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SUMMARY 

Several problems which relate to the propagation of 

acoustic and acoustic-gravity waves in a medium whose proper­

ties vary with height only are considered with the intent 

of refining existing schemes for the synthesis of waveforms. 

The contribution from very low frequencies to a modal 

synthesis of an acoustic-gravity waveform is clarified, and 

a guide (with numerical examples) is provided for adopting 

a computer program to include such contributions in the 

synthesis of waveforms. Also, for the purpose of improving 

the selection of modes for synthesis, the asymptotic high-

frequency behavior of guided modes is explained by use of 

the W.K.B.J, approximation. Finally, a geometric acoustical 

scheme is outlined for the prediction of the amplitudes of 

waves that propagate over long distances. A number of 

FORTRAN subprograms are provided that exemplify the numerical 

implementation of this scheme. Recommendations are given for 

the refinement at low and high frequencies of schemes for 

the synthesis of waveforms. 
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CHAPTER I 

INTRODUCTION 

It was the intent of this dissertation to investigate 

theoretically the propagation of acoustic and acoustic-

gravity waves in fluids whose properties vary with height 

only. The investigations were carried out for the purpose 

of refining existing schemes for the synthesis of waveforms. 

Such schemes have been developed by Harkrider, Pierce and 

2 3 
Posey, and others. The propagation of waves which correspond 
to periods between approximately one and 20 minutes is 

investigated by use of techniques associated with the synthesis 

of both modal and geometric acoustical waveforms. 

It was the intent of one investigation to clarify the 

contributions of modes at very low frequencies to a synthesis 

of waveforms associated with the propagation of acoustic-

gravity waves. The computer program INFRASONIC WAVEFORMS2 

had previously been devised to synthesize an infrasonic 

pressure-time trace as might be generated at long horizontal 

distances by a large-scale explosion in the atmosphere. In 

the course of the investigation described here, this program 

was modified to include contributions at low frequencies 

from leaking modes of propagation. 

In Chapter II, mathematical perturbation techniques 
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are described for the computation of the imaginary part of 

the horizontal wave number (kT) for leaking modes. Numerical 

studies are described in which kT is calculated for two 

gravitational modes of interest and for a model atmosphere 

which is stratified (winds excluded) and terminated by an 

upper halfspace of constant sound speed. A description of 

the transition of modes from non-leaking to leaking propaga­

tion is also given, and the contribution from branch line 

2 4 integrals in the associated complete Fourier synthesis ' is 

briefly mentioned. 

In Chapter III a detailed description is given of the 

modification and adaptation of the computer program INFRASONIC 

WAVEFORMS to include contributions from leaking modes and to 

improve the accuracy in predicting the early portions of 

infrasonic arrivals. The numerical implementation of the 

theory given in Chapter II on the inclusion of leaking modes 

is also described, and some specific numerical examples which 

demonstrate that inclusion are given. The complete and current 

version of INFRASONIC WAVEFORMS is given in the Appendices 

of reference 5. A hard copy of the program is available from 

the Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts 

01731. 

One of the difficulties with the modal approach to the 

synthesis of waveforms that has arisen in the past has been 

the presence of what might be called numerical "noise1' in 

derived waveforms due to the fact that the integration over 
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2 
angular frequency in the associated Fourier synthesis was 

truncated at high frequency. It was felt that, to eliminate 

this "noise," at least two approaches could be taken. First, 

the modal synthesis might be extended to higher frequencies 

by devising a scheme which would carefully select modes for 

contribution at those frequencies. This selection is 

difficult with the synthesis in its present state. Secondly, 

for use at high frequencies where the modal approach is 

inaccurate, a geometric acoustical scheme might be devised 

to synthesize waveforms which would serve as the continuations 

of modal waveforms calculated at lower frequencies. 

In Chapter IV the first approach is investigated, 

wherein the W.K.B.J, method of solution is used to explain 

the asymptotic high-frequency behavior of guided modes. In 

Chapter V the second approach is investigated in which a 

geometric acoustical computational scheme is presented for 

the description of propagation over long distances. While 

schemes exist which calculate acoustic ray paths, there 

appear to be no readily available schemes which are suffi­

ciently accurate to predict the amplitudes of waves that 

7 propagate over very long distances. 

In the scheme summarized in Chapter V, cubic splines 
o 

are used to model profiles of sound speed versus height. 

In addition, techniques are outlined for defining ray paths 

and for finding distances and times of propagation, turning 

points for rays, and individual rays that connect source with 
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receiver. Of special significance in the scheme is a 

parameter that characterizes the spreading of adjacent rays. 

This parameter is used to determine the number of times that 

any given ray touches a caustic. It has been shown that a 

signal propagating along a ray undergoes a phase shift of 

-7r/2 at a caustic. Thus, the ultimate result of the scheme 

is a method for computing acoustic amplitudes and waveforms 

by superposing contributions from individual rays and 

incorporating phase shifts that occur at caustics. A number 

of FORTRAN subprograms which exemplify the numerical implemen­

tation of this method are given in the Appendix. In addition, 

some simplified numerical examples are presented which 

demonstrate the utility of these subprograms. 

With the possible exception of the technique for the 

inclusion of leaking modes, the analytical techniques 

presented are by no means complete as far as the refinement 

of existing schemes for synthesizing waveforms is concerned. 

The main intent here was to investigate and understand 

avenues of approach which could be useful for such a refine­

ment. 
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CHAPTER II 

PERTURBATION TECHNIQUES FOR THE COMPUTATION OF THE 

IMAGINARY PART OF THE HORIZONTAL WAVE NUMBER 

Introduction 

In the formulation of the model on which the computer 

program INFRASONIC WAVEFORMS is based,2,10 an intermediate 

result is derived which expresses the acoustic pressure as 

a double Fourier integral over angular frequency w and 

horizontal wave number k such that 

P = S J f(o))e~la)t J [Q/D(a3,k)]ellcr dkd<A (2.1) 

Here S(r) is a geometrical spreading factor, which is l//r 

1/2 for horizontally stratified media and 1/[a sin(r/a )] if 

the earth's curvature (a = radius of earth) is approximately 

taken into account. The quantity f(oj) is a Fourier transform 

of a time-dependent function that characterizes the source. 

Q is a function of receiver and source heights z and z , % ° r s 

respectively, as well as of oo and k, and possibly of the 

horizontal direction of propagation if winds are included in 

the formulation. In any case, given z and z , Q should have 

no poles in the complex k-plane when w is real and positive. 

The denominator D(co,k) (which is termed the eigenmode 
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dispersion function) may be zero for certain values k (co) 

of k. 

The k integration contour for Eq. (2.1) is chosen to 

lie along the real k-axis except where it skirts below or 

above poles which lie on the real axis (see Fig. la, where 

branch lines are identified by dash marks, poles are indicated 

by dots, and the k integration contour is marked by arrow­

heads that show the direction of integration). Let it 

suffice here to say that the placing of branch cuts and the 

selection of the k integration contour must be such that the 

expression for the acoustic pressure dies out at long 

distance as long as a small amount of damping is included in 

the formulation. The guided-mode description in the formula­

tion arises when the contour for the k integral is deformed 

(permissible because of Cauchy's theorem and of Jordan's 

11 lemma ) to one such as is sketched in Fig. lb. The poles 

indicated there above the initial contour are encircled in 

the counterclockwise sense, and there are contour segments 

which encircle (also in the counterclockwise sense) each 

branch cut that lies above the real axis. The integrals 

around each pole are evaluated by Cauchy's residue theorem 

so that what remains is a sum of residue terms plus branch 

line integrals. Each residue term is considered to correspond 

to a particular guided mode of propagation. 

One approximation that was previously made in the 

guided-mode formulation was to neglect contributions from 
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poles [i.e., the k (co)] which were located above the real 
2 10 k-axis. * The thought behind this omission was that most 

of the contributions in the synthesis of waveforms for long 

propagation distances would come from poles which were on the 

real k-axis. Another approximation was that, for long 

distances, the contribution from branch line integrals could 

be neglected as well. Given these two approximations, the 

expression for the acoustic pressure in Eq. (2.1) can be 

approximated as follows: 

fwUn 
P = E S ( r ) 1 An(o)) c o s [ u t - k n ( M ) r + $nW] da, ( 2 . 2 ) 

n J MLII 

where A (GO) and <j> (GO) are defined in terms of the magnitude 
n J rn v J to 

and phase of the residues of the integrand in Eq. (2.1) and 

the k (OJ) are the real roots for D(co,k) (which are numbered 
2 

in some order with n = 1,2,3, etc.). It is understood that 

in Eq. (2.2), for any given n, k (OJ) should be a continuous 

function of to between the limits wT (lower) and con (upper) . 

With this understanding, it should be possible to evaluate 

the resultant integral over oo approximately by the method of 

stationary phase or by some numerical method. 

In spite of the seeming plausibility of the above two 

approximations, there is a set of circumstances intrinsic to 

low-frequency infrasonic propagation for which they are not 

valid, even for distances of propagation of more than 10,000 
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km. It is these circumstances and their relation to the 

analytic synthesis of guided-mode atmospheric infrasonic 

waveforms that are of central interest in the investigation 

described in this chapter. 

Infrasonic Modes 

An atmospheric model that is frequently adopted in 
2 

studies of infrasound is one in which the sound speed c(z) 

varies continuously with height z in some reasonably realistic 

manner up to some specified height zT and is constant (value 

cT) for all heights exceeding zT (see Fig. 2a). Should 

winds be included in the formulation, the wind velocities 

are also assumed to be constant in the upper halfspace 

z > Zrr,. It would seem reasonable to say that one has some 

choice in specifying the values for both zT and c^, even 

though the computations of such factors as Q and D(w,k) in 

Eq. (1) become more lengthy with increasing z™. Whatever 

the choice of zT, it would seem just as reasonable to choose 

c^ to be c(z~0 so tha t the sound-speed p ro f i l e would then be 

continuous with height (this is the case for the profile shown 

in Fig. 2a). Another seemingly plausible choice in modeling 

the upper halfspace would be to have cT approach infinity 

(as illustrated in Fig. 2b). With this choice, the bottom 

of the upper halfspace would be modeled as a free surface 

(or pressure release surface) such as is found in models 

generally adopted in studies of underwater sound for the 
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water-air interface. Intuitively, it would seem that if the 

source and receiver are both near the ground and if the 

energy actually reaching the receiver travels via modes of 

propagation channeled primarily in the lower atmosphere, then 

the actual value of the integral in Eq. (2.1) would be some­

what insensitive to the choices of zT and cT. Since this 

idea, however, remains to be justified in any rigorous sense, 

it would not seem reasonable to allow cT to approach infinity 

at the outset. In typical calculations performed in the 

past, zT was taken as 225 km, and cT was taken as the sound 

speed (~ 800 m/sec) at that altitude. 

The formulation leading to that version of Eq. (2.1) 

which is appropriate to infrasound for frequencies at which 

gravitational effects are important (corresponding to 

periods greater than one to five minutes) is based on the 

equations of fluid dynamics with the inclusion of gravita­

tional body forces, the associated nearly exponential 

decrease of ambient density and pressure with height, and a 

localized energy source (see in particular pages 17 and 19 

of reference 2). When cT is taken to be finite, the incorpora­

tion of gravitational effects in this formulation leads to a 

dispersion relation for plane waves propagating in the upper 

2 10 halfspace which is (winds neglected) * 

k z = -G = [iii - a>A] /cT - [to - cofi]k /w , ( 2 . 3 ) 
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where the solution of the linearized equations of fluid 

dynamics for z > z T is of the form 

i k z 
// rn *- u\ -i(0t ikx Z rn „. 

p//p = (Constant) e e e . (2.4) 

In these equations p is again the acoustic pressure, p is 

ambient density, x is the horizontal space dimension, and k 

is the vertical wave number (alternatively written as iG for 

inhomogeneous plane waves). w. and au are two characteristic 

frequencies (co. > w R) for wave propagation in an isothermal 

1/2 
atmosphere where w. = (y/2)g/cT and o)r> = (y - 1) g/cT 

2 
(g » 9.8 m/sec is the acceleration due to gravity and 

Y ~ 1.4 is the specific heat ratio for air). For given real 

2 2 
positive a) and real k, k/ can be positive or negative (G 

Zr 

negative or positive, respectively). The values of k at 
2 

which G is zero turn out, as might be expected, to be the 

branch points in the k integration in Eq. (2.1). Along the 
ik z 

real k-axis, G is either real and positive (so that e or 

- G z 
e dies out with increasing z ) , or else G is of the form ia 

where a can be positive or negative. From Eq. (2.3), the 

two branch points are at 

r 2 2 , 1 / 2 
+ _ w [ ^ A - to ] 

kBR W = ± - A J-TT2 ' I 2 - « 
c T [oj-g - & J 
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Note that for 0 < OJ < OJR , and for k between the 

branch points on the real axis, G is real and positive. The 

branch lines extend upwards and downwards from the positive 

and negative branch points, respectively (recall Fig. 1). 

The eigenmode dispersion function D(oa,k) in the case 

of atmospheric infrasound can be written in the general 

form (see page 47 of reference 2) 

D(o),k) = Ai2 Rn ' AH R12 " R12Gt (2>6) 

In this expression, R-,-. and R. ~ are the elements of a 
2 

transmission matrix [R]. They depend on the atmospheric 

properties only in the altitude range zero to zT, and are 

independent of what is assumed for the upper halfspace. In 

general, their determination requires numerical integration 

over height of two simultaneous ordinary differential 

2 10 12 equations (termed the residual equations ' ' in previous 

literature). They do depend on w and k (or, alternately, 

on co and phase velocity v = oo/k) , but are free from branch 

cuts. Also, they are real when w and k are real and are 

finite for all finite values of m and k. The other parameters 

A-. 2 and A1-, depend on the properties of the upper half space, 

and on w and k. A-,-, and A, ? are given (winds excluded) as 

A n = gk2A)2 - yg/[2c2]; (2.7a) 



14 

A1 2 = 1 - c 2 k 2 / c o 2 . ( 2 . 7 b ) 

It may be noted further that, since every quantity in 

Eq. (2.6) (with the possible exception of G) is real when to 

and k are real, the poles that lie on the real k-axis (recall 

that they are the real roots of D) must be in those regions 

of the (to,k) -plane [or, alternatively, the (to,v) -plane] 

2 
where G > 0. Since at heights above zT, the integrand of 

-GzT 

Eq. (2.1) divided by /p should vary with z as e , there 

is no leakage of energy into the upper halfspace for those 

modes that correspond to the above poles. Such modes are 

termed fully ducted modes. Modes for which there is leakage 

of energy are termed l_eaking. If D is considered as a 

function of to and phase velocity v, the locus of its real 

roots v(to) (dispersion curves) has (as has been found by 

numerical computation with the program INFRASONIC WAVEFORMS) 

the general form sketched in Fig. 3. The nomenclature for 

labeling the modes (GR for gravity, S for sound) is due to 

13 
Press and Harkrider. It may be noted from Eq. (2.3) that 

there are two "forbidden regions" (slashed in the figure) in 

the (to ,v) -plane. These regions correspond to 

r 2 2-, 1 /2 / r 2 2 , 1 / 2 r o Q , 
v < cT[toB - to ] / [toA - to ] ( 2 . 8 a ) 

f o r to < to^ and to 
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Figure 3. Numerically Derived Plots of Phase Velocity v 
Versus Angular Frequency w for Infrasonic Modes. 



16 

v > cT[w
2 - u)g]1/2/[a)2 " ̂ ] 1 / 2 (2'8b) 

for a) > co.. Within these regions there are no real roots of 

the function D(w,v) because G is imaginary. The existence 

of the high-frequency upper "forbidden region" implies that 

the phase velocities for propagating modes are always less 

than the sound speed chosen for the upper halfspace. It 

also implies that, in the high-frequency limit, the branch 

points in the k-plane are at ± w/cT. The low-frequency 

lower-phase-velocity "forbidden region" appears to be due to 

the incorporation of gravitational effects into the formula­

tion. However, if cT is allowed to approach infinity, the 

lower "forbidden region" disappears. Numerical studies were 

performed with INFRASONIC WAVEFORMS to see just what effect 

varying cT had on the dispersion curves shown in Fig. 3. 

Briefly, the result was that while the forms of the GR~ and 

GR-. modal curves changed little with increasing c™ the lower 

"forbidden region" shrank in frequency range, and as it did 

so, the modal curves extended to successively lower frequen­

cies. Thus, it can be seen that the fully ducted GR~ and 

GR-j modes both have a lower frequency cutoff [ooT in Eq. 

[2.2)] which depends on c«.. In fact, the larger cT becomes, 

the smaller this cutoff frequency becomes. 

At this point, there should appear to be the following 

paradoxes . Given that frequencies below co-n may be important 
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for the synthesis of the total waveform, an apparently 

plausible computational scheme based on the reasoning 

leading to Eq. (2.2) will omit much of the information 

conveyed by such frequencies. Also, in spite of the plausible 

premise that energy ducted primarily in the lower atmosphere 

should be insensitive to the choice for cT, it can be seen 

that this choice governs the cutoff frequencies for certain 

modes and that certain important frequency ranges could 

conceivably be omitted entirely by a seemingly logical choice 

for cT. The resolution of these paradoxes seems to lie in 

the nature of the approximations made in going from Eq. (2.1) 

to Eq. (2.2). The latter equation may not be as nearly correct 

as earlier presumed, and it may be necessary to include 

contributions from poles off the real axis as well as from 

the branch line integrals. Even for the case when the 

propagation distance r is very long, it may be that the 

imaginary parts of the complex horizontal wave numbers are 

i kr 
so small that the magnitude of e in Eq. (2.1) is still not 

small compared to unity. In addition, a branch line integral 

may be appreciable in magnitude at large r if there is a 

pole relatively close to the associated branch cut. These 

possibilities are investigated in the next section. 

Roots of the Dispersion Function 

In light of the paradoxes mentioned, it would be 

desirable to modify the solution represented by Eq. (2.2) so 



18 

as to remove the apparent artificial low-frequency cutoffs 

of the GR~ and GR- modes. As a first step, the nature of 

the eigenmode dispersion function D in the vicinity of the 

dispersion curve for a particular mode is examined. The 

curve of values v (to) of phase velocity v versus &o for a 

given (n-th) mode is known for frequencies greater than the 

lower cutoff frequency toT . Given this curve, analogous 

curves va(w) and v, (to) can be found for values of the phase 

velocity oo/k at which the functions R-,-I(GO,V) and R-, o ̂ w»v^ -*-n 

Eq. (2.6), respectively, vanish. One characteristic of the 

curves v (GO) , v (u), and v^ (GO) which has been checked 

numerically for GO > GOT with the use of the program INFRASONIC 

WAVEFORMS (see Fig. 4) is that, for a given mode of interest, 

these curves all lie substantially closer to one another than 

to the corresponding curves for a different mode. 

Given the definitions above of v (GO) and v, (GO), the 

dispersion relation D = 0 for a single mode may be approxi­

mately expressed, through a simple expansion, as 

D ~ (A12)(a)(v - va) - [A u + G](3)(v - vb) = 0, (2.9) 

where a = dR^/dv, and 3 - dR. ?/dv, evaluated at v = v and 

Vn , respectively (for simplicity, D is considered here as 

a function of to and v = w/k rather than of GO and k) . The 

above equation may also be written in the form 
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v = va + (va - vb)X/[l-X], (2.10a) 

where 

X = C3/a) CA1JL • G)/A12. (2.10b) 

Eq. (2.10a) may be considered as a starting point for an 

iterative solution which develops v in a power series in 

v - v-, . With v = v as the zeroth iteration, the right hand 

side of Eq. (2.10a) can be evaluated for the value of v 

required for the next iteration, etc. This iterative procedure 

should converge provided that v or v. is not near a point 

at which G vanishes and provided that G in the vicinity of 

v or Vi is not such that the variable X is close to unity. 

Among other limitations, the iterative scheme is inappropriate 

for those values of tii in the immediate vicinity of w, . This 

limitation is discussed further in the next section. 

The iterative solutions obtained by the above scheme 

follow some interesting general trends. In relation to these 

trends, there are two general theorems of note, the proofs 

of which follow along lines previously used by Pierce in 

deriving an integral expression for group velocity. These 

are that, for u> and v positive and real, 

R12 a R n / a v " R n 3R12/9
y > °» (2.11a) 
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R12 3 R n / 9 a J " R n 3 R
1 2 / 3 w > °- ( 2 . 1 1 b ) 

A l t e r n a t e l y , f o r R1 = (a) (v - v ) and R., ~ = (3) (v - v b ) , 

i t f o l l o w s t h a t 

a 3 ( v a - v b ) > 0 , ( 2 . 1 2 a ) 

(v - v b ) ( v - v a ) ( B a " - fTa) + 3 a [ v b ' ( v - v a ) - v a " (v - v b ) ] > 0 , 

( 2 . 1 2 b ) 

where the primes represent derivatives with respect to o>. 

Eq. (2.12b) should hold for arbitrary v in the vicinity of 

v and vb and lead, upon setting v = v , v = vb, or 

v = O av b" -
 v
a"

vb^ vb' " va^> a l o nS w i t h t h e u s e o f 

Eq. (2.12a), to 

vb" < 0, (2.13a) 

va' < 0, (2.13b) 

Cot/3)' > 0. (2.13c) 

Eq. (2.12a) implies that so long as a3 ¥ 0 the two curves 

v (to) and vb(w) do not intersect. If a and 3 have the same 

sign, then the v curve lies above the vu curve. If a and 3 
a b 

differ in sign, then the v, curve lies above the v curve. 
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To illustrate the general utility of the perturbation 

approach taken here, values of w, v , v, , a, 3, v , and 
a D 

v are listed in Table 1 for the GRA and GRn modes, where n 0 ' 1 " ' 

v^ ' is the result of the first iteration for the phase 

velocity. The values given there are appropriate to the 
2 

case of a U. S. Standard Atmosphere without winds which is 

terminated at a height of 125 km by an upper halfspace possess 

ing a sound speed of 478 m/sec. Note that, for those frequen­

cies at which v is computed, the agreement between v^ ' and 

v is excellent. 

For further illustration of the perturbation technique, 

detailed plots versus angular frequency are given in Fig. 5 

of co/kR which is the reciprocal of the real part of 1/v̂  , 

and of kT which is the imaginary part of co/v ^ (kR and kT 

are the real and imaginary parts of k, respectively). Note 

that kT is zero above the corresponding cutoff frequencies. 

Transition of Modes from Non-Leaking to Leaking 

The iterative process described by Eqs. (2.10) in the 

preceding section provides little insight into the behavior 

of a modal dispersion curve in the immediate vicinity of 

cutoff (i.e., for values of w near a>T ) . In addition, the 

process may fail to converge when G is near zero. To explore 

this transition region, it is sufficient to approximate G in 

Eq. (2.9) by 
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Table 1. Frequency-Dependent Parameters Corresponding to the 
GRn and GR-, Modes . 

CJ 
sec 

Va 
km/sec 

Vb 
km/sec 

(X 

sec/km 
f 
sec km/sec km/sec 

0.0052 0.31203 0.31207 917.4 -2783.7 0.31202121 
-3.184 x 10-6i 

0.0113 0.31190 0.31194 767.9 -3254.2 
0.31189059 
-1.721 x 10~61 

0.0155 0.31176 0.31181 621.9 -3644.3 0.31173763 0.31172882 

0.0165 0.31172 0.31177 581.5 -3738.2 0.31167504 0.31167509 

0.0186 0.31162 0.31168 497.5 -3910.1 0.31153369 0.31153394 

0.0052 0.24229 0.24816 87.8 -3633.0 0.25267 
-2.715 x 10~31 

0.0103 0.23433 0.23844 94.7 -3990.0 
0.24218 
-1.337 x 10_31 

0.0144 0.21842 0.22037 150.7 -5307.0 0.21431 0.22178 

0.0165 0.20252 0.20345 265.0 -7767.3 0.20016 0.20463 

0.0175 0.19058 0.19111 418.9 -10,858.0 0.19226 0.19212 
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G - [(q1)(0) " 0)L) + (q2)(v - v L ) ]
1 / 2 , (2.14) 

where q.. and q? are readily identifiable positive numbers which 

are independent of w and v [see Eq. (2.9)] and vT is the limit 

of the phase velocity on the dispersion curve as to approaches 

LOT from above. The bracketed quantity in Eq. (2.14) may be 

regarded as a double Taylor series expansion (truncated at 

2 2 
first order) of G about the point (coT ,vT ) at which G 

vanishes (hence there is no zeroth-order term). That q. and 
2 

q-p are positive quantities follows from the fact that G is 

positive outside of the lower "forbidden region" in the 

2 
(w,v)-plane (i.e., to the upper right of the line G = 0) 

and also from the fact that the boundary of the lower 

"forbidden region" slopes obliquely downwards (see Fig. 3). 

With the above approximation for G, a further approxi­

mation to the eigenmode dispersion function D(w,v) [of 

Eq. (2.9)] in the vicinity of the point (u,,v,) would be 

D ~ (A12
a " A n ^ { ( A v + ^ A a ) ) + e ( A v + vAw) 1 / 2}, (2.15) 

where Av = v - vT , Aw = to - &T , v = q.,/q? and where the 

quantity y is either -dv /dw or -dvK/dw (the two being close 
a D 

in value). The use of the minus sign in the expressions for 

M assumes that y is positive. The quantity e is 
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(q2
1/2)(B)(v - v,) 

* - - wn - "Ai2 • ( 2 a 6 ) 

It should be noted that e depends on v, although, for the 

purposes of the analytical investigation given here, v may 

be set equal to v, , In fact q1 , q~, 3, a, A,.,, A. ~, y, and 

v may be considered to be evaluated at co = coT and v = vT . 

Note again that y and v are both positive quantities. Further 

more, note that v > y as is evidenced by the fact that the 

curve G = 0 in the (to,v) -plane slopes downward more rapidly 

than the lines R-, = 0 and R,~ = 0 (see Fig. 4). 

From Eq. (2.15) the zeros of D are readily found to 

be 

Av = -yAw + (l/2)e2 + e(v - y ) 1 / 2 [Aw + a ] 1 / 2 , (2.17) 

where 

a = e2/[4(v - y)]. (2.18) 

For | Aco | << a, Av may be further approximated by use of the 

binomial theorem as 

Av = -vAw + [Cv - y)2/e2] (Ao))2 (2.19a) 

or 
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Av = £2 - (2u - v) Aw - [(v - u)2/e2](Aw)2 (2.19b) 

for the upper and lower signs of Eq. (2.17), respectively. 

Eq. (2.19a) (since Av = 0 when Aw = 0 ) is a description of 

the dispersion curve in the vicinity of the point (wr ,v T). 

Examination of Eq. (2.19a) shows that as Aw approaches 

zero, the dispersion curve becomes tangential to the line 

2 
G = 0 . In other words, the two curves do not intersect 

(refer to Fig. 6). At point A [i.e., at the point (II),,VT)] 

in the sketch, the two curves are tangent. Between the points 

A and B, there is a finite gap in the frequency range in 

which there are no poles in the k- (or v-) plane corresponding 

to a given n-th mode. The magnitude of the parameter a 

(rad/sec) gives an indication of the width of this frequency 

gap. 

In Table 2 the values of w,, vT , q., , q~, y, v, e, and 

a are given for the GRn and GR-, modes for the model atmosphere 

corresponding to Fig. 2a. The extremely small values of a 

should be noted. Also, a plot of Av versus Aw which shows 

both branches of Eq. (2.17) and which is appropriate for the 

GRn mode is given in Fig. 7. For simplicity, this plot is 

in normalized form with 

V = -{y/[2(v - u)]}n + [1 + fi]1/2, (2.20) 
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DISPERSION 
CURVE 

Figure 6. Sketch Illustrating Nature of a Dispersion 
Curve in the Vicinity of the Line Ĝ  = 0. 
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Table 2. Parameters Characterizing the Eigenmode Dispersion 
Function Near the Transition from Leaking to 
Non-Leaking for the GRn and GR-, Modes » 

G Ro GR1 

WL (rad/s) 0.0118 0.0125 

vL (km/s) 0.31188 0.2323 

q(s/kra ) 0.14 0.35 

q2(s/km ) 1.84 x 10~3 1.86 x 10~3 

U (km) 2.94 x 10"2 4.15 

V (km) 76 190 

,. 1/2. 1/2. e (km /s ) 9.6 x 10~6 1.02 x 10"3 

a (rads/s) 3.04 x 10""13 1.41 x 10~9 
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where V = Av/[2(v - \i)o] and ft = Aco/a. Both the real and 

imaginary parts of V and ft are shown in the plot. The 

corresponding plots for the GR-. mode differ only slightly 

from those given for the GR~ mode in Fig. 7. As may be seen 

from Table 2, y << v so that, for both modes, the quotient 

y/[2(v - y) ] is small compared to unity. 

Concluding Remarks 

Since there is a gap in the range of frequencies for 

which a pole (corresponding to a mode) may exist, it is 

evident that evaluation of the integral over k in Eq. (2.1) 

by merely including residues may be insufficient for certain 

frequencies. Thus it would seem appropriate to include a 

contribution from branch line integrals. However, there is 

a line of reasoning which demonstrates that all contributions 

from branch line integrals are insignificant. Further details 

on this matter are provided in reference 4, 

The investigation described here led to a relatively 

straightforward perturbation technique for the inclusion of 

contributions from leaking modes in the synthesis of infrasonic 

waveforms. It was demonstrated that the imaginary parts of 

-4 -1 complex horizontal wave numbers can be less than 3 x 10 km 

Consequently, it would be expected that the contributions 

from leaking modes are significant for realistic propagation 

distances (i.e., between 1000 and 15,000 km). 

In this chapter, a theory of leaking modes has been 
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Normalized Frequency in the Vicinity of 
the Point (yT ,0),) for the GRn Mode . 
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presented. The details of the modification of the computer 

program INFRASONIC WAVEFORMS to incorporate this theory are 

given in Chapter III. 
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CHAPTER III 

NUMERICAL SYNTHESIS OF WAVEFORMS 

WHICH INCLUDE LEAKING MODES 

Introduction 

The computer program INFRASONIC WAVEFORMS2'5 has been 

modified to include contributions at low frequencies from 

leaking modes (specifically the GR~ and GR. modes) to 

numerically synthesized infrasonic waveforms. The procedure 

incorporated in this modification involves among other things 

the calculation [as discussed in Chapter II) of the imaginary 

and real parts of horizontal wave numbers and phase velocities 

The entire procedure for including leaking modes is outlined 

in detail here. Numbers presented for illustration are 

appropriate to the case of infrasonic signals observed at 

15,000 km distance from a 50-megaton explosion, where the 

explosion is at three km altitude and the atmosphere [shown 

in Figs. 8 and 2(a)] is assumed to contain no winds. 

Calculation of Complex Wave Numbers 

and Phase Velocities 

The first step in the calculation of complex wave 

numbers and phase velocities for the GRfi and GR-, modes is to 

obtain values for the phase velocities v (to) , v (w) , and 
n a 

v, (a)) , and the elements R,-|(w,v) and R17(w,v) of the 
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transmission matrix [R]. These calculations are done for 

frequencies below the cutoff frequencies of the two modes. 

As mentioned in Chapter II, R1-, and R-, ~ depend on atmospheric 

properties only in the altitude range zero to zT (the bottom 

of the upper halfspace) and are independent of what is 

assumed for the upper halfspace. vn(w) is the phase velocity 

for a given (n-th) mode for values of w greater than the 

lower cutoff frequency u)T , and v (w) and v-, (co) are values 

of the phase velocity w/k at which the functions R11 and 

R12, respectively, vanish. For a given mode, the values of 

v and v, chosen are those from the curves v (u>) and v, (w) 

which for w > 03T lie closest of all such curves to the curve 

vn(w). 

With an alternate version of the subroutine TABLE, 

INFRASONIC WAVEFORMS may be used to obtain R±1 and R12- A 

deck listing of subroutine TABLE with appropriate modifi­

cations incorporated is given in Appendix A of reference 5. 

A deck listing of the input data that is required to calculate 

R-,-, and R, ~ for the example is given in Fig. 9. Note that 

only phase velocities between 0.143 and 0.3318 km/sec and 

frequencies between 0.001 rad/sec and 0.031 rad/sec are 

used in this calculation. A sample portion of a printout 

of R-. , and R-. ~ versus phase velocity is given in Fig. 10. 

Values of va(w) and v^(w) for the GRQ and GR-, modes 

are obtained by two successive runs of INFRASONIC WAVEFORMS 

in which two modified versions of the subroutine NMDFN are 
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$NAM1 NSTART=1, NPRNT=1, NPNQI=~1, NCMPL=-1 $END 

$NAM2 IMAX=24, 

Z I = 1 . , 2 . , 4 . , 6 . , 8 . , 1 0 . , 1 2 . , 1 4 . , 1 6 . , 1 8 . , 2 0 . , 2 5 . , 3 0 . , 3 5 . , 4 0 . , 4 5 . , 5 5 . , 

6 5 . , 7 5 . , 8 5 . , 9 5 . , 1 0 5 . , 1 1 5 . , 1 2 5 . , 

T = 2 9 2 . , 2 8 8 . , 2 7 0 . , 2 6 0 . , 2 4 9 . , 2 3 6 . , 2 2 5 . , 2 1 5 . , 2 0 5 . , 1 9 8 . , 2 0 5 . , 2 1 5 . , 2 2 7 . , 

2 3 7 . , 2 4 9 . , 2 6 5 . , 2 6 0 . , 2 4 0 . , 2 0 5 . , 1 8 5 . , 1 8 4 . , 2 0 0 . , 2 5 0 . , 4 0 0 . , 5 7 0 . , 

LANGLE=1, 

WINDY=25*0.0, 

WANGLE-2S*0.0 

$END 

$NAM4 

THETKD = 3 5 . , 

VI = 0 .143 , V2 = 0 .3318, 

0A1 = 0 . 0 0 1 , #42 = 0 . 0 3 1 , 

N0MI = 30, NVPI = 80, 

MAXM0D = 10 

$END 

$NAM1 NSTART=6, NPRNT=1, NPNCH=-1, NCMPL=-1 $END 

Figure 9. L i s t i n g of Input Data Required to Generate 
Tabula t ions of R-,-, and R1 2 Versus Phase 

Ve loc i ty and Angular Frequency. 
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n 
Rn R12 

OMEGA= .30928-02 
.14300+00 .21671+01 .65152+02 
.14539+00 -.72963-01 .22523+02 
.14778+00 -.19992+01 .16898+02 
.15017+00 -.34415+01 .49336+02 
.15256+00 -.43200+01 .72532+02 
.15495+00 -.46324+01 .85619+02 
.15734+00 -.44356+01 .88883+02 
.15973+00 -.38270+01 .83475+02 
.16212+00 -.29260+01 .71114+02 
.16451+00 -.18579+01 .53814+02 
.16690+00 -.74204+00 .33657+02 
.16929+00 .31761+00 .12611+02 
.17168+00 .12376+01 -.75995+01 
.17407+00 .19579+01 -.25568+02 
.17646+00 .24418+01 -.40247+02 
.17885+00 .26746+01 -.50952+02 
.18124+00 .26605+01 -.57340+02 
.18363+00 .24195+01 -.59371+02 
.18602+00 .19834+01 -.57261+02 
.18841+00 .,13917+01 -.51424+02 
.19080+00 ,,68860+00 -.42421+02 
.19319+00 -„80574-01 -.30906+02 
.19558+00 -.87185+00 -.17582+02 
.19797+00 -.,16447+01 -.31561+01 
.20036+00 -.23637+01 .11690+02 
.20275+00 -.29996+01 .26326+02 
.20514+00 -.35295+01 .40198+02 
.20753+00 -.39379+01 .52832+02 
.20992+00 -.42158+01 .63849+02 

10. Sample Printout of R-,.. and R1 ? V 

Phase Velocity for a Fixed Value 
Angular Frequency. 
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used in sequence. These modifications are so minor that 

they are described here. To obtain v fw) , the third-from 
a 

end executable FORTRAN statement of subroutine NMDFN need 

only be changed from 

FPP = RPP(1,1)*A(1,2) ~ RPP(1,2)*(GU + A(l,l)) (3.1) 

to 

FPP = RPP(1,1). (3. 2) 

To obtain v,(co), the same statement need only be changed to 

FPP - RPP(1,2). (3.3) 

The same limits for phase velocity and angular frequency as 

are used for the calculation of R1, and R-, ? are used in the 

calculations for v , v , and v.. In the example, when these 
n' a' b r > 

limits are used, the GR, mode corresponds to mode number 

three and the GR~ mode corresponds to mode number four for 

the case when v fw) is calculated. For the cases when v„ (co) n a v J 

and v, (co) are calculated, the GR-, mode corresponds to mode 

number four and the GRn mode corresponds to mode number 

six. A sample listing of v (w) , v0 (OJ) , and VK(OJ) for the 
n a D 

two modes is given in Fig. 11. An additional listing of 

these phase velocities for the two modes is given in Table 3 



39 

' GRQ MODE 

v v a u v b 

.001030 .31209836 

.002061 .312Q9H7 
,003093 ,3120(*799 
.004124 .31207-3P3 
.005156 .31«J067?_7 
,00618'/ .31205-303 
.007218 .31203620 
.008250 .312Q1679 
.0C9281 .31199476 
,010312 .31197016 
,011344 ,31lot4.291 
,01237b .3119l3o2 
.013407 .3lle«0ci5 
,014436 .31l845l8 
.015469 .311f>n7i4 
.016501 ,31176630 
.017532 .31172258 
,018563 .31167591 
,019595 ,31162620 
.020036 .3115733*+ 
.021658 .31151721 
.0226B9 .311«45763 
,023720 .31139444 
,021752 .31132738 
,025783 .31125619 

.001030 .31205939 

.002^61 .31205552 

.003093 .31204906 

.004124 .31204001 

.005156 .31202834 

.006187 .31201405 

.00721* .31199710 

.008250 .31197748 

.009281 .31195515 

.010^12 .31193006 

.011344 .31190215 

.012375 .31167139 

.013'»07 .31183768 

.01443R .31180093 
,oi5'»6° .31176104 
.016*01 .31171786 
.017*32 .31167120 
.018*63 .31162087 
.019*95 .31156653 
.020*26 .31150781 
.021658 .31144415 
.02268° .31137478 
.023720 .31129855 
.024752 .31121368 
.025783 .31111721' 

GRi MODE 

.012^75 .31185608 

.0134 07- .31181806 

.0144 30 .31177597 

.01546Q .31172682 

.016*01 .31167509 

.017*32 .31161209 

.018*63 .31153394 

.019070 .3ll48b10 

.019079 .31148516 

.019*95 .31142505 

.019853 .31138841 

.020111 .31134515 

.020*26 .31122480 

.02165* .31029529 

.02165° .31029116 

.022005 .30790129 

.02213° .30551142 

.022173 .30475278 

.022240 .30312155 

.02232° .30073168 

.022412 .29834181 

.022490 .29595194 

.022*66 .29356207 

.02263° .29117220 

.02268° .28948366 

00 V _ 03 V„ OJ V . 

n a D 
.013407 .22781499 .001030 .24434330 ,001030 .25C73465 
.013*24 ,226b<+568 .002(161 .24409612 .001738 .2505444O 
.014040 .22425580 .003093 .24367787 ,002061 ,2bu42454 
.014424 ,22186593 .003655 .24337478 ,003093 t?-499C029 
.014438 .22177526 .004124 .24307887 .004124 .249150^,7 
.014778 .21947606 .005156 .24228453 ,00515^ . 2 4 U J 5 9 O G 
.015107 ,21708619 .006187 .24127431 ,005160 .24oi5453 
.015413 .21469631 .006^45 .24098491 ,006187 .246QQ257 
.015469 .21423833 .007218 .24001984 ,006963 .24576466 
.01569° .21230644 .008181 .23859504 ,007210 .24535036 

,015°66 .20991657 .008250 .23848240 ,008250 .24346182 
.016217 .20752670 .009281 .23660913 ,008293 .24337478 

.016453 .20513682 .009479 .23620517 ,009281 .2.4118333 

.016*01 .20463309 .010312 .23432748 ,009362 .24098491 

.016*75 .20274695 .010*18 .23381529 .010260 ,23b595o4 

.016886 .20035708 .011344 .23153728 ,010312 .23644396 

.017085 .19796721 • fl 11*81 .23142542 .011034 .23620517 

.017274 .19557733 .012115 .22903555 .011344 .23514 077 

,017'»54 .19318746 .012375 .22809942 .011712 .23381529 

.017*32 .19211887 .012752 .22664568 .012314 .23142542 

.017626 .19079759 .013311 .22425580 .012375 .23116086 

.017790 .18840772 .013407 .22301942 ,01285b .22903555 

,017°46 .18601784 .013*0° .22186593 ,01334b .22b6'+568 

.018(196 .18362797 .014255 .21947606 ,013407 .22632580 

.018240 .18123810 .014438 .21842295 .013790 .22425580 

Figure 11. A Sample Listing of y (w) , v (03), and V K O ) 
n a D 

for the GRA and GRn Modes. 
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T a b l e 3 . T a b u l a t i o n o f F r e q u e n c y - D e p e n d e n t P a r a m e t e r s 
f o r t h e GRQ a n d GR., M o d e s . 

GR MODE 

oo v v. a 3 A. An 0 G a b 11 12 
0.001030 0.31205939 0.31209836 957.1 -2648.5 0.07064925 -1.3492340 0.028617461 
0.005156 0.31202834 0.31206727 917.4 -2783.7 0.07066928 -1.3497015 0.025859571 
0.008250 0.31197748 0.31201679 854.9 -2988.2 0.07070210 -1.3504677 0.020599491 
0.011344 0.31190215 0.31194291 767,9 -3254.2 0.07075075 -1.3515959 8.16470 x 10 i 

X k \ "/kR 
0.001030 0.14489848 + 0.058693141 3.29323 x 10~^ 3.3007'x 10 0.31205300 
0.005156 0.15887128 + 0.058134771 1.68605 x 10~' 0.0165355 0.31202121 
0.008250 0.18298964 + 0.053315141 2.65003 x 10~' 0.0264444 0.31197553 
0.011344 0.22182228 + 0.025598511 2.00717 x 10 0.0363822 0.31189059 

GR MODE 

Vb a 6 All A12 G 
0.001030 0.24434330 0.25073465 87.4 -3578 0.13415774 -2.8317742 0.043592491 
0.005156 0.24284530 0.24815908 87.8 -3633 0.13695917 -2.8971705 0.040308491 
0.008250 0.23848240 0.24346182 89.6 -3770 0.14232483 -3.0224265 0.033973041 
0.011344 0.23153728 0.23514877 100.0 -4144 0.15281704 -3.2673565 0.019880611 

OJ X ki 
0 
0 
0 
0 

001030 
005156 
008250 
011344 

1 
1 
1 
1 

9394832 
9560589 
9813366 
9381840 

+ 0.630205181 
+ 0.575696111 
+ 0.472946441 
+ 0.252146541 

4 
2 
2 
2 

96794 x 
19268 x 
67086 x 
05014 x 

10' 
10" 
10" 
10' 

-5 
-4 
•4 
•4 

h w/1^ 
4 0319 x 10"*3 0 25546528 
0 0204383 0 25269766 
0 0333205 0 24759561 
0 0474121 0 23926355 
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The next step in the calculation of complex phase 

velocities and wave numbers is to calculate manually values 

for the parameters a, and 3 which are part of the approximate 

expression [Eq. (2.9) in Chapter II] for the eigenmode 

dispersion function. These parameters represent the partial 

derivatives of R.. -, and R-. ~, respectively, with respect to 

phase velocity v evaluated at v = v and v = v. , respectively 

Since R.-, and R-. ? also depend on w, a and 3 may be considered 

as functions of u) and not of phase velocity. 

Recall that v (u)) and v, (co) are values for the 

phase velocity at which R,-. and L ? , respectively, vanish. 

From the listing of R-., versus v and w, let the adjacent 

values R-i i-i , ̂ ?ii> ^ n anc^ ^411 ^or 1̂1 c o r r e sP o nd t 0 the 

values for phase velocity v..-., v?, , v_-. and v,-, , respectively 

(for some chosen to) , so that v~-. and v--, bracket a value 

for v . The values R?11 and R^, would then be of opposite 

sign. In the listing of v, R,, , and R-. 2 f°
r various w, the 

values for v should all turn out to be equally spaced. 

Given this fact, it is possible to approximate a from the 

listing of R., -. by the formula 

a = (l/Av1)([5/6]en + [l/12]fn + [1/4 ]g11h11) , (3.4) 

where 

AV1 = v41 " v31 = v31 " v21 = v21 " vll' (3-5£° 
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eU = R311 • R211> ( 3- 5 b ) 

£11 " R411 ' R311 + R211 " Rlll' (3.5c) 

gll = CR211 • R311)/ell> ( 3- 5 d ) 

and h n = R 3 n + R 2 n - R j n - R 4 l r (3.5e) 

In like manner, from the listing of R-. ~ versus v and co, let 

the adjacent values R-, -, ~ , R~-.~, R?-,0, and R,no for R-, 0 J 1125 212' 312 412 12 

correspond to the values for phase velocity v-,̂ ,, v~~, v-«, 

and v.o, respectively (for some chosen co) , such that v~~ and 

v-7 bracket a value for v, . It is then possible to approxi­

mate 3 by the formula 

3 = (l/Av2)([5/6]e12 * [l/12]f12 + [l/4]g12h12) (3.6) 

where Av~, e-,~, f,., §i?> an<^ ni i a r e defined by equations 

analogous to Eqs. (3.5) (last subscript changed from '1' to 

f2') . 

Because such an approximate method is used to calculate 

a and 3 (it would be preferable to have an explicit formula), 

there is a small amount of false variation in the values 

obtained. This variation is noticable only for the GR-, mode 

and may, for all practical purposes, be eliminated by plotting 

a and 3 versus co and then drawing smooth curves through the 



43 

respective sets of points (see Figs. 12 and 13). While this 

graphical procedure is somewhat laborious, it circumvents 

making additional runs of the computer program to obtain 

values of R-.-. and R, - at more closely spaced values of phase 

velocity. It also circumvents the elaborate computer 

programming chore that would be required to calculate a and 3 

automatically. It is suspected that the programming time 

required for this automation would surpass the time required 

for manual calculation. In any event, the accuracy of the 

a and 3 obtained by Eqs. (3.4) and (3.6) has proven to be 

more than sufficient. 

The complex phase velocity v^ ' (to) can be calculated 

by using Eq. (2.10a) in Chapter II. This expression involves 

the parameters v , v, , and X where X depends on 3/a, A-..,, G, 

and A. ? [see Eq. (10b) in Chapter II]. The latter three of 

2 2 2 these quantities are computed by taking k /to = l/vo and by 
a 

using Eqs. (2.3), (2.7a) and (2.7b) of Chapter II, respec­

tively. Listings of G, A..-,, A., ~, and X for various values 

of co and for the GR-, and GR~ modes in the example are given 

in Table 3. 

As explained in Chapter II, below cutoff (e.g., below 

coT = 0.0125 rad/sec for GR, and below coT = 0.0118 rad/sec 

for GRn in the example) the real part kR of the horizontal 

wave number is the real part of to/v̂  \ and the imaginary 

part kT is the imaginary part of UJ/V^
 J . The extension by 

first iteration of the normal-mode dispersion curves below 
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cutoff is obtained by calculating w/kR. Listings of v^ , 

kT, kR, and w/k-̂  for various OJ for the GR~ and GR-, modes in 

the example are given in Table 3. In addition, plots of kT 

and co/k̂  are given in Chapter II in Fig. 5. 
K 

Input Data for GRQ and GR1 

The present version of INFRASONIC WAVEFORMS5 allows 

for the phase velocity w/kR, imaginary component kT, and 

source-free amplitude AMP to be input as functions of angular 

frequency OJ both below and above cutoff for the GR0 and GR-. 

modes. The kT may be obtained by the procedure described in 

the previous section. What follows is a description of how 

the remaining portion of the input data may be obtained. 

To obtain values of phase velocity and source-free 

amplitude at frequencies above cutoff, the current version 

of INFRASONIC WAVEFORMS is run with the variable NCMPL of 

NAMELIST NAM1 set less than zero. This run gives an output 

similar to that which would be obtained with the original 

version of the program. The input data for this run is the 

same as if waveforms were being computed without considera­

tion of leaking modes. A listing of such input data which is 

appropriate to the example is given in Fig. 14. The run with 

these data will give mode numbers and tabulations of phase 

velocity VPHSE and amplitude AMP versus angular frequency 

OMEGA for the GR^ and GR-, modes at frequencies above cutoff. 

The only output which need be retained for future use is the 
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$NAM1 NSTAKT=1, NPRNT=1, NPNCH=-1, NCMPL--1 $END 

$NAM2 IMAX=24, 

ZI=1.,2.,4.,6.,8.,10.,12.,14.,16.,18.,20.,25.,30.,35.,40.,45.,55., 

65.,75.,85.,95.,105.,115.,125., 

T=292. ,288. ,270. ,260. ,249,. ,236. ,225. ,215. ,205. ,198. ,205. ,215. ,217., 

237.,249.,265.,260.,240.,205.,185.,184.,200.,250.,400.,570., 

LANGLE = 1, 

WINDY = 25*0.0, 

WANGLE = 25*0.0 

$END 

$NAM4 

THETKD =35., 

VI = 0.15, V2 = 0.495, 

0M1 = 0.005, 0M2 = 0.1, 

NOM = 30, NVPI = 30, 

MAXMOD = 8 

$END 

$NAM6 ZSCRCE =3.0, Z0BS =0.0 $END 

$NAM8 YIELD = 50.E3 $END 

$NAM10 R0BS = 15000., 

TFIRST = 46.2E3, TEND = 52.2E3, 

DELTT =15., 

I$PT = 11, 

$END 

$NAM1 NSTART=6 $END 

Figure 14. Input Data to Obtain Phase Velocity Versus 
Angular Frequency Above Cutoff Frequency for 
the GRn and GRn Modes. 
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tabulation of VPHSE versus OMEGA for these two modes. 

Amplitudes at frequencies above cutoff are computed auto­

matically in any run which utilizes this output as input 

data. A sample tabulation of the pertinent output for the 

example considered here is given in Fig. 15. 

Input data of phase velocity VPHSE and amplitude AMP 

for frequencies below cutoff may be obtained by a second run 

of the program with the variable NCMPL set less than zero, 

but with the original model atmosphere replaced by one which 

has a thick intermediate layer plus an upper halfspace in 

place of the original upper halfspace. In other words, in 

the NAM2 input list, IMAX is increased by one, and the 

original ZI and T are left unchanged except that a ZI is 

added which is 100 km greater than the maximum ZI for the 

original model atmosphere. In addition, the temperature T 

for the new layer corresponding to IMAX+1 (i.e., for the new 

upper halfspace) is set. to an arbitrarily large value (e.g., 
7 

2 x 1 0 °K). Use of this altered model atmosphere will 

artificially lower the cutoff frequencies for the GRfi and 

GR-. modes down to values which are very close to zero. In 

the input data for this second run the angular frequency and 

phase velocity limits VI, V2, 0M1, and 0M2 of NAM4 must be 

set to obtain data for the GRn and GR.. modes at frequencies 

below their original cutoff frequencies. It is imperative 

that 0M2 not be set too high in value because the program will 

encounter numerical difficulties at high frequencies when the 
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GR_ MODE GR, MODE 

OMEGA V 

n 
OMEGA V 

n 
.01482759 .31175883 .01482759 .21913010 
.01646552 .31167007 .01601253 .20948276 
.01728448 .31162838 .01646552 .20500285 
.01810345 .31157130 .01711598 .19758621 
.01892241 .31150095 .01728448 .19544661 
.01933193 .31145750 .01756650 .19163793 
.01974138 .31140492 .01796698 .18568966 
.02137931 .31079310 .01810345 .18350434 
.02151639 .31060345 .01832669 .17974138 
.02178879 .30980325 .01865292 .17379310 
.02202362 .30762931 .01892241 .16844746 
.02210859 .30614224 .01895156 .16784483 
.02214435 .30539871 .01909212 .16487069 
.02216121 .30502694 .01922762 .16189655 
.02217751 .30465517 .01933190 .15953747 
.02219828 .30416532 .01948594 .15594828 
.02220876 .30391164 .01973352 .15000000 
.02223857 .30316810 
.02229504 .30168103 
.02239972 .29870690 
.02259055 .29275862 
.02293273 .28086207 
.02301724 .27771666 
.02324256 .26896552 
.02353065 .25706897 
.02380369 .24517241 
.02406701 .23327586 
.02432538 .22137931 
.02458369 .20948278 
.02465517 .20622217 
.02484741 .19758621 
.02498335 .19163793 
.02512335 .18568966 
.02526862 .17974138 
.02542062 .17379310 
.02558111 .16784483 
.02566520 .16487069 
.02575227 .16189655 
.02593679 .15594828 
.02613807 .15000000 

Figure 15. Sample Output of Phase Velocity Versus Angular 
Frequency at Frequencies Above Cutoff for the 
GR„ and GR. Modes. 
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bottom of the upper halfspace is set as high as considered 

here. If it were not for this difficulty this second run 

could be used to generate the same data as is generated in 

the first run. For comparison, the atmospheric profiles 

used in the two runs with NCMPL < 0 are shown in Fig. 16. 

The second run with NCMPL < 0 gives values for the 

source-free amplitude AMP and phase velocity VPHSE for the 

GRn and GR-. modes at frequencies below cutoff. The VPHSE 

are expected to be close in value to the w/kR obtained as 

described in the previous section. In addition, the source-

free amplitudes are expected to match on smoothly above 

cutoff to those obtained from the first run with NCMPL < 0 

even though the model atmospheres used in the two runs are 

not the same. This expectation is physically reasonable 

because the energy transported by the GRfi and GR-. modes is 

contained predominantly in the lower atmosphere. Furthermore, 

these amplitudes should be close in value to those which 

might be obtained by a perturbation technique similar to that 

described in Chapter II. Below cutoff, the actual amplitudes 

should have small imaginary parts. However, in view of the 

relatively small values obtained for the kT (less than 10 

neper/km), these imaginary parts may be neglected with 

confidence. The only characteristic of leaking modes which 

is of significance in the synthesis of waveforms is the 

accumulative exponential decay represented by the factor 

exp(-kTr). This factor is retained in subsequent calculations. 
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Figure 16. Two Model Atmosphere Profiles. (a) The Same as 
in Fig. 8. (b) The Same Only with the Original 
Upper Halfspace Replaced by a Layer of Finite 
but Large Thickness with a Halfspace Above it 
of Extremely High Temperature and Sound Speed. 
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Sample input data for this second run with NCMPL < 0 

is given in Fig. 17, and a listing of output values for 

OMEGA, VPHSE, and AMP below the original cutoff frequencies 

for the GRn and GR-, modes of the example is given in Fig. 18. 

Waveform Synthesis 

The final step in the synthesis of waveforms with 

leaking modes is to run the program INFRASONIC WAVEFORMS with 

input data that contains data computed for the GR~ and GR-, 

modes as described in the preceding two sections. The only 

differences between this run and the first run described in 

the previous section are that here NCMPL > 0 and values are 

supplied for the variables in the input list NAM51. A 

listing of the input data for the run with leaking modes 

which is appropriate to the example is given in Fig. 19. In 

those data, the AKIGRO and AKIGR1 are the values of the k, 

computed by the perturbation technique of Chapter II as 

outlined in the first section of this chapter. The source-

free amplitudes AMPGRO and AMPGR1 are taken from the output 

of the second computer run described in the previous section. 

The phase velocities VPGRO and VPGR1 are taken from the 

outputs of both computer runs described in the previous 

section. The reason that phase velocities for frequencies 

below cutoff are used as computed by the first computer run 

described in the previous section rather than as computed by 

the perturbation technique of Chapter II is that the values 
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$NAM1 NSTART=1, NPRNT=1, NPNCH=-1, NCMPL=-1 $END 

$NAM2 IMAX=25, 

Z I = 1 . , 2 . , 4 . , 6 . , 8 . , 1 0 . , 1 2 . , 1 4 . , 1 6 . , 1 8 . , 2 0 . , 2 5 . , 3 0 . , 3 5 . , 4 0 . , 4 5 . , 5 5 . , 

6 5 . , 7 5 . , 8 5 . , 9 5 . , 1 0 5 . , 1 1 5 . , 1 2 5 . , 2 2 5 . , 

T = 2 9 2 . , 2 8 8 . , 2 7 0 . , 2 6 0 . , 2 4 9 , , 2 3 6 . , 2 2 5 . , 2 1 5 . , 2 0 5 . , 1 9 8 . , 2 0 5 . , 2 1 5 . , 227 . , 

2 3 7 . , 2 4 9 . , 2 6 5 . , 2 6 0 . , 2 4 0 . , 2 0 5 . , 1 8 5 . , 1 8 4 . , 2 0 0 . , 2 5 0 . , 4 0 0 . , 5 7 0 . , 2 . E 7 , 

LANGLE=1, 

WINDY=26*0.0, 

WANGLE=26*0.0 

$END 

$NAM4 

THETKD= 3 5 . , 

VI = 0 .18 , V2 = 0 .34 , 

0M1 = 0 . 0 0 1 , 0M2 = C.02, 

N0MI = 30, NVPI = 30, 

MAXM0D = 8 

$END 

$NAM1 NSTART=6 $END 

Figure 17. Input Data to Obtain Phase Velocities and Source 
Free Amplitudes Below the Cutoff Frequencies 
for the GRn and GR-, Modes. 
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$NAM1 NSTART-l.NI'RNT-1, NPNCII- -1 ,NCMPL- 1 $END 
$NAM2 IMAX-24, 

ZI-1.,2.,4.,6.,8. ,10. ,12. ,14. ,16.,18.,20,,35.,30.,35.,40.,45..S5., 

65.,75.,85. ,95. ,105. ,115. ,125., 

T-292.,288.,2 70. ,260. ,249. ,236. ,225. ,215. ,205. ,198..205.,215.,2 2 7., 

237.,249.,265., 260.,240.,205.,185.,184.,200.,250.,400.,S70., 
LANGLE-1, 
KINDY-2S*0.0, 

WANGLE"25*0.0, 
$END 

$NAM4 

THETKD=-3S. , 

VI - 0.15, V2 - 0.495, 

0M1 « 0.005, 0M2 = 0.1, 

N0MI - 30, NVPI - 30, 

MAXM0D - 8, 

$END 

$NAMS1 MNGR1-2, NPGR1-25, MNGRO-3, NPGRO=47, 

0MCR1=O.001,0.00231,0.00428,0.00582,0.00805,0.01017,0.01083,0.01178, 

0.01483,0.01592,0.01647,0.0170 6,0.01729,0.01752,0.01793,0.0181, 

0.0183,0.01864,0.0189 2,0.019 22,0.01933,0.019 35,0.01948,0.01961, 

0.01974, 

VPGR1-0.28 308,0.27983, 0.27567.0.26 82 8,0.25122,0.'24075,0.23860,0.23517, 

0.21913,0.21034,0.205,0.19828,0.1954S,0.19224,0.18621,0.1835,0.18017, 

0.17414,0.16845,0.16207,0.15954,0.15905,0.15603,0.15302,0.IS, 

0MGRO-O.001,0.00231,0.00 4 28,0.0 06 24,0.00 821,0.01017,0.01083,0.01483,0.01647, 

0.01728,0.0181,0.01892,0.01933,0.01974,0.02138,0.02177,0.02207,0.02214, 

0.02216,0.02218,0.02219,0.0222,0.02221,0.02227,0.02233,0.02253,0.02288, 

0.0230 2,0.0232,0.02 34 9,0.02 37 7,0.02404,0.024 30,0.02456,0.02466,0.02483, 

0.02497,0.02 SI 1,0.02526, 0.02541,0.02547,0.02575,0.02584,0.02588,0.02S93, 

0.02603,0.02614 , 
VPGRO-0.31206,0.31205,0.31203,0.31201,0.31197,0.31192,0.31190,0.31176, 

0.31168,0.31163,0.31157,0.3115,0.31146,0.31141,0.31079,0.30991,0.30689, 

0.30539,0.30S01,0.30463,0.30526,0.30417,0.30388,0.30237,0.30086,0-. 29 483, 

0.28276,0.27772, 0.27069,0.2S862,0.24655,0.23448,0.22241,0.21034,0.20622, 

0.19828,0.19Z24, 0.18621,0.18017,0.17414,0.17177,0.16207,0.15905,0.15761, 

0.15603,0.15302,0.15, 

AMPGR1--0.00003660,-0.00004009,-0,00004754,-0.00007507,-0.00063749, 

-0.00365 399,-0.00 36 5194,-0.00354504, 

AMPGRO=-0.0310 29 34,-0.0 31005 20)-0.0 309 326,-0.0 30S1S46,-0.0 306S299, 

-0.03044457,-0.03036475, 

AXIGR1-4.0E-5,9.0E-S,1.7SE-4,2.4E-4,27E-4,2.SE-4,2.2SE-4,1.4E-4,17*0.0. 

AKIGR0=3.OE-8, 6. 0E-8,1.2E-7,1.9E-7,2.5E-7,2.7E-7,2.3E-7,40*0. 0, 

{END 

$NAM6 ZSCRCE-3.0, Z0BS-O.O JEND 

JNAM8 YIELD-50.E3 SEND 
$NAM10 R0BS - 15000., 

TFIRST-46.2E3, TEND-52.3E3, 

DELTT-15., 

IOPT-11 
$END 
JNAM1 NSTART-6, $fND 

Figure 19. Sample Input Data for Synthesis of Infrasonic 
Waveform Including Leaking Modes. 
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obtained from the computer run are expected to be more 

accurate. The values of kT have to be computed by the 

technique of Chapter II since the computer program in its 

present form will not compute them directly. 

In Fig. 20 plots are shown for the example of modal 

and total waveforms obtained with and without leaking modes. 

Note that the inclusion of leaking modes has eliminated the 

spurious precursor in the waveform and has raised the 

amplitude of the first peak. It is also important to note 

that the waveform with leaking modes begins with a pressure 

rise, which is realistic. 

Further Example (Housatonic) 

As a further example, waveforms were computed to model 

the case of signals observed at Berkeley, California, following 

the Housatonic detonation at Johnson Island on October 30, 

1962. A comparison of theoretical and observed waveforms 

for this case is given by Pierce and Posey." This case also 

serves as the main example in the 1970 AFCRL report by Pierce 

2 15 
and Posey, and is discussed by Posey within the context 
of the theory of the Lamb edge mode. 

The model atmosphere assumed (winds included) for the 

computation here is the same as in Fig. 3-12 of reference 2, 

except that in the present model the upper halfspace begins 

at 125 km (IMAX = 24) rather than at 225 km (IMAX = 33). To 

avoid repeating tedious calculations of the kT for the GRn 
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and GR-, modes for this model atmosphere, it was assumed that 

the kT would be close in value to those calculated for the 

example used in the previous sections. 

In Fig. 21, sets of plots for the Housatonic case are 

shown with and without leaking modes. The set with leaking 

modes excluded does not agree with comparable plots in 

Fig. 3-10 of reference 2. This relative disagreement exists 

because the upper halfspace has been taken here to begin at 

a lower altitude. In spite of this disagreement, the waveform 

that includes leaking modes is regarded as an improvement in 

that among other things the spurious initial pressure drop 

shown in the original waveform is not present here. 

In Fig. 7 of reference 10 observed and theoretical 

waveforms are shown for the Housatonic case. On the basis 

of the calculations described in this chapter, this figure 

was redrawn and is given here as Fig. 22. The only difference 

between the two figures lies in the central waveform. The 

false precursor is absent in the waveform shown in Fig. 22, 

and the first peak to trough amplitude has been changed from 

157 y-bar to 170 ybar (less than a 10% increase) . The 

remainder of the central waveform is virtually unchanged. 

The discrepancy with the edge-mode synthesis has not been 

diminished and remains a topic for future study. 
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CHAPTER IV 

ASYMPTOTIC HIGH-FREQUENCY BEHAVIOR 

OF GUIDED MODES 

Introduction 

Due to stratification in temperature and wind, the 

atmosphere possesses sound-speed channels with associated 

relative sound-speed minima. Fig. 23 shows a standard 

reference atmosphere wherein two sound-speed channels are 

indicated, one with a minimum occurring at approximately 

16 km altitude and the second with a minimum occurring at 

approximately 86 km altitude. Given the presence of a 

channel, an acoustic ducting phenomenon can occur, as is 

demonstrated in Fig. 24, wherein the energy associated with 

an acoustic disturbance can become trapped in the region of 

a relative sound-speed minimum. It is this mechanism of 

ducting that is of interest here. 

In the computer program INFRASONIC WAVEFORMS,2 the 

computation of modal waveforms involves the numerical 

integration over angular frequency of a Fourier transform of 

acoustic pressure where this integration is truncated at 

high frequency. It has been speculated that this truncation 

leads to the generation of what might be called "numerical 

noise" in the computer output. It was felt useful, therefore, 
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to extend this integration beyond the previous upper-angular-

frequency limit by means of some high-frequency approximation. 

In the case of an atmosphere with just one channel, the 

technique for this extension is well known and dates back to 

i f\ 

a paper published by N. Haskell in 1951. Haskell's tech­

nique involves the W.K.B.J. (Wentzel, Kramers, Brillouin, 

Jeffreys) method of solution (then in common use in quantum 

17 mechanics, although its invention dates back to Carlini 

18 and Green in the early 19th century). 

The approximations associated with the W.K.B.J. 

method of solution can be applied to the analytical model on 

which the computer program INFRASONIC WAVEFORMS is based at 

frequencies above approximately 0.05 radian/sec (corresponding 

to periods less than two minutes). Below that frequency, 

effects due to density stratification in the atmosphere and 

gravitational forces cannot be neglected. These effects 

therefore are not germane to the discussion here. 

The application of the W.K.B.J, method of solution to 

the problem of describing propagation of acoustic disturbances 

in a medium that contains two adjacent sound-speed channels 

19 has been discussed in the literature by Eckart. Eckart 

introduced the technique of devising a W.K.B.J, model for 

each of the sound-speed channels separately, then combining 

the results of the two models rather than treating the 

problem with a single model. In this chapter, Eckart's 

method is applied to the case of infrasonic waves in the 
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atmosphere. 

The W.K.B.J. Model 

The W.K.B.J, model for propagation of acoustic 

disturbances in a single sound-speed channel leads to an 

approximation for the acoustic pressure p divided by the 

square root of the ambient density p as follows: 

-*-- «(2)e-
iuteikx , (4.1) 

where co is angular frequency, k is the wave number associ­

ated with the horizontal dimension x, and z is altitude. 

Here ijj(z) satisfies the reduced wave equation 

^2 2 0 

dz c (z) 
* = 0, (4.2) 

where c(z) is sound speed as a function of altitude. The 

W.K.B.J, approximation applies in general to all differential 

equations of this type if the coefficient of ty is sufficiently 

"slowly varying." The approximation would appear to be 

valid in the present context provided that 

<< X, (4.3) 
Vc 

where A is some representative wavelength of interest. 
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Eq. (4.3) implies that if the W.K.B.J, model is to apply 

here, then substantial changes in sound speed should not 

occur within distances corresponding to a typical wavelength 

of interest. 

Comparison of Dispersion Curves 

A particular result of the W.K.B.J, method is that 

dispersion curves v(oo) for guided modes can be determined 

from the equation 

ztop 

'bottom 

[c"2 - v-2]1'2 dz - C 2 V Ul , (4.4) 

where v is phase velocity, n = 0, 1, 2, 3, ..., and z, . 
torn 

and z identify the lower and upper bounds of the sound-

20 speed channel, respectively. 

Particular insight into the high-frequency behavior 

of guided infrasonic modes in the atmosphere is gained when 

Eq. (4.4) is solved numerically for both the upper and lower 

channels (the model atmosphere being that given in Fig. 23 

only without winds). The resulting dispersion curves are 

shown in the lower portion of Fig. 25. One set of curves 

(the dashed curves) is appropriate to the W.K.B.J, model for 

the lower channel, and the other set (the solid curves) is 

appropriate to the W.K.B.J, model for the upper channel. In 

the upper portion of the same figure dispersion curves are 
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shown as generated by the computer model of INFRASONIC WAVEFORMS. 

The computer model solves a more complex problem in the sense 

that the approximations inherent in the W.K.B.J, model are 

not present. 

As is illustrated in the lower portion of Fig. 25, 

the two sets of dispersion curves generated by the W.K.B.J. 

models intersect at various points. A comparison of the 

dispersion curves shown in both the upper and lower portions 

of Fig. 25 reveals that these points of intersection mark 

regions of near intersection in the (oo,v) -plane between 

adjacent curves of the computer model. In the right hand 

portion of Fig. 26, one such region of near intersection is 

shown (denoted "resonant interaction between adjacent modes") 

with a corresponding point of intersection between two 

dispersion curves of the W.K.B.J, models shown to the left. 

It should be mentioned that the dispersion curves for the 

computer model never intersect one another. An analytical 

21 explanation of this fact has been given by Pierce. 

Inferences Concerning the Distribution 

of Energy with Height 

A further comparison of the dispersion curves shown in 

Fig. 25 reveals that, for relatively high angular frequencies, 

the dispersion curve corresponding to a given mode of the 

computer model is comprised of portions of dispersion curves 

from both sets of the curves generated by the W.K.B.J. 
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models. Two important inferences about the asymptotic high-

frequency behavior of guided infrasonic modes can be drawn 

from this fact. First, for some frequency ranges, and 

depending on how dispersion curve portions match between 

curves of the computer model and the W.K.B.J, models, it can 

be inferred that the acoustic energy associated with a given 

mode is comprised of energy associated more with propagation 

of acoustic disturbances in one sound-speed channel than in 

the other. As frequency increases, this association alternates 

back and forth between channels. To illustrate, if, for a 

small range of frequencies, a portion of a dispersion curve 

of the computer model matches [in the (oo,v) -plane] a portion 

of one of the curves for the W.K.B.J, model for the upper 

channel, then this matching implies that, for that mode and 

for that small frequency range, the acoustic energy density 

associated with that mode is greater in the upper channel 

than in the lower channel. Secondly, in the standard refer­

ence atmosphere, the sound-speed minimum for the upper 

channel is less than the sound-speed minimum for the lower 

channel. It can be inferred, therefore, that those acoustic 

disturbances for which phase velocities are less than the 

sound-speed minimum for the lower channel are associated more 

with acoustic energy trapped in the upper channel than in 

the lower channel, and thus, for this reason, do not 

contribute significantly to the acoustic energy at the ground. 

This second inference implies that care must be taken as to 
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which modes are chosen in the synthesis of a waveform for 

a ground location, as some may not contribute while others 

which do may be inadvertently omitted. 

Implications for Waveform Synthesis 

Currently, in the synthesis of infrasonic waveforms, 

acoustic guided modes are numbered in order of increasing 

phase velocity (i.e., S~, S,, S~, ..., etc.) and the sum over 
2 

modes is truncated at a maximum number of modes. The 

analysis presented here indicates that this may be a very 

poor technique for synthesizing high-frequency portions of 

waveforms for locations near the ground since there is 

always some frequency above which all of the first N modes 

correspond to acoustic ducting in the upper sound-speed 

channel. For the synthesis of ground-level signals from 

sources below 50 km altitude, a preferable technique would 

be to ignore the upper sound-speed channel completely for 

frequencies above, approximately 0.2 rad/sec (possibly 0.1 

rad/sec). Dispersion curves could then be taken as given by 

the W.K.B.J, approximation, and profiles of modal amplitude 

versus height could be computed by using the method outlined 

by Haskell. Dispersion curves and amplitudes so computed 

would fit directly into the general scheme which forms the 

theoretical basis for the current version of INFRASONIC 
2 

WAVEFORMS. Altering the technique for synthesis in this 

manner might eliminate the high-frequency "numerical noise" 

that is currently present in synthesized waveforms. 



72 

CHAPTER V 

GEOMETRICAL ACOUSTICAL COMPUTATIONAL MODEL FOR THE 

PREDICTION OF LONG-RANGE PROPAGATION 

Introduction 

In this chapter, a description is given of a computa­

tional model for the prediction of propagation over long 

ranges in a medium whose properties vary with height only. 

This model is based on geometric acoustical concepts and 

should be applicable for periods less than one minute. To 

some extent, the model is intended to complement the guided-

mode model of propagation which has been discussed in the 

previous chapters. 

The geometric acoustical method of characterizing 

propagation has a large amount of literature pertaining to 

it, most of which is concerned with underwater sound. It is 

not the intent here to discuss the theory associated with the 

method (that will be assumed to be understood), but rather to 

present the computational implementation of that theory. 

Some of the innovations that are introduced here and that are 

not always included in geometric acoustical models are (1) 

the use of cubic splines to approximate profiles of sound 

speed versus height, (2) the inclusion of many acoustic rays 

which connect source with receiver, (3) a method for computing 
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ray parameters and amplitudes that is based on analytical 

differentiation of geometric acoustical formulas which are 

appropriate to a stratified medium, and (4) the inclusion 

of phase shifts that occur at caustics. 

In the most general sense, the propagation medium 

considered here exists above a flat rigid surface and is 

stratified with height z with the sound speed c(z) assumed 

to be a continuous function. For simplicity, it is assumed 

that no ambient motion of the medium exists with respect to 

a frame of reference that is attached to the surface (i.e., 

no winds). In addition, the ambient density (p ) and 

ambient pressure (p ) are assumed to be constant throughout 

(see Fig. 27a). Furthermore, it is assumed that the source 

is localized at the coordinates x = 0, y = 0, and z = z^ 

(see Fig. 27b). 

What is of prime interest here is the development of 

a method for obtaining the acoustic pressure p(r,t) at 

moderate distances from a source (greater than 50 km) where 

p(r,t) is taken to be the geometric acoustical solution of 

the wave equation 

V2(p//po) - (l/c
2)82(p//po)/8t

2 = -4Trf(t)6(r - ? s c). (5.1) 

In this equation, r is a general vector with x, y, and z 

components, r.o is that vector which locates the source and 

f(t) is a function which characterizes the time dependence 
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of the source. In addition, p//p~ is taken to satisfy the 

boundary condition 3p/Bz = 0 at the ground (z = 0). 

Acoustic rays are lines that represent paths of 

propagation which emanate from the source and each of which 

lies in a vertical plane which contains the source (see 

Fig. 28). Because of the circular symmetry of the geometry 

chosen, only those rays that lie in the (x,z)-plane are 

considered here. A typical ray undergoes refraction. For 

example, when a ray is proceeding upwards, it will bend 

downwards if the sound speed in the medium increases with 

height, or alternatively, the ray will bend upwards if the 

sound speed decreases with height. Refraction makes it 

possible for more than one ray to pass through a receiver in 

the far field. In fact, for long distances of propagation, 

it would be expected that there be many rays that connect 

source and receiver. Schemes for computing rays are well 

22 known and thoroughly discussed in the literature. 

A nonuniform geometric acoustical approximation to 

the solution of Eq. (5.1) may be taken as 

P - E Prays' (5"2^ 
rays J 

where this sum is taken over all rays which connect source 

and receiver. Individual terms in the sum have signatures 

and amplitudes which may be computed from the eikonal 

approximation, ' and from the condition that p//p" reduces 
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Figure 28. Sketch of Acoustic Rays Emanating from a Source 
in an Atmosphere in Which the Sound Speed Varies 
with Height. 
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to the form F(t - R/c)/R (t being time and R being distance 

from the source) in the immediate vicinity of the source. 

The eikonal approximation is suspect at any point 

along a ray where ray-tube area vanishes. For the most part, 

this difficulty with the approximation may be circumvented 

by including a phase shift of -TT/2 in the signal associated 
or o/-

with a ray every time that ray passes through such a point. ' 

In other words, if a function for a signal is considered to 

be of the form 

F(t) = Ref F(oO e"ia)t dw, (5.3) 

this function would be replaced by 

F s h i f t ( t ) = R e f " e + i 7 T / 2 F U ) e _ i w t dw (5 .4) 
-o 

upon a single such passage. The shift of -TT/2 is applied 

each time the ray-tube area goes to zero along a ray, and is 

in addition to that shift which is due to travel time along 

a ray. The modeling of successive phase shifts by intervals 

of TT/2 is relatively straightforward. However, the determi­

nation of the number of times that such a shift occurs is 

more difficult. A method for this determination is provided 

in this chapter. 

For the sake of completeness and versatility in the 
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modeling of propagation over long distances, it is desirable 

to include explicitly effects that take place at what are 

termed caustics and lacunae. Lacunae are regions that are 

characterized by shadow zones (i.e., regions in which there 

is a relative absence of rays). A caustic is a surface 

formed by a locus of points at which adjacent rays intersect 

(or at which ray-tube areas vanish). As mentioned, the 

eikonal approximation should be suspect in the vicinity of 

a caustic (indeed it is invalid directly on a caustic). 

A lacuna occurs whenever two adjacent rays separate 

from one another. This separation leaves a region in which 

there is one less ray than in adjacent regions (refer to 

Fig. 29). A lacuna can occur when there is a maximum in a 

sound-speed profile (see LACUNA A in the sketch). A lacuna 

can also occur near the ground when the sound speed there 

decreases with height (see LACUNA B in the sketch). 

For simplicity, lacunae are not considered here. It 

seemed more important to investigate first techniques for the 

inclusion of effects associated with caustics. It is possible 

to conceive of a hypothetical model atmosphere in which 

caustics occur, but lacunae do not. Such a model would be 

one in which the sound speed had a single minimum with height 

but no maxima, and for which there was no ground (see Fig. 

30). While this model may not be wholly realistic, it should 

suffice for the demonstration of the computational methods 

presented in this chapter. 
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Figure 29. Examples of the Occurrence of Lacunae in the 
Propagation of Rays from a Source in a 
Stratified Atmosphere. 
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Figure 30. Simplified Hypothetical Sound-Speed Profile 
with Lattice Points Shown. 
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In the Appendix, a number of documented FORTRAN 

subprograms are provided which exemplify the numerical imple­

mentation of the computational techniques discussed here. 

It was not the intent of this investigation of geometric 

acoustical concepts to devise a completely self-contained 

computer program for the prediction of acoustic waveforms. 

Nonetheless, the subprograms were designed to be included in 

such a program. Emphasis in this chapter is placed on a 

discussion of computational techniques. A number of simple 

numerical examples which use the subprograms are presented for 

illustration. 

The Sound-Speed Profile 

Typically, in modeling a sound-speed profile, discrete 

values of sound speed are initially provided [c, i = 1,2,3, 

..., NCS (NCS meaning number of cTs)] which correspond to 

discrete values of height (z., i = 1,2,3,..., NCS). The 

points (z-, c.) are known as lattice points. Lattice points 

are used to define, by some approximate means, a function 

c(z) which provides sound-speed values at arbitrary heights. 

For the calculations often used in geometric acoustical 

2 2 predictions, values of dc/dz and d c/dz at arbitrary heights 

are needed, as well. An interpolation scheme known as the 

cubic splines method can be used to approximate c(z) and its 

first two derivatives. This method was recently introduced 
o 

into the literature on underwater sound by Moler and Soloman. 
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Using the notation given in that reference, let 

Az. = z • - z • -, 
1 1 l-l 

i = 1, . . ., NCS, (5.5a) 

Ac. = (c. - c i)/Az. i = 1, . . ., NCS, (5.5b) 

w = (z - zi_1)/Azi i = 1, ..., NCS, (5.5c) 

and w = 1 - w i = 1, ..., NCS. (5.5d) 

Given Eqs. (5.5), the sound speed c(z) for z between z. and 

z. -, can be approximated by the cubic polynomial 

c(z) = wci_1 + wct + CA2i)
2[ai_1(w

3 - w) + &i(3w
2 - 1)],(5.6) 

where the a. are as defined below. Note from Eq. (5.6) that 

the sound speed is continuous with height. In particular, 

when z = z. and z = z. -, , c(z) reduces to c- and c- -, , 
i i - 1 ' v •* I l -1 

respectively. 

According to Eq. (5.6), the first, second, and third 

derivatives of the sound speed are 

dc/dz = Aci + Azi[-ai_1(3w
2 - 1) + a ^ w 2 - 1)], (5.7) 

2 2 d c/dz = 6(wa._1 + wa.), (5.8) 
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and d3c/dz3 = 6(a. - a. J/Az., (5.9) 
v 1 1-1' l' 

respectively, so that 

dc/dz = Ac - Az.fa. + 2a. -,) at z. n, (5.10) 
I I v I I -1 -* I -1' v 

= A c + A z i ( 2 a i + a i _ ! ) a t z i > ( 5 . 1 1 ) 

d c /dz = 6a . n a t z . •>, ( 5 . 1 2 ) 
l - l l - l ' v •* 

= 6a . a t z . . ( 5 . 13 ) 
I I v 

2 2 From these equations it can be seen that d c/dz is continuous 

while continuity of dc/dz requires that 

Ac + Azi(2ai + ai_1) = A c + 1 - Azi+1(ai+1 + 2a±) (5.14) 

for all values of i. Continuity of the third derivative is 

not imposed on c(z). 

As implied by Eq. (5.14), the values for the a- that 

are required to insure continuity of dc/dz must be such that 

ai + 1 = (Aci + 1 - Ac±)/Az± + 1 - 2ai[l + A z ^ A z ^ ] 

- ai_1 Azi/Azi+1. (5.15) 
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Given a-, and a~ , it is possible to generate all of the 

succeeding a.. The linear nature of Eq. (5.15) is such that 

ai = Ki + Lia2 + M ^ (5.16) 

for i > 2, where 

K. -. = A. - B.K. - C.K. , , (5.17a) 
l+l i 1 1 l i - l * ^ J 

L. , = -B.L. - C.L- 1, (5.17b) 
l+l 1 1 l i-l 3 J 

M. . = -B-M. - CM. n , (5.17c) 
l+l l X l i - l * ^ J 

Ai = CAci+l " Aci^/Azi+i' (5.18a) 

Bi = 2[1 + Azi/Azi+1], (5.18b) 

Ci = zi/Azi+1, (5.18c) 

K2 = 0 ; K3 = A2; K4 = A3 - B3A2, (5.19a) 

L2 = 1; L3 = -B2; L4 = B3B2 - C3, (5.19b) 

and 

M2 = 0; M3 = -C2; M4 = B3B2. (5.19c) 



Beginning with the values of K~ and K- above, it is possible 

to generate all of the succeeding K.. 

The boundary conditions on the a- are taken to be 

al = ^NC^ = ®' While these boundary conditions may seem 

arbitrary, they simply require that the sound-speed profile 

be linear above ẑ pc and below z., (these linear portions being, 

typically, outside the height range of interest). Given the 

boundary conditions on the a., it follows that 

a2 " " KNCS/LNCS* (5*20] 

The a. for i = 3, ..., NCS can now be computed according to 

Eq. (5.15). 

The numerical implementation of the above computational 

scheme is realized in the subroutine called DASOL, the deck 

listing of which is given in the Appendix. When this 

subroutine is called, the c and z. are presumed to be stored 
' 1 1 r 

in COMMON. The a. [denoted by ASOL(I)] are stored in COMMON 

when DASOL returns. 

When the a. have been computed, the sound speed at a 

given arbitrary value of z is computed by a function subprogram 

called CSP(Z). When a value for z is input, this subprogram 

uses the values for the a., the c , and the z. to compute the 

sound speed at z by Eq. (5.6). In manners analogous to that 
used in CSP(Z), the function subprograms called DCDZ(Z) and 

2 2 DCDZS(Z) compute dc/dz and d c/dz , respectively, according 
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to Eqs. (5.7) and (5.8), respectively. The deck listings of 

CSP(Z), DCDZ(Z), and DCDZS(Z) are also given in the Appendix, 

Ray Parameters 

For an atmosphere without winds that is vertically 

stratified in temperature the equations of geometrical 

acoustics predict that 

dz/dz = ± c/(v2 - c 2 ) 1 / 2 , (5.21) 
IT 

where x and z are the horizontal and vertical distances, 

respectively, which define a given ray, and where v is the 

horizontal phase velocity associated with that ray. For any 

ray, v is a constant so that Snell's law (which is a 

corollary of the ray equations) predicts that, at any point 

on the ray, 

v = c/(sin6) = constant, (5.22) 

where c is the local sound speed and 0 is the angle between 

the momentary ray direction and the vertical (z-axis). The 

sign convention for Eq. (5.21) is such that dx/dz is positive 

whenever the ray is moving obliquely upward and negative 

whenever it is moving obliquely downward. The equations of 

geometrical acoustics also predict that the rate of change 

of net travel time t along a given ray with respect to 



87 

height is 

dt/dz = ± (v /c)/(v^ - c 2 ) 1 / 2 . (5.23) 

In the collection of FORTRAN subprograms given in the 

Appendix, the function subprograms RDXDZ(Z) AND RTDTZ(Z) 

compute the magnitudes |dx/dz| and |dt/dz|, respectively. 

Both of these subprograms use CSP(Z) to find the sound speed 

value at arbitrary height z. The value for v is assumed to 

be stored in COMMON. 

A turning point for a ray is that value of z at which 

c(z) = v . In general, when a sound-speed profile contains 

only one minimum, there are two such turning points, one upper 

and one lower (denoted ZUP and ZLOW, respectively, in the 

subprograms). The subroutine TNPNT is used to locate 

turning points. In TNPNT the horizontal phase velocity VP, 

and lower and upper height bounds ZBL and ZBU are taken as 

inputs, and a systematic search is performed between these 

bounds for the turning points. The search proceeds by 

dividing the interval (ZBL,ZBU) into NCS + 3 intervals, each 

of width 

DELTA = (ZBU - ZBL)/CNSCAN + 1). (5.24) 

A search for the root of the function CMVP(Z) = CSP(Z) - VP 

is then conducted by successively examining the sign of 
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CMVP(Z) at the points ZBL, ZBL + DELTA, ZBL + 2*DELTA, etc., 

until an interval is found for which the signs of CMVP(Z) 

at the two interval bounds are opposite. Success at this 

search implies that a root is bracketed in that interval. 

The actual value of the root [i.e., the zero of CMVP(Z)] is 

found by using a library subroutine (see the deck listing of 

ZREAL2 given in the Appendix). The above search then proceeds 

to succeeding intervals until a maximum of two roots is 

found. The output of TNPNT includes NRTS (the number of 

roots; 0, 1, or 2) and the values ZA and ZB of those roots 

[ZA is the first root (smallest z), and ZB is the second root 

(larger z)]. Typically, ZA is expected to correspond to the 

lower turning point, and ZB to the upper turning point. 

In the successive integration between limits (one or 

both of which are turning points) of expressions such as 

those given in Eqs. (5.21) and (5.23), care must be taken 

to insure that these expressions remain real and finite. To 

insure this, the above search for turning points is supple­

mented to guarantee that the points are not overshot. For 

this purpose, another subroutine SHIFT is used to adjust 

the values of ZA and ZB found by TNPNT to values which are in 

the immediate neighborhood of these, but which are such that 

CSP(ZLOW) < VP and CSP(ZUP) < VP where ZLOW is the shifted 

value for ZA and ZUP is the shifted value for ZB. These 

- 8 
adjustments are carried out in units of 10 ' until the above 

criteria are met. 
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In the subprogram set, the integration in general of 

any z-dependent quantity between arbitrary limits (not 

necessarily turning points) is accomplished by the function 

subprogram called RAINT. For example, in the case of the 

quantities |dx/dz| and |dt/dz|, RAINT performs integration 

so that 

fZU 
RAINT(RDXDZ,ZL,ZU) =\ |dx/dz| dz and (5.25) 

JZL 

S ZU |dt/dz| dz. (5.26) 

ZL 

In the performance of this integration, the range of integra­

tion is broken into intervals from ZL to ZAVE and from ZAVE 

to ZU where ZAVE = (1/2)(ZL + ZU). Thus 

S ZAVE f ZAVE 

(INTEGRAND) dz - I (INTEGRAND) dz.(5.27) 
ZL J ZU 

The reason for separating the integral is that, to perform 

the actual integration, RAINT uses a library subroutine 

(see the deck listing of QUAD which is provided in the 

Appendix) which is most efficient when it integrates away 

from a singularity. There is the possibility that, as 

discussed above, the integrand may be singular at the 

integration limits (e.g., such as is the case with RDXDZ and 
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RDTDZ at turning points). As will become evident, RAINT is 

used by a number of subroutines throughout the computational 

scheme. 

In the subroutine RANG, RAINT is used to determine 

the integrals of |dx/dz| and [dt/dz[ between lower and 

upper turning points. The values of z corresponding to the 

turning points are supplied as inputs, and the other required 

information is presumed stored in COMMON. The outputs of 

RANG are RTIME and RLNTH for the integrals of |dt/dz| and 

|dx/dz|, respectively. These two output parameters are 

significant because rays for the atmospheric model considered 

here are periodic in path. For propagation over N ray half-

cycles, the travel time is simply (N)*(RTIME), and the 

horizontal distance traveled is simply (N)*(RLNTH). 

Any ray that connects source and receiver may be 

completely characterized by (1) its associated horizontal 

phase velocity VP, (2) an index parameter IT (which is one 

if the ray is proceeding initially obliquely upwards, and 

minus one if it is proceeding initially obliquely downwards), 

(3) another index parameter JT (which is one if the ray is 

proceeding terminally obliquely upwards, and minus one if it 

is proceeding terminally downwards), (4) the number NUP of 

upper turning points through which the ray passes, (5) the 

number NDOWN of lower turning points, (6) the initial height 

ZSC of the ray (i.e., the source height), and (7) the 

terminal height ZLIS of the ray (i.e., the receiver height). 
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The meaning of some of these parameters is graphically 

illustrated in Fig. 31. It should be noted that, if IT = JT, 

then NUP = NDOWN, if IT = 1 and JT = -1, then NDOWN = NUP -

1, and if IT = -1 and JT = -1, then NUP = NDOWN - 1. 

Given the above parameters, the total horizontal 

distance which a ray travels can be computed as follows 

(refer to Fig. 31 again): 

R = (N)*(RLNTH) + RST + REND, (5.28) 

where N is the number of complete half-cycles the ray under 

goes given by 

N = NUP + NDOWN - 1 (5.29) 

and where 

fZUP 
RST = \ |dx/dz| dz, 

J ZSC 
IT = 1 , ( 5 . 3 0 a ) 

• j 
ZSC 

ZLOW 
d x / d z | d z , IT = - 1 , ( 5 . 30b ) 

REND 
rZUP 

1 

J ZLIS 

d x / d z | d z , JT = - 1 , ( 5 . 3 0 c ) 

• l 
ZLIS 

ZLOW 
| d x / d z | d z , JT = 1. ( 5 . 30 d ) 
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Figure 31. Parameters for Characterizing a Ray. 
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Eq. (5.28) holds even when NUP and NDOWN are zero. For 

example, if IT = JT = 1 and NUP and NDOWN are zero, then 

r ZUP (• ZLIS , ZUP 

R = \ + I - I |dx/dz| dz 

^ZSC JZLOW JzLOW 

p ZLIS 

= I |dx/dz| dz. (5.31) 

•'zsc 

The computation of total range is accomplished by 

the subroutine TOTRAN. In this subroutine TNPNT is first 

called to find the turning points, then SHIFT is called to 

adjust the turning points so that RDXDZ(Z) remains finite 

throughout the integration range, and then RANG is called 

to determine the ray half-cycle length RLNTH. The integrals 

RST and REND are performed with the use of the function 

subprogram RAINT. The same general scheme used to compute 

total range can be used in TOTRAN to compute total travel 

time T, as well. It is only necessary to replace RDXDZ by 

RDTDZ, RLNTH by RTIME, and R by T in the subroutine. 

Rays Connecting Source and Receiver 

Given that relevant parameters associated with rays 

can be computed, a related capability to have in any geometric 

acoustical computational scheme is that of the identifi­

cation of all rays which connect source and receiver locations. 
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Let the source and receiver heights be denoted, respectively, 

by ZSC and ZLIS as before, and the horizontal distance 

between the source and receiver be denoted by RANGE. As 

explained in the previous section, given a realistic set of 

values for the parameters VP, ZSC, ZLIS, IT, JT, NUP, and 

NDOWN, it is possible to compute the total range of propa­

gation R associated with these values. Given R, it is 

possible to define a function RMRAYD(VP) which is the differ­

ence between RANGE and R. By holding ZSC and ZLIS fixed, 

the other parameters VP, IT, JT, NUP and NDOWN can be varied 

so as to vary R until RMRAYD(VP) vanishes. In doing so, 

it is possible to define completely a ray that connects the 

source and receiver. In fact, since there are perhaps 

several (or in the case of very long ranges, many) groups 

of values for these parameters such that RMRAYD(VP) vanishes, 

the above scheme can be used to find all rays that connect 

source and receiver. A ray type can be thought of as being 

denoted by IT, JT, NUP, and NDOWN, and a specific ray (given 

the type) can be thought of as being defined by its associ­

ated value for VP. 

The function subprogram RMRAYD(VP) computes the above 

defined difference. In RMRAYD(VP), VP is the independent 

variable and the remaining necessary parameters are made 

available through COMMON. To find the values of VP at 

which 
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RMRAYD(VP) = 0 (5.32) 

given fixed ZSC, ZLIS, IT, JT, NUP, and NDOWN, the subroutine 

FNDVP is used. Briefly, FNDVP is used to scan values of VP 

between the values VPHST and VPHEND at intervals of SDELTA 

until an interval is found within which RMRAYD(VP) changes 

sign. Once an interval is found, a library subroutine is 

called (see ZREAL2 in the Appendix) to find the precise 

value of the root of RMRAYD(VP). Up to NMAX such roots are 

found (the number actually found is denoted by NFND), these 

roots being denoted by VPFND(l), VPFND(2). . .VPFND(NFND). 

By use of FNDVP, it is possible in principle to find all 

rays of a given type which connect source and listener. A 

systematic variation of ray types (IT, JT, NUP, and NDOWN) 

will, in this manner, identify all the rays that connect 

source and receiver. 

Spreading of Adjacent Rays 

Let two coplanar rays, both proceeding initially 

either obliquely upwards or obliquely downwards, be charac­

terized by phase velocities v -. and v ?. Assuming that v 9 

is arbitrarily close to (but not equal to) v -, , the separa­

tion of the two rays may be characterized by a parameter 

As which (see Fig. 32) is the perpendicular distance from a 

point on the first ray to the second ray. As is positive 

if the second ray lies above the first, and negative if the 
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RAY 2 

— X 

Figure 32. Definition of Parameter As Which Characterizes 
Two Adjacent Rays with Horizontal Phase 
Velocities v n and v 0. pi p2 
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reverse is true. The parameter As may be considered as a 

function of horizontal distance x and phase velocity v . 

The limit 

ds/dv = lim ( A S / ( V 2 - v . ) ! (5.33) 
p v n*v -, * " p ) 

p2 pi 

may be considered to be a uniquely defined function of x, 

v , ray type (IT = 1 or -1), and ray initial height ZSC. 

The derivative in Eq. (5.33) is termed the ray spreading 

function. Note that within any ray segment (i.e. between 

turning points) 

ds/dvp = ±(dx/dv )/{l + (dx/dz)
2}1/2 

= ±(dx/dvp){l - (c/vp)
2}1/2, (5.34) 

where the plus sign applies if the ray is proceeding 

obliquely downwards (JT = -1), and the minus sign applies if 

it is proceeding obliquely upwards (JT = 1). dx/dv is the 

rate of change of the horizontal distance of separation with 

respect to phase velocity at fixed z and for fixed ZSC. 

dx/dv may be calculated given the general ray type. For a 

ray that proceeds initially upwards (IT = 1), and which goes 

through NUP upper turning points and NDOWN = NUP lower 

turning points, and which ends with the direction of propa­

gation obliquely upwards 
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ZUP r ZUP rl 
x = \ |dx/dz | dz + N I |dx/dz| dz + I |dx/dz | dz, 

ZSC J ZLOW -̂ ZLOW 
(5.35) 

where N = NUP + NDOWN - 1 = 2*(NUP) - 1, and where the 

integrand |dx/dz| is given by Eq. (5.21). To differentiate 

this expression with respect to v , it is necessary to take 

into account the fact that ZLOW and ZUP, as well as |dx/dz|, 

depend on v . 

In order to evaluate the derivatives with respect to 

v of the integrals in Eq. (5.35), it is necessary to perform 

integration by parts since singularities arise upon formal 

differentiation. For this purpose, it is more convenient to 

rewrite Eq. (5.35) as 

x = I(ZSC,ZUI) + (N + 1)*I(ZUI,ZUP) + 

+ (N + 1)*I(ZL0W,ZLI) + (N)*I(ZLI,ZUI) + I(ZLI,Z), (5.36) 

where I(Z1,Z2) represents the integral of |dx/dz| between 

the indicated limits, ZUI is a fixed (v -independent) value 

of z slightly less than ZUP, and ZLI is a fixed value 

slightly greater than ZLOW (see Fig. 33). I(ZUI,ZUP) can 

be rewritten as 

I I(ZUI,ZUP) = I U(ZUP - z)Idx/dzI dz, (5.37) 

ZUI 
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RANGE 

Figure 33. Definition of Parameters ZUI (Slightly Below 
Upper Turning Point ZUP) and ZLI (Slightly 
Above Lower Turning Point ZLOW). 
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where U(ZUP - z) is a step function defined so that 

U(a - z) = 1, z 5 a 

= 0, z > a 

and where 

dx/dz | = -(dc/dz)-1(d/dz)(v2 - c 2 ) 1 / 2 . (5.38) 

Integration by parts in Eq. (5.37) gives 

I(ZUI,ZUP) = [(dc/dz)_1(v2 - c 2) 1 / 2]| Z U I 

/ . 

(v2 - c2)1/2U(ZUP - z)(d/dz)(dc/dz)"1 dz. (5.39) 

ZUI 

Consequently, 

(d/dvp)I(ZUI,ZUP) = [(vp/c)(dc/dz)'
1 dx/dz]|ZUI 

ZUP 

(v /c)|dx/dz|(d/dz)(dc/dz)"1 dz. (5.40) 

ZUI 

Provided that dc/dz does not vanish in the interval between 

ZUI and ZUP, both of the terms in Eq. (5.40) should be finite 
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In a similar manner, it can be shown that 

(d/dv )I(ZLOW,ZLI) = - {(v /c)(dc/dz) |dx/dz ( } 
r IT ZLI 

ZLI 

ZLOW 

(v /c) |dx/dz |(d/dz) (dc/dz)"1 dz. (5.41) 

The derivatives of the remaining terms in the expression 

for dx/dv [Eq. (5.36)] are relatively simple to obtain since 

the integration limits for these terms are independent of 

v . In particular 

ZUI 

zsc 
Ivp)I(ZSC,ZUI) = Cv c)(v^ - c 2 ) " 3 / 2 dz. (5.42) 

Thus, the expression for dx/dv (IT = 1, JT = 1) can be 

written 

dx/dv = I1(ZSC,ZUI) + (N + 1)*J1(ZUI) + N + 1)*I2(ZUI,ZUP) 

(N + 1)*J1(ZLI) + (N + l)*I2(ZLOW,ZLI) + (N)II(ZLI,ZUI) 

+ I1(ZLI,Z), (5.43) 

where 
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I1(ZA,ZB) = -

ZB 

:A 
P P 

I - c V 3 / 2 dz, (5.44a) 

Jl(ZA) = {(v /c)(dc/dz)"1 |dx/dz |} 
z = ZA 

[5.44b] 

and 

ZB 

ZA 

(v /c) |dx/dz |(d/dz)(dc/dz)_1 dz. (5.44c) 

In general, for a ray of specified type (IT, JT, NUP, 

and NDOWN) the corresponding expression for dx/dv is 

dx/dv = 

I1(ZSC,ZUI) 

I1(ZLI,ZSC) 

+ (2)*(NUP)*J1(ZUI) + (2)*(NUP)*I2(ZUI,ZUP) 

- (2)*(ND0WN)*J1(ZLI) + (2)*(NDOWN)*I2(ZLOW),ZLI) 

+ (NUP + NDOWN - 1)*I1(ZLI,ZUI) + 

I1(ZLI,Z) 

I1(Z,ZUI) 

. (5.45) 

The upper and lower choices for the first term correspond to 

IT = 1 and -1, respectively, while the upper and lower choices 

for the last term correspond to JT = 1 and -1, respectively. 



103 

The integrand for the integrals of type II is computed 

by the function subprogram FTRM(Z), and twice the values of 

those of type 12 are computed by the function subprogram 

FTRMUL(Z). That is, 

I1(ZA,ZB) = RAINT(FTRM,ZA,ZB) (5.46a) 

and I2(ZA,ZB) = RAINT(FTRMUL,ZA,ZB)/2. (5.46b) 

In addition, the quantity 2[J1(Z)] is computed by the 

function subprogram TRNPT(Z). In other words, 

TRNPT(Z) - 2v (dc/dz)_1(v2 - c 2 ) " 1 / 2 . (5.47) 

Thus, the expression for dx/dv can be written as 

dx/dv = TRMI + (NUP)*TRNPT(ZUI) 

+ (NUP)*RAINT(FTRMUL,ZUI,ZUP) 

- (NDOWN)*TRNPT(ZLI) 

+ (NDOWN)*RAINT(FTRMUL,ZLOW,ZLI) 

+ (NUP + NDOWN - 1)*RAINT(FTRM,ZLI,ZUI) 

+ TRMF, (5.48) 
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where the first and last terms are 

TRMI = RAINT(FTRM,ZSC,ZUI) for IT = 1 (5.49a) 

= RAINT(FTRM,ZLI,ZSC) for IT = -1, (5.49b) 

and TRMF = RAINT(FTRM,Z,ZUI) for JT = -1 (5.50a) 

= RAINT(FTRM,ZLI,Z) for JT = 1. (5.50b) 

Finally, ds/dv may be calculated from Eq. (5.34) as follows: 

ds/dvp = -SIGN(JT)*(dx/dv )[1 - (c/vp)
2]1/2. (5.51) 

The sequence of computations described above is 

carried out by the subroutine CDSDVP. The parameters VP, 

ZSC, Z, IT, JT, NUP, and NDOWN are inputs, and the output is 

DSDVP. The parameters ZLI and ZUI are computed internally 

to CDSDVP and are set to 

ZLI = ZLOW + ,01(ZUP - ZLOW) (5.52a) 

ZUI = ZUP - .01(ZUP - ZLOW). (5.52b) 

The choice of the .01 factor is of course arbitrary. The 

chief constraint on the use of CDSDVP is that dc/dz should 
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not vanish between ZLOW and ZLI and between ZUI and ZUP. 

Along a single ray (with IT = 1) it is apparent that, 

up to the first upper turning point, ds/dv is positive 

since FTRM(Z) is negative and JT is positive. At the 

turning point 

ds/dv 
limit 

z + ZUP 
[1 (c/v pn 

1/2 f 

•J z sc 

, r 2 2.-3/2 , 
P P " ° d z?-

(5.53) 

This limit can be evaluated easily if c is expanded in a 

power series about its value v at z = ZUP so that 
P 

c z vp + a(z - ZUP) , (5.54) 

where 

a = (dc/dz) 
ZUP 

(5.55) 

and if the integral in Eq„ (5.53) is broken into integrals 

from ZSC to ZUI and from ZUI to z, given that ZUI < z < ZUP. 

Following these steps, the expression in the braces of 

Eq. (5.53) becomes 
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ZUI 

C ^ ) 1 / 2 ( Z U P _ z ] 

p 

[v • a ( z - ZUP)]vp 

2 , 3 / 2 d z 

ZSC <vp " Cvp + < z " Z U P ^ } 

I [v + a ( z - Z U P ) ] v 

~2 ~ VsTT dz 

ZUI { v p " t v p
 + a (z - Z U P ) ] V / Z 

( 5 . 5 6 ) 

Thus , i n t h e l i m i t as z a p p r o a c h e s ZIJP, 

d s / d v = 1/oc 
P 

= [ 1 / C d c / d z ) ] 
ZUP 

(5.57) 

which, interestingly, is independent of ZSC. 

Between the first upper turning point and the first 

lower turning point ds/dv is given by 

ds/dv = [1 - (c/v2)2]1/2{RAINT(FTRM,ZSC,ZUI) 
r ir 

+ TRNPT(ZUI) 

+ RAINT(FTRMUL,ZUI,ZUP) 

+ RAINT(FTRM,Z,ZUI)} . (5.58) 
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It can be shown that Eq. (5.58) may be put in a form which is 

independent of ZUI so that 

/ r / 9 a / 2 , 3/2 f / 9 , 1 /
2 / 3/2 

VD = f1 Cc/v ) 2] 1 / 2 M — TT! + -^ T72 
'(ZUP - ZSC) / Z (ZUP - Z ) 1 / Z 

-ZUP , ZUP ] 

\ arg(i:)(zo,ZUP)dzo ^ Arg(1)(ZQ,ZUP)dzQ , 

(5.59) 

where 

ArgUJ(z,ZUP) = _ , V s T Y " §77 TTT • (5-60) 
(vZ - c Z T / Z (ZUP - zr/Z(2ctv r / Z 

The presence of the second term in Eq. (5.60) insures that 

the integrals in Eq. (5.59) exist. As z approaches ZUP, 

the second term in the braces of Eq. (5.58) dominates so that 

in the limit as z approaches ZUP 

[1 " (c/v p)
2] 1 / 2 -> (2a/vp)

1/2(ZUP - z ) 1 / 2 , (5.60) 

which means that ds/dv approaches 1/ct in accordance with 

Eq. (5.57). On this basis, it can be concluded that the 

quantity in braces in Eq. (5.58) starts out large and positive 

for z close to ZUP, decreases monotonically [since FTRM(Z) is 

always negative] and eventually goes to minus infinity as z 
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approaches ZLOW. Therefore, there is one and only one point 

on the ray between the first turning point and the second 

turning point at which ds/dv = 0. This point is identified 

as a point on a caustic (i.e., where adjacent rays intercept). 

At the second turning point (first lower turning 

point) the same sort of limiting process as described above 

implies that 

ds/dv = [l/(dc/dz)]| (5.62) 
P ZLOW 

which, as mentioned earlier, is a negative number. Between 

the first lower (second overall) and the second upper (third 

overall) turning points, it may be argued that ds/dv goes 

to zero at one and only one point. Before that point, ds/dv 

is negative, and after that point it is positive. ds/dv 

then approaches [1/(dc/dz) ] I-rrp at the next upper turning 

point, and so forth. As an illustration, the subprograms 

given in the Appendix were used to compute a plot of ds/dv 

versus range for the model atmosphere shown in Fig. 30 and 

for the case where ZSC and VP were set to 8 km and 0.31 km/sec, 

respectively. This plot is given in Fig. 34. 

The number of times ds/dv goes to zero along a ray 

(i.e., the number of caustics encountered) is simply 

Number of caustics = (Number of complete ray half-cycles) 

+ (zero or one). (5.63) 
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» -20 h 

RANGE 
[km) 

Figure 34. Values of ds/dv Along Two Adjacent Rays. 
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The second term in Eq. (5,63) is zero if JT = 1 (upgoing ray) 

and the current value of ds/dv is negative, or if JT = -1 

(downgoing ray) and the current value of ds/dv is positive. 

Otherwise, it is one. The number of complete ray half-

cycles is NUP + NDOWN - 1 if either NUP or NDOWN is greater 

than one. It is a simple matter to determine at a given 

point on a ray just how many caustics the ray has encountered 

in passing from the source to that point. 

Ray Amplitudes 

Given that, in the immediate vicinity of the source, 

the acoustic pressure p(r,t) has the functional form 

F(t-R/c)/R (R is distance from source), then the Fourier 

transform p(w,r) of the acoustic pressure can be inferred 

22 
(from the geometric acoustical model) to be, in the first 

~ _>. 
approximation, given by a sum over rays. That is, p(a),r) 

can be expressed approximately as 

p(i*,r) - £ p (5.64) 
rays ' 

where p(w,r) is defined so that 

r °° /\ 
p(r,t) = Re J p(w,r)e" l w t dw. (5.65) 

•'o 

The contribution p from any particular ray that connects 

source and receiver can be expressed simply as 
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A 1/2 p = f(o))p (zcr) {Atmosphere factor}{Spreading factor} ray o oL 

N . 
x {( + i) c} ela3tray , (5.66) 

where N is the number of times that the ray has touched a 

caustic, f(w) is the Fourier transform of the function that 

characterizes the time dependence of the source, p Czcp) is 

the ambient density at the source height [in the model 

considered here, p (z) is assumed constant throughout], and 
o 

t is the net travel time along a ray. The atmospheric 
ray ° ' r 

factor is given by 

{Atmospheric factor} = { ( P Q C ) J ( P QC) s c}
1 / 2 (5.67) 

while the spreading factor is the inverse square root of the 

ray-tube area normalized so that the factor reduces to 1/R 

near the source (i.e., at the beginning of the ray). In 

order to determine these factors, it is necessary that 

2 { p I /p c}{ray tube area} = constant (5.68) ray' o 

along the ray. It is also necessary that the acoustic 

pressure have the functional form in the vicinity of the source 

as specified above and that the net phase change in propaga­

tion from source to receiver be -̂ t - N TT/2. 
ray c 

For a cylindrically symmetric bundle of rays, it can 
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be shown that the associated ray-tube area at the receiver 

location should be a constant times |(ds/dv ) = r„ |, where 

ds/dv is the quantity (evaluated at the receiver location) 

discussed in the previous section and where rTT is the 
r Hor 

horizontal distance from source to receiver. It can also be 

shown that in the vicinity of the source 

R2c2/v3 

ru |ds/dv I = p , , , , . (5.69) 
Hor' pi tl . (c/vp)

2]1/2 

Given Eq. (5.69) the spreading factor can be identified in 

general as the square root of 

, -2 / 3 
2 C / VD 1 

{Spreading factor} = : £ M , , • ,(5.70) [1 - ( c / v J Z ] 1 / Z r Horl d s / ( J v 
P 

where c is taken here as the sound speed at the source height. 

It should be noted that the spreading factor blows up 

whenever ds/dv goes to zero (i.e,, at a caustic). This fact 

is one indication that the general formula of Eq. (5.60) may 

not be applicable everywhere. The modification of the method 

to take explicitly into account proximities to caustics is 

beyond the scope of the investigation presented here. More 

information on caustics is available in reference 6. 

As an illustration of the above method, the subprograms 

given in the Appendix were used to compute some of the 

factors in Eq. (5.66) for the case of a constant-frequency 
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(taken here as GO = 1 rad/sec) source. The example chosen is 

appropriate to the simplified sound-speed profile of Fig. 30 

and for the case where the source and receiver heights are 

15 and 17 km, respectively, and the distance of propagation 

is 340 km. For this example, six rays were found to connect 

the source and receiver. Parameters and factors for these 

rays are given in Table 4. There, for each ray, tabulations 

are g'iven of VP, IT, JT, NUP, NDOWN, N t , ds/dv , 
w i cxy \P 

the spreading factor according to Eq. (5.70), and the net 

phase change which is -t - N IT/2. From the cubic-spline 

approximation, the sound speed at the source was found to be 

0.23074 km/sec. The atmospheric factor is, of course, one. 

Below Table 4, a sum over rays is given of the spreading factor 
i(t + N TT/2) -. 

times e y . This sum is then multiplied by e 

The resulting expression provides information on the amplitude 

and phase of p(r,t) at the receiver. 

Concluding Remarks 

In summary, the computational scheme described in 

this chapter will provide much of the information needed to 

describe long-range propagation for the case of a medium that 

contains a single sound-speed channel. Given lattice points 

for a sound-speed profile and source and receiver locations, 

this scheme will model the profile, find rays that connect 

source and receiver, compute distances and times of propaga­

tion, calculate a parameter that characterizes the spreading 
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Table 4. Ray Parameters and Computed Factors for the Example 
Described in the Text (OJ = 1 rad/sec) . 

VP 
(km/sec) 

IT JT NUP NDOWN Nc ray 
(sec) 

ds/dvp 
(sec) 

spreading 
factor 

(km'1) 

net 
phase 
change 
(radians) 

.33392 1 1 4 4 7 1443.6 -407.81 3.78 x 10"3 -1455.6 

.271446 1 -1 5 4 8 1478.80 146.69 1.007 x10"2 -1491.37 

.24461 1 -1 5 £• 9 1480.1 -113.6 1.95 x 10"2 -1494.2 

.33835 -1 -1 4 L 7 1431.0 439.5 3.59 x 10"3 -1442.0 

.271453 -1 1 4 5 8 1478.81 -146.76 1.006 x 10"2 -1491.38 

.24448 -1 1 4 5 9 1480.3 114.0 1.69 x 10~2 -1494.4 

L ray 

i ( t m + N TT/2) 
{spreading f a c t o r } e y 

fays Y" 
= { ( 1 . 7 5 x 1 0 " 2 ) e " 1 ' 3 5 1 } e _ i t 
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of adjacent rays, and allow for the determination of the 

number of caustics that any given ray has touched. Given 

that the receiver is not in the vicinity of a caustic, the 

scheme will provide the information necessary to compute the 

amplitude and phase of a signal as received in the far field. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Remarks Regarding Leaking Modes 

It was shown in Chapter II that, for a model atmosphere 

in which the sound speed is constant above some arbitrarily 

large height, the GR~ and GR. modes should have low cutoff 

frequencies and should be leaking below that height. Given 

these facts, perturbation techniques were provided for the 

computation of the imaginary and real parts kT and kR , 

respectively, of the horizontal wave numbers for these modes. 

Knowledge of the kT then made it possible to include, in 

a synthesis of waveforms, contributions from the GR~ and GR. 

modes at frequencies where these modes were leaking. It was 

also learned that these contributions were significant enough 

to warrant such an inclusion. Finally, another perturbation 

technique was used to explain the transition of these modes 

from non-leaking to leaking propagation. 

In Chapter III, a description was given of the 

adaptation of the computer program INFRASONIC WAVEFORMS to 

include leaking modes. It was shown how the program could 

be used to compute the parameters necessary to calculate the 

kT in the manner outlined in Chapter II. It was further 

shown that, by a judicious choice of model atmospheres, the 
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phase velocity and the source-free amplitude functions of the 

GRn and GR-, modes could be extended down to frequencies very 

close to zero. It was then shown how, given these functions 

and the kT, waveforms could be synthesized with leaking modes. 

Numerical examples were provided which demonstrated that the 

contribution from leaking modes was significant and physically 

meaningful as far as the prediction of the early portions of 

infrasonic arrivals was concerned. 

The question might be raised as to whether the k, 

themselves are physically meaningful. Such would be the case 

if the earth's atmosphere were terminated by an upper half-

space, and if there were no physical dissipative mechanisms 

present. However, neither of these conditions is fulfilled; 

and it must be kept in mind that the use of an approximate 

model atmosphere gives rise to approximate results. It must 

also be remembered that the actual values of the kT depend on 

the choice made for the height of the bottom of the upper 

halfspace. To that extent, the ky are arbitrary. Aside from 

this, the kT are so small in magnitude that the associated 

derived waveforms are very much like those derived with the 

kT nonexistent. 

In light of the above comments, it is recommended 

that, in the synthesis of waveforms, the calculations of the 

kT not be carried out for the GR~ and GR-. modes. Instead, 

the kT should be taken either as given in the numerical example 

of Chapter II or set equal to 2 x lO"10 km"1 (i.e., tor all 
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practical purposes, zero). The kT cannot be taken to be 

identically zero because INFRASONIC WAVEFORMS is designed to 

use the nonzeroness of the kT as a signal that values for 

the source-free amplitude (AMP) are input at frequencies below 

cutoff. With the kT set to zero, the program will return 

zero values for the AMP at these frequencies. 

It is important to recognize that, while the rela­

tively simple procedures outlined in Chapter III make the 

perturbation techniques presented in Chapter II computationally 

unnecessary, those techniques were necessary to establish a 

rigorous mathematical basis for the inclusion of leaking 

modes in the synthesis of infrasonic waveforms. In fact, the 

careful analysis given there made it evident that leaking modes 

must be included at low frequencies if accurate predictions 

are to be made of the early portions of arrivals. It was a 

contribution of this dissertation to clarify the nature and 

relative importance of leaking modes and to provide a 

procedure for the inclusion of these modes in the numerical 

synthesis of infrasonic waveforms. It is recommended that 

this procedure be made more automatic than as given here. 

Remarks Regarding the High-Frequency 

Behavior of Guided Modes 

As discussed in Chapter IV, a modified W.K.B.J. 

method of approximation may be used to order modes selectively 

and to compute useful modal parameters at relatively high 
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frequencies. The inclusion of the method into the multi-modal 

scheme of the program INFRASONIC WAVEFORMS is not only 

feasible, but may be recommended. There is, however, some 

question as to whether in general a multi-modal scheme which 
c 

inforporates a finite number of modes (even though they may 

be carefully chosen) could ever adequately synthesize the 

high-frequency portions of infrasonic waveforms. Indeed, 

this question is in itself difficult to answer because there 

is limited empirical data available on such portions. Aside 

from this fact, it is likely that a more fruitful approach 

to the refinement at high frequency of schemes for synthesizing 

waveforms lies with an appropriately designed geometric 

acoustics model. Nevertheless, it was a contribution of this 

dissertation to clarify the high-frequency behavior of guided 

infrasonic modes and to suggest a method of incorporating 

this knowledge in a numerical scheme for synthesizing 

infrasonic waveforms. 

Remarks Regarding the Geometric 

Acoustical Model 

The geometric acoustical computational method presented 

in Chapter V was designed to overcome many of the limitations 

customarily associated with such methods. The fact that the 

method produces amplitudes and phases for rays, rather than 

merely paths and travel times, is significant. The inclusion 

into the method of the possibility of having many rays that 
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connect source and receiver coupled with the ability in the 

method to locate caustics precisely is important for studies 

of propagation over long range. 

It is important to realize, however, that the method 

presented here is limited in scope. A comprehensive computa­

tional scheme should, of necessity, explicitly include 

effects that take place in the vicinity of caustics and as a 

result of the existence of lacunae. In addition, if a model 

is desired of propagation in a medium with two adjacent 

sound-speed channels (as is typical in the case of the atmos­

phere) , provision would have to be made for the fact that 

adjacent channels can couple (i.e., some acoustic energy 

from one channel can penetrate into the other). Finally, and 

more obviously, a comprehensive computational scheme would 

incorporate effects due to winds, dispersion due to gravity, 

spreading due to the earth's curvature, sound absorption due 

to dissipative processes, and phase shifts as a result of 

ground reflections. The incorporation of these effects 

should not be difficult as the theory associated with them 

is well developed. 

A comprehensive geometric acoustical model could be 

used as a research tool to test simpler models. For example 

27 2 8 

the models developed by P. W. Smith ' to describe under­

water propagation, which are based on statistical notions, 

would lend themselves well to such testing. The intent in 

testing simpler models would be to refine such models to the 
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point where they could provide precise descriptions of 

waveforms. 

The FORTRAN subprograms provided in the Appendix were 

designed to be incorporated into a comprehensive computer 

program (as yet unwritten) for synthesizing waveforms. This 

program would be devised to interpret, in as straightforward 

a manner as possible, whatever appropriate high-frequency 

empirical data is available on waveforms. It was a contri­

bution of this dissertation to outline in detail a numerical 

scheme for the computation of acoustic parameters required 

for accurate modeling of propagation over long range. 
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APPENDIX 

DECK LISTING OF FORTRAN SUBROUTINES FOR GEOMETRIC ACOUSTICAL 

COMPUTATIONS IN A MEDIUM WHERE SOUND SPEED 

VARIES WITH HEIGHT 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PROGRAM MAIN {INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT) 

SAMPLE MAIN PROGRAM 

ABSTRACT 

T H I S S A M P L E M A I N P R O G R A M I S D E S I G N E D TO I L L U S T R A T E 
HOW THE USER MIGHT USE THE FOLLOWING SUBPROGRAMS TO CALCULATE 
A Q U A N T I T Y A S S O C I A T E D W I T H T H E D E S C R I P T I O N OF R A Y 
A C O U S T I C P R O P A G A T I O N . I N T H I S C A S E , T H E U S E R I S S H O W N HOW TO 
CALCULATE THE RAY SPREADING PARAMETER OSDVP G I V E N THE 
SOUND-SPEED P R O F I L E APPROXIMATED BY C U ^ I C S P L I N E S , THE 
PHASE V E L O C I T Y A S S O C I A T E D WITH A G I V E N RAY, THE SOURCE 
AND C E C E I V P R H E I G H T S , AND THE RAY TYPE PARAMETERS. 

LANGUAGE - FORTPAN EXTENDED VERSION U ( P . M . CDC 6 0 3 0 5 6 0 1 ) 
AUTHORS - W . A . K I N N E Y ANO A . O . P I E R C E , GEORGIA T E C H , 

J A N U A R Y , 1 9 7 6 
EQUIPMENT - CDC CYBEP 7U, N . O . S . 1 . 1 OPERATING SYSTEM 

ARGUMENT L I S T - - - -

V A R I A B L E 

NCS 
ZI 
CI 
\'P 
IT 
J T 
NUP 
NDOWN 

zsc 
Z L I S 
ASOL 
DSDVP 

TYPE 

I 
R 
R 
R 
I 
I 
I 
I 
P 
R 
R 
R 

DIMENSIONS 

ND 
IOC 
IOC 
ND 
ND 
NO 
ND 
NO 
ND 
ND 
100 
ND 

INPUT/OUTPUT 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
O 
O 

COMMON STORAGE USED 

COMMON VP,I1,NCS,ZI(100 S ,CI(10),ASOL(100) 

(II IS A VARIABLE USED BY SOME OF THE FUNCTION SUBPROGRAMS 
IN THEIR OPERATION. SPACE IS MADE AVAILABLE FOR IT HERE.) 

INPUTS 

NCS ^NUMBER OF LATTIC 
SPLINE APPROXIMA 

ZI ^HEIGHT VALUES FO 
CI =SOUND SPEED VALU 
VP =PHASE VELOCITY I 
IT =1 IF THE RAY PRO 
IT =-1 IF THE RAY PR 
JT =1 IF THE RAY PRO 
JT =-1 IF THE RAY ^P 
NUP =NUMBER OF UPPER 
NDOWN =NUMBER OF LOWER 
ZSC =SOURCE HEIGHT IN 

E P O I N T S PROVIDED FOR THE CUBIC 
T I O N OF THE SOUND-SPEED P R O F I L E 
R THE L A T T I C E P O I N T S I N KM 
ES FOR THE L A T T I C E POINTS I N KM/SEC 
N KM/SEC 
PAGATES I N I T I A L L Y UPWARD 
OPAGATES I N I T I A L L Y DOWNWARD 
PAGATES T E R M I N A L L Y UPWARD 
OPAGATES T E R M I N A L L Y DOWNWARD 
TURNING P O I N T S ENCOUNTERED BY RAY 
T U R N I N G P O I N T S ENCOUNTERED BY RAY 

KM 

M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 

M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
M A I N 
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ZLIS 

ASOL 
DSDVP 

RECEIVER HEIGHT IN KM 

OUTPUTS 

X O E F I C I E N T S C A L C U L A T E D FOR THE C U B I C S P L I N E S 
:RAY SPREADING PARAMETER: THE D E R I V A T I V E OF ADJACENT 
RAY S E P A R A T I O N D I S T A N C E WITH RESPECT TO PHASE 
V E L O C I T Y 

EXTERNAL SUBROUTINES CALLEO 

D A S O L , C D S D V P 

PR'OGRAM FOLLOWS B E L O W - - - -

THF 
VALU 
STOP 

C 
ALL 

R 
II 

IT I 
AFTE 

W 
I I 

DASO 
S^LI 

C 
SUBR 
I S P 

c 
P 
c 
E 

OHASE 
ES AR 
ED WH 
OMMON 
I N P U T 
F A D ( 5 
T , J T , 
S CON 
R THE 
R I T F ( 
T . J T , 
L I S 
NE AP 
ALL 0 
O U T I N 
P I N T E 
ALL C 
R I N T * 
ALL E 
ND 

V E L O C I T 
E STOPEO 
EN DASOL 

V ° . I 1 » N 
V A R I A B L 

, * > NSS , ( 
N'JP.NOOW 
SIDEREO 
Y HAVE B 
S , M N C S , 
NUP,NDOW 
CALLED T 
R O X I M A T I 
ASOL 
E CDSTVP 
3 IN UNF 
DSDVPtVP 
,"DSDVP= 
XIT 

Y , NUMBER 
I N COMMON 
R E T U R N S . 

C S . Z T ( I O O ) 
ES CAN 3E 
Z K I ) , 1 = 1 , 
N . Z S C f Z L l S 
GOOD PRACr 
EEN R E A D . 
( Z K I ) , 1 = 1 
N , Z S C , Z L I S 
0 CALCULAT 
ON TO THE 

OF LA 
IMME 

,CIU 
PEAO 
NC3) , 
tVP 
ICE T 
THIS 

,NCS) 
»VP 
E THF 
SOUND 

IS CALLED TO C 
ORMATED FORM. 
,ZLIS,ZSC,IT,JT 
",DSDVP 

TTICE POINTS, AND LATTICE POINT 
DIATELY, AND THE ASOL ARE 

00),ASOL(100) 
I N UNFROMATED FORM 
( C H I ) , 1 = 1 , N C S ) , 

0 WRITE I N P U T V A R I A B L E S 
TOO I S DONE I N UNFORMATED FORM, 

, ( C I C I ) , I = 1 , N C S J » 

C O E F F I C I E N T S FOR THE CUBIC 
-SPEEO P P O F I L E . 

ALCULATE DSDVP* AND THE ANSWER 

, N U P , N D O W N , O S D V P l 

MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 
MAIN 

SUBROUTINE TOT P A N t V P , I T , J T , N U P , N O O W N , Z S C , Z L I S , R ) 

T O T R A N ( S U D R O U T I N E 1 

- - - - A B S T R A C T 

TITLE - TOTRAN 
THIS SUBROUTINE CALCULATES THE HORIZ 
DISTANCE 0^ AN ACOUSTIC RAY TRAPPED 
CHANNEL GIVEN T»E SOURCE AND RECEIVE 
NUMBER OF UPPER AND LOWER TURNING PO 
THE RAY PROPAGATES INITIALLY FROM TH 
UPWARD OP DOWNWARD DIRECTION, AND AL 
PROPAGATES TERMINALLY TO THE RECEIVE 
DOWNWARD OIRECTION. SINCE A RAY IS 
BY A PHASE VELOCITY, TOTRAN RETURNS 
DISTANCE OF A RAY GIVEN PHASE VELOCI 
INFORMATION. 

ONTAL PROPAGATION 
IN A SOUNO-SPEED 
R HEIGHTS, THE 
INTS, AND WHETHER 
E SOURCE IN AN 
SO WHETHER IT 
R IN AN UPWARD OR 
DEFINED SPECIFICALLY 
THE PROPAGATION 
TY AND THE A90VE 

LANGUAGE 
AUTHORS 

- FORTRAN EXTENDED VERSION *t (R.M. CDC 603056011 
- W.A.KINNEY AND A.D.PIERCE, GEORGIA TECH., 

TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
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JANUARY, 1976 
EQUIPMENT - COC CYBER ?<•, N.O.S. 1.1 OPERATING SYSTEM 

VARIABLE 

VP 
IT 
JT 
NUP 
NDOWN 
zsc 
ZLIS 
R 

V° 
IT 
IT 
JT 
JT 
NUP 
NDOWN 
ZSC 
ZLIS 

ARGUMENT LIST 

TYPE DIMENSIONS INPUT/OUTPUT 

R ND I 
I ND I 
I ND I 
I MO I 
I NO I 
R ND I 
R ND I 
R NO I 

INPUTS 

^HORIZONTAL PHASE VELOCITY IN KM/SEC 
-1 IF THE RAY PROPAGATES INITIALLY UPWARD 
=-1 IF THE RAv PROPAGATES INITIALLY OOWNWARD 
=1 IF THE PAY PROPAGATES TERMINALLY UPWARD 
=-1 IF THE RAY PROPAGATES TERMINALLY DOWNWARD 
=NUMBER OF UPPER TURNING POINTS 
=NUM8ER OF LOWER TURNING POINTS 
^SOURCE HEIGHT IN KM 
=LISTENER HEIGHT IN KM 

OUTPUT----

=RAY HORIZONTAL PROPAGATION D ISTANCE I N KM 

EXTERNAL SUBROUTINES REQUIRED 

T N P N T , S H I F T , R A N G 

F U N C T I O N ROUTINES R E Q U I R E D - - - -

R A I N T , R D X D Z 

PROGRAM FOLLOWS B E L O W - - - -

EXTERNAL RDXDZ 
O B T A I N THE UPPER AND LOWER TURNING P O I N T S FOR THE VP S P E C I F I E D 

C A L L T N O N T t V P , Z 9 L , Z 3 U , N S C A N , N R T S , Z L O W , Z U P 1 
S H I F T THE VALUES FOR THESE SO AS TO A V O I D I N T E G R A T I O N BY 
F U N C T I O N R A I N T THROUGH S I N G U L A R I T I E S . 

C A L L S H I F T ( Z L O W , Z U P » 
NOW 0 3 T A I N THE RAY H A L F - » F P E T I T I ON H O R I Z O N T A L PROPAGATION 
D I S T A N C E . 

C A L L R A N G < R T I M E , R L N T H , Z L O W , Z U P ) 
I F THE RAY PROPAGATES I N I T I A L L Y DOWNWARD, GO TO 5 AND 
F I N D THE H O R I Z O N T A L PROPAGATION D I S T A N C E BETWEEN THE 
SOURCE AND THE F I R S T LOWER TURNING P O I N T . O T H E R W I S E , HAVE 
R A I N T I N T E G R A T E RDXDZ FROM THE UPPER TURNING POINT TO THE 
SOURCE H E I 3 H T AND TAKE THE N E G A T I V E OF T H I S RESULT AS THE 
H O R I Z O N T A L P R O P A G A T I O N D I S T A N C E BETWEEN THE SOURCE AND THE 
F I R S T \JPPER. TURNING P O I N T . t I T I S BEST TO INTEGRATE AWAY 
FROM S I N G U L A R I T I E S ( S E E F U N C T I O N R A I N T ) . THE F U N C T I O N 

TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 

file:///JPPER
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R O X O Z ( Z ) AND 
I F ( I T . L 
A N S I = RA 
RST = - A N 

C A L C U L A T E TH 
THE LAST TUP 

GO TO 10 
5 CONTINUE 

ANS2 = RA 
RST = ANS 

I F T HE P A / P 
CALCULATE TH 
LAST UPPER T 
CALCULATE TH 
LAST LOWER T 
10 I F ( J T . L 

ANS3 = RA 
REND = AN 

GO TO 3 0 AMD 
BETWEEN SOUP 

GO TO 30 
20 CONTINUE 

ANS<+ = RA 
R E N O = - A 

CALCULATE TH 
SOURCE ANT R 
30 N = NUP • 
CALCULATE TH 

R = N»RLN 
RETURN 
END 

R D T D Z ( Z ) APE S I N G U L A R AT ZLOW ANO Z U P . I 
T . 0 ) GO TO 5 
I N T ( R D X D Z , Z U ? , Z S C > 
S I 
E HORIZONTAL PROPAGATION D ISTANCE BETWEEN 
NING P O I N T AND THE R E C E I V E R . 

I N T ( R D X D Z . Z L Q W , Z S C ) 
2 
ROPAGATES T E R M I N A L L Y DOWNWARD, GO TO 20 AND 
E HORIZONTAL PROPAGATION D I S T A N C E BETWEEN THE 
URNING P O I N T AND T»£ R E C E I V E R . O T H E R W I S E , 
E HORIZONTAL PROPAGATION D I S T A N C E QETWEEN THE 
URNING POINT ANO THE R E C E I V E R . 
r . 0 ) GO TO 2 0 
INT ( R D X O Z , Z L O W , Z L I S ) 
S3 

CALCULATE THE TOTAL HORIZONTAL PROPAGATION DISTANCE 
CE AND R E C E I V E ^ . 

I N T ( R D X D Z . Z U P . Z L I S l 
HSU 
E TOTAL NUMBER OF RAY H A L F - R E P E T I T I O N S BETWEEN 
E C E I V E R . 

NDOWN - 1 
E TOTAL HORIZONTAL PROPAGATION D I S T A N C E . 
TH • RST *• REND 

TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 
TOTRAN 

SUBROUTINE FNDVP(NMAX,ZSC,ZLIS,RANGE,IT,JT,NUP,NDOWN,VPHST, 
1VPHEND,SDELTA,NFND,VPFND) 

FNDVP (SU3R0UTINE) 

ABSTRACT----

TITLE - FNDVP 
THIS SUBROUTINE IS DESIGNED TO FIND THE VALUE OF PHASE 
VELOCITY ASSOCIATED WITH AN ACOUSTIC PAY TRAPPED IN A 
SOUNO-SPEED CHANNEL GIVFN THE SOUND-SPEED PROFILE, 
SOURCE AND RECEIVER HEIGHTS, THE HORIZONRAL RANGE 
BETWEEN SUCH, RAY TYPE PARAMETERS, PHASE VELOCITY 
BOUNDS BETWEEN WHICH A SEARCH FOR THE DESIPEO PHASE 
VELOCITY IS CONDUCTED, AND THE WIDTH OF THE SU8INTERVALS 
INTO WHICH THIS POUNDED RANGE IS DIVIDED FOR A SEARCH. 

LANGUAGE - FORTRAN EXTENDED VERSION k tR.M. CDC 60305601) 
AUTHORS - W.A.KINNEY ANO A.D.PIERCE, GEORGIA TECH., 

JANUARY, 1976 
EQUIPMENT - COC CYBER 7«M N.O.S. 1.1 OPERATING SYSTEM 

ARGUMENT LIST 

VARIABLE TYPE DIMENSIONS INPUT/OUTPUT 

NMAX I ND I 

FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNOVP 
FNDVP 
FNDVP 
FNOVP 
FNDVP 
FNOVP 
FNOVP 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

zsc 
ZLIS 
RANGE 
IT 
JT 
NUP 
NDOWN 
VPHST 
VPHEND 
SOELTA 
NFNO 
VPFNO 

ND 
ND 
NO 
ND 
NO 
ND 
NO 
N3 
NO 
NO 
ND 
1 

COMMON STORAGE USED_ 

COMMON VPF.I1, NCS.ZKIOO ) ,C 1(10 0) , A SOU IPO) , 
1ZSCC,ZLISC,RANGEC,ITC,JTC,NUPC,NDOWNC 

IN COMMON STORAGE, THE FIRST SIX 3LOCKS ARE OCCUPIEO 
BY VARIABLES USED BY OTHER SUBROUTINES AND FUNCTION 
ROUTINES, AND WHICH ARE NOT USED EXPLICITLY BY FNDVP 

INPUTS 

NMAX 

ZSC 
ZLIS 
RANGE 

IT 
IT 
JT 
JT 
NU? 

NDOWN 

VPHST 

VPHEND 

SDELTA 

NFNO 
VPFND 

ZREAL2 

:NUMBER 
VERSIO 
VALUE 
ONE VA 
VPFND 
IF THE 
HE WOU 
= SOUor.F 
:PECEIV 
=HORIZO 
KM 
= 1 IF T 
= -1 IF 
= 1 IF T 
= -1 IF 
DUMBER 
TRAVEL 
=NUMBER 
RAY TR 
= LOMER 
SEARCH 
:l)PPER 
SEARCH 
^WIDTH 
RANGE 

OF 
N, T 
FOR 
LUE 
COUL 
USE 

LO S 
HEI 

ER H 
MTAL 

VALUES FO 
HE SUBROU 
VP. HOWE 
EXISTS, T 
D BE CHAN 
R KNEW TH 
ET NMAX -
GHT IN KM 
EIGHT IN 
DISTANCE 

HE RAY PROPAG 
THE RAY PPOPA 
HE RAY PROPAG 
THE PAY PROPA 
OF U°PER TUR 

S 
OF LOWER TUR 
AVELS 
STARTING VALU 
IS INITIATED 

FINAL VALUE 0 
IS TERMINATE 
IN PHASE VELO 
OF SEARCH 

R VP TO BE FOUND (IN THIS 
TINE IS SET TO FIND ONLY ONE 
VER, IF THE USER KNOWS THAT MORE THAN 
HEN NMAX ANO THE DIMENSION OF 
GED ACCORDINGLY. FOR EXAMPLE, 
AT TWO SUCH VALUES EXISTED,THEN 
2, AND GIVE VPFND A DIMENSION OF 2. 

KH 
BETWEEN SOURCE AND RECEIVER IN 

ATES 'INITIALLY UPWARD 
GATES INITIALLY DOWNWARD 
ATES TERMINALLY UPWARD 
GATES TERMINALLY DOWNWARD 
NING POINTS THROUGH WHICH THE RAY 

MING POINTS THROUGH WHICH THE 

E OF PHASE VELOCITY WITH WHICH A 
IN KM/SEC 
F PHASE VELOCITY AT WHICH A 
D IN KM/SEC 
CITY OF EACH SU3INTERVAL OF THE 

OUTPUTS >« 

^NUMBER OF PHASE VELOCITY VALUES FOUND 
=VALUE(S) OF PHASE VELOCITY FOUND 

EXTERNAL SUBROUTINES REQUIRED 

ZRFAL2 IS AN INTERNATIONAL MATH SCIENCE LIBRARY ROUTINE 
THAT CALCULATES N REAL ZEROES OF A REAL FUNCTION F(X! WHEN 

FNOVP 
FNOVP 
FNOVP 
FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNOVP 
FNOVP 
FNOVP 
FNOVP 
FNDVP 
FNOVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNOVP 
FNDVP 
FNDVP 
FNOVP 
FNOVP 
FNOVP 
FNDVP 
FNDVP 
FNOVP 
FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVa 

FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
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THE I N I T I A L GUESSES APE GOOD. T H I S R O U T I N E USES NEWTON'S 
METHOD WITH A D I V I D E D D I F F E R E N C E A P P R O X I M A T I O N FOR F ' ( X ) . 
I N F O R M A T I O N ON Z R F A L 2 I S A V A I L A B L E I N THE P U B L I C A T I O N 
IMSL L I B ^ - 3 0 0 5 ( R E V I S E D NOVEMBER, 1 0 7 5 ) . MORE INFORMATION 
MAY BE 0 ' I T A I N E D BY W R I T I N G I " S L . S I X T H F L O O P , GNB B U I L D I N G 
7 5 0 0 B E L L A I ^ E B O U L E V A R D , HOUSTON, TEXAS 7 7 0 3 6 . 

RMRAYD 

F U N C T I O N R O U T I N E S RE OUIRE 0 ~ — 

PROGRAM FOLLOWS BFLOW 

THE I N ' J U T V A R I A B L E S ' Z S C , Z L I S , RANGE, I T , JT , NUP , AND NDOWN 
ARE PLACED I N THF L A S T SEVEN COMMON B L O C K S . 

COMMON V P F , I I , N C S , Z I ( 1 0 0 ) ,C 1 ( 1 0 0 ) , A S O L ( 1 0 0 ) , 
I Z S C C Z L I S C R A M G E C , I TC , J T C , NUPC , NDO WNC 

I N T T I S V E R S I O N O r F N O V ° , ONLY ONE VALUE OF PHASE V E L O C I T Y 
I S S O U G H T , SO THAT VPFND I S G I V E N A D I M E N S I O N OF ONLY ONE. 

D I M E N S I O N V P F N D ( l ) , X ( 1 ) 
EXTERNAL RMRAYD 
zscc = zsc 
ZLISC = ZLIS 
RANGEC = RANGE 
ITC = IT 
JTC = JT 
NUPC - NUP 
NOOWNC = NDOWN 

THE SEARCH FOR VPFND IS INITIATED AT VPHST. 
NFNO = 0 
VP1 = V.'HST 

CALCULATE THE DIFFERENCE BETWEEN THE INPUT PANGE AND THE ACTUAL 
HORIZONTAL PROPAGATION DISTANCE CALCULATED FOR VP1. 

Fl = RM?AYD(VP1) 
CALCULATE THE UPPER BOUND FOP THE FIRST SUBINTERVAL OF SEARCH. 
3 VP2 = 7P1 «• SDELTA 

THEN CALCULATE THE RANGE DIFFERENCE FOR VP2 AS WITH VP1. 
F2 - RMRAY3(VP2) 

IF THE DPODUCT OF Fl AND F2 IS NEGATIVE, THFN WE HAVE FOUND A 
SUBINTERVAL WITH THE DESIRED 0HASE VELOCITY VALUE IN IT, IN 
WHICH CASE WE GO TO 10. IF IT IS ZFRO OP POSITIVE, THEN WE 
MUST CONTINUE THE SEARCH, AND THUS GO TO 5. IF VP2 IS 
GREATER THAN VPHEND, THEN WE HAVE REACHED THE UPPER BOUND 
FOR THE SEARCH AND WE RETURN. OTHERWISE, WE SET VP1 EQUAL TO 
V°2, AND Fl EQUAL TO F2, AND INITIATE A SEARCH IN THE NEXT 
SUBINTERVAL. 

IF (F1'F2) 10,5,5 
5 IF (V=>2 .GT. VPHEND) RETURN 
VP1 - VP2 
Fl = F2 
GO TO 3 

I F WE HAVE A R R I V E D H E R E , WE CAN 
VALUE OF V ° F N 3 . FOR T H I S G U E S S , 
T A Y L O R ' S S E R I E S E X P A N S I O N I S U S E D . 
10 GZ = VP1 - F 1 * S D E L T A / ( F 2 - F l ) 
Z R E A L 2 I S NOW CALLED TO F I N D A MORE EXACT VALUE FOR THE PHASE 
V E L O C I T Y . TO ACCOMPLISH T H I S Z<?F.AL2 LOOKS FOR THE ROOT OF 
THE FUNCTION R M R A Y D ( V P ) . I N OTHER WORDS, ZREAL2 I S USED TO 
F I N D A VALUE FOP VP FOR WHICH THE CALCULATED PROPAGATION 
D I S T A N C E EQUALS THE VALUE FOR THE I N P U T V A R I A B L E RANGE. 

X ( 1 ) = GZ 
CALL ZREAL2(RMRAYD,l.E-3, .0 1,SDELTA, 5,1,X,10,IEP) 

MAKE A GOOD GUESS FOR THE 
A SIMPLE AND APPROXIMATE 

FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNOVP 
FNOVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
FNOVP 
FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNOVP 
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C I F NMAX WAS CHOSEN TO BE GREATER THA1M ONE, THEN THE USER COULD 
C CONTINUE THE SFAPCH FOR MORE ROOTS OF RMPAYD U N T I L NFNO 
C EQUALLED NMAX. 

NFNO - NFNO * 1 
V P F N O ( N F N D ) = X ( l ) 
I F (NFNO . E Q . NMAX) RETURN 
GO TO 5 
END 

FNDVP 
FNOVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 
FNDVP 

C 
c 
c 
C 
c 
c 
c 
c 
c 
c 
C 
c 
c 
C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

F U N C T I O N R M R A Y D ( V P I ) 

R M R A Y O ( F U N C T I O N ) 

ABSTRACT 

T I T L E - RMRAYO 
T H I S FUNCTION ROUTINE C A L C U L A T E S THE D IFFERENCE 
BETWEEN AN I N P U T VALUE F O c HORIZONTAL PROPAGATION 
RANGE AND THE RANGE THAT I S C A L C U L A T E D 8Y SUBROUTINE 
T O n A N G I V E N PHASE V E L O C I T Y , SOURCE AND RECEIVER 
H E I G H T S , ANO THE RAY TYPE PARAMETERS. 

LANGUAGE - FORTRAN EXTENDED VERSION <• ( R . M . CDC 6 0 3 0 5 6 0 1 ) 
AUTHORS - W . A . K I N N E Y AND A . 0 . P I E R C E , GEORGIA T E C H . , 

J A N U A R Y , 1 9 7 6 
EQUIPMENT - COC CYBER ?**« N . O . S . 1 . 1 OPERATING SYSTEM 

USAGE • 

THE PHASF VELOCITY VPI IS THE INDEPENDENT VARIABLE INPUT. 
ALL OTHER QUANTITIES ARE PASSED THROUGH COMMON WHEN RMRAYO 
IS USED. THE SUBROUTINE TOTRAN IS CALLED TO CALCULATE THE 
RANGE GIVEN V°I AND THE OTHER QUANTITIES. 

INPUTS 

VPI =»HASC VELOCITY IN KM/SEC 
ZSCC =SOURCE HEIGHT IN KM 
ZLISC ^RECEIVER HEIGHT IN KM 
RANGEC ^HORIZONTAL PROPAGATION DISTANCE BETWEEN SOURCE 

AND RECEIVER 
ITC =1 IF THE RAY IN QUESTION PROPAGATES INITIALLY 

UPWARD 
ITC =-1 IF THE RAY "ROPAGATES INITIALLY DOWNWARD 
JTC =1 IF THE RAY PROPAGATES TERMINALLY UPWARD 
JTC =-1 IF THE RAY PROPAGATES TERMINALLY DOWNWARD 
NU°C ^NUMBER OF UPPER TURNING POINTS FOR THE RAY 
NDOWNC = NUMBER OF LOWER TURNING POINTS FOR THE RAY 

-OUTPUTS 

RMRAYO =THE DIFFERENCE BETWEEN THE INPUT RANGE AND R, WHERE 
CALCULATED BY TOTRAN 

PROGRAM FOLLOWS RELOW--— 

RMRAYO 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYO 
RMRAYD 
RMRAYO 
RMRAYD 
RMRAYO 
RMRAYD 
RMRAYD 
RMRAYO 
RMRAYO 
RMRAYD 
RMRAYO 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYO 
RMRAYO 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYO 
RMRAYD 
RMRAYD 
RMRAYO 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYO 
RMRAYD 
RMRAYO 
RMRAYD 

R IS RMRAYD 
RMRAYD 
RMRAYD 
RMRAYD 
RMRAYO 
RMRAYO 
RMRAYD 
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zsc .- zscc 
Z L I S = Z L I S C 
P C 0 1 = RANGEC 
I T = I TC 
J T = JTC 
NUP •= NUPC 
NDOWN - NDOWNC 

c CALL TQTRAN TO CALCULATE THE RANGE FOR V P I A NO 

c Q U A N T I T I E S . 
CALL T O T R A N ( V P I , I T , J T , N U P , N D O W N , Z S C » Z L I S , R ! 

c C A L C U L A T E RMRAYD. 
RMRAYO = RCOM - R 
RETURN 
END 

COMMON VPR,I1,NCS,ZI(100 > ,CT( 10'"!) , ASOLIL00) , RMRAYO 
lZSCC,ZLISC,RANGrC,ITC,JTC,NUPC,NOOWNC RMRAYO 

OBTAIN TH-Z N-CESSARY QUANTITIES FROM COMMON RMRAYO 
RMRAYO 
RMRAYO 
RMRAYD 
RMRAYO 
RMRAYO 
RMRAYO 
RMRAYD 

THE A80VE RMRAYO 
RMRAYO 
RMRAYO 
RMRAYO 
RMRAYO 
PMRAYD 
RMRAYD 

SUBROUTINE S H I F T ( Z L O W , Z U P ) S H I F T 
C S H I F T 
C S H I F T ( S U Q R O U T I N E ) S H I F T 
C S H I F T 
C S H I F T 
C A B S T R A C T - S H I F T 
C S H I F T 
C T I T L E - S H I F T S H I F T 
C SUBROUTINE S H I F T MOVES THE VALUES OF Z ( Z L O W , Z U P ) S H I F T 
C FOUND FOR THE TURNING P O I N T S BY SUBROUTINE TNPNT S H I F T 
C SO AS TO A V O I D I N T E G R A T I O N THROUGH S I N G U L A R I T I E S S H I F T 
C OF Z - D E P E N D E N T F U N C T I O N S WHERE ONE OR BOTH OF THE S H I F T 
C I N T E G R A T I O N L I M I T S I S A TURNING P O I N T . S H I F T 
C S H I F T 
C S H I F T 
C LANGUAGE - FORTRAN EXTENDED VERSION «• ( R . M . COC 6 0 3 0 5 6 0 1 1 S H I F T 
C AUTHORS - N . A . K I N N E Y AND A . O . P I E R C E , GEORGIA T E C H . , S H I F T 
C J A N U A R Y , 1 9 Z 6 * S H I F T 
C EQUIPMENT - COC CYBER 7 t » , N . O . S . 1 . 1 OPERATING SYSTEM S H I F T 
C S H I F T 
C S H I F T 
C USAGE S H I F T 
C SHIFT 
C THIS SUBROUTINE TAKES THE VALUES FOP ZLOW AND ZUP THAT SHIFT 
C ARE CALCULATED BY TNPNT AND SHIFTS THEM BY UNITS OF l.E-8 SHIFT 
C UNTIL THE FUNCTION CMVP(Z) IS LESS THAN OR EQUAL TO ZERO SHIFT 
C FOR THESE VALUES. IN OTHER WORDS, THE VALUES FOR C(ZLOW) AND SHIFT 
C C(ZUP) (I.E., THE SOUND SPEED FOR THOSE HEIGHTS) APE SHIFTED SHIFT 
C UNTIL THEY ARE SLIGHTLY LESS THAN A GIVEN VALUE OF PHASE SHIFT 
C VELOCITY. THIS PHASE VELOCITY VALUE IS AVAILABLE TO CMVP SHIFT 
C THROUGH COMMON. SHIFT 
C SHIFT 
C SHIFT 
C ARGUMENT LIST SHIFT 
C SHIFT 
C VARIABLE TYPE DIMENSIONS INPUT/OUTPUT SHIFT 
C SHIFT 
C ZLOW R NO BOTH SHIFT 
C ZUP R NO BOTH SHIFT 
C SHIFT 
C INPUTS SHIFT 
C SHIFT 
C ZLOW =UNSHIFTEO HEIGHT OF LOWER TURNING POINT SHIFT 
C ZUP =UNSHIFTEO HEIGHT OF UPPER TURNING POINT SHIFT 
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c 
c 
c 
c ZLOW 

c ZUP 

c 
c 
c 
c 
c CMVP 

c 
c 
c 
c 
c 

N = 0 

c CALCULAT 

c TURNING 
5 CHKL 

c I F THE S 

c CHECK TH 

c TO ZLOW 
I F ( C H 
ZLOW 
N = N 

c I F S H I F T 
I F (N 
GO TO 

c WE TRY T 

c THE SO UN 
10 CHKU 

I F (CH 
ZUP = 
N - N 
I F (N 
GO TO 
END 

OUTPUTS — - • -

^SHIFTFO HEIGHT OF LOWE? TURNING POINT 
S H I F T E D H E I G H T O p UP^EP TURNING POINT 

F U N C T I O N R O U T I N E S R E Q U I R E D •• 

-PROGRAM FOLLOWS OELOW 

E THE D I F F E R E N C E BETWEEN THE SOUND SPEED AT THE LOWER 
POINT AND THE PHASE V E L O C I T Y . 
= C M V ^ I Z L O W I 
OUND SPEED I S L E S S THAN V ° , WE 'RE S A F E , AND WE GO ON TO 
-. UPPER TURNING P O I N T . O T H E R W I S E WE ADD A T I N Y AMOUNT 
AND CONTINUE DOING SO U N T I L THE SOUND SPEED I S LESS THAN VP 
KL . L E . 0 . 0 ) GO TO 10 
= ZLOW •• l . E - 5 
*1 

I S UNSUCCESSFUL I N A 10 C 0 - T R I E S , WF WANT I T TO S T O P . 
. GE. 10 0 0 ) RETURN 

5 
HE SAME FOR THE U ° P E R TURNING P O I N T , AND A G A I N , AS LONG AS 
D SPEED I S L E S S THAN V P , WE'RE S A F E , 
= C M V P ( Z U P ) 
KU . L E . 0 . 0 ) RETURN 

ZUP - l . E - 8 
H 
. G E . 1 0 0 0 > RETUPN 

10 

S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
SHIFT 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 
S H I F T 

F U N C T I O N C M V P t Z l 

CMVP ( F U N C T I O N ) 

• A B S T R A C T - - - -

T I T L E - CMVP 
T H I S F U N C T I O N R O U T I N E C A L C U L A T E S THE D IFFERENCE (AS A 
F U N C T I O N OF H E I G H T Z ) BETWEEN THE PHASE V E L O C I T Y 
(WHICH I S I N P U T ) ANO THE SOUND SPEED (WHICH I S A 
FUNCT ION OF H E I G H T Z ) . 

LANGUAGE - FORTPAN EXTENDED VERSION <• ( R . M . CDC 6 0 3 0 5 6 0 1 1 
AUTHORS - W . A . K I N N E Y ANO A . D . P I E R C E , GEORGIA T E C H . , 

J A N U A R Y , 1 9 7 6 
EQUIPMENT - CDC CYBE? 7 ^ , N . O . S . 1 . 1 OPERATING SYSTEM 

USAGE 

THE HEIGHT Z IS THE INDEPENDENT VARIABLE INPUT, AND CMVP(Z) 
IS THE DEPENDENT VARIABLE OUTPUT. THE PHASE VELOCITY VP IS 

CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 



132 

AVAILABLE THROUGH COMMON AND THE SOUND SPEED IS CALCULATED 
3Y THE FUNCTION ROUTINE CSP(Z). 

PROGRAM FOLLOWS 3ELOW----

COMMON VP 
CMVP - CSP(Z) - V»» 
RETURN 
END 

CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 
CMVP 

C 
C 
C 
C 
C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE T N ? N T ( V P , Z R L , Z B U , N S C A N , N R T S , Z A , Z B ) 
T N ° N T ( S U B R O U T I N E ) 

ABSTRACT 

T I T L E - TNRNT 
T H I S S U B R O U T I N E F I N D S TURNING P O I N T S (VALUES OF Z AT 
WHICH THE D I F F E R E N C E BETWEEN THE SOUND SPEED CSP(Z> AND 
THE PHASE V E L O C I T Y V? V A N I S H E S ) G I V E N PHASE V E L O C I T Y 
AND Z . A TURNING P O I N T FOR AN ACOUSTIC RAY OCCURS AT 
THAT H E I G H T AT WHICH THE RAY CHANGES I T S V E R T I C A L D I ­
RECTION OF T R A V E L , THAT I S , FROM OOWNWARD TO UPWARD OR 
FROM UPWARD TO OOWNWAPO. FOR AN ACOUSTIC RAY TRAPPED 
W I T H I N A SOUND-SPEED C H A N N E L , THERE ARE NORMALLY TWO 
SUCH TURNING P O I N T S . 

LANGUAGE - FORTRAN EXTENDED VERSION i* ( R . M . CDC 6 0 3 0 5 6 0 1 1 
AUTHORS - W . A . K I N N E Y AND A . G . P I E R C E , GEORGIA T E C H , J A N U A R Y , 

1 9 7 6 
EQUIPMENT - COC CYBER 7U* N . O . S . 1 . 1 OPERATING SYSTEM 

ARGUMENT L I S T 

TYPE D I M E N S I O N S I N P U T / O U T P U T 

THE 

V A R I A B L E 

VP 
ZBL 
ZBU 
NSCAN 
NRTS 
ZA 
ZB 

NO 
Ntl 
ND 
ND 
ND 
ND 
ND 

COMMON STORAGE USED 
COMMON V P C I 1 , NCS, Z I C100 J 

VPC 
NCS 
Z I 

VP 

ZBL 

ZBU 

R ND 
I ND 
R 100 

I N P U T S 

=PHASE V E L O C I T Y I N KM/SEC 
=LOWER POUND FOR H E I G H T AND ABOVE WHICH THE SEARCH 

FOR T U R N I N G P O I N T S I S CONDUCTED. EXPRESSED I N . KM. 
=UPPER BOUND FOR HEIGHT AND BELOW WHICH THE SEARCH 

TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
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FOR TURNING POINTS IS CONDUCTED, EXPRFSSEO IN KM. 
NSCAN =NUMBER OF SU8INTERVALS MINUS 1 INTO WHICH THE 

INTERVAL OF SEARCH BETWEEN ZRL ANO ZBU IS SUBDI­
VIDED. 

OUTPUTS----

NRTS =NUM3ER OF TURNING POINTS FOUND (TWO ARE EXPECTED) 
ZA -LOWER TURNING POINT (IF FOUND) EXPRESSED IN KM. 
ZB =UP?ER TURNING POINT (IF FOUND) EXPRESSED IN KM. 

EXTERNAL SUBROUTINES REQUIREO----

ZREAL2((r,EPS,£PS2,ETA,MSIG,N,X,ITMAX,IER) 

F U N C T I O N R O U T I N E S R E Q U I R E D 

C M V P , C S P 

PROGRAM FOLLOWS BELOW 

E 
D 
C 
V 

THE 
I N T 
I N T F 

Z 
Z 
N 

CALC 
D 

CALC 
F 

STAR 
Z 
N 

F I N D 
1 0 Z 
CALC 

F 
TAKE 
FOUN 
AND 

T 
I 

IF F 
POIN 
TURN 

G 
X 

ZREA 
F I N D 
FOR 
POIN 

C 
N 

I F W 
FOUN 
HAVE 

I 

XTE» 
I MEN 
OMMO 
PC = 
USER 
H I S 
RNAL 
3L = 
CU = 
SCAN 
ULAT 
ELTA 
ULAT 
1 • = 

T TH 
1 = 
RTS 

THE 
2 = 
ULAT 
? -

THE 
n TH 
STAR 
EST 
F ( T G 
1 * F 2 
T I N 
ING 
Z = 
( 1 ) 
L 2 I 
ING 
MOPE 
T I N 
ALL 
RTS 
E HA 
D TH 

FOU 
FCNR 

NAL CMVP 
S I O N X l l ) 
N V P C , I I , 

VO 
CAN S-°EC 

VERSION 0 
L Y . 

Z I ( 1 ) 
Z I ( N C S ) 
= NCS ^ 

F_ THE WID 
= (ZBU -

E C S P ( Z R L 
C M V P ( Z B L ) 
E SEARCH 
Z1L 
= 0 

UPPER L I 
Z I *• DELT 
E C S D ( Z 2 ) 
C M V P < Z 2 ) 

PRODUCT 
- S U B I N T E 
T AT THE 
= F i * F 2 
ST . G T . 0 

I S NEGAT 
I T . AT 

P O I N T . 
Z I - F 1 * D 
= GZ 

S AN INTE 
THE ZEROE 
INFORMAT 
QUESTION 

ZREAL21CM 
= NRTS • 
VE GONE T 
E LOWER T 
ND BOTH T 
TS .EO,. 1 

N C S , Z M 1 0 0 ) 

IFY Z B L , Z B U , ANO NSCAN EXTERNALLY AS I N P U T S , BUT 
F T N P N T , I T WAS MORE CONVENIENT TO SET THEM 

TH OF THE S U 3 I N T E R V A L S . 
Z B L ) / ( N S C A N *• 1) 

) - V P . 

AT Z 3 L . 

MIT OF THE S U B I N T E R V A L . 
A 

- VP 

OF F l ANO F2.» AND I F I T I S P O S I T I V E , WE H A V E N ' T 
RVAL W I T H A TURNING POINT I N I T Y E T , SO WE GO TO 15 
BOTTOM OF THE NEXT S U B I N T E R V A L . 

. 0 ) GO TO 1 5 
I V E , W E ' V E GOT A S U B I N T E R V A L WITH A TURNING 
T H I S P O I N T , WE MAKE A GUESS FOR THE 

E L T A / ( F 2 - F l ) 

R N A T I O N A L MATH S C I E N C E L I B R A R Y ROUTINE FOR 
S OF A S P E C I F I E D F U N C T I O N (SEE SUBROUTINE FNDVP 
I O N ) . Z R E A L 2 I S CALLED TO F I N D THE TURNING 

V ° , l . E - 7 , C . 0 1 , D E L T A , 7 , 1 , X , 1 0 , I E R I 
1 
HROUGH T H I S LOOP SUCCESSFULLY ONCE, THEN WE HAVE 
URNING P O I N T . I F WE HAVE GONE THROUGH T W I C E , WE 
URNING P O I N T S , AND WE 'RE DONE. 
I ZA ~ XC1) 

TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
TNPNT 
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I F ( N R T S , E Q . 2 ) ZB = X ( l ) TNPNT 
I F ( N R T S . ECl« 2 ) GO TO 20 TNPNT 

15 Z l = Z2 TNPNT 
F l = F2 TNPNT 

C I F WE HAVE SEARCHED ALL THE WAY TO Z B U , WE 'RE DONE. OTHERWISE, WE TNPNT 
C GO ON TO THE NEXT SUB I N T E R V A L . TNPNT 

I F ( 2 3 U . G E . Z l ) GO TO 10 TNPNT 
20 " E T U R N TNPNT 

ENO - TNPNT 

SUBROUTINE RANG < R T I M E . R L N T H , Z L O W , Z U P ) RANG 
C RANG 
C RANG ( S U B R O U T I N E ) RANG 
C RANG 
C RANG 
C ABSTRACT RANG 
C RANG 
C T I T L E - RANG RANG 
C SUBROUTINE RANG C A L C U L A T E S RAY R E P E T I T I O N T I N E ANO LENGTH RANG 
C BY I N T E G R A T I O N OF D T / D Z ANO O X / D Z , R E S P E C T F U L L Y , BETWEEN RANG 
C TURNING D O I N T S . RANG 
C RANG 
C RANG 
C LANGUAGE - FORTRAN EXTENDED VERSION \ < R . M . CDC 6 0 3 0 5 6 0 1 1 RANG 
C AUTHORS - W . A . K I N N E Y AND A . O . P I E R C E , GEORGIA T E C H . , RANG 
C J A N U A R Y , 1 9 7 6 RANG 
C EQUIPMENT - COC CYPER 7<4, M . O . S . 1 . 1 OPERATING SYSTEM PANG 
C RANG 
C RANG 
C ARGUMENT L I S T RANG 
C RANG 
C V A R I A B L E TYPE D I M E N S I O N S I N P U T / O U T P U T RANG 
C RANG 
C R T T 1 E R NO O RANG 
C RLNTH R NO O RANG 
C ZLOW R NO ' I RANG 
C ZUP R NO I RANG 
C RANG 
C RANG 
C I N P U T S - RANG 
C RANG 
C ZLOW =LOWER TURNING POINT H E I G H T I N KM RANG 
C ZUP =UPPER TURNING P O I N T H E I G H T I N KM RANG 
C RANC 
C OUTPUTS • - ' RANG 
C RANG 
C R T I M E =RAY R E P E T I T I O N T IME I N SEC RANG 
C RLNTH =RAY R E P E T I T I O N LENGTH I N KM RANG 
C RANG 
C RANG 

C F U N C T I O N ROUTINES REQUIRED RANG 
C PANG 
C R O X O Z , R D T D Z RANG 
C RANG 
C RANG 
C PROGRAM FOLLOWS BELOW — - - RANG 
C RANG 
C RANG 

E X T E R N A L R D T D Z . R D X D Z RANG 
R T I M E = R A I N T ( R D T O Z » Z L O W , Z U P > RANG 
RLNTH = R A I N T t P D X D Z , Z L O W , Z U P ) RANG 
RETURN RANG 
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ENO RANG 

SUBROUTINE OASOL 

OASOL ( S U B R O U T I N E ) 

T I T L 1 7 -

ABSTRACT 

OASOL 
T H I S SUBROUTINE CALC U LAT ES THP C O F F F I C I E N T S OF THE 
C U B I C S P L I N E S USED TO APPROXIMATE THE SOUNO-SPEEO 
P R O F I L E . THESE C O E F F I C I E N T S ARE DEF INED BY THE 
R E L A T I O N 

DELZ ( I ) * A S O L ( I - l > * 2 M D E L Z C I ) - OELZ ( I *• t) ) * ASOL i I ) * 
+ D E L Z d + l l * A S O L < 1 + 1 ) = D E L C I I H ) - D E L C ( I ) 

WHERE D E L Z d l = Z ( I ) - Z ( I ~ 1 ) 
D E L C m = ( C ( I ) - C ( I - 1 ) ) / D E L Z ( I ) 

LANGUAGE - FORTPAN EXTENDED VERSION <• ( R . M . CDC 6 0 3 0 5 6 0 1 1 
AUTHORS - W . A . K I N N E Y AND A . O . P I E R C E , GEORGIA T E C H . , 

J A N U A R Y , 1 9 7 6 
EQUIPMENT - COC CY3ER 7<* , N . O . S . 1 . 1 OPERATING SYSTEM 

COMMON STORAGE USED 

COMMON VPiIliNCSfZHlOO) ,CI (100),ASOL (100) 

VARIABLE TYPE DIMENSIONS IN"UT/OUTPUT 

NCS 
ZI 
CI 
ASOL 

NCS 

NO 
100 
100 
100 

•INPUTS***-

ZI 
CI 

ASOL 

=NUMBER OF LATTICE POINTS PROVIDED FOR THE CUBIC 
SPLINES 

^HEIGHT VALUES PROVIDED FOR THE LATTICE POINTS 
=SOUND SPEED VALUES PROVIDED FOR THE LATTICE POINTS 

OUTPUTS 

C O E F F I C I E N T S C A L C U L A T E D FOR THE CUBIC S P L I N E S . THE 
A S O L ( I ) ARE STORED I N COMMON WHEN DASOL RETURNS. 

PROGRAM FOLLOWS B E L O W — — 

COMMON V O . I l f N C S f Z X C 1 0 D ) I C I U P O J * A S O L d O - O I 
I N I T I A L VALUES ARE P R O V I D E D FOR THE WORKING V A R I A B L E S . THE 
ROUNDARY C O N D I T I O N S FOR THE A S O L ( I ) ARE TAKEN TO BE 
ASOL ( 1 ) = A S O L ( N C S ) = 0 . 0 . 

N = 1 
DELZ = 1.0 
DELC = 0.0 

DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
OASOL 
DASOL 
DASOL 
DASOL 
OASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
OASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
OASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
OASOL 
DASOL 
DASOL 
DASOL 



136 

A K H 2 -

A L M 2 = 

A K M 1 = 

A L M 1 = 

N S T P = 

C A L C U L A T E 

0 . 0 

0 . 0 

G . 0 

L . O 

N C S 

T H E 
- 1 
D I F F E R E N C E H E I G H T VALUES 

P O I N T S . 
C CALCULATE THE D I F F E R E N C E I N 
C VALUES P R O V I D E D FOR THE L A T T I C E 

10 D E L Z P = Z K N U ) - Z I t M l 
D E L C D = C I l N + 1 ) - G H N J 

C ASOL<2> CAN 3E C A L C U L A T E D G I V E N 
C THE A S O L I U . 

ALPHA = DELZ 
GAMMA = DELZP 
BETA = 2 . 0 M A L P H A + GAMMA) 
DEE = ( D E L C P / D E L Z P l - ( D E L C / D E L Z ) 
I F (N . E Q . 1) GO TO 30 
AK = (DEE - A L P H A * A K M 2 -- BETA * A K M 1 ) / G A M M A 
AL = ( - A L P H A * A L M 2 - BETA * A L M 1 ) / G A M M A 
I F (N . E Q . N S T P ) GO TO 10 0 
AKM2 = AKM1 
ALM2 = ALM1 
AKM1 = AK 
A L H 1 = AL 
N = N * 1 

AND SOUND S°EEO 

THE BOUNDARY CONDITIONS ON 

30 

ICG 

110 

DELZ = DELZP 
DELC = DELCP 
GO TO 10 
ASOLI1I =0.0 
ASOL(2) = -AK/AL 
DELZ =1.0 
DELC = 0.0 
N = 1 
DELZP 
DELCP 
ALPHA 
GAMMA 
3ETA 

Z I ( N f l ) 
C K N H ) 

= DELZ 
= DELZP 

= 2 . 0 M A L P H A 

- ZUNI 
- CI INI 

GAMMA) 
DEE = ( J E L C P / D E L Z P ) - ( D E L C / O E L Z ) 
I F ( N .EH. 1 ) GO TO 1 3 0 

C A L C U L A T E THE A S O H M ) FOR 2 < M < N C S . 
M = N *• 1 
A S O L ( M ) = (DEE - A L ^ H A » A S O L < N - 1 ) - 3 E T A * A S O L ( N ) ) / G A M M A 
I F ( N . E Q . NSTP) GO TO 2 0 0 

1 3 0 N = N »• 1 
D E L Z = DELZP 
DELC = DELCP 
GO TO 110 

20 0 RETURN 
END 

DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
OASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
OASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 
DASOL 

FUNCTION CSP<Z) 

CSP (FUNCTION) 

- - - - A B S T R A C T — - -

T I T L E - CSP 
T H I S F U N C T I O N R O U T I N E CALCULATES I N T E R M E D I A T E VALUES 
OF THE SOUND-SPEED P R O F I L E ACCORDING TO THE EQUATION 

CSP(Z) = WBAR*C(I-1) » W»CtI» • 

CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
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C • M D E L Z d l » » 2 I M A S 0 L t l - i l * <WBAR»*3 - WBAR *• CSP 
C • A S 0 L « I ) M W * » 3 - W ) ) . CSP 
C CSP 
C CSP 
C LANGUAGE - FORTRAN EXTENDED VERSION <• ( P . M . COC 6 0 3 0 5 6 0 1 ) CSP 
C AUTHORS - W . A . K I N N E Y AND A . O . P I E R C E , GEORGIA T E C H . , CSP 
C J A N U A R Y , 1 9 7 6 CSP 
C EQUIPMENT - COC CYBER ?%, N . O . S . 1 . 1 OPERATING SYSTEM CSP 
C CSP 
C CSP 
C USAGE CSP 
C CSP 
C THE HEIGHT Z IS THE INDEPENDENT VARIABLE INPUT, AND THE SOUND CSP 
C SPEED CSP(Z) IS THE DEPENDENT VARIABLE OUTPUT. OTHER REQUIRED CSP 
C QUANTITIES ARE MADE AVAILABLE THROUGH COMMON. CSP 
C CSP 
C CSP 
C INPUTS CSP 
C CSP 
C Z ^ H E I G H T I N KM CSP 
C NCS ^NUMBER OF L A T T I C E P O I N T S I N THE SOUND-SPEED P R O F I L E CSP 
C Z I = L A T I C E P O I N T H E I G H T S I N KM CSP 
C C I = L A T I C E P O I N T SOUND-SPEED VALUES I N KM/SEC CSP 
C ASOL =CUBIG S P L I N E C O E F F I C I E N T S AS CALCULATED BY CSP 
C S U 3 R 0 U T I N E DASOL CSP 
C CSP 
C O U T P U T - CSP 
C CSP 
C CSP =SOUND SPEED IN KM/SEC CSP 
C CSP 
C CSP 

C PROGRAM FOLLOWS BELOW---- CSP 
C CSP 
C CSP 

COMMON V P , I 1 , N C S , Z I ( 1 0 0 ) , C I ( I C O ) , A S O L ( 1 0 0 ) CSP 
C D E F I N E THE LOWER AND UPPER BOUNDS OF THE SOUND-SPEED P R O F I L E . CSP 

ZL = Z I I 1 ) CSP 
ZP = Z K N C S 1 * CSP 

C O U T S I D E OF THESE ROUNDS, L E T THE SOUNO SPEED BE CONSTANT AND EQUAL CSP 
C TO THE CORRESPONDING ADJACENT V A L U E S . CSP 

I F (Z . L T . Z L ) GO TO 50 CSP 
I F (Z . G T . ZP) GO TO 60 CSP 
I = NCS CSP 

10 J = I - i CSP 
C FOR ANY VALUE Z , WE WANT I SUCH THAT Z I S BETWEEN Z K I - 1 ) AND Z I I I ) . CSP 
C WE START WITH THE H I G H E S T V A L U E FOR I AND WORK DOWNWARD U N T I L WE CSP 
C F I N D THE I N T E R V A L THAT C O N T A I N S Z . CSP 

ZTEST = Z K J I CSP 
C I F Z I S BETWEEN Z K I - 1 ) ANO Z I I H , WE GO TO kO AND CALCULATE C S P ( Z ) . CSP 

I F (Z . G T . ZTEST1 GO TO hQ CSP 
C F Z I S NOT BETWEEN Z K I - 1 ) AND 7 1 ( 1 ) , WE CHOSE THE NEXT VALUE LOWER CSP 
C FOR I AND C O N T I N U E THE S E A R C H . CSP 

I = J CSP 
GO TO 10 CSP 

«»0 CONTINUE CSP 
C IF WE ARRIVE HERE, THEN Z IS BETWEEN ZKI-1) AND ZIII) SO THAT CSP 
C WE CAN NOW CALCULATE CSPIZI. CSP 

DELZ = ZI (I) - ZI(J) CSP 
W = ( Z - Z K J I ) / D E L Z CSP 
WBAR = 1 . 0 - W CSP 
TERM1 - W 3 A R * C I ( J ) * W ' C I I I ) CSP 
G U T 1 = W D A R * * 3 - WBAR CSP 
GUT2 = W * * 3 - W CSP 
TERM2 = ( D E L Z * * 2 I * ( A S O L ( J ) * G U T 1 «- ASOL I1 > * G U T 2 ) CSP 
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CSP = TEPM1 + TERM? 
RETURN 

50 CSP = CI(1) 
RETURN 

60 CSP = CI(NCS) 
PETURN 
END' 

CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 

FUNCTION OCOZ(Z) 

DCDZ (FUNCTION) 

ABSTRACT 

TITLE - OCOZ 
THE FUNCTION DCDZtZ) CALCULATES THE FIRST 
OF THE SOUND SPEED WITH RESPECT TO HEIGHT 
TO THE EQUATION 

:RIVATIVE 
ACCORDING 

D C D Z ( Z ) - D E L C ( I ) * D F L Z < n + ( - A S 0 L < I - l > M 3 * W B A R * » 2 -
*• ASCL ( I ) * ( 3 * W * * 2 - 1 ) 1 

11 

LANGUAGE - FORTRAN EXTENDED VERSION U ( P . M . CDC 6 0 3 0 5 6 0 1 1 
AUTHORS - W . A . K I N N E Y ftNO A . D . P I E R C E , GEORGIA T E C H . , 

J A N U A P Y , 1 9 7 6 
EQUIPMENT - CDC CYDER 7<t , N . O . S . 1 . 1 OPERATING SYSTEM 

U S A G E - - - -

THE HEIGHT Z IS THE INDEPENDENT VARIABLE INPUT, AND THE 
DERIVATIVE DCDZ(Z) IS THE DEPENDENT VARIABLE OUTPUT. OTHER 
REQUIRED QUANTITIES APE MADE AVAILABLE THROUGH COMMON. THE 
INPUT VARIABLES FO? THIS FUNCTION ARE THE SAME AS FOR FUNCTION 
CSP(Z). FOR INFORMATION ON THESE VARIABLES, THE USER IS OIRECTEO 
TO THAT FUNCTION. 

OUTPUT 

DCOZ = F I R S T D E R I V A T I V E 
H F I G H T 

OF SOUND SPEFO WITH RESPECT TO 

PROGRAM FOLLOWS BELOW 

COMMON V P , I I , N C S , 7 1 ( 1 0 0 ) 
D E F I N E THE LOWER AND UPPER 

, C I ( 1 0 0 ) , A S O L U 0 0 ) 
GOUNDS OF THE SOUND-SPEEO P R O F I L E . 

ZL = 
ZP = 

OUTSIDE 
IF(Z 
IF(Z 
I = 

ZK1) 
ZI(NCS) 
OF THESE 
.LT. ZL1 
.GT. ZP) 

NCS 

BOUNDS, LET 
GO TO 50 
GO TO 50 

OC/DZ = 0. 

10 J = 1-1 
FOP ANY VALUE Z, 
ZICI1. WE START 
DOWNWARD UNTIL WE 

ZTEST = ZI(J) 

WE WANT I SUCH THAT Z IS RFTWEEN 
WITH THE HIGHEST VALUE FOR I AND 
FIND THE INTERVAL THAT CONTAINS 

Z K I - 1 ) ANO 
WORK 
Z . 

DCOZ 
DCDZ 
OCDZ 
DCDZ 
DCOZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCOZ 
DCDZ 
DCDZ 
DCDZ 
OCDZ 
OCDZ 
DCOZ 
DCOZ 
DCOZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCOZ 
DCDZ 
DCDZ 
DCDZ 
DCOZ 
DCDZ 
OCOZ 
DCDZ 
DCDZ 
OCOZ 
DCDZ 
DCOZ 
DCDZ 
DCOZ 
DCDZ 
DCOZ 
DCDZ 
OCDZ 
OCOZ 
DCDZ 
DCDZ 
OCOZ 
DCOZ 
OCOZ 
DCDZ 
DCOZ 
DCDZ 
DCOZ 
DCOZ 
DCDZ 
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BETWEEN ZKI-1) ANO H I D , WE GO TO kO AND CALCULATE 

ZTEST) GO TO <* 0 
3ETWEEM 71(1-1) ANO ZI(I), WE CHOSE 
FOR I ANO CONTINUE THE SEARCH. 

IF Z IS 
DCDZ < Z>. 

IF(Z .GT 
IF Z IS NOT 
VALUE LOWER 

I = J 
GO TO 13 

k<) C O N T I N U E 
I F WE A D r ? I V E H E R E , THEN Z 
THAT WE CAN NOW C A L C U L A T E 

3 E L Z = Z I ( I ) - Z I ( J ) 
D E L C I = ( C I ( I ) - C I ( J ) ) / O E L Z 
W = (Z - Z I ( J ) ) / 0 E L 7 
W G A R - 1 . 0 - W 
TRM3A = ASOL ( I ) * ( f 3 . 0 * ( W » * 2 ) ) - 1 . 0 ) 
r R M i 3 = ASOL ( J ) M < 3 . 0 M W B A R * * ? ) ) - 1 . 0 ) 
TRM3 = D E L Z * ( T R M 3 A - TRM30) 

D E L C I * TRH3 

THE NEXT 

I S BETWEEN 
D C D Z ( Z ) . 

Z K I - 1 ) ANO 7 1 ( 1 ) SO 

50 

DCDZ = 
RETURN 
DCDZ = 
RETURN 
END 

3 . 0 

DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
DCDZ 
OCDZ 

S U 3 R O U T I N E C D S O V P < V P , ZC , ZSC , I T , JT , NUP , NDOWN ,OSDVP) 

C O S O V P ( S U « l R O U T I N E 1 

A O S T D A C T 

T I T L E - CDSDVP 
T H I S S U B R O U T I N E C A L C U L A T E S THE D E R I V A T I V E WITH RESPECT 
TO PHASE V E L O C I T Y OF THE S E P A R A T I O N D I S T A N C E BETWEEN 
TWO ADJACENT A C O U S T I C R A Y S . T H I S D E R I V A T I V E I S 
EVALUATED AT A G I V E N VALUE OF PHASE V E L O C I T Y WHICH 
C H A R A C T E R I Z E S THE TWO R A Y S , * A N D FOR ANY POINT ON THE 
RAY THAT CORRESPONDS TC THAT PHASE V E L O C I T Y VALUE ANO 
S P E C I F I E D RAY TYPE PARAMETERS. 

LANGUAGE - FORTRAN EXTENQED V E R S I O N h ( R . M . CDC 6 0 3 0 5 6 0 1 ) 
AUTHORS - W . A . K I N N E Y AND A . D . P I E R C E , GEORGIA T E C H . , 

J A N U A R Y , L R 7 6 
EQUIPMENT - CDC CY3ER 7h, N . O . S . 1 . 1 OPERATING SYSTEM 

ARGUMENT L I S T 

V A P I A B L E 

VP 
ZC 
ZSC 
I T 
JT 
NUP 
NDOWN 
CDSDVP 

TYPE 

R 
R 
R 
I 
I 
I 
I 
R 

DIMENSIONS 

ND 
ND 
ND 
ND 
NO 
ND 
ND 
ND 

I N P U T / O U T P U T 

I 
I 
I 
I 
I 
I 
I 
O 

COMMON STORAGE USED 
COMMON VPT 

CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
COSOVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
COSOVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSOVP 
CDSOVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
COSOVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
COSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
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VP =PHASE 
zc ^HEIGHT 

zsc = SCU:;>CE 
IT • = 1 IF T 

UPWARD 
IT = -1 IF 
JT = 1 IF T 
JT = -1 IF 
NUP ^NUMBER 

QUESTI 
NDOWN ^NUMBER 

DSDVP 

I N P U T S 

V E L O C I T Y I N KM/SEC 
FOP WHICH THE D E R I V A T I V E DSDVP I S CALCUTATEO 
H E I G H T I N KM 

HE CAY I N Q U E S T I O N PROPAGATES I N I T I A L L Y 

THE RAY PROPAGATES I N I T I A L L Y DOWNWARD 
HE RAY PROPAGATES T E R M I N A L L Y UPWARO 
THE QAY PROPAGATES T E R M I N A L L Y DOWNWARD 

OF U^PER TURNING P O I N T S FOR THE RAY I N 
ON 

OF LOWER TURNING P O I N T S FOR THE RAY 

- O U T P U T S 

DERIVATIVE OF RAY SEPARATION DISTANCE WITH RESPECT 
PHASE VELOCITY 

-EXTERNAL SUBROUTINES PEQUIREO-

TNPNT tSHIFT 

-FUNCTION ROUTINES REQUIRED 

RAINT, FTRM,FTRMULt TRNPT.CS 0 

PROGRAM FOLLOWS BELOW-—-

C 
E 

PLAC 
V 

CALL 
PHAS 

C 
CALL 
AVGI 
FTRM 

C 
CALC 
TURN 

7 
CALC 
TURN 

Z 
INTE 

T 
IF T 
FTPM 
FROM 

I 
T 
G 

10 T 
IF T 
FTRM 
FRCM 
15 I 

T 

OMMON 
XTERN 
E THE 
oj -

SUBR 
E VEL 
ALL T 
SURR 

D SIN 
UL. 
ALL S 
ULATE 
ING D 

UI -
ULATE 
ING P 
LI = 
GRATE 
RMM = 
HE RA 
FROM 
ZLI 

F (IT 
RMI = 
0 TO 
PMI = 
HE RA 
FROM 
ZC T 

F (JT 
RMF = 

VPT 
AL FTR 
PHASE 

V° 
OUTINE 
OCITY 
N=>NT (V 
OUTINE 
GILARI 

HIFTCZ 
A HEI 

OINT Z 
ZUP -
A HEI 

OINT Z 
ZLOW + 
THE F 
RAINT 

Y IN Q 
zsc r 

TO zsc 
.LT. 
RAINT 

15 
RAINT 

Y I N Q 
Z L I T 

0 Z U I . 
. L T . 
R A I N T 

M U L , F T R M 
V E L O C I T Y I N P U T I N COMMON. 

TNPNT TO C A L C U L A T E ' T H E TURNING P O I N T S FOR THE 
WHICH I S I N P U T . 
P , Z B L » Z ^ U , N S C A N f N R T S , Z L O W , Z U P ) 

S H I F T TO MOVE THESE TURNING POINT SO AS TO 
T I E S UPON I N T E G R A T I O N OF THE FUNCTIONS FTRM AND 

LOW,Z 
GHT V 
U P . 
0 . 0 1 * 
GHT V 
LOW. 

0 . 0 1 
UNCTI 
(FTRM 
uEsn 
o zui 

UP) 
ALUE THAT I S S L I G H T L Y BELOW THE UPPER 

I Z U P - ZLOW) 
ALUE THAT IS SLIGHTLY ABOVE THE LOWER 

MZUP - ZLOW) 
ON FTRM BETWEEN THESE TWO VALUES. 
,ZLI,ZUI) 
ON fpoPAGATES INITIALLY UPWARD, INTEGRATE 

OTHERWISE, GO TO 10 AND INTEGRATE FTRM 

0) GO TO 10 
(FTRM,ZSC,ZUI) 

(FTRM,ZLI,ZSC) 
U E S T I O N o p o p f t G A T E S T E R M I N A L L Y UPWARD, INTEGRATE 
O ZC. O T H E R W I S E , GO TO 20 AND INTEGRATE FTRM 

0) GO TO 20 
(FTRM,ZLI.ZC) 

CDSDVP 
COSDVP 
COSDVP 
CDSDVP 
CDSDVP 
COSDVP 
CDSDVP 
COSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
COSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
COSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
COSDVP 
CDSDVP 
COSDVP 
CDSDVP 
COSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSOVP 
CDSDVP 
CDSDVP 
CDSDVP 
COSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSOVP 
CDSDVP 
CDSDVP 
CDSDVP 
COSDVP 
CDSDVP 
CDSDVP 
COSDVP 
CDSDVP 
CDSOVP 
CDSDVP 
CDSDVP 
CDSOVP 
CDSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
COSDVP 
CDSDVP 
CDSDVP 
CDSDVP 
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GO TO 25 COSDVP 
20 TR ' IE = R A I N T ( F T R M , ZC , Z U I ) CDSOVP 

C C A L C U L A T E THE R E M A I N I N G TERMS NEEDED TO CALCULATE D S O V P . CDSDVP 
2 5 C O N T I N U E CDSDVP 

TPMU1 = T R N P T t Z U I ) CDSDVP 
T R M L 1 = T R N P T ( Z L I ) CDSDVP 
TRMU2 = R A I N T ( F T R M U L , Z U P , Z U I ) CDSDVP 
TRML2 = R A I N M F T R M U L , Z L O W , Z L I ) CDSOVP 

C BEFQPE C O U N T I N G DSOVP, WE CALCULATE AN I N T E R M E D I A T E QUANTITY COSDVP 
C WHICH I S THE D E R I V A T I V E WITH RESPECT TO PHASE V E L O C I T Y OF THE CDSDVP 
C H O R I Z O N T A L S E P A R A T I O N D I S T A N C E HIE TWEE N THE TWO ADJACENT RAYS COSDVP 
C THAT ARE C H A R A C T E R I Z E D ^ THE INPUT PHASE V E L O C I T Y . COSDVP 

CDXDVP = TRMI * N U P M T R M U 1 - TRMU2) ^ (NUP + NOOWN - 1 ) * T R M M • CDSDVP 
1 N O O W N * ( - T R M L 1 • TRML2) + TRMF CDSOVP 

C C A L C U L A T E THE SQUARE OF THE PHASE V E L O C I T Y . COSDVP 
VPSQ = VP*+2 CDSOVP 

C C A L C U L A T E THE SOUND SPEED AT Z C . COSDVP 
CSPZC = C S f ( Z C ) COSDVP 

C SCUARE T H I S SOUND S P E E D . CDSDVP 
C S ? Z S 3 = C S P ( Z C ) * * 2 CDSDVP 

C I F THE PAY I N Q U E S T I O N PROPAGATES TERMINALLY UPWARD, THEN CALCULATE CDSDVP 
C DSDVP ACOROING TO THE FORMULA H E R E . O T H E R W I S E , GO TO 30 AND CDSDVP 
C C A L C U L A T E I T ACCORDING TO THE FORMULA G IVEN THERE. CDSDVP 

I F ( J T . L T . G) GO TO 30 COSDVP 
DSDVP = - < C S P Z C M S Q R T ( V D S Q - CSPZS QJ / V P S Q ) ) *CDXOVP COSDVP 
GO TO 35 COSDVP 

30 DSDVP = ( C S P Z C M S Q R M V P S Q - C S ° Z S Q ) / V P S Q M »CDXOVP CDSOVP 
35 C O N T I N U E CDSDVP 

RETURN CDSDVP 
END CDSDVP 

F U N C T I O N F T R M ( Z ) FTRM 
C FTRM 
C FTRM ( F U N C T I O N ) FTRM 
C FTRM 
C * FTRM 
C A B S T R A C T - - - - FTRM 
C FTRM 
C TITLE - FTRM FTRM 
C THIS ROUTINE CALCULATES THE FUNCTION THAT IS INTEGRATED FTRM 
C HY SUBROUTINE CDSDVP BETWEEN THE LIMITS ZSC AND ZUI OR FTRM 
C ZLI, ZC AND ZUI OR ZLI, AND ZL I AND ZUI. THE EXPRESSION FTRM 
C FOR FTRM(Z) IS FTRM 
C FTRM 
C •~CS°*VP FTRM 
C FTPM(Z) = FTRM 
C [MP**z - C S P » » 2 ) * * 1 . 5 FTRM 
C FTRM 
C FTRM 
C LANGUAGE - FORTRAN EXTENDED VERSION k ( R . M . CDC 6 0 3 0 5 6 0 1 ) FTRM 
C AUTHORS - W . A . K I N N E Y AND A . D . P I E R C E , GEORGIA T E C H . , FTRM 
C J A N U A R Y , 1 9 7 6 FTRM 
C E Q U I P M E N T - COC CYBER 7k, N . O . S . 1 . 1 OPERATING SYSTEM FTRM 
C FTRM 
C FTRM 
C USAGE FTRM 
C FTRM 
C THE HEIGHT Z IS THE INDEPENDENT VARIABLE INPUT IN KM. THE FTRM 
C PHASE VELOCITY VP IS MADE AVAILABLE THROUGH COMMON, AND THE FTRM 
C SOUND SPEED IS OBTAINED FROM FUNCTION CSP(Z). FTRM 
C FTRM 
C FTRM 
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PROGRAM FOLLOWS BELOW 

C 
SQUA 

V 
SQUA 

C 
IF T 
SHUN 
THE 
EQUA 

I 
K 
T 10 

20 K 
IF W 
FTPM 
TO 1 

T 
I 

CALC 
T 

CALC 
50 F 

R 
E 

OMION 
PE TH 
PSQ = 
DE TH 
s?so 
HE P'\ 
D SPE 
DENOM 
L TO 
F (VP 
= 1 

RMi = 
0 TO 
= 0 

E HAV 
(Z) . 
0 AND 
RMI = 
F (TR 
ULATE 
RM2 = 
ULATE 
TRM = 
ETUPN 
NO 

VP,K 
E PHAS 
VP**2 

E SOUN 
- CSP( 
ASE VE 
ED SOU 
PI AVOR 
l.E-50 
SQ .GE 

E VELOCITY VALUE. 

0 S^EED. 
Z) **Z 
LOCITY SOARED IS GREATER THAN OR EQUAL TO THE 
ARED, THEN ME CAN GO TO 20 AMP CALCULATE 
OF FTPM(Z>. OTHERWISE* WE SET THE DENOMINATOR 
, AND THEM GO TO 70 TO CALCULATE FTRM(Z). 
. CSPSCJ GO TO 20 

1 .E-50 
30 

E ARRIVED HERr, WE CALCULATE 
IF THE DENOMINATOR IS LESS 
SET IT EQUAL TO l.E-50. 
( S Q R T ( V P S Q - C S P S Q ) ) * * 3 

U . L T . l . E - 5 0 ) GO TO 10 
THE NUMERATOR OF F T R M ( Z ) . 
C S ^ I Z ) * V P 
F T R M ( Z ) . 
- T R H 2 / T R M 1 

THE 
THAN 

DENOMINATOR FOR 
l . E - 5 0 , THEN WE GO 

FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 
FTRM 

F U M C T I O N D C D Z S ( Z ) 

DCDZS ( F U N C T I O N l 

A B S T R A C T -

T I T L E - DCDZS 
THE F U N C T I O N D C D Z S ( Z ) C A L C U L A T E S THE SECOND D E R I V A T I V E 
OF THE SOUND SPEED W I T H RESPECT TO HEIGHT Z ACCORDING 
TO THE E Q U A T I O N 

O C D Z S ( Z ) = 6 M W 3 A R * A S 0 L ( 1 - 1 ) + W * A S O L ( I > ) 

LANGUAGE - FORTRAN EXTENDED VERSION k ( P . M . CDC 6 0 3 0 5 6 0 1 1 
AUTHORS - W . A . K I N N E Y AND A . D . P I E R C E , GEORGIA T E C H . , 

J A N U A R Y , 1 9 7 6 
EQUIPMENT - CDC CYBER 7k, N . O . S . 1 . 1 QPEPATING SYSTEM 

U S A G E - - - -

THE H E I G H T Z I S THE INDEPENDENT V A R I A B L E I N P U T , ANO THE 
SECOND D E R I V A T I V E D C D Z S ( Z ) I S THE DEPENDENT V A R I A B L E 
O U T P U T . OTHER D E Q U I R E O Q U A N T I T I E S ARE MADE A V A I L A B L E 
THROUGH COMMON. THE I N P U T V A P I A B L E S FOR T H I S FUNCTION 
ARE THE SAME AS ^OR F U N C T I O N C S P ( Z ) . FOR I N F O R M A T I O N ON 
THESE V A R I A B L E S , THE USER I S D I R E C T E D TO THAT F U N C T I O N R O U T I N E , 

OUTPUT 

DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCOZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCOZS 
DCDZS 
DCOZS 
DCDZS 
DCDZS 
DCDZS 
DCOZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCDZS 
DCOZS 
DCOZS 
DCDZS 
OCDZS 
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C DCOZS ^SECOND DERIVATIVE OF SOUND SPEED WITH RESPECT TO OCDZS 
C HEIGHT Z OCDZS 
C OCDZS 
C OCDZS 
C PROGRAM FOLLOWS BELOW- OCDZS 
C DCDZS 
C OCOZS 

COMMON VP, I 1 , N C S , Z I ( 1 0 0 ) , C T < 1 0 Q ) , A SOL1100 ) DCDZS 
C D E F I N E THE UPPER AND LOWER ROUNDS OF THE SOUND-SPEED P R O F I L E . DCDZS 

ZL - Z I ( l ) DCDZS 
ZP = Z I ( N C S ) DCOZS 

C O U T S I D E OF THESE BOUNDS, L E T O C D Z S ( Z ) - 0 . DCDZS 
I F ( Z . L T . Z L ) GO TO 5 0 DCDZS 
I F t Z . G T . ZP) GO TO 50 DCDZS 
I = NCS DCDZS 

n J = i - i DCDZS 
C FOR ANY VALUE Z, WE WANT I SUCH THAT Z IS BETWEEN 7ICI-1-) DCOZS 
C AND Z K I ) . WE START WITH THE HIGHEST VALUE FOR I AND WORK DCOZS 
C DOWNWARD UNTIL WE FIND THE INTERVAL THAT CONTAINS Z. DCOZS 

ZTEST - ZHJ) DCDZS 
C IF 7 is BETWEEN ZI(I-l) AND Zlfl), WE GO TO ^0 AND CALCULATE OCDZS 
C DCDZS(Z). OCDZS 

I F ( Z . G T . ZTEST) GO TO kt DCOZS 
C I F Z I S NOT BETWEEN Z I U - 1 ) AND Z K I ) , WE CHOSE THE NEXT VALUE DCDZS 
C LOWER FOR I AND CONTINUE THE S E A R C H . DCDZS 

I = J DCDZS 
GO TO 10 DCOZS 

hi C O N T I N U E DCDZS 
C I F WE HAVE A R R I V E D H E R E , THEN Z I S BETWEEN Z K I - l l AND Z K I ) OCDZS 
C SO THAT WE CAN NOW C A L C U L A T E O C D Z S ( Z ) . DCDZS 

O E L Z = Z K I ) - Z I U ) DCDZS 
W - (Z - Z I ( J ) ) / O E L Z DCDZS 
WBAR = 1 . 0 - W DCDZS 
DCDZS = 6 . 0 M ( W 3 A R * A S C L ( J ) > * ( W » A S O L ( I > > ) OCDZS 
RETURN OCOZS 

50 OCOZS = 0 .Q OCDZS 
PETURN OCDZS 
END * DCDZS 

F U N C T I O N F T R M U L ( Z ) FTRMUL 
C FTRMUL 
C FTRMUL ( F U N C T I O N ) FTRMUL 
C FTRMUL 
C FTRMUL 
C APSTPACT — - - FTRMUL 
C FTRMUL 
C T I T L E - FTRMUL FTRMUL 
C T H I S R O U T I N E COMPUTES THE F U N C T I O N WHICH I S I N T E G R A T E D FTRMUL 
C BY SUBROUTINE CDSDV D BETWEEN THE L I M I T S ZUP ANO Z U I , FTRMUL 
C ANO ZLOW ANO Z L I . THE FORMULA FOR F T R M U L ( Z ) I S FTRMUL 
C v FTRMUL 
C - 2 . * V P * O C O Z S FTRMUL 
C F T R M U L ( Z ) = - FTRMUL 
C ( O C O Z * * ? ) * ( V P * * 2 - C S P * * 2 ) * * 0 . 5 FTRMUL 
C FTRMUL 
C FTRMUL 
C LANGUAGE - FORTRAN EXTENDED V E R S I O N i» ( R . M . CDC 6 0 3 0 5 6 0 1 ) FTRMUL 
C AUTHORS - W . A . K I N N E Y AND A . D . P I E R C F , GEORGIA T E C H . , FTRMUL 
C J A N U A R Y , 1 9 7 6 FTRMUL 
C E Q U I P M E N T - CDC CYBER Tht N . O . S . 1 . 1 OPERATING SYSTEM FTRMUL 
C FTRMUL 
C FTRMUL 
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C -USAGE FTRMUL 
C FTRHUL 
C THE H E I G H T Z I S THE I N D E P E N D E N T V ftRlADLE I N P U T . THE PHASE FTRMUL 
C V E L O C I T Y V J I S PASSED THROUGH COMMON, THE SOUND SPEED FTRMUL 
C I S O O T A I N E O FROM F U N C T I O N C S P ( Z ) , AND THE SOUND SPEED FTRMUL 
C D E R I V A T I V E I S O B T A I N E D FROM FUNCTION D C D Z ( Z ) . FTRMUL 
C FTRMUL 
C FTRMUL 
C PROGRAM FOLLOWS B E L O W - - - - FTRMUL 
C FTRMUL 
C FTRMUL 

COMMON V P , K FTRMUL 
C SQUARE THE SOUND S P E E D , THE PHASE V E L O C T T Y , AND THE D E R I V A T I V E FTRMUL 
C OF THE SOUNO S ° E E O . FTRMUL 

CSPSQ = C S P ( Z ) * * 2 FTRMUL 
V P S 3 - V P * * 2 " FTRMUL 
OCDZSQ = D C O Z ( Z ) » * 2 FTRMUL 

C I F THE SQUARE OF THE PHASE V E L O C I T Y I S GREATER THAN THE SQUARE FTRMUL 
C OF THE SOUND S P E E O , GO TC 5 0 AND CALCULATE THE DENOMINATOR OF FTRMUL 
C F T R M U L ( Z ) . O T H E R W I S E , SET THE DENOMINATOR EQUAL TO l . E - 5 0 , FTRMUL 
C AND THEN GO TO 60 ANO C A L C U L A T E F T R M U L ( Z ) . FTRMUL 

I F C V P S Q . G E . CSPSQ) GO TO 50 FTRMUL 
< - 1 FTRMUL 

U1 ON = l . E - 5 0 FTRMUL 
GO TO 60 FTRMUL 

5 U = 0 FTRMUL 
C I F WE HAVE A R R I V E D H E R E , WE CALCULATE THE DENOMINATOR OF FTRMUL 
C F T P M U L ( Z ) . I F THE DENOMINATOR I S LESS THAN l . E - 5 0 , THEN WE GO FTRMUL 
C TO <»0 AND SET I T EQUAL TO l . E - 5 0 . FTRMUL 

ON = DCDZSQ* ( S O R T ( V ^ S Q - C S P S Q H FTRMUL 
IFCOM . L T , l . E - 5 0 ) GO TO U0 FTRMUL 

C CALCULATE F T R M U L ( Z ) . FTRMUL 
60 FTPMUL = - 2 . * ( V P * D C D Z S ( Z ) ) / O N FTRMUL 

RETURN FTRMUL 
END FTRMUL 

F U N C T I O N TRNPT ( Z l TRNPT 
C TRNPT 
C T ° r P T ( F U N C T I O N ! TRNPT 
C TRNPT 
C TRNPT 
C • - - A B S T R A C T TRNPT 
C TRNPT 
C T I T L E - TRNPT TRNPT 
C T H I S R O U T I N E COMPUTES THE FUNCTION WHICH IS EVALUATED TRNPT 
C AT TURNING P O I N T S BY SUBROUTINE CDSDVP. THE FORMULA TRNPT 
C FOR TRNPT I S TRNPT 
C TRNPT 
C 2 . * V P TRNPT 
C T R N P T ( Z ) = • - - • TRNPT 
C OCDZ ( Z ) » ( (VPSQ - C S P S Q ) * * 0 . 5 ) TRNPT 
C TRNPT 
C TRNPT 
C LANGUAGE - FORTRAN EXTENDED VERSION U ( P . M . CDC 6 0 3 0 5 6 0 1 ! TRNPT 
C AUTHORS - W . A . K I N N E Y AND A . D . P I E R C E , GEORGIA T E C H . , TRNPT 
C . J A N U A R Y , 1 9 7 6 TRNPT 
C EQUIPMENT - CDC CYDER Tk, N . O . S . 1 . 1 OPERATING SYSTEM TRNPT 
C TRNPT 
C TRNPT 
C USAGE TRNPT 
C TRNPT 
C THE HEIGHT Z IS THE INDEPENDENT P£AL VARIABLE INPUT. THE TRNPT 
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C PHASE V E L O C I T Y VP I S A V A I L A B L E FROM COMMON, THE SOUND SPEED I S TRNPT 
C O B T A I N E D FROM F U N C T I O N C S P ( Z ) , AND THE D E R I V A T I V E OF THE SOUND TRNPT 
C SPEED I S T 3 T A I N E O r R O M F U N C T I O N O C D Z ( Z ) . TRNPT 
C TRNPT 
C TRNPT 
C PPOGRAM FOLLOWS B E L O W - - - - TRNPT 
C TRNPT 
C TRNPT 

COMMON V P , < TRNPT 
C SQUARE THE PHASE V E L O C I T Y AND SOUND S P E E D . TRNPT 

CSPSQ = C S P ( Z ) * * 2 TRNPT 
VPSQ = V P * * 2 TRNPT 

C I F THE PHASE V E L O C I T Y SQUARED I S GREATER THAN OR EQUAL TO TRNPT 
C THE SOUND SPEED SQUARED, THEN CO TO 5 3 AND CALCULATE TRNPT 
C THE DENOMINATOR OF T R N P T ( Z ) , OTHERWISE* SET THE DENOMINATOR TRNPT 
C EQUAL TO 1 . E - 5 G , AND GO TO 6D TO CALCULATE T R N P T ( Z ) . TRNPT 

I F (VPSQ . G E . CSPSQ) GO TO 50 TRNPT 
K = 1 TRNPT 

<*0 ON - l . E - 5 0 TRNPT 
GO TO 60 TRNPT 

50 K = 0 TRNPT 
C CALCULATE THE DENOMINATOR OF T P . N P M Z ) . I F I T S ABSOLUTE VALUE TRNPT 
C I S L E S S THAN l . E - 5 0 , THEN GO TO *• 0 AND SET I T EQUAL TO TRNPT 
C l . E - 5 0 . TRNPT 

DN = O C D Z ( Z ) M S Q R T (VPSQ - C S P S Q ) ) TRNPT 
I F ( A O S ( D N ) . L T . l . E - 5 0 ) GO TO «+0 TRNPT 

C C A L C U L A T E T R N P T ( Z ) . TRNPT 
60 TRNPT = ( 2 . * V P ) / 0 N TRNPT 

RETURN TRNPT 
END TRNPT 

F U N C T I O N R D X O Z ( Z ) RDXDZ 
C RDXDZ 
C POXDZ ( F U N C T I O N ) RDXDZ 
C RDXDZ 
C * RDXDZ 
C ABSTRACT RDXDZ 
C RDXDZ 
C T I T L E - RDXDZ RDXDZ 
C TH-IS F U N C T I O N ROUTINE CALCULATES THE D E R I V A T I V E OF RDXDZ 
C X WITH RESPECT TO Z WHERE X AND Z ARE HORIZONTAL AND RDXDZ 
C V E R T I C A L SPACE C O O R D I N A T E S , R E S P E C T I V E L Y , WHICH RDXDZ 
C LOCATE P O I N T S ON A R A Y . A G I V E N RAY I S D E F I N E D BY A RDXOZ 
C PHASE V E L O C I T Y V P . RDXDZ I S EXPRESSED AS RDXDZ 
C RDXDZ 
C i / V P RDXDZ 
C R D X D Z I Z ) = — RDXDZ 
C ( 1 / C S P * * 2 - 1 / V P * * 2 I * * 0 . 5 RDXDZ 
C RDXDZ 
C RDXDZ 
C LANGUAGE - FORTRAN EXTENDED VERSION i* ( P . M . CDC 6 0 3 0 5 6 0 1 ) RDXDZ 
C AUTHORS - W . A . K I N N E Y AND A . D . P I E R C E , GEORGIA T E C H . , RDXDZ 
C J A N U A R Y , 1 9 Z 6 RDXDZ 
C EQUIPMENT - CDC CYBER 7 U f N . O . S . 1 . 1 OPERATING SYSTEM RDXDZ 
C RDXDZ 
C RDXDZ 
C U S A G E - - - - RDXDZ 
C RDXDZ 
C THE HEIGHT Z IS THE INDEPENDENT REAL VARIABLE INPUT. THE RDXDZ 
C PHASE VELOCITY VP IS AVAILABLE THROUGH COMMON, AND THE RDXDZ 
C SOUND SPEED IS OBTAINED FROM FUNCTION CSP(Z>. RDXDZ 
C RDXDZ 
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C RDXDZ 
C PROGRAM FOLLOWS RELOW- ROXOZ 
C RDXOZ 
C RDXDZ 

COMMON V P , < RDXDZ 
C SQUARE THE SOUND SPEED AND T H - PHASE V E L O C I T Y . RDXOZ 

CSPSQ = C S P ( Z ) * * 2 RDXOZ 
VPSQ = V P * * 2 RDXDZ 

C I F THE SQUARE OF THE SOUND SPEED I S L E S S THAN OR EQUAL TO RDXDZ 
C THE SQUARE OF THE ° H A S E V E L O C I T Y , GO TO 10 AND CALCULATE RDXDZ 
C THE SQUARE OF THE DENOMINATOR OF R 0 X D 7 ( Z ) . OTHERWISE RDXDZ 
C SET THE SQUARE OF THE DENOMINATOR EQUAL TO l . E - 5 0 , AND THEN RDXDZ 
C GO TO 20 AND C A L C U L A T E R O X Q Z ( 7 > . ROXOZ 

I F (CSPSQ , L E . VDSQ> GO TO 10 RDXDZ 
< = 1 RDXDZ 

5 DSQ = l . E - 5 0 ROXOZ 
GO TO 20 RDXDZ 

10 K = 0 RDXDZ 
C I F WE HAVE A R R I V E D HERE* WE CALCULATE THE SQUARE OF THE RDXDZ 
C DENOMINATOR OF RDXDZt Z) . I F THE SQUARE OF THE DENOMINATOR ROXOZ 
C I S L E S S THAN l . E - 5 0 , GO TO 5 AND SET I T EQUAL TO l . E - 5 0 . RDXDZ 

DSQC = 1 . / C S P S Q RDXDZ 
DSQV = l . / V P S Q RDXDZ 
DSQ - DSQC - DSQV RDXDZ 
I F (DSQ . L T . l . E - 5 0 ) GO TO 5 RDXDZ 

C C A L C U L A T E R D X D Z ( Z ) . RDXDZ 
20 RDXDZ = ( l . / V P ) / S Q R T ( O S Q ) RDXDZ 

RETURN RDXDZ 
END RDXDZ 

F U N C T I O N R D T D Z ( Z ) , RDTDZ 
C RDTOZ 
C RDTDZ ( F U N C T I O N ) RDTDZ 
C RDTOZ 
C RDTDZ 
C A B S T R A C T - RDTDZ 
C ROTDZ 
C T I T L E - RDXDZ RDTDZ 
C T H I S F U N C T I O N R O U T I N E C A L C U L A T E S THE D E R I V A T I V E OF T RDTDZ 
C WITH RESPECT TO Z WHERE T I S TRAVEL T I M E ALONG A RAY RDTDZ 
C AND WHERE Z I S THE H E I G H T OF A POINT ON A R A Y . A RDTDZ 
C G I V E N RAY I S D E F I N E D BY A PHASE V E L O C I T Y \JP. R D T O Z ( Z ) ROTDZ 
C I S EXPRESSED AS RDTDZ 
C RDTDZ 
C 1 / ' C S P * * 2 RDTDZ 
C ^ D T D Z ( Z ) = RDTDZ 
C < 1 / C S P * * 2 - 1 / V P * * 2 ) * * 0 . 5 RDTDZ 
C RDTOZ 
C RDTDZ 
C LANGUAGE - FORTRAN EXTENDED VERSION k ( R . M . CDC 6 0 3 0 5 6 0 1 ) RDTDZ 
C AUTHORS - W . A . K I N N E Y AND A . D . P I E R C E , GEORGIA T E C H . , RDTDZ 
C J A N U A R Y , 1 9 7 6 RDTDZ 
C EQUIPMENT - CDC CYBER 7kt N . O . S . 1 . 1 OPEPATING SYSTEM ROTDZ 
C RDTDZ 
C RDTOZ 
C USAGE RDTDZ 
C RDTOZ 
C THE H E I G H T Z I S THE INDEPENDENT REAL V A R I A B L E I N P U T . THE RDTDZ 
C PHASE V E L O C I T Y VP I S A V A I L A B L E THROUGH COMMON AND THE SOUND RDTDZ 
C SPEED I S O I T A I M E D FROM F U N C T I O N C S P C Z ) . RDTDZ 
C RDTDZ 
C RDTDZ 
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-PROGRAM FOLLOWS BELOW 

C 
SQUA 

C 
V 

IF T 
THE 
THE 
SET 
GO T 

I 
K 

20 D 
G 

3G K 
IF W 
DEMO 
IS L 

n 
D 
o 
i 

CALC 
U0 R 

R 
E 

OMMON 
RE TH 
SPSG 
PSQ = 
H^ SQ 
SQUAR 
SQUAR 
THE S 
0 kC 
F (CS 
= 1 

SQ = 
0 TO 
= 0 

E HAV 
MINAT 
ESS T 
sac = 
SQV -
SQ = 
F (DS 
ULATE 
DTDZ 
ETURN 
NO 

ID SPEED 
Z) **2 

ANO THE PHASE VELOCITY, 
V P , K 

E SOUh 
= CSP< 

V P * * 2 
DARE OF THE SOUND S P r E D I S L E S S THAN OR EQUAL TO 
E OF T 
E OF T 
3'JARE 
AND CA 
PSQ . L 

l . E - 5 0 
kQ 

HE PHASE V E L O C I T Y , GO TO ~̂ 0 AND CALCULATE 
HE DENOMINATOR OF R D T D Z ( Z ) . OTHERWISE, 
OF THE DENOMINATOR EQUAL TO l . E - 5 0 AND THEN 
L C U L A T E ROTOZ ( Z ) . 
E . VPSQ) GO TO 30 

E A R R I V E D HERE 
OR OF ROTOZ ( Z ) 
HAN l . E - 5 0 , GO 

l . / C S P S Q 
l . / V P S Q 

DSQC - DSQV 
Q . L T . l . E - 5 0 ) GO TO 20 
RDTOZ(Z). 

= (l./CSPSQ)/SQRT(DSQ) 

WE CALCULATE THE SQUARE OF THE 
IF THE SOUA RE OF THE DENOMINATOR 

TO 20 AND SET IT EQUAL TO l.E-50. 

RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
ROTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTOZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 
RDTDZ 

F U N C T I O N R A I N T ( O S D Z R , Z L O W , Z U P ) 

R A I N T ( F U N C T I O N ) 

- - - - A B S T R A C T - -

T I T L E - R A I N T 
T H I S F U N C T I O N R O U T I N E PERFORMS THE I N T E G R A T I O N OF 
ANY Z - D E P E N D E N T F U N C T I O N BETWEEN L I M I T S ONE OR 
BOTH OF WHICH MAY BE S INGULAR P O I N T S ( E . G . , TURNING 
P O I N T S ) . 

LANGUAGE - FORTRAN EXTENDED V E R S I O N k ( R . M . COC 6 0 3 0 5 6 0 1 ) 
AUTHORS - W . A . K I N N F Y ANO A . D . P I E R C E , GEORGIA T E C H . , 

J A N U A R Y , 1 9 7 6 
EQUIPMENT - CDC CYBER 7k, N . O . S . 1 . 1 OPEPATING SYSTEM 

U S A G E - — -

THE FUNCTION DSDZR IS INTEGRATED BETWEEN THE LIMITS ZLOW AND 
ZUP (WHICH MAY OP MAY NOT BE TURNING POINTS - SEE SUBROUTINE 
TNPNT) . 

EXTERNAL SUBROUTINE REQUIRED 

QUAD(A,T,D,REL,N,ANS,FANS ,NERR,IMAP) 

QUAD I S A CDC MATH S C I E N C E L I B R A R Y ROUTINE THAT NUMERICALLY 
I N T E G R A T E S A S P E C I F I E D F U N C T I O N BETWEEN S P E C I F I E D L I M I T S BY 
USE OF THE G U A S S - L E G E N D R E QUADRATURE T E C H N I Q U E . A D E S C R I P T I O N 

RAINT 
RAINT 
RAINT 
RAINT 
R A I N T 
RAINT 
R A I N T 
R A I N T 
RAINT 
R A I N T 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
R A I N T 
R A I N T 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
RAINT 
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OF THE USAGE OF QUAD I S A V A I L A B L E S T A R T I N G ON PAGE 5 - 2 7 2 OF 
THF CDC REFERENCE MANUAL # 6 0 3 2 7 5 0 0 A . MORE I N F O R M A T I O N MAY BE 
O B T A I N E D 3Y W R I T I N G CONTROL DATA C O R P O R A T I O N , DOCUMENTATION 
DEPARTMENT, 2 1 5 MCFFETT PARK D ^ T V E , S U N N Y V A L E , C A L I F O R N I A 
g ' » Q 3 6 . THE S U B R O U T I N E REFERENCF NUMBER FOR QUAD I S P S - 7 9 6 . 

PROGRAM FOLLOWS B E L O W - - - -

EXTERNAL DSDZR 
C A L C U L A T E A P O I N T HALF WAY BETWEEN ZLOW AND ZUP. 

ZAVE = ( Z U P + Z L O W I / 2 . 0 
SET THE OARAMETEP D FOR Q U A D . 

D = l . E - 6 
I N T E G R A T E FROM ZLOW" TO Z A V E . 
I T I S 3EST TO I N T E G R A T E AWAY 

C A L L Q U A D ( Z L O W , Z A V E , D , R E L 
I N T E G R A T E FPOM ZUP TO Z A V E . 
I T I S 3EST TO I N T E G R A T E AWAY 

SHOULD ZLOW BE A S I N G U A R I T Y , 
FROM I F . 
1 , A N S I , D S D Z R , N F R R , 0 ) 
SHOULD ZU"3 BE A S I N G U L A R I T Y , 
FROM I T AS W E L L . 

C A L L Q U A D ( Z U ^ , Z A V E , D , R E L , 1 . , ANS2 , 0 SD ZR , NERR, Q ) 
COMBINE THE TWO I N T E G R A L S . 

R A I N T = ( A N S I - A N S 2 ) 
RETUP.N 
END 

RAINT 
RAINT 
R A I N T 
RAINT 
R A I N T 
RAINT 
R A I N T 
RAINT 
R A I N T 
RAINT 
RAINT 
R A I N T 
R A I N T 
R A I N T 
RAINT 
R A I N T 
R A I N T 
R A I N T 
R A I N T 
R A I N T 
R A I N T 
R A I N T 
R A I N T 
RAINT 
RAINT 
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SUBROUTINE ZREAL2 (F,EPS,£PS2,ETA,NSIG,N,X,ITMAX,IERl 2RELC010 
c 
c-
c 

2RELIG2Q 
7CCI fl P 7 fl 

c 
c-
c 

irtLUOOU 

2K£LGQt*0 
c FUNCTION - ZREAL2 FINCS THE REAL ZEROS OF A REAL FUNCTltN2RELCG50 

c -- USED WHEN INITIAL GUESSES ARE GCCL" 2REL0G6Q 

c USAGE - CALL ZREAL2 <F, EFS, EPS.?, ETA, NSIG, N,X, ITMA X,IER)2RELOG7G 

c PARAMETER S F - A FUNCTION F(X) SUEPRCGRA> WRITTEN EY THE USER2FELGCaO 

c EfS - 2ND STOPPING CRITERION. A ROOT X IS ACCEPTED 2RELGOS0 

c IF THE AESOLUTE VALLE OF FIX) .LE. EPS 2RELO100 

c (INPUT) 2RELC110 

c EFS2 - SPREAD CRITERIA FOR MULTIPLE RCCTS. IF THE 2RELC12C 

c ETA ITH RCCT <X(I>) HAS BEEN COMPUTED ANC IT IS 2RELC130 

c FOUND THAT THE AOSCLUTE VALUE OF ZRELCl^O 

c XU)-X(J1 .LT. EFS2 HHERE X(J) IS A ZRELG150 

c PREVIOUSLY CCMPUTEC ROOT,- THEN ThE 2RELL16Q 

c COMPUTATION IS RESTARTEC WITH A GUESS EQUAL 2RELG170 

c TO X(I) * ETA. (INPUT) 2RELC180 

c NSIG - 1ST STOPPING CRITERION. A RCOT IS ACCEPTED IF 2RELC19Q 

c TWO SUCCESSIVE APPROXIMATIONS TO A GIV/EN 2RELG20G 

c ROOT AGRct IN THE FIRST NSIG CIGITS. <INPUT)2RE LC213 

c N - THE NUMBER CF RCCTS TO EE FOUNC (INPUT) 2RELC22C 

c X - ON INPUT x IS AN N-VECTCR OF INITIAL GUESSES 2RELG230 

c FOR N ROOTS. ON OUTPUT, X CONTAINS TP.E ZRELC2^0 

c COMPUTED ROOTS. ZRELG250 

c ITMAX - CN INPUT = THE MAXIMUM ALLOWAELE NUMBER CF 2RELC26G 

c ITERATIONS PER RCOT AND ON OUTPUT = THE 2RELG270 

c NUK8ER OF ITERATIONS USED ON THE LAST RGCT. 2RELG28C 

c IER - ERROR PARAMETER (OUTPUT) 2RELC290 

c WARNING ERRCR = 32 + N 2RELC300 

c N = 1 INCIUATES A SINGLE ROOT WAS BYPASSED 2RELu31Q 

c EECAUSE U M A X WAS EXCEEDED FOR THIS RCCT. 2RELL32Q 

c X(I) FCR THIS RCCT IS SET TO 111111. 2RELG33G 

c N = 2 INCICA1ES A SINGLE ROOT WAS EYFASSED 2REL£3^0 

c EECAUSE THE DERIVATIVE CF F FOR THIS 2RELC350 

c ROOT BECOMES TCC SMALL. X(I) FOR TPIS 2RELC360 

c ROOT IS SET TO 222222. NOTE THAT T U S 2RELG37Q 

c ERROR CONDITION MAY CAUSE AN OVERFLCW. 2RELC382 

c N = 3 INDICATES THAT SEVERAL CF THE ABCVE 2RELC3SiJ 

c ERROR CONDITIONS OCCURRED. EACH X(I) IS 2RELC+0U 

c SET TO EITHER 111111. OR 222222. AS ABCVE 2RELCA1G 

c PRECISION - SINGLE 2RELG**20 

c REQU. IfSL ROUTINES - UERTST 2RELC<*30 

c LANGUAGE - FORTRAN 2RELG<<*«Q 
. /CFl f,y,Cn 

c LATEST R£ JlSICN - GCTOOEJ? E, 1973 
•/KLL145U 

2RELG^60 
c 2RELGWC 

DIMENSION X (1) 2RELC<*8G 
DATA 
IER = 0 
IR = 0 

Pit POOLZERC,ONE,TEN/.l, .001,0.0,1.0,10.0/ 2RELG490 
2RELG5CQ 
ZREL0510 

ORITi = TEN*M-NSIG) ZRELC52C 
DO 30 I: = 1,N 2RELC53J 

1C = 1 2RELC5^0 
XI = X(II 2RELC550 
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10 
15 

20 

A X I = A E S ( X I ) 
IF ( I . E Q . 1 ) GC TO 1!: 
NM1=I-1 
DO ID J = 1.NM1 

IF ( A 3 S ( X I - X<J>) . L T . EFS2) XI = XI + ETA 
CONTINUE 
FXI = F(XIJ 
AFXI = AES(FXl) 

TEST FOR CONVERGENCE 
IF (JFXI .LE. EfS) GO TO 25 
GI = . C a D1 
IF (AXI .GE. PI) DI = POCl'JXl 
H = AMIMIAFXI.OI) 
FXIPHI = F(XI • HI) 
DER = (FXIPHI - F X i W H I 
IF (CER .EQ. ZERO) GO TO 2C 
XIPI=FXI/DER 
IF <LEGV0R(X1PI) .NE. 0) GO TO 2C 
XIPI=XI-XIPI 
ERR = ABS(XIPI - XI) 
XI = XIPI 

TEST FOR CONVERGENCE 
IF (AXI.EG.ZERO) AXI=CNE 
£RR1=EKR/AXI 
IF (LEGVAF(ERRl) .NE. 0) ERfil = ERR 
IF (EPR1.LE.CRIT1J GO TC 25 
IC = IC • 1 
IF (IC .LE. ITMAX) GC TO 5 

RCCT NOT FCLNC, NO CONVERGENCE 
X f U = 111111. 
IR=IR*1 
IER=33 
GO TC 3Q 

RCCT NOT FOUND, DERIVATIVE = C. 
X(I* = 222222. 
IR=1R*1 
IER = 3<* 
GO TC 30 

25 X(I)=XI 
3C CONTINUE 

ITfAX = IC 
IF (IER.EQ.a) GO TO 90Q5 
IF(IR.LE.l) GO TO 9C00 
IER=35 

SO C 0 CONTINUE 

CALL UEftTST(IER,6HZREAL2) 
9005 RETURN 

ENC 

2REL0560 
2RELO570 
ZRELC58Q 
2RELC590 
2RELG6QG 
ZRELC61U 
2RELG620 
2RELC630 
2fiELC6^G 
2RELC65a 
2RELC660 
2REL0673 
2REL068a 
2RELC650 
2RELC70G 
2REL071U 
2RELC720 
2REL072C 
2RELG7<4j 
2REL0750 
2RELC76C 
2REL1770 
2RELu78Q 
2RELCI79Q 
2RELG8Q0 
2RELC610 
2RELC82G 
2RELC830 
2RELC8^0 
2REL0850 
2RELC3E0 
2REL0870 
2RELC880 
2RELU890 
2REL090Q 
2RELC91CI 
ZRELC92C 
2RELG930 
2REL0940 
2RELC950 
2RELG96Q 
ZRELG97C 
2RELC980 
2RELE9S0 
2REL100Q 
2REL101iJ 
2REL1C20 
2REL1030 
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c 
C-UE 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c — 
c 
c 

SUBROUTINE liERTST (IER,NAME) 

RTST LIBRARY 3-

FUNCTION - ERROR MESSAGE GENERATION 
USAGE - CALL UERTST(IER,NAME) 
PARAMETERS IER - ERROR PARAMETER. TYPE + N WHERE 

TYPE= 128 IMPLIES TERMINAL ERROR 
6<« IMPLIES WARNING WITH FIX 
32 IMPLIES WARNING 

N = ERROR COOE RELEVANT TO CALLING ROUT 
NAME - INPUT SCALAR CONTAINING THE NAME OF THE 

CALLING RCUTINE AS A 6-CHARACTER LITERAL 
STRING. 

LANGUAGE - FORTRAN 

LATEST REVISION 

10 

15 

2D 

DINENS 
INTEGE 
EOUIVA 
DATA 

DATA 
IER2=I 
IF (IE 

IER1=<+ 
GO TO 
IF (IE 

IERX=3 
GO TO 
IF (IE 

IER1-2 
GO TO 

IERl=i 

I£R2=I 

WRITE 
!5 FORMAT 
1 8H 
RETURN 
END 

ION 
R 
LENCE 

ITYP 

I9IT 

• AUGUST i, 1973 

ITYPI2,*»)*IBIT(<») 
WARN,WARF,TERM,PRINTR 
(XBXTC1)*WARNJ,(ISIT(2), WARF) , (IBIT(3) ,TERM) 
/10HWARNING ,10H , 
10HWARNING(WI,10HTH FIX) , 
1DHTERMINAL ,10H , 
lOHNON-OEFIt^E.lOHD ' /, 

/ 32,6^,128,0/ 
PRINTR/6LOUTPUT/ ER 

R2 

20 

.GE. WARN) GO TO 5 

R2 .LT. TERM) GO TO 10 

20 
R2 .LT. WARF) GO TO 15 

20 

NON-DEFINEO 

TERMINAL 

WARNING(WITH FIX) 

WARNING 

EXTRACT *N* 
ER2-IBIT(IER1) 

PRINT ERROR MESSAGE 
(PFINTR,25> CITY?(I,IER1I,1=1,2),NAME,IER2,IER 
(26H *** I M S L(UERTST) **+ ,2A10,M,A6,4X,12, 
(IER = , I3,1H>> 

UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 

INEUERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 
UERTST 



152 

S U B R O U T I N E Q L A G ( A , H , 0 ,REL . , N , A N S , F U N , N E R R , I MAPI QUAD 
C A = LCWER L I M I T CF I N T E G R A T I O N ( I N P U T ) QUAD 
C B = UFFER L I M I T CF I N T E G R A T I O N ( I N P U T ) QUAO 
C 0 = R E C U I R E D R E L A T I V E TOLERANCE ( I N P U T ) QUAQ 
C REL = E S T I M T E OF R E S U L T I N G R E L A T I V E TOLERANCE (OUTPUT) QUAD 
C N = S I N G U L A R I T Y F L A G . SET N=Q WHEN NO S I N G U L A R I T Y ALCNG P A T H . QUAO 
C SET N = i WHEN ONE OR MORE S I N G U L A R I T I E S L I E ON PATH QUAO 
C ANS = COMPUTED VALUE CF INTEGRAL (CUTPUT) QUAO 
C FUN = NAHE CF F U N C T I O N GENERATING THE INTEGRANO QUAD 
C NERR = ERRCR F L A G (OUTPUT) QUAO 
C NERR = - 1 STEP S I Z E CAN N C I 8E MACE SMALL ENOUGH QUAO 
C . NERR = - 2 CUAD INCOMPLETE I N L I M ( 2 0 0 ) T R I E S QUAO 
C NERR = - 3 0 HAS BEEN SET TOO SMALL QUAO 
C NERR . G T . 0 - - S U C C E S S - - G I V E 5 NUMBER OF T R I E S REQUIRED QUAO 
C IMAP = PROGRESS MAP F L A G . SE? I M A P = i WHEN MAP I S O E S I R E D . QUAO 
C SET I M A P ^ O WHEN NOT D E S I R E D QUAO 

D I M E N S I O N fc4<2) , W8 (<•) , W 1 2 ( 6 ) , Zk ( 2) , Z8 <<|J , Z 1 2 < 6 ) QUAD 
DOUBLE P R E C I S I C N YDf lLE QUAO 
DATA K<«<1) ,W<»(2> , ( W 8 ( I ) , I = l , < i ) , ( W 1 2 ( I ) , 1= 1 , 6 i / . 65 2 1 <*5l5<f8 62 5i»6 , QUAD 

1.3<<785<<8<»513 7<*5 i f , . 2 6 2 6 8 37 8 3 3 7 8 3 6 2 , . 3 1 3 7 0 6 6 < * 5 8 7 7 8 8 7 , . 2 2 2 38 1 0 3 ^ 5 3 3 7 QUAO 
1 5 , . 1 C 1 2 2 8 5 3 6 2 9 0 3 7 6 , . 2 '+91 <i7G^58 13<*G 3 , . 2 3 3 ^ 9 2 5 3 6 5 3 8 3 5 5 , QUAO 
1 . 2 0 3 1 E 7 ^ 2 6 7 2 3 0 6 6 , . 1 6 0 G 7 8 3 2 8 5 ^ 3 3 < * 6 , . 1 0 6 ^ 3 9 3 2 5 9 9 5 3 1 8 , QUAO 
1 . 0 ^ 7 1 7 5 3 3 6 3 8 6 5 1 2 / QUAO 

C L I M CAN BE CHANGED I F E I T H E R MORE OR LESS T R I E S ARE OESIREO QUAO 
L I M = 2 C 0 QUAO 
C=0 QUAD 

C I S C SET TCO SMALL QUAO 
I F ( C . L T . l . E - 1 3 ) GO TC 2 9 0 QUAO 

10 IF (IMAP.EC. 1) PRINT 1 QUAO 
1 FORMAT ( 2X,1*»HLEFT END POINT,20X,6HLENGTH , 26X,12H8-PT. RESULT QUAO 
1 11X, 19MREL.ERROR IN 8-PT. ,11X,I*H100Q ) QUAO 
HCP = 0.0 QUAO 
K = 0 QUAO 
NCNSEK = 0 QUAO 
NCLT = 1 QUAD 
ANS = C. QUAO 
F2 = 0. QUAO 
NERR=0 QUAO 
V = A QUAO 
YOBLE = OBLECYI QUAD 
F = C/200. QUAO 
E = 0. QUAD 

, ; • • • * * » • * * * - • * • * * # . • * • • * • * » * » * • # * * • * * * * * * + •-»*#*******•••#***•****•#*«»*•* Q U A Q 

C FIRST TRY CN FULL SPAN AND ALSO LAST STEP GO THROUGH HERE QUAQ 
20 H = (B-Y)/2. QUAO 

S G N = S I G N ( l . , H ) QUAQ 
H = A E S ( H ) QUAO 
LAST = 1 QUAO 

C A L L I N T E R M E D I A T E STEPS B E G I N HERE QUAO 
3 0 X = Y • H*SGN QUAO 

C I S H TOO S f A L L TC BE SEN SEC R E L A T I V E TO X QUAO 
I F ( X * . 1 * H . £ C . X ) GO TO 2 7 0 QUAO 
I F ( K . G T . L I f t ) GC TO 2 8 0 QUAO 

C , „ M . M , M M M M » f » M » M » » M M M M M , M * ( * O t » » M » M M M » » » M , 4 , » » 0 Q U A Q 
C <• F C I N T A B S C I S S A E QUAO 

Z * » ( l ) = . 3 3 9 S 8 1 0 ^ 3 5 a ^ 8 5 6 * H QUAO 
Z ' # ( 2 ) = . 8 6 1 1 3 e 3 1 1 E 9 ^ 0 5 3 ' H QUAQ 
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C 8 FCINT AESCISSAE QUAD 
Z8(l)=.183<«3<«6*i2<«9565G*H QUAO 
Z8(2)=.525522<*Q9916329»H QIAO 
2fi(3)=.79e6E6A77^13627*H QUAD 

Z8<<*> = .96u289856<«97536*H QUAO 
C EVALUATE FUNCTION ANO PERFORM WEIGHTED SUM QUAD 

G«* = H»(bMl>MFLNIX*Z<i(l)) •FUN(X-Z<»(in)"* QUAD 
1WM2)* <FUN(X+Zm2) )»FUMX-Z«»(Z)N) QUAD 
G8 = 0. QUAO 
DO <»0 1=1, l* QUAO 
Z1 = FUN(X + Z8 (I)) QUAD 
Z2 = FUMX-Ze CI)-) QUAO 

kQ G8=G8»Vs8II)* (ZH-Z2I QUAO 
G8=G8«h QUAO 
ABG = AES(G8)*1.E-26I3 QUAO 
TE = ABS (Gd-G^)+l.E-li»»A8G QUAO 

C RE IS THE RELATIVE ERROR IN ThE SUBlNTERVAL THE <• PT. RESULT WAKES QUAO 
C IF THE 8 PT. RESULT IS EXACT QUAD 

RE = l.E-l<t • TE/AEG QUAD 
IF(K.ECQ) P=ABG QUAD 

C P IS Tl-E MAX AGS VALUE OF ENTIRE INTEGRAL AS WE KNOW IT UP TO HERE QUAO 
C K IS ThE COUNTER OF THE NUMBER OF ATTEMPTS QUAO 

50 K = K • 1 QUAD 
EW = F"P QUAD 
ER = TE*RE QUAD 
Q= EW/ER QUAO 
IF(IMAF.NE.l) GO TO 70 QUAO 

60 XLGNTh=2*H QUAO 
ERR=RE»»2 QUAD 
G1Q0=Q*190.0 QUAO 
PRINT 2 ,Y,XLGNTH,G8 ,£RR»C1110 QUAD 

2 FORMAT I E 2 S . 1 5 . 2 E 3 Ci . 15 ; , 2E22 .5 ) QUAO 
70 Q16 = C * * . 0 6 2 5 . QUAD 

D l = h / 2 . / K E » » . 1 2 5 QUAD 
D2 = H/D1*C16 QUAD 

C CI IS THE ESTIMATE OF THE DISTANCE " A " TO THE SINGULARITY QUAO 
C D2 IS AN IMPORTANCE FACTOR WHICH NORMALLY RANGES FROM AeOUT 1 0 . QUAO 
C TO C . l . WHEN THE RESULT IS UNIMPORTANT, D2 IS LARGE. QUAO 
C QUAO 
C THE MAGIC GC-GC CR NO-GO QUANTITY IS 100Q , FCUNO AS FOLLOWS. QUAD 
C WE REGLIRE THAT THE RELATIVE ERROR IN THE 8 PT. SUBlNTERVAL QUAO 
C VALUE (RE**2) TIMES ThE.IMPORTANCE OF THE SU8INTEGRAL CA8G/P) QUAD 
C BE LESS THiCN HALF THE REQUIRED TOLERANCE C . QUAO 
C ALTERNATIVELY, (C/21»<F/ABG)•(RE**2) MUST BE GREATER THAN 1.0 QUAD 
C THE AECVE EXPRESSION, fcHEN MULTIPLIED CUT, IS 100Q. QUAD 

IF(Q.LE. 0.C1) GO TO 120 QUAD 
C COMPARISON CF i» PT . ANC 8 PT . LOOKS GOOD. QUAO 

80 ES = 0 . QUAO 
I F ( N ^ E . l ) GC TO 200 QUAD 

Q » * » » « * • • * • * • * * * » » • • * • • » » • » • » » * * » » » » • * * * • * * • • * * * * * * * * * * * * * * * * # * * * - » * * * * * * QUAD 
C CHECK THE 12 POINT RESULT QUAD 
C 12 POINT ABSCISSAE QUAO 

Z 1 2 < l ) = .12S2;33<408511i<6c*H QUAD 
Z 1 2 ( 2 l = . 3 6 7 8 ^ 1 ' « 9 e 9 9 8 1 8 0 * H QUAO 
Z 1 2 ( 3 ) = . 587317 c . 5 ' . 2e6617»H QUAO 
Z12(<* )= .7699C267<«19 ' i305*H QUAO 
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Z i 2 < 5 > = . 9 0 < + 1 1 7 2 5 e 3 7 0 * » 7 5 * H QUAO 
Z 1 2 ( f e ) = . 9 a i 5 e 0 6 3 < « 2 ' « 6 7 1 , 3 * H QUAO 

C E V A L L A I E F L N C T I O N ANC FERFCRJ1 fcEIGHTEO SUM QUAO 
G 1 2 = 0 QUAQ 

QO 1 0 0 1 = 1 , 6 QUAD 
10G G 1 2 = G 1 2 + W 1 2 ( I ) M F U N f X + Z 1 2 1 I I ) + F J N ( X - Z 1 2 ( I J I ) QUAO 

G 1 2 = G 1 2 * H QUAQ 
E S = A E S < G 1 2 - G f i ) QUAO 
G8=G12 QUAO 
ER=ES QUAO 

I F ( E S - 1 Q G . » E W ) 2 0 0 , 2 0 0 , 1 1 0 QUAD 
C NOT GCCO E N C U G h . TRY A G A I N . QUAO 

110 H = H / < + . 0 QUAO 
F l = 0 . 2 5 QUAO 
GO TC 1 9 0 QUAO 

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * # * * * * QUAO 

C QUAO 
C T H I S REGION CF THE PROGRAM M O D I F I E S THE STEP LENGTH WHEN QUAO 
C S U 6 I N T E R V A L I S NOT SMALL ENOUGH QUAO 

120 I F C N C L 1 . N E . 1 ) GO TO 130 QUAD 
C F I R S T CUTBACK QUAO 

F l = Q16 QUAO 
H = A M I M ( . 7 5 ' H , C i * Q 1 6 J QUAD 
GO TO 190 QUAD 

C SU8SEGLENT CUTBACKS I N T H I S S E R I E S . QUAD 
130 F l = F 1 * Q 1 6 QUAD 

H = F 1 * H QUAO 
190 NCNSEK = 0 QUAD 

NCUT = 0 QUAO 
L A S T •= 0 QUAO 
GO TO 30 QUAO 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * QUAD 

C QUAO 
C SUCCESSFUL S L 8 I N T E R V A L I N T E G R A T I O N QUAD 
C INCREASE STEP AS I N C I C f l T E C QUAD 

200 ANS = ANSt-G8 QUAD 
E = £ • A M A X K E R , ES , 1 . E - H < * A B G I QUAD 
I F I L A S 7 . E Q . i l GO TO 3 0 0 QUAD 

C HCP I S AN CLC SUCCESSFLL STEP QUAD 
2 1 0 I F ( H C F ) 2 2 0 , 2 2 0 , 2 3 0 QUAD 
22 0 HCP = F QUAO 
230 F2 = C . 5 0 * F 2 • A L Q G ( H / H C P I QUAO 

HCP = H , QUAD 
YDBLE = YDELE + DBLE(2 . 0*H*SGNI QUAD 

Y = YOELE QUAD 

NCNSEK = NCNSEK • 1 QUAD 

IF(NChSEK .GT. <t ) GO TO 250 QUAD 

IF(F21 2^0,250,250 QUAD 

C F2 .LT. 0. SAYS IT HAS NOT FCRGOfTEN THE PAST FAILURES YET QUAD 

2^0 HC = 01*D2/(l.+2.*02) QUAD 

GO TC 2b0 QUAD 

C F2 .GE. 0. SAYS THE HISTORY HAS BEEN SUCCESSFUL QUAO 

250 HC = 02»ID1+2.»HI»Q16 QUAO 

260 F = HC QUAD 

NCUT = 1 QUAD 

P = AMAX1 (F, ABG) QUAO 

IF(SGN»Y • 2.0»H - SGN»8) 30,20,20 QUAO 

IFILAS7.EQ.il
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c 
c 

27 0 
ER 
NE 
WR 

3 FO 
156 
211 
GO 

280 NE 
WR 

I* FO 
i£2 
GO 

29 0 NE 
PR 

5 FO 
U N 
C = 
GO 

3oa 
HE 
RE 
IF 
IF 
RE 
EN 

ROR 
KR=-
ITE( 
RMAT 
H IF 
H ST 
TO 

RR^=-
IT£( 
RMA7 
k.lt 
TO 

RR = -
INT 
RMAT 
G 10 
10. C 
TO 

RE W 
L- 2 
(NER 
(8-A 
TURN 
0 

EXITS 
1 
e, 3 ) 
(53H G 
YOU VN 
EP SIZ 

300 
2 
e, <• ) 
U9H1C 
t lQXii 
300 

5 
(68h 

.0E-l<i 
E-l«« 
10 

E RETU 
.*E/ (A 
R.GE.O 
.LT.O. 

H,y 
LAD FAILURE, STEF SIZE CANNOT OE MADE SMALL ENCUGH./ 
ISH TO CONTINUE MOVE SINGULARITY TC THE ORIGIN./ 
E=tE2^.16. 10X,15!-LEFT END PCI NT =, E2 km 1 6) 

LIM ,y,H 
LAD INCOMPLETE IN I *• , 7H TRIES.,17H LEFT END POINT: 
1H STEF SIZE^,£2^.16) 

REQUESTED TOLERANCE TOO SMALL, ROUTINE WILL FROCEED US 
J 

RN TO THE MAIN PROGRAM WITH OR WITHOUT AN ANSWER 
BS(ANS)+1.E-290* 
.) NERR=K 
) ANS=-ANS 

QUAQ 
QUAD 
QUAD 
QUAQ 
QUAD 
QUAO 
QUAQ 
QUAD 
QUAQ 
QUAD 
QUAD 
QUAQ 
QUAQ 
QUAD 
QUAQ 
QUAO 
QUAQ 
QUAO 
QUAD 
QUAQ 
QUAO 
QUAD 
QUAO 
QUAQ 
QUAD 
QUAD 
QUAQ 
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