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ABSTRACT 

This report presents the results of the past year's work under 
contracts entitled The Requirements for an Object Oriented Vehicle Model 
(Contract # DD 492465) and Hierarchical Decomposition Design Methods for 
Automobiles (Contract # DD 492386) for the GM Systems Engineering 
Center, Troy, MI. The technical contacts are Dr. Steve Rohde and Dr. 
Dennis Li. 

This research has provided the preliminary requirements for an 
object oriented vehicle model and the hierarchical decomposition strategies 
for maneuvering through the design of an automobile. The model provides 
an integrative focal point for all functions, so that they may each have their 
own view of the design without the problems associated with multiple 
views. Hierarchical design methodologies have been studied and 
conclusions made as to strategies to follow. 
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Chapter 1 INTRODUCTION 

The design of a complex product, such as an automobile, requires the 
integration of the efforts of many different groups within a company. These 
can include design, manufacturing, analysis, project management, 
marketing, as well as a host of others. Each of these groups has its own 
design methods and, as a result, different views of what constitutes the 
vehicle and its descriptive information. This leads to redundancy and 
difficulty in communication, as groups compare different information 
perspectives, such as design and manufacturing descriptions. Each group 
has different types of input, output, and levels of detail. By consolidating 
the various models into one object-oriented representation of the vehicle 
with the ability to work at different levels of detail, and combining it with 
hierarchical decomposition strategies, a clear determination of a design 
procedure should emerge that incorporates design decisions and processes, 
multidisciplinary interactions and system optimization. This approach 
also should allow the formulation of an objective function for the conceptual 
design, with appropriate weighting functions to replace the current set of 
inconsistent parameters. This strategy should lead to a reduction in the 
time and cost of design, an improved vehicle quality, and increased market 
share. 

In general, the design of an automotive vehicle should proceed from 
the desires of the customer (the voice of the customer, as developed within 
Quality Function Deployment (QFD)) to an engineering description and on 
to design, analysis and manufacturing. In the concurrent engineering 
view, the design of the product and the processes for making it should be 
performed at the same time. In a similar vein, design should be 
approached in a multilevel, multiview approach. The functional 
requirements of the vehicle should be determined from the customer 
requirements. These should then be translated into the forms required to 
produce these functions. The forms then need to be integrated to insure 
that the functions are performed to the necessary level. A. model of the 
vehicle and the design process needs to be developed so that all of the 
functions involved can view the information according to their own needs, 
yet provide a consistent information base. An object oriented vehicle model 
will provide the integration necessary to accomplish this goal of providing a 
consistent information model that allows multiple views at multiple levels. 
Design methodologies, such as hierarchical decomposition strategies, will 
allow the designer to traverse the design in an optimal manner by pointing 
out the relationships between function and form, and the best way to 
perform the design. 

This report summarizes the efforts carried out over the past year 
under two GM SEC contracts to utilize object oriented technology and 
hierarchical decomposition methodologies to provide a consistent, 
comprehensive and structured approach to the early design process for 
automotive vehicles. It is to take advantage of the concept of design being 
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an information-driven process and explore how new technologies in 
information management can aid the process. The first goal of the work 
summarized here is to develop an appropriate vehicle model which will 
integrate the multiple levels of the vehicle as well as allow each function to 
view the vehicle on its own terms. The second goal is to provide an 
integrative, optimal design strategy and process, which take into 
consideration the interactions of the voice of the customer with the function 
and form of the vehicle, via an optimizable functional description. The 
approach will utilize hierarchical decomposition design methods, which 
will provide an ordered way of addressing various levels of design definition 
and decisions. Such a structured approach should result in a reduction in 
feedback within the design process and an associated reduction in design 
time. 

Work in the past year has determined the preliminary, theoretical 
requirements for such an Object Oriented Vehicle Model (OOVM) and 
Hierarchical Decomposition Design Methods for Automobiles.. It is felt that 
the OOVM will provide a consistent, integrative representation of a vehicle 
for use by all functions involved in the design of automobiles and that the 
Hierarchical Decomposition Methods will provide optimal strategies for the 
design of the vehicle. 

Chapter two presents an overview of the design process and our 
overall design strategies. Chapter three discusses the customer perspective 
of the vehicle as it is related to QFD and selected Baseline Parameters. 
Chapter four discusses the functional decomposition of the OOVM and 
chapter five discusses its form decomposition. Chapter six presents a 
preliminary integration of the OOVM with a database and an expert system 
to test the linkages between function and form. Chapter seven presents the 
theoretical approach to hierarchical design and optimization strategies. 
Chapter eight discusses the object oriented programming paradigm to 
obtain multiple views of the design with applications. Chapter nine 
presents a similar discourse on multiple level views of the design, again 
with an example. Chapter 10 summarizes the results of this work and 
chapter 11 presents our plans for the future. 
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Chapter 2 OVERALL DESIGN STRATEGIES 

2.1 Introduction 

The design of an automobile is a complex process of synthesis, 
analysis and decision-making. The vehicle development process involves 
interactions among many different disciplines and spans a chronology 
from the earliest expression of the voice of the customer, through the design 
and manufacture of tens of thousands of vehicles, and finally to the 
operation and support of a large and widely distributed fleet. The design 
and development of complex automotive vehicles requires the consideration 
of numerous disciplines, complex geometries, materials and processes, the 
involvement of numerous specialists, and extensive task automation. 
Consideration of the entire vehicle life-cycle from the earliest phases of the 
project is a key element of success in a highly competitive and rapidly 
changing marketplace. 

Design processes for future vehicles require a high degree of 
automation, integrated into a cohesive product development environment. 
Current approaches utilize computers in varied ways to automate tasks, 
but do not generally address the entire process in a coherent manner. To 
achieve product quality and development productivity, it is essential that 
methods be developed to manage design information and to structure the 
decision-making process throughout the vehicle development process. An 
approach that appears to have considerable merit is one based on 
hierarchical decomposition of the critical design tasks and variables into 
appropriate groups consistent with the state of the design. 

The present research program in hierarchical decomposition 
methods and vehicle modelling is built around three inter-related efforts 
that are being carried out concurrently by the research team These efforts 
are focused on 

• data modelling for Quality Function Deployment (QFD), 
• development of an object-oriented vehicle model, and 
• methods for making product development decisions. 

In this approach, QFD provides a problem statement for decision-
making, which will be discussed more completely in chapter three and 
appendix A. 

An object-oriented vehicle model provides a description of alternative 
vehicle system, subsystem, and component attributes. The initial focus for 
the OOVM is conceptual design (i.e., in which major vehicle 
characteristics such as length, width, and power characteristics are 
determined) to examine the applicability and link of the model to detailed 
design (i.e.,specification of bolt sizes, body panel thickness, etc.). The basic 
concept is to identify the key design variables in conceptual vehicle design 
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and the steps required to assign values to those design variables. We also 
want to organize these steps in the optimal order so as to make design 
"feedforward" and minimize the need for feedback and iteration, thereby 
minimizing both the complexity of the design process and the time needed 
for design. Expressed another way, we must determine what design 
decisions have to be made and how and in what order those decisions 
should be made to optimize conceptual vehicle design. 

Of course, the goal of any design is to assign values to the design 
variables so that the product meets the requirements of the person (or 
organization) that requested the product be designed (and also satisfies any 
constraints). In our case, this person is the vehicle customer. It is our 
contention that through a progressive process of analyzing and refining the 
functional requirements of the customer (i.e., what the customer wants the 
car "to do"), selecting and designing forms to fulfill those functional 
requirements, then synthesizing (and optimizing, where necessary) those 
forms into an overall vehicle, the OOVM will converge upon an optimal 
solution (i.e., a vehicle design that optimally meets the customer 
requirements). Specifically, the input to the model is the "voice of the 
customer" (or customer attributes). These (or, more exactly, values 
assigned to these attributes by the customer) are translated into functional 
requirements, and in turn, the functional requirements are translated into 
forms. The forms are then optimized (under the requirements of functional 
and spatial constraints) and aggregated into an overall vehicle. The output 
of the model is the final form and functional characteristics (or product 
characteristics) of the "optimal" vehicle design. Our ultimate goal is to 
show how, as the input customer attributes change, the output product 
characteristics change. 

In general, the decision-making task is to select values for the 
attributes, which satisfies hard constraints and balance goals and 
objectives. The present effort is concerned with the development and 
prototype implementation of such decision-making methods. In particular, 
the present approach is focused on the development of decision-making 
strategies in a hierarchical design environment. Multilevel optimization 
methods, deterministic decision-support processes, and probabilistic 
methods, such as Taguchi methods and related developments, are 
appropriate for making various design decisions and are currently within 
the scope of this study. 

A key idea in this approach is that the prioritization of goals, 
objectives, and conflicting requirements is incorporated into the product 
through the strategy for converging on final specifications for product 
attributes. Hierarchical design methods can play two roles: 

1. in planning a sequential or concurrent product development 
decision-making process to ensure that requirements are balanced, 
and 

2. in providing support in making those decisions. 
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A principal tool in hierarchical design approaches has been the 
iterative solution of an optimization problem decomposed into a multi-level 
network of subproblems. The use of the word hierarchical refers to the 
multi-level nature of this network. The techniques can be = pplied to quite 
general problem structure networks, provided some care is taken to avoid 
divergence. This is important, since the techniques are applied in practice 
to what might be described as the "decision decomposition". The decision 
decomposition rarely has a strictly hierarchical structure, since it must 
reflect both the function and system hierarchy decompositions. (The 
function decomposition is typically not hierarchical.) 

The primary emphasis in the development of these tools has been in 
solving problems, which could be posed as deterministic single-objective 
multivariable constrained minimization problems. The techniques are 
thus somewhat limited in their ability to deal with independent variables 
taking on values in a discrete set, or to deal with objective and constraint 
functions having discontinuities. Also, the set of independent variables, 
objectives, and constraint relationships is generally taken as fixed. This 
limits the ability of these methods to deal with qualitatively different 
alternatives. Such alternatives are characterized by differences in system 
architecture. Architectural differences, in this sense, involve different 
function decompositions, and different choices of system elements for 
implementation. Finally, the "classical" approach to hierarchical design 
decision-making provides little guidance in dealing with formulation or 
solution of problems where uncertainty or imprecision are important. 

As a result of these issues, the present study also examines 
alternative decision-making methods based on both deterministic and 
probabilistic formulations. The probabilistic formulation brings with it a 
strategy for integrating concurrent decisions. The result is a broad-based 
approach to the development of decision-making strategies that are 
appropriate to the problem of designing complex mechanical systems, such 
as an automobile. 

2.2 Issues in Product Development Decision-making 

2.2.1 Vehicle Function and System Architectures  

In the approach taken here, hierarchical design methods fit into the 
context of an advanced product development methodology, based on the 
concept of concurrent engineering. Concurrent engineering refers to a 
product development process in which producibility and supportability 
considerations can be brought into early product decision-making steps and 
traded off against performance, cost, and schedule (time-to-market). 

A critique of the product development process, as it is often now 
conceptualized, is presented. It is shown that certain obstacles to 
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concurrent engineering are built into this view of the product development 
process. Computing technology can be applied to allow substantial changes 
in the structure of the product development process. In particular, high-
level languages for parametric representation of product and process 
alternatives are extremely valuable. 

To be effective, these languages must allow the product development 
team to describe the system life cycle concept from three points of view: 

• function ("what it does"), 
• implementation ("what it is") and 
• modelling ("how it works"). 

Functions are organized by a function decomposition structure, while 
implementation alternatives can be organized into various system-system-
component hierarchies. Both functions and system elements have 
attributes. Customer, regulatory, and internal requirements can be 
applied to the life-cycle concept description by constraining the values of 
these attributes. Goals and objectives, applied to these attributes, constitute 
additional constraints (optimality constraints). Finally, engineering 
theories and models ("how it works") link attributes of the function and 
system hierarchy decompositions. These models provide still more 
constraints. The decision-making task is to select values for the attributes, 
satisfying the hard constraints, and balancing goals and objectives. 

A key idea in the current approach at Georgia Tech is that the 
customer's prioritization of goals, objectives, and conflicting requirements 
is incorporated into the product through the strategy employed by the 
product development team to converge on final specifications for product 
attributes. Hierarchical design methods can play two roles: (1) in planning 
a sequence of product development decisions to ensure that requirements 
are balanced, and (2) providing support in making those decisions. 

The principal tool in the hierarchical design approach has been the 
iterative solution of an optimization problem decomposed into a multi-level 
network of subproblems. The use of the word hierarchical refers to the 
multi-level nature of this network. The techniques can be applied to quite 
general problem structure networks, provided some care is taken to avoid 
divergence. This is important, since the techniques are applied in practice 
to what might be described as the "decision decomposition". The decision 
decomposition rarely has a strictly hierarchical structure, since it must 
reflect both the function and system hierarchy decompositions. 

The primary emphasis in the development of these tools has been in 
solving problems which are posed as deterministic single- or multi-
objective multivariable constrained minimization problems. The 
techniques that have been developed are thus somewhat limited in their 
ability to deal with independent variables taking on values in a discrete set, 
or to deal with objective and constraint functions having discontinuities. 
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Also, the set of independent variables, objectives, and constraint 
relationships is generally taken as fixed. This limits the ability of these 
methods to deal with qualitatively different alternatives. Such alternatives 
are characterized by differences in system architecture. Architectural 
differences, in this sense, involve different function decompositions, and 
different choices of system elements for implementation. Finally, the 
"classical" approach to hierarchical design decision making provides little 
guidance in dealing with formulation or solution of problems where 
uncertainty or imprecision are important. 

2.2.2 A View of the Automobile Design Process  

In the following sections, a brief description of the product 
development process as it is widely implemented today is presented. The 
attempt here is not to try and accurately represent a development process 
actually in use by GM, but rather to describe general features of a 
"traditional" product development process. This description then provides 
the material for a critical analysis and the basis for formulation of proposed 
improvements based on hierarchical design methods. 

2.2.2.1 Problems with the Current Product Development Process  

One view of the current product development process is shown in 
Figure 2.1 (numbers in parentheses refer to points in the figure). In this 
approach, requirements are defined first. Next, (1), an initial specification 
of the product is based on these requirements. An example is a drawing or 
three-dimensional CAD model of a part. Since it is not known a priori 
whether the product specification meets the requirements, specialists in 
producibility, supportability, and other disciplines participate in a design 
review, (2). Typically, problems are identified with the initial product 
specification, and solutions are proposed. These changes are immediately 
made, (3), if cost and schedule considerations allow modification of the 
design, and other requirements need not be compromised. If compromise 
is required, a conflict resolution process is invoked, (4-5), typically through 
the management structure of the product development organization. This 
may result in changes to the product specification, (6), or modification of 
the requirements, (7). If the conflict resolution process converges on a 
satisfactory design, the product specification is released for production and 
support planning, (8). 
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Figure 2.1. Existing Product Development Process. 

Obstacles to concurrent engineering are built-in to the existing 
product development process. For product development projects involving 
compromise, the system life cycle concept emerging from the product 
development process represents a prioritization of the requirements. This 
prioritization is reflected in the sequence in which product, process, and 
planning decisions are made. The sequence of decisions is particularly 
important, since each decision may place severe constraints on the options 
available for subsequent decisions. 

This activity, matching decision-making priorities for product and 
process specifications to customer requirements, is remarkably absent 
from the structure of the current product development process. In the 
current process, we rely on the experience of the designer and the 
effectiveness of the design review process, especially the conflict resolutioh 
abilities of the technical project leader, to ensure that requirements are 
being met. 

In fact, using existing design technologies, the flexibility to make 
design changes that is available to the designer and the project leader is 
often limited. The cost of generating or modifying product specifications 
may make it impossible to make the necessary design changes, or there 
may not be time to make them. In practice, decisions are sequenced to meet 
the schedule for releasing product specification information. These 



schedules are prepared before the product specification and design review 
processes are initiated. Thus, it is rarely possible to ensure that the 
decision-making priorities implicit in the product specification release 
schedule accurately reflect the impact of these decisions on customer 
requirements. 

In the current product development process, design review for 
producibility and supportability is decoupled from planning of the 
production process and support operations. The separation of design 
review from production and support planning has been necessitated by the 
cost of production planning, and the need for highly detailed product 
specification information before production and support planning could be 
initiated. As a consequence of this separation, information is often lost in 
the transition. In fact, decisions are made during the product specification 
and design review process that severely restrict the options left for 
production and support planning. The full implications of these decisions 
may not be evident until planning for production and support is started. 

Of 	 f 0 0 14 0  

Process 

Instantiation, constraint propagation, and the services required to 
distribute computational objects to multiple physical locations and to 
maintain versions of them over time are the computing technologies which 
appear to have the most powerful impact on the product development 
process. The most fundamental change has been in the application of the 
object-oriented programming style and constraint propagation to develop 
high-level languages to support parametric description of product and 
process alternatives. The next step is clearly the development of distributed 
objectbase capability which is one of the key elements needed to "scale up" 
parametric product/process description technology for production 
applications in industry. 

A common initial impression is that parametric product definition 
technology impacts only the product specification aspects of the 
development process. In fact, parametric description makes it 
economically feasible to effect fundamental changes in the structure of the 
entire product development decision-making process. This is a result of the 
fact that parametric description technology changes the economics of 
product specification. 

Computer programs for parametric description can be used to 
generate detailed product specifications, based on a description of the 
design in terms of system integration parameters. Such computer 
programs have been in use for many years. What has changed, quite 
recently, is that the object-centered programming style has been exploited to 
significantly lower the number of engineering hours required to write 
computer programs for parametric description. Using a high-level 
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language to model elements of the product, new computer programs for 
parametric description can be created for roughly the same cost (in 
engineering hours) as a three-dimensional CAD model. The difference, of 
course, is that if a parameter value must be changed during the system 
integration process, the cost of changing a conventional CAD model is 
practically the same as the cost of developing the original product 
specification in CAD. Since details of a design that has been defined 
parametrically can be changed by simply executing the parametric 
description procedure with new values for some of the parameters, the 
engineering cost of making a change in the product specification is 
negligible. 

Of course, this technology can be applied to execute the iterative loops 
in the current product development process more quickly. However, unless 
producibility and supportability can be incorporated into the procedures on 
which the parametric description computer programs are based, the 
increase in the speed with which design detail can be generated may 
actually heighten the obstacles to concurrent engineering. Providing 
designers with the ability to more rapidly generate product specifications 
with poor producibility and supportability characteristics is likely to 
overwhelm the design review process. 

Moreover, parametric description, by itself, contributes nothing to the 
solution of the problem of balancing "downstream" producibility and 
supportability considerations against performance and product 
specification schedule and cost. This can only be changed by modifying the 
sequence in which product development decisions are made to better match 
the customer's prioritization of requirements. It is important to note, 
however, that parametric description technology provides the designer and 
the project leader with a considerable enhancement in their flexibility to 
sequence decisions. Parametric description technology frees the process 
from the constraints imposed by the cost of considering several alternative 
concepts for the product, as long as they can be effectively modelled using 
the parametric description language. 

There are thus three modifications that must be made in the 
structure of the design process, in order to use parametric description 
technology to accomplish some of the aims of concurrent engineering: 

1. 	the "specify product" step of the existing process must be replaced by 
a step in the "to-be" product development process in which 
alternative product, manufacturing process, and support concepts 
are parametrically modelled. The entire concurrent engineering 
team must be involved in the development of computer programs for 
parametric description. 
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2. an explicit planning step must be included to ensure that the 
sequence of product development decisions reflects the prioritization 
of conflicting requirements by the customer. Again, the entire 
concurrent engineering team must be involved. 

3. The decision-making process must balance the views of all members 
of the concurrent engineering team. 

The effect of these changes on the structure of the product development 
process is indicated in Figure 2.2. 

Computing technology, through application to parametric 
description, can play a key role in making these structural changes in the 
product development process possible. In order to realize these gains, 
problems of "scaling" - providing a distributed environment to support the 
modified product development process - must be solved. Techniques for 
planning the decision-making process must also be further developed and 
demonstrated. 

There is one other aspect of the impact of computing technology on 
the product development process which is important in the proposed 
approach to hierarchical design methods. This has to do with the 
development of systems. Systems are now developed hierarchically. In a 
hierarchical approach, product specifications are defined in stages. 
Increasing levels of detail are specified at each stage. This means that the 
product is only partially specified when decisions are made. 



Requirements 

V 
 Develop 

Parametric 
Product/Process 

Models 

_______Y  •  
Plan 

Product Development 
Decisions 

• • 
Make 

Product Development 
Decisions 

Product/Process Specifications 

Figure 2.2. A Product Development Process for Concurrent Engineering. 

In principle, it should be possible to use parametric description 
technology to fully detail the design before making any decisions. This is a 
consequence of the fact that the cost of making changes to the product 
specification as alternative concepts are considered is extremely low. This 
approach may, in fact, be practical for some types of products which are 
derivatives of similar systems. 

For systems incorporating new technologies or inventions, the cost of 
creating the parametric models for elements of the product and 
manufacturing process is a significant portion of the product development 
investment. In addition, modelling of advanced technology components 
often involves significantly higher levels of technical risk. These factors in 
combination necessitate the use of a hierarchical approach, even in a 
parametric description environment. Thus, we must address the question 
of making decisions based on a partial specification of the product. 
Techniques for attacking this question are highly applicable to the 
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development of hierarchical design methods, and form a cornerstone of our 
technical approach. 

2.2.2.3 A System View of a Computing Environment for Concurrent 
Engineering 

A successful architecture for concurrent engineering (CE) must 
support several possible CE computing environments. One type of CE 
environment will be presented here. In this particular environment, high-
level product and process modelling languages are used to create 
parametric models. The integrating technology is a distributed objectbase 
containing models of the system as well as objects which are used to 
manage the state of the development process. Elements of such an 
environment are indicated in Figure 2.3. 

A distinction between functional architecture ("what it does" or "how 
it is used") and implementation architecture ("how do we build it" or "what 
it is") must be made. Elements of a functional architecture are shown in 
Figure 2.3. In this section of the report, the concern is almost exclusively 
with the functional architecture. Thus, when the word CE architecture is 
used without qualification, the reference is to the functional architecture. 

Specification of an architecture includes both the decomposition of 
the system into elements and a description of the interfaces between those 
elements. First, it is necessary to identify and describe the elements of the 
architecture of Figure 2.3. The architecture in Figure 2.3 decomposes a CE 
environment into two subsystems: team interfaces and a distributed 
objectbase. A team interface supports each of the steps of the CE product 
development decision-making process shown in Figure 2.2. The 
development of parametric product/process models is supported by a high-
level language interface. Similarly, interfaces are provided for planning 
and executing the product development decision-making process. 
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Figure 2.3. A System View of a Computing Environment for Concurrent 
Engineering. 

The parametric descriptions of the system, developed using the high-
level modelling language interface, are captured in the "system" element of 
the distributed objectbase. In order to support many CE objectives, the 
high-level modelling language must provide for the description of system 
functions ("what it does"), elements ("what it is") and theories and models. 
The theories and models describe how specific system elements work 
together to perform specific functions. For product development in 
response to complex requirements, or incorporating risky technologies, 
multiple levels of theories and models are often used to support product 
development decisions. Thus, these aspects of the system life cycle concept 
must be represented explicitly in the objectbase. Theory/model objects 
manage the execution of analysis tools as methods. This relationship is 
indicated in Figure 2.3 by a line connecting "Analysis Tools" to the box 
around the "Theories/Models" object class. 

The parametric nature of the system description implies that, until 
product development decisions are actually made, the system description 
contained in the objectbase represents a catalog of alternative choices for 
product and process specifications. 
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Product development decision-making tasks are also represented 
explicitly in the distributed objectbase. These decisions are instantiated by 
the CE team during product development decision planning step. While the 
decision planning step is of considerable relevance to issues of hierarchical 
design methods, it is necessary to postpone detailed discussion of this step 
to the presentation of the automobile door design example in chapter 9. In 
this section, an outline of the barest elements of the process is presented. 

Associated with each decision is a set of product and process 
attributes to be specified by execution of the decision-making step. The CE 
team identify these attributes, the required analyses, simulations, and 
tests, and the team members participating in the decision as part of the 
decision planning process. The CE team also develop a convergence 
strategy for these decisions in such a way as to properly balance customer 
requirements. 

2.3 Basic Concept- A Multiview Design Approach for Automobiles  

There are many different views of vehicle and each has a hierarchy. 
Each of these views has benefits for some applications or perspectives. The 
three views we have chosen include the customer perspective, the 
operational perspective, and the physical perspective. These views are 
linked together by mapping transformations. The key aspect of our work is 
(1) to develop an approach that allows the customer perspective to drive the 
design and (2) to allow each perspective to be continually refined to lower 
levels of definition until the design is completed. We are particularly 
interested in the early conceptual design phase where the design concept is 
set, but we also want to be able to refine the design at least through 
preliminary design. We are concerned with understanding and 
characterizing the above three views, as well as building links between the 
views. 

2.4 Research Approach 

The research approach in these two projects can be summarized in 
the following list: 

1. Investigate each of the three perspectives. 

2. Identify the top level characteristics and parameters. 

3. Refine the perspectives hierarchically to further levels. 

4. Build some representative linkages among the perspectives (views). 

5. Develop representative databases containing the views. 
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6. Develop prototype software approaches for supporting this design 
approach. 

7. Apply software to selected simple test situations to clarify issues and 
refine concepts. 

Gross vehicle characterizations 
Hierarchical design of component, subcomponent, and part 
Optimization strategies 
Trade-off study concepts 

8. Establish a baseline approach for application to vehicle design 
problems. 

The next several chapters provide the details for each of these areas. 



Chapter 3 CUSTOMER PERSPECTIVE OF THE VEHICLE 

This chapter discusses the customer perspective of the vehicle in 
terms of the voice of the customer through the Quality Function Deployment 
(QFD) methodology. 

3.1 Customer Perspective via QFD  

The customer's wants can be determined through the use of a QFD 
methodology, which is discussed in further detail in Appendix A. The 
results are known as the "voice of the customer" (VOC). This can be a quite 
detailed list of desires, such as roominess, acceleration, and gas mileage. 
Actual values can also be determined with this methodology. An extensive 
list is being developed by Wei Chang at the GM Systems Engineering 
Center. Therefore, we will not dwell on the results of his work. As this is a 
lengthy list, we have chosen to assume that it exists and continue our work 
assuming that its output values will serve as the input to the work being 
performed in this study. The linkages between the QFD and our system 
will be through the baseline parameters, discussed in this chapter and the 
inputs discussed in chapter five. The VOC will serve as the starting point 
of the design process resulting in a "customer-driven" design. 

3.2 Baseline Parameters 

The baseline parameters form a set of parameters that can be used to 
completely define an object that can be identified as an "automobile". They 
have been used to determine the input and output of the object oriented 
vehicle model. The context of this research is the "conceptual" level, that 
is, design of the major characteristics of a "car" (versus development of a 
new mode of transportation). Accordingly, we developed a set of baseline 
parameters which compose nine characteristics whose values can be used 
to distinguish between instances of vehicles at the conceptual level. These 
are follows: 

1. Number of People 
2. Number of doors 
3. Engine Size 
4. Cargo Capability 
5. Wheel base 
6. Drive type 
7. Material Percentage (% Metal) 
8. Silhouette 
9. Clearance 
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The interactions among the baseline parameters were explored 
through the use of a Quality Function Deployment (QFD) type of "House of 
Quality" (see Figure 3.1). The QFD house provides a simple, effective 
means by which to investigate and document qualitative relationships 
among variables. It also provides an easy to comprehend, graphical way to 
present these findings for review. The "roof' relationship matrix of the 
house was filled in using symbols to express the strength (strong or weak) 
and type (positive, negative, or none) of the interactions between the 
baseline parameters, which were arrived at through group consensus. The 
symbols reflect the type and degree of interaction that results from 
changing a value of a baseline parameter, and the arrows beneath the 
parameters indicate the direction of change. For example, if the engine 
size is increased, it will have a strong positive effect on the effort to increase 
the cargo capability (weightwise) of the vehicle. Note that the baseline 
parameter "drive type" does not have an arrow to indicate a direction of 
change. This is because a change of drive type amounts to a change in type 
(rather than change in value), i.e., to front, rear, or all wheel drive. 

Interestingly, we found the need to modify the QFD house roof 
relationship matrix to provide indications of "directionality," because some 
of the interactions are directional. Directionality is shown by splitting a 
roof relationship "box" in two. When reading the relationships in the roof, 
the symbol that is seen first when proceeding from one parameter to the 
next is the one that should be used. For example, increasing the number of 
people the vehicle can transport has a weak positive relationship with 
increasing the number of doors (e.g., if it is desired to be able to 
accommodate 8 passengers, this will most likely require more than two 
doors), but increasing the number of doors doesn't necessarily have any 
effect on the number of people the vehicle can carry. 

The baseline parameters form a link between the voice of the 
customer and the inputs to the functional description of the vehicle 
discussed in the next chapter. 
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Chapter 4 OPERATIONAL PERSPECTIVE OF THE VEHICLE 

4.1 Introduction 

Functional description plays an important role in generating the 
information needed in the object oriented vehicle model. The functional 
description of a design specifies what the design must do, i.e., how it must 
function. This description type leads to improved designs by minimizing 
the information associated with the design. This minimization provides a 
broad yet restricted domain of operation for the design. The restrictions 
hold the design to what it must do to accomplish its goal. This eliminates 
redundant work and work not related to fulfilling a design function. A 
functional description allows for domain breadth by not describing how the 
design is to be accomplished, but allows for innovative combinations of 
function principles to attain the design goal. This chapter discusses the 
achievements in applying the functional description data to date and the 
plans for the future. 

4.2 Functional Description Development 

4.2.1 Functional Decomposition 

The definition of a vehicle was established to guide the functional 
decomposition development. This was accomplished by defining what a 
vehicle is, as well as previous work at GM and Georgia Tech. The 
definition used was as follows: 

Vehicle- A personal system of safe and comfortable transportation. 

This definition was chosen because it defined what a car does without 
reference to what it is physically. This distinction is a purpose of functional 
description. 

A vehicle is defined as having three overall functions, Transport, 
Please and Protect. Operate Safely forms an overall goal of any design. It is 
not included specifically as a function because all products designed should 
operate in a safe manner. 

The hierarchical decomposition method used is based on the IDEF0 
authoring process. This involves determining the possible subfunctions of 
a particular function and then examining for logical groupings of these 
activities. This was accomplished by asking "What does this function do?" 
The groupings were given a functional name. An example of a logical 
grouping is combining Start Energy Conversion and Stop Energy 
Conversion into the function Control Energy Conversion. These groupings 
were studied to ensure there was no overlap in the subactivities. It is 
important to note that between the three functions, Transport, Please and 
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Protect, there are overlaps or directly corresponding subfunctions. For 
instance, the function Accelerate Vehicle has a role in Transport, as well 
as Allow for Exhilaration. These functions are defined in the function data 
dictionary in Appendix B, in addition to the other functions. The vehicle 
functional description consists of three levels. Upon examination, the 
functions were found either to be performed directly by a passenger or 
driver, or enabled the passenger or driver to perform a function. The third 
level functions are categorized as either enabling or direct functions, or as 
both. The following are the functions specified for a vehicle: 

EINEZELOISI 	 TYPE 

Fl Transport 
F1.1 Provide Energy 

F1.1.1 Generate Useful Energy 	Enable 
F1.1.2 Distribute Energy 	 Enable 

F1.2 Control Motion 
F1.2.1 Monitor State of Motion 	 Direct 
F1.2.2 Control Energy Conversion 	Direct 
FI.2.3 Choose Direction 	 Direct 
F1.2.4 Steer Vehicle 	 Direct 
F1.2.5 Accelerate Vehicle 	 Direct 
F1.2.6 Decelerate Vehicle 	 Direct 

F1.3 Provide Space and Support 
F1.3.1 Provide Passenger Space 	Enable 
F1.3.2 Provide Cargo Space 	 Enable 
F1.3.3 Provide Engine Space 	 Enable 

F1.4 Access Vehicle 
F1.4.1 Access Passenger Space 	Direct 
F1.4.2 Access Cargo Space 	 Direct 
F1.4.3 Access Engine Space 	 Direct 

F1.5 Maintain Vehicle's Ability 
F1.5.1 Repair Malfunctions 	 Direct 
F1.5.2 Perform Routine Maintenance 	Direct 

F2 Protect 
F2.1 Provide Safety 

F2.1.1 Prevent Mishaps 	 Both 
F2.1.2 Mitigate Mishaps 	 Both 

F2.2 Provide Security 
F2.2.1 Prevent Undesirable Intrusion 	Both 
F2.2.2 Prevent Vehicle Theft 	 Both 
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F3 Please 
F3.1 Provide Physical Comfort 

F3.1.1 Maintain Ambient Temperature 	Direct 
F3.1.2 Provide Comfortable Spacing 	Enable 
F3.1.3 Provide Ergonomic Interfaces 	Enable 
F3.1.4 Provide Comfortable View 	Enable 
F3.1.5 Provide Comfortable Air 	Enable 
F3.1.6 Provide Comfortable Ride 	Both 
F3.1.7 Provide Low Noise 	 Enable 

F3.2 Provide Mental Comfort 
F3.2.1 Perform As Expected 	 Enable 
F3.2.2 Provide Feeling of Value 	Enable 
F3.2.3 Provide Appropriate Look 	Enable 

F3.3 Entertain 
F3.3.1 Allow for Exhilaration 	 Both 
F3.3.2 Allow for Stimulating Environment Both 

NOTE: The function designations, such as Fl and F1.1, are read as 
Function 1 and Subfunction 1 of Function 1, respectively. 

4.2.2 Function Relationships 

Various relationships were mapped to assist the functional 
decomposition process. These relationships tested the completeness of the 
decomposition and provided other information. The functions were 
mapped to a list of GM functions developed in the GM report Vehicle  
System Description: A Preliminary Study, the Baseline Parameters, and 
the other functions. The last two sets of relationships are modeled by 
adapting the body of the "House of Quality", and the roof type mapping from 
the QFD. This is done because the QFD is an easy, graphical means for 
understanding relationships. 

The functional description was mapped to previous GM work to test 
the completeness and quality of research work and to foster common 
terminology. This mapping was done for both the second level and third 
level functions. The second level map was used to guide the development of 
the third level map and ensure continuity within the hierarchy. The 
second level map was used as a guide and not a restriction because the 
mapping of the third level creates new information to be considered at all 
levels. 

Figures 4.1 through 4.5 depict the function mappings to the second 
level functional decomposition. Figure 4.1 depicts the relationship of the 
GM function Transportation to the subfunctions of Fl Transport. For 
Figure 4.2, the correspondence is between the GM function Safety and F2 
Protect. The mapping of GM Comfort versus F3 Please is in Figure 4.3. 
Also, F3 Please is mapped with the GM function Enjoyment in Figure 4.4. 
Figure 4.5 depicts the correspondence of the Energy and Information 
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Management subfunctions found by GM with the Transport, Protect and 
Please subfunctions. 

The third level maps are in Figures 4.6 through 4.10, which occur in 
the same order as the previous mappings; that is, Figure 4.6 corresponds to 
the same GM functions as Figure 4.1 of the second level map. A check 
mark means "corresponds to" or "is a part of'. 

Due to the generic nature of the GM functions Energy Management 
and Information Management, their subfunctions are incorporated in 
many other subfunctions in the Georgia Tech decomposition. 

The next mapping involves the functions with the Baseline 
Parameters. The Baseline Parameters are a set of nine characteristics by 
which one can distinguish between particular instances of a vehicle. These 
parameters could be viewed as the variables a designer would vary to 
specify different vehicle designs. The relationships were chosen based on 
the strength of effect a change in a variable in a specified direction would 
have on a particular function. Figures 4.11, 4.12 and 4.13 show the 
relationships for the second and third level functions, respectively. The 
arrows beneath the baseline parameters show the specified direction of 
change to find the effect on a function. Drive Type does not have a specified 
change direction since it consists only of front wheel drive, rear wheel 
drive, and four wheel drive. In addition, the QFD mapping only indicates 
the strength of relationships, not the exact effect. The typical relationships 
in a QFD involve only strong, moderate and weak relationships. At the 
second level, certain relationships are listed as a "washout", which means 
no net effect, though there is a combination of effects. These "washouts" do 
not show at the third level relationships due to the increased level of detail 
for the functions. Also, this relationship, as in the previous section, the 
second level map was used as guide for the third level map and not a 
restriction. The justification for each relationship in Figures 4.12 and 4.13 
are in Appendix C. 

The remaining mapping pertains to the interrelationships of 
functions. This mapping is modeled after the QFD roof; the relationships 
are specified in terms of strong or weak positive and negative relationships. 
The relationships were completed for the complete set of second level 
functions and the third level subset discussed in the application section of 
this report. The second level function interrelationships are shown in 
Figure 4.14. Another unusual correspondence type revealed itself in this 
picture; this the concept of directional relationships. A relationship could 
be strong one way and weak in the opposite. For instance, consider the 
relationship between Provide Space and Support and Access Vehicle. How 
one accesses the vehicle greatly influences how the vehicle space is 
provided. However, how the space is provided slightly affects how access to 
the vehicle is rated. This second level map provides clues for the third level 
relationships needed for the conceptual level vehicle to develop optimization 
relationships between functions. 
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4.3 Conceptual Level Application 

This section reports the areas that have been completed in the area of 
applying the conceptual level to the design of the vehicle. 

4.3.1 Functional Description Subset 

The third level functions were mapped to the baseline parameters to 
determine the minimum set of functions necessary to describe a conceptual 
level vehicle. This will allow us to test the methodology without being 
burdened with the whole set. This first cut produced nine functions. It was 
observed that none of the nine strongly correlated to the parameter 
"Number of Doors". Therefore, the function "Access Passenger Space" was 
added to the list. At this time, the overall input and output was determined 
and is discussed in Chapter 5. On the basis of the overall output and group 
discussions, seven more functions were added to the list. The following is a 
listing of the functions: 

FUNCTION 
	

TYPE  

F1 Transport 
F1.1 Provide Energy 

F1.1.1 Generate Useful Energy 	Enable 
F1.1.2 Distribute Energy 	 Enable 

F1.2 Control Motion 
F1.2.4 Steer Vehicle 	 Direct 
F1.2.5 Accelerate Vehicle 	 Direct 
F1.2.6 Decelerate Vehicle 	 Direct 

F1.3 Provide Space and Support 
F1.3.1 Provide Passenger Space 	Enable 
F1.3.2 Provide Cargo Space 	 Enable 

F1.4 Access Vehicle 
F1.4.1 Access Passenger Space 	Direct 
F1.4.2 Access Cargo Space 	 Direct 

F2 Protect 
F2.1 Provide Safety 

F2.1.1 Prevent Mishaps 	 Both 
F2.1.2 Mitigate Mishaps 	 Both 
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F3 Please 
F3.1 Provide Physical Comfort 

F3.1.2 Provide Comfortable Spacing 
F3.2 Provide Mental Comfort 

F3.2.1 Perform As Expected 
F3.2.2 Provide Feeling of Value 
F3.2.3 Provide Appropriate Look 

F3.3 Entertain 
F3.3.1 Allow for Exhilaration 

Enable 

Enable 
Enable 
Enable 

Both 

40 

The concept of direct/enable functions indicates a preliminary 
method for translating the customer/designer data into the functional 
attributes. The direct function attributes should be determined first and 
then the enabling function attributes would be determined and optimized. 
This would be based on the functional interrelationships and their 
associated weights for the objective function. This would handle the variety 
of Entertain profiles, which vary greatly from customer to customer. 
Certain functions have both direct and enable subfunctions. These are 
reflected in the choice of functional attributes for these functions which are 
pertinent to a conceptual level vehicle. The following is a list of the function 
subset with the initial functional attributes chosen: 

FUNCTION 

Fl Transport 
F1.1 Provide Energy 

F1.1.1 Generate Useful Energy 
F1.1.2 Distribute Energy 

F1.2 Control Motion 
F1.2.4 Steer Vehicle 
F1.2.5 Accelerate Vehicle 
F1.2.6 Decelerate Vehicle 

F1.3 Provide Space and Support 
F1.3.1 Provide Passenger Space 
F1.3.2 Provide Cargo Space 
F1.3.3 Provide Engine Space 

F1.4 Access Vehicle 
F1.4.1 Access Passenger Space 
F1.4.2 Access Cargo Space 

ATIRB3UTE(S) 

Horsepower 
Type 

Turn Radius 
0-60 Time 
60-0 Distance 

Volume (L,W,H) 
Volume (L,W,H) 
Volume (L,W,H) 

# Doors, Area 
Area 

F2 Protect 
F2.1 Provide Safety 

F2.1.1 Prevent Mishaps 	 Std.-Great 
Based on F1.2.4, F1.2.5, F1.2.6, and Clearance 

F2.1.2 Mitigate Mishaps 	Min.-Best 
Based on F1.2.4, F1.2.6, F1.3.2, and F1.3.3 



F3 Please 
F3.1 Provide Physical Comfort 

F3.1.2 Provide Comfortable Spacing 

F3.2 Provide Mental Comfort 
F3.2.1 Perform As Expected 
F3.2.2 Provide Feeling of Value 
F3.2.3 Provide Appropriate Look 

4 1 

Volume, 
Human Percentile 

Evaluate @ end 
Evaluate 43 end 
Silhouette, 
Layout 

F3.3 Entertain 
F3.3.1 Allow for Exhilaration 	Std.-Great 

Based on F1.2.4, F1.2.5, and F1.2.6. 

4.3.2 Function Relationships 

The function subset interrelationships has been specified in the form 
of a QFD roof and is presented in Figure 4.15. Note that there are no 
directional relationships. Further examination will assist in the 
development of the function optimization scheme. This will require the use 
of a customer scenario. The scenario for this examination will concern the 
previous purchase of a 1987 Chevrolet Nova. The customer's previous ideas 
have been placed in the pertinent input format See Figure 4.16. 

4.4 Summary 

This chapter has defined the vehicle in terms of its functions to three 
levels of detail. This provides the necessary information for the 
preliminary assessment of the functional description of the automobile. 
The selection of a subset will allow us to test our methodology by using the 
function to describe a vehicle and to follow the thread from QFD to Form. It 
will also allow us to set up the function vector necessary to optimize the 
functional description of the vehicle. This vector will be in form of 

0= a Transport + 13 Please + y Protect. 

The next step is to map the customer's or designer's data to the 
associated functions and determining the appropriate relationships. A 
baseline car will first will be defined. This will be done by looking for the 
customer data that supports each functional attribute. With this customer 
scenario, the functional attributes will be determined for an example 
function to develop the relationships tying the Voice of the Customer, 
Baseline Parameters, and functions. Also, specifying these relationships 
will lead to developing a feed forward function attribute optimization. 
During form development, there may be no suitable combination of forms to 
fulfill the functions. This will require further negotiation and optimization 
of the functional attributes based on the customer's priorities. This process 
will allow the understanding of the front end process through to functional 
specification. 



Figure 4.15 Second Level Function Interaction 
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VOICE OF THE CUSTOMER INPUT 
1987 Chevrolet Nova 
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Chapter 5 PHYSICAL PERSPECTIVE OF THE VEHICLE 

5.1 Introduction 

Vehicle form description plays the other important role in the 
OOVM. The form description of a design specifies how the design will do 
what is required, i.e., how it meets the functional requirements. Form 
description does not (and should not) describe what the design is to do, but 
rather how the design is to be accomplished. This is an important point. 
We want to ensure that the conceptual vehicle form characteristics follow 
from the functional requirements (and, ultimately, from the customer 
requirements) and not the other way around. That is, we want to design 
the vehicle to fulfill the customer requirements (to the fullest extent 
possible), not specify the functional requirements by the forms chosen. This 
point may seem obvious, but automobile manufacturers have been accused 
for years of designing vehicles with little or no regard for what the 
customer wants, then relying on marketing strategies to "adapt" the 
customer to the car (i.e., convince the customer this is what he or she 
wants). In today's fiercely competitive automotive market, however, such 
strategies are finding little success. We need to understand what the 
customer wants, then "adapt" the car to the customer. 

Vehicle form description plays another important role in the OOVM. 
It was discussed above that we need to determine the decisions that must be 
made to design the conceptual vehicle. We must also determine, however, 
the information needed to make these decisions. By examining the 
relationships of the vehicle forms to the functional requirements (and to 
other forms), we can make this determination. 

This chapter discusses the accomplishments made in vehicle form 
description as well as work needed to complete the OOVM. 

5.2 Vehicle Form Description 

5.2.1 Input Parameters 

Working from the set of baseline parameters discussed in Section 3.2, 
we developed the set of input parameters to the OOVM. The input 
parameters are the set of variables for which a customer specifies values to 
describe the vehicle he or she wants. That is, the inputs are a description of 
all the parameters that compose the "voice of the customer" (i.e., customer 
attributes), at least at the conceptual vehicle level. The values specified for 
the input parameters will serve as the requirements according to which 
(along with constraints such as government regulations and technological 
limitations), for example, the vehicle will be designed. We designed as 
much flexibility into the inputs as possible, to enable a person to describe a 
convertible sports-car as easily as an economy car or off-road vehicle. We 
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drew up the list of inputs by debating amongst ourselves and conducting 
interviews (asking questions such as "Why did you buy that car?" and 
"What are you going to look for in you next car?"). We also talked to people 
in the automotive industry. For example, we went to local dealers that sell 
many different makes and types of vehicles (Cadillac, Pontiac, Jaguar, 
Land Rover) and got their input on what people want in their cars (and 
what sells cars). All this "input" went into our input list. 

The input parameter list is shown below. An asterisk (*) beside an 
input parameter signifies that it is also a baseline parameter. In 
parentheses next to each parameter are candidate qualitative/quantitative 
values for the customer to input. For example, though, for overall vehicle 
size, each qualitative size choice (small, compact, medium, large) will be 
displayed with a corresponding quantitative range of wheelbase length. In 
addition to asking for values to be specified for the input parameters, the 
OOVM will also prompt the customer to rank the importance of all the 
parameters to him or her. In this way, if conflicts between requirements 
arise in the design process, we'll have a "voice" of relative importance 
rankings telling us where to make trade-offs so that we may design the 
optimal vehicle. This will serve as the input to the optimization vectors. 

INPUT PARAMETERS 

Body Type (sedan, coupe, hatchback, station wagon, minivan, 
utility, sport, convertible) 

Number of Side Doors* [2, 3 (2 + 1 sliding), 4] 
Overall Vehicle Size (small, compact, medium, large / ranges 

of wheelbase) 
Seating Capacity' (2, 3, 4, 5, 6, 6+) 
Passenger Volume (minimum necessary to spacious / ranges 

of volume in cubic feet) 
Cargo Volume* (none to maximum feasible / ranges of volume 

in cubic feet) 
Cost (economy to luxury / ranges of price) 
Silhouette* (straight to round and box to streamlined) 
Acceleration (minimum necessary to maximum feasible / 

ranges of 0 to 60 mph times) 
Fuel Economy (ranges of combined city and highway mpg) 
Handling / Ride (maximum comfort to maximum response) 
Relative Importance Ranking's of Input Variables (along with 

safety and reliability) 

* Baseline Parameter 

Additionally, the customer should have the option to specify desired 
values (or types) for any of the output variables. 
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5.2.2 Output Parameters  

Again working from the set of baseline parameters, we developed the 
set of output parameters from the OOVM. The output parameters are the 
set of variables (i.e., product characteristics) whose values define a vehicle 
in technical terms, again at the conceptual level. We formatted the output 
list on the basis of what the automotive industry uses to define a car 
technically. The list reflects those specifications most commonly given by 
car manufacturers (e.g., in sales brochures), consumer organizations 
(e.g., Consumer Reports), and enthusiast magazines (e.g., Car and Driver, 
Road & Track, Motor Trend, etc.) in their descriptions of vehicles. It is the 
goal of the OOVM to assign values to these "design variables" that will 
fulfill the requirements specified by the customer. 

The output parameter list is shown below. Additionally, we want to 
have a pictorial output that shows the silhouette of the vehicle and, possibly, 
the relative sizes and locations of the subsystems beneath. A single asterisk 
(*) besides an output parameter signifies that it is also a baseline 
parameter. The baseline parameter "Material Percentage (% Metal)" is not 
defined explicitly on either the input or output parameter list. The output 
parameters that have a double asterisk (**), however, are candidate 
parameters from whose values material percentage may be calculated. We 
have chosen a subset of the output parameters to be used to determine if our 
OOVM methodology is correct. A triple asterisk (***) is shown by each of 
the output parameters that compose this subset. After testing the OOVM 
with the subset, the entire set will be implemented in the model. 

OUTPUT PARAMETERS 

VEHICLE TYPE; 
Body Type*** (sedan, coupe, hatchback, station wagon, 

minivan, utility, sport, convertible) 
Number of Side Doors*,*** (2, 3, 4) 
Seating Capacity*,*** (2, 3, 4, 5, 6, 6+) 
Engine Location and Orientation (front, mid, rear and 

longitudinal, transverse) 
Driven Wheels*,***(front, rear, all) 

PRICE; 
 Estimated Cost*** 

GENERAL DATA; 
Wheelbase* 
Track (front and rear) 
Length*** 
Width*** 
Height 
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Ground Clearance*,*** 
Weight**,*** 
Weight Distribution (front and rear) 
Fuel Tank Capacity 

=BEM 
Passenger Volume*** (and height, length, width of volume) 
Cargo Volume*,***(and height, length, width) 

ENGINE; 
Type -- then if internal-combustion, reciprocating-piston, and 

four-stroke: 
Subtype (spark-ignition, diesel) -- then if spark-ignition: 

Aspiration Type (normal, supercharged, 
turbocharged) 

Engine Block Material** 
Cylinder Head Material** 
Number of Cylinders 
Cylinder Arrangement (in-line, vee, opposed) 
Number of Valves 
Number of Camshafts 
Camshaft Location [engine block (push-rod), cylinder head 

(overhead)] 
Displacement* 
Bore and Stroke 
Compression Ratio 
Fuel Management Type (carburetor, single-point fuel 

injection, multi-point fuel injection) 
Cooling Type (air, water) 
Horsepower*** 
Torque 

DRDaiThAM 
Transmission Type (manual, automatic) 
Number of Forward Speeds 
Final Drive Ratio 

CHASSIS AND BODY; 
Structure Type and Material** 
Body Panel Material** 
Suspension Type (front and rear) 
Brake Type and Size (front and rear) 
Wheel and Tire Type and Size (front and rear) 
Steering Type 
Turning Circle Diameter 

PERFORMANCE DATA; 
Acceleration (0 to 30 mph, 0 to 60 mph, 45 to 65 mph passing, 

1/4 mile, and top speed) 
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Fuel Economy (city and highway) 
Braking (60 to 0 mph) 
Handling (roadholding on 300 ft diameter skidpad) 

* Baseline Parameter 
** Candidates to combine to determine the Baseline 

Parameter "Material Percentage (% Metal)" 
*** Methodology test subset 

A few points about the input and output parameter lists should be 
made. First, both lists contain a mixture of function and form parameters. 
For example, the input list contains the form parameter "number of side 
doors" and the function parameter "acceleration time" and the output list 
includes the form parameter "engine type" and the function parameter 
"braking distance." Our research is based on the premise that form follows 
function, so the fact that the input to and output from the OOVM is a 
mixture of the two is seemingly inconsistent with our proposition. 
However, the rationale for specifying the lists as mixtures of function and 
form is to reflect the reality that vehicle purchasers and manufacturers do, 
indeed, describe cars using a mixture of both types of parameters. Our 
assertions are that forms specified by customers are for functional 
purposes and functions specified in technical descriptions of vehicles are 
the result of chosen form parameters. For example, the input parameter 
"number of side doors" can be translated into the functional. requirement 
"access vehicle" and the output functional parameter "braking distance" is 
a result of the "brake type" form chosen (and other factors). The OOVM 
will implement the above proposition and assertions by translating all 
customer requirements into functional requirements, then translate these 
functional requirements into forms and, finally, derive the functional 
characteristics of the vehicle from the forms (and combination of forms) 
chosen. 

Another point to note is that the input and output lists contain some 
(seemingly) repetitive data. For example, both lists contain the parameter 
"acceleration." Again, this is in part due to the nature of how customers 
and manufacturers describe their vehicles -- that is, sometimes they use 
the same parameters. The repetition of parameters in the input and output 
lists isn't necessarily redundant. The inputs (i.e., customer requirements) 
are generally qualitative, whereas the outputs are necessarily quantitative. 
For example, the customer may specify as input that he or she wants "fast" 
acceleration. The OOVM will translate this into a quantitative function to 
be fulfilled, the appropriate forms will be chosen to fulfill this function (and 
all other functional requirements) and the quantitative acceleration 
characteristics of the resultant vehicle will be output. Even where an input 
to the system is qualitative, the same output parameter may not have the 
same qualitative value where optimization was necessary due to conflicting 
requirements or constraints. 
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The final point is that the car specified by values of the output 
parameters should be the "same" as the car specified by values of the input 
parameters. The vehicle design process is simply a conversion of what the 
customer says he or she wants into a vehicle that fulfills those 
requirements. If the design is successful, the input to and output from our 
system will just be different perspectives (i.e., views) of the same thing -- the 
first describing the "desired" vehicle from the standpoint of the customer, 
the second describing the same but "realized" vehicle in technical terms. 

5.3 Vehicle Form Decomposition 

As stated above, the goal of the OOVM is to assign values to the 
output "design variables" such that the car designed optimally fulfills the 
requirements specified by the customer and meets all constraints. Before 
we can implement the OOVM, we need to structure the organization of the 
design process, i.e., the decision making process through which customer 
requirements are translated into product characteristics. We need to 
identify all the steps the system will have to go through in order to design 
the vehicle. Furthermore, we need to find the optimal sequencing of those 
steps so as to make the design feedforward and minimize the iterations 
necessary to converge upon an acceptable solution. This is important 
because the vehicle (even at the conceptual level) is such a complex system 
that its design can easily become intractable. 

One way of making these determinations is by examining the 
relationships among the forms that compose a vehicle. Hierarchical 
decomposition (further details of which are discussed in latter chapters of 
this report), given the qualitative relationships among subsystems of a 
complex system, will use a sorting algorithm to sequence the order in 
which the subsystems should be designed so as to localize 
interdependencies and minimize the amount of feedback and iteration 
required in order to converge upon an optimal solution. It has been 
proposed that this method be utilized to establish the order in which the 
forms should be designed, aggregated, and optimized into an overall 
vehicle. Before we can put this method to use, though, we must define what 
the forms are that compose a vehicle and then what the qualitative 
relationships are amongst these forms. 

5.3,1 Form Decomposition 

The vehicle was decomposed into a form hierarchy. The hierarchical 
form decomposition was developed using a systems approach, that is, the 
vehicle was decomposed into groups (or "systems") of forms according to 
the common functions the forms perform. Functional groupings of forms 
will allow a more direct mapping from function to forms and localize the 
forms within the OOVM that may have to be optimized in order to fulfill a 
desired function. The decomposition also gives us a good idea of how the 
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forms, which are designed to fulfill the functional requirements, will be 
aggregated into an overall vehicle. The top-level form is, of course, the 
overall vehicle "system: The first-level decomposition of the overall vehicle 
system yielded four sub-systems : 

1. Transportation/Support Systems 
(make the vehicle "mobile") 

2. Power Generation/Transformation Systems 
(make the vehicle "auto"-mobile) 

3. Entertainment/Driver Interface Systems 
(make the vehicle "people" mobile) 

4. Computer Control Systems 
(link the previous three systems) 

Decomposition of the first-level forms yielded eight "sub" sub-
systems, or second-level forms: 

1. Transportation/Support Systems 
1.1 Structural Systems 
1.2 Chassis Systems 

2. Power Generation/Transformation Systems 
2.1 Power Generation (Engine) Systems 
2.2 Power Transmission/Transformation Systems 

3. Entertainment/Driver Interface Systems 
3.1 Interior Systems 
3.2 Exterior Systems 

4. Computer Control Systems 
4.1 Integration Systems 
4.2 External Interface Systems 

At the conceptual level, differentiation between vehicles occurs by 
varying the quality and quantity of the design variables associated with 
these forms. The values assigned to the input parameters (i.e., customer 
attributes) by the customer will determine the values of each of the 
functions generated by the functional decomposition. These in turn will 
determine the values of the form variables. Finally, these values will 
determine the values of the output parameters. 

The General Motors Uniform Parts Classification (UPC) was used to 
test the completeness of the vehicle form decomposition. That is, we went 
through the UPC and ensured that each of the parts in the list could be 
"mapped" or classified into one of the vehicle systems. This check was 
important -- it insures that the form decomposition for the OOVM at the 
conceptual level fully describes the vehicle and will be readily expandable 
for detailed design. The UPC also helped in the development of the 
decomposition. We looked at each of the parts in the list and asked "What 
does this part do?" By abstracting then aggregating the functions 
performed by the parts, we "built-up" the systems that compose the 
conceptual vehicle. 
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One question that is often asked when the decomposition is presented 
for review is "Where is the electrical system?" The electrical system 
performs many functions; hence, it is many places in our decomposition. 
For example, the alternator converts mechanical to electrical power; 
therefore, it is part of the power transmission/transformation system. 
Likewise, the wiring harness is part of this system because it "transmits" 
electricity from one part of the vehicle to another. The vehicle "computer" 
and its associated sensors and wiring (wiring for the purpose of 
transmitting and receiving information, not power) are part of the 
computer control system because they "function" as controllers of the other 
systems. Again, this functional grouping of forms will allow a more direct 
mapping from function to form. Note that in chapter 8 we discuss 
alternative views of the OOVM. This capability will allow designers 
concerned with the electrical system to "view" what they are concerned 
with as a whole entity and ensure its completeness and functionality. 

5.3.2 Form Relationships  

Similar to the baseline parameters, the interactions among the 
vehicle forms were explored through the use of the QFD house roof 
relationship matrix. Figure 5.1 illustrates the interactions among the first-
level forms of the vehicle decomposition. Note that there is quite a bit of 
directionality present among the interactions. For example, the -power 
generation/transformation system has a weak, positive effect on the 
entertainment/driver interface system (e.g., with more power you can have 
a bigger radio), but there is no relationship in the opposite direction. The 
interactions among the second-level forms of the decomposition were also 
investigated. These are shown in Figure 5.2. It is these qualitative 
relationships that will be used in hierarchical decomposition to establish 
the sequence in which the systems should be designed and synthesized into 
an overall vehicle system. 

The relationships between the functions and forms (from the 
decompositions) were also investigated. Figure 5.3 shows the relationships 
of the first-level functions to the first-level forms. Here, we used the QFD 
house "body" relationship matrix with symbols to indicate the strength 
(strong, moderate, weak, or none) of the relationship. The symbols reflect 
the effect that modifying a function will have on form. Note that the matrix 
is filled -- this indicates that there is quite a lot of coupling. The 
relationships between the second-level functions and second-level forms 
were also determined. These are shown in Figure 5.4. Note that the 
relationships between the function "entertain" and the forms were omitted. 
This is because the relationships are highly dependent on the specific 
customer involved. For example, one driver may derive all his 
entertainment from the radio, in which instance there would be a strong 
relationship between the function entertain and the interior system. 
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FIRST-LEVEL FORM INTERACTIONS 
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Another driver may be entertained by a car that can take corners fast. In 
this case, there would be a strong relationship between entertain and the 
chassis system. 

The relationships between the baseline parameters and forms were 
also studied. These relationships show the effects the vehicle forms have on 
the nine basic characteristics that describe the conceptual vehicle. The 
relationships of the baseline parameters to the first-level forms are shown 
in Figure 5.5, and to the second-level forms in Figure 5.6. Note that the 
matrices are almost entirely filled, except that there are no relationships 
between the baseline parameters and the computer control system (and its 
sub-systems). This is because the control system is basically an interface 
between the other systems — in and of itself, it doesn't affect the external 
characteristics of the vehicle. 

To implement the OOVM and produce useful results, we need to 
translate the qualitative relationships developed into quantitative 
expressions. Recently, work has begun to model mathematically each of 
the form systems and establish quantitative relationships between the 
systems. The mathematical models relate the quantitative function that 
each of the form systems performs to the static characteristics of the system 
(such as type, geometry, weight, cost). One can envision each of the forms 
as a "rubber" system -- given the functional characteristics required of the 
system, we can subject its model to mathematical variation and "stretch" 
the form into a "shape" that fulfills the function. For example, it may be 
appropriate to model the engine system so that its form characteristic 
"displacement" is a function of (in the mathematical sense) its functional 
characteristic "provide power." In this manner, if the function required is 
to "provide 150 HP," the engine system will be mathematically varied to 
have, say, "2.5 liters of displacement." Quantitative relationships between 
systems will allow mathematical aggregation of the sub-systems into an 
overall vehicle system. These numerical linkages between the 
mathematical models will also enable optimization to take place where 
spatial or functional conflicts between the systems exist or where some 
constraint is violated. 

Unfortunately, development of quantitative relationships between 
mathematical models of the forms has proved to be difficult. Searches for 
pre-existing equations (e.g., in automotive handbooks, SAE standards, etc.) 
have turned up very few useful results. A promising solution to this 
dilemma, however, appears to be through the use of historical vehicle data 
to develop equations. A relational database of mechanical specifications, 
body dimensions, performance data, etc., (from sources such as the 
Environmental Protection Agency, Consumer Reports,and Car & Driver 
Magazine) for current passenger vehicles is presently being compiled. This 
database has been linked to a graphing software. This will enable us to 
make queries on the database and quickly see if a significant relationship 
exists between any parameters we desire to investigate. It is surmised that 
this effort will yield an abundance of useful equations which will form a 
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significant part of the OOVM. For example, a plot of vehicle weight versus 
vehicle length revealed a high correlation and a curve fit to the data 
provided a relationship between the function and form parameters (see 
Figure 5.7). This effort is also proving to be enlightening. For example, it 
was mentioned above that it might be appropriate to model horsepower as a 
function of engine displacement. However, a plot of the two parameters 
yielded a much poorer correlation than expected (see Figure 5.8). This 
leads us to look for possible combinations of form characteristics that affect 
this functional characteristic. Of course, we can use the qualitative 
relationships developed as a guide. 
5.4 Summary 

Work to this point has finalized the inputs to and outputs from the 
OOVM. Vehicle form description and decomposition has taken place, and 
the qualitative relationships among forms, functions, and baseline 
parameters have been investigated. Subsets of the input and output 
parameters have been chosen with which to study the OOVM before it is 
implemented for the entire vehicle. These subsets will allow us to study our 
methodology to determine if it is correct. Work has also begun to establish 
quantitative relationships among functions and forms using historical 
data. 

What is needed next is to decompose form down to a level consistent 
with the functional decomposition. The relationships among the output 
variables and the vehicle forms as well as the spatial interactions among 
the forms need to be investigated. The development of qualitative equations 
relating forms and functions will be continued, and construction of a form 
relational database will begin. Using the relationships established, the 
process for function to form transformation and form synthesis and 
optimization will also be designed. As stated above, we will test the 
methodology developed using a subset of the OOVM. 
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Chapter 6 A SAMPLE OF VOICE OF THE CUSTOMER/ FUNCTION/ 
FORM LINKAGES 

6.1 Introduction 

This chapter describes the design and implementation of a 
subsystem of the Object Oriented Vehicle Model (OOVM) [14], namely, a car 
engine. The subsystem was developed in order to test the methodology of 
the OOVM. This chapter describes the development of the system and the 
hardware and software platforms used. 

6.2 Engine Subsystem 

As stated above, the engine was used as a subsystem of the OOVM in 
order to test how the methodology will work for a smaller system. The 
system takes as its input the voice of the customer specific to the type of car 
desired. The inputs are the acceleration, weight, and cost of the car. These 
input-parameters are translated through a software called Hypercard into 
useful functions, which are then stored in Oracle (a relational database) as 
a goal-list. 

Oracle contains the goal-lists, the form-lists, a list that describes 
what form fulfills what function, a list that describes what functions are 
needed by what forms to perform those functions, a list of equations related 
to the forms, a list of names of forms, and a list of names of functions. 
Because the model is kept simple, the number of possible forms is presently 
limited to 10. 

The functions can be mapped by CLIPS (an expert system) into the 
form-lists. A form optimizer, not created within the sub-system, would 
then be used to select the best form from the choices in the table. The 
communication between CLIPS and Oracle is through an in-house 
developed C-program 

The output is the table of form-lists. These form-lists contain rubber 
forms which are moulded into the best configuration by the form-optimizer. 

6.3 Software 

6.3.1 The User-interface 

Hypercard is an easy to use program. It can very easily set up a user 
interface for the car-system. Because the input parameters will be put in 
the database and handled as a range, the customer is asked to give a range 
in which the parameter should be. (i.e. the cargo-space should be 
somewhere between 50 and 75 liters). 
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Three different options could be used: 

- typing to values into a field 
- using slides on a scale 
- dragging a picture into its right form. 

The best way to do it on Hypercard is using slides. A field can show 
the numerical value that the slide represents. A qualitative value can give 
the user extra information he can use to get the right input. Also it is 
possible to make a drawing of the vehicle that shows the user what the car 
will look like with the given parameters. It takes a lot of time to make the 
pictures needed for that kind of output. 

The interface made for the engine consists of a slidebar for each 
parameter. With each slide bar it is possible to give a range. The slidebars 
have an extra numerical and qualitative output. 

6.3.2 The VOC ->Functions Translator. 

The VOC -> functions translator can be programmed using four 
different programs: 

- Hypercard script 
• Hyper X, Hypercard's expert system 
- a self made C-program 
- CLIPS. 

The data-stream can be handled directly and via Oracle, Hypercard's 
DataBase. Table 6.1 gives a table in which the interfaces between all the 
systems are described. 

Table 6.1 Data-stream / Program Interfaces 

Direct Data-stream 

- HC and HC : Hypercard script can directly access other cards and stacks 
in Hypercard 
- HC and HX : Hyper Xis a hypercard stack so see HC and HC 
- HC and C-Pr: It is possible to make an XCMD in Hypercard that can 
read information into a buffer and start up a C-program that can read 
from that buffer. It is NOT possible to read data from Hypercard stacks 
when not using the buffer. So all the information necessary should be 
passed through the buffer. (succeeded in starting up the program, not 
succeeded in transferring data) 
- HC and CLIPS : CLIPS is a C-program so see HC and C-pr 
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Information via ORACLE 

To pass information from ORACLE to and from the different programs 
the following ways are used. 

- HC to ORACLE : The XCMD execsql can be used to give SQL-commands 
to talk to ORACLE. To be able to use the XCMD rescopy should be used to 
copy the resource code from the ORACLE system-stack to the self made 
interface-stack. 

- ORACLE to HC : See HC to ORACLE 
- ORACLE to EX : See HC to ORACLE 
- ORACLE to C-pr : When using the pro C* precompiler it is possible to 
write SQL commands in a C-program. This can be used to read/write 
data from/to ORACLE by the C-program. 
- ORACLE to CLIPS : CLIPS is a C-program so pro C* is also used here. 
There are two ways to go : 

- first read all the information from ORACLE and assert them as facts 
into the fact-list of CLIPS and then start the consultation. 

- write user-functions for CLIPS so the data can be read into the fact-list 
during a consultation. 
By using the first method the consultation will be quicker, but to start up 
the consultation all data that is not used is also read into the fact-list. A 
second problem could be memory, because all the information in ORACLE 
is read into the memory of the computer. So overall the second method is 
better. 

To pass data from the different programs to ORACLE the programmer 
can use the same •ro ams as described above. 

When the mapping is very easy, a Hypercard script should be used, 
as it is the simplest. If the translator gets bigger and more complicated a 
C-program is more helpful. When the problem is so complicated that it is 
necessary to write an inference engine, CLIPS should be used. Hyper X is 
not the easiest expert system to work with and is not suitable for an easy 
solution. 

6.3.3 The Function-optimizer, 

The function-optimizer is not implemented in the engine system. 
Because the model of the engine was simple a function-optimization was 
not necessary. When the system is expanded, it will be necessary to include 
it. The input for the function-optimizer is a goal list with functions and the 
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ranges of the function attributes for those functions. The output is a 
goal list with functions and ranges that are optimized. This goal_list is 
put into ORACLE. 

The function-optimizer is normally more complicated then the VOC-
function translator. Therefore a C-program or CLIPS is more suitable to 
make it. The necessary program interfaces are described in Table 6.1. 

6.3.4 The Function -> Form Mapper 

The mapper that is implemented now is written in a C-program It 
uses the pro C* [10] commands to communicate with ORACLE 

Hypercard or a C-program puts the first goal_list into ORACLE. The 
form_list that belongs to this list is empty. The input for the mapper is as 
follows: 

- the goal list 
- an empty form list 
- information on which form can fulfill what functions and what functions 
it needs to be fulfilled when performing those functions. 

The output is a list of formlists of which each of the lists can perform 
the functions that were in the original goal list. The steps followed by the 
mappers are as follows: 

1) The mapper reads the first goal list and starts looking for forms that can 
fulfill the first function in the goal list. These forms are put into a 
select list of forms. 

2) The select_list is minimized. This will be done by an intelligent 
minimizer, the engineer, or a combination of those two. 

3) The first form in the select list is checked to see if it is usable. 

4) If so, a new form list is made adding the new form to the current 
form_list. 

5) A new goal_list is made taking all the functions fulfilled by that form out 
of the goal_list. 

6) Then the functions necessary for that form to operate are added to the 
new goal_list. 

7) The steps 2 to 5 are repeated for every form in the select list. 

8) The steps 1 to 6 are repeated for every goal list. 
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An example of this process is shown in Table 6.2. 

Table 6.2 The Working of the Mapper 

Example on the mapper: 
The goal list 0 is put into ORACLE by Hypercard or a C-program. 

Functions are numbers, Forms are letters. 

form A fulfill(1, 2) necessary (3) 
form B fulfill(1) necessary 0 
form C fulfill(2) necessary() 
form D fulfill(3) necessary() 

goal list 0 : (1. 2) 
form list 0 : 0  

select_list (A, B) 

A:  
form_list 1 : (A) 
goal_list 1' : 0 
goal_list 1 : (3) 

B: 
form_list 2 : (B) 
goal_list 2 : (2) 

goal list 1 : (2)  
form list 1 : (A) 

select_list (D) 

D: 
form_list 3 : (A, D) 
goal_list 3 : 0 

goal list 2 : (B) 
form list 2 : (2) 

select_list (C) 

C: 
form_list 4 : (B, C) 

soallist 4 : 0  
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The problems that occur with the macintosh computers are memory 
management problems. An exact description is given in section 6.A.2. 

In addition to step 2 : The minimizer 

To optimize the mapping process, not all the possible forms should be 
put in a list and given as output. If, for instance, two different forms can 
perform the same function and if they also need the same functions to be 
fulfilled to operate the one should be taken that fits the best in the profile of 
the car that the customer has given. The minimization can be done by an 
expert or by an expert computer system. An additional minimization can be 
done at the end of the mapping process or just before the form_optimizer. 

An output session of the CLIPS mapper is shown Table 6.3. 

Table 6.3: CLIPS Mapping Output 

CLIPS> (reset) 
CLIPS> 

(load "mapper") 
Compiling rule: init +j 
Compiling rule: form-found +j+j+j+j+j+j+j 
Compiling rule: print-it =j+j+j 
Compiling rule: delete-wait +j+j+j+j+j 
Compiling rule: get-rest =j+j+j+j 
Compiling rule: stop-rest =j=j+j+j+j 
Compiling rule: print-stop +j+j 
CLIPS> 

(reset) 
CLIPS> (run) 

The list is cylinder carburetor spark-plug cooling air-cleaner fuel-
cleaner battery environment 

The list is cylinder injector cooling air-cleaner fuel-cleaner environment 

The form injector fulfills function mixed-air-fuel 
that already is fulfilled 
The list of functions is : cooling clean-air clean-fuel 
The list of forms is : cylinder carburetor injector 

35 rules fired 
Run time is 5.58325195 seconds 
CLIPS> (dribble-off) 
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0.3.5 The Form-optimizer 

The output of the mapper are rubber forms with the equations that 
describe these forms. This information is passed into an IBM computer. 
Smalltalk and Demaid run on this computer and they perform the form-
optimization. The transfer between the two computers can be done by an 
on-line link or by using floppies. 

6.4 Oracle Database 

ORACLE is used as the Hypercard's database. It is a relational 
database. The tables in the database are setup in third normal form. The 
tables are as follows: 

FORMS : - id 
- name 

Used to link form-names to form-id numbers. 

FUNCTIONS : - id 
- name 
- unit 

Used to link function-names to function id-numbers. Unit gives the unit(s) 
in which the function is measured. The tables FULFILL, NECESSARY 
and GOAL LIST don't give units, only numbers. 

FULFILL : 	id 
- form id 
- function_id 
- bottom-value 
- top value 

Used to describe which forms can FULFILL what functions in what range. 

NECESSARY : id 
- form_id 
- function_id 
- bottom-value 
- top value 

Used to describe which functions in what range are needed for a form to 
fulfill the functions described in the table FULFILL. 
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EQUATIONS LIST : - id 
- form id 
- equation 

Used to give the equations that belong to a form. 

ERROILMESSAGES : - id 
- message 

FORM _LIST : 	id 
- list_num 
- form id 

Used to store form lists. List_num gives the number of the list. Form id 
gives the form that is in that list. 

GOAL_LIST : 	- id 
- list_num 
- function-id 
- bottom-value 
- top value 

Used to store goal lists. List_num gives the number of the list. 
Function id gives the function that is in that list. Bottom-value and 
top value give the boundaries of the range in which we want the function to 
be fulfilled. 

The last two tables work as follows : 

If list #1 is '1 : ( A, B, C)' and list #2 is '2 : (A, B)' then the entries in the 
table are as follows: 

id list_num form 
1 1 A 
2 1 B 
3 1 C 
4 2 A 
5 2 B 

6.5 Conclusions 

The Macintosh computer does not efficiently run a big system like the 
implementation of the OOVM. The problems that occurred were mainly 
memory management problems. 

The engine is a good example to work with because it contains many 
of the problems one can find in designing an OOVM and is an easy model to 
make. 
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Hypercard is very good to use as a development environment for a 
user-interface. 

As an expert system Hyper X is not as easy to use as CLIPS. 
Therefore everything is written in CLIPS. 

Using the mapper the output will be a list of lists of all combinations 
of form that, when combined can fulfill the goal list 0. 

Both the C-program and CLIPS are usable as an environment to 
program a mapper. The C-program will be faster. 
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6A.1 Definitions 

Form : A form is a physical part of a car (i.e. steering wheel, seat, gearbox). 
Function : What a form can do (i.e. steer car, provide seating comfort, 
transmit power). 
Voice of the customer : parameters of the car set by the customer. 
Form_list : A list that contains the forms which, when combined, can 
perform the desired functions. 
Goal list : Goallist 0 is the list of functions the user wants the car to 
perform. Goal lists with higher numbers are subgoal set by the mapper. 

• 	_ 	CI"! oft ■11 es 	- e• k.0 	 W. • • 	g o 	, 

The mapper is programmed in Lightspeed C(4.0). The program 
reads a goal_list out of ORACLE into a linked list in C. To make the linked 
list, memory is allocated for a field that can contain one function of the 
goal_list. An item of the goal_list is read from ORACLE and is written into 
the field. Then the field is linked into the linked list. This is done for all the 
items in the current goal list. When the program gets bigger, the memory 
allocation function works OK. It gives a pointer to a memory field. When 
the program tries to write anything into the field, the computer quits the 
running process or even resets itself. The error is probably out of memory. 
The program however takes just about 60K of memory. Freeing memory by 
not using macbugs, the gatekeeper, the vaccine or the multifinder didn't 
work. 

6.A.3 The Hard- and Software used 

The system is implemented on a Macintosh IIx computer. The 
software available was Hypercard, HyperX, ORACLE, Lightspeed C, CLIPS 
and Microsoft WORD. 
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Chapter 7 A THEORETICAL APPROACH TO HIERARCHICAL DESIGN 

71 Introduction 

This chapter outlines a theoretical approach to hierarchical design 
which can provide the foundations of a process to seek the optimum design 
solution for a complex system. The basic concept envisioned is that there 
will be several objective functions, when combined appropriately, will 
define the merit of a design. For example, suitable combinations of three 
overall functions, Transport, Please, and Protect discussed in chapter 4, 
could represent the measures of goodness for a vehicle. An approach such 
as this can then provide a mechanism to implement major changes in the 
relative importance of Transport, Please, or Protect. Such an approach will 
require formalization of an optimum design approach, which is based on a 
multiple design objective function, fi(x). This approach can be denoted 
multiobjective optimization and is described and discussed here in the 
context of automotive vehicle applications. 

7.2 Multiobjective Optimization and Design 

Multiple figures of merit are applicable to virtually any design 
project. Multiobjective optimization problems can be posed as Pareto-
optimality problems. Pareto-optimality refers to the situation where there 
are n figures of merit, which are functions of the design variables, 11(x),..., 
fn(x). A design, as characterized by the values for the design variables x, is 
said to be Pareto-optimal if no one of the goals fi can be improved without 
making some other goal fj worse. 

If all of the goals are formulated as minimizations, the Pareto-
optimal designs can be found by minimizing a weighted sum of the 
individual goals, X coi fi(x), where E coi =1 and each oh satisfies 0 5 coi 51. 

In designing a vehicle system or subsystem, the values of the weights 
oh represent relative prioritizations of requirements by the customer. These 
relative prioritizations are rarely known precisely. Changes in market 
conditions may impact the prioritization of the design goals. The relative 
prioritizations are also subject to change as the product development team 
gains insight into the impact of the prioritizations on the design solution. 
Thus, in preparing to match design requirements with customers' 
prioritizations, it would be extremely useful to be able to identify families of 
design solutions corresponding to various values of the relative 
prioritizations. 

Determining these families of design solutions would normally 
require varying the values for the weights of  and re-optimizing the design. 
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The cost of this procedure is high enough that such an approach is rarely, 
if ever, used in current design practice. 

7.2.1 A New Technique Using Parameter Passing 

This reoptimization can be avoided if the design problem can be 
decomposed into sub-problems where each of the design goals is assigned to 
a distinct subproblem. 

A parameter passing scheme can be set up for such a decomposition 
which will generate all of the Pareto-optimal solutions (for all values of o) = 
(col, - • • , con)). Only n design optimization problems must be solved; one for 
each objective. The solutions to these problems are then used to construct 
trade-off curves for all values of co. The essential arguments in the proof of 
these results are summarized here. The proofs themselves can be found in 
[ROGAN & CRALLEY]. 

Proposition 1: Let a* be a point generated by the decision sequence. If all 
df f dxi are 0 at e, then e is a Kuhn-Tucker-Karush point. 

Proposition 2: Let the number of design variables in each decision element 
Di  equal or exceed the number of constraints in Di which are independent 
and active at a point x a  determined by a feasible, optimizing decision 
sequence. Then if x e  is a Kuhn-Tucker-Karush point for the original 
problem P, all of the optimal sensitivity derivatives df dxi will be 0. 

Proposition 3.  dF I dp (co) =I wi dfi I dp 

Propositions 1 and 2 are applied to parameter passing schemes for 
solving multiobjective design optimization problems by noting that the 
optimality conditions 

dF I dpi (co) z: 0 

for the approximate Pareto-optimization problem are the same as the 
convergence criteria for the solution of the exact Pareto•optimization 
problem by a parameter-passing scheme. The exact Pareto-optimization 
problem is solved, then, when these conditions are satisfied. Proposition 3 
allows the conditions to be satisfied by varying the relative prioritizations, 
while maintaining the significance of those conditions in terms of optimal 
sensitivity derivatives. Thus, propositions 1, 2, and 3, establish the validity 
of techniques which solve the exact Pareto-optimization problem by varying 
the relative prioritizations in an approximate problem. 
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7.2.2 Application to an Automobile Configuration Problem 

Providing volume is a design engineering problem that may be quite 
important in configuring an automobile. Methods for solving this problem 
are applicable to sizing the passenger, engine, and cargo compartments, as 
well as to sizing of containers such as fuel tanks (Figure 7.1). The problem 
can be described in terms of the baseline conceptual design parameters 
(identified in the main body of this progress report): 

1. Number of people (rated) 
3. Engine size 
4. Cargo capability 
5. Wheelbase 
8. Silhouette 
9. Ground clearance 

In developing a design process to configure (select the shape and 
arrangement of) volumes for passengers, engine, cargo, fuel, and other 
containers, engineering theories and models describe how functions such 
as Transport, Protect, Please and Operate Safely are accomplished by 
specific elements of the vehicle form decomposition. The relationships 
represented by these models are linked to the form and function 
decompositions using QFD. 

Figure 7.1. Cost/Capacity Problems in Configuring an Automobile. 

This example is based on a volume configuration problem: it is 
required to find the dimensions (length, width, and height) of a rectangular 
box with surface area less than 6 ft. 2  ("relative materials cost") and volume 
greater than or equal to a target value of 10 ft. 3  ("capacity"). In addition, the 
box cannot exceed 2 ft. in height. 

The problem statement can be summarized as follows: 

1. Choose length, 1 ; height, h ; and width, w of a box-shaped container. 
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relative materials cost 

[relative materials cost] = 
2 x ( [length] x [width] + [lenr x [height]+ [width] x [height]) 

I  

length 	height width 
1 	 

[capacity] = [length] x [height] x [width] 

2. Each dimension of the box-shaped container is between 0.5 ft. and 5 ft. 

3. Capacity of the container, fi(l, w, h )=1wh , is to be maximized, but not 
less than 10 ft3- 

4. Relative cost of materials, f2(1, w, h ) = 2(1w + w h +h1), is not to exceed 
6. 

5.Height of the container, h is to be less than 2 ft. 

Note that alternative design concepts, attributes, and engineering 
theories and models have been specified in the statement of the design 
problem. Thus, this problem has been posed at an appropriate point in the 
system engineering process for the application of a design methodology. 
The information contained in the statement of this design problem can be 
represented graphically as a "design-in-process graph", Figure 7.2. 

Figure 7.2. 'Design-in-Process graph". 

Design Methodologies for the Container Design Problem 

A design methodology is a procedure for applying the engineering 
theories and models to determine values for attributes of the design, such 
as length, height, and width. As example design methodologies, consider 
the following: 
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)4 eth o d ol ogy A 
1. Determine length, width, and height. 

2. Apply 
[length] x [height] x [width] = [capacity] 

to determine capacity. 

3. Apply 

2 x ([length] x [width] + [length] x [height] + [width] x [height]) = 
[relative materials cost] 

to determine cost. 

Methodoloey B  

1. Fix capacity, cost and height. 

Solve 
[length] x [height] x [width] = [capacity] 

for length, 

[length] = [capacity]/([height] x [width]). 

Substitute this relationship into the equation 

2 x ([length] x [width] + [length] x [height] + [width] x [height]) = 
[relative materials cost] 

and solve 

2 x ([capacity]/[height]+[capacity]/[width]+[width] x [height]) = 
[relative materials cost] 

for width: 

w = - (c1/h - c2/2) f [(c1/h - c2/2) 2  - 4hci ] 1/42)/(2h) 

where w = width, ci = capacity, c2 = cost, and h = height. 

Determine width from cost, height, and capacity. 

3. Use the equation 

[length] = [capacity]/([height] x [width]) 
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to find the length. 

Methodology C 

Solve the following optimization problem: 
maximize: 

ci = lwh 
subject to: 

2(1w + wh + 1h)5c2 
c2=6 

c2,1,w,h z e > 0, h 52. 

The design vector decomposition xi = (c2), 12 = (l,w,h) can be used for this 
problem. The decision elements are then 

C1: 
satisfy: 	c2= 6 

2(1w + wh +1h) 5 c2 
design variables: c2 
fixed parameters: l,w,h 

and 

maximize: 
C2: 

Cl = 1wh 
subject to: 

2(1w + wh +1h) 5 c2 
1,w,h e >0, h 52 

design variables: ci,l,w,h 
fixed parameters: c2 

Since there is a unique objective function for the problem addressed by 
Methodology C, ci, weighting factors need not be defined. 

Methodology D  

Solve the following optimization problem: 
maximize: 

e2  =2(lw + wh + 1h) 
subject to: 

lwh a ei 
= 10 

ci,l,w,h e > 0, h s 2. 

The design vector decomposition xi = (ci), x2 = (1,w,h) can be used for this 
problem. The decision elements are 

D1: 

77 



78 

satisfy: 	ci= 10 
lwh ci 
design variables: ci 
fixed parameters: l,w,h 

and 
D2: 

maximize: 
e2  =2(lw + wh + ih) 

subject to: 
lwh Z ci 

1,w,h z e> 0, h 5 2 
design variables: c2, 1,w,h 
fixed parameters: ci 

Again, there is a unique objective function for the optimization problem 
addressed by Methodology D, c2, making weighting factors unnecessary. 

Methodology E 

Solve the following optimization problem: 
minimize: 

col [ci/ 10 - 112  + (62 [c2/6 - 112  
subject to: 

lwh 
2(1w + lh + wh) c2 

col + co2 = 1 
ci, c2,1,w,h e > 0, h 5 2 

04,0)2 0 

The design vector decomposition xi = (o)i,co2), x2 = (ci,c2,1,w,h) can be used 
for this problem. Decision elements are 

El: 
minimize: 

[cil 10 - 112 + oy2 [c2/6 - 1P 
subject to: 

(01 + 0)2 = 1 
w1,0)2 k 0 

ci,c2 fixed parameters 

and 

minimize: 

subject to: 

E2: 

[ci/ 10 - 112  + o>2 [c2/6 - 112  



length 

height 

width 

Cost 

capacity 
height 

lwh 
2(1w + lh + wh) 5 c2 
c2, 1,w,h z e> 0, h 5 2 

(01402 fixed parameters 

7.2.3 Analysis of Design Methodologies  

Each of these methodologies can be represented as a directed graph. 
In the directed graph representation, the decision elements of the 
methodology are the nodes or vertices. The sequence of design decisions 
embodied in the methodology is represented by arrows (directed edges) 
connecting the decision elements. 
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Methodology A 
	

Methodology B 

Figure 7.3. Directed Graph Representations of Design Methodologies A and B. 

The information content of these directed graphs is sufficient for the 
application of decision structuring techniques (such as Interpretive 
Structural Modelling and the Design Structure System) which are based on 
connectivity information (see [ROGAN & CRALLEY] for a more in -depth 
discussion of these techniques). In fact, these graphs are probably far too 
simple to produce interesting results using the decision structuring 
techniques. It is clear that directed graphs can be used to identify obvious 
problems with the methodologies. For example, from the directed graph of 
methodology A (Figure 7.3), it is evident that unless the correct values for 
the attributes length, width, and height are already known, it is practically 
impossible to meet the cost and capacity requirements without iterating the 
decision-making process. Methodology A does not specify such an iterative 
strategy, so methodology A is rejected as too risky. 

However, even for these simple design methodologies, the directed 
graph representation is not adequate to accurately evaluate their suitability 
as an approach to solving the container design problem. This is evident in 
the analysis of methodology B. The directed graph of methodology B (Figure 



7.3) indicates that it should be possible to determine length and width, the 
design variables, from cost, capacity, and height, the requirements. This 
appears to correspond precisely to the container design problem. However, 
substituting cost = 6, capacity = 10, and height = 2, into 

w = (c1/12 - c2/2) t gcl/h - c2/2)2  - 4hciP12)/(2h) 

the solution (ciIh - c212) 2  - 4hci = -76 < 0 is found, so there can be no real 
solutions for the width, w. This indicates that the initial requirements are 
not feasible. No indication of this problem can be seen in the directed graph 
representation. In fact, the directed graph indicates that methodology B is 
well-matched to the container design problem. It is clearly not possible to 
determine whether a design methodology will lead to feasible designs using 
only the information in the directed graph representation. Analytical 
concepts of optimization theory are needed to bring feasibility into the 
evaluation. The connectivity information contained in the directed graph 
representation is simply not adequate for this task. 

Interpreting some of the requirements identified in the container 
design problem as goals makes it possible to model them, in the context of 
optimization theory, as objective functions. Requirements that cannot be 
relaxed are modelled in optimization theory as constraints. Taking 
advantage of this, optimization theory, specifically convergence theory, is 
applied to assess the capability of the remaining design methodologies to 
solve the problem. It is emphasized that this application of optimization 
theory to assess a design methodology is distinct from the application of 
design optimization methods, or more specifically numerical optimization, 
as a part of a particular design methodology. 

Optimization theory is applied to evaluate the suitability of a design 
methodology to meet a set of requirements by considering each step in the 
design methodology to be a decision element. In the context of optimization 
theory, decision elements are optimization or feasibility subproblems. 
These subproblems are related to one another by engineering theories and 
models linking design attributes in distinct decision elements. In 
evaluating the suitability of a design methodology to meet requirements, 
engineering theories are analyzed to determine the monotonicity of the 
relationships among attributes implied by the engineering theories and 
models. Thus, for example, if width is increased with length and height 
fixed, an increase in capacity is required to satisfy the engineering theory 

ci = lwh. 

Thus, capacity is monotonically increasing with length when the 
"capacity" engineering theory is enforced. 

In a design methodology with multiple steps, the values of design 
attributes will be changed as decisions are made. The monotonicity 
information can be used to determine whether these decisions will 
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adversely affect the feasibility of subsequent decisions. The monotonicity 
information can also be used to assess the overall progress of the decision-
making sequence toward an optimal, or alternatively, toward a Pareto-
optimal (balanced) design. Convergence of a methodology to a feasible 
design and progress toward a balanced or optimal design can be ensured by 
imposing certain criteria on the sequence of decision elements. The 
simplest approach is to allow decision element Di to be sequenced before 
decision element D3 only if the choices for values of design attributes in 
decision element Di will not adversely affect feasibility or optimality of 
decision element Di. Of course, such a sequence may not be possible to 
realize in practice. An alternative approach is then to constrain prior 
decision elements so that subsequent decision elements have feasible 
solutions. 

To illustrate these ideas, once again consider methodology B. In 
methodology B, choices for height, capacity, and cost are distinct decision 
elements that are sequenced before a choice is made for the value of the 
width design attribute. Choice of the width attribute is in fact constrained 
by w z 0. Clearly, it is possible to choose values for the height, cost, and 
capacity attributes that make the width decision element infeasible. (for 
example, height = 2, cost = 6 and capacity = 10). Thus, using the concept 
that prior decisions should not adversely affect feasibility of subsequent 
decisions, one of the limitations of methodology B has been correctly 
identified. Methodology B has additional limitations. One of these 
limitations is the fact that methodology B does not provide any means to 
continually improve the design in terms of cost and capacity goals 
throughout the design process. To evaluate methodologies attempting to 
accomplish such improvements, it is necessary to consider optimality, or 
equivalently, Pareto-optimal balance, in addition to feasibility., 

Methodologies C and D represent different approaches to the design 
optimization problem. In methodology C, if C2 is solved before C1, the 
constraint c2 = 6 may not be satisfied. The sequence {C1,C2} is feasible: once 
the cost is fixed in C1, the optimization problem C2 has a feasible solution 
for any positive value of cost. The analogy that methodology D is feasible if 
the capacity is positive is valid. 

Do methodologies C and D lead to optimal or balanced designs? The 
answer to this question depends on who defines optimality. Optimality 
must be defined by the customer's needs. Thus, methodologies C and D can 
be optimizing only when they match the customer's ranking of the cost and 
capacity requirements. Methodology C provides the maximum capacity 
meeting the cost requirement, and methodology D delivers the minimum 
cost to meet the capacity requirement. This fact is reflected in the sequence 
of design decisions. In fact, the customer may need to balance cost and 
capacity in some sense. Neither methodology C or methodology D can 
address this balancing problem. Thus, methodologies C and D must be 
rejected. These methodologies cannot produce designs balancing cost and 
capacity. 
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Considerable additional complexity is required to fully address this 
problem of balanced design, as is illustrated by methodology E. 
Methodology E calls for a separate requirements ranking decision element 
(decision element El) in which relative weights for the cost and capacity 
goals are determined. Incorporation of this decision element ensures that 
methodology E will deliver balanced designs. In the second decision 
element in methodology E, decision element E2, values of cost and capacity 
goals are determined, resulting in a feasible solution of the Pareto- 
optimization problem. 

The optimization problem in methodology E is stated so that a 
solution can always be found: even though the cost or capacity goals may 
not be met,. the design will balance the degree to which those goals are 
achieved, with relative priorities determined by the weighting factors. 
Thus, the statement of methodology E ensures feasibility in this restricted 
sense. Thus, methodology E is well-matched to the container design 
problem. Unfortunately, the price exacted for this suitability is too high: 
the customer must be able to rank cost and capacity without the benefit of 
information about the design relationship between achievable values of cost 
and capacity. This ranking represents a question of comparable difficulty 
to the design problem itself. 

Perhaps a more practical approach is to generate the cost/capacity 
curve and relate this curve to the relative prioritizations. This information 
can then be used in a requirements negotiation. Information to support 
requirements negotiation is most valuable before the design is completely 
specified. Once agreement is reached concerning goals and their 
priorities, the design of the water storage tank can be finalized. 
Methodology E is not well suited to this expanded problem. Using 
methodology E to generate the cost/capacity curve would involve varying the 
relative prioritizations, executing a reoptimization of decision element E2 
for each set of priorities. Thus, many containers would have to be designed 
before negotiations of the goals for the container cost and capacity could be 
concluded with the customer. In more complex design problems, each 
reoptimization, in itself, may involve the execution of a complete design 
methodology in a decision element such as E2. 

7.2.4 A Design Methodology to Support Requirements Trade-Offs 

An approach for efficiently generating families of Pareto-optimal 
solutions can be developed by further extending the application of 
optimization theory to design methodologies consisting of separate decision 
elements. In an optimization-based theory of design methodologies, the 
following question can be posed: how can information to support 
requirements negotiation be generated by executing relatively simple 
design methodologies, comparable to methodology C or D? This question is 
answered by a method based on propositions 1, 2 and 3. 
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Consider the following methodology for developing design 
information to support requirements negotiation: 

Methodology F 

Solve the following optimization problem (the same problem as solved by 
methodology E): 
minimize: 

icil 10 - 1)2 + ov [c3/6 - 1]2  
subject to: 

lwh 2 ci 
2(1w + lh + wh) c2 

04+0)2=1 
c2, 1,w,h e > 0, h 5 2 

04,(02 z 0 

The design vector decomposition xi = (ci), 12 = (c2), x3 = (0)14023,w,h) can be 
used for this problem. Decision elements are as follows. 

F1: 
minimize: 

= 	- 1)2  
subject to: 

- lwh 5 0 
design variables: ci 
l,w,h fixed parameters 

and 
F2: 

minimize: 
f2 = (c2/6 -1)2  

subject to: 
2(lw+ wh+lh)-c250 

design variable: c2 
l,w,h fixed parameters 

F3: 
minimize: 

F = (01 fivt(1,w,h) + (02 fePt(1,w.h) 
subject to: 

h-250 
coi+co2=1 
04402 k 0 

where the design variables are now: (01,(02,1,w,h. fePt and f2opt are the 
optimal values of the objective functions for subproblems F1 and F2, 
respectively, with l,w,and h fixed. 
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Although methodology F is similar in some ways to methodology E, 
there is an important difference in that the multiple objective functions are 
assigned to different subproblems. Although the sequences of design 
decisions which make sense for methodology F are somewhat restricted (F1 
and F2 must be executed before F3 in order to define floPt and hopt), 
methodology F provides a very efficient technique for constructing the cost-
capacity curve as a function of the requirements priorities. 

The basic concept is that the optimality conditions for subproblem F3 
follow directly from the solutions to subproblems F1 and F2. Thus, it is not 
necessary to solve F3. The formulation of F3 is such that the optimality 
conditions for F3 are the same as the optimality conditions for the 
=decomposed optimization problem addressed by both methodology E and 
methodology F. Thus, the particular decomposition strategy used in 
methodology F solves the Pareto-optimization problem indirectly, using the 
solutions to two suboptimization problems (subproblems F1 and F2). 
Although the difference between this solution technique and methodology E 
is inconsequential for the simple water storage tank design problem, 
methodology F can be applied to much more complex design problems with 
a few relatively simple extensions. 

Details of the solution for methodology F are given in section 7.A.1. 
Optimality conditions for sub-problem F3 are 

aF/api = col DpifloPt + (02  Dpif2oPt = 0 
ayap2  = (01  Dp2f,opt 	Dp2f2opt = 0 

aF/ap3 + I = col  Ddlopt + (02  Dp3f2OPt 1. 1 . 

The key to methodology F is to fix the optimal sensitivity derivatives 
and regard these equations as determining values for col and o)2 that 
correspond to those values of the optimal sensitivity derivatives. Sequential 
parameter passing schemes of the type exemplified by methodology F 
converge to the optimal solution of a Pareto-optimization problem such as 
the problem approximated by F3. The benefit accruing from this approach 
is that the entire family of Pareto-optimal solutions (corresponding to 
different values for the c)i's) is determined using only 

• Information about the solution to an optimization problem 
corresponding to each of the objective functions, and 

• Partial derivatives. 
The alternative approach (methodology E) would require the solution 

of a separate optimization problem for each combination of values of the 
tors. 

Continuing with the solution of the optimality conditions for 
subproblem F3, there are 5 unknowns: 
(019 (02, I, w, and h, 
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u.) 

a 
.bli 

and 4 independent equations (three of which are nonlinear): 
col+ 0)2 = 1 
(3 optimality conditions). 

Thus, the entire family of Pareto-optimal solutions can be 
characterized by varying one of the parameters. One way to do this is to =al = 
solve: 

aFRP1 = (01DpIfiCiPt  o DpifePt = 0 
= col (1/5X1 C1/10X'Wh) + CO2 (1/3Xci6 -1Xw+h) 

to obtain 
= (1/3Xc2/6 -1Xw+h)/1(1/3Xc2/6 -1Xw+h) + (1/5X1- ci/10Xwh)]. 

Apply the remaining two optimality conditions to determine that 1 = 
w and h = min (w,2). To present the results, the engineering theories and 
models relating cost and capacity to 1, w, and h are reintroduced. These 
determine the achievable values for cost and capacity. The variables ci and 
c2 of subproblems F1 and F2 refer to the cost and capacity constraints The  
difference between these constraints and the achievable values is of course, 
central to the whole point of requirements negotiation. 

Vary w to determine cost, capacity and wi. The relationship between 
achievable capacity, actual cost, and requirements prioritization, wi 
obtained in this way is plotted in Figure 7.4. Since the cost and capacity 
requirements cannot both be met, the customer must accept some loss of 
capacity, cost, or both. The magnitude of the loss depends on the relative 
prioritization given to achieving each of the goals. The loss in capacity is 
defined as 

capacity goal - achieved capacity 
and represents the distance to the desired capacity of 10 ft3. The loss in cost 
is defined as 

actual cost - cost goal, 
adopting the convention that losses are positive. 

This information can then be used to negotiate values for the relative 
prioritizations (01 and co2 = 1 - 04. Once these values are fixed, the optimal 
values for the remaining design parameters are also determined. 

In most cases, where the problem posed in methodology E cannot be 
solved explicitly, this procedure will be much more efficient than 
methodology E. This is a consequence of the fact that the optimization 
problem in methodology E must be solved a large number of times, one 
solution for each value of cub to determine the effect of col and o)2 on 
cost/capacity relationship, while methodology F can generate the entire cost 
capacity relationship from the solutions of a few optimization problems, one 
for each of the multiple objective functions. 
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figure 74. 'Loss" of Cost and Capacity Goals vs. Requirements Priorities for a Water 
Storage Tank 

7.2.5 Hierarchical Design using Optimizing Sequences of Decisions  

As developed in the automobile configuration example, the 
assessment of a design methodology depends on three closely related 
results in optimization theory, propositions 1, 2, and 3. The first two 
propositions relate convergence of a large optimization problem to 
sensitivities of the solutions to individual decision elements appearing in 
the decision sequence defined by the design methodology. The statement of 
the large design optimization problem encompasses all of the attributes, 
goals, and the constraints imposed by requirements through engineering 
theories and models that are employed in the design methodology. This 
result is valuable, because a given design problem may have a statement as 
an optimization problem, but solution of the large problem may be 
impractical. The purpose of the analysis is to determine whether or not a 
given hierarchical decomposition and design methodology associated with 
it produce solutions to an optimization problem. 

The second result extends the validity of this approach to include the 
solution of Pareto-optimization problems where the multiple objectives may 
be assigned to different decision elements. Pareto-optimal designs are 
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characterized by the statement that no one of a set of multiple objectives can 
be improved without making some other objective worse. Pareto-optimality 
thus equates balanced design to a form of optimal design. The extension of 
the methodology to handle Pareto-optimal solutions can lbe applied to 
establish convergence of a design methodology to a balanced design. The 
concept of balanced design broads the range of problems that can be 
formulated to include situations where conflicting requirements may 
mutually exclude any solution, so that a balanced compromise must be 
drawn. 

These results prove convergence of a sequence of design decisions to a 
balanced, feasible design. Criteria for convergence outlined in this section 
of the report were applied to assess alternative design methodologies for the 
simple automobile configuration example. Problems were found with all 
but one of the methodologies. An alternative methodology for balanced 
design was defined and applied to the container design problem. This 
method uses the capability to place different objectives of a multi-objective 
problem into different decision elements. 

Once an engineering design concept has been chosen for synthesis, 
the design decision -making problem can be stated as a Pareto -optimization 
problem: 

minimize: E coi fi(x) 

Subject to: g(x) 5 0 
h(x) = 0 

where x is a vector of design variables, fi(x) are design goals or objectives, 
and g(x) and h(x) are vector functions of the vector x which represent 
requirements or constraints. The wi are relative prioritizations of the 
design goals or objectives. The importance of this problem statement is that 
it provides a theoretical framework for the study of the design process. 

The principal tools for applying optimization theory to study the 
design process are: 

- optimal sensitivity derivatives 
- decomposition. 

The formulae for the optimal sensitivity derivatives are based on the 
Karush-Kuhn-Tucker conditions (KKT conditions). The KKT conditions are 
necessary conditions for a particular value x* for the vector of design 
variables x, to be a constrained local minimum The KKT conditions are: 

1. Feasibility 

g(x) 5 0 
h(x) = 0 
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2. Active constraints 

g(x) = 0 j = 

7yz 0 

3. Extremum of the Lagrangian over the primal subspace 

aF(w,x)/axi + ajagi(x)/axi + Igkahk(x)rdx; = 0 	i = 1,...,n 

where m is the number of inequality constraints, and n is the number of 
design variables. 
F(w,x) = E co; fi(x) 

The optimal sensitivity derivatives are designed to handle the 
following situation: consider a set of design decisions (D1,:D2, DN). 
Each design decision can be thought of as determining some of the design 
variables xi. If the elements of the vector x are arranged in an appropriate 
sequence, x can be decomposed into the vector 

(x l,x2, 	ZN) 

where xi is the sub-vector of design variables determined by Di, and so on. 
This is called a decomposition of the optimization problem. The product 
development decision-making process is studied through the analysis these 
decompositions. It is worth noting that there are two choices involved in 
selecting a decomposition: 

1)how to group the design variables into design decisions, and 
2)how to iterate to convergence. 

There are various criteria that a design decomposition must meet. 
Perhaps the most important criterion is that a convergent sequence of 
design decisions must produce a design balancing the design goals and 
meeting the customers' requirements (constraints) with a minimum of 
iteration. 

The design decisions are related to one another in the following way. 
Say there is a constraint 

gj(xi,x2, ... )5 0 

This constraint appears in both design decision D1 and design decision D2. 
For example, say that D1 is to be made before D2. It should be evident that 
an initial "guess" for the values of the variables x2 must be made before 
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gi(x) can be evaluated. It should also be clear that the values of the 
variables xi, as determined by solving Di, affect the solution for D2. The 
design variables xi are parameters for D2, and parameters are 
distinguished from local design variables. The xi's are local design 
variables for Di. 

The optimal solution to D2 is found by varying the local design 
variables 12. The idea of the optimal sensitivity derivatives is to evaluate the 
effect of changes in the parameters xi on the optimal value of the objective 
function which can be achieved through optimization of the design decision 
D2.. The purpose is to compute aF/axi i  with certain constraints placed on 
this derivative, namely 

1) the constraints of the optimization problem remain satisfied, as xi is 
varied, that is 

ex) S. 0 
h(x) = 0 

2) the solution remains optimal as xi is varied. 

The second restriction can be enforced by requiring that the KKT 
conditions remain satisfied. Of course, these two restrictions on the 
derivative may require adjustments in the optimal values of the design 
variables 12 to compensate for the changes in the parameters xi. 

To denote the optimal sensitivity derivative, it is convenient to make a 
distinction in notation between design variables, x and parameters, p. 
Then df/dp is interpreted as an optimal sensitivity derivative. The optimal 
sensitivity derivative is given by: 
dF/dp = aF/Dp + I Xiagi/ap. 

This formula is of central importance in structuring sequential decision-
making processes. 

A design decision D1 can be made before another design decision D2 
if the values chosen for the design attributes in D1 do not make D2 
infeasible. For example, say xi is a design variable to be determined by 
decision D1 and x2 , also a design variable, is to be determined in decision 
D2 . Say xi and x2 are coupled by an inequality constraint g : 

... ) 50 . 

In sequencing D1 and D2 there are three alternatives: 

1) make decision D1 before D2 . xi will then be fixed by Di and will be a 
parameter for decision D2 
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2) Make decision D2 before Di . x2 will be a parameter in Di. 

3) Combine Di and D2 into a single decision element. 

Consider now the case where Di is sequenced before D2 . Solution of 
Di will result in a change Axi from the initial value for xi . The effect of 
this change on the inequality constraint g can be assessed with a first-
order approximation: 

- g / aci) Axi . 

Thus if (dgiazi) and Axi are opposite in sign, Ag will be negative and g 
will be less critical in making decision D2 (in comparison with the initial 
design). If (ag / dxi) and Axi have the same sign, g will become more 
critical for D2 if decision Di is made first. 

Feasible sequences for the design decisions can be determined using 
the directions of proposed changes in the design variables in each decision 
and the signs of the partial derivatives of inequality constraints coupling 
two or more decisions together. The criteria are 

F-1)If Di does not make (any of) the constraints of D2 more critical, then 
Di can be sequenced before D2. 

F-2)If D2 does not make (any of) the constraints of Di more critical, then 
D2 can be sequenced before Di. 

If Di makes the constraints of D2 more critical, and D2 makes the 
constraints of Di more critical, then it may be necessary to combine D1 
and D2 into a single decision element. If both F-1 and F-2 are met, D1 and 
D2 can be made concurrently. 

There may be many possible decision sequences meeting these 
criteria. In an extremely tightly coupled problem, all of the initial design 
decisions may be combined into a single design decision by this procedure. 
All of the decision sequences meeting criteria F-1 and F-2 will lead to 
feasible designs. Next, additional restrictions on the possible decision 
sequences are considered. These restrictions can be shown to produce a 
sequence of decision elements leading to an optimal, and by extension, a 
Pareto-optimal design. 

Determination of a sequence of design decisions leading to an optimal 
design requires an initial suboptimization pass through each of the 
decision elements. In this suboptimization pass, each of the decisions in 
which one of the objective functions for the design appears explicitly as a 
function of the local decision variables is solved in isolation. The results of 
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the suboptimization pass are then analyzed using sensitivity of optimal 
solutions to problem parameters. That analysis is used to establish 
whether an iteration of the decision-making procedure will progress 
toward an optimal design. 

In constructing a decision sequence leading to an optimal design, 
there are again three alternatives: place Di before D2 in the decision-
making sequence, place D2 before Di , or combine them. Let ft"x/A2 ) 
be an objective function to be minimized in both D1 and D2 . HD/ is made 
before D2 , then xi appears in D2 as a parameter. The sensitivity of the 
optimal solution to D2 to the parameter xi is df/dxi. Directions of proposed 
changes in the design variables are known from the suboptimization pass, 
so 

(dfl dx1) Zal • 

is determined. 

Thus, if df/dxj and dx/ are opposite in sign, itif will be negative. Then 
if Di is made before D2, f will not increase during the decision subsequent 
1.D1, D21. Any decision subsequent in which f will not increase can form 
part of an optimizing decision sequence. Optimizing decision sequences 
are built up from such subsequences, with one additional criterion: 
decision elements with df/ dxi = 0 must be placed after decision elements 
with df/dxi . The need for this criterion will emerge from consideration 
of convergence questions. 

Global convergence of an effective procedure for solving an 
optimization problem using an optimizing sequence of design decisions is a 
consequence of the propositions 1, 2, and 3. 

There may be several alternative design methodologies available to 
solve a given problem. Other considerations often enter into the decision 
sequencing problem, such as controlling costs associated with developing 
design definition or running product development tests. Thus, in applying 
the convergence results to synthesize a design methodology, it does not 
make sense to try and give a completely deterministic algorithm for 
selecting a decision sequence. Instead, a step-by-step process is given for 
constructing a design methodology which clearly indicates the points at 
which the design team can select among alternative design methodologies 
to meet economic, program milestone, product definition technology, or test 
schedule constraints. The role of optimization theory is to provide well-
defined criteria that must be met by these alternative sequences and 
groupings of design choices. 

Step 0. 	Initialization. Choose an initial design within the variable 
bounds and make an initial choice of decision elements. 
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Step L 	Evaluate each decision element to determine an optimum 
solution for that decision element (in isolation). 

Step 2. 	Identify possible feasible decision sequences. If feasibility 
requires combination of decision elements, iterate with Step 1., 

Step 3. 	Identify possible optimal decision sequences. Check 
convergence. If solution is converged, stop. If optimality requires 
combination of decision elements, iterate with Steps 1 and 2. 

Convergence criterion: Both (i) design variables did not change during last 
solution pass and (ii) all optimal sensitivities are zero (df dxj= 0 for all 
parameters xi ) must be satisfied. 

Step 4. 	Select a decision-making sequence that is both feasible and 
optimal. If Di is sequenced before Di, the number of parameters passed 
from Di to Di must equal or exceed the number of independent active 
constraints common to both decision elements. 

Step 5. 	Find an optimal solution for each decision element in 
sequence. Update the values of all design variables and iterate from Step 2. 

This procedure will converge to an optimal solution from any initial 
design within the variable bounds, provided that the decision-support 
procedures applied to solve the individual decision elements do so. The 
solution set for the procedure is defined by the condition that all df dxi= 0 . 
This solution set is the set of Kuhn-Tucker-Karush points. 

In addition, this approach provides a highly efficient technique for 
finding all of the Pareto-optimal design solutions. Pareto-optimal solutions 
minimize an objective 

F 	coin , Ito; = 1. 

which is a weighted sum of multiple objectives which may correspond to 
conflicting requirements. To find all of the Pareto-optimal solutions, one 
would ordinarily have to solve an optimization problem for each set of 
values for the weights coi. 

Information developed in the decision sequencing process can Be 
used to avoid the reoptimization. To accomplish this, multiple objectives, 
are allocated to different decision elements. Then, at Step 3 above, the 
optimal sensitivity derivatives dfi ldp are available. An approximation to 
the Pareto-optimization problem having optimality conditions 

dF I dpi (c) =0 

is then defined. 



These conditions are identical to the convergence criteria for the 
solution of the exact Pareto-optimization problem using the optimal 
decision-sequencing solution procedure. The exact Pareto-optimization 
problem is solved when the optimality conditions for the approximate 
problem are satisfied. These conditions may be satisfied by varying the 
relative prioritization. 

7.3 Organization of a Probabilistic Decision-making Strategy 

The decomposition of a product development problem into decisions is 
distinct from the function and form decompositions. To a certain extent, 
function alternatives can be defined independently from customer 
requirements. It is through the decision decomposition that customer 
requirements are incorporated into the product. 

The decomposition of complex function and form alternatives, linked 
by engineering theories and models, has been considered in earlier 
chapters of this report. The view of the product development process taken 
there was that decisions are essentially sequential. This model of the 
product development process as a sequence of deterministic decisions 
captures the fact that, for example, level I specifications are developed prior 
to level II specifications. This model reflects the fact that level II 
specifications are constrained by previous decisions. Thus, it is critical to 
determine all product and process attributes directly impacting customer 
requirements on level I. 

In this section of the report, an alternative view of the decision-
making process is presented. In this non-sequential view, a number of 
product and process decisions are made concurrently. Of course, product 
and process decisions can be made concurrently in the sequential approach 
(if they are decoupled). The important difference is that decisions which 
are quite closely linked are made in parallel in the concurrent engineering 
approach. By compressing the decision-making process, the concurrent 
engineering approach offers advantages such as reduced time-to-market 
and enhanced communication between upstream and downstream 
decision-makers. Concurrent engineering raises some technical problems, 
perhaps the most important of which is the problem of integrating tightly 
coupled decisions made concurrently. 

In the sequential approach, product, process and support concepts 
are integrated using sensitivity information to group and sequence 
decisions. Concurrency implies that sequence is loosely structured, if not 
altogether absent. Thus, an alternative to the combination of sequencing 
and sensitivity analysis is needed to integrate the system concept using the 
concurrent engineering approach. The basic idea can be described as 
probabilistic engineering design, a term used by Siddall [SIDDALL]. 
Probabilistic engineering design ideas have also been articulated by Tse 
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[TSE & CRALLEY] and Ross [ROSS]. In the probabilistic design approach, 
product and process attributes are modelled as random variables. There is 
always some underlying variation in product characteristics, due to 
variation in production processes, maintenance procedures, or use. Thus, 
there is a probability distribution associated with each attribute of the 
product or process. In Bayesian decision theory, probability distributions 
are used to model uncertainty concerning the state of nature. As applied to 
the product development process, the "state of nature" is the vector of values 
of product and process attributes, as currently specified. Thus, although 
decisions concerning product and process attributes are made 
concurrently, precise values for these attributes can not be specified by 
these decisions. This is in complete contrast to the deterministic view. In 
the probabilistic view, the product development team does not specify the 
values for design attributes. Rather, the goal of the product development 
process is to influence the shape of the probability distributions. 

4. p 	: 	 •: 	1 	15 I- 
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The first key idea is: 

Functional relationships transform the shape of (probability or fuzzy set) 
distributions. 

Informally, a probability distribution is a function defined by an 
integral. Say x is the name of some quantity subject to variability or 
uncertainty. The technical term for such a quantity is a random variable. 
If we know the probability, P(a < x < b), that x is between two numbers a and 
b, with a < b, for any two numbers a and b, we can define a "function" cp that 
satisfies r b 

P(a < x < b) = J a  cp(x) dx. 

We have to be somewhat careful here. In fact, we need to generalize 
the definition of a function somewhat (distributions) and use Lebesque 
integration to handle all of the interesting cases. We will only work with 
distributions that are ordinary functions here. 

Fuzzy set membership functions are similar in some ways to 
probability distributions. The interpretation is different, however. 
Embedded in the concept of a probability distribution is the concept that it is 
the limiting case of a frequency histogram when the sample size 
approaches infinity. Fuzzy distributions are free of this connotation. A 
fuzzy distribution is taken as the definition of an attribute. An example is 
the attribute "small". It may be useful in design to allow "small" to take on 
a range of values. Not all values are "equally small", however, so there is a 
distribution associated with "smallness". The basic idea is that 
"smallness" can be quantified and is given by the value of the fuzzy set 
membership function. In design applications, the distinction between 
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fuzzy set membership and probability is a matter of interpretation. The 
arguments we make here are based on properties of the distribution and 
membership functions, and so apply to both interpretations. 

It is useful to distinguish between architectural design choices and 
the selection of values for design parameters. A system architecture is the 
decomposition of a system into elements, and the specification of the 
interfaces between those elements. Thus, architectural design choices 
involve the selection of system elements. For example, carburetion vs. fuel 
injection, diesel power vs. spark detonation, hydraulic or electromagnetic 
vs. mechanical power transmission, air or water cooling, DC as opposed to 
AC electrical systems. Even if the basic system elements are the same, 
changes in the interfaces may result in significant differences in 
architecture: front-wheel or rear-wheel drive; gull-wing, sliding, or 
conventional door hinges, crash protection through energy absorbing or 
load-transmitting structures. Mistree [MISTREE, SMITH, BRAS, ALLEN, 
AND MUSTER] makes a similar distinction between selection and 
compromise problems in design. 
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Figure 7.5. Normal Distribution of e, the Uncertainty Associated with x. 
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The second key point is: 

Architectural design choices effect the functional relationships between 
design attributes. 

In fact, the shape of functional relationships can also be influenced by the 
choice of a value for a design parameter. 

For example, if a variable x is normally distributed (Figure 7.5), the 
variable y, functionally related to x by y = f(x) = (x - g)2  has one of the 
distributions shown in Figure 7.6. The shape of the distribution depends on 
the mean value of the distribution (p(x), the variance of c(x), and the 
constant g. Two curves are shown in Figure 7.6, illustrating the effect of 
the constant g on the transformed distribution. One distribution is highly 
concentrated near the origin, while the other distribution is much more 
spread out. 

Continuing this example, let the choice of the constant g correspond 
to a design decision. Also, let y be a product (or process) attribute subject to 
uncertainty (i.e. to be determined downstream), and further let x be a 
product characteristic, perhaps a measure of merit in meeting a 
requirement, which must be met with a prespecified variance. Clearly, the 
choice of the constant, g, resulting in the "peaky" distribution of Figure 7.6 
has severely restricted the possible choices for y. If y is a parameter 
characterizing a manufacturing process, the value of g leading to the "flat" 
curve is better from a producibility standpoint. Why? The manufacturing 
process planner has a wider range of options. The shape of the distribution 
of y associated with the required distribution of the controlled product 
characteristic, x, is flatter. 
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y = f(x) 

Figure 7.6. Functions Transform the Shape of Probability Distributions. 

This idea has important consequences for design. Before turning to these, 
we note that the effect of functional relationships on probability 
distributions is a consequence of a well-known result in probability theory 
[SCHMETTERER]. 

Consideration of these two points leads to a new view of system design: 

System design is the shaping of probability (or fuzzy set) distributions. 

This point of view is clearly evident in Tse's work [TSE & CRALLEY]. 
It is less readily apparent in the "classical" Taguchi method [ROSS, but is 
also present there. The basic idea of Taguchi's method is to shape the 
distribution of a variable that is a function of the product characteristics, 
the loss function. In the classical Taguchi approach, this distribution is 
characterized by its location (mean) and scale (variance). Location and 
scale are clearly shape descriptive parameters. The orthogonal arrays for 
noise factors are used to estimate the variance in the loss function 
associated with noise. 

Deterministic relationships, such as the relationship between 
required and available power, couple attributes of the design. Over time 
(within a single product instance), and between product instances, vehicle 
attributes such as [total efficiency], [drag coefficient] and [vehicle weight] 
have some uncertainty associated with them. In addition, there is 
uncertainty associated with incomplete product specifications in early 
product development decisions. 



[motor torque] [transmission ratio] 
	  [total efficiency] = 

[dynamic tire radius] 

[vehicle weight] [ [coeff. of rolling resistance] cos [incline angle] 

+ sin [incline angle] 

+ 	[rotational inertia coeff.]  [acceleration] 
(9] 

+ 0.5 [air density] [speed] 2  [drag coefficient] [vehicle cross-section area] 

For the moment, say one of the vehicle attributes, such as [motor 
torque], is selected as a dependent variable. Then, the required/available 
power relationship transforms the uncertainties in efficiency, drag 
coefficient, and weight into a distribution on the dependent variable, torque. 

More complex situations are typical. For example, many technical 
relationships of importance in product development are themselves subject 
to some uncertainty, for example, the relationship between crash 
structural integrity and curb weight (based on data for 1988 cars), Figure 
7.7, or the relationship between curb weight and fuel efficiency, Figure 7.8. 

For a given value of the structural integrity rating, a range of 
variability in vehicle curb weights is seen. There is also a range of 
structural integrity ratings associated with a given curb weight. It seems 
somewhat simpler to conceptualize the distribution of curb weight (a 
continuous random variable) as a function of structural integrity rating (a 
discrete variable). 

The non-deterministic relation between EPA mpg and curb weight is 
somewhat simpler to conceptualize, since both variables are continuous. 

Decisions are refined by acquiring additional information about the 
life cycle concept for the motor vehicle. In a convergent product 
development process, the variance of the distributions associated with 
product attributes decreases as the concept is refined. The distribution on a 
product attribute may be refined by acquiring additional data. Refinement 
of the distribution on a closely coupled attribute may also allow the 
distribution to be refined. This process is illustrated in Figure 7.9. 
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Figure 7.8. Non-deterministic Relation between EPA mpg and Curb Weight. 
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Figure 7.9. Decision Refinement Reduces the Variance of Distributions on Product 
Attributes under Uncertainty. 
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7.A.1 Solution of Requirements Negotiation Problem using Methodology F.  

The formulation of subproblem F3 in terms of flopt and f2opt suggests 
the use of optimal sensitivity derivatives. Thus, in applying methodology F 
to the requirements negotiation problem, the first step is to solve 
subproblems F1 and F2, estimating the optimal sensitivity derivatives of fi'v t 

 and f2opt with respect to 1, w, and h from the solutions to these subproblems. 
To do this, values for the Lagrange multipliers for the constraints in which 
1, w, and h appear explicitly are needed. 

Solving F1 to determine a value for the Lagrange multiplier of the 
constraint 

ci - lwh, 

note that an optimal solution to this problem must satisfy the third KKT 
condition: 

afilac + X iaglaci 2(c1/10 - 1)(1/ 10) + X1 = 0. 
Then 

= (1/5X1 - ci/10). 
where X  is the desired Lagrange multiplier. 

Determining a value for the Lagrange multiplier of the constraint 

g2 = 2(hv + wh + 1h) - c2 
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appearing in subproblem F2, the third KKT condition is applied once again 
af2/ac2 + X2agiac1/42 = (1/3Xc2/6 - 1) - A.2 = O. 

Thus, 
= (//3XC2/6 - 1). 

The information required to solve subproblem F3 is now in hand. The 
optimal solution to problem 2(a) is a function of 1, w, and h. Denote this 
function by fi0vt(1,w,h). Compute the optimal sensitivity derivatives DifioPt, 
Dwhopt, and Dbflopt. (The optimal sensitivity derivatives can be computed 
from partial derivatives of the objective function and constraints with 
respect to the decision variables at the optimal solution.) To emphasize 
that 1, w, and h are parameters for subproblems F1 and F2, denote them by 

1 = pi, w = p2, and h = P3. 

Use the optimal sensitivity derivatives to construct an approximation 
f1opt(p1,p2,p3) flopt(pip,p20,p30) + E  DpihoptApi 

about the point (p10,p20,p30) •  

Define f2oPt(p1,p2,p3) in the same way, and approximate 
fePt(P1,P2,P3) fePt(PAPAPA + E DpifePtApi 

To compute the optimal sensitivity derivatives, the reasoning of [SOBIESKI, 
BARTHELEMY & RILEY] is followed: 

df/dp = affap + E af/axi hi/4 
The Kuhn-Tucker-Karush optimality conditions deliver 

af/axi + E agi/axi = o 
substituting this into the expression for the total derivative off with respect 
to p, 

df/dp = afrdp - Ei Ei Xi agyaxi axi/ap 
Requiring that the constraints remain satisfied as p is varied gives 

dgi/dp = ag/ap + E agi/axi axirdp = 0 
This permits one more simplification to df/dp, 

df/dp = af/ap + Ei Xi agifap 
Applying this method to differentiate the optimal value of f1 as the 
parameter pi is varied, 

DpifioPt = afirapi + Ej  xi aggapi = l(-wh) = (1/5X1- c1/10X-wh) 
where X is the Lagrange multiplier of the constraint g = ci - lwh 5 0 in 
problem 2(a). 

In a similar computation, determine 
Dp2floPt = (115X1- c1/10X-1h) 

and 
Dp3fioPt = (1/5X1- c1/10X-1w) 

Then 
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f1vt(P1,P2,P3) 
flopt(p10,p20,p30) (1/5X1- c1/10X-wh)Api + (1!5X1- c1/10X-1h)Ap2 

+ (1/5X1 - cill0X-1w)Ap3. 
Similar computations give 

Dpif2vt  = (1/3Xc2/6 - 1Xw+h) 
(the other derivatives are computed in exactly the same way), and 

f2°P4110,c1) 
fePt(131°,P2°,P3°) + 1/3Xc 2/6 -1Xw+h)Api + (1/3Xc2/6-1X1+h)Ap2 

+ (1/3Xc2/6 -1X1 + w)Ap3 

Using the approximations to fePt(,P1,P2,1)3)  and fePt(P1,P2,1)3), 
determine capacity = ci(w1,w2,P1,P2,P3) and cost = c2(w1,w2,P1,P2,P3) as 
solutions to the minimization problem posed for subproblem F3, restated 
here with appropriate variables. 

minimize: 
F = col f1iwt(P1,P2,P3) + c2 fePt(P1,P2,P3) 

subject to: 
P3-250 

col + CO2 = 1 

(01,CO2 0 

where the design variables are now: 
1= pi, w = p2, and h = p3. 
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Chapter 8 MULTIVIEW DESIGN APPLICATION 

8.1 Introduction 

This chapter summarizes the efforts accomplished in the selection of 
an Object Oriented Programming paradigm to enable the testing of ideas 
and concepts generated during the decomposition of the vehicle into form 
and function hierarchies. 

8.4 Applications 

8.4.1 Form-Function Test with Smalltalk 

An initial test project developed in the Smalltalk object oriented 
environment investigated a method to link abstract functions with design 
variables in an automobile example. An adjustable parametric equation 
approach was selected to model the system. The test project was a very 
simple two dimensional model of a vehicle that included only six design 
parameters. The six parameters were the length and width of the cargo, 
passenger, and engine compartments in a vehicle. The reason these three 
compartments were selected is because it was felt that the overall shape of 
the vehicle was a direct function of these three compartments. The system 
consisted of three dials that measured abstract functions, namely our three 
base level functions: Please, Transport, and Protect. The range on the dials 
was from 0 to 100%, and by pointing with a mouse and varying one or more 
of the dials, the overall shape of the vehicle changed. Figure 8.1 illustrates 
the computer screen with the initial vehicle and the dials at nominal 50% 
values. Note that the vehicle lines were approximated using bezier splines 
and several control points. The original model consisted of three rectangles 
located next to each other and representing the three compartments. The 
design variables were the length and height of each rectangle representing 
a compartment. 
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Figure 8.1. Smailtalk environment and test vehicle at 50% 
of functional values. 

Parametric relationships were chosen to model the form of the 
design. Parabolic equations were used to model the system. The equations 
were broken down by both function and design variable. One parabolic 
equation was developed for each unique pairing of function and design 
variable. The current model used eighteen relationships or parabolic 
equations. For each parabolic equation, three points were used. For a real 
design situation, hundreds of points may be used. The middle point always 
represented 1 or the nominal value for the design variable. The other two 
points represented the end points of the design variable relative to the upper 
and lower bound of the function considered. Figure 8.2 illustrates the same 
vehicle with an increase in the level of protection which results in a longer 
chassis, larger engine and cargo compartments. 
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Figure 8.2. Smalltalk environment and test vehicle at 70% 
of Protection value. 

As mentioned above, in the current simplified model, three functions 
and six design variables were considered so that eighteen parametric 
equations were created. The equations were built arbitrarily from the 
developers' impressions of how the form varied with the function. An 
extensive development test would require more careful study, knowledge 
based upon experts, and many consumer impressions. The cumulative 
change of each design variable was combined by multiplying the 
parametric contribution for each of the functions considered by the nominal 
value for each of the design variables. 

DV1 = Please(DV1,%) * Transport(DV1,%) * Protect(DV1,%) * 
(Nominal DV1 Value) 

This allows one to always get back to the nominal design by setting the 
function dials to 50%. If two dials are set to 50% and the other dial is 
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allowed to vary, the model will change only with respect to the one varying 
function only. 

An additive method of summing up or combining functions was not 
considered, but it could be considered in the future. The nominal value of a 
function does not need to be at 50%; 50% was convenient for the simplified 
model. 

Another parametric scheme that was considered was to use neural 
nets to define the relations. An optimal result may not be produced, but 
neural nets would help to manage the complex parametric relationships 
needed to model the transformation. The method considered is an 
extremely simple model of the parametric readjustment that occurs in a 
neural network. 

8.4.1.1 Future Considerations 

The simple model proved the feasibility of a function to form 
relationship, and was used as a basis for working with objects in the design 
decomposition. We also investigated how functional parameters should be 
set. For instance, the vehicle, according to the decompositions outlined in 
the previous chapters, accomplishes three primary functions: Please, 
Transport, Protect. How can we quantify these functions? Is the sum of the 
functions equal to 100%, or are they independent? We are still trying 
alternatives to access the results. An interesting approach is for instance 
to set a total of 100%. Then, a sports car could see its baseline functional 
breakdown at Transport: 30%, Please: 60% and Protect:10%. This 
characterizes a car that is more designed for pleasure than transport. But, 
how do these values translate to lower levels in the form hierarchy? Let's 
look at the second level form decomposition, we have the 
transportation/support systems: Chassis and structure; 
Entertainment/driver interface systems: exterior and interior systems; 
Power/transformation systems: Engine, transmission, and finally 
Computer control systems. Looking at the levels of Transport, Protect, and 
Please, the chassis could be broken down for instance in 20% Transport, 
75% protect and 5% Please. Interior systems would be broken down into 0% 
transport, 80% please and 20% protect. Breaking down the chassis further 
into a third level form, a side support beam would be broken down into 90% 
protect and 10% transport. The challenge now is to modify the transport 
function at the base level, and see an increase in the size of the side support 
beam of the chassis. Then, could we go back up the tree and decide that a 
size change in this specific beam is going to affect the transport function by 
such a value? These are questions that are still under investigation, and 
that will be possibly addressed in further research. 

Additionally, considering the above model, other parametric 
relationships should be considered, a more extensive example should be 
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conducted and possibly, an investigation of relationships modelling using 
connectionist systems should be considered. 

Having completed the proof of concept, other techniques of Object 
Oriented representation needed to be investigated to address decomposition 
techniques, and data storage. 

8.4.2 Work Related to OOPM 

Extensive research was conducted before building an OOPM. There 
are a surprising number of good examples to learn from [13]. Some of the 
work had merit in the theory of representing the design; whereas, other 
works were classic examples of proper object-oriented programming 
practice. Some systems are commercial applications and others are proof 
of concept systems. 

Lately, there have been many initiatives to represent engineering 
design and systems in terms of discrete objects. Some projects have been 
application domain specific, others have concentrated on the physical 
information only, and others have concentrated on the analysis of 
information only. Many disciplines converge simultaneously when trying 
to operate on the problem of design representation. 

The Sketchpad project done at MIT in the 1950s has been considered 
as the beginning of the modern CAD system. Sketchpad used constraint 
propagation and a primitive form of constraint modelling. There is no 
object-oriented programming in the Sketchpad project. 

The next major contribution to design decomposition using objects 
and constraint representation used the Smalltalk OOP system. The 
Thinglab project was conducted by Alan Borning [3] of Stanford University 
in 1979. Thinglab was a system which allowed a user to create new classes 
of objects along with the constraints associated with the object. The 
Thinglab project did not center on how to decompose an engineering design 
but was primarily concerned with creating a general purpose system to 
define classes of things and the constraints which define the behavior of 
these "things". Thinglab represented constraints or association 
relationships using a constraints class as one special class of its own, 
where specific information was added to make the constraint specific to the 
object being defined. 

In 1989, an object-oriented programming project called "Rubber 
Airplane" [15] was completed at MIT. This project applied some of the 
concepts of Sketchpad and a few of the concepts of Thinglab and constraint 
management to an Airplane example. The "Rubber Airplane" allowed a 
fairly flexible relationship object; the relationship object defined the 
behavior of the interface of two physical objects as the model stretched and 
contracted. This required a lot of specialized programming for the interface 
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of each of the two parts. The other drawback of the detailed relationship 
objects is that if one wanted to try new configurations for the parts and sub-
assemblies, new special programming was required to build the new 
configuration. The relationship of the constituent parts was not as flexible 
as the Thinglab project, but the Rubber' Airplane" was a more realistic tool 
for engineering design. 

Yoshikawa, from the University of Tokyo, took a much more 
theoretical approach with the General Design Theory [32]. The General 
Design Theory introduces the intersection of function spaces. The unique 
intersection of function spaces define different products in design. The 
General Design Theory is intuitively satisfying, but it lacks a firm 
theoretical basis, or extensive experimental justification. Later, 
Yoshikawa enhanced the General Design Theory by applying it to the 
Metamodel [29] project. The Metamodel is an attempt to build an analysis 
independent representation of a design. The Metamodel generates new 
views and interfaces to the views by instantiating a view from the 
combination of the analyses to be conducted, the class of the device, and the 
processes that the device must be exposed to. 

Nam Suh [26] from MIT expanded on the form-function 
transformation concepts that were being developed by Yoshikawa. Suh 
hypothesized that there is a transformation between function and form and 
between form and fabrication. A proper transformation could ultimately 
allow the design to progress directly from function to fabrication. Dr. Suh 
applied the theory to simple examples in material science. Others which 
have developed and advanced this theory are Rinderle [21] from Carnegie 
Mellon University and Pun/Colton [20] from the Georgia Institute of 
Technology. 

Today, some commercial applications contain some of the theories 
set forth in the earlier works. Some parametric modelers such as 
Parametric Technologies' PRO/Engineer [19] and The SDRC Geomod Solid 
Modeler [25] use the technologies of form decomposition through features 
and constraint modelling to link the features of the forms. ICAD [12] has 
similar features imbedded in a parametric solid modeler; it adds more 
powerful knowledge based capabilities, but it is more tedious to use than a 
solid modeler. 

These approaches were studied, and an Object Oriented 
Programming Methodology (OOPM) was derived. 

8.4.3 Building the OOPM  

The OOPM was built to model the decomposition needed in 
engineering design. The OOPM is based upon the concepts outlined above. 
The OOPM is an engineering analysis representation model developed on 
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Smalltalk. The geometry and surface information are, for the moment, 
assumed to be external to the system. 

The goal of the model was to represent and decompose the 
engineering design. The design is broken into Parts and Assembly classes 
(Refer to Figure 8.3). Each Part and Assembly has a PartTransformation 
class. A part transformation can be thought of as a transformation matrix 
as explained by Suh. The part object's part transformation can be thought 
of as an elemental part transformation. The assembly part transformation 
can be thought of as a transformation tying the part and sub-assemblies 
together. The assembly transformation includes the interactions of the 
lower level parts including impedance functions of the Energy, Material 
and Information interactions. 

The PartTransformation class is divided into three main divisions. 
The Relation class is the grouping of objects which relate the features of the 
part or assembly being modelled. The relations would come from analyses, 
expert system rules, equations, and rules of thumb. The Yoshikawa Meta-
Model would instantiate relations depending on the class of the part and the 
modelling analysis requested. The second class of objects is the Feature 
class. The features are the minimum attributes that are needed to describe 
the part or assembly. The features are assumed to come from a feature-
based modeler. The features can be thought of as the dials that one would 
adjust the design to achieve the desired effect. 

The last class of objects is the StateScenario class. The StateScenario 
is analogous to the load case in Finite Element Analysis. The StateScenario 
allows one to simulate and document the operation and test cases for the 
design. The StateScenario is further broken down. In design, it is often the 
case that one partially knows the input and output of the system. The goal 
of the design is to refine the inputs and output effects by adjusting or 
tweaking various parameters; that is the basis for the design of the 
StateScenario. The InputVector includes the input effects. The 
OutputVector includes the output effects. The StateVector represents the 
state of the system during the current simulation. The StateVector 
typically contains the parameters that one adjusts to get the favorable 
transformation. 

Other important classes are the Attributes class and the Dependency 
classes. The Attribute class is a catalog of design variables and behavior 
variables that can be used to describe Dependency and Relation objects. The 
Dependency class is the catalog of the variables used in StateScenarios and 
Features in the design process. The Dependency objects are variables that 
include an Attribute object, but also have more semantic meaning and 
numeric values for the problem at hand. 
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8.4.4 Multiple Views 

The next major section of the data representation of the OOPM is the 
View class. The View class stores the alternative views of the design. The 
class of views is contained inside the Assembly class. The view represents 
the alternative ways of viewing the design from the current, selected 
assembly down to the lowest level in that branch of the system. The View 
class is comprised of the CircuitBlock, the Link, and Interface classes. The 
CircuitBlock class represents the new self-contained sub-problems. The 
Links class is a quick reference to view the hierarchical nature of the 
CircuitBlocks for that view. The Interface class contains the interfaces of 
Dependency objects from one circuit block to the other circuit block. The 
Interface portrays the critical interactions of the circuit blocks. The views 
are still under development in the OOPM, and no example is available at 
this time. 

8.4.5 Example 

A simple design case was implemented in the OOPM for testing 
purposes. It is expected to use the data derived from the decompositions 
above to more thoroughly test the OOPM. This example illustrates some of 
the capabilities of the system, and some of the uses that were expected from 
it. 

Figure 8.4 illustrates a Smalltalk screen with a subset of the Engine 
Assembly coded in the OOPM. The screen on the top left lists the 
assemblies. Note that each assembly is automatically assigned an ID 
number which will be later used for the different views and the 
decompositions. The top center screen lists some of the parts associated 
with the cylinder block which is highlighted. The bottom left screen is an 
output screen that display some of the attributes of the assemblies and a 
description field. The relation screen lists the relations that are associated 
with the assembly. Note also that the ASSEMBLY field is highlighted, 
which means that the object considered is an assembly, not a part. 
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Figure 8.4. Test engine screen in Smalltalk with Assembly selected. 

Should one click on the PART field, the information about the oil pan 
bolt 1 part is displayed in the center right field. (Figure 8.5) 
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Figure 8.5. Test engine screen in Smalltalk with Part selected. 
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Figures 8.6 and 8.7 show how the system allows selection of objects, 
whether they are subassemblies or relations using windows, and how 
attributes and dependencies are displayed. 

Figure 8.6. Window structure of OOPM 
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Figure 8.7. Attributes and Dependances screen of OOPM 



The system is still under development. It was designed to allow easy 
input of hierarchical information derived in the form and function 
decompositions, and was expanded upon to identify holes and incomplete 
information. For this purpose, an additional feature was included in the 
system: the ability to superimpose decomposition methods and reorganize 
the data 

8.4.6 Decomposition 

In searching for decomposition techniques, many researchers have 
domain specific impressions of decomposition. Our study attempted to seek 
out the application independent aspects of decomposition. 

Every system is a unique connection of its parts and their 
interactions. A more complex system may have sub-parts and 
interconnections on many levels. This is a very simple model of a system, 
but it yields useful results. The system was modelled using Graph theory 
which can be attributed to Euler (circa 1736). 

Using Graph theory, the system is composed of vertices and directed 
arcs. A vertex is some sort of design variable, evaluation, enabling event, 
or thing that must be evaluated. The arcs link the vertices together. One 
arc can link two vertices at most. The arcs are a result of some sort of 
relationship between vertices. An arc may connect vertices due to an 
engineering analysis, a corporate policy, an equation, or an expert system 
rule. The reason why a relation exists is called the semantics of the 
relationship. As a side effect, a structure of arcs are built that can be 
viewed independently of the semantics of the problem. In modelling a 
complex system, a complex graph of vertices and directed arcs could be 
built. The problem of decomposition is to control this topology of arcs to the 
advantage of the users of the system. 

Now, what are the tools available? Given the assumptions about the 
modelling of a complex system, there are only a few major strategies that 
can be invoked. One could rebuild the vertices or enabling conditions so 
that the interconnections are simpler or less costly; we will call this Vertex 
Decomposition. This is analogous to the to the work being done with 
parametric feature based modelers. 

Next, one could try to manipulate the topology of the structure of the 
problem to minimize the complexity and interconnections of the problem; 
this will be called Structural Decomposition. Structural decomposition is 
not very quantitative; the Steward [24] method of decomposition is a simple 
structural decomposition technique to implement. 

Lastly, one could factor the semantics of the problem into account to 
reduce the redundancies of the problem; this method will be called 
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Semantic decomposition. The Semantic decomposition can be further 
broken into two methods. The first Semantic decomposition methods use 
numerical methods which require information about the numerical 
information of the relationship. The numeric information is manipulated 
without truly understanding the semantics; examples of a numeric 
Semantic Decomposition methods would be the Dantzig-Wolfe 
decomposition method and General Aggregation Decomposition methods. 
The qualitative Semantic decomposition method would require one to know 
or be cognizant of the semantics. New relationships or redundant 
relationships could be manipulated to simplify the topology of the design 
process or to remove vertices that may be unneeded or redundant. 
Examples of qualitative Semantic methods would be algebraic evaluation 
and the Kron Tearing Analysis. 

The OOPM has been interfaced with the Steward's Structural 
decomposition which Rogers [22], from the NASA Langley Research 
Center, had implemented. The Relations class was implemented with a 
tag to identify the relations which effect a certain discipline, i.e., structural 
analysis, packaging, marketing. A new view is generated depending on 
the discipline. 	The Views have been designed so that the 
PartTransformation class and the View class operate on the same relations 
and dependencies to reduce the ambiguity of the final design. 

An example of the decomposition algorithm is illustrated in the next 
two figures: Figure 8.8 and 8.9. Initially, the relations are very random. 
Figure 8.8 illustrates the linkages between functions and design variables. 
The numbers on the both sides represent a relation number. For instance, 
relation 49 says that piston mass is a functions of variables that are also in 
relation 17, 26, 61 and 69. The links are in both directions, i.e., feed 
forward, and feed backward. The aim of the decomposition is to reorder the 
relations such that the feed backward links are minimized if not 
eliminated. Ultimately, if links backward cannot be eliminated, then these 
relations are tightly coupled and should be addressed together. Otherwise, 
relations should only feed forward. Figure 8.9 illustrates the relations after 
decomposition through the DEMAID system. Note that the feedback loops 
have been reduced to a minimum, and the order of the design in this 
particular example should be: 1 or 2 (at the same level, the most important 
relations are the materials costs and fuel consumption. The third relation 
is time, the fourth is effective work available. The coupled relations (39 and 
40) are piston mass and pure oscillating mass. 

The example was filled with arbitrary data for checking purposes. It 
should be tested extensively with real data from a vehicle to see the value of 
the decomposition technique. 
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8.5 Summary 

The present Demaid system is directly linked to the OOPM. One can 
enter the data in the Object Oriented Parametric Modeler and then run 
Demaid to reorganize the data. However, more work needs to be done to 
investigate the Steward Structural Decomposition. A feature based modeler 
should be connected to the OOPM as well as an expert system to feed 
relations into the system. A GenericConcept class could be developed to 
instantiate rules and relations to the OOPM. This is similar to some of the 
features in the Yoshikawa Metamodel. An interface should be developed to 
the Function-Form Mapper to obtain the output forms from the mapper. 
The output from the mapper could be decomposed and rearranged into sub-
assemblies in the OOPM. Also, more decomposition methods need to be 
investigated. 
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Chapter 9 MULTILEVEL DESIGN APPLICATION 

The hierarchical design approach, together with the object oriented 
model, needs to be explored in terms of growing levels of detail in a design. 
Chapter eight shows a single example of overall vehicle design where the 
major parameters were at the same gross level of definition. This chapter 
investigates the approach within the context of several levels of detail as a 
design refinement is presented. In particular, it applies the approach for 
design decisions related to a system (car), subsystem (door), and component 
(door crash stiffener). This allows one to proceed down the hierarchy to 
three levels and to investigate the multilevel linkages of the design variable 
linkages,  constraints, and procedures. The application is largely geometry 
oriented and provides the opportunity to explore multilevel geometric 
linkages and the suitability of using commercial CAD systems to support 
such an approach. 

9.1 Description of the Automobile Door Design Example. 

The three-level problem, corresponding to the design of an 
automobile door, is shown schematically in Figure 9.1. Decision elements 
corresponding to the vehicle, door, and a crash stiffener structure located 
within the door have been identified. These decision elements correspond 
naturally to elements of the vehicle hierarchy. It should be noted that this 
is not the only possible decomposition of the problem into decision elements. 

The system integration approach to design involves modelling the 
door at some level of detail, for example, overall geometrical outline 
(shape), weight, and side impact deformation. We then postulate some 
simple engineering theories relating these quantities, at the system level, to 
each other, and to other system parameters. System-level optimization 
results in values for the door/vehicle system interface parameters. These 
parameter values then enter the door design problem as constraints. 

In a multiobjective problem, the door (subsystem design) problem 
may have local objectives which are considered independently from the 
vehicle system design. More typically, a cumulative constraint function is 
formed and used as an objective function for the subsystem design problem. 

Up to this point, the flow of design requirements in this process has 
been strictly top-down. If feasible solutions to the subsystem design 
problem cannot be found, the multilevel approach provides for iteration 
with the system level problem. This is done by incorporating optimal 
sensitivity derivatives of the cumulative constraint function as constraints 
in the system-level optimization. 
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Figure 9.1. Hierarchical Design Problem: Automobile Door. 

9.2 Software Infrastructure 

An effective design environment framework is composed of five key 
components: a database, an expert system, a modeler, a set of analysis and 
optimization tools, and a CAD system. Each piece plays a distinctive role in 
the design process. For example, an expert system in conjunction with a 
database performs a functional decomposition of an object. The object is 
redefined into a finite number of forms. The object's function decomposes 
into a finite number of sub-functions. With a modeler, a set of feasible 
form-to-function sets are optimized using its user defined rules. These 
subsets support the overall function of the initial object. Once reaching an 
optimal solution, the database is updated and the object is processed 
through a CAD system for production and operation/support analysis. 
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Selection of suitable software utilized the following criteria: 

• Flexibility - supporting all phases of concurrent engineering 
• Hardware Independent - software compatibility on a variety of 

platforms 
• Open Architecture - easy assimilation into existing engineering 

environment 
• Industry Standard - support existing standards in graphics, 

networking, windows, and data exchange. 

Additionally, the overall framework must create an environment 
which compliments the goals of concurrent engineering. It must lend itself 
to hierarchical decomposition. It must maintain a database which is 
manageable and prevents repeating past mistakes. Lastly, it must act as a 
catalyst for involvement by all members of the design team. 

9.2.1 Software Platform 

Selection of software platforms considered to various degrees existing 
industry standards. Micro-Station, EMS, CATIA, and CV were just a few 
of the types of platforms considered for this research. However, the two 
platforms selected were I-DEAS and ICAD. Each of these platforms 
possessed most or all of the five essential components of the software design 
framework. I-DEAS was principally selected for its feature-based 
capabilities. It is currently used for the system description and the finite-
element analysis of the components. ICAD was selected for its parametric-
based capabilities. It is currently used at the subsystem and component 
level. With the principle focus at the subsystem level, the research takes 
advantage of ICAD's ability to deliver deterministic, probabilistic, 
quantitative and nonquantitative information. Both of these platforms are 
addressed in greater detail below. 

The current platforms require two databases. The principal 
database, Oracle, is a library for all design work and coordinates and 
facilitates operations in and out of ICAD. Oracle uses CLIPS to perform 
many of its export functions. I-DEAS uses the Pearl database for its 
operations. Discussions about the two databases and their functions are 
discussed below. 

9.1.1.5 Description and Functions of Software Components  

CLIPS: 	CLIPS is an expert systems facility. CLIPS, although written 
in C, looks and behaves like Lisp. Programming in the CLIPS expert 
system functionally decomposes a design objective into a number of feasible 
form-function sets. As expressed by Oracle data structures, forms and 
functions are described and linked to together. Each form "knows" what 
functions it can perform and within what boundaries it can perform those 
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functions. Each form also "knows" what other functions it requires to 
operate. Hence, in the initial stage, original objective functions are 
interrogated by CLIPS using forms and functional capabilities described in 
Oracle. This process results in a series of feasible form-function sets which 
are modelled to determine optimal form to function performance. 

ORACLE: Oracle provides three principle services to the design 
environment. It serves as a communications hub between other 
components. Oracle provides a global model definition that each team 
member and each software product can share. Hence cooperation is easy to 
maintain and design histories as well as decision paths are documented. 
Finally, Oracle provides the general reference information needed for the 
design. 

The design environment's databases provide crucial linkages 
between each of other components. With a number of products working 
together on a design, creating one to one translators, for each possible 
connections, is an enormous task. The task increases factorially with the 
number of products. Since expendability is important to a flexible software 
framework, a central database is used which requires only one pathway per 
product. Of particular interest is the I-DEAS pathway to ICAD. Developing 
a robust capability to translate model information between the Pearl 
database in I-DEAS and Oracle paves the way for system, subsystem, and 
component interactions. 

A globally shared model description is contained in Oracle. Once the 
function based decomposition is completed, Oracle communicates each of 
the proposed concepts to the modelers. Each modeler exercises its design 
rules on the set of forms composing the proposed concept. The modelers 
determine how best to build the proposed set of forms into a functioning 
design model, relying on Oracle for coordination. Oracle coordinates the 
contributions of each team member and maintains design history and 
design decisions. 

Oracle are also serve as an online library for reference information. 
Available parts, previous designs, costs, and material attributes are all be 
maintained in one place so that work is not duplicated and a more self-
contained design history is maintained. 

ICAD: 	ICAD was chosen as the subsystem and component modeler 
because it offers the most capable environment for complete parametric 
design. ICAD's parametric programming results in an interactive 
application environment, the designer is led through a series of questions 
which prompts the designer for inputs. The application creates geometric 
and property outputs based on rules and design data imbedded in the 
application's code. Updates to this environment, particularly the user 
interface development and database integration are easily assimilated into 
the platform with little downtime. 
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Where I-DEAS utilizes feature-based design, ICAD builds designs 
with IDL, which is ICAD's design language. There are three important 
advantages to programming in this design language. Firstly, the process 
offers total control over all aspects of the design model. Secondly, the 
designer is not constrained by a small number geometric primitives. 
Thirdly, ICAD gives the coder the flexibility to interface with other 
platforms or write code directly into the environment. 

9.3 Multilevel Model of Door Geometry 

The software infrastructure is used to capture the multilevel model of 
the door and crash bar consistent with system (car) level geometric 
constraints. The following summarizes selected information describing 
the door. The door subsystem was modelled with ICAD , and the detail of 
the crash bar and other components are modelled an analyzed with IDEAS. 
The relationship of the design to the overall vehicle measures of Please and 
Protect are also discussed. 

9.3.1 Door Subsystem Modelled with ICAD 

A door design model in ICAD satisfies the design requirements for 
functionality, realistic detail, and parametric simplicity. Two functions of 
pleasing and protecting affect the door's form. The doors created in 
response to these functions must contain sufficient detail to be realistic 
while remaining parametrically simple. For example Figure 9.2 depicts an 
appealing door created from less than twenty parameters. 

Functional modelling criteria are applied to the subsystem attributes 
and the component forms. At the subsystem level, the function please is 
fulfilled by the door's geometry, window area, and weight distribution. All 
are subsystem attributes. Within the door's subsystems, the function 
protect is fulfilled by a stiffener, latches, hinges, and frame members. 
Protection is provided by these component level forms. All are primarily 
dependent on an input called Impact, representing crash intensity. 

To insure realistic detail and protection, the door must fit into the 
car. Thus system level geometric constraint dictates many of the door's 
ICAD inputs. As seen in Figures 9.3 and 9.4 which indicate door inputs, 
this geometric constraint is sufficiently detailed to insure compatibility 
between the system and the subsystem. The ICAD code creates the 
geometric components based on user-defined inputs and design rules. 
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Figure 9.3. Door Inputs (Lateral View) 



Figure 9.4. Door Inputs (Longitudinal View) 

Design rules for the door fall into two categories: those which insure 
geometric compatibility between the door components and those which 
determine the size, placement, and number of each component based on 
pleasure and protection. A pseudo-code translation of many of these rules 
is included below in Table 9.1. 

Rules governing geometry are compatibility relations such as: 

• The lower body section's front frame's length is the distance up the height 
of the 	 lower body section and in fib degrees. 
• The middle body section's front, right, and bottom corner must coincide 
with 

the lower body section's front, upper, and 
right 

corner. 

Example IDL Code: 

(middle-body-f :type box 
:Display-controls '(::color :blue) 
:width (the :wd) 
:height (the :hd)  
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:length (the :td) 
:orientation (:numeric (roll :longitudinal (degme (+ (the 

:Bb) 
(the :Bd) -90)))) 

.position-about 
(:local point (the :middle-body-f (vertex :right 

:bottom :front)) 
:model-point (the dower-body -f (:vertex :right :top 

:front)))) 

[All frame members are sized and positioned in 
this manner.] 

• The stiffener is position within the middle body section. Its vertical 
placement is a fraction of the middle body section's height. planes of the 
door's total structure and depicts the skin of the door. 

Rules implementing functional requirements are relations such as: 

• The number of latches is a function of impact. 
number = Impact /500 rounded to the closest integer 

• The latches are to be evenly distributed along the rear middle body section 
frame. 

• The size of the latches is a function of door geometry, number of latches, 
and the impact power. 

Latches are 40% the width of the middle body section 
Length is the thickness of the middle body section 
Height is Impact1(1000 * number) 

• The number and placement of hinges is a function of impact and pivot 
axis. 

If standard then number = Impact I 500 on the front of the 
middle body section 

If gull wing then number = Impact I 300 on the top of the 
top window frame 

If swing up then number = 1 on the inside, front, and top 
of the middle body section. 

• The size of the hinges is dependent on the impact, axis of pivot, the 
geometry of the door, and the number of hinges. 

If standard: 	radius= Impact * length * .000002 
length = Impact * number * door section 
height * .0002 

If gull wing:radius= Impact * height * .000002 
length = Impact * number * door section 
height * .0002 

If swing up: 	radius= Impact * .000003 
length = door section width * .03 

• The sizes of the window frames vary based on pivot axis, impact, and door 
geometry.  
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If standard or swing up then window frame height and 
width are .1 

If gull wing then window frame height = Impact * .00006 
* length * .35 and frame window frame width = 
Impact * .00006 * length * .5 

• The size of the stiffener is a function of door geometry and impact 
intensity. 

Length is determined by the position within the middle 
body section 

Width is 60% of the middle body section's width 
Hei ht = .0001 * len h * Im act • 

Table 9.1. Pseudo-Code for Subsystem Level Door Description 

Example IDL code that is used to implement the pseudo-code is 
shown below in Table 9.2. Each of the rules in Table 9.2 is designed to 
produce reasonable results and reflect the contribution of the subsystem's 
function, however, for the purposes of this study, no attempt was made to be 
exactingly correct in terms of engineering theories and models. 

(defun stiffener-height (impact length) 
(* length .1 impact .001) 

) 

(stiffener 	:type box 
:Display-controls '(:color :red) 
:width (the :wds) 
:height (the :hds) 
:length (the :Ids) 
:orientation (:numeric (roll :longitudinal (degree (+ (the 

Bb) 
(the :Bd) -90)))) 

:position-about (:local point (.face-center :front) 
:model point 

(mapcar '+ (the :door-section-f (:edge-
center :front :bottom)) 

(list 0 0 (* (the :hd) (the :pds))))))  

Table 9.2. Sample IDL Code 

Interaction between system, subsystem, and component models can 
be seen both within the ICAD models and between the ICAD and the I-
DEAS environments. 

From the system level, the car model in I-DEAS specifies the basic 
geometry of the subsystem door model in ICAD. At the subsystem level the 
door may need to open gull winging. This may be due to a system level, 
height or pleasure requirement. Hinge arrangement and frame sizes must 
then change at the subsystem level. Figures 9.5, 9.6, and 9.7 depict these 
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changes. If at the subsystem level gull-wing doors are chosen, then at the 
system level the roof of the car must be designed to accommodate the new 
loads and make room for hinges. 

Figure 9.5. Example of Changes In Door Configuration Showing Selection of 
Standard Hinges. 

A second decision path which satisfies the protection function is 
highlighted below. To protect, the door must endure some impact without 
harming the passenger. This impact criteria directly effects the door's 
stiffener. It also affects the door's frames, latches, and hinges. With I-
DEAS's FEM, finite element analysis is performed on the component model 
of the stiffener. Results from that component design are reflected in the 
ICAD subsystem model of the door. As the door's geometry changes, 
differences in the number, size, and placement of hinges and latches occur. 
These differences must be fed up to the system model of the car in I-DEAS to 
insure that the door can still close safely. 
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Figure 9.6. Example of Changes in Door Configuration Showing Selection of 
Swing-up Hinges. 

Figure 9.7. Example of Changes In Door Configuration Showing Selection of 
Gull-wing Hinges. 
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9.3.2 Detail Component Modelled with IDEAS  

IDEAS was selected as a suitable featured-based program since it 
possessed four of the five software components of the design framework. 
While it lacks an expert system, I-DEAS is a fairly comprehensive CAD 
environment which is suitable to describe the system. The salient 
advantage of the I-DEAS package is its feature-based capabilities and this, 
more than any other reason, motivated its selection. I-DEAS processes 
geometric data to the pearl database,  as shown in Figure 9.8. 

Geometry 
	

Landing Process 	 Result 
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Figure 9.8. Loading Geometry Into the Pearl Database 

The source of its data is either a wireframe or an object. The 
database contains tables that define and describe the geometric data. A set 
of tables is referred as a relational data model. After the geometry is loaded 
into the database, newer versions of an object or wireframe can be added 
while older versions can be deleted. The Pearl database interfaces with 
other databases by accessing an administrator, which is a library of 
interface subroutines. 

Version 5.0 of I-DEAS has been recently released and is unique from 
earlier versions in that it allows for featured-based definitions.  This is a 
significant advancement over traditional solid object modeling methods. 
An advantage of user-defined features is the modeling of objects which 
possess variable definitions. One example is hinge placement on the frame 
of a car. By changing the variable dimensions, the dependent dimensions 
of the feature are automatically adjusted. So the dimensions which shape 
the hinge are dependent upon variables defined by the user. 

In the example provided in Figure 9.9, the user has feature defined a 
plate with a slot hole. Whenever this feature is accessed, the dimensions 
are of fixed value except for the plate length. Each time the user specifies 
the length the object is automatically generated. I-DEAS stores features in 
a library which allows other users to share access to the design. 



Figure 9.9. Example of a Feature. 

Feature-based modeling controls both the dimensions and the 
orientation of the entities through parameters. Each time a feature is 
accessed, its parameters are processed so that the user can input new 
values for the parameters. The feature's history is re-processed with the 
new values to modify the geometry of the feature. The feature's parameters 
allow members of the design team the capability to set design standards 
and controls. Hence a feature-based design at the system level can 
interface with form variations produced at the subsystem level. A 
parametric-based form defined in ICAD can be fed through the Oracle 
database to the Pearl database and finally , into the feature-based system in 
I-DEAS. 

To further explain the purpose of feature parameters consider the 
example in Figure 9.10 below. The feature is a block with a circular hole 
cut through it. Note that the feature consists of two entities: the block and 
the hole. The user can create parameters which control either the block 
and/or the circular hole. The user may chose to control the hole by creating 
a parameter that controls the translation of the hole along a given axis. In 
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the example above, the hole is the controlled entity. The translation of that 
controlled entity along the x-axis is the controlled detail. Here the specified 
parameter affects only the controlled detail of the control entity. This 
feature allows the user to move the hole along the x-axis each time it is 
accessed. 

Figure 9.10. Example of a Feature Parameter 

In addition to user-prompted inputs, feature parameters can also be 
expressed equatorially An equatorial parameter defines a mathematical 
relationship between two other parameters. Some examples of equations 
are: 

• second + sqrt(first) 
(Calculates the value of "second" plus the root value of "first") 

• cos(theta) 
(Calculates the cosine value of "theta.") 

Finally, parameters may be limited by the user to a minimum/maximum 
value. Hence constraints at system level can guard against any 
inadmissible form which is generated by the subsystem level. 

Analyzing the door's function to protect requires predicting the 
behavior of its component structure, which in this case is a beam The 
beam's behavior is characterized by its displacement. Therefore, beam 
displacement is analyzed in I-DEAS utilizing finite element tasks. 

The finite element method estimates stress at each node. A separate 
estimate is calculated from each element connected to each node. 
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Displacement results are stored to analysis datasets as vector data at nodes. 
Stresses are written to analysis datasets as symmetric tensor data at nodes 
on elements. Figure 9.11 depicts the six stress values calculated for the 
beam elements. 
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Figure 9.11. Finite Element Analysis of Component 

Finite element analysis is also applied to door components to asses 
their performance under load. Applying a parabolic tetrahedron mesh to 
an object increases the precision of the analysis. Figure 9.12 depicts the 
results of a stress analysis on a door hinge tap constraints at the support. 
The dashed lines indicate the original geometry. 

Figure 9.12. Analysis of Deformation Results 
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9.4 Summary 

This chapter has presented an example of a car door to illustrate and 
test the multilevel hierarchical design approach and the adequacy of 
commercial software to provide a software infrastructure. The results are 
encouraging and indicate that complex geometries and detailed analyses 
can be incorporated in the method. The results also illustrate how linkages 
can be made between a detail component design and the overall vehicle 
performance measures such as Please and Protect. The results also show 
some of the limitations and advantages of the software and the 
methodologies. 



Chapter 10 SUMMARY OF ACCOMPLISHMENTS AND ISSUES 

This report summarizes the work to date in the areas of developing 
the requirements for the Object Oriented Vehicle Model and for 
Hierarchical Decomposition Design Methodologies. 

The work in the OOVM has developed the preliminary 
decompositions in the function and form and has started to relate them to 
the Voice of the Customer and the Baseline Parameters. A set of inputs 
and outputs has been determined for the model and subsets defined for 
testing. The model has been tested against previous GM work to assure 
that nothing has been left out, as well as that compatibility is maintained 
with GM terminology. A first attempt at integrating the model with a 
database, an expert system, and the Voice of the Customer has been 
successfully completed. 

In the area of hierarchical decomposition, the work summarized in 
this report represents the initial efforts to clearly define the research 
problem and to formulate suitable and effective approaches for dealing with 
it. The report briefly outlines the work completed to develop a prototype 
design problem and to implement some of the basic software tools necessary 
for its solution. Selected examples are explored to clarify issues, identify 
potential benefits, and uncover problem areas in a hierarchically 
structured design environment. 

In summary, the two activities carried out to date in these studies 
have resulted in the following accomplishments: 

1. Development of an overall design strategy based on hierarchical 
design methods and object oriented modelling for addressing 
automotive conceptual design driven by customer requirements. 

2. Definition of the vehicle from the customer perspective via QFD. 

3. Definition of the vehicle from an operational perspective in terms of 
vehicle functions. 

4. Definition of the vehicle from a physical perspective in terms of form 
descriptions. 

5. Identification of sample linkages among the perspectives. 

6. Development of a theoretical framework for multilevel automotive 
design. 

7. Selected experimental applications to test the design approach 
concepts and possible software infrastructures for both overall 
design and multilevel component design. 
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The basic concepts for the proposed design strategy have been 
conceived, discussed , characterized, and examined. It is felt that the 
design strategy provides a good foundation on which to build. It contains 
many highly desirable features of a new framework for design, such as 

1. modularizes the process and models, 
2. provides direct customer requirements impact on design, 
3. utilizes advanced information management concepts to benefit an 

information driven process, 
4. exploits evolving software products based on object oriented concepts, 
5. facilitates the use of computing technology to aid design bookkeeping 

and decision making, 
6. incorporates effective use of multilevel optimization concepts, and 
7. incorporates multiview approaches to design. 

While the above design approach has good concepts and high 
potential, there are certainly many issues which remain. Some of these 
include: 

1. Refinement of concepts to further levels of definition, 
2. Actual ]inking of vehicle multiple view, 
3. Incorporation of realistic design variables, 
4. Representation of actual design experiences, 
5. Integration of design rules, 
6. Better integration of the design information, process, views, and 

multiple levels, and 
7. Scaling of multiple optimization functions. 

It is believed that such issues can be addressed within the context of 
application of the model and methods to realistic design scenarios and 
implementation of the approach in prototype software. Plans for 
addressing these issues are discussed in more detail in chapter 11. 
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Chapter 11 PLANS 

11.1 Planned Tasks 

The next year's work will address the four key tasks outlined below 
and their respective areas of emphasis relative to these tasks. This work 
focuses on implementing the results of this work in software on appropriate 
hardware platforms. The Object Oriented Vehicle Model will be expanded 
and tested within the framework of the hierarchical decomposition 
strategies. 

In particular, the proposed second year effort will study the 
applicability and effectiveness of three general decision support methods: 

• deterministic approaches such as the DSS method, 
• probabilistic approaches, and 
• methods based on multi-level optimization. 

The general outlines of these approaches have been presented in the 
present report. Each will be examined in greater detail, and their 
suitability for use in automotive design will be studied in the context of the 
door design problem described in this report. 

A key part of the proposed work will be to continue development of the 
prototype software system initiated during the first year. While most of the 
major software components have been identified and preliminary work has 
been initiated to implement the prototype problem, many of the details have 
not been adequately resolved. Work during the second year will be focused 
on completing a reliable working prototype software system. Particular 
attention will be directed to the following key areas: 

• Development of the subsystem representation where it is anticipated 
that much of the decision-support methods will be utilized, 

• Development and implementation of suitable information framework 
tools to allow ready and effective interaction between the system, 
subsystem and component levels. 

• Implementation of decision-making processes at each of the three 
hierarchical levels and study of the resulting system-wide 
interactions. 

11.1.1 Task 1- Implement and Test Prototype Software Framework 

In this task, a software framework will be implemented and tested 
for the automotive conceptual design process based on an Object Oriented 
Vehicle Model using the Hierarchical Decomposition Approach. The 
software framework will include appropriate user interface, information 
management, optimization and expert system capability integrated on a 
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various hardware platforms. The framework will include storage, 
management, and linkage of information characterizing the vehicle at 
several levels including both functional and form descriptions and at 
several levels of detail. The framework will be tested on selected conceptual 
design examples at the gross vehicle level and at a component level. The 
key goal of this task is to verify the completeness and linkages of the 
software framework and to ensure that management of the vehicle form, 
function and design rules is consistently carried out. 

11.1.2 Task 2- Refine and Extend Automotive Design Methodology 

This task will build on the studies to date in design methodology. The 
methodology has included consideration of quality function deployment, 
function and form relationships and their respective hierarchical 
decompositions in describing a vehicle design. Each of these relationships 
provide different representatives of an automotive design. Work to date has 
provided representative descriptions of the vehicle in terms of the three 
relationships and illustrated sample linkages. An initial set of 
relationships has been defined in each of these areas. This task will 
expand in the level of hierarchical decomposition of the vehicle description 
and will develop ways to link the various decompositions. This task will be 
to establish a clean thread of linkage between the high level customer 
requirements associated with QFD and the form description of the vehicle 
and to define how optimization concepts can be applied to achieve "best" 
designs. 

11.1.3 Task 3- Develop a Database Approach for Automotive Design 

It is critically important to establish an approach to managing the 
information associated with vehicle design. As a vehicle design is 
continually refined in terms of customer requirements, functional 
requirements or form description, the qualities of information escalate 
rapidly. Various approaches to database management visit including 
relational, objected oriented or object concepts on a relational environment. 
Each of these have certain assets and liabilities. Relational approaches are 
more flexible, but can have performance difficulties. Object oriented 
methods can be a more natural way to decompose a large product but can be 
less flexible, and have poorly developed performance experience. 
Combinations which build on both may be more attractive at least until 
object oriented software matures. This task will explore the various 
approaches, recommend a strategy, and incorporate it in the software 
framework. 
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11.1.4 Task 4- Apply Prototype Software Framework to Representative 
Vehicle Design 

The prototype software and methodology developed in the work to date 
and in the above ongoing tasks will be applied to the study of representative 
automotive design. In particular the study will investigate how changes in 
one of the three customer requirements such as Please, Protect or 
Transport can result in changes in vehicle component design. Such design 
changes can then subsequently lend to attendant modification in the other 
two customer requirements. The software infrastructure will provide an 
opportunity to carry out design tradeoffs and will show examples of linkage 
between high level customer requirements and component design the 
application will use one or more baseline vehicle configurations as test 
cases and will investigate sensitivity of the configuration to changes in 
customer requirements. Selected optimization concepts will be tested for 
test vehicle to show how various customers requirements can be best met. 

11.2 Testing Methodology 

The test philosophy is to take these and other scenarios and 
determine the effects of changes in the baseline parameters of a 
representative vehicle throughout the breadth of the vehicle as a method of 
studying the integrative ability of the model, design methodology and 
information storage mechanisms. It is not the object of this study to delve 
into detail design of components. 

Testing will focus on representative design scenarios to test the 
model and the underlying design methodology. We intend to explore the 
functions Transport, Please and Protect using a car which has nominal 
baseline parameters. The following scenario can be envisioned to test the 
sensitivity of the functions to changes in each other. A requirement for the 
car is to Access Passenger Space in the Transport function. Increasing the 
size of the door increases the Transport function by increasing the value of 
Access Passenger Space. Increasing the door size also affects the Protect 
function, as the door would need to be strengthened to maintain a constant 
value of protection. If the door size is modified, the value of Transport may 
be reduced (the car would weigh more, and hence lose fuel economy), and 
the value of Please may be reduced because the heavier car doesn't perform 
as well. This may lead one to increase the size of the engine. One can 
easily see the complex network that quickly develops. The Object Oriented 
Vehicle Model, interacting with the Hierarchically Decomposed Design 
method (developed in the parallel contract), should allow one to more easily 
see the interactions of design decisions on the form and performance of the 
vehicle. A second scenario which can be imagined involves the Please 
Function. If a customer wants to increase the Entertain function, there are 
a multitude of changes that could occur. If the exhilaration of acceleration 
is of importance, the affect on the size of the car, its engine, and the 
Transport and Protect functions need to be explored. A third scenario 
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envisioned is that of packaging The constraints of the size of the 
components and of the final car (wheelbase, length, width, height) affect 
the location and placement of these components. The ordering of their 
design and placement will be explored using the design methodology and 
hierarchical decomposition. 
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