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SUMMARY 

The problem of selecting the "best" layout from a group of alterna

tive layouts for the same manufacturing facility has, in the past, been a 

decision based almost entirely on engineering judgment with very little 

quantitative justification. The purpose of this thesis was to develop a 

general methodology, so that an engineer and a decision maker can quanti

tatively evaluate all the alternatives and select a layout for implementa

tion. The purpose method contained certain diagnostic properties so that 

the engineer was afforded the opportunity to combine specific aspects of 

alternatives to improve the chosen layout. 

The methodology developed consists of six steps: 1) select criteria, 

2) determine measures of performance, 3) weigh criteria, 4) specify scoring 

functions, 5) construct an evaluation model and 6) verify the output. An 

example problem is worked to illustrate the concepts and the procedures 

developed for each step. 

The research indicates that the proposed methodology can evaluate 

a set of alternatives and serve as a basis not only for selecting a layout, 

but in improving the chosen layout. The quantitative method was somewhat 

limited by the deficiency of quantitative techniques and evaluators for 

specific plant layout objectives other than Materials Handling and Flow 

of Materials. The application and the adaptation of decision theory scoring 

functions to the alternative plant layout selection problem was found to 

be practicable and expedient. 



CHAPTER I 

INTRODUCTION 

The problem of selecting the "best" layout for implementation from 

a group of alternative layouts for the same manufacturing facility has, 

in the past, been a decision based almost entirely on engineering judgment 

with very little quantitative justification. Although judgment in the 

selection process will probably never be eliminated, there is a definite 

need for a more exact approach to this problem. Such a technique would be 

useful not only in the selection of a layout, but also in point out areas 

for possible improvement of the chosen layout, or possible combinations of 

alternative layouts to achieve an even better overall layout. 

The purpose of this research is to develop a workable methodology, 

so that an engineer, faced with several alternative layouts, can quantita

tively choose a layout. It will consist of a series of steps and related 

procedures for achieving this purpose, since the nature of the problem is 

such that four related subproblems must be solved before the technique can 

be accepted for use. A review of previous research efforts in this field, 

as presented in the literature, reveals that a combination of the best 

aspects of four previous approaches and a decision theory approach was 

indicated. 

The Nature of the Problem 

The development of such an evaluative technique has been hindered by 

four subproblems. These difficulties, which had prevented the wide accept-
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ance of previously proposed quantitative procedures, were the problems of 

uniqueness, singularity, the proper place of judgment, and the possibility 

of unconsidered and unknown better layouts. The first three of these had 

to be solved by this research before it could be considered capable of 

achieving application. 

The first of these, the uniqueness problem was due to the fact that 

no two plant layouts are ever really the same, or every plant layout is 

unique. Because what was present in one plant layout might be absent or 

even detrimental if present in another plant layout, no general mathematical 

relationships could be formulated or derived between variables. This 

meant that no method of quantitative evaluation was possible unless the 

method was itself general enough to be readily adaptable, or contained 

elements which could easily be tailored, added or deleted to meet the 

unique layout situation facing the evaluating engineer. 

The second difficulty was that of singularity or the problem of 

selecting only one criterion as the significant factor in the evaluation 

and selection technique. Considering one factor alone could only give an 

indication of part of the usefulness of a given layout and subsequent 

efforts were required to give consideration to the very large number of 

other factors important in a good layout. It would have been possible, 

for example, to assign a small machine to a large area resulting in the 

inefficient use of floor space if the engineer used a wrong or incomplete 

single criterion as his measure of effectiveness. The difficulty of 

singularity could be overcome by developing a model that could consider 

several factors simultaneously. 

The problem of determining the amount of engineering judgment or 
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intuition to be used in the evaluation process was the third difficulty 

which a layout evaluation method must solve. Enough judgment must be 

included so that the engineer can readily adapt the process to his unique 

situation; for example, determining the relative importance and weighting 

of each criterion in a pertinent criteria set, or the merit or value to 

be associated with a calculated measure of criterion performance. However, 

not too much could be included or the evaluation would lose its quanti

fiable aspects, and become purely judgmental, imprecise, and too subject 

to human variances, as in the case of a qualitative evaluation of the 

effectiveness of a criterion in one of the alternative layouts. The 

problem is that of finding the balance between intuition on one hand and 

purely quantitative techniques on the other—a difficult situation at 

best. 

Finally, the problem of unknown or unconsidered alternative layouts 

presented a theoretical difficulty to general methodologies. . This problem 

was concerned with possible layouts which the engineer had not yet designed, 

but which might possibly exist, and might be better than the alternatives 

being considered. Because there is a large number of activities in a given 

plant area, there is practically an infinite number of layouts possible 

for any given layout project. Clearly, this is a problem for computer 

search routines. 

Thus, the development of a quantitative methodology for the evalua

tion and selection of alternative layouts had to resolve the problems of 

uniqueness, singularity and the proper place of judgment in order to 

become a practical technique. The last of these difficulties, the possi

bility of unknown better layouts, is a problem which would not prevent 
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the acceptance of a general methodology. The first three form the central 

focus for the methodology developed in this research. The CRAFT algorithm, 

and similar approaches might be used to generate "unknown" better layouts 

after the initial selection by the procedure developed here. 

Survey of the Literature 

The difficulties of uniqueness, singularity, judgment, and unknown 

alternatives have been dealt with in the literature over the past several 

years. However, with the possible exception of the system approach, 

each of the literature approaches concerned itself with only one of these 

problems at a time. The first such efforts were reported in the early 

1950's, and subsequent literature has appeared sporadically since then, 

culminating with the most recent attempts to involve computers in the 

process. Perhaps the best way to summarize these research efforts is to 

classify the literature into four areas of approach to the problem: 

charting techniques, judgment techniques, computer programs, and systems 

approaches. 

The first of these, charting techniques, appeared in the literature 

in the middle 1 9 5 0 's. Generally, these methods analyzed some single aspect 

of a layout design, for example, material handling distance, through the 

use of some type of form or chart in order to arrive at a numerical value 

for layout efficiency or cost. Alternative layouts could be evaluated 

by these techniques, and the one with the lowest cost or highest efficiency 

could be considered the best. However, the results of these techniques 

were necessarily limited to the specific aspect considered in the evalua

tion (an example of the problem of singularity), and could therefore only 

give a relative indication of the effectiveness of a layout involving many 
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other critical factors besides the one being analyzed. The From-To-Chart 

(20 ), Cross Chart (l), Link Analysis (28), and Operation Sequence Analysis 

(29) are examples of this method of approach. 

Judgment techniques appeared in the literature mainly in the early 

I960* s. The primary contribution was the development of systematic pro

cedures for determining, through sound engineering judgment, the critical 

factors in any layout design and their relative importance to that design. 

After a list of criteria and their respective relative weights were 

established, each of the alternative layouts was judged quantitatively on 

how well it fulfilled each criterion on the list. Then, the evaluations 

of the several criteria, multiplied try weighting factors, were added to 

give a layout score, and the layout with the highest score was chosen as 

best. Despite the fact that quantitative measures were applied to purely 

qualitative criteria, these methods did force more logical thinking on 

the part of those involved in the evaluation process. However, because 

such methods are based entirely on individual judgment, the results varied 

depending upon the judge. Factor Analysis (l), Value Rating ( 1 6 ), Ranking 

(29 ), and Audit Analysis (29) are examples of this approach. 

The third approach, computer programs, has developed only recently 

with ALDEP (Automated Layout Design Program), CORELAP (Computerized 

Relative Allocation of Facilities Technique) being the most prominent. 

The CRAFT program (36) utilized an heuristic search for lower material 

handling costs to achieve an optimum layout by interchanging plant com

ponents or areas, resulting in an overall broad configuration. Similarly, 

ALDEP (35) interchanged plant components, but did it on the basis of 

available space and managerial preference in arriving at its best layout. 
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CORELAP ( 1 9 ), another heuristic program, generates a good layout by adding 

various departments in a logical fashion according to judgment values in 

a Relationship Chart. These programs extend by a large factor the actual 

number of layouts considered, attempting to cope with the problem of 

unknown better layouts, but suffer because of the presence of the singularity 

and judgment problems. 

The final and most promising approach has been the systems (3^) 

or cost-effectiveness approach. Advocating an outer-directed orientation 

in which the layout design is considered a subsystem of the overall manu

facturing system, a cost-effectiveness approach ( 15 ) was used in the 

evaluation process. The boundaries of this system were then defined by a 

quantifiable criteria set relevant to the particular layout situation, and 

the costs and benefits of each criterion for each alternative were measured 

and used in a model to calculate the overall effectiveness of each layout. 

Seemingly, this approach might have overcome the difficulties of uniqueness, 

singularity, and too much reliance upon judgment; however, though methods 

of establishing the quantitative set and developing the benefits and 

costs associated with individual criteria were presented, further efforts 

are necessary before the approach can become practical. 

In summary, the evaluation of alternative layouts in the literature^ 

has been approached in four ways: charting techniques, judgment techniques, 

computer programs and systems approaches. Each of these was able to over

come at least one of the difficulties facing the layout engineer. However, 

a combination of these four approaches, utilizing the best aspects of each, 

was indicated by the literature survey. 
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A Decision Theory Approach 

In the selection of alternative research and development projects, 

a rational decision-making technique—the scoring model—to evaluate each 

proposal relative to a hierarchy of objectives has been applied. The -

plant layout proposal could be considered a research proposal in that it 

is a specific recommendation for an allocation of resources to achieve a 

specified goal. Though a plant layout is more likely to be concerned with 

more physical resources, such as machinery, to achieve a more physical 

output, a specific product, the findings and results of the decision theory 

research in the area of project evaluation and selection should be appli

cable and adaptable to the layout selection problem. 

The first publications reporting on scoring models for evaluating 

Research and Development projects appeared prior to 1959 and have been 

presented in five different forms since then. Generally, these methods 

calculated an effectiveness value for each alternative based on ratings 

or utility scores for both subjective and objective criteria, and the 

plan selected would have the highest value. The power of this approach 

was the flexibility in its structure allowing for any number of criteria 

to be used in the evaluation of alternatives. Of the five forms researched, 

the Moore and Baker approach will be the one used in this research for it 

proved to be the one that was most adaptable to the alternative plant 

layout problem. For a more complete literature survey in this field it 

is recommended that the reader see (3) and (8). 

In 1 9 5 9 , Mottley and Newton (28) presented a scoring model which 

well represents the early forms in the project evaluation and selection 

problem. In their approach each alternative project was subjectively 
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rated on a three point scale of value for five selected criteria. A 

project score was computed by multiplying the five numerical ratings 

together, and the projects were then ranked in order of decreasing score. 

In another format, Gargiulo, and others (14), ranked, listed, and rated, 

according to three qualitative factors, eleven technical and economic 

elements of each research proposal relative to all projects under considera 

tion. The ratings in each group were totaled and assigned numerical 

scores by a "Project Score Dictionary," and multiplied together to give 

the score used to determine the final ranking. However, neither method 

included a relative weighting as is required in solving the uniqueness 

problem of alternative layouts, and could not be applied in this research. 

A somewhat more complex model was specified by Pound (31) in 1 9 6 4 . 

After relative weights and degrees of attainment from 0 to 10 were rated 

for each of four objectives, the expected value for a project for one of 

four decision makers was computed by multiplying the degree of attainment 

numbers by the appropriate objective weights, and summing the products. 

Projects were ranked by a combined score determined by normalizing the 

expected values for all projects for a decision maker, and calculating 

an average of the normalized expected values for a project from each 

decision maker. In the Dean and Nishry ( 9 ) method, a three phase approach 

was used in establishing total project scores. In the first phase a set 

of relevant factors—partitioned into two characteristic categories, an 

accompanying five statements representing scale values for each factor, 

and factor weights were derived. In the second phase, all projects were 

listed for preparation of data for each project. Finally, each project 

was evaluated for ecch factor by selecting the appropriate statement, 



9 

multiplying by its corresponding weight, summing over all factors with in 

the two categories, and computing a weighted sum of the two category 

scores. Although relative weightings were included in both models, the 

use of judgment appeared to play too strong a role in estimating factor 

values. Secondly, the categorization used in the Dean model and the 

complexity of the Pound model appeared to limit their ease of applicability 

to layout.evaluation. 

In two related papers Moore and Baker ( 2 6 ) , (27) solved the problems 

of applicability in the four previous models. The structure of this model 

was defined in terms of scores for criteria values associated with statis

tical probability distributions of that factor, instead of determining 

the value of a criterion by a direct subjective estimate as in the judgment 

techniques, thus reducing the amount of judgment to be used in the model. 

The results were multiplied by a relative weight for each criterion and 

summed, to rank the projects by their total score. Through simulation 

studies, a workable methodology to design and verify the scoring model 

for use in other fields was also established. The model solves the problems 

of uniqueness and singularity by consideration of several factors chosen 

by the decision maker for the problem before him. The proper amount of 

judgment is included so that the results are determined by a balance of 

purely qualitative and purely quantitative methods. Because of its simpli

city, the use of tangible and intangible criteria, and its adaptability 

to the plant layout problem the scoring model and its related methodology 

as presented by Moore and Baker will form the basis for the layout evalua

tion of this research. 



10 

Purpose and Scope 

As evidenced in the plant layout literature survey, there is an 

obvious need for a different approach to the problem of quantitatively 

evaluating alternative plant layouts. The characteristics of this approach 

should be threefold. It should be capable of integrating several factors 

into a mathematical model to overcome the problem of singularity. It 

must contain flexibility features so that, with insight, the model can be 

adapted to the unique layout problem. Finally, it should incorporate a 

proper amount of judgment, and yet not lose its quantifiable aspects, by 

using the engineer's judgment in selecting criteria, weighting them and 

selecting good measures of performance for each. 

All three of these characteristics are present in the scoring model 

and its related methodology in decision theory, and will be the basis for 

ranking alternative layouts. From previous layout evaluation approaches, 

certain techniques were found useful in quantifying individual criteria 

within the final criteria set, in the multifactor orientation required 

and in the tailoring of this set to the individual layout problem. Computer 

programming for unknown alternatives was considered beyond the scope of 

this research, and a problem for future effort in this field. 

In satisfying the above conditions, the scope of this research is 

to establish a methodology for: 

1) Determining a list of criteria the layout should accomplish. 

2) Establishing a measure of performance for each objective as a 

criterion for evaluation, 

3) Setting up criteria weights to reflect the varying degrees 

of importance of each criterion. 
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k>) Finding performance score assignment distributions and scoring 

performance measures for each criterion. 

5) Setting up a scoring model for use in the final calculations. 

6) Selecting the best alternative layout and verifying the results. 

The above will constitute the general procedure readily conformable 

to many different kinds of plant layout. At each step in the presentation 

of this research, an example layout problem, the "Toy Train Factory" 

problem (of I. E. ^ 7 ) will be presented to demonstrate the application 

of the concepts described and the workability of the proposed methodology. 

Such a tool or technique will prove valuable to the layout engineer 

not only in the selection, but also in the discovery of weaknesses in the 

best layout as indicated by its "low" scores relative to a criterion or 

criteria, and opportunities for evolving better layouts by combining the 

best aspects of layouts that finished high in overall score or in a 

particular criterion. The model could also serve as a screening device 

to reduce the actual number of layouts presented to the decision maker, 

but its true value will be found in the wide range of information it can 

generate for use by the layout engineer. 
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CHAPTER II 

DETERMINE CRITERIA SET 

The first step in the evaluation process is to select from five to 

ten criteria from a list of objectives to be accomplished by the final 

plant layout. Before presenting the criteria set for the Toy Train problem 

a general comment is made to distinguish an objective from a criterion, 

and three possible sources of objectives are discussed. In Chapter III 

quantitative measures of performance will be established for each criterion 

determined in this chapter. 

General Comment 

In plant layout problems, an objective is a desirable characteristic 

that should be incorporated into the final design. Any specification that 

the decision maker feels would affect the acceptability of the best layout 

is an objective. Both quantitative goals, such as a production quota, 

or intangibles, such as worker morale, are admissible as long as they are 

determinants of the best alternative. 

In comparison to an objective, a criterion is defined as an objective 

which is accomplished in varying degrees by all alternatives and upon which 

an evaluation and selection of alternative plant layouts decision may be 

based. The difference is that some requirements will be explicitly 

satisfied by all proposals, and not all objectives will be significant in 

affecting the final selection. For example, all layouts in the Toy Train 

Factory problem are capable of achieving the production goal of 100,000 
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trains per year, and that objective and others like it would not help 

delineate between good and bad alternatives. A criteria set is formed by 

eliminating all satisfied and insignificant objectives from a preliminary 

comprehensive series of requirements. 

In specifying this set, it should be made certain that each chosen 

objective or criterion is relevant, measurable, doesn't overlap with 

others, and is concisely stated. Each criterion must be concisely stated 

so that quantitative schemes and measures can be derived in the next step 

in the selection procedure. Since data collection for these schemes 

increases as the number of criteria increases, the true relevance of each 

member of the set should be questioned before the set is accepted as 

complete. The list should be also checked to eliminate duplication and 

overlap between criteria. Although there is not a correct number of 

objectives to be included in this set, a number between five and ten 

should be sufficient to give an accurate selection. 

Sources of Ob.iectives 

Because every layout problem is essentially unique, there will never 

be a "true" list of objectives applicable for every plant layout, and the 

evaluating engineer must develop his own list. To aid in the establish

ment of this set, if it is not readily available, three possible sources 

for such information are managerial desires, engineering checklists, and 

lists found in the literature of the field. The final set might well be 

a composite of the objectives selected from each of these sources. 

The first source of objectives should be management desires. The 

final decision maker will have some definite ideas about what the final 

layout should accomplish and the levels of performance that would be 



acceptable. Usually this entails several special objectives, for example, 

a specific quality of output level, which will be peculiar to this layout 

problem. 

A second source of objectives are engineering checklists found in 

professional journals. A thoroughly detailed checklist will serve to 

stimulate ideas on what the plant should ideally contain and as a "safety" 

device for requirements that even an experienced plant layout engineer 

might easily have overlooked. For one of the more detailed of such lists 

found in the literature see the checklist compiled by Hanson ( 1 3 ) . 

Despite the uniqueness of a layout problem several elements are 

common in most layouts; for example, a materials handling activity of some 

form exists in most every plant layout. Although these objectives are 

very general in nature, they wtill are helpful in the establishment of 

relevant objectives. The best source for this type of objectives is from 

the composite literature of the plant layout field. The sets described 

by Apple (l), Buffa ( 1 5 ) , Reed ( 3 2 ) , Muther ( 2 9 ) , and Harris (15) were 

combined to form a composite list of plant layout objectives: 

1) Reduce risk to health and safety of employees 

2) Minimize materials handling 

3) Maintain flexibility of arrangement and of operation 

k) Increase output 

5) Reduce manufacturing time 

6) Reduce hazard to material or its quality 

7) Make economical use of floor area 

8) Obtain greater utilization of machinery and manpower 

9) Minimize equipment investment 
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10) Maintain high turnover of work-in-process 

11) Improve morale and worker satisfaction 

12) Reduce clerical work and indirect labor 

13) Achieve easier and better supervision 

14) Reduce congestion and confusion 

15) Obtain smoother flow of materials 

16) Improve production methods 

1?) Allow for building expandability 

18) Minimize and improve the efficiency of storage, shipping, and 

receiving facilities 

19) Improve the efficiency of plant services 

After compiling a master list of pertinent objectives from the 

above three sources, the engineer and the decision maker should select the 

most significant objectives from the list to serve as the criteria set 

for the problem under consideration. From five to ten objectives should 

prove sufficient for evaluating the layouts with a minimum of data collection 

on the part of the analyst. Since it is important to have the most critical 

objectives included in this set, it is recommended that the engineer first 

form a long list of goals, and then select the more significant ones to be 

a part of his criteria set. As a definitive illustration of this process 

and its output, a set of objectives for the Toy Train problem, described 

in Appendix I, has been derived below. 

The Criteria Set for the Toy Train Problem 

The criteria set for the Toy Train problem was determined from 

goal statements derived from the original problem statement, from the 

composite list of plant layout objectives, and from decision maker 
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directives. Engineering checklists were not found to be useful in deter

mining this set. A list of nineteen objectives resulted, and seven of 

these became the criteria set for evaluation. 

From the original problem statement, five directives were discussed 

as prerequisites for an acceptable layout. After studying all the alterna

tive layouts, it was discovered that all met these requirements, and 

therefore, these five objectives could not serve as criteria: 

1) Produce Toy Trains at the rate of 100,000 per year 

2) All operations on lumber done in plant, including painting and 

packaging 

3) Include approximately 1000 square feet of office space 

k ) Provide a tool room and a tool crib. 

5) Include first aid station(s), toilet facilities and food services 

in some form 

In the assignment of grades for student layout projects, an evalua

tion sheet, consisting of eleven achievement categories and their relative 

weights was used by Professor Apple. The eleven objectives from the compo

site list related to these areas were used as a basis for the set of 

objectives: 

6) Obtain a smooth flow of materials 

7) Minimize materials handling 

8) Improve production methods 

9) Make economical use of floor area 

10) Improve the efficiency of shipping and receiving facilities 

11) Reduce clerical work and indirect labor, and achieve easier 

and better supervision 
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12) Improve e f f i c i e n c y i n p l a n t s e r v i c e s 

13) P rov ide adequate s to rage f a c i l i t i e s 

14) M a i n t a i n f l e x i b i l i t y of arrangement and o f o p e r a t i o n 

15) A l low f o r b u i l d i n g e x p a n d a b i l i t y 

16) B u i l d i n g and u t i l i t y aspects p r o p e r l y cons idered i n t h e l a y o u t 

The d e c i s i o n maker d e s i g n a t e d t h r e e more o b j e c t i v e s t h a t should be 

added t o t h i s l i s t : 

17) The l a y o u t should have a good o v e r a l l appearance . 

18) T r a f f i c should be a b l e t o move through good and e f f i c i e n t a i s l e s . 

19) Good o f f i c e appearance and e f f i c i e n c y should be a p a r t o f t h e 

l a y o u t . 

From t h i s l i s t o f n i n e t e e n o b j e c t i v e s , t h e d e c i s i o n maker and t h e 

a n a l y s t i d e n t i f i e d t h e most i m p o r t a n t o b j e c t i v e s . Seven were s e l e c t e d as 

t h e c r i t e r i a s e t f o r t h i s e v a l u a t i o n . A f t e r minor changes i n t h e w o r d i n g , 

t h e c r i t e r i a s e t f o r t h e Toy T r a i n example problem became. 

1) P rov ide a smooth and e f f i c i e n t f l o w of m a t e r i a l s 

2) Use good p r o d u c t i o n methods t o a c h i e v e t h e r e q u i r e d output o f 

f i n i s h e d goods. 

3) A l low f o r b u i l d i n g e x p a n d a b i l i t y 

4 ) M a i n t a i n f l e x i b i l i t y of arrangement and o p e r a t i o n 

5) The l a y o u t should have a good o v e r a l l appearance 

6) A d e q u a t e - s i z e d and l o c a t e d a i s l e s should be used t o a l l o w easy 

t r a f f i c f l o w 

7) P l a n t s e r v i c e s should be e f f i c i e n t and o f f i c e should be of good 

o v e r a l l appearance 
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The adequacy of this set could be tested by presenting the above 

list for the decision maker's approval. However, a better method was to 

have the decision maker select the best layout from a sample of the 

alternative layouts available, and, while doing so, have him explain 

to the analyst why and how he made his selection. In addition to comparing 

the list mentioned by the decision maker in this simple exercise with the 

above list, the analyst made notes on characteristics that the decision 

maker expressed during this process for each criterion. These later 

proved useful in determining measures of performance in Chapter III for 

the approved criteria set above. 
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CHAPTER II I 

DETERMINE MEASURES OF PERFORMANCE 

After a s e t of c r i t e r i a has been e s tab l i shed , a measure of perfor

mance to indicate the degree of goal accomplishment for each cr i t er ion 

must be determined by the engineer and the dec i s ion maker. In an e f for t 

to s implify t h i s task , a master l i s t of poss ib l e fac tors which might serve 

as measures for the composite object ive l i s t of Chapter I I was developed 

and a re lated analys i s technique for those objec t ives in the c r i t e r i a s e t 

obtained from the other two sources , as we l l as three methods for de ter 

mining a measure from t h i s l i s t are included. However, a d e f i n i t i o n and 

the character i s t i c s of a performance measure must f i r s t be considered. 

A Measure of Performance 

A measure of performance i s a quant i ta t ive scheme or expression 

which indicates the e f f ec t ivenes s of an a l t e r n a t i v e layout with respect to 

a part icular c r i t e r i o n . For example, the number of handling moves could 

be a performance measure of the cr i ter ion "minimize materials handling." 

In order to be useful i n the plant layout s e l e c t i o n process , a good i n d i c a 

tor must be l ) representat ive , 2) r e l i a b l e with a minimum of v a r i a b i l i t y , 

3) e f f i c i e n t , 4) s e n s i t i v e to change, and 5) understandable. A measure 

which possesses a l l of these t r a i t s i s obviously i d e a l , and the engineer 

must usual ly be content with a measure that s a t i s f i e s a compromise of the 

f i v e charac ter i s t i c s : 

l ) Representative. The measure of performance should be representa-
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tive of the criterion it is supposed to measure. It must be capable of 

serving as a yardstick that will fairly depict the criterion and indicate, 

simultaneously, levels of performance relative to that criterion. 

2 ) Reliable. It must be reliable in the sense that it will give 

consistent results with the same data, or changes with a change in the 

data. If the individual effectiveness measures are not reliable, the 

scoring model can not be considered reliable and will become valueless in 

the selection process. 

3) Efficient. The indicator should be efficient in that extra

ordinary efforts will not be involved in the data collection and calcula

tion of the results. 

4) Sensitive. The measure must be capable of responding quickly 

and accurately to changes in the data, as well as picking out performance 

effectiveness with respect to the criterion. 

5) Understandable. The best measure is of little value in the 

selection if it is incorrectly or incompletely used. The engineer must 

understand and have confidence in each indicator he selects for the 

scoring model to be effective in determining the best layout. 

A Master List of Plant Layout Factors 

Since a large percentage of layout criteria will be drawn in some 

form from the composite list of objectives in Chapter II, a master list of 

plant layout factors related to these objectives was developed by this 

research. The first part of the list consisted of a number of factors 

which could serve as measures of performance for each objective. They 

were then re-analyzed and classified into two major orders, as to where 

the engineer could find the data necessary to calculate the measure of 
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performance. For objectives of the final criteria set that did not 

originate from the composite list, an analysis by classification similar 

to the one used below should be undertaken to help determine good measures 

of performance. 

As a first step in developing the master listing, a list of factors 

derived from several sources (l) (29) (32) was drawn up. A factor is 

defined as a pertinent observable characteristic of an objective which 

easily describes it and could serve as a measure representing it. A large 

number of such factors were found to exist for most of the objectives, and 

although the list included in this research must be considered incomplete, 

it should prove to be representative and should stimulate further efforts 

to develop a more exhaustive listing. 

Certainly, the analyst could establish part of his criteria set 

measures from the "raw" listing, however, it was decided to classify the 

factors according to their case of measurability to help insure that good 

quantifiable indicators are chosen to serve as measures of performance. 

Four degrees of measurability were ascertained for this delineation: 1 ) 

direct (D), 2) indirect (I), 3) indeterminate (ID) and 4) intangible (IT). 

A criterion which could easily be measured and was associated with the 

operation of a plant was classified as direct. An indirect connotation 

implied that the factor was associated with plant operation, but not 

directly. Any factor that could be measured, but only with some difficulty; 

that is, it did not easily lend itself to quantification, was classified 

as indeterminate. Intangible factors could not be measured, in the strict 

sense of the word, and required judgment for their evaluation. 

From the resulting list, the elements were then re-analyzed to 
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establish whether the factors could be measured on the layout blueprint 

itself, or—if the factor is unmeasurable until after the plant is actually 

in operation. If an operating plant from which measurements must be taken 

does not exist, then such factors cannot be measured, and must be evaluated 

by other means. It should be pointed out that the categories selected 

for each factor on the listed presented at the end of this section are 

not necessarily "fixed," but are somewhat subject to interpretation and 

reassignment by the analyst. 

The rationality behind such a master listing is that the engineer 

would select factors f om each set, and simultaneously have some basic 

information about where and how to start the search for quantitative 

measures of performance for each criterion in the set. The same analysis 

would be performed on the objectives derived from management directives 

and goals, and engineering checklists. With this knowledge the analyst 

would then go through the somewhat difficult task of determining the best 

measure of performance from this set of factors, or combinations and 

ratios of them, for each criterion, through one of the three methods 

suggested in the section following the master list. 

Determining Measures of Performance 

The determination of measures of performance to fit the five 

characteristics is not an easy or well-defined task. In searching the 

above master list of factors, three situations usually develop: 1) a 

known technique for evaluating the criterion will yield results related to 

one of the factors; 2) a technique does not exist, but a good measure can 

be created through a combination or ratio of factors; or 3) the criterion 

is unique with many factors requiring evaluation by judgment. Although a 
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MASTER LIST OF CRITERIA AND FACTORS FOR EVALUATION 

where: Layout Operation 
Factors how: D I ID IT D I ID IT 

1 . REDUCE RISK TO HEALTH AND SAFETY OF EMPLOYEES 
a. Minor injuries x x 
b. Major injuries x x 
c. Safety codes satisfied x x 
d. First aid facilities x x 
e. Light and ventilation x x 
f. Type of flooring x x 
g. Floor load limits x x 
h. Noise, vibration, heat, light x x 
i. Hazards 
j. Fatigue x x 

2 . MINIMIZE MATERIALS HANDLING 
a. Frequency of moves x x 
b. Distances moved x x 
c. Short hauls x x 
d. Size of loads x x 
e. Straight hauls x x 
f. Capacity x x 
g. Flexibility x x 
h. Handling time x x 
i. Delays, unnecessary handling x x x 
j. Materials handling planned for x x 

3 . MAINTAIN FLEXIBILITY OF OPERATION AND ARRANGEMENT 
a. Material changes x x 
b. Machine changes x x 
0 . Man changes x x 
d. Supporting activity changes x x 
e. Versatility x x 
f. Mobile equipment x x 
g. Self-contained machines x x 
h. Readily accessible service lines x x 
1 . Standardized equipment x x 
j. Fixed, permanent, or special features x x 

4 . INCREASE THROUGHPUT 
a. Units produced x x 
b. Operation time x x 
c. Output—volume x x 
d. Man hours worked x x 
e. Materials required x x 
f. Number of operations x x 
g. Equipment required x x 
h. Production efficiency x x 
i. Routing x x 
j. Tooling required x x 
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Layout Operation 
D I ID IT D I ID IT 

5. REDUCE MANUFACTURING TIME 
a. Units produced x x 
b. Production rate x x 
c. Schedule x x 
d. Delays x x 
e. Start-up x x 
f. Jobs lost x x 
g. Contracts lost x x 
h. Demurrage x x 
i. Breakdowns x x 
j. Improper standards x x 

6. REDUCE HAZARD TO MATERIAL OR ITS QUALITY 
a. Rejects x x 
b. Returns x x 
c. Reworks x x 
d. Units produced x x 
e. Inspection operations x x 
f. Amount of precision and accuracy x x 
g. Cost of getting given degree of quality x x 
h. Accuracy and speed of inspection x x 
i. Measuring instruments required x x 

7. MAKE ECONOMICAL USE OF FLOOR AREA 
a. Space x x 
b. Cube—warehouse x x 
c. Machine dimensions x x 
d. Total floor area x x 
e. Total production cube x_ x 
f. Total aisle area x x 
g. Total storage area x x 
h. Work area required by operators x x 
i. Office space x x 
j. Between equipment space x x 

8. OBTAIN GREATER UTILIZATION OF MACHINES AND MEN 
a. Paid wages x x 
b. Production time x x 
c. Absenteeism x x 
d. Downtime x x 
e. Operator performance x x 
f. Idle machinery x x 
g. Turnover x x 
h. Capacity x x 
i. Type of workers required x x 

j. Number of workers required x x 

9- MINIMIZE EQUIPMENT INVESTMENT 
a. Cost x x 
b. Excessive maintenance cost x x 
c. Taxes and interest x x 
d. Mechanization x x 
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Layout Operation 
D I ID IT D I ID IT 

e. Depreciation x x 
f. Repair x x 

g. Labor cost for operators x x 
h. Power costs x x 
i. Amortization x x 
j. Operating cost per unit handled x x 

1 0 . MAINTAIN HIGH TURNOVER OF WORK-IN-PROGRESS 
a. Production costs 
b. Tied up assets cost 
c. In-process storage area 
d. Pieces idle between operations 
e. Minimum of goods in process 
f. Excessive temporary storage 

1 1 . IMPROVE MORALE AND WORKER SATISFACTION 
a. Payment of wages x x 
b. Attitude toward management x x 
c. Bad working conditions x x 
d. Washrooms, lockers, drinking fountains, etc. x x 
e. Recreational facilities x x 
f. Parking facilities x x 

1 2 . REDUCE CLERICAL WORK AND INDIRECT LABOR 
a. High indirect payroll x x 
b. Materials waiting for papers x x 

1 3 . ACHIEVE EASIER CONTROL AND BETTER SUPERVISION 
a. Manager-employee contact 
b. Better control 
c. Improved job knowledge 
d. Thoroughness of employee evaluation 
e. Direction of group performance 
f. Motivation 
g. Easier communication 
h. Direct accessibility to production line 

14. LESS CONGESTION AND CONFUSION 
a. Cluttered aisles 
b. Cluttered work space 
c. Crowded space 
d. Excessive aisles 
e. Good housekeeping 

1 5 . SMOOTHER FLOW OF MATERIALS 
a. Obstacles to materials flow x x 
b. Delays in materials moving x x 
c. Misdirected materials x x 
d. Direct path as possible x x 
e. Rehandling x x 
f. Backtracking and cross traffic x x 
g. Bottlenecks x x 

x x 
x x 

x x 
x x 
x x 
x x 

x 
x 

x 
x 
x 
x 
x 
x 

x 
X 

X X 
X X 

X X 
X X 

X X 
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Layout Operation 
D I ID IT D I ID IT 

h. Related x x 
i. Supplies moved by poor techniques x x 

1 6 . IMPROVE PRODUCTION METHODS 
a. Unbalanced sequence of operations x x 
b. Operators walking for materials x x 
c. Adequate operator space x x 
d. Individual work areas coordinated x x 
e. Work place layout x x 
f. Uniform rate of flow x x 
g. Production time predictable x x 
h. Minimum of scheduling difficulties x x 
i. Easier adjustment to changing conditions x x 
j. Marginal ratio of processing to production time x x 

1 7 . BUILDING EXPANSION 
a. Walls 
b. Roof 
c. Basement 
d. Other locations 
e. Provision for expansion 
f. Utilities location 
g. Bay size 

18. ADEQUATE STORAGE,SHIPPING,AND RECEIVING FACILITIES 
a. Disorderly storage x x 
b. Excessive wasted cube in storage x x 
c. Material flow x x 
d. Relative location to external transportation x x 
e. Relative location to first operation x x 
f. Size x x 
g. Stock control difficulties x x 
h. Identifying and sorting materials x x 
i. Ready accessibility of all items x x 
j. Packing of items for shipment x x 

1 9 . EFFICIENCY OF PLANT SERVICES 
a. Poor locations of service areas x x 
b. First aid location x x 
c. Utilities x x 
d. Tool crib location x x 
e. Fire equipment x x 
f. Food services x x 
g. Heating, lighting, and air conditioning x x 

x 
x 
X 
X 
X 
X 
X 



27 

general method for handling each of these cases does not exist, three 

methods will be proposed for determining a suitable measure for each 

situation. 

1 . Known Techniques 

In the first case a well-known technique exists for evaluating a 

given criterion in terms of one of its factors. Through a previous re

search, the author surveyed the literature of the plant layout and some 

related fields for recorded, well-known or obvious techniques for evaluating 

performances relative to some of the objectives found in the previous 

master list. Many measures were discovered, but only a few were applicable 

to a situation in which the only input information could come from a 

blueprint and an accompanying engineering report. In summarizing this 

effort for possible use in the evaluation model, eight of the nineteen 

objectives of Chapter II and their methods of evaluation will be presented, 

first, by giving a brief definition of the objective, then introducing 

several methods of evaluation derived from the literature, referenced 

for the interested reader to pursue in finding out more about the measure. 

A surnmary chart is included for ease of reference in Figure 3 - 1 * 

In using the chart, the engineer should first check this listing 

of recommended measures to find those relevant to his problem. If the 

measure suggested is not pertinent, the related information material 

presented below, from which the chart was derived, should be checked for 

other possible measures and reference material. For example, although 

several good measures exist for the criterion Flow of Materials, the 

Travel Chart Technique is specified. However, if this is not applicable, 

several ratios and indices shown in the "Flow of Materials" section below 

might also be useful. 
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Materials Handling. Materials Handling has been defined as the art 

and science involving the movement and storage of materials at the lowest 

possible cost through proper methods, equipment and manpower. Two methods 

were found that were applicable to the quantitative evaluation of Materials 

Handling: the Gantz and Pettit Index of Materials Handling (12) and the 

Bright Movement/Operation ratio (5)• 

1) The Index of Materials Handling: a/b. 

Where a is the sum of the distances that a part moves auto

matically from machine to machine without external 

materials handling, 

b is the total distance that the part travels on the 

production route from raw stores to finished stores. 

2) The Movement/Operation ratio: M/O. 

Where M is the actual number of times that a part moves, and 

0 is the number of operations performed on the part. 

Flexibility. Flexibility is the capability built into a plant that 

will allow it to adjust to future changes quickly, economically and with 

a minimum of cost and inconvenience. The Index of Production Line Flexi

bility and the Index of Work Station Flexibility, both Gantz and Pettit 

ratios ( 1 2 ), are suggested for evaluating characteristics of this objective: 

1) The Index of Production Line Flexibility: ^]_/^]_ 

Where J-̂  is the number of machines or work stations so designed 

that can be moved to a new location, and 

is the total number machines performing the operation 

2) The Index of Work Station Flexibility: ^^K2 

Where J 0 is the number of machines or work stations within an 
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area 6 so designed that they can be moved to any other 

l o c a t i o n in one s h i f t 

i s the t o t a l number of machines or work s ta t ions wi th in 

the area 

Throughput. Throughput i s the amount of raw material that flows 

through the processing or f in i sh ing operations i n a s p e c i f i c t ime. Four 

measures of evaluating throughput were: 

n \ iwr u t j h ^ . the number of manhours worked 1) The Manhours Index C15) : —rr—~ — t 2—I T~ 
unit of product manufactured 

2) The Productivity Index ( 1 0 ) : the output of completed products 
J raw material input 

0 \ m , D , . . T , / 0 0 \ . the number of units produced 
3) The Production Index ( 2 3 ) : p i a n t operation hour 

k) Pans/year for a given part . The use of "pans" i s explained by 

Noy, t o serve as a common denominator for a number of d i s 

s imilar operations which use pans for a materials handling 

devide throughout the production process . The value and 

the number of p ieces used to put in the pans were d i f f e r e n t , 

but a l l operations used them, hence they became a bas is for 

h i s method of evaluation (30)« 

Manufacturing Cycle Time. Manufacturing cycle time i s the period 

of time for a sequence or pattern of machines and/or operators t o perform 

operations on a unit quantity of material . The Time Analysis Sheet (29) 

and the Line Time r a t i o (7 ) were found to be adequate indicators of t h i s 

object ive: 

1) The Time Analysis Sheet i s a l i s t i n g of a l l operation elements 

and t h e i r corresponding times of performance through the use 

of predetermined motion t imes . 
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2) The Line Time ratio is evolved from the sum of all operating 

times for the stations on a production line from the follow

ing formulas: 

60 a) Cycle time = hourly rate of production 

, N „ , „ ,, .. Space per station b) Speed of the line = — & — — * — T ~ . * cycle time 

v n t • m - j . . length of the line 
c) Line Time ratio = « , . — r - . 

speed of the line 

Floor Space Utilization. This objective is defined as the square 

footage actually used in relation to the available, required, or to be 

allocated for each activity, area or function. Five good measures for 

evaluation were: 

-i n m i . « T J / - i . the percent available space utilized 
1) The Space Index (15) • n — • ^—r 

^ plant dollar spent 
2) The Index of Plant Floor Space Utilization ( 1 2 ) : ^ +

q^[r + *a) + P 

Where m is the extreme machine length 

n is the extreme machine width 

p is the total work area normally required by operator 

q is the total layout floor area 

r is the total aisle area 

u is the total floor area occupied by temporary or , 

controlled storage of materials 

3) The Index of Aisle Space ( 1 2 ): r/q 

4) The Index of Storage Space ( 1 2 : (q - u)/q 

5) Cost of floor area on a dollar per square foot basis (l). 

Manpower-machine Utilization. This has been defined as the design 

of individual operations, the process, flow and materials handling in such 
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a manner that each worker is effectively applying his activities to the 

bes-t overall plant effort. Three measures of evaluation were the utiliza

tion index (15) 9 the average machine utilization ratio (23)> and the 

machine use index ( 3 7 ) : 

n\ mr. n x • -i • x • - i - j . percent utilized available time 1) The Utilization Index: * T-T^ dollar wages paid 

2) Average Machine Utilization ratio: ^ r ° g ^ ^ ^ ? ^ r a ^ e 

3) The Machine Use Index: G /C 

Where C is the total time the facility is in use 

C is the total clock time 

Materials-in-Process Inventory. All product materials on which 

the company has performed some manufacturing, processing, or converting 

operations, but which are not yet finished in form ready for sale or for 

storage as component parts is considered materials-in-process. The 

Turnover ratio for Work-in-Process (6), the Inventory Bank summation (18) 

and the In-Process Cycle time (21) are three methods of evaluating this 

objective: 

1) The Turnover ratio for Work-in-Process: 

Cost of Finished Goods 
Average Work-in-Process Inventory 

2) The summation of the quantities of changes in banks of inventory 

in the production process, or s . (C^ - C^) T 

Where is the change in inventory over time T 

C-̂  and C^ are output capacities of operations 1 and 2, 

respectively 

Then all the B*s are added to give the total amount of in-process 
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inventory. 

3) The In-Process Cycle Time is defined as the amount of in-process 

inventory, or the product of the rate of input per working day 

and the number of working days as item is in process: 

Sm + Ept x Np + T-. (0 - Os - D) + T (D + 1) -] 

C, t L Ns J • 

Where C^ — the in process cycle time 

Sm — the sum of the make ready and set up times plus the 

average delay in making set ups (the times that 

machines are inoperative because of changing jobs). 

Ept — the sum of each-piece times for all operations except 

those run simultaneously with other operations 

Np — the number of pieces on order 

— time allowed to make moves between operations 

0 — number of operations 

0s — number of operations that can be run simultaneously 

with preceding operation 

D — number of departments in which operations are per

formed 

— time for moves between departments (if applicable) 

Ns — number of shifts (if applicable) 

Flow of Materials* Flow of Materials is the path or paths by which 

items move or progress from the point at which they enter the operation, 

through the necessary operations, to the point at which they leave, or are 

delivered, stored or shipped. Two well-known measures for evaluating the 
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flow of materials in a layout are the Travel Chart and the Activity Relation, 

ship Chart. 

1) The Travel Chart (20) is a matrix of distances traveled between 

points in a facility. When the number of moves required to move the part 

through the facility is superimposed on this matrix, the engineer will 

have an effective evaluator of the total distance that a part travels from 

raw material to finished product. 

2) The Activity Relationship Chart (l) (22) can be constructed in 

the form of an array of values which quantitatively indicates which plant 

activities are related to each other and how important each closeness 

relationship is. 

Although only eight of the nineteen objectives in the master list 

were found to have adequate, known measures of performance, others might 

be discovered by a more extensive research. If the analyst selects one 

of the measures included in the Summary Chart, the reference for that 

measure should be checked to insure that the technique is properly 

applied. If a well-known technique does not yield an applicable measure, 

then the engineer should try the second approach determining a measure 

by definition. 

2. Determining a Measure by Definition 

Frequently, an extensive definition of a criterion will lead to an 

appropriate measure in the form of some ratio or combination of the quanti

fiable factors. In this case a good measure might be created by the follow

ing method. First, a complete definition of the criterion is made. Next, 

units of measure, such as feet or hours or some other factor, that would 

normally accompany such a definition are taken from the dual list. Third, 

functions or techniques related to the criterion which would yield results 
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Summary Chart 

Objective 
Quantifiable 

Factor Units Evaluator 

Materials Handling Distances moved feet Index of Materials Handling 

M. H, plan Move/Operation ratio 
Flexibility Machine changes 

S elf - c onta ined 

# Index of Production Line Flexi
bility 

machines # Index of Work Station Flexibili
ty 

Throughput Manhours worked hrs Manhours Index 

Materials items Productivity Index 

Units produced items Production Index 
Manufa cturing 

Cycle Time 

Production rate units Time Analysis Sheet 
hours 

Line Time Ratio 
Floor Space Space f t 2 Space Index 

Utilization Tot. Floor Area f t 2 Index of Floor Space Utilization 

Tot. Aisle Area ft^ Index of Aisle Space 
Manpower-Ma chine Paid Wages $ Utilization Index 

Utilization Capa city 

Production time 

units Average Machine Utilization 
ratio 

hr Machine Use Index 
Material-in-Process Production costs $ Turnover ratio 

Minimum of goods 
in Process items Summation of Inventory Banks 

items In-Process Cycle Time 
Flow of Materials Moves # Travel Chart 

Distance Ft Activity Relationship Chart 

Figure 3 - ! • Summary Chart 
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in these units are researched or created. Finally, one of these techniques 

is selected which best satisfies the five characteristics. For example, 

consider the criterion Safety: 

1. Definition: Safety is the use of techniques and ^ 
designs to reduce, control, or eliminate accidents. 

2 . Factors: From the dual list come such factors as 
injuries, severity of injuries, or the number of 
hazardous jobs. 

3 . Functions: Several useful ratios of injuries to 
hours worked are found in the literature, or may 
be created. 

k. Selection: The best measure found was the injury 
frequency rate: 

j_ jr R - the number of disabling injuries x 10 
the total number of man hours worked 

If the definition approach fails to yield a good measure of per

formance for a criterion, then the analyst should investigate the third 

approach - determining a measure by a survey of pertinent criterion 

characteristics. 

3» Determining a Measure by Survey 

In the case where neither of the above methods will succeed, as 

might be true with a unique criterion with many factors that can only be 

evaluated by judgment, an artificial measure must be created. The approach 

in this case is to create a scheme or survey which will encompass manage

ment opinion or expert knowledge as to the appropriate levels of perfor

mance for each alternative. An easy method of doing this is to list from 

four to six relevant factors of the criterion, and then estimate the 

percentage that each alternative layout accomplishes relative to the 

"ideal" performance with respect to that criterion. For example, the critee 

criterion "general appearance" might have the factors of neatness, crowded-

Blake (k) 
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ness and excess space. Relative to the ideal, one alternative might have 

ratings of 70>30, and 60 for these respective characteristics (see Figure 

3 - 2 ). These results may be averaged, or weighted and averaged, to give 

the final level of effectiveness for that layout. Since the decision 

maker determines the results, the levels should be reliable and sensitive 

to changes in his opinion. 

The task of defining acceptable measures is a difficult task, since 

there is a deficiency of quantitative techniques or functions for measuring 

criteria, in the plant layout field other than for Materials Handling or 

Flow Materials, and most often the analyst will have to create his own 

measure. 

Measures of Performance for the Example Problem 

For each of the seven criteria listed at the end of Chapter II, 

(p. 17 ) measures were selected by the procedures developed in this Chapter. 

First, measures of performance described in the summary chart (Figure 3 -1 ) 

were checked. If the measures described there or in the related material 

proved to be inadequate, the second approach of defining the criterion 

and investigating combinations of factors from the dual list was taken. 

If this also failed to yield an acceptable measure, then third a survey 

was created utilizing pertinent factors from the master list, or additional 

factors as specified by the decision maker. By following this procedure, 

a combination of one well-known technique, three definitions, and three 

surveys were used as measures of performance for the Toy Train Criteria 

Set. The measures were: 

l) Provide a smooth and efficient flow of materials. The Travel 

Chart Technique described in the summary chart for this criterion was 
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Criterion: General Appearance 

CHARACTERISTICS percent: 0 10 20 k o \ 5° 60 70 80 ?0 100 percent: 

V 

s / 

EVALUATION 

Item 

1 . Neatness 

2 . Crowdedness 

3 . Excess Space 

Performance 

70 

30 

60 

Weight 

30 

50 

20 

Product 

. 21 

.15 

. 12 

.2+8 

Measure of performance: »kQ 

Figure 3 - 2 . A Weighted Survey Scheme as a Measure of Performance 
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adopted as its measure of performance. Further study revealed that 

factors 15 a, d, f, and h, from the master list were represented in various 

forms in the Travel Chart, suggesting that it should be a good measure of 

performance for this criterion. The Travel Chart provides a matrix 

summarizing material travel between related activities, yielding data 

results in terms of the total distance that the components of a product 

must move through the plant to yield a finished product. 

2) Use good production methods. Since a method of manufacture was 

highly individualized among all the alternatives, quantitative comparisons 

were almost impossible, and no evaluation technique or definition led to 

an acceptable measure. Therefore, a synthetic measure involving a decision

maker survey was created by pulling factors 16 c, d, and e, from the master 

list, and adding two factors relating to production methods within the 

Toy Train factory to form the following evaluation categories and their 

corresponding relative weights: 

1 . General Work Place Layout: 

a. Adequate operator space (15$) 

b. Adequate material space (10$) 

c. Individual work areas coordinated ( 30$ ) 

d. Material handling indicated, compatible (20$) 

e. Access for repair and maintenance, adjustment (5$) 

2 . Specific 
a. Finishing operations layout (10$) 

b. Packing operations arrangement (10$) 

The two categories, "General" and "Specific," were used to aid the decision 

maker in arriving at his estimation of the procedure. 

3) Allow for building expandability. Since this criterion was not 

included.in the summary chart, the analyst explored the definition approach. 
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This l ed to the s e l e c t i o n of factor 1 7 a , the number of external d irec t ions 

i n which plant operation could be extended. When the measure was applied 

to the Toy Train l a y o u t s , the l e v e l s of performance described by the 

dec i s ion maker were: 2 , 2-| and 3 d i r e c t i o n s . Internal measures of 

expandability were considered, but were included i n two other c r i t e r i o n 

measures, production methods and f l e x i b i l i t y . 

*0 The layout should have a good overal l appearance. This c r i t e r i o n 

was quite unique and very hard to def ine . Since the cr i t er ion was not 

found in the summary l i s t , a d e f i n i t i o n approach was t r i e d and y ie lded 

only a good s e t of c h a r a c t e r i s t i c s , but no rea l measure of performance. 

Consequently, a survey was s e t up employing three of these charac ter i s t i c s 

and evaluation categor ies : 

1 . Neatness (30$) 
2 . Crowdedness ( 5 0 $ ) 

3 . Minimum excess space (20$) 

Some conf l i c t arose as to how a layout could be crowded yet have excess 

space, but was resolved by the argument that an a l t e r n a t i v e could have 

i t s machines placed t i g h t l y together and y e t waste space between depart

ments or production centers . 

5) Adequate a i s l e s used to allow easy t r a f f i c f low. This was the 

second cr i t er ion added by the dec is ion maker. However, the analyst d i s 

covered that some aspects of t h i s cr i t er ion as defined by the dec i s ion 

maker were l i s t e d under the composite c r i t e r i o n , "Make Economical Use of 

Floor Area," and that the Gantz and P e t t i t A i s l e Space Index, described 

i n the summary chart, was an adequate measure of performance for t h i s 

c r i t e r i o n . The r a t i o i s defined as the t o t a l a s i l e area divided by the 

t o t a l layout f loor area, which were factors 7d and f-from the master l i s t . 
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6) Efficient services and office with a good general appearance. 

This was the third criterion added by the decision maker. A measure of 

performance for it was defined by a survey, for little aid was given by 

the Summary Chart or the definition approach. The categories of the survey 

and their relative weights in the decision maker's opinion were: 

1 . Service areas close to areas served 

a. Maintenance and tool room (7*5$) 

b. Locker ( 7 . 5 $ ) 

c Food ( 7 . 5 $ ) 

d. First aid ( 7 - 5 $ ) 

2 . Utilities—panel outside, permanent wall (10$) 

3« Adequate fire equipment, sprinkler outside (lO'/o) 

4. General Office Appearance 
a. Crowded (5$) 

b. Traffic ( 5$ ) 

c. Aisles (5$) 

d. Interrelationship (5$) 

e. Cluttered (5$) 

5 . Entries—front, plant, office to plant (10$) 

6 . Toilets, locker room (15$) 

Sub-factors were included to better describe some of the main character

istics in which case the weight for the main category was divided evenly 

among the sub-factors if weights for them were not specified by the 

decision maker. 

7) Maintain flexibility of arrangement and operation. Flexibility 

was a difficult criterion to define or to find a measure of performance. 

It was found that the Gantz and Pettit Index of Production Line Flexibility 

recommended in the Summary Chart was applicable, and further proved to 

be the ratio of two factors from the master list (3b and 4g) and repre

sented factors 3f» g» h, i and ,j. The index is calculated as the number 
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of machines or work stations performing operations on the prodact, so 

designed that they can be moved to a new location in one working shift, 

divided by the total number of machines or work stations performing 

operations on the product, in the production line. 
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CHAPTER IV 

WEIGHT CRITERIA 

After a set of evaluative criteria has been selected and a corres

ponding set of quantitative measures determined, the relative importance 

or weight of each criterion must be considered. In this chapter, a general 

comment is made on the significance of a criteria weight; four methods 

are offered for establishing these weights when there are several decision 

makers evaluating the alternative layout plans; and the criteria weights 

for the example problem are presented. In Chapter V these weights will 

play a major role in defining the scoring model used for the selection of 

the best alternative. 

Criteria Weight 

In any set of objectives for evaluation there are always some that 

have a greater bearing on the final results than others. It is not enough 

to establish a list of criteria; additional factors must be included to 

indictte the criterion's relationship to the system as a whole. For 

example, the criterion "materials handling" might be more important than 

"flexibility" in the Toy Train Layout problem. Similar orderings could 

be made for all of the objectives in the criteria set; e.g., materials 

handling is more important than flexibility, but less important than 

flow of materials; so that a definite hierarchy of objectives would be 

developed. Such a system of priorities must be reflected in the final 

scoring model if it is to be a valid representation of the layout environ

ment, and is accomplished through criteria weighting. 
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A criteria weight is a numerical quantity signifying the degree of 

importance of a factor, according to the decision maker's personal use

fulness for each criterion, relative to all other factors in the system. 

In a somewhat secondary role, the criteria weight functions as a coefficient 

in a complex scoring function to denote the performance level trade offs 

between individual criteria within the set. 

Methods of Determining Relative Importance 

Determination of how much adjustment is necessary for the various 

criteria must be made through the judgment of persons doing the evaluation 

based on experience, consultation with plant personnel, and data peculiar 

to the layout problem itself. Four of the more prominent methods of 

computing this adjustment factor are the ranking, rating, paired comparison, 

and the successive comparison methods. All four are presented below so 

that the engineer may choose the one that best suits him and has the 

highest confidence of the ultimate decision maker. For a single judge, 

the ranking method is probably the best. 

The ranking technique is essentially a method of classifying 

objectives into quantitative categories, and is the easiest to use of the 

four methods. Each judge places a numerical rank next to each criterion, 

indicating by "one", the most valuable in the set, by "two", the next most 

valuable, etc. The ranks are then reconverted so that a rank of one will 

be given a value of "m" , and a rank of two given an M - 1 , etc., down to 

one for the lowest. Since each judge produces only a set of integers, 

it is not possible to develop a set of weights for each judge for diagnostic 

purposes. The weight is determined as follows: 
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n 
R = / R . c U cj 

R 
c 

w ~ c m 

IK 
C=l 

Where m is the number of criteria, 

n is the number of judges, 

R^ is the sum of the converted ranks across judges for each 
criterion 

R . is the converted rank assigned by judge " j " to Criterion 

w c is the relative weighting. 

The rating technique allows more freedom on the part of the judge 

and in its sclae than the ranking method in an effort to yield a more 

accurate relative weighting. In this method the criteria set is presented 

next to a continuous scale marked off in units from zero to ten, lowest to 

highest importance. The judge is asked to draw a line from each criterion 

to any appropriate point on the value scale, and he is permitted to select 

points between numbers or to assign more than one criterion to a single 

position on the scale. The weighting is computed by: 
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n 

f 
c 

cj ~ J 

Where f . — is the frequency of choice by judge j of criterion c 
over all other criteria 

f/ I % \ • — "the frequency of choice of criterion c over criter-
' C ^ ion c'. 

J — the total number of judgments made: - l) m 

The method of successive comparisons is a ranking and comparison 

Z w . 
0 3 

w = 
c n m 

3-1 o=l 

Where w . is the weight computed for criterion "c" from the rating 
C ^ given by judge " j." 

p^ . is the rating given by judge " j " to criterion " c " 
c 3 

The method or paired comparisons consists of a list of pairs of 

criteria, and the judge is asked to choose the member of each pair that 

is more valuable to the layout. Each criterion is paired once with every 

other criterion. The number of times each criterion is chosen over each 

other criterion is tabulated for each judge, and the number of times each 

criterion is chosen over all other criteria is determined by addition, 

and w is calculated as follows: c 

m-l 

f / f cj " L (c/c*) j 
c=l 
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scheme somewhat different from the previous three methods. Its sequence 

of steps is as follows: 

1. Rank criteria in order of importance as in the ranking method. 

2. Tentatively assign the value (V^) of 1.0 to the most important 

criterion, and other values (V^), between 0 and 1, to other criteria in 

order of importance. 

3 . Decide whether the criterion with 1.0 is more important than 

all other criteria combined: 

a. If so, increase so that was greater than the sum of 

n 

subsequent V 1 s, i.e. V-̂  > J V^. 
i=2 

b. If not, adjust so that was less than the sum of all 

n 

subsequent V s , i.e. < ^ V^. 

i=2 

4 . Decide whether the second most important value, V^, was more 

important than all lower-valued criteria; and proceed as in step 3» 

5. Continue until n - 1 criteria have been so evaluated, and 

calculate the relative weighting by: 

P • 
w . = c.1 c j 

" P cj 
c=l 
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n 

U C J 

w -c n m X X w c j 
j=l c=l 

In two independent research situations each of the above four 

produced similar weightings (11) (3*0 • The ranking technique was shown to 

be by far the simplest to use, and was the method chosen for the example 

problem. However, this does not preclude the use of the other three in 

different situations, for the analyst should utilize whichever method 

elicits ease of use and the greatest confidence from the decision maker. 

Also, it should be noted that once the criteria weight values have been 

calculated they should be submitted to the decision maker to insure that 

they accurately reflect his opinions as to actual significance of each 

criterion on the final selection. Minor adjustments of these values should 

be made until the decision maker is satisfied that the weights realistically 

reflect his opinions. 

Relative Importance Values for the Example Problem 

The criteria weights for the Toy Train Factory problem were calcula

ted by the ranking method. The seven objectives were ordered according 

to their significance to the final selection decision. Since only one 

judge was used in determining these values, the w q could be calculated 

as follows: 
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R 

The results are presented in Table 4 - 1 . 

Table 4 - 1 

Criterion Rank 
Converted 

Rank 7 

Rc 
) Rc w 

c 

General Appearance 4 4 4/28 .143 

Traffic 3 5 5 / 28 .179 

Flow of Materials 1 7 7 / 28 .250 

Production Methods 2 .6 6 /28 .214 

Expandability 6 2 2 /28 . 071 

Flexibility 5 3 3/28 .107 

Offices and Services 7 J L 

28 
1 /28 

1 . 0 0 

.036 

1.000 

These values were then presented to the decision maker for his 

approval and necessary adjustments. The weights were accepted as they are 

in the above table, implying that the values fairly accurately agreed 

with the decision maker's estimation of the significance of each of the 

criteria to the final selection decision. 

w = . where m = 7 . 
c m ' 

c=l 
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CHAPTER V 

THE EVALUATION MODEL 

The next step in developing the evaluation methodology is the 

definition of scoring functions for measures of performance determined in 

Chapter III, and then, as step 5> interrelate them with the relative 

weights of Chapter IV in an evaluation model. However, before the topic 

of scoring functions can be introduced, a possible structure of the 

evaluation model must be evolved. The resulting form presented two 

inherent problems but scoring functions were used to solve them. A pro

cedure for constructing a scoring function is included before the final 

model form is presented and applied to the example problem. Normally, 

the specification of the scoring functions would come first in the actual 

application of the methodology, but due to the originality of this research 

the presentation of the model structure must precede the scoring function 

development to make the final model form more understandable and the use 

of scoring functions in that model more obvious. Verification of the model 

and analysis of its results are presented in Chapter VI. 

Combining Multiple Factors 

Once the weights and the measures of performance for each criterion 

have been defined, a model must be found that systematically integrates 

these heterogeneous factors into a coherent numerical output on which the 

selection of the best layout may be based. This model must have four 

intrinsic characteristics to be applicable to the plant layout problem: 
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l) it must be flexible in structure in order to incorporate an 

unspecified number of criteria, 2) it must consider all criteria values 

simultaneously in its formulation, 3.) it must logically combine the criteria 

weights and performance results, and 4) its output should be of such a 

nature that the better layouts will receive significantly higher scores. 

As the first of these requirements, the model structure itself 

must be flexible in that it will be able to incorporate an unspecified 

number of criteria as dictated by the unique layout problem before it. 

It must be capable of handling three criteria as well as ten—depending 

upon the problem. 

Secondly, the model should consider all criteria simultaneously. 

Optimization with respect to one criterion while using the other criteria 

in the set as constraints on the solution will lead to the optimum layout 

with respect only to that criterion, but may not lead to the best overall 

layout. Also, there is some doubt as^ to whether certain criteria can be 

expressed as constraints, for the designer may not know what the upper 

or lower bounds on a constraint variable—say the maximum acceptable 

materials flow travel distance—may be, consistent with all other criteria. 

By considering all criteria at the same time in one objective function, 

the evaluation model will not fall into this trap of singularity. This 

means that instead of choosing a layout which places a small machine in a 

large space to optimize materials handling, but at the same time wasting 

floor space, the model should select the layout with the best compromise 

between the two criteria. This requirement, in conjunction with the 

previous one, suggests a model involving a summation of values where a 

variable number may be included, or 
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n 

j=l 

Where C is the total layout score 

V. is the value for criterion j 
J 

n is the number of criteria in the set. 

Although it is recognized that other forms such as multiplication may 

also be suggested, this research will use the summation. 

Since not all criterion values will have equal importance in 

determining the best layout, the model must be able to combine a relative 

weight value with the criteria effectiveness value to indicate the relation 

ship of that criterion to the criteria set as a whole. The dilemma of 

uniqueness in the plant layout problem is solved by the fusion of these 

two factors. A product of the type, w. c , where w. if the relative weight 
3 3 3 

is suggested by this consideration. Depending upon the size of w. the 
3 

relative weight would adjust a criterion value to reflect its degree of 

importance to the set as a whole. 

Finally, the model must produce an output that will effectively 

result in the best layout receiving the highest score and the remaining 

layouts with lower scores. This indicates that the model should be a 

maximization problem, so the analyst will be able to identify the best 

layouts, analyze the more important aspects of each, and then combine 

selected aspects into an even better layout. A summation of values is 

suggested by this constraint, so that only positive contributions to the 

overall score should be allowed, and the best layout will be that with the 

highest total. 

Summarizing these four requirements of the evaluation model, it 
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should have the following form in order to efficiently evaluate a given 

layout; 

However, two major problems immediately arise from these require

ments. If the performance results for some criteria within the set are 

predominantly large, they will subordinate the performance results of other 

and possibly more important criteria, and will bias the output. For 

example, if "Flow of Materials" had a performance value of 1000 and a 

relative weight of .4, and "Materials Handling" had values of .9 and . 6 , 

respectively, the model's output would be: (1000)(.4) + ( . 9 ) (»6) = 

4000 + .54 = 400 . 5 4 . The first criterion's large performance value 

dominates the results, overriding the more important ( . 6 to .4 relative 

weights) second criterion. Also, the problem of combining criteria whose 

most desirable performances are a minimum value with those whose best 

is a maximum value in a maximization model is present, for instance, 

combining the criterion "minimize the number of serious injuries' with 

the criterion "maximize manufacturing output." The model must be able to 

include both of these types of criteria if it is to be of any value 

whatsoever in its application to real situations. 

n 
w. c. 
3 3 

Where w. is the relative weight of criterion j 
3 

c. is the value for criterion j 
3 

n is the number of criteria. 
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Scoring Functions 

One of the most interesting aspects of the decision theory research 

in its application to the plant layout problem is its use of scoring 

functions. In addition to solving the above two problems this approach 

reduces the amount of judgment used in the evaluation by deriving criteria 

values not from an engineering estimate, but based on actual levels of 

performance and in terms of statistics of a criterion's measurement space. 

In other words, judgment is used to assign an integer value to a performance 

result, like an aisle space index of .107 for an alternative, rather than 

subjectively rate how well this particular layout did with respect to 

the criterion, "Adequate and Well Located Aisles," without knowledge of 

this data, as is often done in the judgment techniques. Rating still plays 

a role in this process, but it is used in a relatively small capacity 

rather than in the actual placement of values on performance results, as 

previous models had done. Judgment has been limited to a level that is 

more effective, sensitive to the criterion's performance, and hopefully, 

more accurate in that it will not suffer greatly from human variances. 

Therefore, before a general procedure for constructing a scoring function 

can be presented, it must be precisely defined and the elemental and assumed 

characteristics of the function must be considered. 

A scoring function is defined by attaching an integer-valued score 

to specified intervals of a statistical distribution of performance results 

for a criterion, indicating how well a particular alternative compares 

with others within the competing set of layouts with respect to that 

criterion (see Figure 5 -1 )• Since the same .number of intervals are used 

for all criteria scoring functions, it becomes a mechanism for mapping 

performances in the criterion's measurement space onto a common base, 
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CRITERION: Materials Handling Index 

Layout Performance Score 

Over m + 1 . 755 9 
m + 1 . 7 5 s to m + 1 . 2 5 s 8 
m + 1 . 2 5 s to m + . 7 5 s 7 
m + . 75 s to m + . 35 s 6 
m + .25 s to m - . 25 s 5 
m - .25 s to m - . 75 s 4 
m - .75 s to m - 1 . 2 5 s 3 
m - 1 . 2 5 s to m - 1 . 7 5 s 2 

Under m - 1 . 75 s 1 

Where m is the mean of the data values 
s is the standard deviation 

Figure 5 -1• A Scoring Function for Materials Handling 

CRITERION: Flow of Materials Distance Traveled 

Layout Performance Score 

Over m + 1 . 7 5 s 1 
m + 1 . 7 5 s to m + 1 . 2 5 s 2 
m + 1 . 25 s to m + .75 s 3 
m + . 75 s to m + .25 s 4 
m + .25 s to m - . 25 s 5 
m - .25 s to m - . 75 s 6 
m - . 75 s to m - 1 . 2 5 s 7 
m - 1 . 2 5 s to m - 1 . 7 5 s 8 

Under m - 1 . 7 5 s 9 

Where m is the mean of distribution of value 
s is the standard deviation 

Figure 5 - 2 . A Scoring Function for Flow of Materials to be Minimized 
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preventing a bias by criteria with large results over those with small 

ones. Reconsidering the previous example, the scoring function for "flow 

of Materials" might assign to a performance of 1000 the "score" of 5> 

while the Material Handling function would give a "score" of 8 to .9 

resulting in the model's output now to be: 5 («^) + 8 ( . 6 ) = . 6 8 , which is 

less sensitive and more realistic. 

Another adherent characteristic of these functions is their ability 

to handle different types of criteria. Often, a given criteria set will 

contain some whose optimum performance is a minimum value and others where 

the best is represented by a maximum value. The combination of the two 

such criteria into one objective function is a problem that is solved by 

reversing the scale for the criteria to be minimized so that the highest 

"scores" will be given to the lowest performance results (Figure 5 - 2 ) . 

This means that both types of criteria may be included in the model, so 

that it will become a more relevant and effective tool. 

The scoring function itself consists of three basic components: 

a mean, a standard deviation and several scoring intervals. The number 

of intervals will be initially set from the closed interval ( 1 , 9 )« and 

the .interval widths are originally defined in terms of the mean and some 

multiple of the standard deviation of the distribution of performance 

results. By means of the guide to be proposed, these intervals are adjusted 

by the decision maker and the analyst so that the function finally speci

fied will discriminate between good and average or poor alternatives over 

the entire distribution of data points. 

In establishing such a function for each criterion, it must be 

assumed that the layout performance relative to that criterion is distri-
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buted according to a specific probability distribution function. In 

actuality this means that the engineer is extracting data from the 

alternatives, and then fitting the results to some statistical function. 

Ideally, enough points or alternatives will exist so that a function may 

be derived by statistical analysis. However, this occurance is rare since 

it is common to have generated a large enough number of alternatives to 

have several that are partially repetitions. Therefore, one must be 

satisfied with the approximation of the function provided by the scoring 

intervals. 

Construction of a Scoring Function 

Although a scoring function was defined and some characteristic 

elements were presented in the literature, a general method for constructing 

a scoring function from a set of data was not obvious. To overcome this, 

the present study will propose a five step guide with a brief explanation 

of each step. Briefly, the steps are: l) gather data, 2) determine 

parameters, 3) specify scoring intervals, 4) score, and 5) review. An 

example is selected from the Toy Train criteria set to illustrate the 

application of this procedure. The ultimate goal of this guide is for the 

analyst to derive a scoring function with a satisfactory set of partitions 

and related integer scores that is sufficiently attuned to the decision 

maker's conception of an effective discrimination between good, average 

and poor layouts relative to one criterion; and then repeat the process 

for every other criterion with the set. 

l) Gather data. After the data from the measures of effectiveness 

have been collected, each result is located on a continuous scale which 

covers the entire range of data points to help visualize the distribution. 



57 

Clusters of points are indications of various "levels" of achievement and 

become "natural" partitions which might prove useful in a later step where 

adjustment of the intervals is necessary. Although it might be possible 

to merely "attach" scores to these clusters at this point, the process 

of working with the mean and standard deviation parameters should prove 

to be a better first approximation from which adjustments can easily be 

made. As an illustration consider the criterion, "make economical use of 

floor space" and its related measure of performance, the aisle space index, 

in Figure 5 - 3 a . 

2) Determine parameters. Next, the distribution parameters are 

calculated to form a more concrete basis for specifying the scoring 

intervals. The formulae to be used in finding these parameters from the 

sample or in this case, the number of competing layouts, are calculated 

as follows: 

Where x is a data value, and n is the total number of points. Figure 5 -3b 

shows this for the example. 

3) Specify scoring intervals. The third step is to specify the 

scoring intervals. However, first the number of intervals to use must 

be resolved. Moore and Baker recommended that a maximum of nine intervals 

be used, at least at the outset, for this showed the highest consistency 

between their model and an economic test model. The analyst and the 

the Distribution Mean: and n 

the Standard Deviation: 
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C r i t e r i o n N o . 2 : A d e q u a t e A i s l e s 

M e a s u r e o f P e r f o r m a n c e : A i s l e S p a c e I n d e x 

( a ) G a t h e r d a t a : 

L a y o u t r q r / q 

B e r t z 1 2 2 0 7956 .153 
B r o w n 350 8 0 8 0 . 0 4 3 
D e a n 1075 8 4 0 0 . 1 2 8 

D o r n b o s 8 8 8 8 1 6 0 .109 
E l l i o t 1 1 0 4 8 2 8 5 . 133 
G r e e n 1674 7515 . 2 2 3 
K e n t 1052 8 1 9 2 . 1 2 8 
M o o r e 1103 8 4 0 0 . 131 
O t t a t i 1290 8 5 0 0 . 152 
P a y n e 1532 8 5 1 4 . 1 8 0 
P i t m a n 1603 8 2 0 0 . 195 
S m i t h 1123 8 1 0 0 .139 
S p e n c e 1 4 6 0 8 6 4 0 .169 
S t u r d i v a n t 1 5 0 4 8 5 8 5 .175 
S w e e t 6 1 8 8 3 4 0 . 0 7 4 
W i l l i a m s 1 6 2 8 1 1 2 0 0 .145 
Y o u n g 1992 9052 . 2 2 0 

X J k . 

( b ) 

0 . 0 2 5 . 0 5 0 . 0 7 5 . 1 0 0 .125 

D e t e r m i n e p a r a m e t e r s : 

M e a n = . 1 4 7 ; S t a n d a r d D e v i a t i o n = . 0 4 7 

( c ) S e t u p i n i t i a l i n t e r v a l s 

P e r f o r m a n c e V a l u e 

. 150 .175 

( d ) 

u n d e r m - 1 . 7 5 s 
m - 1 .75 s t o m - 1 . 2 5 
m - 1 .25 s t o m - .75 
m - .75 s t o m - .25 
m - .25 s t o m + . 25 
ra + .25 s t o m + .75 
m + .75 s t o ra + 1 . 2 5 
m + 1 .25 s t o m + 1 . 7 5 

o v e r m + 1 . 7 5 s 

A s s i g n s c o r e s 

u n d e r .065 
s .065 t o . 0 8 8 
s . 0 8 9 t o . 1 1 2 
s .113 t o .135 
s .136 t o . 1 5 8 
s .159 t o . 1 8 1 
s . 1 8 2 t o .207 
s . 2 0 8 t o . 2 2 9 

o v e r . 2 2 9 

S c o r e 

1 
2 
3 
4 

5 
6 
7 

. 2 0 0 .225 

1 , , \< 2 > 3 » I - ^ - U 5 » l 1 * 6 * r 7 , 

CO 

t 9 

K X X X X X X 
.065 .089 . 113 .136 .159 . 1 8 2 . 2 0 8 . 2 2 9 

F i g u r e 5 - 3 . S p e c i f i c a t i o n o f a S c o r i n g F u n c t i o n 
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decision maker should start with nine, but may have to reduce it to seven 

or five or three in order to improve the consistency of results between the 

evaluation model and the base used to test it, or make it conform more 

closely with the decision maker's ability to discriminate. Once the number 

of classes has been chosen, they are used for all performance data to 

prevent biasing of criteria with larger intervals and higher possible 

scores over those with a smaller number of classes. The initial set 

of intervals is arbitrarily defined to set the partitions every half a 

standard deviation centered on the mean of the distribution as in Figure 

5 - 1 . By observing how the clusters fall within these intervals the analyst 

will have some idea of how to adjust the widths to improve the discrimina

tory power of the function. This step is illustrated in Figure 5 - 3 c 

4) Assign Scores. An integer score from one to the number of 

intervals used is assigned to each class with the highest integer given 

to the performance interval, the next highest to the next best, and so on 

down to one for the worst level (Figure 5 - 3 ^ ). It must be 

remembered that the best performance might occur in the lowest class as 

in the Flow of Materials example, or the highest as in the Materials 

Handling measure, Figure 5 -1> depending upon the criterion. The intrinsic 

flexibility of the model is revealed by the fact that good performances 

relative to both criteria will be equally treated by the scoring model, 

despite their opposite orientations. 

5) Review. At this point the decision maker and the engineer 

should review the scores achieved by each alternative, and check to see 

that all levels of performance are properly distinguished in their opinion. 

If not, the engineer must return to Step 3 and adjust the class intervals 

( 
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to improve the results. In the example, two such attempts were required 

before a satisfactory set of intervals was found (Figures 5-3© and f ) . 

Figures 5-3d and 5-3© were unacceptable because the high frequency of 

points in some classes did not yield an adequate discrimination between 

the alternatives. 

The Special Discrete Case 

Occasionally, a criterion will not be susceptible to the above 

synthesis as in the case of a discrete criterion where only a finite number 

of results are possible. If the number of possible points is less than 

the number of scoring intervals used, a certain amount of unintentional 

weighting will occur. For example, the criterion "Building Expandability" 

and its measure of performance, the number of directions in which operations 

could be expanded, might have data points of 1 , 2 , or 3 directions in a 

criteria set consistently using nine scoring intervals. Since a relative 

weight is already included in the model, special care must be taken not 

to bias it by giving additional emphasis to a criterion. This study will 

first "equi-space" the data points on the scoring function, Figure 5-^> 

and then look at these type of criteria first if problems arise in the 

verification procedure used in Chapter IV. 

The Evaluation Model 

The evaluation model is a quantitative relationship which computes 

a dimensionless number or utility value to indicate the overall effective

ness of a layout relative to a pertinent set of criteria. The model pro

posed in the first section of this chapter will be developed in more precise 

mathematical terms and matrix notation will be introduced as a vehicle 

for data presentation, now that the two problems have been solved. 
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CRITERION: Building Expandability Directions 

Layout Performance Score 

Three Directions 9 
8 
7 

Two Directions 6 
5 
k 

One Direction 3 
2 
1 

Figure 5-^« A Discrete Criterion with More Scoring Intervals 
than Performance Results 
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Stated in more exact terms, the total utility or score of a layout, 

L^, (i = l,m), is determined by the summation of the products of the 

individual criteria performance scores, \ y and its corresponding relative 

weight, w., for each member of the criteria set, C., (j = l,n). The 

relative weights for the model were determined in Chapter IV and the 

effectiveness scores were extracted from the scoring function. Formally, 

the evaluation model is: 

U. - ) c. .w, , i = 1 , 2 , 3 , ...m. 

Where is the total score for alternative layout i 

w. is the relative weight of criterion i 
3 

c. . is the criteria value of alternative i with respect to 
1 ^ criterion j. 

For ease of presentation, a matrix notation was introduced and the 

model was represented as the product of a relative weight and a criteria 

value matrix. The former is a lxm column vector made up of the various 

numerical weights of the m members of the criteria set: 

The Relative Weight Matrix 

Criterion Relative Weight 
1 W-̂  

2 w. 
2 

3 w 0 

w. 
J 

n w 
n 
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The criteria value matrix consists of performance score results for each 

alternative relative to each criterion, or would be formulated as the 

following m x n matrix: 

The Criteria Value Matrix 

Alternative 
Plan C l 

Criterion 
C 2 C 3 

c 

n 

L i Cll C 1 2 
c 1 3 . . . In 

C 2 1 ° 2 2 
Cp^••• c 2 . . 

n. 
• ' " 2 n 

L 3 ° 3 1 
C 3 2 

c 3 3 . . . 
C 3 j * - ° 3 n 

• 

L. 
i 

• m 

• 

• 

• 
• 

C i 3 , , # 

• 

• 
• 

c . . . 

• 

• 

. . . c . 

in 

• 

L 
m 

f 
• 

"ml 

• 

C m 2 

• 

c _ • • • 

• 

n 
mn 

L z e d , in matrix notation the decision model may be stated as: 

u i c i i ° 1 2 C 1 3 , M 

Wlj . a . 

In w i 

U 2 ° 2 1 C 2 2 
c 2 3 . . . r 

• C 2 n W 2 

U 3 C 3 l C 3 2 

r 
3 3 * * " ° 3 3 " " 3 

• 
• 

u . 

1 
• 
• 

• 
• 

Vil 
• • -

• 
• 

u i 3 . . . 

• 

• 
• 

ij 
• 

• 

n 
in 

• 

• 
• 

W . 
J 

• 

• 

U 
m 

• • 

C m 2 

• 

C 0 • • • 
m 3 

• 

c . . . 

• 

. C 
mn 

• 

w 
m 

Or, this can be restated as U = C w 

Where U is the total utility matrix 

C is the criteria value matrix 

w is the relative weight matrix. 
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The layout possessing the highest total utility should be the alternative 

recommended to management. 

The Inclusion of Constraints in the Evaluation Model 

Before the evaluation model can be considered as complete the possi

bility of adding constraints on criteria value scores in the form of upper 

or lower bounds on these scores must be examined. A constraint should be 

included in the model if the performance relative to a particular criterion 

is so bad that it will make implementation of that layout difficult or 

impossible. Obviously, if a layout proposal can not be made operational, 

it should not be considered as an alternative in a set of layouts from which 

the best will be chosen. For example, an alternative may score impressively 

on all but one criterion, "General Appearance," and have a high overall 

score. However, if its general appearance is such that the crowded condi

tions of the plant will prohibit or inhibit production, then that layout 

must be eliminated as an alternative. 

It should be emphasized that the use of such constraints is optional, 

in the sense that only through interaction between the decision maker and 

the analyst, and the observation of the alternatives, can it be determined, 

first, if constraints are needed for a criterion, and second, what level 

of performance they should be. After these decisions have been made, the 

score from the scoring function to be attached to the selection level of 

performance becomes the bound on the constraint equation. Some adjustments 

may have to be made within that scoring function for performances better 

than the limit, but within in the same scoring interval. Thus, if a crowded-

ness of .45 is unacceptable, but .50 is acceptable, and both fall with in 

the scoring interval 3> then the scoring function should be adjusted to 
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give a score of 4 to performances about .'4-5. 

More formally, the above situation is represented in the model by 

the inclusion of as many equations as is necessary involving a criterion 

value score variable and an integer in the form: 

C. . > K. V i = 1, 2, ... m and 
i j - J 

any j = 1, 2, ... n 

k. = integer (1,9) 

Where j is the j ^ 1 criterion in the criteria set to x^hich the constraint 

applies, and k is the integer score established by the dec is ion maker and 

the analyst which will make an alternative unacceptable. For the example 

cited above, it might take the form > 3 , where "General Appearance" 

is the sixth criterion, and any score below three means that conditions 

in the layout's general appearance would prohibit its implementation if 

selected. Also, the layouts which fail to satisfy one or more constraints 

should not be totally discarded, but should be temporarily set aside; they 

may contain valuable information that will be useful to the engineer in 

the verification and analysis step presented in Chapter VI. 

Application to the Toy Train Example 

Steps 4 and 5 of the proposed method have been presented in this 

chapter and will be illustrated by their application to the Toy Train 

layouts. Step 4 is to specify scoring functions for the distributions of 

performance results of the measures selected in Chapter III. The general 

procedure for deriving each scoring function was exemplified by the aisle 

space index scoring function derived in an earlier section. For brevity, 

only the first and last steps in specifying this function for each criterion 
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will be included here, and the intervening steps will be described in 

Appendix II for the interested reader. Pertinent raw data or performance 

results for four of the criteria will be included in Appendix III. The 

specified scoring functions for the Toy Train criteria set are presented 

in Figures 5-5 through 5 - H . The criteria value matrix (Table 5-1) 

TABLE 5 - 1 

Criteria Value Matrix 

Criterion 
(1) (2) (3) (5) (6) (7 

General Adequate Flow of Production Expand- Flexi- Offi 
Layout Appearance Aisles Materials Methods ability bility &Se: 

Bertz s 
0 9 \ 3 6 7 

Brown 1 1 6 3 2 3 
Dean 6 3 3 8 9 6 2 
Dornbos '4 2 1 7 9 3 6 
Elliot 8 8 5 6 6 9 
Green k 9 1 1 3 2 6 
Kent 3 3 3 9 1 7 
Moore 3 8 3 9 5 7 
Ottati 6 5 8 5 9 9 1 
Payne 5 8 9 2 3 5 7 
Pitman 5 8 6 3 6 3 7 
Smith 8 3 8 9 7 6 
Spence 8 7 8 2 9 5 1 
Sturdivant 8 7 7 9 9 
Sweet 2 1 7 3 3 6 
Williams 8 5 5 9 7 
Young i\ 9 1 8 9 7 4 

summarizing the scores for the performance of each layout relative to each 

criterion is shown above. Thus, if the Bertz layout had a Travel Chart 

flow distance of 2^51 feet (Appendix III), it was given a score of 9 for 

the Flow of Materials scoring function. This value was then placed in 

column three, "Flow of materials," as the criteria value for flow of 

materials for the Bertz layout. The other values were derived similarly. 



Criterion No. 1 : General Appearance 
Measure of Performance: Survey of Characteristics 

Data 

Name Performance Score 

Bertz . 8 3 4 
Brown • 72 1 

Dean . 8 8 6 
Dornbos . 8 3 4 
Elliot . 90 8 

Green . 8 3 4 
Kent . 8 0 3 

Moore . 8 0 3 

Ottati . 8 8 6 
Payne . 8 5 5 

Pitman . 8 5 5 

Smith .90 8 

Spence .90 8 

Sturdivant .90 8 

Sweet .77 2 
Williams .90 8 
Young . . 8 3 

4 

Final Specification 

Layout Performance Score 
over .905 9 

.895 to .905 8 

. 8 8 4 to . 894 7 

. 863 to .883 6 
. 8 4 2 to .862 5 
. 8 2 1 to . 8 4 1 4 
.800 to . 8 2 0 3 
.769 to .799 2 

under .769 1 

1—
1 U 2 *l L , 6 , .7-J 11 9 

1 X 1 1 1 F I — J 2 1 LA * I * » I K I I I 
. 70 .75 . 8 0 ' . 85 .90 

Figure 5 - 5 . The Scoring Function for General Appearance 
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C R I T E R I O N N O . 2 : A D E Q U A T E A I S L E S 

M E A S U R E O F P E R F O R M A N C E : A I S L E S P A C E I N D E X 

D A T A 

N A M E P E R F O R M A N C E S C O R E 

B E R T Z .153 6 

B R O W N . 0 4 3 1 

D E A N .128 
3 

D O R N B O S .109 2 

E L L I O T .133 4 

G R E E N . 2 2 3 9 

K E N T . 1 2 8 
3 

M O O R E .131 4 

O T T A T I .152 
5 

P A Y N E . 1 8 0 8 

P I T M A N . 1 9 5 8 

S M I T H .139 4 

S P E N C E . 1 6 9 7 
S T U R D I V A N T .175 7 
S W E E T .074 1 

W I L L I A M S . 1 4 5 5 

Y O U N G . 2 2 0 
9 

F I N A L S P E C I F I C A T I O N 

L A Y O U T P E R F O R M A N C E S C O R E 

O V E R .196 9 
.180 T O .196 0

0
 

. 164 T O .179 7 

. 153 T O . 163 6 

. 1 4 2 T O . 152 5 

. 131 T O . 1 4 1 4 

.120 T O .130 3 

.109 T O .119 2 
U N D E R . 109 1 

1 J m ? t~ 
- I ^ J\ N R

 6 J L 7 C
O

 

L 9 

* * X X X X . * K 

r 
X X 

.108 .119 .130 . 1 4 1 . 152 33 TT74 0 9 5 

F I G U R E 5 - 6 . T H E S C O R I N G F U N C T I O N F O R A D E Q U A T E A I S L E S 
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Criterion No. 3 : Flow of Materials 
Measure of Performance: Travel Chart 

Data, 

Name Distance Score 

Bertz 2451 9 
Brown 3116 4 
Dean 3225 3 
Dornbos 3629 1 
Elliot 2635 8 
Green 3677 1 
Kent 323^ 3 
Moore 2525 8 
Ottati 2523 8 
Payne 2366 9 
Pitman 2874 6 
Smith 3168 3 
Spence 2510 8 
Sturdivant 3097 4 
Sweet 2709 7 
Williams 3054 4 
Young 3836 1 

Final Specification 

Layout Performance Score 

Under 2500 9 

2501 to 2653 8 

2654 to 2779 7 

2 7 8 0 to 2905 6 

2 9 0 6 to 3031 

3 0 3 2 to 3157 4 

3158 to 3 2 8 3 3 

3 2 8 4 to 3 ^ 0 9 2 

over 3 4 1 0 1 

9 r 7 6 L 5 4 L 3 _ j 2 1 

X X X X X * X X X Y 

2 5 0 0 2 6 5 4 2 7 8 0 2 9 0 6 3 0 3 2 3 1 5 8 3 2 8 4 3 4 1 0 

Figure 5 - 7 . The Scoring Function for Flow of Materials 



Criterion No. 4 : Production Methods 
Measure of Performance: Survey of Characteristics 

Data 

Name Performance Score 

Bertz .86 4 
Brown .88 6 
Dean .90 8 
Dornbos .89 7 
Elliot .87 5 
Green .82 1 
Kent .86 4 
Moore .85 3 
Ottati .87 5 
Payne .84 2 
Pitman .85 3 
Smith • 90 8 
Spence .84 2 
Sturdivant .89 7 
Sweet .85 3 
Williams .87 5 
Young .90 8 

Final Specification 

Layout Performance Score 

Over . 908 9 
.897 to .907 oo

 

.886 to . 896 7 

.875 to .885 6 

.864 to • .874 5 

. 853 to . 863 4 

.842 to .852 3 

.831 to .841 2 
Under . 8 3 1 1 

1 , Lr 9 ». 1 ^ . . U 6 « L r 7. 00 L 9 

... . Jf i i 
T 

4 t 
,81 .82 . 8 3 .84 .85 .86 .87 .89 .90 . 9 1 

Figure 5 - 8 . The Scoring Function for Production Methods 



Criterion No. 5^ Expandability 
Measure of Performance: Number of Dimensions Expandable 

Data 

Name Performance Score 

Bertz 2D 3 
Brown 2D 3 
Dean 3D 9 
Dornbos 3D 9 
Elliot 2|D 6 
Green 2D 3 
Kent 3D 9 
Moore 3D 9 
Ottati 3D 9 
Payne 2D 3 
Pitman 2|D 6 
Smith 3D 9 
Spence 3D 9 
Sturdivant 3D 9 
Sweet 2D 3 
Williams 3D 9 
Young 3D 9 

Final Specification 

Layout Performance Score 

3 Dimensions 9 

8 
7 

2 - | Dimensions 6 
5 

2 Dimensions 3 
2 
1 

Figure 5-9. The Scoring Function for Expandability 
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Criterion No. 6: Flexibility 
Measure of Performance: Work Station Flexibility Index 

Data 

Name Performance Score 

Bertz .7^1 6 
Brown .550 2 
Dean . 722 6 
Dornbos ,6oo 3 
Elliot .7^6 6 
Green .528 2 
Kent . 491 1 
Moore .667 5 
Ottati .830 9 
Payne .679 5 
Pitman .600 3 
Smith .789 7 
Spence .700 5 
Sturdivant .825 9 
Sweet .613 4 
Williams .786 7 
Young .762 7 

Final Specification 

Layout Performance Score 

, over . 820 9 
.801 to . 820 00

 

• 751 to .800 7 

. 7 1 1 to . 750 6 

. 658 to .710 5 

.605 to .657 4 

. 552 to . 6 0 4 3 

.*+99 to • 551 2 
under . 499 1 

.1 . 6 V * 7 » » 9 

X 1 X 

.49 . 53 .57 61 . 65 .69 . 73 .77 . 8 1 .85 •" 

Figure 5 - 1 ° . The Scoring Function for Flexibility 
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Criterion No. 7« Offices and Services 
Measure of Performance: Survey of Characteristics 

Data 

Name Performance Score 

Bertz .88 7 
Brown .84 3 
Dean • 83 2 
Dornbos .87 6 
Elliot . 91 9 
Green .87 6 
Kent .88 7 
Moore .88 7 
Ottati • 79 1 
Payne .88 7 
Pitman .88 7 
Smith .87 6 
Spence .82 1 
Sturdivant ,85 4 
Sweet .87 6 
Williams .85 4 
Young .85 4 

Final Specification 

Layout Performance Score 

over . 8 9 9 9 
. 888 to . 899 

CO 

. 877 to .887 7 

. 866 to . 876 6 

.855 to . 865 5 

.844 to . 8 5 4 4 

. 833 to .843 3 

. 822 to . 832 2 
under . 832 1 

1

 2-f M6» , * 7 m \ , 8 1 i Q 

1 * * 1 ? 1 •* 1 1 1 r i 1 
« - 1 1 _ J . 1 1 U t I T I T I 1 , I f I T I I h 1 

. 7 9 .80 . 8 1 . 8 2 .83 ^84 ~ 8 5 7 i % T o T 1 8 8 7 8 9 1 9 0 791 

Figure 5-H* The Scoring Function for Office and Services. 
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The Step 5 is to interrelate the scoring functions for the criteria 

with their corresponding relative weights into an evaluation model. The 

matrix notation introduced in this chapter will be used to present the 

evaluation model and the calculation of the overall, layout scores. The 

model is formed as the combination of the Criteria Value Matrix, Table 5 -

1 , and the Relative Weight Matrix of the criteria weights determined in 

Chapter IV: 

Criteria Relative 
Layout Value Matrix Weight Matrix Total 
Bertz 4 6 9 4 3 6 7 .143 5 .859 
Brown 1 1 4 6 3 2 3 .179 3 .357 
Dean 6 3 3 8 9 6 2 .250 5-210 
Dornbos 4 2 l 7 9 3 6 .214 3 . 8 5 4 
Elliot 8 4 8 5 6 6 9 x . 071 = 6 . 3 2 2 
Green 4 9 1 1 3 2 6 .107 3 .290 
Kent 3 3 3 9 1 7 .036 3 . 5 7 0 
Moore = 3 4 8 3 9 5 7 5 . 2 1 3 
Ottati 6 5 8 5 9 9 1 6 . 461 
Payne 5 8 9 2 3 5 i 5 .825 
Pitman 5 8 6 3 6 3 7 5 .288 
Smith 8 4 3 8 9 7 6 5 . 9 2 6 
Spence 8 7 8 2 9 5 1 6 . 0 3 5 
St'jrdivant 8 7 4 7 9 9 4 6 . 641 
Sweet 2 1 7 3 3 6 3 . 7 1 4 
Williams 8 5 5 9 7 5 . 641 
Young 4 9 1 8 9 7 4 5 . 6 7 7 

In completing the construction of the evaluation model, the inclusion 

of constraints to criteria score values must be considered. Upon discussion 

with the decision maker the following constraints were established: 1) a 

flow of materials distance greater than 3300 feet was unacceptable, and 

2) an office-survey index below . 8 3 was unacceptable. Formally, these are 

represented as C ^ > 3 and c ^ > in the completely structured evaluation 

model. Based on these constraints the Ottati, Spence, Young, Dornbos, and 

Green layouts were withdrawn from further consideration. In addition, 

the Smith layout was arbitrarily eliminated as being "too tight" for pro-
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duction to be carried on. This situation is discussed further in Chapter 
VI. 
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CHAPTER VI 

VERIFICATION AND ANALYSIS 

For an evaluation model to have any true meaning, it must be veri

fied before it .can be confidently used. This means that its practicability 

and especially its results must be substantiated or proven to be accurate 

within reasonable limits within the actual situation it is modeling. The 

determination of this accuracy for the evaluation model is accomplished by 

first creating a logical basis for the test statistic, Kendall's T, and 

then applying the measure to the output rankings of the evaluation model 

and some other method of ranking the layouts. Once the model has been 

validated, the engineer must analyze his results, not only for the best 

layout, but also for weaknesses, strengths and opportunities for combining 

features of several layouts to yield a better layout. If the model is not 

validated on the first test, four suggestions are included to help in the 

authentication. The test and analysis methodology developed here are 

applied to the Toy Train layouts for illustrative purposes. 

A logical basis for testing the output of the evaluation model is to 

compare its results with some other layout evaluation model that is valid 

and accepted by the decision maker. Specifically, a base is required that 

will serve to evaluate layouts in such a manner that an ordering from the 

best to worst layout will result. This would make it possible to test 

the effectiveness of the evaluation model over the entire range of quality 

of alternatives. Once the two rankings are available, a comparison between 

the two orderings follows logically as a means of verification or an indi-
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cation of adjustments that should be made in the evaluation model to attune 

it to the base. If the engineer could prove that the model's alignment 

is the same as the other methods with only minor chance variations, then it 

would be possible to conclude that the model has been correctly tuned, is 

representative of the decision process, and would generally rank any layouts 

in the same manner as the base. 

However, a problem exists in that such a quantitative model to serve 

as a time has not been developed for general use in the plant layout field 

at this time. In its place a method must be found that will provide the 

necessary rankings, and still be fairly reliable. One possibility is to 

have the decision maker informally and subjectively rank the alternative 

layouts. Admittedly, the validity of such a method is questionable, but it 

is the best that can be done under the circumstances. One good feature of 

this method is that the decision maker may change his ranking at any time, 

and the analyst must closely interact with the decision, maker throughout 

the verification process. Summarized, the objective of the verification 

process in this research will be to align the model and the subjective 

ranking first by making structural changes in the evaluation model, and, 

second, interacting with the decision maker to make changes in his ranking 

if necessary, so that the model is representative of the selection process. 

Since it would be improbable that both orderings would choose the 

same layout as best, it would be more feasible to compare the overall rank

ings of the two, and leave to the analysis phase to glean what information 

it can and make the necessary adjustments from the results. A statistic 

must be found, then, that gives a relative indication of the degree of 

closeness and its significance of the two layout rankings relative to each 

other. Also, it must be able to serve as an indicator of when the two are 
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fairly well aligned after changes have been made, so that the engineer can 

begin his analysis of the output of the evaluation model. Such a measure 

is Kendall's T used in rank correlation analyses. 

Kendall's T 

In psychological work the problem of comparing two different rank

ings of the same set of individuals is often solved by the rank correlation 

coefficient, Kendall's T. Specifically, it quantitatively shows the 

compatibility of the rankings of, or n individuals layouts in this research 

from one to n, according to some designated characteristic, by m observers. 

Because of its definition, this statistic has found wide application in 

other fields, and can easily be adapted to the comparison of two rankings 

of alternative plant layouts. It is the best test statistic for such a 

comparison between a small (10 < n < 20) number of individuals. It has 

some validity over the range, 5 < n < 1 0 , but Spearman's is better for 

n > 2 0 . For a more detailed discussion the reader should see Kendall ( 1 7 ) . 

The rank correlation coefficient is +1 only when the two rankings 

are.perfectly aligned, and - 1 when the rankings are exactly inverted. For 

intermediate values it provides a satisfactory measure of correspondence 

between the two rankings. In the case where either of the rankings may be 

taken as the objective ranking, as in this research, T measures how accurate 

either ranking would be if the other were the objective, or it measures thee 

compatibility of the two rankings. The verification of the model consists 

of calculating the value of T as defined below, and a test of significance 

statistic to disprove the hypothesis that the two rankings are unrelated, 

which leads to the conclusion that the two methods order layouts in the 

same manner, and that the model is valid. 
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Definition of Tau 

The following definition of Tau and much of its related material is 

taken from Kendall's Rank Correlation Methods (17) where the interested 

reader will find a more detailed presentation of the calculation of this 

measure. The definition of Tau is more easily comprehended if an example 

is worked out before a general statement of how it is calculated is made. 

Consider a set of layouts, numbered from 1 to 10, whose objective 

order is 1, 2 , 3> • • • » 10, and consider another arbitrary ranking of the 

same layouts such as: 

3 7 1 10 2 6 8 1 k 9. 

Consider the order of the nine pairs obtained by taking the first number 4 , 

with each succeeding number. The first pair, 4 7, is in the correct 

order (sequenced 1, 2 , . . », 10), and it is given a score of +1. The 

second pair, 4 2 , is in the wrong order and is score i-l. The third 

pair is scored +1, and so on, the nine scores being: 

+1 -1 +1 -1 +1 +1 -1 +1 +1 = + 3 . 

Performing a similar analysis with the second number, 7, and its eight 

succeeding numbers the scores and total would be: 

-1 +1 -1 -1 +1 -1 -1 +1 ' = - - 2 . 

Proceeding with each number, the nine scores are as follows: 

+ 3 , - 2 , + 5 , - 6 , + 3 , 0, -1, + 2 , +1. 

are totaled to yield a score of +5« 

The maximum score, obtained if the numbers are all in objective order 
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( 1 , 2 , . . 1 0 ) , is 4 5 . The rank correlation coefficient between a 

variable ranked in objective order and a variable ranked in the order 

above is: 

^ Actual Score - Q 11 
Maximum Possible Score 45 

Generally, if there are n layouts, the maximum score, obtained if 

and only if they are all in objective order is (n-l) + (n-2) + . . . + 1 

n ( n ~ ^ , Denoting the sum of actual scores for any given ranking by S, 

this measure of rank correlation, T , may be calculated as: 

_ 2S 
T " n T n T i T ' 

In the case of ties, where two layouts receive the same score from the 

same model, a more complex form a T may be calculated or some arbitrary 

rule may be established for breaking ties ( 1 7 ). The latter approach will 

be used for the example problem. 

Test of Significance 

After the T has been calculated, its value or its related quantity S, 

(which is just a multiple of Tau) must be tested for significance before 

any tangible conclusions may be drawn about the correlation between the 

two rankings of layouts. A test of significance is a test which, by use of 

a test statistic, purports to provide a test of an hypothesis that a 

certain effect is absent. The strategy recommended by Kendall is to assume 

that no relationship exists between the two orderings or that T and S 

are zero and calculate a test statistic, based on a property of S to prove 

or disprove this supposition. 



82 

Kendall has demonstrated that for a sample size of n greater than 

10, the variable S is satisfactorily approximated by a normal distribution 

with mean of zero and standard deviation of one. Further, it was shown 
2 1 

the variance of S is: Var S = s = ^g(n)(n-l)(2n+5)• However, since a 

continuous distribution is being used to approximate a discrete one, a 

compensating correction in the test statistic must be made. It is assumed 

that instead of having frequencies at S, as in a discrete distribution, 

that the frequencies are spread out uniformly over the interval S - 1 to 

S + 1, so that a continuous distribution has been approximated. In com

paring the areas under the normal curve, one will be subtracted from the 

observed S before it is expressed as a multiple of the standard deviation, 

and this is known as the correction for continuity. 

The hypothesis to be tested is that the two rankings are independent 

indicating that there is no real relationship between them, versus the 

alternate that the two rankings came from the same source or model. The 

following criterion will be adopted for testing this: if it is very impro

bable that the observed value of S, or greater in absolute value, could 

have arisen by chance, the hypothesis will be rejected. In other words, 

if the observed S lies in the "tails" of the distribution away from the 

mean, the hypothesis will be rejected. The five percent level of signifi

cance will be used in this research to specify this chance occurence, 

though other values might prove more suitable to another analyst. An 

'illustration, taken from Kendall, will prove useful in understanding this 

test. 

Example 6 - l 1 

In a pair of rankings of 20 the value of S was observed to be 58 
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and Tau was found to be 0 . 3 1 . Is this significant? 

Tau = = 2S = 2(58) 
n(n-l) 20 (19) = 0 . 3 1 . 

s 2 = Var S = ~ ( 2 0 x 19 x 45) = 950 

s = 30.82. 

Making the correction for continuity, S becomes 57 > and 

= — S 2 _ 
30 .82/s = 1 . 8 5 s. 

From the normal tables, the probability of a deviation less than 1 . 8 5 s 

is about O . 9 6 7 8 . The probability that 1 . 8 5 s is obtained or exceeded in 

absolute value is 2 ( 1 - O . 9 6 7 8 ) = 0 . 0 6 4 . This is small, but not small 

enough to reject the hypothesis. If the observed S had been equal to or 

larger than I . 9 6 s or 6 l , the hypothesis would have been rejected, and it 

could be assumed that the two rankings came from the same source. 

Analysis 

Analysis of the results is the last and most important step in this 

methodology. After the layouts that have violated constraints have been 

thrown out, the engineer must calculate the value of t and its significance 

as in the previous section to see if the model that has been constructed 

conforms to the base ranking. If the value of t is significant, then the 

analyst should study the output for useful information as recommended in 

Section A below. If t is not significant, then he should return to some 

1. 'Kendall (17) 
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of the diagnostic suggestions of Section B to see if improvements in the 

correlation of the two orderings can be made. If this fails also, then the 

analyst should interact with the decision maker to see if a change in the 

ranking of layouts is in order, or if he can give some insight as to where 

the output of the model might be in error. 

Section A. A Significant Tau 

If the observed t is found to be significant, the researcher can 

conclude that his model and the base method of ranking will coincide with 

only small chance variations and that a representative model has been 

built. He can then analyze its output. In addition to finding the best 

alternative layout, a more extensive study should be made of other layouts, 

finishing close to the top as well as those which did best under each 

criterion, so that opportunities for improvement and combinations of 

layouts for producing a better overall layout will not be overlooked. 

The discovery of the best alternative was one of the primary object

ives of this research. The layout selected should represent the best com

promise of the weighted criteria set, optimizing each criterion in accord

ance with the objectives of all other criteria. I t will consistently 

score high for each criterion, because it has the best combination of 

elements uniform with the criteria set used to evaluate it. If a layout 

must be selected from the competing set of alternatives, this is the one 

that should be suggested to the decision maker. 

Nevertheless, greater opportunities exist when the close finishers, 

the second or third or fourth best layouts, are also studies. After careful 

circumspection, it might be possible to discover ways to combine one or 

several of these with the best layout or with each other to form an even 
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better layout. For example, maybe a certain machine arrangement in the 

fourth best layout could be used to improve a weakness or poor criterion 

score in the second best layout to yield a new alternative that might be 

better than the number one layout. A large number of opportunities for 

improvement exists from following this pattern. 

Finally, the engineer should consider the layouts which had the best 

score in a particular criterion, but which did not finish high in the 

overall rankings. A vast reservoir of ideas for improving the top layouts 

can come from this source. If one of the top layouts did poorly in this 

category, the ideas or even that part of the layout with the lower total 

score, but with the highest score related to that criterion could prove 

useful in correcting the weakness or alleviating the problem in the higher 

ranked layout, thus improving it some more. 

All that is hoped for in this analysis stage is that the engineer 

will not just choose the best, but will look into the wealth of information 

and the vast opportunities for implementation of ideas from lower ranked 

layouts. The model itself should not be discarded after the analysis, 

either, for it could serve as a screening device so that insteadof giving 

the decision maker seventeen layouts from which to choose the best, the 

engineer could present only the top, five "scorers" from the model. Among 

other uses, the model should give some insight to the decision maker about 

how alternative layouts are evaluated and selected, what criteria are most 

important, and how they are weighted in reaching the final selection. 

Section B. A Non-Significant Tau 

If the value of Tau is not significant, the two rankings have no 

relation to each other and the model's structure must be rechecked. 
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Diagnostic action should begin with any discrete criterion scoring functions, 

then progress to the scoring functions for the other criteria, and, last, 

to the measures of performance chosen for the criteria. The ultimate goal 

of this trouble shooting is to improve the consistency between the model's 

and the base method of ranking by adjusting scoring intervals within each 

scoring function. It should be re-emphasized that the other source is not 

to be taken as the absolute correct ranking and the model must be changed 

to suit it, but that the other is a base which the model should try to 

emulate as much as possible. Also, the analyst should always interact 

with the decision maker to see if he prefers the results obtained. 

The first thing to check is the scoring functions used for discrete 

criteria. Other class intervals beside the equi-spacing used in the 

previous chapter might be tried in the hope that the changes produced in 

the rankings may bring the model closer into alignment with the base. 

The scores should be assigned higher or lower to see if this will improve 

the correlation statistic. 

Next, the other scoring functions should be rechecked to see that 

the proper amount of discernment is achieved at all scoring levels. The 

researcher might check those scoring functions with large ranges of values, 

expanding the scoring intervals around the tails, while being careful not 

to alter those in the middle of the distribution. Another common problem 

is groups of points with very similar values falling into the same inter- ̂  

val; here greater attention should be paid to contracting these intervals 

to increase discrimination power in that part of the distribution, while 

trying not to disturb the more effective of the remaining scoring intervals. 

Again, all changes should be tried and the ones that improve correlation 
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should be implemented. 

Finally, the measures of performances themselves should be challenged 

to see that they really meet all the characteristics described in Chapter 

III. It is entirely possible that an invalid measure has been used or that 

the measure selected has failed to properly discriminate levels of per

formance, and a better one should be found. For example, the engineer 

should suspect that a measure is not discriminating properly when per

formance results similar to survey results of the survey in Figure 5 - H 

appear. In such cases he should look for another measure of performance. 

The reliability of the measure should be examined over the entire range of 

performance to see that it has given consistent results. Also, the measure 

might have been misapplied or misunderstood in its application, and this 

should be investigated. 

As a last resort, the engineer should take several of the best 

ranked layouts from the base method of ranking, and compare to see where 

or why they did poorly in the evaluation model. Possible areas of improve

ment are indicated by this approach which might have been overlooked in the 

previous refinements. If not he should then confront the decision maker 

with the results, and see if the decision maker should make alternations 

in his rankings. If changes in order are made then the analyst should 

repeat the above process. 

After each change has been made, another Tau and significance test 

should be run. If the Tau is significant, the researcher should proceed 

as in Section A, If not, more refinements should be made. If all else 

fails the engineer must be satisfied with some generated data of unknown 

value and look over the suggestions of Section A, while being careful not 

to draw any real conclusions about his model. In other words, his model 
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hasn't satisfactorily approximated the base, and it is possible that such 

an evaluation model will not be applicable to the layout problem before 

analyst. 

Verification and Analysis in the Example Problem 

The evaluation model output was analyzed and verified according to 

the procedures presented in this chapter for the Toy Train layouts. No 

major adjustments were required in the verification step, for the calculated 

Tau was significant on the first trial. As an example of what the analysis 

phase might include, an attempt was made to improve one of the best layout's 

weaknesses by combining it with another layout. 

Verification 

Step 6 of the proposed methodology is to verify the model by tuning 

it to a valid base. Since such a base was not available, the decision 

maker's judgment ranking of the layouts was used. Structural changes in 

the intervals of the scoring functions, and decision maker changes in the 

judgment rankings are made until the correlation coefficient, Kendall's 

Tau, indicates that there is agreement between the orderings. Once this 

agreement has been achieved the researcher analyzed the alternatives not 

only for the layout with the highest score, but also other alternatives in 

an effort to make a combination leading to an even better layout. 

First, the decision maker ranked the seventeen Toy Train layouts 

from best to worst. These rankings were then added to the model output 

of Table 5 - 1 to form Table 6 - 1 . 

After removing the layouts that have violated constraints, a Kendall's 

t was calculated and tested at a significance level of five percent. The 

computed value was significant and indicated that the model had sufficiently 



Table 6 - 1 

Criterion Judgment 
Layout 1 2 3 4 5 6 ? Score Rank Rani 

Sturdivant 8 7 4 7 9 9 4 6 . 6 4 1 1 1 

Ottati* 6 5 8 5 9 9 1 6 . 4 6 1 2 11 

Elliot 8 4 8 5 6 6 9 6 . 3 2 2 3 6 

Spence 8 7 8 2 9 5 1 6 . 0 3 5 4 13 

Smith 8 3 8 9 7 6 5 . 9 2 6 5 15 

Bertz 4 6 9 . 4 3 6 7 5 . 8 5 9 6 2 

Payne 5 8 9 2 3 5 7 5 . 8 2 5 7 7 

Young 4 9 1 8 9 7 4 5 . 6 7 7 8 9 

Williams 8 5 4 5 9 7 4 5 . 6 4 1 9 5 

Pitman 5 8 6 3 6 3 7 5 . 2 8 8 10 3 

Moore 3 4 8 3 9 5 7 5 . 2 1 3 11 12 

Dean 6 3 3 8 9 6 2 5 . 2 1 0 12 1 4 

Dornbos 4 2 1 7 9 3 •6 3 . 8 5 4 13 4 

Sweet 2 1 7 3 3 4 7 3 . 7 1 4 1 4 17 

Kent 3 3 3 9 1 7 3 . 5 7 0 15 8 

Brown 1 1 6 3 2 3 3 . 3 5 7 16 10 

* 
Green 4 9 1 1 3 2 6 3 . 2 9 0 17 16 

Constraints: 
C i 3 > 3 C i ? > 2 

* Violated constraint 
** Eliminated by the decision maker 
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approximated t h e d e c i s i o n maker 's r ank ing , and t h a t i t would probably rank 

any a l t e r n a t i v e l ayou t something l i k e the d e c i s i o n maker wi th only minor 

v a r i a t i o n s . The computations were as fo l lows : 

Layout Rankings 

Eva lua t ion Model: 1 2 3 4 5 6 7 8 9 1 0 1 1 
Judgment Ranking: 1 6 2 7 8 5 3 9 4 1 0 1 1 . 

S = 1 0 + 1 + 1 + 0 + 1 + 4 + 1 + 2 + 1 = 29 

T a u = n T n l l ) = 1 1 ( 1 0 ) = # 5 2 ? 

s 2 = ] ^ ( 1 1 ) ( 1 0 ) ( 2 7 ) = 1 6 5 , s = 1 2 . 8 4 

Making the c o r r e c t i o n fo r c o n t i n u i t y , S becomes 28 , and 

S = 1 2 T o 4 7 s " = 2 , 1 8 S # 

From' the normal t a b l e s , the p r o b a b i l i t y of a d e v i a t i o n l e s s than 2 . 1 8 i s 

about O .985I . The p r o b a b i l i t y t h a t 2 . 1 8 s i s ob ta ined or exceeded i n 

a b s o l u t e value i s 2 ( 1 - 0 . 9 8 5 1 ) = 0 . 0 3 0 . This i s smal l enough t o r e j e c t 

t he hypothes is t h a t t h e two rankings a r e u n r e l a t e d . Therefore , t he a n a l y s t 

can conclude the rankings came from t h e same s o u r c e , of t h a t t he model has 

s u f f i c i e n t l y approximated t h e dec i s ion maker 's s e l e c t i o n s and o r d e r i n g . 

Since Tau was s i g n i f i c a n t on the f i r s t t r y , no f u r t h e r changes a r e 

necessa ry i n t he model. However, i f T had not been s i g n i f i c a n t , t he changes 

i n the scor ing func t ions suggested i n the s e c t i o n "A Non-s ign i f i can t f 

would have been made u n t i l i t became s i g n i f i c a n t . 
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Analysis 

The Sturdivant layout was the best alternative in terms of achieving 

the highest overall score, but the analyst should not stop there. The 

Sturdivant layout has weaknesses, as evidenced by low criteria values, for 

"Flow of Materials" and "Offices and Services". To indicate how an analyst 

might go about combining layouts to generate a better overall layout, the 

Bertz layout which scored higher than Sturdivant in the criterion "Flow" 

will be combined with the Sturdivant layout. 

A rearrangement of the Sturdivant machines, Figure 6 - 1 , to fit the 

Bertz flow of materials pattern, Figure 6 - 2 , was attempted to generate 

a better layout, Figure 6 - 3 * No other changes were made. Other com

binations and improvements are possible, but will be left to future efforts 

in this area. 



Figure 6 - 1 . The Sturdivant Layout 
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igure 6 - 2 . The Bertz Layout 



Figure 6 - 3 * The Sturdivant Layout Combined with the Bertz 

Flow of Materials 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

The primary goal of this research has been to develop a workable 

methodology for quantitatively evaluating a set of alternative plant layouts 

to determine the best. In this final chapter, a summary of the method is 

presented, then conclusions originating from this research are drawn, 

and recommendations and extensions for further research are made. 

Summary 

The quantitative method proposed by this research for evaluating 

alternative plant layouts of the same production facility consists of six 

steps. It has solved the problems of uniqueness, singularity and the proper 

place of judgment. These steps are. 

1) Select from five to ten criteria from a list of objectives to be 

accomplished by the final plant layout. Three possible sources of this 

list are management directives and desires, engineering checklists, and 

a composite list of plant layout objectives derived from the literature. 

2) Choose a measure of performance to indicate the degree of goal 

accomplishment for each-criterion must be chosen. For criteria derived 

from the composite list of objectives, a master list of factors that could 

conceivably serve as quantitative measures was developed. To establish 

factors for criteria taken from the other two sources, the analysis technique 

used to develop factors for the composite list was suggested. 

3) Calculate a relative weight for each criterion, since not all 
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members of the criteria set will have the same significance in the selection 

of the best alternative. Four of many possible methods were presented 

in Chapter IV for computing these weights. 

4) Specify scoring functions for the distribution of performance 

results of the measures selected in Step 3» Although the process of 

specification is primarily one of interaction between the analyst and the 

decision maker, a definition and a procedure for constructing a scoring 

function is included to make this process more systematic. 

5) Interrelate the scoring functions for the criteria with their 

corresponding relative weights into an evaluation model. A possible form 

for this model for evaluating alternative layouts was developed in Chapter 

V, and emphasized the necessity for and the role that scoring functions 

play in the model. 

6) Verify the model by tuning it to a valid and accepted base. Since 

such a base was not found, a judgment ranking of questionable validity 

might be used. Structural changes in the scoring functions and changes in 

the judgment ranking as suggested by the decision maker are made until the 

rank correlatinn coefficient, Kendall's Tau, indicates that there is sub

stantial agreement between the two orderings. The analyst then must not 

only select the best layout, but look for combinations of layouts that 

might produce even better alternatives than those presently in the set. 

An example problem consisting of seventeen alternative layouts for 

a Toy Train factory is included to illustrate each of these steps and the 

concepts presented within them. 

Conclusions 

The following conclusions result from this research: 
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(1) There is a deficiency of quantitative techniques and evaluators 

for specific plant layout objectives other than Materials Handling and Flow 

of Materials. 

( 2 ) The decision theory approach is both applicable and readily 

adaptable to the alternative plant layout selection problem. There was 

very little trouble in adapting that methodology to this research. 

(3) The model form evolved from the analyst's conception of the 

layout selection problem and decision theory methodology is but one of 

many possible formulations. However, the summation approach has been 

demonstrated to be effective in another research, and is probably the easiest 

form for a decision maker to comprehend. 

(4) By combining the best aspects of several layouts, as indicated 

by their high scores from criteria scoring functions, an opportunity to have 

an even better alternative layout can be created. This was illustrated 

by the combination of alternatives produced for the example problem. 

(5) A set of layout alternatives can be evaluated by the proposed 

method. Based on its application to the example problem, the method is 

workable and practical. However, more research is needed to improve the 

method in the areas of: scoring function specification, establishment of 

quantitative factors, and additional applications to determine and correct 

flaws not apparent in the example used in this research. 

Recommendations and Extensions for Further Research 

In the process of developing this quantitative method, several 

related problems were recognized by this researcher, but time did not 

permit resolving them. Areas for possible further efforts include: 

(1) The redevelopment of a better and more extensive list of plant 
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layout objectives; factors that could serve as possible evaluators for 

each; and improvement of the master list presented in Chapter III. 

( 2 ) Determine better measures of performance, so that less emphasis 

will be placed on the definition and survey methods of evaluating perfor

mance. 

(3 ) More work should be done on the validity and the reliability of 

the survey approach. Psychological testing should be performed to increase 

its acceptability as a measure and improve its format for future applica

tions in evaluating alternative plant layouts and other fields. 

(4) The decision theory research needs to be expanded and detailed 

in simpler terms so that it will be more accessible for use by engineers. 

The methodology has the potential for becoming a powerful management and 

engineering tool. 

(5 ) The number of alternative layouts to be evaluated as been 

tacitly assumed to be higher than ten. More work should be done to discover 

what affect the number of alternatives has open the workability of the 

proposed method, especially with less than 1 0 . 

(6) Finally, more work should be done in the areas of combining 

the best parts of the seventeen Toy Train layouts to see if a better 

combination or combinations than the one included in Chapter VI can be 

generated. 

Possible extensions of this effort relate to the alternative evaluation 

problem and to application of the methodology to other areas. The method 

developed in this research might prove useful in formulating a base model 

to be used to test other optimal plant selection formulations, for example, 
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Mitchell's ( 2 2 ) untested linear programming model. Other areas where the 

method might be applicable are plant site location and the problem of 

selecting of the best material handling equipment. 
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APPENDIX I 
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THE TOY TRAIN PROBLEM 

Purpose 

The purpose of this appendix is to familiarize the reader with the 

details of the toy train problem used as an example throughout this 

research. The problem originated as a course requirement for I. E. 4 4 7 . 

Each student was given the problem of designing a plant layout which was to 

accomplish several requirements as listed below. Seventeen layouts of toy 

train factories from the Fall of 1964 class became the raw data for this 

study. The numerical grades assigned to them by Professor Apple became 

the benchmark to which the scoring model rankings were compared to test 

the reliability of the evaluation model. 

Product 

The basic product is a wooden toy train consisting of three cars and 

an engine hooked together by screw hooks and eyes (see diagram 1 ) . It is 

to be made from #1 Poplar lumber and painted. The features are sturdy and 

safe for normal child's use. It will sell for approximately $5 on the 

retail market. 

Production 

The proposed plant is to produce toy trains at the rate of 50 per 

hour or 1 0 0 , 0 0 0 per year. All operations on the rough lumber received 

are done in the plant, including painting and packaging. Only the wheels, 

coupling hooks and eyes, wood bead, string, carton, liners, tape, and labels 

are purchased. 



Diagram A-l 102 
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Plant Facilities 

Size and Construction 

The building to house the plant must be constructed of cement block 

with concrete floor, tar and gravel "flat" roof, and a front of brick. 

Production 

The production sequence to make the toy trains is as follows: 

1 . After the boards are received, they are cut into four to six foot 

lengths and are planned to the proper thickness and cut to the proper 

width. 

2 . Part Fabrication: The necessary cutting to length, jointing, 

drilling, and handing is done to make the individual parts. 

3 . Assembly: The various parts are assembled, and glued or nailed 

together, placed on racks to dry. Final sanding is done after drying. 

4 . Painting and Finishing: Two coats of paint are applied in a 

paint booth and dried in an oven. When dry each item is inspected; wheels, 

and hooks and eyes are then put one. A string and bead are attached to the 

engine, and the whole assmelby is inspected again and packed in a carton. 

Offices 

Approximately 1000 square feet of total office area is required for 

the President, the Industrial Engineer, Production Manager, Accountant, 

and Secretarial help. 

Other Facilities 

Food services in some form must be provided. A tool room and tool 

crib to do the simple repairs and tool sharpening are necessary. First 

aid station(s) and toilet facilities must be provided. 
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Criterion No. 1 : General Appearance 

Measure of Performance: Survey of Characteristics 

(1 ) Gather data: 

Layout Performance Score 

Bertz . 8 3 4 
Brown .72 1 
Dean . 8 8 6 
Dornbos . 8 3 4 
Elliot .90 8 
Green . 8 3 4 
Kent . 8 0 3 
Moore . 8 0 3 
Ottati . 8 8 6 
Payne . 8 5 5 
Pitman . 8 5 5 
Smith .90 8 
Spence .90 8 
Sturdivant . 90 8 
Sweet . 7 7 2 
Williams .90 8 
Young . 8 3 4 

, X i . * . 
. 7 4 . 76 . 7 8 . 8 0 . 8 2 . 8 4 . 8 6 

1 
• 70 .72 .90 

(2 ) Determine parameters: 
Mean = . 8 4 5 ; Standard Deviation = 0 . 0 5 2 . 

(3) Set up initial intervals: 

Performance Value Score 

over m + 1 . 7 5 s over . 936 9 
m + 1 .25 s to m + 1 .75 s .910 to • 936 

oo 

m + .75 s to m + 1 .25 s .883 to . 909 7 
m + .25 s to m + .75 s .856 to . 882 6 
m - .25 s to m + .25 s .835 to .855 5 
m - .75 s to m - . 25 s . 808 to . 834 4 
m - 1 . 2 5 s to m - .75 s . 781 to . 807 3 
m - 1 . 7 5 s to m - 1 .25 s . 754 to .780 2 

under m -• 1 . 7 5 s 1 

(h) Assign Scores: 
1 2 T 3 „ 4 5 x 

6 r 7 * 

CO L 9 

X i i ft 8 . 754 . 781 .808 .835 T85o" .883 .910 • 936" 



(5 ) C o n t r a c t a n d a d j u s t i n t e r v a l s f o r f i n a l s p e c i f i c a t i o n : 

V a l u e S c o r e 

o v e r .905 9 

. 895 t o .905 8 
. 8 8 4 t o .894 7 
. 863 t o .883 6 
. 8 4 2 t o .862 5 
. 8 2 1 t o . 8 4 1 4 
.800 t o .820 3 
. 7 6 9 t o .799 2 

u n d e r .769 1 

1 u 

c 2 J 
, 4 

* 5 ^ 1 
r 6 

. 7 

co , 9 

1 A 1 x : T 1 
. 70 .75 .80 .85 .90 
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Criterion No. 2: Adequate Aisles 
Measure of Performance: Aisle Space Index 

(1) Gather data: 

Layout r q r/q Score 

Bertz 1220 7956 .153 6 
Brown 350 8080 .043 1 
Dean 1075 8400 .128 3 
Dornbos 888 8160 .109 2 
Elliot 1104 8285 .133 4 
Green 1674 7515 .223 9 
Kent 1052 8192 .128 3 
Moore 1103 8400 .131 4 
Ottati 1290 8500 .152 5 
Payne 1532 8514 .180 8 
Pitman 1603 8200 .195 8 
Smith 1123 8100 .139 4 
Spence 1460 8640 .169 7 
Sturdivant 1504 8585 .175 7 
Sweet 618 8340 .074 1 
Williams 1628 11200 .145 5 
Young 1992 9052 .220 9 

- J 1 £ J & U L . 1 X * K V fr X , K * x , x k , 

0 .025 .050 .075 .100 . 125 .150 .175 .200 . 225 

(2) Determine parameters: 
Mean - .147; Standard Deviation - .047 
(3) Set up initial intervals: 

Performance Value Score 

under m - 1 . 7 5 s under . 065 1 
m - 1 . 7 5 s to m - 1 . 2 5 s .065 to .088 2 
m - 1 .25 s to m - .75 s .089 to . 1 1 2 3 
m - .75 s to m - .25 s . 113 to .135 4 
m - .25 s to m + .25 s . 136 to .158 5 
m + .25 s to m + .75 s .159 to .181 6 
m + .75 s to m + 1 . 2 5 s .182 to .207 7 
m + 1 . 2 5 s to m + 1 . 7 5 s .208 to .229 8 

over m + 1 . 7 5 s over .229 9 

(4) Assign scores: 

1 , 2 J k 3 » 4 ^ ^ 5 „ 6 m u 7 - » 00
 , 9 

X X X X X X X X 

7089 3 l 3 ^ 1 3 6 7159 T L 8 2 1 2 0 8 .229 
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(5 ) Contract intervals: 

Value Score 

over 
,175 to 
,164 to 
.153 to 
,142 to 
,131 to 
,120 to 
,109 to 
under 

,186 
.185 
. 174 
.163 
.152 
.141 
.130 
.119 
,108 

1 B 1 2 J * 3
 m L 5 -* LR 6 I H 7 * - 8 * r 9 

-JUL K.X, X 
C 
X X X .* X X 

.108 .119 .130 

(6) Final Specifications: 

.141 . 152 

Value 

I 6 3 ,174 .185 

Score 

over 
.180 to 
. 164 to 
.153 to 
.142 to 
. 131 to 
.120 to 
.109 to 
under 

,196 
.196 
.179 
.163 
.152 
.141 
.130 
.119 
,108 

.108 .119 .130 .141 

1 ( L 2 J L 3 9 K 5 - J K 6 » - r 7 J L 8 J r 9 

X X X i X X 
J * < 

X X 152 7163 .179 .195 
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Criterion No. Ji Flow of Materials 
Measure of Performance: Travel Chart 
(l) Gather data: 

Layout Distance Traveled Score 

Bertz 2451 9 
Brown 3116 

C
O

 

Dean 3225 3 
Dornbos 3629 1 
Elliot 2635 00

 

Green 3677 1 
Kent 3234 3 
Moore 2525 8 
Ottati 2523 8 
Payne 2366 9 
Pitman 2874 6 
Smith 3168 3 
Spence 2510 

C
O

 

Sturdivant 3097 4 
Sweet 2709 7 
Williams 3054 4 
Young 3836 1 

2600 i m x 1 3"o00 XX 2400 2800 3000 3200 

(2) Determine parameters: 
Mean = 2978; Standard Deviation = 451 

( 3 ) Set up initial intervals: 

3400 

Performance 
under m 

m - 1 . 75 
m - 1 . 25 
m - .75 
m - .25 
m + .25 
m + .75 
m + 1 . 25 

s 
s 
s 
s 
s 
s 
s 

over m 

- 1 . 7 5 s 
to m - 1 . 2 5 
to m - . 75 
to m -
to m + 
to m + 
to m + 1 . 2 5 
to m + 1 . 7 5 
+ 1 . 7 5 s 

. 25 

. 25 

.75 

Value 
under 2189 

s 2189 to 2414 
s 2415 to 2640 
s 2641 to 2865 
s 2864 to 3090 
s 3091 to 3315 
s 3316 to 3541 
s 3542 to 3766 

over 3766 

(4 ) Assign Scores: 

Score 
9 
8 
7 
6 
5 
4 
3 
2 
1 

3800 

9 J 
X 

L 7 . . . 6 . 1 u •?. J -m. 2 * 

* / 

m 1 

X 

2189 2415 2641 2864 3091 3316 3542 3766 
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( 5 ) C o n t r a c t i n t e r v a l s : 

V a l u e S c o r e 

u n d e r 2527 
2527 t o 2653 
2654 t o 2 7 7 9 

2780 t o 2905 
2906 t o 3031 
3032 t o 3157 
3158 t o 3 2 8 3 

3284 t o 3409 
o v e r 3284 

9 , 

00 1 t 7 . . . K 6 J J - t 3 , \ 
X 1 X * l X 1 ft 1 

2 4 0 0 2600 2800 3000 3200 3 4 0 0 3600 

( 6 ) F i n a l s p e c i f i c a t i o n : 

V a l u e S c o r e 

u n d e r 2501 

2501 t o 2653 
2654 t o 2779 
2780 t o 2905 
2906 t o 3031 
3032 t o 3157 
3158 t o 3283 
3284 t o 3^09 

o v e r 3284 

2 4 0 0 

% u 8 „ 

k7
 1 -

^ 6 ^ L 5 * . L 2 ^ 
u . 1 

l X V i l l — 1 — t K. \ i 1 . 1 

2 6 0 0 2800 3000 3200 3 4 0 0 3600 
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Criterion No. 4 : Production Methods 
Measure of Performance: Survey of Characteristics 

(l) Gather data: 

Layout Performance Score 

Bertz . 86 4 
Brown . 88 6 
Dean . 90 8 
Dornbos .89 7 
Elliot . 87 5 
Green . 8 2 1 
Kent . 86 4 
Moore . 85 3 
Ottati .87 5 
Payne .84 2 
Pitman . 85 3 
Smith . 90 8 
Spence .84 2 
Sturdivant . 89 7 
Sweet . 85 3 
Williams . 87 5 
Young . 9 0 8 J I I \ 

.84 ^ 8 T T i % T&7 
I 

. 80 . 81 . 82 . 8 3 

(2) Determine parameters: 
Mean = . 8 6 9 ; Standard Deviation = .024 

( 3 ) Set up initial intervals 

Performance 

over m + 1 . 7 5 s 

Value 

m + 1 . 2 5 s to m + 1 . 7 5 s 
m .75 s to m + 1 . 2 5 s 
m + .25 s to m + .75 s 
m - .25 s to m + . 25 s 
m - .75 s to in - .25 s 
m - 1 .25 s to m - .75 s 
m - 1 . 7 5 s to m - 1 . 2 5 s 

under m - 1 . 7 5 s 

over 
.899 to 
.887 to 
.875 to 
.864 to 
.852 to 
.840 to 
.826 to 
under 

. 9 1 1 
.910 
. 898 
.886 
. 874 
. 8 6 3 
. 851 
.839 

.826 

(4) Assign scores: 

T82o" .840 7852 . 8 6 4 7 8 7 5 . 887 

.89 

Score 

9 
8 
7 
6 
5 
4 
3 
2 
1 

1 , 2 % , 5 , -* 6 * -i 7 m\ 

00
 ^ 9 

X 
i ; 

i \ 1 

. 90 

. 8 9 9 .911 
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(5 ) C o n t r a c t i n t e r v a l s and f i n a l s p e c i f i c a t i o n : 

over .908 9 
.897 t o .908 8 
.886 t o . 896 7 
.875 t o . 885 ° 
.864 t o . 874 5 
. 853 t o . 863 4 
. 842 t o . 852 3 
. 831 t o . 8 4 1 2 

under . 831 1 

. 80 . 8 1 . 8 2 . 83 . 84 .85 . 86 .87 . 88 .89 .90 . 9 1 

Va lue Score 
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Criterion No. 6: Flexibility-
Measure of Performance: Work Station Index 

(1 ) Gather data: 
Work Stations Total Work 

Layout Flexible Stations Ratio Score 

Bertz 40 54 .7^1 6 
Brown 33 60 • 550 2 
Dean 39 54 .722 6 
Dornbos 33 55 .600 3 
Elliot 47 63 .746 6 
Green 28 53 .528 2 
Kent 28 57 .491 1 
Moore 40 60 .667 5 
Ottati 49 59 .830 9 
Payne 38 56 .679 5 
Pitman 36 60 .600 3 
Smith 45 57 .789 7 
Spence 42 60 .700 5 
Sturdivant 47 57 .825 9 
Sweet 38 62 .613 4 
Williams 44 56 .786 7 
Young 48 63 .762 7 

X 1 XX ^ y[ 1 jt xx 1 5 . 
.500 .550 .600 .650 .700 .750 .800 .850 

(2) Determine parameters 
Mean = .684; Standard Deviation = .105 

(3 ) Set up initial intervals 

Performance Value Score 

over m -t • 1 . 7 5 s over . 832 9 
m + 1 . 2 5 s to m + 1 . 7 5 s .779 to . 832 8 
m + .75 s to m + 1 . 2 5 s .727 to .778 7 
m + -25 s to m + .75 s .674 to . 726 6 
m - . 25 s to m + .25 s . 623 to . 673 5 
m - . 75 s to m - .25 s .570 to . 622 4 
m - 1 . 2 5 s to m - .75 s .518 to .569 3 
m - 1 . 7 5 s to m - 1 . 2 5 s .464 to . 517 2 

under m - 1 . 7 5 s under .464 1 

(4 ) Assign scores: 
1 m IR 2 * 1 3 * «. 5 » | * 6 *L H 7 H 

1 00 

X X K X* X KM 
7464 T 5 1 8 7 5 7 0 .623 .674 7727 7779 7832 



1 1 4 

(5 ) Contract intervals: 

Value Score 

1 ^ 
2 J - l 

3 . J 
. i t ^ J - 5 r 

6 ^ 
L 7 » 

00 ,9 

X 
v * 

1 * » L. , - r - 1 X M i X X X . 

.500 .550 .700 .750 .800 .850 

(6 ) Adjust four top intervals for final specification: 

Value Score 

over . 820 9 
.801 to .820 8 
.751 to .801 7 
.710 to .750 6 
.658 to .709 5 
.605 to .657 4 
.552 to . 604 3 
.499 to . 551 2 
under . 499 1 

1 2 3 4 5 6 7 

C
O

 9 

* 1 X J X j * X * 

* 
X * l X X * l 

.500 . 5 5 0 . 6 0 0 .650 . 7 0 0 . 7 5 0 . 8 0 0 7 8 5 0 

9 
8 
7 
6 
5 
4 
3 
2 
1 

over .868 
.816 to .868 
. 763 to .815 
.710 to . 762 
.658 to .709 
.605 to .657 
.552 to . 604 
.499 to . 551 
under .499 
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Criterion No. 7- Offices and Services 
Measure of Performance: Survey of Characteristics 

(1) Gather data 

Layout Performance Score 

Bertz .88 7 
Brown .84 3 
Dean . 83 2 
Dornbos .87 6 
Elliot . 91 9 
Green .87 6 
Kent .88 7 
Moore .88 7 
Ottati .79 1 
Payne .88 7 
Pitman . 88 7 
Smith .87 6 
Spence .82 1 
Sturdivant .85 4 
Sweet .87 6 
Williams .85 4 
Young .85 4 

¥ 1 1 Y Y . Y ,„ f I f I 1 $ 
. 79 .80 . 8 1 .82 . 8 3 .84 . 85 . 86 .87 .88 .90 . 9 1 

( 2 ) Determine parameters: 
Mean - . 8 6 ; Standard Deviation - .029 

(3) Set up initial intervals: 

Performance 

over m + 1 . 7 5 s 
m + 1 . 2 5 s to m + 1 . 7 5 s 
m + .75 s to m + 1 . 2 5 s 
m + .25 s to m + . 75 s 
m - .25 s to m + .25 s 
m - .75 s to m - .25 s 
m - 1 . 2 5 s to m - . 7 5 s 
m - 1 . 7 5 s to m - 1 . 2 5 s 

under m - 1 . 7 5 s 

(4) Assign scores: 

1 , - 2 

H 3 * 1 _5 1 A 6 VI 

CO 

X K X \ ' * X * ? 1 
7 8 0 9 7 8 2 4 7 8 3 8 . 8 5 3 7 8 6 7 . 8 8 2 . 8 9 6 I 9 I 1 

Value Score 

over . 9 1 1 9 

. 896 to .911 8 

.882 to . 8 9 5 7 

.867 to .881 6" 

.853 to .866 5 

. 838 to .852 4 

.824 to . 837 3 

.809 to .823 2 

under .809 1 
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(5) Expand intervals and Final specification: 

Performance Score 

over . 899 9 
. 888 to . 898 

CO
 

.877 to .887 7 

. 866 to . 878 6 

.855 to . 865 5 

.844 to . 854 4 

. 833 to .843 3 

.822 to . 832 2 
under . 8 2 1 1 

2 . . V kl7 » f _ 2 

* . . 1 1 *• * 1 f 
.79 .80 .81 .82 .83 £ 4 .85 .80 ' .87 .88 .89 .90 .91 
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NAME Sturdivant 

Criterion: Production Methods 

percent: 

• * • • • • 

Characteristics 
1. General Work Place Layout 

a. Adequate Operator Space . 
b. Adequate Material Space . . . . . . 
c. Individual Work Areas Coordinated . 
d. Material Handling indicated, corapat 
e. Access for repair and maint.,adjust 

2. Specific 
a. Finishing operations indicated 
b. Packaging operations specified 

Evaluation 

Item 

1. General work place layout 
a. Adequate Operator Space 
b. Adequate material space 
c. Individual work areas coord. 
d. Material Handling i n d i e , compat. 
e. Access for repair and maint., adjust 

2. Specific 
a. Finishing operations indicated 
b. Packaging operations specified 

0 10 20 ?9 40 50 OO 70 80 90 100 
s/ 

N / 

s/ 

V 

s/ 

V 

V 
V 

Performance Weight Product 

J22-
_2O_ 
.21 
-20. 

80 
80 

10 
J O . 20 
- £ 

10 10 

.14 

0̂2 
.27 
.18 .0' 
.08 
.08 

Measure of Performance!: 8̂2. .89 
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NAME Sturdivant 

Criterion. General Appearance 

Characteristics percent: 0 10 20 ?o 40 5 0 60 70 80 ?0 100 

V 

V 

Evaluation 

(*) 
Performance Weight Product 

1. Neatness _%0_ _^0_ ^ 

2 . Crowdedness _ 2 2 . .sii£ 

3 . Excess Space _9_0_ _2C_ _jl8 
100$ .90 

Measure of Performance: .90 
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N A M E S T U R D I V A N T 

C R I T E R I O N : O F F I C E S A N D S E R V I C E S 

C H A R A C T E R I S T I C S : P E R C E N T : 

1 . S E R V I C E A R E A S C L O S E T O A R E A S S E R V E D • 

A . M A I N T E N A N C E A N D T O O L R O O M . • • • 

B . L O C K E R 

C . F O O D 

D . F I R S T A I D 

2 . U T I L I T I E S 

3 . A D E Q U A T E F I R E E Q U I P M E N T , S P R I N K L E R 
O U T S I D E W A L L • 

4 . G E N E R A L O F F I C E A P P E A R A N C E 

A . C R O W D E D . . 

B . T R A F F I C 

C . A I S L E 

D • I N T E R R E L A T I O N S H I P 

E . C L U T T E R E D . . . . 

5 . E N T R I E S — F R O N T , P L A N T , O F F I C E T O 
P L A N T , 

6 . T O L I E T S , L O C K E R R O O M , 

E V A L U A T I O N 

I T E M P E R F O R M A N C E 

1 . S E R V I C E A R E A S C L O S E T O A R E A S 
S E R V E D 

A . M A I N T E N A N C E 90 

B . L O C K E R 60 

C . F O O D _60_ 

D . F I R S T A I D 

2 . U T I L I T I E S 90 

3 . A D E Q U A T E F I R E E Q U I P M E N T , S P R I N K L E R 90 

4 . G E N E R A L O F F I C E A P P E A R A N C E 

A • C R O W D E D G O 

B . T R A F F I C _°0_ 

C . A I S L E 80 

0 10 20 
2 ° ' 

4 0 5° 60 7° 80 ?0 100 

V 

V 
V 

V 

V 

V 

V 

V 

\ S 

\T 

V 

V 

W E I G H T 

10 

10 

Product 

j £ i 

. 0 4 
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Evaluation (continued) 

Item Item Performance Weight Product 

d. Interrelationship J22L 5 
e. Cluttered 5 
Entries—front, plant, offices 
to plant 80 10 .08 
Toliets, locker room -22L 15 .14 

100$ ^85 



N A M E Sturdivant 

T R A V E L 

C H A R T 
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R
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3 D
is
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4 D
ri
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P
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A
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se
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re
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F

in
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7 P
ai
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 a
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D
ry

 

8 F
in

al
 

A
ss

em
bl

y 

9 P
ac

ki
ng

 

O 

CO 
-1 
< 
h 
0 
1-

1 Rough C u t t i n g 

22 

42 924 

2 Jo in ter and C i r c u l a r Saw 

8 
47 

5 
54 

9 
62 1204 

3 Disc Sander 

4 
28 

5 
50 362 

4 D r i l l Press 

l 
28 

8 
40 348 

5 I n i t i a l Assembly 

4 
16 (A-

6 Prepare for Finish 

4 
15 6 0 

7 Paint and Dry 

4 
28 112 

8 Final Assembly ; 

I 
23 2 3 

9 Packing 

10 

T O T A L S 924 404 382 1128 64 6 0 112 23 
\ 3 0 9 7 

ro 

file:///3097
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