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Abstract

We present a method to analyze daily activities, such
as meal preparation, using video from an egocentric cam-
era. Our method performs inference about activities, ac-
tions, hands, and objects. Daily activities are a challenging
domain for activity recognition which are well-suited to an
egocentric approach. In contrast to previous activity recog-
nition methods, our approach does not require pre-trained
detectors for objects and hands. Instead we demonstrate
the ability to learn a hierarchical model of an activity by
exploiting the consistent appearance of objects, hands, and
actions that results from the egocentric context. We show
that joint modeling of activities, actions, and objects leads
to superior performance in comparison to the case where
they are considered independently. We introduce a novel
representation of actions based on object-hand interactions
and experimentally demonstrate the superior performance
of our representation in comparison to standard activity
representations such as bag of words.

1. Introduction

Understanding human activities from video is a funda-
mental problem in computer vision which has spawned a
rich literature [22, 32]. Much of the initial work in this
area has been focused on analyzing movement patterns, and
has resulted in near perfect performance on simple, stan-
dard datasets such as KTH [29]. In contrast to these early
datasets, people in realistic scenarios manipulate objects as
a natural part of performing an activity, and these object
manipulations are important part of the visual evidence that
should be considered. In addition, attempts to position fixed
cameras in homes or offices to capture naturally-occurring
activities is challenging due to the inherently-limited field
of view of a fixed camera and the difficulty of keeping all
relevant body parts, including fingers and hands, in focus
and at sufficient resolution at all times.

An alternative to the conventional “third person” video
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Figure 1: An overview of our approach.

capture paradigm is to mount a camera on the head of a
subject and record activities from an egocentric perspective
(i.e. from the subject’s own point of view). There has been
significant recent interest in the egocentric approach to vi-
sion [26, 30, 7, 31]. We believe that the egocentric paradigm
is particularly beneficial for analyzing activities that involve
object manipulation, for three reasons: First, occlusions of
manipulated objects tend to be minimized as the workspace
containing the objects is always visible to the camera. Sec-
ond, objects tend to be presented at consistent viewing di-
rections with respect to the egocentric camera, because the
poses and displacements of manipulated objects are consis-
tent in workspace coordinates. Third, actions and objects
tend to appear in the center of the image and are usually in
focus, resulting in high quality image measurements for the
areas of interest.

In this paper we address the problem of understanding
daily activities like meal preparation in an egocentric set-
ting. Most day-to-day activities consist of actions that in-
volve manipulating objects like pouring water into a cup,
opening a peanut-butter jar, etc. Interactions between ob-
jects and hands contain important discriminative cues for
action recognition. This suggests representing actions by
objects and their interactions with hands. This approach is
in contrast to traditional action recognition methods where
body configurations and movements are the main features.

A key aspect of our approach is the use of the seman-
tic relationships between activities, actions, and objects to
prune the search space arising in video interpretation. We




show an overview of our framework in Fig 1. For exam-
ple, the ability to detect objects being manipulated reduces
the space of actions under consideration to those which are
consistent with the object’s affordances. Object identity
also constrains the space of possible actions. For example,
knowing that we are manipulating a cup rules out actions
corresponding to making a sandwich and make actions cor-
responding to making coffee more probable. We are there-
fore interested in visual feature respresentations and clas-
sifiers which support the incorporation of such additional
domain knowledge in the decision process.

In our approach, actions are represented as relations be-
tween objects and hands. Hand features, such as proximity
and directionality of movement, are defined in an object-
centric coordinate frame, thereby capturing the key prop-
erties of object manipulation. Activities are then modeled
as a set of temporally-consistent actions. For example, an
activity like making a peanut butter sandwich starts with
taking a slice of bread and then opening a jar of peanut but-
ter, followed by scooping peanut butter out of the jar and
onto the bread. Our constraints on actions capture the fact
that peanut butter cannot be scooped from the jar before it
is opened. A key barrier to the use of semantic information
in activity recognition is the need to hand-label object and
actions across a large video corpus to support supervised
learning. We address this issue by leveraging our previous
work on unsupervised learning of object models from ego-
centric videos [7]. We augment automatically-learned ob-
ject models with weak annotations of actions to complete
the training data for an activity model. We present a fully-
automatic method for learning activity models from such
weakly-labeled data.

This paper makes three contributions: 1) We present a
novel representation for egocentric actions based on hand-
object interactions. 2) We develop a novel approach for au-
tomatically constructing a joint model of activities, actions
and objects, in which the context provided by each element
enhances the ability to recognize the others. 3) We pro-
vide experimental evaluations on an egocentric test bed and
demonstrate benefits of joint modeling of actions, activities,
and objects comparing to independent models.

We demonstrate the advantages of our semantic repre-
sentations of actions and activities in comparison to state of
the art feature based representation.

2. Previous Work

Action and activity recognition have been the subject
of a vast amount of research in computer vision literature
[22, 32]. We categorize the previous work on action recog-
nition into two groups based on the kind of action classes
they study. The first class of works consider body move-
ments such as walking, running, etc, in which no other ob-
jects are involved other than the human body [4, 5]. The

other class of works consists of actions such as drinking,
smoking, opening, etc in which the object context plays an
important role [23, 33]. In this paper, our focus is on recog-
nition of actions in which objects are manipulated.

Action recognition methods can be further categorized
into multiple groups based on the features they use to rep-
resent actions: features based on the entire human figure
[4, 5], local space-time features [14, 24], features based on
interaction of objects and hands [9, 23] and features based
on point trajectories [21]. Even though space-time features
and tracklets have obtained impressive results on challeng-
ing and realistic datasets [15, 25], they are not associated
with semantic descriptions. In this paper, our goal is to de-
velop semantically-meaningful features that model actions
based on the interaction between hands and objects.

There have been various attempts in the past to model
object context for action recognition. Mann et al. [18] use
kinematic and dynamic properties of objects to understand
their interactions. Moore et al. [23] use object context to
classify hand actions. Li and Fei-Fei [16] use the object cat-
egories that appear in an image to identify an event. Wu et
al. [33] perform activity recognition based on temporal pat-
terns of object use, using RFID-tagged objects to bootstrap
the appearance-based classifiers. Ryoo and Aggarwal [27]
combine object recognition, motion estimation and seman-
tic information for the recognition of human-object interac-
tions. Gupta et al. [9] use a Bayesian approach to analyze
human-object interactions with a likelihood model that is
based on hand trajectories.

More recently there have been various attempts that use
context to enhance action recognition. Marszalek et al. [19]
demonstrate that the use of scene context improves action
recognition performance. Yang et al. [34] treat the pose
of the person in an image as a latent variable and use it
to enhance action recognition. Yao and Fei-Fei [35] use
the mutual context of object and human pose to recognize
activities in images.

In contrast to these previous works, we recognize ac-
tions from the Egocentric view-point. Starner and Pentland
[31] were one of the first to address action recognition from
an egocentric viewpoint. Their system recognizes Amer-
ican sign language from a wearable camera. Spriggs et al.
[30] segment and classify daily activities from a first-person
view using accelerometers and visual information. A key
difference between our work and these others is that we
don’t utilize any pretrained detectors for objects or hands.
More recent examples of egocentric video analysis are Ki-
tani et al. [12] who detect actions in outdoor environments
and Aghazadeh et al. [1] who extract surprising events from
life log videos.

Instead, our work introduces a framework in which ac-
tivity, action and objects are recognized at the same timfe,
and we show that the recognition results for each group en-



hances the others. Our learning and inference approaches
consist of multiple stages, where information is first propa-
gated from objects to actions and from actions to activities,
and then after activity labels are fixed, the information is
sent back to fix actions and finally to fix objects.

3. Model

Our task is to analyze an image sequence of a person
performing an activity like making a tuna sandwhich. This
entails inferring the activity label, segmenting the activ-
ity to a series of consecutive actions, and assigning ob-
ject and hand labels to image regions in each frame. As
a result, each input sequence contains a set of intervals
v = {uy,...,uy}, where each interval u; consists of F;
images w; = {I1,...,IF,}, and each image 1; consists of
m,; super-pixels. Throughout the paper, we refer to super-
pixels as regions. Each super-pixel is represented with a
multi-channel feature vector x;, that includes color, texture
and shape.

Inference involves assigning an activity label y to each
sequence v = {uq,...,ur}, an action label a; to each in-
terval u;, and an object, hand or background label h; to
each super-pixel x;. Each y is a member of a set of pos-
sible activity labels, for example, ) = {making a peanut-
butter sandwich, making a cheese sandwich, making cof-
fee, etc}. Each a; is a member of a set of possible ac-
tions A = {pour water into cup, spread peanut-butter on
the bread, etc}. Each action consists of a verb (e.g. pick,
pour, open, etc) and a set of object names (e.g. water, cup,
bread, peanut-butter, hand, background, etc). Finally each
super-pixel is assigned an object or hand label from the set
‘H = {hand, cup, coffee, bread, water-bottle, etc}.

We believe that objects, actions and activities should in-
teract. We model this interaction by the graphical model
depicted in Fig 2. Action labels interact with activity, ob-
ject and hand labels. During training we observe action and
activity labels and have access to weak labels of objects.
During inference we only observe features from superpix-
els and infer the object labels, action intervals and activity
labels.

4. Learning and Inference

To setup the notation, given a set of training sequences
x(™) and labels {y™, h(™ a(™} our task is to build a
model, that given a new sequence x(™ produces the true
set of activity, action and object labels {y*, h* a*} =
{y™ h( al™}. Joint learning of these variables require
an unmanageably large training set and very expensive ap-
proximate inference. There are also conceptual difficulties
with the joint learning of these variables, as it is not clear
how to weigh the losses of each component against the oth-

Figure 2: Our framework’s model. During testing, the fea-
ture vectors of the regions xj, are observed, and our goal is
to assign the object labels hy, to regions, action labels a; to
intervals and activity label y to sequences.

ers. As an alternative, we propose to exploit the indepen-
dence structure of the domain and factor this model into
four interacting modules:

1. Learning to predict the intervals of actions based on
hand-object interactions.

2. Learning to classify activities using an action based
representations of activities.

3. Learning to modify intervals of actions given the ac-
tivity labels, as well as hand and object interactions.

4. Learning to modify estimates of objects and hands
given the action labels.

Our procedure is depicted in Fig 1. We start by initial es-
timates of appearance models for objects and hands in a
weakly supervised setting. We use the multiple instance
learning approach presented in our previous work [7] to pro-
vide initial object, hand and background models. We then
use the module 1 to obtain action labels and use them to
infer activity labels. Once we fixed the activity labels, we
modify the actions accordingly. Having finalized action in-
tervals we update our estimates of objects and hands. Our
approach is similar to Expectation-Conditional Maximiza-
tion [20] where the M step in the EM is replaced by condi-
tional maximization steps. Below we describe each of these
modules.

4.1. Learning Actions based on Object Interactions

This module estimates a discriminative score for assign-
ing an action label a to an interval containing a vector of
regions x = {x1,...,Tm }, each of which are assigned an
object or hand label h;. This is a sub-problem of the orig-
inal task which can be modeled by removing the top level
of the graphical model (activities) as well as the connection
between adjacent actions.

We want to learn a discriminative function
frhoa(a,hyx), which returns a real number for any



action assignment a to an interval consisting of image
regions x and object labels h. We initialize h, which is
the initial object label assignments to regions using the
classifiers learned from the weakly supervised object recog-
nition. We extract object and hand interaction features and
learn fj,—q(a,h,x) by training a discriminative classifier
on those features for each action class a. We use Adaboost
[28] for classification. In contrast to the popular interest
point features used for action recognition, our features
are capable of capturing the semantics of interactions in
the scene. Here we describe the set of object and hand
interaction features used in our system.

Object Frequency (f1): contains the histogram of object
labels (hand and background labels are included as well).

Object Optical Flow (f2): we compute the average opti-
cal flow vector for each region. The vector of each region is
discretized based on its orientation and magnitude.

Object Relative Location (f3): we build an adjacency
matrix for the regions. We quantize the relative location
of the center of adjacent regions into bins. For every pair
of object classes we compute the histogram of their relative
location bins in the interval. We reduce the dimension using
PCA.

Object Classification Score (fy): sum of the classifica-
tion scores for the regions assigned to each object type are
concatenated to build this feature vector.

Object Pose (f5): for each region we compute the pose
based on its shape. We build a shape descriptor as a set of
annular sections (similar to shape context), each of which
can be thought of as a bin. We assign each bin’s value to the
total number of region pixels falling in that bin.

Hand Optical Flow (fg): these features are similar to fo.
One is computed for left hand and one for right hand.

Hand Pose (f7): similar to f5, one for each hand.

Hand Location in Image (fs): We split each image into
multiple regions using horizontal and vertical cutting lines.
We assign the number of left/right hand pixels falling in
each region as its value.

Hand Size (fy): The area of each hand in pixels.

Left/Right Hand Relative Location (f1g): for each im-
age, if there are two hands in the image, we find their pair
of closest points. We use their relative x and y distance as
features. We concatenate these with the relative x and y
location of the center of mass of the hands.

In Sec 5.1 we evaluate the performance of these features
in the recognition of various action classes. Since there is a
large number of actions (64) in our experiments, we break
action recognition into two steps. We first estimate the ac-
tion verbs (e.g. pour, dip, pick, etc) and then in the second
step we estimate the object set. In the second step we use a
probabilistic model on action verb label and object set clas-
sification scores. We learn classifiers for each object set
using the same set of features mentioned above. We apply a

Figure 3: Model showing the decomposition of activities
into actions. We refine the actions given the estimated ac-
tivity label and action classification scores computed in the
first stage of the algorithm.

probabilistic model to infer the object set given action verb
label and object set scores.

4.2. Learning Activities from Actions

Given the set of action labels a we want to estimate the
activity label y. We want to learn a discriminative function
famy(a,y) that receives the set of actions a in a sequence
and an activity label y and returns a real number. We learn
a classifier for each activity y given a histogram of action
classes. We use Adaboost algorithm to learn the classifiers.
During the test we build the feature vector from the action
classes computed in previous stage. We assign the activity
label with the highest classification score to the sequence.

4.3. Learning Actions from Activities

After fixing the activity label, we go back and enhance
the action recognition results. Knowing the activity not only
limits the set of possible actions, but also forces the appro-
priate ordering of actions. For example, pouring water is
not an expected action in the making peanut-butter sand-
wich activity. Further, opening the peanut-butter is expected
to happen before scooping peanut butter and spreading it on
the bread. Given an activity label y assigned to a video
and scores fr_,, computed in first stage, we want to as-
sign action labels a to sub-intervals inside the sequence. A
Conditional Random Field (CRF) chain [13] model (shown
in Figure 3) is learned for every activity label y on action
scores and the transition potentials between actions:

argm;mx E Wya a y,azaag)
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where w are weight vectors, v(y, a;, a;) models the tran-
sition between adjacent actions a; and a; given activity la-
bel y, and f,_4(a;, h,x) is the classification score of ac-
tion a; based on hand and object interactions computed in
Sec 4.1. The parameters of the model are optimized using
the quasi-Newton algorithm. During inference, the Viterbi
algorithm is used to assign action labels.



Our focus in this paper is not on recognizing parallel ac-
tions and story telling [10, 3] or modeling temporal logical
relations between intervals [2]. Instead, we focus on mod-
eling the ordering between adjacent actions and the contex-
tual relations between activities and actions.

4.4. Object Recognition using Action Context

We learn a probabilistic model for the objects given ac-
tions. The inputs to this model are object classification
scores ¢(x;) of a region and the action label a. Output is
the probability of each object label being assigned to the
region x;:

P(hila, ¢(xi)) oc P(hil¢(z;))P(hila)

We estimate P(h;|¢(x;)) from learned classifiers on re-
gion appearance models and compute P(h;|a) from our
training set.

Here we describe the method for computing object clas-
sification scores. The image annotations of the regions are
unknown during both the training and testing phases. We
are only provided with weak information on patterns of
object-use in actions during training. For each action in
training, we are given a verb and a set of nouns, correspond-
ing to the objects used in that action. As a result, we know
about the set of objects that are manipulated in action inter-
vals. We use semi-supervised learning framework from [7]
to build object classifiers given these weak informations.

In each interval, various objects might appear in the
background. To only focus on objects being manipulated
by hands, we segment the foreground from the background.
Each foreground region contains hands, and might con-
tain multiple regions corresponding to one or more objects.
For example, in the action “scooping coffee into cup us-
ing spoon”, the objects “spoon”, “coffee” and “cup” might
appear in the foreground simultaneously. We use a multi-
class MIL framework to initialize a few regions belonging
to each object class, by using the actions as positive bags
for the set of their manupulated objects and negative bags
for other objects. We expand these regions using a semi-
supervised learning technique [6] and learn object classi-
fiers using transductive SVM [11].

5. Experiments

In this section we present three sets of results to vali-
date the performance of our method at its different stages:
(1) object recognition, (2) action recognition and (3) activ-
ity recognition. We further analyze the performance of our
semantic features for the task of action recognition.

We test our method on the GTEA (Georgia Tech Egocen-
tric Activities) dataset [7]. We have augmented our dataset
by adding the groundtruth action labels for activities. This
dataset contains 7 kinds of daily activities recorded from

a head-mounted camera as they were performed by 4 sub-
jects. There are 16 kinds of objects used in these activities.
The duration of each activity is about 1200 frames recorded
at 15 fps. Each action consists of a verb and a few object
names. There are 64 kinds of actions in the dataset, consist-
ing of 11 different verbs (Fig 4). In this paper we use the
activities performed by subjects 1, 3 and 4 for training, and
use the activities performed by subject 2 for testing.

5.1. Action and Activity Recognition

We perform action recognition for every individual
frame. We use features that capture the interaction of ob-
jects and hands as shown in Table 1. These features are
described in detail in Sec 4.1. For each of the features, we
learn multiple binary classifiers (one for each action verb
class) using the Adaboost algorithm [28]. During the test
we return the action class with the highest score as the ac-
tion label. We have compared the accuracy of our features
for different classes in Table 1. Since our features have se-
mantic meaning, we can come up with interesting interpre-
tations for how each feature should perform on each action
class. In general, features based on the hand pose and hand
location perform the best. While in traditional action recog-
nition, the location of hands in the image is considered as
a mis-leading feature, it performs the best in our domain
because the Egocentric action is always recorded from the
same vantage point.

For each frame, we concatenate the following features
(f2, fe» f7, fs» fo, f10) to make our action representation
feature vector (adding more features does not enhance the
performance). We learn our action classifiers using 200 it-
erations of Adaboost algorithm. We compare the perfor-
mance of our features with STIP and SIFT bag of words.
In Fig 4 we show that our semantic representations of ob-
jects and hands provides a significant boost in recognition
accuracy in comparison to widely used features like STIP
and SIFT bag of words. Our features perform frame-based
action recognition with 45% accuracy, while STIP performs
with 14.4% and SIFT performs with 29.1% accuracy. It is
interesting that SIFT bag of word features perform better
than STIP. We believe this is because (1) in daily activities
objects play a discriminative role in recognizing actions, (2)
the same action can produce a variety of different move-
ment patterns (imagine all the different ways one can close
a water-bottle, e.g. hold with left hand and close with right
hand, do it only with right hand, etc). To build the bag of
word for SIFT and STIP features, we cluster them using
Affinity Propagation [8]. We tune the number of words to
achieve the best result.

To recognize the activities from the predicted actions, we
learn a classifier on the histogram of action frequencies for
each sequence. We learn multiple binary classifiers using
Adaboost with 10 iterations. We can recognize 6 out of 7



Feature ‘

Pick ‘ Open

Scoop ‘ Close ‘ Background ‘ Spread ‘ Put ‘ Fold ‘ Dip

Dimension Total Accuracy Pour Stir

Object Frequency: f1 18 274 34 15 14 11 40 1 38 31 3 9 1
Object Optical Flow: fo 18 x 8 31.7 25 15 18 17 61 5 41 48 3 3 3
Object Relative Location: f3 18 x 18 x 4 25.2 30 11 11 9 34 3 41 23 2 4 3
Object Classification Score: f4 18 25.2 38 12 25 9 37 8 35 9 4 2 3
Object Pose: f5 18 x 4 26.9 31 11 10 11 39 1 45 21 6 1 0

Hand Optical Flow: f¢ 2x8 30.8 20 | 25 0 10 54 0 55 25 0 0 0
Hand Pose: f7 2x8 34.1 71 | 29 6 12 51 5 28 24 4 0 | 25
Hand Location in Image: fg 2x3x3 39.8 45 | 38 23 17 8 2 44 22 1 0 | 45
Hand Size: fy 2 25.8 33 | 40 0 7 17 | 23 43 3 0 0 14
Left/Right Hand Relative Location: f19 4 26 4 39 32 | 24 50 19 9 0 2

Table 1: Classification accuracy of each feature on different action classes are shown (in percentages). Our interesting
observation is that each action class is recognized with a particular feature the best. For example, during the action pick, the
subjects always extend their hand to the end of table to take an object. As a result the hand shape discriminates this action
class the best. The most interesting observation is that the feature vector extracted from the hand location in image performs
the best in total. This is one of the benefits of egocentric footage. The second best performing feature is based on the hand
pose. If the camera was not mounted on the head we weren’t able to acquire high resolution images of hands to build these

descriptors.
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Figure 4: Action verb recognition results are compared be-
tween different methods: STIP [14] bag of words (blue),
SIFT [17] bag of words (cyan), our features (yellow) and
actions classification enhanced by our method after predict-
ing the activity class (red). The total accuracy of different
methods are as follows: STIP (14.4%), SIFT (29.1%), our
features (45%) and our method (47.7%). There are 11 ac-
tion verb classes which means the random classification ac-
curacy is 9.1%. An interesting observation is that, since our
method classifies the making tea activity as making coffee,
it fails to recognize the dipping the tea-bag action in that
sequence.

activities correctly. The only mistake is made by classifying
making tea as making coffee. These two are very similar
activities and contain very similar objects and actions.

We further compare our method which encodes interac-
tions between activities, actions, and objects to the case of
considering them independently. In our method, given the
computed activity label, the action classification scores are
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Figure 6: Object and hand recognition results are depicted.
We compare the following three methods: object recog-
nition results using the object classifiers only (blue), ob-
ject recognition results using our method (green) and ob-
ject recognition accuracy given the ground-truth action la-
bel (red). As is shown, knowing the action improves object
recognition accuracy. Our system is capable of classifying
96.3% of the regions corresponding to hands correctly.

given to a CRF model built for that activity. We use Viterbi
algorithm to infer the action classes. Even though we had
mis-classified the making tea activity as making coffee (1
mistake out of 7 activities), the action recognition results
are improved (47.7%) in comparison to using the hand and
object features alone (45%) as shown in Fig 4.

Our final recognition accuracy for the 64 classes is
32.4% compared to 4.8% for STIP and 11.6% for SIFT
bag of words. Note that we are classifying every frame and
chance in a 64-class classification problem is 1.6%.
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Figure 5: We show that object recognition accuracy is improved given the action as context. The images are shown in the
first row. Object recognition results are shown in second row only based on object classification scores. In the third row, we
show that knowing the action improves object recognition using our method in Sec 4.4.

5.2. Object Recognition

Object recognition is improved if the action is known.
For example, if the action is “pouring”, then “spoon” is not
in the possible set of objects. We compare the object clas-
sification accuracies of classifiers learned from [7] with our
method that uses action context. We present both qualitative
and quantitative results demonstrating that object recogni-
tion is enhanced in our new framework.

We do not have object labels during training and test-
ing. As a result, to measure the object recognition accu-
racy quantitatively, we manually annotate the ground-truth
object label corresponding to each super-pixel in the fore-
ground region. We perform these annotations for a sub-
sample of frames (every 50 frames) of the test sequences.
For each object class, we measure the accuracy of assigning
the true label to the super-pixels corresponding to that class.
The results are shown in Fig 6. We demonstrate that object
recognition accuracy improves when the groundtruth action
labels are available. For example, in the case of hands, re-
gions are classified with 96.3% accuracy. We show qual-
itative results of improved object recognition given action
labels in Fig 5.

6. Conclusion

We describe a novel approach to the analysis of activi-
ties in egocentric video. Our method constructs a descrip-
tion of an activity in terms of the objects and actions with
which it is performed. We leverage the inherent coherence

of views and appearance that arises from the egocentric con-
text. We show that object and action models can be learned
with very little supervision, by exploiting the joint proper-
ties of objects, hands, and actions. We propose a hierar-
chical inference architecture in which bottom-up propaga-
tion of evidence for objects and actions is used to predict
the activity category, followed by top-down refinement of
object and action descriptions based on the activity model.
We demonstrate that our approach can produce superior re-
sults in comparison to standard bag-of-words type represen-
tations for activity categorization.
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