the second-level forms of the decomposition were also
investigated. These are shown in Figure 5.2. It is these qualitative
relationships that will be used in hierarchical decomposition to establish
the sequence in which the systems should be designed and synthesized into
an overall vehicle system.

The relationships between the functions and forms (from the
decompositions) were also investigated. Figure 5.3 shows the relationships
of the first-level functions to the first-level forms. Here, we used the QFD
house "body" relationship matrix with symbols to indicate the strength
(strong, moderate, weak, or none) of the relationship. The symbols reflect
the effect that modifying a function will have on form. Note that the matrix
is filled -- this indicates that there is quite a lot of coupling. The
relationships between the second-level functions and second-level forms
were also determined. These are shown in Figure 5.4. Note that the
relationships between the function "entertain" and the forms were omitted.
This is because the relationships are highly dependent on the specific
customer involved. For example, one driver may derive all his
entertainment from the radio, in which instance there would be a strong
relationship between the function entertain and the interior system.

51

FIRST-LEVEL FORM INTERACTIONS

52

VEHICLE

TR
A

N
S

P
O

R
TA

TI
O

N
/

SU
P

P
O

R
T

S
Y

S
TE

M

PO
W

E
R

 G
EN

E
R

A
TI

O
N

/
TR

A
N

S
FO

R
M

A
TI

O
N

 S
Y

S
TE

M

EN
TE

R
TA

IN
M

E
N

T/

D
R

IV
E
R

 IN
TE

R
FA

C
E

S
Y

S
TE

M

C
O

M
P

U
TE

R
 C

O
N

T
R

O
L

SY
S

TE
M

Figure 5.1

© STRONG POSITIVE

O WEAK POSITIVE

X WEAK NEGATIVE

* STRONG NEGATIVE

SECOND-LEVEL FORM INTERACTIONS

VEHICLE

TR
A

N
S

P
O

R
TA

TI
O

N
/

SU
P

P
O

R
T

 S
Y

S
TE

M

PO
W

E
R

 G
E

N
E

R
A

TI
O

N
/

TR
A

N
SF

O
R

M
A

T
IO

N
SY

S
TE

M

EN
TE

R
TA

IN
M

E
N

T/

D
R

IV
E

R
 IN

TE
R

FA
C

E
SY

ST
E

M

C
O

M
P

U
T

E
R

 C
O

N
TR

O
L

SY
S

TE
M

S
T

R
U

C
TU

R
A

L
S

Y
S

TE
M

C
H

A
S

S
IS

S

Y
S

T
E

M

PO
W

E
R

G

E
N

E
R

A
T

IO
N

(E

N
G

IN
E

)
S

Y
S

TE
M

PO
W

E
R

TR

A
N

S
M

IS
S

IO
N

/
T

R
A

N
S

FO
R

M
A

TI
O

N

S
Y

S
TE

M

IN
TE

R
IO

R

S
Y

S
TE

M

E
X

T E
R

IO
R

SY

S
TE

M

IN
TE

G
R

A
TI

O
N

S
Y

S
TE

M

EX
TE

R
N

A
L

IN
TE

R
FA

C
E

S
Y

S
TE

M

53

Figure 5.2

54

FIRST- 	FUNCTION TO FIRST-LEVEL FORM
RELATIONSHIPS

© STRONG RE
O MODERATE

A WEAK RE LA

iLATIONSHIP

RELATIONSHIP

TIONSHIP

VEHICLE

TR
A

N
SP

O
R

TA
TI

O
N

/
S

U
P

PO
R
T

 SY
ST

E
M

P
O

W
ER

 G
E

N
E

R
A

TI
O

N
/

TR
A

N
SF

O
R

M
A

TI
O

N

S
Y

S
TE

M

EN
TE

R
TA

IN
M

E
N

T/

D
R

IV
E
R

 IN
TE

R
FA

C
E

[
 S

Y
ST

E
M

C
O

M
PU

T
E

R
 C

O
N

TR
O

L
S

Y
S

T
EM

TRANSPORT
© © © ©

PROTECT
© A 0 A

PLEASE A 0 0 A

Figure 5.3

55

SEC 	FUNCTION TO SECOND-LEVEL FORM
RELATIONSHIPS

© STRONG

• MODERA

• WEAK RE

RELATIONSHIP

TE RELATIONSHIP

LATIONSHIP

T
R

A
N

SP
O

R
T

A
T

IO
N

/
SU

P
P

O
R

T
 S

Y
ST

E
M

P
O

W
E

R
 G

E
N

E
R

A
T

IO
N

/
T

R
A

N
SF

O
R

M
A

T
IO

N

S
Y

ST
E

M

E
N

T
E

R
T

A
IN

M
EN

T/

....
••••

■•
 ••■

••
•■

 ••
•

••
•
••

•■
•
•
•
•
■

R
31S

A
S

1
0
iiiN

0
0
 1:13ifIciViO

3

113 .1.SA
S

1V
 fl i3flU

iS
 C

H
A

S
S

IS

SY
ST

E
M

P
O

W
E

R

G
E

N
E

R
A

TI
O

N

(E
N

G
IN

E)
 S

Y
ST

E

I

i

TPI
T

VEA
N

SM
IS

SI
O

N
/

N
SF

O
R

M
A

TI
O

N

S
Y

 M

V
O

ISA
S

11011131N
i

V
G

-W
A

S
1:1011:131X

3 IN
TE

G
R

A
T

IO
N

SY

S
T

E
M

E
X

T
E

R
N

A
L

IN
TE

R
FA

C
E

S

Y
ST

E
M

TR
AN

S P
OR

T

PVIDE
ENERGY RGY 0 AO

CONTROL AO0A© 0

ACCESS
VEHICLE

DA 00A
MAINTAIN
VEHICLES

ABILITY OAAA00

PR
O

TE
CT

PROVIDE 0

0 0 0

O
 00

PROVIDE
SECURITY

0 A A O A

PL
EA

SE

PROVIDE
PHYSICAL
COMFORT 00A AO 0
PROVIDE

COM ToArfaT 0 A 0 A 0 0 A

ENTERTAIN RELATIONSHIPS

I 	I

RELATIVE

I

TO SPECIFIC

I I
CUSTOMER

I I
Figure 5.4

Another driver may be entertained by a car that can take corners fast. In
this case, there would be a strong relationship between entertain and the
chassis system.

The relationships between the baseline parameters and forms were
also studied. These relationships show the effects the vehicle forms have on
the nine basic characteristics that describe the conceptual vehicle. The
relationships of the baseline parameters to the first-level forms are shown
in Figure 5.5, and to the second-level forms in Figure 5.6. Note that the
matrices are almost entirely filled, except that there are no relationships
between the baseline parameters and the computer control system (and its
sub-systems). This is because the control system is basically an interface
between the other systems — in and of itself, it doesn't affect the external
characteristics of the vehicle.

To implement the OOVM and produce useful results, we need to
translate the qualitative relationships developed into quantitative
expressions. Recently, work has begun to model mathematically each of
the form systems and establish quantitative relationships between the
systems. The mathematical models relate the quantitative function that
each of the form systems performs to the static characteristics of the system
(such as type, geometry, weight, cost). One can envision each of the forms
as a "rubber" system -- given the functional characteristics required of the
system, we can subject its model to mathematical variation and "stretch"
the form into a "shape" that fulfills the function. For example, it may be
appropriate to model the engine system so that its form characteristic
"displacement" is a function of (in the mathematical sense) its functional
characteristic "provide power." In this manner, if the function required is
to "provide 150 HP," the engine system will be mathematically varied to
have, say, "2.5 liters of displacement." Quantitative relationships between
systems will allow mathematical aggregation of the sub-systems into an
overall vehicle system. These numerical linkages between the
mathematical models will also enable optimization to take place where
spatial or functional conflicts between the systems exist or where some
constraint is violated.

Unfortunately, development of quantitative relationships between
mathematical models of the forms has proved to be difficult. Searches for
pre-existing equations (e.g., in automotive handbooks, SAE standards, etc.)
have turned up very few useful results. A promising solution to this
dilemma, however, appears to be through the use of historical vehicle data
to develop equations. A relational database of mechanical specifications,
body dimensions, performance data, etc., (from sources such as the
Environmental Protection Agency, Consumer Reports,and Car & Driver
Magazine) for current passenger vehicles is presently being compiled. This
database has been linked to a graphing software. This will enable us to
make queries on the database and quickly see if a significant relationship
exists between any parameters we desire to investigate. It is surmised that
this effort will yield an abundance of useful equations which will form a

56

57

BAS 	PARAMETER TO FIRST-LEVEL FORM
RELATIONSHIPS

© STRONG RELATI

O MODERATE RE

Q WEAK RELATION

DNSHIP

kTIONSHIP

SHIP

TR
A

N
S

PO
R

TA
T I

O
N

/
SU

P
PO

R
T

 S
Y

ST
E

M

PO
W

E
R

G

EN
E

R
A

TI
O

N
/

TR
A

N
SF

O
R

M
AT

IO
N

S

Y
ST

E
M

EN
TE

R
TA

IN
M

E
NT

/

D
RI

VE
R

 IN
TE

R
FA

C
E

SY
S

TE
M

J

C
O

M
P

U
T

ER

C
O

N
TR

O
L

SY
ST

E
M

NUMBER
OF

PEOPLE
© © o

NUMBER
OF

DOORS
© 0

ENGINE
SIZE 0 © A

CARGO
CAPABILITY © © 0

WHEEL
BASE © 0 0

DRIVE
TYPE

© A

MATERIAL
PERCENTAGE © © A

SILHOUETTE © 0 ©

CLEARANCE © 0

Figure 5.5

BASELINE PARAMETER TO SECOND-LEVEL FORM
RELATIONSHIPS

© STRONG RELATIONSHIP

0 MODERATE RELATIONSHIP

WEAK RELATIONSHIP

58

TR
A

N
S

PO
R

TA
TI

O
N

/
S

U
P

PO
R

T
 S

Y
ST

E
M

PO
W

E
R

G

EN
ER

A
T

IO
N

/
TR

A
N

S
FO

R
M

A
T

IO
N

S

Y
S

TE
M

E
N

TE
R

TA
IN

M
E

N
T/

D

R
IV

ER
 IN

TE
R

FA
C

E
S

YS
TE

M

C
O

M
P

U
TE

R
C

O
N

TR
O

L

ST
R

U
C

TU
RA

L
S Y

ST
E

M

C
HA

SS
IS

SY

ST
E

M

PO
W

E
R

G
EN

E
R

AT
IO

N

(E
NG

IN
E)

SY

ST
E

M

PO
W

ER

T
R

N
SM

IS
SI

O
N

/
TR

N
SF

R
M

TI
O

N

SY
ST

EM

IN
TE

R
IO

R

SY
ST

E
M

EX
TE

R
IO

R
SY

ST
E

M

IN
TE

G
R

A
TI

O
N

SY

ST
E

M

EX
TE

R
N

A
L

IN
TE

R
FA

C
E

SY

ST
EM

© 0 0 0 © ©

© A © ©

© © © © 0 0

© 0 0 0 0 0

© 0 A A 0 0

0 © © © A A

© © © 0 0

© A A 0 ©

© © 0 0 0

NUMBER OF
PEOPLE

NUMBER OF
DOORS

ENGINE SIZE

CARGO
CAPABILITY

WHEEL BASE

DRIVE TYPE

MATERIAL
PERCENTAGE

SILHOUETTE

CLEARANCE

Figure 5.6

significant part of the OOVM. For example, a plot of vehicle weight versus
vehicle length revealed a high correlation and a curve fit to the data
provided a relationship between the function and form parameters (see
Figure 5.7). This effort is also proving to be enlightening. For example, it
was mentioned above that it might be appropriate to model horsepower as a
function of engine displacement. However, a plot of the two parameters
yielded a much poorer correlation than expected (see Figure 5.8). This
leads us to look for possible combinations of form characteristics that affect
this functional characteristic. Of course, we can use the qualitative
relationships developed as a guide.
5.4 Summary

Work to this point has finalized the inputs to and outputs from the
OOVM. Vehicle form description and decomposition has taken place, and
the qualitative relationships among forms, functions, and baseline
parameters have been investigated. Subsets of the input and output
parameters have been chosen with which to study the OOVM before it is
implemented for the entire vehicle. These subsets will allow us to study our
methodology to determine if it is correct. Work has also begun to establish
quantitative relationships among functions and forms using historical
data.

What is needed next is to decompose form down to a level consistent
with the functional decomposition. The relationships among the output
variables and the vehicle forms as well as the spatial interactions among
the forms need to be investigated. The development of qualitative equations
relating forms and functions will be continued, and construction of a form
relational database will begin. Using the relationships established, the
process for function to form transformation and form synthesis and
optimization will also be designed. As stated above, we will test the
methodology developed using a subset of the OOVM.

59

weight = -2690.7 + 30.68(length) RA2 = 0.844

1000 	. 	• 	• 	I 	• 	• 	• 	• 	I

140 	160 	180 	200 	220 240

W
E

IG
H

T
 (

p
ou

n
ds

)

4000 -

3000 -

VEHICLE WEIGHT vs. LENGTH

60

5000

VEHICLE LENGTH (Inches)

Figure 5.7

130:1 an cia 	0
O

0 0

0 100 200 300

eng disp = 0.25 + 1.86e-2(hp) RA2 = 0.532

▪ o El

0

O

0

[1:11

	

0 0 	..o0

	

10 	0 D
IS

P
L

A
C

E
M

E
N

T

El CI 00 0

CI 0 .UE1
cri3 m g

z
5
z

-. 1011E10

0

0

O

DISPLACEMENT vs. HORSEPOWER

HORSEPOWER

61

Fi gure 5.8

Chapter 6 A SAMPLE OF VOICE OF THE CUSTOMER/ FUNCTION/
FORM LINKAGES

6.1 Introduction

This chapter describes the design and implementation of a
subsystem of the Object Oriented Vehicle Model (OOVM) [14], namely, a car
engine. The subsystem was developed in order to test the methodology of
the OOVM. This chapter describes the development of the system and the
hardware and software platforms used.

6.2 Engine Subsystem

As stated above, the engine was used as a subsystem of the OOVM in
order to test how the methodology will work for a smaller system. The
system takes as its input the voice of the customer specific to the type of car
desired. The inputs are the acceleration, weight, and cost of the car. These
input-parameters are translated through a software called Hypercard into
useful functions, which are then stored in Oracle (a relational database) as
a goal-list.

Oracle contains the goal-lists, the form-lists, a list that describes
what form fulfills what function, a list that describes what functions are
needed by what forms to perform those functions, a list of equations related
to the forms, a list of names of forms, and a list of names of functions.
Because the model is kept simple, the number of possible forms is presently
limited to 10.

The functions can be mapped by CLIPS (an expert system) into the
form-lists. A form optimizer, not created within the sub-system, would
then be used to select the best form from the choices in the table. The
communication between CLIPS and Oracle is through an in-house
developed C-program

The output is the table of form-lists. These form-lists contain rubber
forms which are moulded into the best configuration by the form-optimizer.

6.3 Software

6.3.1 The User-interface

Hypercard is an easy to use program. It can very easily set up a user
interface for the car-system. Because the input parameters will be put in
the database and handled as a range, the customer is asked to give a range
in which the parameter should be. (i.e. the cargo-space should be
somewhere between 50 and 75 liters).

62

Three different options could be used:

- typing to values into a field
- using slides on a scale
- dragging a picture into its right form.

The best way to do it on Hypercard is using slides. A field can show
the numerical value that the slide represents. A qualitative value can give
the user extra information he can use to get the right input. Also it is
possible to make a drawing of the vehicle that shows the user what the car
will look like with the given parameters. It takes a lot of time to make the
pictures needed for that kind of output.

The interface made for the engine consists of a slidebar for each
parameter. With each slide bar it is possible to give a range. The slidebars
have an extra numerical and qualitative output.

6.3.2 The VOC ->Functions Translator.

The VOC -> functions translator can be programmed using four
different programs:

- Hypercard script
• Hyper X, Hypercard's expert system
- a self made C-program
- CLIPS.

The data-stream can be handled directly and via Oracle, Hypercard's
DataBase. Table 6.1 gives a table in which the interfaces between all the
systems are described.

Table 6.1 Data-stream / Program Interfaces

Direct Data-stream

- HC and HC : Hypercard script can directly access other cards and stacks
in Hypercard
- HC and HX : Hyper Xis a hypercard stack so see HC and HC
- HC and C-Pr: It is possible to make an XCMD in Hypercard that can
read information into a buffer and start up a C-program that can read
from that buffer. It is NOT possible to read data from Hypercard stacks
when not using the buffer. So all the information necessary should be
passed through the buffer. (succeeded in starting up the program, not
succeeded in transferring data)
- HC and CLIPS : CLIPS is a C-program so see HC and C-pr

63

Information via ORACLE

To pass information from ORACLE to and from the different programs
the following ways are used.

- HC to ORACLE : The XCMD execsql can be used to give SQL-commands
to talk to ORACLE. To be able to use the XCMD rescopy should be used to
copy the resource code from the ORACLE system-stack to the self made
interface-stack.

- ORACLE to HC : See HC to ORACLE
- ORACLE to EX : See HC to ORACLE
- ORACLE to C-pr : When using the pro C* precompiler it is possible to
write SQL commands in a C-program. This can be used to read/write
data from/to ORACLE by the C-program.
- ORACLE to CLIPS : CLIPS is a C-program so pro C* is also used here.
There are two ways to go :

- first read all the information from ORACLE and assert them as facts
into the fact-list of CLIPS and then start the consultation.

- write user-functions for CLIPS so the data can be read into the fact-list
during a consultation.
By using the first method the consultation will be quicker, but to start up
the consultation all data that is not used is also read into the fact-list. A
second problem could be memory, because all the information in ORACLE
is read into the memory of the computer. So overall the second method is
better.

To pass data from the different programs to ORACLE the programmer
can use the same •ro ams as described above.

When the mapping is very easy, a Hypercard script should be used,
as it is the simplest. If the translator gets bigger and more complicated a
C-program is more helpful. When the problem is so complicated that it is
necessary to write an inference engine, CLIPS should be used. Hyper X is
not the easiest expert system to work with and is not suitable for an easy
solution.

6.3.3 The Function-optimizer,

The function-optimizer is not implemented in the engine system.
Because the model of the engine was simple a function-optimization was
not necessary. When the system is expanded, it will be necessary to include
it. The input for the function-optimizer is a goal list with functions and the

64

ranges of the function attributes for those functions. The output is a
goal list with functions and ranges that are optimized. This goal_list is
put into ORACLE.

The function-optimizer is normally more complicated then the VOC-
function translator. Therefore a C-program or CLIPS is more suitable to
make it. The necessary program interfaces are described in Table 6.1.

6.3.4 The Function -> Form Mapper

The mapper that is implemented now is written in a C-program It
uses the pro C* [10] commands to communicate with ORACLE

Hypercard or a C-program puts the first goal_list into ORACLE. The
form_list that belongs to this list is empty. The input for the mapper is as
follows:

- the goal list
- an empty form list
- information on which form can fulfill what functions and what functions
it needs to be fulfilled when performing those functions.

The output is a list of formlists of which each of the lists can perform
the functions that were in the original goal list. The steps followed by the
mappers are as follows:

1) The mapper reads the first goal list and starts looking for forms that can
fulfill the first function in the goal list. These forms are put into a
select list of forms.

2) The select_list is minimized. This will be done by an intelligent
minimizer, the engineer, or a combination of those two.

3) The first form in the select list is checked to see if it is usable.

4) If so, a new form list is made adding the new form to the current
form_list.

5) A new goal_list is made taking all the functions fulfilled by that form out
of the goal_list.

6) Then the functions necessary for that form to operate are added to the
new goal_list.

7) The steps 2 to 5 are repeated for every form in the select list.

8) The steps 1 to 6 are repeated for every goal list.

65

An example of this process is shown in Table 6.2.

Table 6.2 The Working of the Mapper

Example on the mapper:
The goal list 0 is put into ORACLE by Hypercard or a C-program.

Functions are numbers, Forms are letters.

form A fulfill(1, 2) necessary (3)
form B fulfill(1) necessary 0
form C fulfill(2) necessary()
form D fulfill(3) necessary()

goal list 0 : (1. 2)
form list 0 : 0

select_list (A, B)

A:
form_list 1 : (A)
goal_list 1' : 0
goal_list 1 : (3)

B:
form_list 2 : (B)
goal_list 2 : (2)

goal list 1 : (2)
form list 1 : (A)

select_list (D)

D:
form_list 3 : (A, D)
goal_list 3 : 0

goal list 2 : (B)
form list 2 : (2)

select_list (C)

C:
form_list 4 : (B, C)

soallist 4 : 0

66

The problems that occur with the macintosh computers are memory
management problems. An exact description is given in section 6.A.2.

In addition to step 2 : The minimizer

To optimize the mapping process, not all the possible forms should be
put in a list and given as output. If, for instance, two different forms can
perform the same function and if they also need the same functions to be
fulfilled to operate the one should be taken that fits the best in the profile of
the car that the customer has given. The minimization can be done by an
expert or by an expert computer system. An additional minimization can be
done at the end of the mapping process or just before the form_optimizer.

An output session of the CLIPS mapper is shown Table 6.3.

Table 6.3: CLIPS Mapping Output

CLIPS> (reset)
CLIPS>

(load "mapper")
Compiling rule: init +j
Compiling rule: form-found +j+j+j+j+j+j+j
Compiling rule: print-it =j+j+j
Compiling rule: delete-wait +j+j+j+j+j
Compiling rule: get-rest =j+j+j+j
Compiling rule: stop-rest =j=j+j+j+j
Compiling rule: print-stop +j+j
CLIPS>

(reset)
CLIPS> (run)

The list is cylinder carburetor spark-plug cooling air-cleaner fuel-
cleaner battery environment

The list is cylinder injector cooling air-cleaner fuel-cleaner environment

The form injector fulfills function mixed-air-fuel
that already is fulfilled
The list of functions is : cooling clean-air clean-fuel
The list of forms is : cylinder carburetor injector

35 rules fired
Run time is 5.58325195 seconds
CLIPS> (dribble-off)

67

0.3.5 The Form-optimizer

The output of the mapper are rubber forms with the equations that
describe these forms. This information is passed into an IBM computer.
Smalltalk and Demaid run on this computer and they perform the form-
optimization. The transfer between the two computers can be done by an
on-line link or by using floppies.

6.4 Oracle Database

ORACLE is used as the Hypercard's database. It is a relational
database. The tables in the database are setup in third normal form. The
tables are as follows:

FORMS : - id
- name

Used to link form-names to form-id numbers.

FUNCTIONS : - id
- name
- unit

Used to link function-names to function id-numbers. Unit gives the unit(s)
in which the function is measured. The tables FULFILL, NECESSARY
and GOAL LIST don't give units, only numbers.

FULFILL : 	id
- form id
- function_id
- bottom-value
- top value

Used to describe which forms can FULFILL what functions in what range.

NECESSARY : id
- form_id
- function_id
- bottom-value
- top value

Used to describe which functions in what range are needed for a form to
fulfill the functions described in the table FULFILL.

68

EQUATIONS LIST : - id
- form id
- equation

Used to give the equations that belong to a form.

ERROILMESSAGES : - id
- message

FORM _LIST : 	id
- list_num
- form id

Used to store form lists. List_num gives the number of the list. Form id
gives the form that is in that list.

GOAL_LIST : 	- id
- list_num
- function-id
- bottom-value
- top value

Used to store goal lists. List_num gives the number of the list.
Function id gives the function that is in that list. Bottom-value and
top value give the boundaries of the range in which we want the function to
be fulfilled.

The last two tables work as follows :

If list #1 is '1 : (A, B, C)' and list #2 is '2 : (A, B)' then the entries in the
table are as follows:

id list_num form
1 1 A
2 1 B
3 1 C
4 2 A
5 2 B

6.5 Conclusions

The Macintosh computer does not efficiently run a big system like the
implementation of the OOVM. The problems that occurred were mainly
memory management problems.

The engine is a good example to work with because it contains many
of the problems one can find in designing an OOVM and is an easy model to
make.

69

Hypercard is very good to use as a development environment for a
user-interface.

As an expert system Hyper X is not as easy to use as CLIPS.
Therefore everything is written in CLIPS.

Using the mapper the output will be a list of lists of all combinations
of form that, when combined can fulfill the goal list 0.

Both the C-program and CLIPS are usable as an environment to
program a mapper. The C-program will be faster.

6.6 References

[1] Obert, Edward F., Internal Combustion Engines, Scranton:
International Textbook, Co. (1986).

[2] Practical Limits of Efficiency of Engines, London: Institution of
Mechanical Engineers (1986).

[4] Aspects of Internal Combustion Engine Design, Warrendale, PA:
Society of Manufacturing Engineers (1982).

[5] Ferguson, Colin R., Internal Combustion Engines, Applied
Thermoscience, New York: Wiley (1986).

[6] Ramos, J.I., Internal Combustion Engine Modeling, New York:
Hemisphere Pub. Corp (1989).

[7] Shafer, Dan, Hypertalk programming (for Hypercard Version 1.2),
Indianapolis: Hayden Books (1988).

[8] Bond, Gary, XCMD's for Hypercard, Portland: MIS Press (1988).

[9] Miller, Garth, The Complementary Roles of Expert Systems &
Database Management Systems in a Design for Manufacture Environment,
M.S. Thesis, School of Mechanical Engineering, Georgia Institute of
Technology, Atlanta, GA (1990).

[10] Manual on ORACLE 1.2 for Macintosh Kit, Oracle Corp., Redwood
Shores, CA.

[11] Giarratano, Joseph C., Clips User's Guide (for Version 4.3), A.I
Section, L.B. Johnson Space Flight Center, Houston, TX (1989).

[12] C for Yourself, Microsoft Corp., Redmond, WA (1988).

70

[13] Waite, Mitchell, and Prata, Stephen, C: Step by Step, (1989).

[14] Colton, J., Craig, J., Fadel, G., Fulton, R., Heifetz, D., Lambright, J.,
LeBlanc, A., Preminger, J., "The Requirements for an Object Oriented
Vehicle Model, Hierarchical Decomposition Design Methods for
Automobiles", Interim Report to GM Systems Engineering, August 3, 1990.

6A.1 Definitions

Form : A form is a physical part of a car (i.e. steering wheel, seat, gearbox).
Function : What a form can do (i.e. steer car, provide seating comfort,
transmit power).
Voice of the customer : parameters of the car set by the customer.
Form_list : A list that contains the forms which, when combined, can
perform the desired functions.
Goal list : Goallist 0 is the list of functions the user wants the car to
perform. Goal lists with higher numbers are subgoal set by the mapper.

• 	_ 	CI"! oft ■11 es 	- e• k.0 	 W. • • 	g o 	,

The mapper is programmed in Lightspeed C(4.0). The program
reads a goal_list out of ORACLE into a linked list in C. To make the linked
list, memory is allocated for a field that can contain one function of the
goal_list. An item of the goal_list is read from ORACLE and is written into
the field. Then the field is linked into the linked list. This is done for all the
items in the current goal list. When the program gets bigger, the memory
allocation function works OK. It gives a pointer to a memory field. When
the program tries to write anything into the field, the computer quits the
running process or even resets itself. The error is probably out of memory.
The program however takes just about 60K of memory. Freeing memory by
not using macbugs, the gatekeeper, the vaccine or the multifinder didn't
work.

6.A.3 The Hard- and Software used

The system is implemented on a Macintosh IIx computer. The
software available was Hypercard, HyperX, ORACLE, Lightspeed C, CLIPS
and Microsoft WORD.

71

Chapter 7 A THEORETICAL APPROACH TO HIERARCHICAL DESIGN

71 Introduction

This chapter outlines a theoretical approach to hierarchical design
which can provide the foundations of a process to seek the optimum design
solution for a complex system. The basic concept envisioned is that there
will be several objective functions, when combined appropriately, will
define the merit of a design. For example, suitable combinations of three
overall functions, Transport, Please, and Protect discussed in chapter 4,
could represent the measures of goodness for a vehicle. An approach such
as this can then provide a mechanism to implement major changes in the
relative importance of Transport, Please, or Protect. Such an approach will
require formalization of an optimum design approach, which is based on a
multiple design objective function, fi(x). This approach can be denoted
multiobjective optimization and is described and discussed here in the
context of automotive vehicle applications.

7.2 Multiobjective Optimization and Design

Multiple figures of merit are applicable to virtually any design
project. Multiobjective optimization problems can be posed as Pareto-
optimality problems. Pareto-optimality refers to the situation where there
are n figures of merit, which are functions of the design variables, 11(x),...,
fn(x). A design, as characterized by the values for the design variables x, is
said to be Pareto-optimal if no one of the goals fi can be improved without
making some other goal fj worse.

If all of the goals are formulated as minimizations, the Pareto-
optimal designs can be found by minimizing a weighted sum of the
individual goals, X coi fi(x), where E coi =1 and each oh satisfies 0 5 coi 51.

In designing a vehicle system or subsystem, the values of the weights
oh represent relative prioritizations of requirements by the customer. These
relative prioritizations are rarely known precisely. Changes in market
conditions may impact the prioritization of the design goals. The relative
prioritizations are also subject to change as the product development team
gains insight into the impact of the prioritizations on the design solution.
Thus, in preparing to match design requirements with customers'
prioritizations, it would be extremely useful to be able to identify families of
design solutions corresponding to various values of the relative
prioritizations.

Determining these families of design solutions would normally
require varying the values for the weights of and re-optimizing the design.

72

The cost of this procedure is high enough that such an approach is rarely,
if ever, used in current design practice.

7.2.1 A New Technique Using Parameter Passing

This reoptimization can be avoided if the design problem can be
decomposed into sub-problems where each of the design goals is assigned to
a distinct subproblem.

A parameter passing scheme can be set up for such a decomposition
which will generate all of the Pareto-optimal solutions (for all values of o) =
(col, - • • , con)). Only n design optimization problems must be solved; one for
each objective. The solutions to these problems are then used to construct
trade-off curves for all values of co. The essential arguments in the proof of
these results are summarized here. The proofs themselves can be found in
[ROGAN & CRALLEY].

Proposition 1: Let a* be a point generated by the decision sequence. If all
df f dxi are 0 at e, then e is a Kuhn-Tucker-Karush point.

Proposition 2: Let the number of design variables in each decision element
Di equal or exceed the number of constraints in Di which are independent
and active at a point x a determined by a feasible, optimizing decision
sequence. Then if x e is a Kuhn-Tucker-Karush point for the original
problem P, all of the optimal sensitivity derivatives df dxi will be 0.

Proposition 3. dF I dp (co) =I wi dfi I dp

Propositions 1 and 2 are applied to parameter passing schemes for
solving multiobjective design optimization problems by noting that the
optimality conditions

dF I dpi (co) z: 0

for the approximate Pareto-optimization problem are the same as the
convergence criteria for the solution of the exact Pareto•optimization
problem by a parameter-passing scheme. The exact Pareto-optimization
problem is solved, then, when these conditions are satisfied. Proposition 3
allows the conditions to be satisfied by varying the relative prioritizations,
while maintaining the significance of those conditions in terms of optimal
sensitivity derivatives. Thus, propositions 1, 2, and 3, establish the validity
of techniques which solve the exact Pareto-optimization problem by varying
the relative prioritizations in an approximate problem.

73

•• 	 ,,,,,, ,

7.2.2 Application to an Automobile Configuration Problem

Providing volume is a design engineering problem that may be quite
important in configuring an automobile. Methods for solving this problem
are applicable to sizing the passenger, engine, and cargo compartments, as
well as to sizing of containers such as fuel tanks (Figure 7.1). The problem
can be described in terms of the baseline conceptual design parameters
(identified in the main body of this progress report):

1. Number of people (rated)
3. Engine size
4. Cargo capability
5. Wheelbase
8. Silhouette
9. Ground clearance

In developing a design process to configure (select the shape and
arrangement of) volumes for passengers, engine, cargo, fuel, and other
containers, engineering theories and models describe how functions such
as Transport, Protect, Please and Operate Safely are accomplished by
specific elements of the vehicle form decomposition. The relationships
represented by these models are linked to the form and function
decompositions using QFD.

Figure 7.1. Cost/Capacity Problems in Configuring an Automobile.

This example is based on a volume configuration problem: it is
required to find the dimensions (length, width, and height) of a rectangular
box with surface area less than 6 ft. 2 ("relative materials cost") and volume
greater than or equal to a target value of 10 ft. 3 ("capacity"). In addition, the
box cannot exceed 2 ft. in height.

The problem statement can be summarized as follows:

1. Choose length, 1 ; height, h ; and width, w of a box-shaped container.

74

relative materials cost

[relative materials cost] =
2 x ([length] x [width] + [lenr x [height]+ [width] x [height])

I

length 	height width
1 	

[capacity] = [length] x [height] x [width]

2. Each dimension of the box-shaped container is between 0.5 ft. and 5 ft.

3. Capacity of the container, fi(l, w, h)=1wh , is to be maximized, but not
less than 10 ft3-

4. Relative cost of materials, f2(1, w, h) = 2(1w + w h +h1), is not to exceed
6.

5.Height of the container, h is to be less than 2 ft.

Note that alternative design concepts, attributes, and engineering
theories and models have been specified in the statement of the design
problem. Thus, this problem has been posed at an appropriate point in the
system engineering process for the application of a design methodology.
The information contained in the statement of this design problem can be
represented graphically as a "design-in-process graph", Figure 7.2.

Figure 7.2. 'Design-in-Process graph".

Design Methodologies for the Container Design Problem

A design methodology is a procedure for applying the engineering
theories and models to determine values for attributes of the design, such
as length, height, and width. As example design methodologies, consider
the following:

75

)4 eth o d ol ogy A
1. Determine length, width, and height.

2. Apply
[length] x [height] x [width] = [capacity]

to determine capacity.

3. Apply

2 x ([length] x [width] + [length] x [height] + [width] x [height]) =
[relative materials cost]

to determine cost.

Methodoloey B

1. Fix capacity, cost and height.

Solve
[length] x [height] x [width] = [capacity]

for length,

[length] = [capacity]/([height] x [width]).

Substitute this relationship into the equation

2 x ([length] x [width] + [length] x [height] + [width] x [height]) =
[relative materials cost]

and solve

2 x ([capacity]/[height]+[capacity]/[width]+[width] x [height]) =
[relative materials cost]

for width:

w = - (c1/h - c2/2) f [(c1/h - c2/2) 2 - 4hci] 1/42)/(2h)

where w = width, ci = capacity, c2 = cost, and h = height.

Determine width from cost, height, and capacity.

3. Use the equation

[length] = [capacity]/([height] x [width])

76

to find the length.

Methodology C

Solve the following optimization problem:
maximize:

ci = lwh
subject to:

2(1w + wh + 1h)5c2
c2=6

c2,1,w,h z e > 0, h 52.

The design vector decomposition xi = (c2), 12 = (l,w,h) can be used for this
problem. The decision elements are then

C1:
satisfy: 	c2= 6

2(1w + wh +1h) 5 c2
design variables: c2
fixed parameters: l,w,h

and

maximize:
C2:

Cl = 1wh
subject to:

2(1w + wh +1h) 5 c2
1,w,h e >0, h 52

design variables: ci,l,w,h
fixed parameters: c2

Since there is a unique objective function for the problem addressed by
Methodology C, ci, weighting factors need not be defined.

Methodology D

Solve the following optimization problem:
maximize:

e2 =2(lw + wh + 1h)
subject to:

lwh a ei
= 10

ci,l,w,h e > 0, h s 2.

The design vector decomposition xi = (ci), x2 = (1,w,h) can be used for this
problem. The decision elements are

D1:

77

78

satisfy: 	ci= 10
lwh ci
design variables: ci
fixed parameters: l,w,h

and
D2:

maximize:
e2 =2(lw + wh + ih)

subject to:
lwh Z ci

1,w,h z e> 0, h 5 2
design variables: c2, 1,w,h
fixed parameters: ci

Again, there is a unique objective function for the optimization problem
addressed by Methodology D, c2, making weighting factors unnecessary.

Methodology E

Solve the following optimization problem:
minimize:

col [ci/ 10 - 112 + (62 [c2/6 - 112
subject to:

lwh
2(1w + lh + wh) c2

col + co2 = 1
ci, c2,1,w,h e > 0, h 5 2

04,0)2 0

The design vector decomposition xi = (o)i,co2), x2 = (ci,c2,1,w,h) can be used
for this problem. Decision elements are

El:
minimize:

[cil 10 - 112 + oy2 [c2/6 - 1P
subject to:

(01 + 0)2 = 1
w1,0)2 k 0

ci,c2 fixed parameters

and

minimize:

subject to:

E2:

[ci/ 10 - 112 + o>2 [c2/6 - 112

length

height

width

Cost

capacity
height

lwh
2(1w + lh + wh) 5 c2
c2, 1,w,h z e> 0, h 5 2

(01402 fixed parameters

7.2.3 Analysis of Design Methodologies

Each of these methodologies can be represented as a directed graph.
In the directed graph representation, the decision elements of the
methodology are the nodes or vertices. The sequence of design decisions
embodied in the methodology is represented by arrows (directed edges)
connecting the decision elements.

79

Methodology A
	

Methodology B

Figure 7.3. Directed Graph Representations of Design Methodologies A and B.

The information content of these directed graphs is sufficient for the
application of decision structuring techniques (such as Interpretive
Structural Modelling and the Design Structure System) which are based on
connectivity information (see [ROGAN & CRALLEY] for a more in -depth
discussion of these techniques). In fact, these graphs are probably far too
simple to produce interesting results using the decision structuring
techniques. It is clear that directed graphs can be used to identify obvious
problems with the methodologies. For example, from the directed graph of
methodology A (Figure 7.3), it is evident that unless the correct values for
the attributes length, width, and height are already known, it is practically
impossible to meet the cost and capacity requirements without iterating the
decision-making process. Methodology A does not specify such an iterative
strategy, so methodology A is rejected as too risky.

However, even for these simple design methodologies, the directed
graph representation is not adequate to accurately evaluate their suitability
as an approach to solving the container design problem. This is evident in
the analysis of methodology B. The directed graph of methodology B (Figure

7.3) indicates that it should be possible to determine length and width, the
design variables, from cost, capacity, and height, the requirements. This
appears to correspond precisely to the container design problem. However,
substituting cost = 6, capacity = 10, and height = 2, into

w = (c1/12 - c2/2) t gcl/h - c2/2)2 - 4hciP12)/(2h)

the solution (ciIh - c212) 2 - 4hci = -76 < 0 is found, so there can be no real
solutions for the width, w. This indicates that the initial requirements are
not feasible. No indication of this problem can be seen in the directed graph
representation. In fact, the directed graph indicates that methodology B is
well-matched to the container design problem. It is clearly not possible to
determine whether a design methodology will lead to feasible designs using
only the information in the directed graph representation. Analytical
concepts of optimization theory are needed to bring feasibility into the
evaluation. The connectivity information contained in the directed graph
representation is simply not adequate for this task.

Interpreting some of the requirements identified in the container
design problem as goals makes it possible to model them, in the context of
optimization theory, as objective functions. Requirements that cannot be
relaxed are modelled in optimization theory as constraints. Taking
advantage of this, optimization theory, specifically convergence theory, is
applied to assess the capability of the remaining design methodologies to
solve the problem. It is emphasized that this application of optimization
theory to assess a design methodology is distinct from the application of
design optimization methods, or more specifically numerical optimization,
as a part of a particular design methodology.

Optimization theory is applied to evaluate the suitability of a design
methodology to meet a set of requirements by considering each step in the
design methodology to be a decision element. In the context of optimization
theory, decision elements are optimization or feasibility subproblems.
These subproblems are related to one another by engineering theories and
models linking design attributes in distinct decision elements. In
evaluating the suitability of a design methodology to meet requirements,
engineering theories are analyzed to determine the monotonicity of the
relationships among attributes implied by the engineering theories and
models. Thus, for example, if width is increased with length and height
fixed, an increase in capacity is required to satisfy the engineering theory

ci = lwh.

Thus, capacity is monotonically increasing with length when the
"capacity" engineering theory is enforced.

In a design methodology with multiple steps, the values of design
attributes will be changed as decisions are made. The monotonicity
information can be used to determine whether these decisions will

80

adversely affect the feasibility of subsequent decisions. The monotonicity
information can also be used to assess the overall progress of the decision-
making sequence toward an optimal, or alternatively, toward a Pareto-
optimal (balanced) design. Convergence of a methodology to a feasible
design and progress toward a balanced or optimal design can be ensured by
imposing certain criteria on the sequence of decision elements. The
simplest approach is to allow decision element Di to be sequenced before
decision element D3 only if the choices for values of design attributes in
decision element Di will not adversely affect feasibility or optimality of
decision element Di. Of course, such a sequence may not be possible to
realize in practice. An alternative approach is then to constrain prior
decision elements so that subsequent decision elements have feasible
solutions.

To illustrate these ideas, once again consider methodology B. In
methodology B, choices for height, capacity, and cost are distinct decision
elements that are sequenced before a choice is made for the value of the
width design attribute. Choice of the width attribute is in fact constrained
by w z 0. Clearly, it is possible to choose values for the height, cost, and
capacity attributes that make the width decision element infeasible. (for
example, height = 2, cost = 6 and capacity = 10). Thus, using the concept
that prior decisions should not adversely affect feasibility of subsequent
decisions, one of the limitations of methodology B has been correctly
identified. Methodology B has additional limitations. One of these
limitations is the fact that methodology B does not provide any means to
continually improve the design in terms of cost and capacity goals
throughout the design process. To evaluate methodologies attempting to
accomplish such improvements, it is necessary to consider optimality, or
equivalently, Pareto-optimal balance, in addition to feasibility.,

Methodologies C and D represent different approaches to the design
optimization problem. In methodology C, if C2 is solved before C1, the
constraint c2 = 6 may not be satisfied. The sequence {C1,C2} is feasible: once
the cost is fixed in C1, the optimization problem C2 has a feasible solution
for any positive value of cost. The analogy that methodology D is feasible if
the capacity is positive is valid.

Do methodologies C and D lead to optimal or balanced designs? The
answer to this question depends on who defines optimality. Optimality
must be defined by the customer's needs. Thus, methodologies C and D can
be optimizing only when they match the customer's ranking of the cost and
capacity requirements. Methodology C provides the maximum capacity
meeting the cost requirement, and methodology D delivers the minimum
cost to meet the capacity requirement. This fact is reflected in the sequence
of design decisions. In fact, the customer may need to balance cost and
capacity in some sense. Neither methodology C or methodology D can
address this balancing problem. Thus, methodologies C and D must be
rejected. These methodologies cannot produce designs balancing cost and
capacity.

81

Considerable additional complexity is required to fully address this
problem of balanced design, as is illustrated by methodology E.
Methodology E calls for a separate requirements ranking decision element
(decision element El) in which relative weights for the cost and capacity
goals are determined. Incorporation of this decision element ensures that
methodology E will deliver balanced designs. In the second decision
element in methodology E, decision element E2, values of cost and capacity
goals are determined, resulting in a feasible solution of the Pareto-
optimization problem.

The optimization problem in methodology E is stated so that a
solution can always be found: even though the cost or capacity goals may
not be met,. the design will balance the degree to which those goals are
achieved, with relative priorities determined by the weighting factors.
Thus, the statement of methodology E ensures feasibility in this restricted
sense. Thus, methodology E is well-matched to the container design
problem. Unfortunately, the price exacted for this suitability is too high:
the customer must be able to rank cost and capacity without the benefit of
information about the design relationship between achievable values of cost
and capacity. This ranking represents a question of comparable difficulty
to the design problem itself.

Perhaps a more practical approach is to generate the cost/capacity
curve and relate this curve to the relative prioritizations. This information
can then be used in a requirements negotiation. Information to support
requirements negotiation is most valuable before the design is completely
specified. Once agreement is reached concerning goals and their
priorities, the design of the water storage tank can be finalized.
Methodology E is not well suited to this expanded problem. Using
methodology E to generate the cost/capacity curve would involve varying the
relative prioritizations, executing a reoptimization of decision element E2
for each set of priorities. Thus, many containers would have to be designed
before negotiations of the goals for the container cost and capacity could be
concluded with the customer. In more complex design problems, each
reoptimization, in itself, may involve the execution of a complete design
methodology in a decision element such as E2.

7.2.4 A Design Methodology to Support Requirements Trade-Offs

An approach for efficiently generating families of Pareto-optimal
solutions can be developed by further extending the application of
optimization theory to design methodologies consisting of separate decision
elements. In an optimization-based theory of design methodologies, the
following question can be posed: how can information to support
requirements negotiation be generated by executing relatively simple
design methodologies, comparable to methodology C or D? This question is
answered by a method based on propositions 1, 2 and 3.

82

Consider the following methodology for developing design
information to support requirements negotiation:

Methodology F

Solve the following optimization problem (the same problem as solved by
methodology E):
minimize:

icil 10 - 1)2 + ov [c3/6 - 1]2
subject to:

lwh 2 ci
2(1w + lh + wh) c2

04+0)2=1
c2, 1,w,h e > 0, h 5 2

04,(02 z 0

The design vector decomposition xi = (ci), 12 = (c2), x3 = (0)14023,w,h) can be
used for this problem. Decision elements are as follows.

F1:
minimize:

= 	- 1)2
subject to:

- lwh 5 0
design variables: ci
l,w,h fixed parameters

and
F2:

minimize:
f2 = (c2/6 -1)2

subject to:
2(lw+ wh+lh)-c250

design variable: c2
l,w,h fixed parameters

F3:
minimize:

F = (01 fivt(1,w,h) + (02 fePt(1,w.h)
subject to:

h-250
coi+co2=1
04402 k 0

where the design variables are now: (01,(02,1,w,h. fePt and f2opt are the
optimal values of the objective functions for subproblems F1 and F2,
respectively, with l,w,and h fixed.

83

Although methodology F is similar in some ways to methodology E,
there is an important difference in that the multiple objective functions are
assigned to different subproblems. Although the sequences of design
decisions which make sense for methodology F are somewhat restricted (F1
and F2 must be executed before F3 in order to define floPt and hopt),
methodology F provides a very efficient technique for constructing the cost-
capacity curve as a function of the requirements priorities.

The basic concept is that the optimality conditions for subproblem F3
follow directly from the solutions to subproblems F1 and F2. Thus, it is not
necessary to solve F3. The formulation of F3 is such that the optimality
conditions for F3 are the same as the optimality conditions for the
=decomposed optimization problem addressed by both methodology E and
methodology F. Thus, the particular decomposition strategy used in
methodology F solves the Pareto-optimization problem indirectly, using the
solutions to two suboptimization problems (subproblems F1 and F2).
Although the difference between this solution technique and methodology E
is inconsequential for the simple water storage tank design problem,
methodology F can be applied to much more complex design problems with
a few relatively simple extensions.

Details of the solution for methodology F are given in section 7.A.1.
Optimality conditions for sub-problem F3 are

aF/api = col DpifloPt + (02 Dpif2oPt = 0
ayap2 = (01 Dp2f,opt 	Dp2f2opt = 0

aF/ap3 + I = col Ddlopt + (02 Dp3f2OPt 1. 1 .

The key to methodology F is to fix the optimal sensitivity derivatives
and regard these equations as determining values for col and o)2 that
correspond to those values of the optimal sensitivity derivatives. Sequential
parameter passing schemes of the type exemplified by methodology F
converge to the optimal solution of a Pareto-optimization problem such as
the problem approximated by F3. The benefit accruing from this approach
is that the entire family of Pareto-optimal solutions (corresponding to
different values for the c)i's) is determined using only

• Information about the solution to an optimization problem
corresponding to each of the objective functions, and

• Partial derivatives.
The alternative approach (methodology E) would require the solution

of a separate optimization problem for each combination of values of the
tors.

Continuing with the solution of the optimality conditions for
subproblem F3, there are 5 unknowns:
(019 (02, I, w, and h,

84

u.)

a
.bli

and 4 independent equations (three of which are nonlinear):
col+ 0)2 = 1
(3 optimality conditions).

Thus, the entire family of Pareto-optimal solutions can be
characterized by varying one of the parameters. One way to do this is to =al =
solve:

aFRP1 = (01DpIfiCiPt o DpifePt = 0
= col (1/5X1 C1/10X'Wh) + CO2 (1/3Xci6 -1Xw+h)

to obtain
= (1/3Xc2/6 -1Xw+h)/1(1/3Xc2/6 -1Xw+h) + (1/5X1- ci/10Xwh)].

Apply the remaining two optimality conditions to determine that 1 =
w and h = min (w,2). To present the results, the engineering theories and
models relating cost and capacity to 1, w, and h are reintroduced. These
determine the achievable values for cost and capacity. The variables ci and
c2 of subproblems F1 and F2 refer to the cost and capacity constraints The
difference between these constraints and the achievable values is of course,
central to the whole point of requirements negotiation.

Vary w to determine cost, capacity and wi. The relationship between
achievable capacity, actual cost, and requirements prioritization, wi
obtained in this way is plotted in Figure 7.4. Since the cost and capacity
requirements cannot both be met, the customer must accept some loss of
capacity, cost, or both. The magnitude of the loss depends on the relative
prioritization given to achieving each of the goals. The loss in capacity is
defined as

capacity goal - achieved capacity
and represents the distance to the desired capacity of 10 ft3. The loss in cost
is defined as

actual cost - cost goal,
adopting the convention that losses are positive.

This information can then be used to negotiate values for the relative
prioritizations (01 and co2 = 1 - 04. Once these values are fixed, the optimal
values for the remaining design parameters are also determined.

In most cases, where the problem posed in methodology E cannot be
solved explicitly, this procedure will be much more efficient than
methodology E. This is a consequence of the fact that the optimization
problem in methodology E must be solved a large number of times, one
solution for each value of cub to determine the effect of col and o)2 on
cost/capacity relationship, while methodology F can generate the entire cost
capacity relationship from the solutions of a few optimization problems, one
for each of the multiple objective functions.

8 5

C

10 25

Loss
(cost goal) Loss

(capacity goal)

1 632 0

0 col 1

figure 74. 'Loss" of Cost and Capacity Goals vs. Requirements Priorities for a Water
Storage Tank

7.2.5 Hierarchical Design using Optimizing Sequences of Decisions

As developed in the automobile configuration example, the
assessment of a design methodology depends on three closely related
results in optimization theory, propositions 1, 2, and 3. The first two
propositions relate convergence of a large optimization problem to
sensitivities of the solutions to individual decision elements appearing in
the decision sequence defined by the design methodology. The statement of
the large design optimization problem encompasses all of the attributes,
goals, and the constraints imposed by requirements through engineering
theories and models that are employed in the design methodology. This
result is valuable, because a given design problem may have a statement as
an optimization problem, but solution of the large problem may be
impractical. The purpose of the analysis is to determine whether or not a
given hierarchical decomposition and design methodology associated with
it produce solutions to an optimization problem.

The second result extends the validity of this approach to include the
solution of Pareto-optimization problems where the multiple objectives may
be assigned to different decision elements. Pareto-optimal designs are

86

characterized by the statement that no one of a set of multiple objectives can
be improved without making some other objective worse. Pareto-optimality
thus equates balanced design to a form of optimal design. The extension of
the methodology to handle Pareto-optimal solutions can lbe applied to
establish convergence of a design methodology to a balanced design. The
concept of balanced design broads the range of problems that can be
formulated to include situations where conflicting requirements may
mutually exclude any solution, so that a balanced compromise must be
drawn.

These results prove convergence of a sequence of design decisions to a
balanced, feasible design. Criteria for convergence outlined in this section
of the report were applied to assess alternative design methodologies for the
simple automobile configuration example. Problems were found with all
but one of the methodologies. An alternative methodology for balanced
design was defined and applied to the container design problem. This
method uses the capability to place different objectives of a multi-objective
problem into different decision elements.

Once an engineering design concept has been chosen for synthesis,
the design decision -making problem can be stated as a Pareto -optimization
problem:

minimize: E coi fi(x)

Subject to: g(x) 5 0
h(x) = 0

where x is a vector of design variables, fi(x) are design goals or objectives,
and g(x) and h(x) are vector functions of the vector x which represent
requirements or constraints. The wi are relative prioritizations of the
design goals or objectives. The importance of this problem statement is that
it provides a theoretical framework for the study of the design process.

The principal tools for applying optimization theory to study the
design process are:

- optimal sensitivity derivatives
- decomposition.

The formulae for the optimal sensitivity derivatives are based on the
Karush-Kuhn-Tucker conditions (KKT conditions). The KKT conditions are
necessary conditions for a particular value x* for the vector of design
variables x, to be a constrained local minimum The KKT conditions are:

1. Feasibility

g(x) 5 0
h(x) = 0

8 7

2. Active constraints

g(x) = 0 j =

7yz 0

3. Extremum of the Lagrangian over the primal subspace

aF(w,x)/axi + ajagi(x)/axi + Igkahk(x)rdx; = 0 	i = 1,...,n

where m is the number of inequality constraints, and n is the number of
design variables.
F(w,x) = E co; fi(x)

The optimal sensitivity derivatives are designed to handle the
following situation: consider a set of design decisions (D1,:D2, DN).
Each design decision can be thought of as determining some of the design
variables xi. If the elements of the vector x are arranged in an appropriate
sequence, x can be decomposed into the vector

(x l,x2, 	ZN)

where xi is the sub-vector of design variables determined by Di, and so on.
This is called a decomposition of the optimization problem. The product
development decision-making process is studied through the analysis these
decompositions. It is worth noting that there are two choices involved in
selecting a decomposition:

1)how to group the design variables into design decisions, and
2)how to iterate to convergence.

There are various criteria that a design decomposition must meet.
Perhaps the most important criterion is that a convergent sequence of
design decisions must produce a design balancing the design goals and
meeting the customers' requirements (constraints) with a minimum of
iteration.

The design decisions are related to one another in the following way.
Say there is a constraint

gj(xi,x2, ...)5 0

This constraint appears in both design decision D1 and design decision D2.
For example, say that D1 is to be made before D2. It should be evident that
an initial "guess" for the values of the variables x2 must be made before

88

I

gi(x) can be evaluated. It should also be clear that the values of the
variables xi, as determined by solving Di, affect the solution for D2. The
design variables xi are parameters for D2, and parameters are
distinguished from local design variables. The xi's are local design
variables for Di.

The optimal solution to D2 is found by varying the local design
variables 12. The idea of the optimal sensitivity derivatives is to evaluate the
effect of changes in the parameters xi on the optimal value of the objective
function which can be achieved through optimization of the design decision
D2.. The purpose is to compute aF/axi i with certain constraints placed on
this derivative, namely

1) the constraints of the optimization problem remain satisfied, as xi is
varied, that is

ex) S. 0
h(x) = 0

2) the solution remains optimal as xi is varied.

The second restriction can be enforced by requiring that the KKT
conditions remain satisfied. Of course, these two restrictions on the
derivative may require adjustments in the optimal values of the design
variables 12 to compensate for the changes in the parameters xi.

To denote the optimal sensitivity derivative, it is convenient to make a
distinction in notation between design variables, x and parameters, p.
Then df/dp is interpreted as an optimal sensitivity derivative. The optimal
sensitivity derivative is given by:
dF/dp = aF/Dp + I Xiagi/ap.

This formula is of central importance in structuring sequential decision-
making processes.

A design decision D1 can be made before another design decision D2
if the values chosen for the design attributes in D1 do not make D2
infeasible. For example, say xi is a design variable to be determined by
decision D1 and x2 , also a design variable, is to be determined in decision
D2 . Say xi and x2 are coupled by an inequality constraint g :

...) 50 .

In sequencing D1 and D2 there are three alternatives:

1) make decision D1 before D2 . xi will then be fixed by Di and will be a
parameter for decision D2

89

2) Make decision D2 before Di . x2 will be a parameter in Di.

3) Combine Di and D2 into a single decision element.

Consider now the case where Di is sequenced before D2 . Solution of
Di will result in a change Axi from the initial value for xi . The effect of
this change on the inequality constraint g can be assessed with a first-
order approximation:

- g / aci) Axi .

Thus if (dgiazi) and Axi are opposite in sign, Ag will be negative and g
will be less critical in making decision D2 (in comparison with the initial
design). If (ag / dxi) and Axi have the same sign, g will become more
critical for D2 if decision Di is made first.

Feasible sequences for the design decisions can be determined using
the directions of proposed changes in the design variables in each decision
and the signs of the partial derivatives of inequality constraints coupling
two or more decisions together. The criteria are

F-1)If Di does not make (any of) the constraints of D2 more critical, then
Di can be sequenced before D2.

F-2)If D2 does not make (any of) the constraints of Di more critical, then
D2 can be sequenced before Di.

If Di makes the constraints of D2 more critical, and D2 makes the
constraints of Di more critical, then it may be necessary to combine D1
and D2 into a single decision element. If both F-1 and F-2 are met, D1 and
D2 can be made concurrently.

There may be many possible decision sequences meeting these
criteria. In an extremely tightly coupled problem, all of the initial design
decisions may be combined into a single design decision by this procedure.
All of the decision sequences meeting criteria F-1 and F-2 will lead to
feasible designs. Next, additional restrictions on the possible decision
sequences are considered. These restrictions can be shown to produce a
sequence of decision elements leading to an optimal, and by extension, a
Pareto-optimal design.

Determination of a sequence of design decisions leading to an optimal
design requires an initial suboptimization pass through each of the
decision elements. In this suboptimization pass, each of the decisions in
which one of the objective functions for the design appears explicitly as a
function of the local decision variables is solved in isolation. The results of

90

the suboptimization pass are then analyzed using sensitivity of optimal
solutions to problem parameters. That analysis is used to establish
whether an iteration of the decision-making procedure will progress
toward an optimal design.

In constructing a decision sequence leading to an optimal design,
there are again three alternatives: place Di before D2 in the decision-
making sequence, place D2 before Di , or combine them. Let ft"x/A2)
be an objective function to be minimized in both D1 and D2 . HD/ is made
before D2 , then xi appears in D2 as a parameter. The sensitivity of the
optimal solution to D2 to the parameter xi is df/dxi. Directions of proposed
changes in the design variables are known from the suboptimization pass,
so

(dfl dx1) Zal •

is determined.

Thus, if df/dxj and dx/ are opposite in sign, itif will be negative. Then
if Di is made before D2, f will not increase during the decision subsequent
1.D1, D21. Any decision subsequent in which f will not increase can form
part of an optimizing decision sequence. Optimizing decision sequences
are built up from such subsequences, with one additional criterion:
decision elements with df/ dxi = 0 must be placed after decision elements
with df/dxi . The need for this criterion will emerge from consideration
of convergence questions.

Global convergence of an effective procedure for solving an
optimization problem using an optimizing sequence of design decisions is a
consequence of the propositions 1, 2, and 3.

There may be several alternative design methodologies available to
solve a given problem. Other considerations often enter into the decision
sequencing problem, such as controlling costs associated with developing
design definition or running product development tests. Thus, in applying
the convergence results to synthesize a design methodology, it does not
make sense to try and give a completely deterministic algorithm for
selecting a decision sequence. Instead, a step-by-step process is given for
constructing a design methodology which clearly indicates the points at
which the design team can select among alternative design methodologies
to meet economic, program milestone, product definition technology, or test
schedule constraints. The role of optimization theory is to provide well-
defined criteria that must be met by these alternative sequences and
groupings of design choices.

Step 0. 	Initialization. Choose an initial design within the variable
bounds and make an initial choice of decision elements.

91

92

Step L 	Evaluate each decision element to determine an optimum
solution for that decision element (in isolation).

Step 2. 	Identify possible feasible decision sequences. If feasibility
requires combination of decision elements, iterate with Step 1.,

Step 3. 	Identify possible optimal decision sequences. Check
convergence. If solution is converged, stop. If optimality requires
combination of decision elements, iterate with Steps 1 and 2.

Convergence criterion: Both (i) design variables did not change during last
solution pass and (ii) all optimal sensitivities are zero (df dxj= 0 for all
parameters xi) must be satisfied.

Step 4. 	Select a decision-making sequence that is both feasible and
optimal. If Di is sequenced before Di, the number of parameters passed
from Di to Di must equal or exceed the number of independent active
constraints common to both decision elements.

Step 5. 	Find an optimal solution for each decision element in
sequence. Update the values of all design variables and iterate from Step 2.

This procedure will converge to an optimal solution from any initial
design within the variable bounds, provided that the decision-support
procedures applied to solve the individual decision elements do so. The
solution set for the procedure is defined by the condition that all df dxi= 0 .
This solution set is the set of Kuhn-Tucker-Karush points.

In addition, this approach provides a highly efficient technique for
finding all of the Pareto-optimal design solutions. Pareto-optimal solutions
minimize an objective

F 	coin , Ito; = 1.

which is a weighted sum of multiple objectives which may correspond to
conflicting requirements. To find all of the Pareto-optimal solutions, one
would ordinarily have to solve an optimization problem for each set of
values for the weights coi.

Information developed in the decision sequencing process can Be
used to avoid the reoptimization. To accomplish this, multiple objectives,
are allocated to different decision elements. Then, at Step 3 above, the
optimal sensitivity derivatives dfi ldp are available. An approximation to
the Pareto-optimization problem having optimality conditions

dF I dpi (c) =0

is then defined.

These conditions are identical to the convergence criteria for the
solution of the exact Pareto-optimization problem using the optimal
decision-sequencing solution procedure. The exact Pareto-optimization
problem is solved when the optimality conditions for the approximate
problem are satisfied. These conditions may be satisfied by varying the
relative prioritization.

7.3 Organization of a Probabilistic Decision-making Strategy

The decomposition of a product development problem into decisions is
distinct from the function and form decompositions. To a certain extent,
function alternatives can be defined independently from customer
requirements. It is through the decision decomposition that customer
requirements are incorporated into the product.

The decomposition of complex function and form alternatives, linked
by engineering theories and models, has been considered in earlier
chapters of this report. The view of the product development process taken
there was that decisions are essentially sequential. This model of the
product development process as a sequence of deterministic decisions
captures the fact that, for example, level I specifications are developed prior
to level II specifications. This model reflects the fact that level II
specifications are constrained by previous decisions. Thus, it is critical to
determine all product and process attributes directly impacting customer
requirements on level I.

In this section of the report, an alternative view of the decision-
making process is presented. In this non-sequential view, a number of
product and process decisions are made concurrently. Of course, product
and process decisions can be made concurrently in the sequential approach
(if they are decoupled). The important difference is that decisions which
are quite closely linked are made in parallel in the concurrent engineering
approach. By compressing the decision-making process, the concurrent
engineering approach offers advantages such as reduced time-to-market
and enhanced communication between upstream and downstream
decision-makers. Concurrent engineering raises some technical problems,
perhaps the most important of which is the problem of integrating tightly
coupled decisions made concurrently.

In the sequential approach, product, process and support concepts
are integrated using sensitivity information to group and sequence
decisions. Concurrency implies that sequence is loosely structured, if not
altogether absent. Thus, an alternative to the combination of sequencing
and sensitivity analysis is needed to integrate the system concept using the
concurrent engineering approach. The basic idea can be described as
probabilistic engineering design, a term used by Siddall [SIDDALL].
Probabilistic engineering design ideas have also been articulated by Tse

93

[TSE & CRALLEY] and Ross [ROSS]. In the probabilistic design approach,
product and process attributes are modelled as random variables. There is
always some underlying variation in product characteristics, due to
variation in production processes, maintenance procedures, or use. Thus,
there is a probability distribution associated with each attribute of the
product or process. In Bayesian decision theory, probability distributions
are used to model uncertainty concerning the state of nature. As applied to
the product development process, the "state of nature" is the vector of values
of product and process attributes, as currently specified. Thus, although
decisions concerning product and process attributes are made
concurrently, precise values for these attributes can not be specified by
these decisions. This is in complete contrast to the deterministic view. In
the probabilistic view, the product development team does not specify the
values for design attributes. Rather, the goal of the product development
process is to influence the shape of the probability distributions.

4. p 	: 	 •: 	1 	15 I-
	

Ult

The first key idea is:

Functional relationships transform the shape of (probability or fuzzy set)
distributions.

Informally, a probability distribution is a function defined by an
integral. Say x is the name of some quantity subject to variability or
uncertainty. The technical term for such a quantity is a random variable.
If we know the probability, P(a < x < b), that x is between two numbers a and
b, with a < b, for any two numbers a and b, we can define a "function" cp that
satisfies r b

P(a < x < b) = J a cp(x) dx.

We have to be somewhat careful here. In fact, we need to generalize
the definition of a function somewhat (distributions) and use Lebesque
integration to handle all of the interesting cases. We will only work with
distributions that are ordinary functions here.

Fuzzy set membership functions are similar in some ways to
probability distributions. The interpretation is different, however.
Embedded in the concept of a probability distribution is the concept that it is
the limiting case of a frequency histogram when the sample size
approaches infinity. Fuzzy distributions are free of this connotation. A
fuzzy distribution is taken as the definition of an attribute. An example is
the attribute "small". It may be useful in design to allow "small" to take on
a range of values. Not all values are "equally small", however, so there is a
distribution associated with "smallness". The basic idea is that
"smallness" can be quantified and is given by the value of the fuzzy set
membership function. In design applications, the distinction between

94

fuzzy set membership and probability is a matter of interpretation. The
arguments we make here are based on properties of the distribution and
membership functions, and so apply to both interpretations.

It is useful to distinguish between architectural design choices and
the selection of values for design parameters. A system architecture is the
decomposition of a system into elements, and the specification of the
interfaces between those elements. Thus, architectural design choices
involve the selection of system elements. For example, carburetion vs. fuel
injection, diesel power vs. spark detonation, hydraulic or electromagnetic
vs. mechanical power transmission, air or water cooling, DC as opposed to
AC electrical systems. Even if the basic system elements are the same,
changes in the interfaces may result in significant differences in
architecture: front-wheel or rear-wheel drive; gull-wing, sliding, or
conventional door hinges, crash protection through energy absorbing or
load-transmitting structures. Mistree [MISTREE, SMITH, BRAS, ALLEN,
AND MUSTER] makes a similar distinction between selection and
compromise problems in design.

-10
	

10

Figure 7.5. Normal Distribution of e, the Uncertainty Associated with x.

95

The second key point is:

Architectural design choices effect the functional relationships between
design attributes.

In fact, the shape of functional relationships can also be influenced by the
choice of a value for a design parameter.

For example, if a variable x is normally distributed (Figure 7.5), the
variable y, functionally related to x by y = f(x) = (x - g)2 has one of the
distributions shown in Figure 7.6. The shape of the distribution depends on
the mean value of the distribution (p(x), the variance of c(x), and the
constant g. Two curves are shown in Figure 7.6, illustrating the effect of
the constant g on the transformed distribution. One distribution is highly
concentrated near the origin, while the other distribution is much more
spread out.

Continuing this example, let the choice of the constant g correspond
to a design decision. Also, let y be a product (or process) attribute subject to
uncertainty (i.e. to be determined downstream), and further let x be a
product characteristic, perhaps a measure of merit in meeting a
requirement, which must be met with a prespecified variance. Clearly, the
choice of the constant, g, resulting in the "peaky" distribution of Figure 7.6
has severely restricted the possible choices for y. If y is a parameter
characterizing a manufacturing process, the value of g leading to the "flat"
curve is better from a producibility standpoint. Why? The manufacturing
process planner has a wider range of options. The shape of the distribution
of y associated with the required distribution of the controlled product
characteristic, x, is flatter.

96

v(y)

97

y = f(x)

Figure 7.6. Functions Transform the Shape of Probability Distributions.

This idea has important consequences for design. Before turning to these,
we note that the effect of functional relationships on probability
distributions is a consequence of a well-known result in probability theory
[SCHMETTERER].

Consideration of these two points leads to a new view of system design:

System design is the shaping of probability (or fuzzy set) distributions.

This point of view is clearly evident in Tse's work [TSE & CRALLEY].
It is less readily apparent in the "classical" Taguchi method [ROSS, but is
also present there. The basic idea of Taguchi's method is to shape the
distribution of a variable that is a function of the product characteristics,
the loss function. In the classical Taguchi approach, this distribution is
characterized by its location (mean) and scale (variance). Location and
scale are clearly shape descriptive parameters. The orthogonal arrays for
noise factors are used to estimate the variance in the loss function
associated with noise.

Deterministic relationships, such as the relationship between
required and available power, couple attributes of the design. Over time
(within a single product instance), and between product instances, vehicle
attributes such as [total efficiency], [drag coefficient] and [vehicle weight]
have some uncertainty associated with them. In addition, there is
uncertainty associated with incomplete product specifications in early
product development decisions.

[motor torque] [transmission ratio]
	 [total efficiency] =

[dynamic tire radius]

[vehicle weight] [[coeff. of rolling resistance] cos [incline angle]

+ sin [incline angle]

+ 	[rotational inertia coeff.] [acceleration]
(9]

+ 0.5 [air density] [speed] 2 [drag coefficient] [vehicle cross-section area]

For the moment, say one of the vehicle attributes, such as [motor
torque], is selected as a dependent variable. Then, the required/available
power relationship transforms the uncertainties in efficiency, drag
coefficient, and weight into a distribution on the dependent variable, torque.

More complex situations are typical. For example, many technical
relationships of importance in product development are themselves subject
to some uncertainty, for example, the relationship between crash
structural integrity and curb weight (based on data for 1988 cars), Figure
7.7, or the relationship between curb weight and fuel efficiency, Figure 7.8.

For a given value of the structural integrity rating, a range of
variability in vehicle curb weights is seen. There is also a range of
structural integrity ratings associated with a given curb weight. It seems
somewhat simpler to conceptualize the distribution of curb weight (a
continuous random variable) as a function of structural integrity rating (a
discrete variable).

The non-deterministic relation between EPA mpg and curb weight is
somewhat simpler to conceptualize, since both variables are continuous.

Decisions are refined by acquiring additional information about the
life cycle concept for the motor vehicle. In a convergent product
development process, the variance of the distributions associated with
product attributes decreases as the concept is refined. The distribution on a
product attribute may be refined by acquiring additional data. Refinement
of the distribution on a closely coupled attribute may also allow the
distribution to be refined. This process is illustrated in Figure 7.9.

98

3500

Weight

1500

A
A

A

A
	 a

A

A
a

3
	

4 	 5

Structural Integrity Rating

Figure 7.7. Non-deterministic Relation of Curb Weight to Crash Test Structural Integrity
Rating.

3500

curb
weight

1500

a

15 	EPA city mpg

60

99

Figure 7.8. Non-deterministic Relation between EPA mpg and Curb Weight.

ro • u - rocess 	sion

- rosu "rocess recision

Figure 7.9. Decision Refinement Reduces the Variance of Distributions on Product
Attributes under Uncertainty.

7.5 References

J.L. Cohon (1978). Multiobjective Programming and Planning, Academic
Press, New York.

M.A. Kolb (1990). An Investigation of Constraint-Based Component-
Modeling for Knowledge Representation in Computer-Aided Conceptual
Design, Ph. D. Dissertation, Massachusetts Institute of Technology,
Cambridge, MA.

Y. Leung (1988). Spatial Analysis and Planning under Imprecision. North-
Holland/Elsevier, Amsterdam/New York/Oxford/Tokyo.

F. Mistree, W.F. Smith, B.Bras, J.K. Allen, and D. Muster (1990). Decision-
Based Design: A Contemporary Paradigm for Ship Design, to be presented
at the Annual Meeting of the Society of Naval Architects and Marine
Engineers, San Francisco, CA.

J.E. Rogan and W.E. Cralley (1990). Meta-Design: An Approach to the
Development of Design Methodologies, IDA Paper P-2152, Institute for
Defense Analyses, Alexandria, VA.

100

P. J. Ross (1988). Taguchi Techniques for Quality Engineering. McGraw-Hill
Book Company, New York, et al.

L. Schmetterer (1974). Introduction to Mathematical Statistics. Springer-Verlag,
New York/Heidelberg/Berlin.

J.N. Siddall (1983). Probabilistic Engineering Design: Principles and
Applications. Marcel Dekker, New York/Basel.

J. Sobieszczanski-Sobieski, J.-F. M. Barthelemy, and K.M. Riley (1982).
Sensitivity of Optimum Solutions to Problem Parameters, AIAA 81-0548R,
AIAA Journal, v. 20, n. 9, pgs. 1291-1299.

D.V. Steward (1981). The Design Structure System: A Method for
Managing the Design of Complex Systems, IEEE Trans. on Eng. Mgmt., v.
EM-28, n. 3.

E. Tse and W.E. Cralley (1989). Management of Risk and Uncertainty in
Product Development Processes, IDA Paper P-2153, Institute for Defense
Analyses, Alexandria, VA.

7.A.1 Solution of Requirements Negotiation Problem using Methodology F.

The formulation of subproblem F3 in terms of flopt and f2opt suggests
the use of optimal sensitivity derivatives. Thus, in applying methodology F
to the requirements negotiation problem, the first step is to solve
subproblems F1 and F2, estimating the optimal sensitivity derivatives of fi'v t

 and f2opt with respect to 1, w, and h from the solutions to these subproblems.
To do this, values for the Lagrange multipliers for the constraints in which
1, w, and h appear explicitly are needed.

Solving F1 to determine a value for the Lagrange multiplier of the
constraint

ci - lwh,

note that an optimal solution to this problem must satisfy the third KKT
condition:

afilac + X iaglaci 2(c1/10 - 1)(1/ 10) + X1 = 0.
Then

= (1/5X1 - ci/10).
where X is the desired Lagrange multiplier.

Determining a value for the Lagrange multiplier of the constraint

g2 = 2(hv + wh + 1h) - c2

101

appearing in subproblem F2, the third KKT condition is applied once again
af2/ac2 + X2agiac1/42 = (1/3Xc2/6 - 1) - A.2 = O.

Thus,
= (//3XC2/6 - 1).

The information required to solve subproblem F3 is now in hand. The
optimal solution to problem 2(a) is a function of 1, w, and h. Denote this
function by fi0vt(1,w,h). Compute the optimal sensitivity derivatives DifioPt,
Dwhopt, and Dbflopt. (The optimal sensitivity derivatives can be computed
from partial derivatives of the objective function and constraints with
respect to the decision variables at the optimal solution.) To emphasize
that 1, w, and h are parameters for subproblems F1 and F2, denote them by

1 = pi, w = p2, and h = P3.

Use the optimal sensitivity derivatives to construct an approximation
f1opt(p1,p2,p3) flopt(pip,p20,p30) + E DpihoptApi

about the point (p10,p20,p30) •

Define f2oPt(p1,p2,p3) in the same way, and approximate
fePt(P1,P2,P3) fePt(PAPAPA + E DpifePtApi

To compute the optimal sensitivity derivatives, the reasoning of [SOBIESKI,
BARTHELEMY & RILEY] is followed:

df/dp = affap + E af/axi hi/4
The Kuhn-Tucker-Karush optimality conditions deliver

af/axi + E agi/axi = o
substituting this into the expression for the total derivative off with respect
to p,

df/dp = afrdp - Ei Ei Xi agyaxi axi/ap
Requiring that the constraints remain satisfied as p is varied gives

dgi/dp = ag/ap + E agi/axi axirdp = 0
This permits one more simplification to df/dp,

df/dp = af/ap + Ei Xi agifap
Applying this method to differentiate the optimal value of f1 as the
parameter pi is varied,

DpifioPt = afirapi + Ej xi aggapi = l(-wh) = (1/5X1- c1/10X-wh)
where X is the Lagrange multiplier of the constraint g = ci - lwh 5 0 in
problem 2(a).

In a similar computation, determine
Dp2floPt = (115X1- c1/10X-1h)

and
Dp3fioPt = (1/5X1- c1/10X-1w)

Then

102

f1vt(P1,P2,P3)
flopt(p10,p20,p30) (1/5X1- c1/10X-wh)Api + (1!5X1- c1/10X-1h)Ap2

+ (1/5X1 - cill0X-1w)Ap3.
Similar computations give

Dpif2vt = (1/3Xc2/6 - 1Xw+h)
(the other derivatives are computed in exactly the same way), and

f2°P4110,c1)
fePt(131°,P2°,P3°) + 1/3Xc 2/6 -1Xw+h)Api + (1/3Xc2/6-1X1+h)Ap2

+ (1/3Xc2/6 -1X1 + w)Ap3

Using the approximations to fePt(,P1,P2,1)3) and fePt(P1,P2,1)3),
determine capacity = ci(w1,w2,P1,P2,P3) and cost = c2(w1,w2,P1,P2,P3) as
solutions to the minimization problem posed for subproblem F3, restated
here with appropriate variables.

minimize:
F = col f1iwt(P1,P2,P3) + c2 fePt(P1,P2,P3)

subject to:
P3-250

col + CO2 = 1

(01,CO2 0

where the design variables are now:
1= pi, w = p2, and h = p3.

103

Chapter 8 MULTIVIEW DESIGN APPLICATION

8.1 Introduction

This chapter summarizes the efforts accomplished in the selection of
an Object Oriented Programming paradigm to enable the testing of ideas
and concepts generated during the decomposition of the vehicle into form
and function hierarchies.

8.4 Applications

8.4.1 Form-Function Test with Smalltalk

An initial test project developed in the Smalltalk object oriented
environment investigated a method to link abstract functions with design
variables in an automobile example. An adjustable parametric equation
approach was selected to model the system. The test project was a very
simple two dimensional model of a vehicle that included only six design
parameters. The six parameters were the length and width of the cargo,
passenger, and engine compartments in a vehicle. The reason these three
compartments were selected is because it was felt that the overall shape of
the vehicle was a direct function of these three compartments. The system
consisted of three dials that measured abstract functions, namely our three
base level functions: Please, Transport, and Protect. The range on the dials
was from 0 to 100%, and by pointing with a mouse and varying one or more
of the dials, the overall shape of the vehicle changed. Figure 8.1 illustrates
the computer screen with the initial vehicle and the dials at nominal 50%
values. Note that the vehicle lines were approximated using bezier splines
and several control points. The original model consisted of three rectangles
located next to each other and representing the three compartments. The
design variables were the length and height of each rectangle representing
a compartment.

104

Chevrolet Citation

Pled
	

Mod
	

Mod

Pleas. 	 Transport
	

Protect

Figure 8.1. Smailtalk environment and test vehicle at 50%
of functional values.

Parametric relationships were chosen to model the form of the
design. Parabolic equations were used to model the system. The equations
were broken down by both function and design variable. One parabolic
equation was developed for each unique pairing of function and design
variable. The current model used eighteen relationships or parabolic
equations. For each parabolic equation, three points were used. For a real
design situation, hundreds of points may be used. The middle point always
represented 1 or the nominal value for the design variable. The other two
points represented the end points of the design variable relative to the upper
and lower bound of the function considered. Figure 8.2 illustrates the same
vehicle with an increase in the level of protection which results in a longer
chassis, larger engine and cargo compartments.

105

Chevrolet Citation

Ned Ned

Protect

Figure 8.2. Smalltalk environment and test vehicle at 70%
of Protection value.

As mentioned above, in the current simplified model, three functions
and six design variables were considered so that eighteen parametric
equations were created. The equations were built arbitrarily from the
developers' impressions of how the form varied with the function. An
extensive development test would require more careful study, knowledge
based upon experts, and many consumer impressions. The cumulative
change of each design variable was combined by multiplying the
parametric contribution for each of the functions considered by the nominal
value for each of the design variables.

DV1 = Please(DV1,%) * Transport(DV1,%) * Protect(DV1,%) *
(Nominal DV1 Value)

This allows one to always get back to the nominal design by setting the
function dials to 50%. If two dials are set to 50% and the other dial is

106

allowed to vary, the model will change only with respect to the one varying
function only.

An additive method of summing up or combining functions was not
considered, but it could be considered in the future. The nominal value of a
function does not need to be at 50%; 50% was convenient for the simplified
model.

Another parametric scheme that was considered was to use neural
nets to define the relations. An optimal result may not be produced, but
neural nets would help to manage the complex parametric relationships
needed to model the transformation. The method considered is an
extremely simple model of the parametric readjustment that occurs in a
neural network.

8.4.1.1 Future Considerations

The simple model proved the feasibility of a function to form
relationship, and was used as a basis for working with objects in the design
decomposition. We also investigated how functional parameters should be
set. For instance, the vehicle, according to the decompositions outlined in
the previous chapters, accomplishes three primary functions: Please,
Transport, Protect. How can we quantify these functions? Is the sum of the
functions equal to 100%, or are they independent? We are still trying
alternatives to access the results. An interesting approach is for instance
to set a total of 100%. Then, a sports car could see its baseline functional
breakdown at Transport: 30%, Please: 60% and Protect:10%. This
characterizes a car that is more designed for pleasure than transport. But,
how do these values translate to lower levels in the form hierarchy? Let's
look at the second level form decomposition, we have the
transportation/support systems: Chassis and structure;
Entertainment/driver interface systems: exterior and interior systems;
Power/transformation systems: Engine, transmission, and finally
Computer control systems. Looking at the levels of Transport, Protect, and
Please, the chassis could be broken down for instance in 20% Transport,
75% protect and 5% Please. Interior systems would be broken down into 0%
transport, 80% please and 20% protect. Breaking down the chassis further
into a third level form, a side support beam would be broken down into 90%
protect and 10% transport. The challenge now is to modify the transport
function at the base level, and see an increase in the size of the side support
beam of the chassis. Then, could we go back up the tree and decide that a
size change in this specific beam is going to affect the transport function by
such a value? These are questions that are still under investigation, and
that will be possibly addressed in further research.

Additionally, considering the above model, other parametric
relationships should be considered, a more extensive example should be

107

conducted and possibly, an investigation of relationships modelling using
connectionist systems should be considered.

Having completed the proof of concept, other techniques of Object
Oriented representation needed to be investigated to address decomposition
techniques, and data storage.

8.4.2 Work Related to OOPM

Extensive research was conducted before building an OOPM. There
are a surprising number of good examples to learn from [13]. Some of the
work had merit in the theory of representing the design; whereas, other
works were classic examples of proper object-oriented programming
practice. Some systems are commercial applications and others are proof
of concept systems.

Lately, there have been many initiatives to represent engineering
design and systems in terms of discrete objects. Some projects have been
application domain specific, others have concentrated on the physical
information only, and others have concentrated on the analysis of
information only. Many disciplines converge simultaneously when trying
to operate on the problem of design representation.

The Sketchpad project done at MIT in the 1950s has been considered
as the beginning of the modern CAD system. Sketchpad used constraint
propagation and a primitive form of constraint modelling. There is no
object-oriented programming in the Sketchpad project.

The next major contribution to design decomposition using objects
and constraint representation used the Smalltalk OOP system. The
Thinglab project was conducted by Alan Borning [3] of Stanford University
in 1979. Thinglab was a system which allowed a user to create new classes
of objects along with the constraints associated with the object. The
Thinglab project did not center on how to decompose an engineering design
but was primarily concerned with creating a general purpose system to
define classes of things and the constraints which define the behavior of
these "things". Thinglab represented constraints or association
relationships using a constraints class as one special class of its own,
where specific information was added to make the constraint specific to the
object being defined.

In 1989, an object-oriented programming project called "Rubber
Airplane" [15] was completed at MIT. This project applied some of the
concepts of Sketchpad and a few of the concepts of Thinglab and constraint
management to an Airplane example. The "Rubber Airplane" allowed a
fairly flexible relationship object; the relationship object defined the
behavior of the interface of two physical objects as the model stretched and
contracted. This required a lot of specialized programming for the interface

108

of each of the two parts. The other drawback of the detailed relationship
objects is that if one wanted to try new configurations for the parts and sub-
assemblies, new special programming was required to build the new
configuration. The relationship of the constituent parts was not as flexible
as the Thinglab project, but the Rubber' Airplane" was a more realistic tool
for engineering design.

Yoshikawa, from the University of Tokyo, took a much more
theoretical approach with the General Design Theory [32]. The General
Design Theory introduces the intersection of function spaces. The unique
intersection of function spaces define different products in design. The
General Design Theory is intuitively satisfying, but it lacks a firm
theoretical basis, or extensive experimental justification. Later,
Yoshikawa enhanced the General Design Theory by applying it to the
Metamodel [29] project. The Metamodel is an attempt to build an analysis
independent representation of a design. The Metamodel generates new
views and interfaces to the views by instantiating a view from the
combination of the analyses to be conducted, the class of the device, and the
processes that the device must be exposed to.

Nam Suh [26] from MIT expanded on the form-function
transformation concepts that were being developed by Yoshikawa. Suh
hypothesized that there is a transformation between function and form and
between form and fabrication. A proper transformation could ultimately
allow the design to progress directly from function to fabrication. Dr. Suh
applied the theory to simple examples in material science. Others which
have developed and advanced this theory are Rinderle [21] from Carnegie
Mellon University and Pun/Colton [20] from the Georgia Institute of
Technology.

Today, some commercial applications contain some of the theories
set forth in the earlier works. Some parametric modelers such as
Parametric Technologies' PRO/Engineer [19] and The SDRC Geomod Solid
Modeler [25] use the technologies of form decomposition through features
and constraint modelling to link the features of the forms. ICAD [12] has
similar features imbedded in a parametric solid modeler; it adds more
powerful knowledge based capabilities, but it is more tedious to use than a
solid modeler.

These approaches were studied, and an Object Oriented
Programming Methodology (OOPM) was derived.

8.4.3 Building the OOPM

The OOPM was built to model the decomposition needed in
engineering design. The OOPM is based upon the concepts outlined above.
The OOPM is an engineering analysis representation model developed on

109

Smalltalk. The geometry and surface information are, for the moment,
assumed to be external to the system.

The goal of the model was to represent and decompose the
engineering design. The design is broken into Parts and Assembly classes
(Refer to Figure 8.3). Each Part and Assembly has a PartTransformation
class. A part transformation can be thought of as a transformation matrix
as explained by Suh. The part object's part transformation can be thought
of as an elemental part transformation. The assembly part transformation
can be thought of as a transformation tying the part and sub-assemblies
together. The assembly transformation includes the interactions of the
lower level parts including impedance functions of the Energy, Material
and Information interactions.

The PartTransformation class is divided into three main divisions.
The Relation class is the grouping of objects which relate the features of the
part or assembly being modelled. The relations would come from analyses,
expert system rules, equations, and rules of thumb. The Yoshikawa Meta-
Model would instantiate relations depending on the class of the part and the
modelling analysis requested. The second class of objects is the Feature
class. The features are the minimum attributes that are needed to describe
the part or assembly. The features are assumed to come from a feature-
based modeler. The features can be thought of as the dials that one would
adjust the design to achieve the desired effect.

The last class of objects is the StateScenario class. The StateScenario
is analogous to the load case in Finite Element Analysis. The StateScenario
allows one to simulate and document the operation and test cases for the
design. The StateScenario is further broken down. In design, it is often the
case that one partially knows the input and output of the system. The goal
of the design is to refine the inputs and output effects by adjusting or
tweaking various parameters; that is the basis for the design of the
StateScenario. The InputVector includes the input effects. The
OutputVector includes the output effects. The StateVector represents the
state of the system during the current simulation. The StateVector
typically contains the parameters that one adjusts to get the favorable
transformation.

Other important classes are the Attributes class and the Dependency
classes. The Attribute class is a catalog of design variables and behavior
variables that can be used to describe Dependency and Relation objects. The
Dependency class is the catalog of the variables used in StateScenarios and
Features in the design process. The Dependency objects are variables that
include an Attribute object, but also have more semantic meaning and
numeric values for the problem at hand.

1 1 0

prodweelosis
reared°

PirtThomeftwallso

perfrwslanetaksilD
	 deasCreisd

I S.
iimwo

boch.,.•

sonolilvitrVske
nenoomft
egnalainirlitr
simiDs#111ft

mikado
ecraireslawd

aprainglienge

Opmensaampe ♦ ellwaraftesndertayN
no..

swim
godrilve
redVallue

Pam, Add mem grolosty
deal two...

OOPM
0111111srellftlk CsomeNstll

	 J

MEIN
•■••=,

OunerslAitriele

Figure 8.3

111••■•
OMNI/

IhrtlImmeanualhe

taislanisallanID
dispeord

visaikris
defteneoll

	 elhok
wiralD

subordisda 	vimethige
	 .roawd

-111111101MIDMMIS--

8.4.4 Multiple Views

The next major section of the data representation of the OOPM is the
View class. The View class stores the alternative views of the design. The
class of views is contained inside the Assembly class. The view represents
the alternative ways of viewing the design from the current, selected
assembly down to the lowest level in that branch of the system. The View
class is comprised of the CircuitBlock, the Link, and Interface classes. The
CircuitBlock class represents the new self-contained sub-problems. The
Links class is a quick reference to view the hierarchical nature of the
CircuitBlocks for that view. The Interface class contains the interfaces of
Dependency objects from one circuit block to the other circuit block. The
Interface portrays the critical interactions of the circuit blocks. The views
are still under development in the OOPM, and no example is available at
this time.

8.4.5 Example

A simple design case was implemented in the OOPM for testing
purposes. It is expected to use the data derived from the decompositions
above to more thoroughly test the OOPM. This example illustrates some of
the capabilities of the system, and some of the uses that were expected from
it.

Figure 8.4 illustrates a Smalltalk screen with a subset of the Engine
Assembly coded in the OOPM. The screen on the top left lists the
assemblies. Note that each assembly is automatically assigned an ID
number which will be later used for the different views and the
decompositions. The top center screen lists some of the parts associated
with the cylinder block which is highlighted. The bottom left screen is an
output screen that display some of the attributes of the assemblies and a
description field. The relation screen lists the relations that are associated
with the assembly. Note also that the ASSEMBLY field is highlighted,
which means that the object considered is an assembly, not a part.

1 1 2

General Attributes and Dependencies
rgimirryemr....wro■N

00111 Viewer for Product: Test Engine

Total Assembly
18 Basic E ine
15 Cylinder Block
18 Lubrication System
16 Piston
12 Ignition System
14 Exhaust System
13 Fuel System
11 Cooling System TRANSFORMATION

PART ASSY 	1

ly ID: 15
ly NAME: Cylinder Block

ion: A

DESCRIPTION:
be major housing of the basic

latlon ID: 134
lotion NAME: Compression Ratio

ion:

Uei ht: 2

Upper Head
9 011 Drain Plu
H Oil Pan Bolt 1
4 Main Block
7 011 Pan
Head Dolt

General Attributes and Dependencies

OOPM Viewer for Product: Test Engine

9 Total Assembly
18 Basic E .ine
15 Cylinder Block
18 Lubrication System
16 Piston
12 Ignition System
14 Exhaust System
13 Fuel System
11 Cooling System

5 Upper Head
9 Oil Drain Plu
H Oil Pan Bolt 1
4 Main Black
7 Oil Pan
6 HealBolt

TRANSFORMATION
PART
	

ASSY

bly ID: 15
ly NAME: Cylinder Block

Version: A

DESCRIPTION:
The major housing of the basic

'art ID: 8
art NAME: Oil Pan Bolt 1

Version:
DESCRIPTION:

Figure 8.4. Test engine screen in Smalltalk with Assembly selected.

Should one click on the PART field, the information about the oil pan
bolt 1 part is displayed in the center right field. (Figure 8.5)

1 1 3

Figure 8.5. Test engine screen in Smalltalk with Part selected.

1E8
1 ire]
IA

ASSY PART

ly ID: 15
ly NAM: Cylinder Block

ion: A

ESCRIPTICN:
The major housing of the basic e

General Attributes and Dependencies

Add
Remove
Part Iran
tr Block
tion Sys

System
14 Exhaust System
13 Fuel System
11 Cooling System

.. 1.1x
RELATIONS
3014k0) 311e,

TRANSFORMATION

	 rilrrNWOTIV1,51°■
)PH Uieuer for Product: Test Engine

--:SuhAssemblyi
art
ism

DeNAID
t IDa

tr/Dep

in Plug
Bolt 1

.ock
7 01
Head Bolt

19
18
3 Total Emmisions
2 Input MPG
14 Test
15 Test Next
13 Test 1
4 Test Dep
6 Test

It

General Attributes and Dependencies

'DEPENDENCY

phi Crank Angle
35 pmax Peak pressure in the cyli
55 vmax Maximum piston velocity
27 ap Injection Pump Speed
52 vd Mean Velocity of the injec
43 TL Charge Air Temperature
105 rR Purely Oscillating Naas
74 Qdiss Heat Dissipated

Vc Compression space of a cyli
1.1 	1 	•:1

ATTRIBUTE

16 Pi
12 Ignitl
14 Exha
13 Fuel
11 Cooli

ly I
ly

Version:

DESCRIPTI

USAGE:

Total
10 Basic
15 Cyli
18

Figures 8.6 and 8.7 show how the system allows selection of objects,
whether they are subassemblies or relations using windows, and how
attributes and dependencies are displayed.

Figure 8.6. Window structure of OOPM

114

Figure 8.7. Attributes and Dependances screen of OOPM

The system is still under development. It was designed to allow easy
input of hierarchical information derived in the form and function
decompositions, and was expanded upon to identify holes and incomplete
information. For this purpose, an additional feature was included in the
system: the ability to superimpose decomposition methods and reorganize
the data

8.4.6 Decomposition

In searching for decomposition techniques, many researchers have
domain specific impressions of decomposition. Our study attempted to seek
out the application independent aspects of decomposition.

Every system is a unique connection of its parts and their
interactions. A more complex system may have sub-parts and
interconnections on many levels. This is a very simple model of a system,
but it yields useful results. The system was modelled using Graph theory
which can be attributed to Euler (circa 1736).

Using Graph theory, the system is composed of vertices and directed
arcs. A vertex is some sort of design variable, evaluation, enabling event,
or thing that must be evaluated. The arcs link the vertices together. One
arc can link two vertices at most. The arcs are a result of some sort of
relationship between vertices. An arc may connect vertices due to an
engineering analysis, a corporate policy, an equation, or an expert system
rule. The reason why a relation exists is called the semantics of the
relationship. As a side effect, a structure of arcs are built that can be
viewed independently of the semantics of the problem. In modelling a
complex system, a complex graph of vertices and directed arcs could be
built. The problem of decomposition is to control this topology of arcs to the
advantage of the users of the system.

Now, what are the tools available? Given the assumptions about the
modelling of a complex system, there are only a few major strategies that
can be invoked. One could rebuild the vertices or enabling conditions so
that the interconnections are simpler or less costly; we will call this Vertex
Decomposition. This is analogous to the to the work being done with
parametric feature based modelers.

Next, one could try to manipulate the topology of the structure of the
problem to minimize the complexity and interconnections of the problem;
this will be called Structural Decomposition. Structural decomposition is
not very quantitative; the Steward [24] method of decomposition is a simple
structural decomposition technique to implement.

Lastly, one could factor the semantics of the problem into account to
reduce the redundancies of the problem; this method will be called

115

Semantic decomposition. The Semantic decomposition can be further
broken into two methods. The first Semantic decomposition methods use
numerical methods which require information about the numerical
information of the relationship. The numeric information is manipulated
without truly understanding the semantics; examples of a numeric
Semantic Decomposition methods would be the Dantzig-Wolfe
decomposition method and General Aggregation Decomposition methods.
The qualitative Semantic decomposition method would require one to know
or be cognizant of the semantics. New relationships or redundant
relationships could be manipulated to simplify the topology of the design
process or to remove vertices that may be unneeded or redundant.
Examples of qualitative Semantic methods would be algebraic evaluation
and the Kron Tearing Analysis.

The OOPM has been interfaced with the Steward's Structural
decomposition which Rogers [22], from the NASA Langley Research
Center, had implemented. The Relations class was implemented with a
tag to identify the relations which effect a certain discipline, i.e., structural
analysis, packaging, marketing. A new view is generated depending on
the discipline. 	The Views have been designed so that the
PartTransformation class and the View class operate on the same relations
and dependencies to reduce the ambiguity of the final design.

An example of the decomposition algorithm is illustrated in the next
two figures: Figure 8.8 and 8.9. Initially, the relations are very random.
Figure 8.8 illustrates the linkages between functions and design variables.
The numbers on the both sides represent a relation number. For instance,
relation 49 says that piston mass is a functions of variables that are also in
relation 17, 26, 61 and 69. The links are in both directions, i.e., feed
forward, and feed backward. The aim of the decomposition is to reorder the
relations such that the feed backward links are minimized if not
eliminated. Ultimately, if links backward cannot be eliminated, then these
relations are tightly coupled and should be addressed together. Otherwise,
relations should only feed forward. Figure 8.9 illustrates the relations after
decomposition through the DEMAID system. Note that the feedback loops
have been reduced to a minimum, and the order of the design in this
particular example should be: 1 or 2 (at the same level, the most important
relations are the materials costs and fuel consumption. The third relation
is time, the fourth is effective work available. The coupled relations (39 and
40) are piston mass and pure oscillating mass.

The example was filled with arbitrary data for checking purposes. It
should be tested extensively with real data from a vehicle to see the value of
the decomposition technique.

1 16

0
-0+ -+XX
	0

1 1 7
5 	10 	15 20 25 30 35 40 - 45 	SO 	55 60 	65 70 75

O
O
O
O
O
O
O
to

0
0
0

0
0

0

0
0
0
0
0

0

0

0

X+++++-+++++++++++++++-++++++ +0

1111111 	1111 	1 	11XO

XX
++-X
++-X
++-+--XX

++-+--++-+---x

++ -+ - -++ -X

0
0

0
0 	
0 	

Ilo-
	

X

O
O
O

II 	1 0 X 	
XX - -++01
11 1X+0-
X+ - -+++-0

I I 	I
++-+x
II 	II 	II

X-+++++++++++++++-++++X+-++--++X----01
XX++++++++X++X-++++-+-++--+X+-----0

X+-+-++-

I 	

-+-+ 	-0

I 	
X+--+-+ 	

	

X--+-+- 	
0
-0

	

x+++++++-X+_+-+-_+--+-+ 	-0+ -++-++-++X+---+-+X

	

X ++--X++++++++++++++-+X-+-+--+--+-+ 	+0 -++-++-+++X---+-+++---X

	

X---XXX+++X+++X++X-++-+-+--+--+-X 	X+0-++-++-X+++-X-+XXX

xxl_44),411111i11 1 1, 	 II 1111 I I
X-XX---+++++X+++-++++-++-+-+ 	+-+ 	++--+0-+X-++++-+ ++ 	x

	

X- - -+++++-+++-++++-++-+-+- - ---+-X 	++--+X0++-+++X

I 	1 11 	III 	111 1 	III 	I 	 I 	I -- -4.---.....++--.+--0+-+++X

X---+++++-+++-++++-++-+-+ 	+-X 	+---+----0
I
x--4---13111

111 111 1111 II x-x 	+ 	 +---+-----0X++-+-X

	

X+++-+++-X++X-++ 	+ 	 +- -+ 	-11

	

X+++++-++++-++ 	

	

II 1X+-++++-++ 	
4'
+
	 +---+ 	
	 + -+

	

X++-X-+,++++-++ 	+ 	 + -+

	

IX+-+-+-++++-X+ 	+ 	 + -+

	

X+-X-+-+-X+XX -+ 	+ 	 + -+

	

X++-+-+-+--++X--+ 	+ 	 +- -+

	

X+-+-+-+--++ -+ 	+ 	 +---+

1 	1 	1 1 	11 	1 	1 	
X 	-+

X
X-+-X-+--++ -+

	

X---X--XX- -+ 	+ 	
X 	

X

X-0
-0

---0-X
	0

0
0

Figure 8.8. Relations diagram before the application of decomposition.

1 1 8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

5 	10 15 20 	25 	30 	35 	40 	45 50 	55 60 	65

0
0
0 x 	x
0 	 x 	1
0 	
0 	 +-X--X- 	-+-+- 	 X X-X 	 X
0- -+-+--+----+-+---+ 	 +-+- X+ -
0- X -X+X1 	I

X +-++++ 	+ 0-
+-++++--+---+X 0

0 +-++++--+---++X
0 +-++X+XX+X- ++++ XX 	 X -XXX-+XXX- --X
0 - - - -- -+■++++++++... ++X I 	I II 	III I

X

°0111111 1I 	1111 	III 	III 	III 	11111 	III 	I 	I
0+++++++--++++-+++---+--++-+++-+++++--+++----+-•+-+X

70

-X
-X

0 	++++X+4+++- ++++- ++ 	+■++++++++X --X++ - -+ 	

	

0----+-++X+++++ ++++ ++ 	+-+++ +++++ X

	

0-- -+■4++++X++■■++++- XX 	-+-++X IIIII 1
0.-.-+-++++++++'.-++++-X++-..-X...-X+-XX+-+++X

	

0-+ -++++++++ - -++++-+++ 	---+ 	++ -+++ -+++++ --+++ -- -++--X

	

04.4+44++++ -■++++-+++ 	---+ 	++ -+++-+++++ - -+++-- - -+--+-X

0+++-+++++++++---+-■++-+++X+++++
0++-++++++x++---+--++-x11
0+-+++++++XX---+--++-++X
0X+++ +++++ +XX-+-■++X

111 	III 	1111 0++++++-XX111 1
0+++++-++XXI 1

0++++-+++++X+++---+--++-XX+-++XX1

X0++++++++++X 1 111
01111111111
0+++++++++-+--+++++++++++++-+++----+--+x

111111
0X+++++++--+++++++++++++-+++X

0+++++XXXXII
011111111

0+++++++X
0++ 	X
0+++++++XX+++ +X

0(1) 11
0
0
0
0+++XXXX
0++++++XX

011111
0111
0++++X+X
0++++Xl
0++++X

1111
0++XXXX-X-+X
01
0++++XXX
0

° 	Ill 0
0+++X

0 °
0
OXXX++X
01
0
OX
OXX
OXX
OX
0

Figure 8.9. Relations diagram after decomposition through Demaid.

8.5 Summary

The present Demaid system is directly linked to the OOPM. One can
enter the data in the Object Oriented Parametric Modeler and then run
Demaid to reorganize the data. However, more work needs to be done to
investigate the Steward Structural Decomposition. A feature based modeler
should be connected to the OOPM as well as an expert system to feed
relations into the system. A GenericConcept class could be developed to
instantiate rules and relations to the OOPM. This is similar to some of the
features in the Yoshikawa Metamodel. An interface should be developed to
the Function-Form Mapper to obtain the output forms from the mapper.
The output from the mapper could be decomposed and rearranged into sub-
assemblies in the OOPM. Also, more decomposition methods need to be
investigated.

8.6 References

1. Blaha, Michael .R.; Premerlani, William J.; Rumbaugh, James E.
Relational Database Design Using An Object-Oriented Methodology.
Communications of the ACM. April 1988, pp.414-427.

2. Blake, Edwin; Cook, Steve. On Including Part Hierarchies in Object-
Oriented Languages, with an Implementation in Smalltalk. European
Conference on Object-Oriented Programming. June 1987, pp.41-50.

3. Borning, Alan. The Programming Language Aspects of ThingLab, a
Constraint-Oriented Simulation Laboratory. ACM Transactions on
Programming Languages and Systems, Volume 3(4), October 1981, pp. 353-
387.

4. Booch, Grady. Object-Oriented Design. Benjamin Cummings Publishers.
New York. 1990.

5. Booch, Grady. Object-Oriented Development. IEEE Transactions on
Software Engineering, Volume SE-12(2), February 1986, pp.211-221.

6. Booch, Grady. Tutorial on Object-Oriented Design. Conference on Object-
Oriented Programming Systems, Languages, and Applications. October 2-
6, 1989.

7. Coad, Peter; Yourdon, Edward. Object-Oriented Analysis. Prentice-Hall,
Inc. 1990.

8. Constantine, Larry L.; Yourdon, Edward. Structured Design. Yourdon
Press. 1978.

119

9. Cox, Brad J. Object-Oriented Programming, An Evolutionary Approach.
Addison-Wesley, Inc. 1987.

10. Fulton, R.E. and Chao-pin Yeh. Managing Engineering Design
Information. AIAA/AHS/ASEE Aircraft Design Systems and Operations
Conference. Atlanta, Georgia. September 7-9, 1988.

11. Goldberg, A.; Robson, D. Smalltalk80: The Language and Its
Implementation. Addison-Wesley, 1983.

12. ICAD. ICAD User Guide. 1989.

13. Imamura, S.; Kojima, T.; Sekiguchi, H. A Study on the Object-Oriented
Product Model - Representation of Geometry and Dimension Annals of the
CIRP. Volume 37(1) 1988, pp.127-130.

14. Jacobsen, Ivar. Language Support for Changeable Large Real Time
Systems. Proceedings of Object-Oriented Programming Systems,
Languages, and Applications. September 1986, pp. 377-384.

15. Kolb, Mark. A Flexible Computer Aid for Conceptual Design Based on
Constraint Propagation and Component Modelling. Presentation of the
Doctoral Thesis Defense at Massachusetts Institute of
Technology. October 30, 1989.

16. Loomis, M.E.S.; Shah, A.V.; Rumbaugh, J.E. An Object Modeling
Technique For Conceptual Design. European Conference on Object-
Oriented Programming June 1987, pp. 192-202.

17. Meyer, Bertrand. Object-Oriented Software Construction. Prentice-Hall,
Inc. 1988.

18. Minsky, Naftaly H.; Rozenshtein David. A Law-Based Approach to
Object-Oriented Programming. Proceedings of Object-Oriented
Programming Systems, Languages, and Applications 1987. October 4-7,
1987, pp.482-493.

19. Parametric Technology Corporation. PRO/Engineer User Guide,
Release 3.0, Revision 3.

20. Pun, Raymond. A Decision Framework for Engineering Design.
Masters Graduate Thesis. Georgia Institute of Technology. May 1990.

21. Rinderle, J.R. Implications of Function-Form-Fabrication Relations on
Design Decomposition Strategies. Computers in Engineering, 1986.
American Society of Mechanical Engineers. Chicago. 1986, pp.193-198.

120

22. Rogers, James. DeMAID. User's Guide to Design Manager's Aid for
Intelligent Decomposition. NASA Langley Research Center. Hampton,
Virginia. March 1989.

23. Shlaer, Sally; Mellor, Stephen J. Object-Oriented Systems Analysis,
Modeling the World in Data. Prentice-Hall, Inc. 1988.

24. Steward, Donald V. Systems Analysis and Management. Petrocelli
Books, Inc. New York. 1981.

25. Structural Dynamics Research Corporation. SDRC Geomod Solid
Modeler. Version 5.0. 1990.

26. Suh, Nam P. Basic Concepts in Design for Producibility Annals of the
CIRP. Volume 37. Number 2. 1988.

27. Ten Dyke, R.P.; Kunz J.C. Object-Oriented Programming. IBM Systems
Journal. Volume 28(3), pp.465-478,1989.

28. Thomas, Dave. In Search of an Object-Oriented Development Process.
Journal of Object-Oriented Programming. May/June 1989, pp.60-63.

29. Tomiyama, Tetsuo; Kiriyama, Takashia; Takeda, Hideaki; Xue, Deye;
Yoshikawa Hiroyuki. Metamodel: A Key to Intelligent CAD Systems.
Research in Engineering Design. Springer-Verlag, Inc. New York. 1989,
pp.19-34.

30. Wasserman, Anthony I. Tutorial on Object-Oriented Structured Design.
Presented at the SCOOP East Conference. May, 1990. Tyngsboro,
Massachusetts.

31. Wegner, Peter. Dimensions of Object-Based Language Design.
Proceedings of Object-Oriented Programming Systems, Languages, and
Applications 1987. October 4-7, 1987, pp.168-182.

32. Yoshikawa, H. General Design Theory and a CAD System. Man-
Machine Communications in CAD \ CAM. North Holland Publishing
Company. 1981, pp.35-58.

121

Chapter 9 MULTILEVEL DESIGN APPLICATION

The hierarchical design approach, together with the object oriented
model, needs to be explored in terms of growing levels of detail in a design.
Chapter eight shows a single example of overall vehicle design where the
major parameters were at the same gross level of definition. This chapter
investigates the approach within the context of several levels of detail as a
design refinement is presented. In particular, it applies the approach for
design decisions related to a system (car), subsystem (door), and component
(door crash stiffener). This allows one to proceed down the hierarchy to
three levels and to investigate the multilevel linkages of the design variable
linkages, constraints, and procedures. The application is largely geometry
oriented and provides the opportunity to explore multilevel geometric
linkages and the suitability of using commercial CAD systems to support
such an approach.

9.1 Description of the Automobile Door Design Example.

The three-level problem, corresponding to the design of an
automobile door, is shown schematically in Figure 9.1. Decision elements
corresponding to the vehicle, door, and a crash stiffener structure located
within the door have been identified. These decision elements correspond
naturally to elements of the vehicle hierarchy. It should be noted that this
is not the only possible decomposition of the problem into decision elements.

The system integration approach to design involves modelling the
door at some level of detail, for example, overall geometrical outline
(shape), weight, and side impact deformation. We then postulate some
simple engineering theories relating these quantities, at the system level, to
each other, and to other system parameters. System-level optimization
results in values for the door/vehicle system interface parameters. These
parameter values then enter the door design problem as constraints.

In a multiobjective problem, the door (subsystem design) problem
may have local objectives which are considered independently from the
vehicle system design. More typically, a cumulative constraint function is
formed and used as an objective function for the subsystem design problem.

Up to this point, the flow of design requirements in this process has
been strictly top-down. If feasible solutions to the subsystem design
problem cannot be found, the multilevel approach provides for iteration
with the system level problem. This is done by incorporating optimal
sensitivity derivatives of the cumulative constraint function as constraints
in the system-level optimization.

122

Vehicle synthesis proble

Ail

Vehicle/door inter(SC

Door/crash
stiffener
interface

Crash stiffen. desk

Figure 9.1. Hierarchical Design Problem: Automobile Door.

9.2 Software Infrastructure

An effective design environment framework is composed of five key
components: a database, an expert system, a modeler, a set of analysis and
optimization tools, and a CAD system. Each piece plays a distinctive role in
the design process. For example, an expert system in conjunction with a
database performs a functional decomposition of an object. The object is
redefined into a finite number of forms. The object's function decomposes
into a finite number of sub-functions. With a modeler, a set of feasible
form-to-function sets are optimized using its user defined rules. These
subsets support the overall function of the initial object. Once reaching an
optimal solution, the database is updated and the object is processed
through a CAD system for production and operation/support analysis.

123

Selection of suitable software utilized the following criteria:

• Flexibility - supporting all phases of concurrent engineering
• Hardware Independent - software compatibility on a variety of

platforms
• Open Architecture - easy assimilation into existing engineering

environment
• Industry Standard - support existing standards in graphics,

networking, windows, and data exchange.

Additionally, the overall framework must create an environment
which compliments the goals of concurrent engineering. It must lend itself
to hierarchical decomposition. It must maintain a database which is
manageable and prevents repeating past mistakes. Lastly, it must act as a
catalyst for involvement by all members of the design team.

9.2.1 Software Platform

Selection of software platforms considered to various degrees existing
industry standards. Micro-Station, EMS, CATIA, and CV were just a few
of the types of platforms considered for this research. However, the two
platforms selected were I-DEAS and ICAD. Each of these platforms
possessed most or all of the five essential components of the software design
framework. I-DEAS was principally selected for its feature-based
capabilities. It is currently used for the system description and the finite-
element analysis of the components. ICAD was selected for its parametric-
based capabilities. It is currently used at the subsystem and component
level. With the principle focus at the subsystem level, the research takes
advantage of ICAD's ability to deliver deterministic, probabilistic,
quantitative and nonquantitative information. Both of these platforms are
addressed in greater detail below.

The current platforms require two databases. The principal
database, Oracle, is a library for all design work and coordinates and
facilitates operations in and out of ICAD. Oracle uses CLIPS to perform
many of its export functions. I-DEAS uses the Pearl database for its
operations. Discussions about the two databases and their functions are
discussed below.

9.1.1.5 Description and Functions of Software Components

CLIPS: 	CLIPS is an expert systems facility. CLIPS, although written
in C, looks and behaves like Lisp. Programming in the CLIPS expert
system functionally decomposes a design objective into a number of feasible
form-function sets. As expressed by Oracle data structures, forms and
functions are described and linked to together. Each form "knows" what
functions it can perform and within what boundaries it can perform those

124

functions. Each form also "knows" what other functions it requires to
operate. Hence, in the initial stage, original objective functions are
interrogated by CLIPS using forms and functional capabilities described in
Oracle. This process results in a series of feasible form-function sets which
are modelled to determine optimal form to function performance.

ORACLE: Oracle provides three principle services to the design
environment. It serves as a communications hub between other
components. Oracle provides a global model definition that each team
member and each software product can share. Hence cooperation is easy to
maintain and design histories as well as decision paths are documented.
Finally, Oracle provides the general reference information needed for the
design.

The design environment's databases provide crucial linkages
between each of other components. With a number of products working
together on a design, creating one to one translators, for each possible
connections, is an enormous task. The task increases factorially with the
number of products. Since expendability is important to a flexible software
framework, a central database is used which requires only one pathway per
product. Of particular interest is the I-DEAS pathway to ICAD. Developing
a robust capability to translate model information between the Pearl
database in I-DEAS and Oracle paves the way for system, subsystem, and
component interactions.

A globally shared model description is contained in Oracle. Once the
function based decomposition is completed, Oracle communicates each of
the proposed concepts to the modelers. Each modeler exercises its design
rules on the set of forms composing the proposed concept. The modelers
determine how best to build the proposed set of forms into a functioning
design model, relying on Oracle for coordination. Oracle coordinates the
contributions of each team member and maintains design history and
design decisions.

Oracle are also serve as an online library for reference information.
Available parts, previous designs, costs, and material attributes are all be
maintained in one place so that work is not duplicated and a more self-
contained design history is maintained.

ICAD: 	ICAD was chosen as the subsystem and component modeler
because it offers the most capable environment for complete parametric
design. ICAD's parametric programming results in an interactive
application environment, the designer is led through a series of questions
which prompts the designer for inputs. The application creates geometric
and property outputs based on rules and design data imbedded in the
application's code. Updates to this environment, particularly the user
interface development and database integration are easily assimilated into
the platform with little downtime.

125

Where I-DEAS utilizes feature-based design, ICAD builds designs
with IDL, which is ICAD's design language. There are three important
advantages to programming in this design language. Firstly, the process
offers total control over all aspects of the design model. Secondly, the
designer is not constrained by a small number geometric primitives.
Thirdly, ICAD gives the coder the flexibility to interface with other
platforms or write code directly into the environment.

9.3 Multilevel Model of Door Geometry

The software infrastructure is used to capture the multilevel model of
the door and crash bar consistent with system (car) level geometric
constraints. The following summarizes selected information describing
the door. The door subsystem was modelled with ICAD , and the detail of
the crash bar and other components are modelled an analyzed with IDEAS.
The relationship of the design to the overall vehicle measures of Please and
Protect are also discussed.

9.3.1 Door Subsystem Modelled with ICAD

A door design model in ICAD satisfies the design requirements for
functionality, realistic detail, and parametric simplicity. Two functions of
pleasing and protecting affect the door's form. The doors created in
response to these functions must contain sufficient detail to be realistic
while remaining parametrically simple. For example Figure 9.2 depicts an
appealing door created from less than twenty parameters.

Functional modelling criteria are applied to the subsystem attributes
and the component forms. At the subsystem level, the function please is
fulfilled by the door's geometry, window area, and weight distribution. All
are subsystem attributes. Within the door's subsystems, the function
protect is fulfilled by a stiffener, latches, hinges, and frame members.
Protection is provided by these component level forms. All are primarily
dependent on an input called Impact, representing crash intensity.

To insure realistic detail and protection, the door must fit into the
car. Thus system level geometric constraint dictates many of the door's
ICAD inputs. As seen in Figures 9.3 and 9.4 which indicate door inputs,
this geometric constraint is sufficiently detailed to insure compatibility
between the system and the subsystem. The ICAD code creates the
geometric components based on user-defined inputs and design rules.

126

lielf Lowly bit•ibulas

MI el
MI: IN

•
Ng: La
Hr 2
liorbet: NM

s
0.3 •H
In OA

Td: 1
Tisi 41
1 Do: 0
Id: a

The:
AN: I

la
-I

mil
How II
dir•P •
rurrie•picklen4

.Ifir-6116.40001110-E

.rorlleerobout isee-T
ler Acoh•Nactlem N

eldla414•44210•14.
ddlylsiipanien-T

mitower
Id:a-1004.. leillton
pep•-1. sovt•T row
nds241111HAN,

•Itir Pm=
riot-brie

4. w

Figure 9.2. Sample Door

127

Figure 9.3. Door Inputs (Lateral View)

Figure 9.4. Door Inputs (Longitudinal View)

Design rules for the door fall into two categories: those which insure
geometric compatibility between the door components and those which
determine the size, placement, and number of each component based on
pleasure and protection. A pseudo-code translation of many of these rules
is included below in Table 9.1.

Rules governing geometry are compatibility relations such as:

• The lower body section's front frame's length is the distance up the height
of the 	 lower body section and in fib degrees.
• The middle body section's front, right, and bottom corner must coincide
with

the lower body section's front, upper, and
right

corner.

Example IDL Code:

(middle-body-f :type box
:Display-controls '(::color :blue)
:width (the :wd)
:height (the :hd)

128

:length (the :td)
:orientation (:numeric (roll :longitudinal (degme (+ (the

:Bb)
(the :Bd) -90))))

.position-about
(:local point (the :middle-body-f (vertex :right

:bottom :front))
:model-point (the dower-body -f (:vertex :right :top

:front))))

[All frame members are sized and positioned in
this manner.]

• The stiffener is position within the middle body section. Its vertical
placement is a fraction of the middle body section's height. planes of the
door's total structure and depicts the skin of the door.

Rules implementing functional requirements are relations such as:

• The number of latches is a function of impact.
number = Impact /500 rounded to the closest integer

• The latches are to be evenly distributed along the rear middle body section
frame.

• The size of the latches is a function of door geometry, number of latches,
and the impact power.

Latches are 40% the width of the middle body section
Length is the thickness of the middle body section
Height is Impact1(1000 * number)

• The number and placement of hinges is a function of impact and pivot
axis.

If standard then number = Impact I 500 on the front of the
middle body section

If gull wing then number = Impact I 300 on the top of the
top window frame

If swing up then number = 1 on the inside, front, and top
of the middle body section.

• The size of the hinges is dependent on the impact, axis of pivot, the
geometry of the door, and the number of hinges.

If standard: 	radius= Impact * length * .000002
length = Impact * number * door section
height * .0002

If gull wing:radius= Impact * height * .000002
length = Impact * number * door section
height * .0002

If swing up: 	radius= Impact * .000003
length = door section width * .03

• The sizes of the window frames vary based on pivot axis, impact, and door
geometry.

129

If standard or swing up then window frame height and
width are .1

If gull wing then window frame height = Impact * .00006
* length * .35 and frame window frame width =
Impact * .00006 * length * .5

• The size of the stiffener is a function of door geometry and impact
intensity.

Length is determined by the position within the middle
body section

Width is 60% of the middle body section's width
Hei ht = .0001 * len h * Im act •

Table 9.1. Pseudo-Code for Subsystem Level Door Description

Example IDL code that is used to implement the pseudo-code is
shown below in Table 9.2. Each of the rules in Table 9.2 is designed to
produce reasonable results and reflect the contribution of the subsystem's
function, however, for the purposes of this study, no attempt was made to be
exactingly correct in terms of engineering theories and models.

(defun stiffener-height (impact length)
(* length .1 impact .001)

)

(stiffener 	:type box
:Display-controls '(:color :red)
:width (the :wds)
:height (the :hds)
:length (the :Ids)
:orientation (:numeric (roll :longitudinal (degree (+ (the

Bb)
(the :Bd) -90))))

:position-about (:local point (.face-center :front)
:model point

(mapcar '+ (the :door-section-f (:edge-
center :front :bottom))

(list 0 0 (* (the :hd) (the :pds))))))

Table 9.2. Sample IDL Code

Interaction between system, subsystem, and component models can
be seen both within the ICAD models and between the ICAD and the I-
DEAS environments.

From the system level, the car model in I-DEAS specifies the basic
geometry of the subsystem door model in ICAD. At the subsystem level the
door may need to open gull winging. This may be due to a system level,
height or pleasure requirement. Hinge arrangement and frame sizes must
then change at the subsystem level. Figures 9.5, 9.6, and 9.7 depict these

130

changes. If at the subsystem level gull-wing doors are chosen, then at the
system level the roof of the car must be designed to accommodate the new
loads and make room for hinges.

Figure 9.5. Example of Changes In Door Configuration Showing Selection of
Standard Hinges.

A second decision path which satisfies the protection function is
highlighted below. To protect, the door must endure some impact without
harming the passenger. This impact criteria directly effects the door's
stiffener. It also affects the door's frames, latches, and hinges. With I-
DEAS's FEM, finite element analysis is performed on the component model
of the stiffener. Results from that component design are reflected in the
ICAD subsystem model of the door. As the door's geometry changes,
differences in the number, size, and placement of hinges and latches occur.
These differences must be fed up to the system model of the car in I-DEAS to
insure that the door can still close safely.

131

Figure 9.6. Example of Changes in Door Configuration Showing Selection of
Swing-up Hinges.

Figure 9.7. Example of Changes In Door Configuration Showing Selection of
Gull-wing Hinges.

132

9.3.2 Detail Component Modelled with IDEAS

IDEAS was selected as a suitable featured-based program since it
possessed four of the five software components of the design framework.
While it lacks an expert system, I-DEAS is a fairly comprehensive CAD
environment which is suitable to describe the system. The salient
advantage of the I-DEAS package is its feature-based capabilities and this,
more than any other reason, motivated its selection. I-DEAS processes
geometric data to the pearl database, as shown in Figure 9.8.

Geometry
	

Landing Process 	 Result

133

elticulate
auriac•

littaraaaHana
Pearl Data Mi$01

pima's§
curios 	H evori Data Model

Figure 9.8. Loading Geometry Into the Pearl Database

The source of its data is either a wireframe or an object. The
database contains tables that define and describe the geometric data. A set
of tables is referred as a relational data model. After the geometry is loaded
into the database, newer versions of an object or wireframe can be added
while older versions can be deleted. The Pearl database interfaces with
other databases by accessing an administrator, which is a library of
interface subroutines.

Version 5.0 of I-DEAS has been recently released and is unique from
earlier versions in that it allows for featured-based definitions. This is a
significant advancement over traditional solid object modeling methods.
An advantage of user-defined features is the modeling of objects which
possess variable definitions. One example is hinge placement on the frame
of a car. By changing the variable dimensions, the dependent dimensions
of the feature are automatically adjusted. So the dimensions which shape
the hinge are dependent upon variables defined by the user.

In the example provided in Figure 9.9, the user has feature defined a
plate with a slot hole. Whenever this feature is accessed, the dimensions
are of fixed value except for the plate length. Each time the user specifies
the length the object is automatically generated. I-DEAS stores features in
a library which allows other users to share access to the design.

Figure 9.9. Example of a Feature.

Feature-based modeling controls both the dimensions and the
orientation of the entities through parameters. Each time a feature is
accessed, its parameters are processed so that the user can input new
values for the parameters. The feature's history is re-processed with the
new values to modify the geometry of the feature. The feature's parameters
allow members of the design team the capability to set design standards
and controls. Hence a feature-based design at the system level can
interface with form variations produced at the subsystem level. A
parametric-based form defined in ICAD can be fed through the Oracle
database to the Pearl database and finally , into the feature-based system in
I-DEAS.

To further explain the purpose of feature parameters consider the
example in Figure 9.10 below. The feature is a block with a circular hole
cut through it. Note that the feature consists of two entities: the block and
the hole. The user can create parameters which control either the block
and/or the circular hole. The user may chose to control the hole by creating
a parameter that controls the translation of the hole along a given axis. In

134

the example above, the hole is the controlled entity. The translation of that
controlled entity along the x-axis is the controlled detail. Here the specified
parameter affects only the controlled detail of the control entity. This
feature allows the user to move the hole along the x-axis each time it is
accessed.

Figure 9.10. Example of a Feature Parameter

In addition to user-prompted inputs, feature parameters can also be
expressed equatorially An equatorial parameter defines a mathematical
relationship between two other parameters. Some examples of equations
are:

• second + sqrt(first)
(Calculates the value of "second" plus the root value of "first")

• cos(theta)
(Calculates the cosine value of "theta.")

Finally, parameters may be limited by the user to a minimum/maximum
value. Hence constraints at system level can guard against any
inadmissible form which is generated by the subsystem level.

Analyzing the door's function to protect requires predicting the
behavior of its component structure, which in this case is a beam The
beam's behavior is characterized by its displacement. Therefore, beam
displacement is analyzed in I-DEAS utilizing finite element tasks.

The finite element method estimates stress at each node. A separate
estimate is calculated from each element connected to each node.

135

*et/ • • lers .1 -2 Nevi%

Displacement results are stored to analysis datasets as vector data at nodes.
Stresses are written to analysis datasets as symmetric tensor data at nodes
on elements. Figure 9.11 depicts the six stress values calculated for the
beam elements.

I I.. ..

	 •

	

mlw 	 OM.= • .• 	•

fo; ens' mar% worm,

Figure 9.11. Finite Element Analysis of Component

Finite element analysis is also applied to door components to asses
their performance under load. Applying a parabolic tetrahedron mesh to
an object increases the precision of the analysis. Figure 9.12 depicts the
results of a stress analysis on a door hinge tap constraints at the support.
The dashed lines indicate the original geometry.

Figure 9.12. Analysis of Deformation Results

136

137

9.4 Summary

This chapter has presented an example of a car door to illustrate and
test the multilevel hierarchical design approach and the adequacy of
commercial software to provide a software infrastructure. The results are
encouraging and indicate that complex geometries and detailed analyses
can be incorporated in the method. The results also illustrate how linkages
can be made between a detail component design and the overall vehicle
performance measures such as Please and Protect. The results also show
some of the limitations and advantages of the software and the
methodologies.

Chapter 10 SUMMARY OF ACCOMPLISHMENTS AND ISSUES

This report summarizes the work to date in the areas of developing
the requirements for the Object Oriented Vehicle Model and for
Hierarchical Decomposition Design Methodologies.

The work in the OOVM has developed the preliminary
decompositions in the function and form and has started to relate them to
the Voice of the Customer and the Baseline Parameters. A set of inputs
and outputs has been determined for the model and subsets defined for
testing. The model has been tested against previous GM work to assure
that nothing has been left out, as well as that compatibility is maintained
with GM terminology. A first attempt at integrating the model with a
database, an expert system, and the Voice of the Customer has been
successfully completed.

In the area of hierarchical decomposition, the work summarized in
this report represents the initial efforts to clearly define the research
problem and to formulate suitable and effective approaches for dealing with
it. The report briefly outlines the work completed to develop a prototype
design problem and to implement some of the basic software tools necessary
for its solution. Selected examples are explored to clarify issues, identify
potential benefits, and uncover problem areas in a hierarchically
structured design environment.

In summary, the two activities carried out to date in these studies
have resulted in the following accomplishments:

1. Development of an overall design strategy based on hierarchical
design methods and object oriented modelling for addressing
automotive conceptual design driven by customer requirements.

2. Definition of the vehicle from the customer perspective via QFD.

3. Definition of the vehicle from an operational perspective in terms of
vehicle functions.

4. Definition of the vehicle from a physical perspective in terms of form
descriptions.

5. Identification of sample linkages among the perspectives.

6. Development of a theoretical framework for multilevel automotive
design.

7. Selected experimental applications to test the design approach
concepts and possible software infrastructures for both overall
design and multilevel component design.

138

The basic concepts for the proposed design strategy have been
conceived, discussed , characterized, and examined. It is felt that the
design strategy provides a good foundation on which to build. It contains
many highly desirable features of a new framework for design, such as

1. modularizes the process and models,
2. provides direct customer requirements impact on design,
3. utilizes advanced information management concepts to benefit an

information driven process,
4. exploits evolving software products based on object oriented concepts,
5. facilitates the use of computing technology to aid design bookkeeping

and decision making,
6. incorporates effective use of multilevel optimization concepts, and
7. incorporates multiview approaches to design.

While the above design approach has good concepts and high
potential, there are certainly many issues which remain. Some of these
include:

1. Refinement of concepts to further levels of definition,
2. Actual]inking of vehicle multiple view,
3. Incorporation of realistic design variables,
4. Representation of actual design experiences,
5. Integration of design rules,
6. Better integration of the design information, process, views, and

multiple levels, and
7. Scaling of multiple optimization functions.

It is believed that such issues can be addressed within the context of
application of the model and methods to realistic design scenarios and
implementation of the approach in prototype software. Plans for
addressing these issues are discussed in more detail in chapter 11.

139

Chapter 11 PLANS

11.1 Planned Tasks

The next year's work will address the four key tasks outlined below
and their respective areas of emphasis relative to these tasks. This work
focuses on implementing the results of this work in software on appropriate
hardware platforms. The Object Oriented Vehicle Model will be expanded
and tested within the framework of the hierarchical decomposition
strategies.

In particular, the proposed second year effort will study the
applicability and effectiveness of three general decision support methods:

• deterministic approaches such as the DSS method,
• probabilistic approaches, and
• methods based on multi-level optimization.

The general outlines of these approaches have been presented in the
present report. Each will be examined in greater detail, and their
suitability for use in automotive design will be studied in the context of the
door design problem described in this report.

A key part of the proposed work will be to continue development of the
prototype software system initiated during the first year. While most of the
major software components have been identified and preliminary work has
been initiated to implement the prototype problem, many of the details have
not been adequately resolved. Work during the second year will be focused
on completing a reliable working prototype software system. Particular
attention will be directed to the following key areas:

• Development of the subsystem representation where it is anticipated
that much of the decision-support methods will be utilized,

• Development and implementation of suitable information framework
tools to allow ready and effective interaction between the system,
subsystem and component levels.

• Implementation of decision-making processes at each of the three
hierarchical levels and study of the resulting system-wide
interactions.

11.1.1 Task 1- Implement and Test Prototype Software Framework

In this task, a software framework will be implemented and tested
for the automotive conceptual design process based on an Object Oriented
Vehicle Model using the Hierarchical Decomposition Approach. The
software framework will include appropriate user interface, information
management, optimization and expert system capability integrated on a

140

various hardware platforms. The framework will include storage,
management, and linkage of information characterizing the vehicle at
several levels including both functional and form descriptions and at
several levels of detail. The framework will be tested on selected conceptual
design examples at the gross vehicle level and at a component level. The
key goal of this task is to verify the completeness and linkages of the
software framework and to ensure that management of the vehicle form,
function and design rules is consistently carried out.

11.1.2 Task 2- Refine and Extend Automotive Design Methodology

This task will build on the studies to date in design methodology. The
methodology has included consideration of quality function deployment,
function and form relationships and their respective hierarchical
decompositions in describing a vehicle design. Each of these relationships
provide different representatives of an automotive design. Work to date has
provided representative descriptions of the vehicle in terms of the three
relationships and illustrated sample linkages. An initial set of
relationships has been defined in each of these areas. This task will
expand in the level of hierarchical decomposition of the vehicle description
and will develop ways to link the various decompositions. This task will be
to establish a clean thread of linkage between the high level customer
requirements associated with QFD and the form description of the vehicle
and to define how optimization concepts can be applied to achieve "best"
designs.

11.1.3 Task 3- Develop a Database Approach for Automotive Design

It is critically important to establish an approach to managing the
information associated with vehicle design. As a vehicle design is
continually refined in terms of customer requirements, functional
requirements or form description, the qualities of information escalate
rapidly. Various approaches to database management visit including
relational, objected oriented or object concepts on a relational environment.
Each of these have certain assets and liabilities. Relational approaches are
more flexible, but can have performance difficulties. Object oriented
methods can be a more natural way to decompose a large product but can be
less flexible, and have poorly developed performance experience.
Combinations which build on both may be more attractive at least until
object oriented software matures. This task will explore the various
approaches, recommend a strategy, and incorporate it in the software
framework.

141

11.1.4 Task 4- Apply Prototype Software Framework to Representative
Vehicle Design

The prototype software and methodology developed in the work to date
and in the above ongoing tasks will be applied to the study of representative
automotive design. In particular the study will investigate how changes in
one of the three customer requirements such as Please, Protect or
Transport can result in changes in vehicle component design. Such design
changes can then subsequently lend to attendant modification in the other
two customer requirements. The software infrastructure will provide an
opportunity to carry out design tradeoffs and will show examples of linkage
between high level customer requirements and component design the
application will use one or more baseline vehicle configurations as test
cases and will investigate sensitivity of the configuration to changes in
customer requirements. Selected optimization concepts will be tested for
test vehicle to show how various customers requirements can be best met.

11.2 Testing Methodology

The test philosophy is to take these and other scenarios and
determine the effects of changes in the baseline parameters of a
representative vehicle throughout the breadth of the vehicle as a method of
studying the integrative ability of the model, design methodology and
information storage mechanisms. It is not the object of this study to delve
into detail design of components.

Testing will focus on representative design scenarios to test the
model and the underlying design methodology. We intend to explore the
functions Transport, Please and Protect using a car which has nominal
baseline parameters. The following scenario can be envisioned to test the
sensitivity of the functions to changes in each other. A requirement for the
car is to Access Passenger Space in the Transport function. Increasing the
size of the door increases the Transport function by increasing the value of
Access Passenger Space. Increasing the door size also affects the Protect
function, as the door would need to be strengthened to maintain a constant
value of protection. If the door size is modified, the value of Transport may
be reduced (the car would weigh more, and hence lose fuel economy), and
the value of Please may be reduced because the heavier car doesn't perform
as well. This may lead one to increase the size of the engine. One can
easily see the complex network that quickly develops. The Object Oriented
Vehicle Model, interacting with the Hierarchically Decomposed Design
method (developed in the parallel contract), should allow one to more easily
see the interactions of design decisions on the form and performance of the
vehicle. A second scenario which can be imagined involves the Please
Function. If a customer wants to increase the Entertain function, there are
a multitude of changes that could occur. If the exhilaration of acceleration
is of importance, the affect on the size of the car, its engine, and the
Transport and Protect functions need to be explored. A third scenario

142

143

envisioned is that of packaging The constraints of the size of the
components and of the final car (wheelbase, length, width, height) affect
the location and placement of these components. The ordering of their
design and placement will be explored using the design methodology and
hierarchical decomposition.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147

