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SUMMARY

Several problems which relate to the propagation of
acoustic and acoustic-gravity waves in a medium whose proper-
ties vary with height only are considered with the intent
of refining existing schemes for the synthesis of waveforms.
The contribution from very low frequencies to a modal
synthesis of an acoustic-gravity waveform is clarified, and
a guide (with numerical examples) 1is ﬁrovided for adopting
a computer program to include such contributions in the
synthesis of waveforms. Also, for the purpose of improving
the selection of modes for synthesis, the asymptotic high-
frequency behavior of guided modes is explained by use of
the W.K.B.J. approximation. Finally, a geometric acoustical
scheme is outlined for the prediction of the amplitudes of
waves that propagate over long distances. A number of
FORTRAN subprograms are provided that exemplify the numerical
implementation of this scheme. Recommendations are given for
the refinement at low and high frequencies of schemes for

the synthesis of waveforms.



CHAPTER I
INTRODUCTION

It was the intent of this dissertation to investigate
theoretically the propagation of acoustic and acoustic-
gravity waves in fluids whose properties vary with height
only. The investigations were carried out for the purpose
of refining existing schemes for the synthesis of waveforms.
Such schemes have been developed by Harkrider,1 Pierce and
Posey,2 and others.3 The propagation of waves which correspond
to periods between approximately one and 20 minutes is
investigated by use of techniques associated with the synthesis
of both modal and geometric acoustical waveforms.

It was the intent of one investigation to clarify the
contributions of modes at very low frequencies to a synthesis
of waveforms associated with the propagation of acoustic-
gravity waves. The computer program INFRASONIC WAVEFORM82
had previously been devised to synthesize an infrasonic
pressure-time trace as might be generated at long horizontal
distances by a large-scale explosion in the atmosphere. 1In
the course of the investigation described here, this program
was modified to include contributions at low frequencies
from leaking modes of propagation.

In Chapter II, mathematical perturbation techniques



are described for the computation of the imaginary part of
the horizontal wave number (kI) for leaking modes. Numerical
studies are described in which kI is calculated for two
gravitational modes of interest and for a model atmosphere
which is stratified (winds excluded) and terminated by an
upper halfspace of constant sound speed. A description of
the transition of modes from non-leaking to leaking propaga-
tion is also given, and the contribution from branch line
integrals in the associated complete Fourier synthesisz’4 is
briefly mentioned.

In Chapter III a detailed description is given of the
modification and adaptation of the computer program INFRASONIC
WAVEFORMS to include contributions from leaking modes and to
improve the accuracy in predicting the early portions of
infrasonic arrivals. The numerical implementation of the
theory given in Chapter II on the inclusion of leaking modes
is also described, and some specific numerical examples which
demonstrate that inclusion are given. The complete and current
version of INFRASONIC WAVEFORMS is given in the Appendices
of reference 5. A hard copy of the program is available from
the Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts
01731.

One of the difficulties with the modal approach to the
synthesis of waveforms that has arisen in the past has been
the presence of what might be called numerical '""noise" in

derived waveforms due to the fact that the integration over



angular frequency in the associated Fourier synthesi52 was
truncated at high frequency. It was felt that, to eliminate
this "noise,'" at least two approaches could be taken. First,
the modal synthesis might be extended to higher frequencies
by devising a scheme which would carefully select modes for
contribution at those frequencies. This selection is
difficult with the synthesis in its present state. Secondly,
for use at high frequencies where the modal approach is
inaccurate, a geometric acoustical scheme might be devised
to synthesize waveforms which would serve as the continuations
of modal waveforms calculated at lower frequencies.

In Chapter IV the first approach is investigated,
wherein the W.K.B.J. method of solution is used to explain
the asymptotic high-frequency behavior of guided modes. In
Chapter V the second approach is investigated in which a
geometric acoustical computational scheme is presented for
the description of propagation over long distances. While
schemes exist which calculate acoustic ray paths,6 there
appear to be no readily available schemes which are suffi-
ciently accurate to predict the amplitudes of waves that
propagate over very long distances.7

In the scheme summarized in Chapter V, cubic splines
are used to model profiles of sound speed versus height.8
In addition, techniques are outlined for defining ray paths
and for finding distances and times of propagation, turning

points for rays, and individual rays that connect source with



receiver. Of special significance in the scheme is a
parameter that characterizes the spreading of adjacent rays.
This parameter is used to determine the number of times that
any given ray touches a caustic. It has been shown that a
signal propagating along a ray undergoes a phase shift of

-m/2 at a caustic.9 Thus, the ultimate result of the scheme
is a method for computing acoustic amplitudes and waveforms

by superposing contributions from individual rays and
incorporating phase shifts that occur at caustics. A number
of FORTRAN subprograms which exemplify the numerical implemen-
tation of this method are given in the Appendix. In addition,
some simplified numerical examples are presented which
demonstrate the utility of these subprograms.

With the possible exception of the technique for the
inclusion of leaking modes, the analytical techniques
presented are by no means complete as far as the refinement
of existing schemes for synthesizing waveforms is concerned.
The main intent here was to investigate and understand
avenues of approach which could be useful for such a refine-

ment.



CHAPTER 11

PERTURBATION TECHNIQUES FOR THE COMPUTATION OF THE
IMAGINARY PART OF THE HORIZONTAL WAVE NUMBER

Introduction

In the formulation of the model on which the computer

2,10 an intermediate

program INFRASONIC WAVEFORMS is based,
result is derived which expresses the acoustic pressure as
a double Fourier integral over angular frequency w and

horizontal wave number k such that

=2}

B = S (1) Re{fm f(w)e tut fw [Q/D (w,k) ]e1¥T dkdw}. (2.1)
- )

Here S(r) is a geometrical spreading factor, which is 1//7
for horizontally stratified media and l/[aesin(r/ae)]1/2 if
the earth's curvature (ae = radius of earth) is approximately
taken into account. The quantity %(m) is a Fourier transform
of a time-dependent function that characterizes the source.

Q is a function of receiver and source heights Z, and Zgs
respectively, as well as of w and k, and possibly of the
horizontal direction of propagation if winds are included in
the formulation. In any case, given Z. and Zgs Q should have

no poles in the complex k-plane when w is real and positive.

The denominator D(w,k) (which is termed the eigenmode



dispersion function) may be zero for certain values kn(w)

of k.

The k integration contour for Eq. (2.1) is chosen to
lie along the real k-axis except where it skirts below or
above poles which lie on the real axis (see Fig. la, where
branch lines are identified by dash marks, poles are indicated
by dots, and the k integration contour is marked by arrow-
heads that show the direction of integration). Let it
suffice here to say that the placing of branch cuts and the
selection of the k integration contour must be such that the
expression for the acoustic pressure dies out at long
distance as long as a small amount of damping is included in
the formulation. The guided-mode description in the formula-
tion arises when the contour for the k integral is deformed
(permissible because of Cauchy's theorem and of Jordan's

1emmal1

) to one such as is sketched in Fig. 1b. The poles
indicated there above the initial contour are encircled in

the counterclockwise sense, and there are contour segments
which encircle (also in the counterclockwise sense) each
branch cut that lies above the real axis. The integrals
around each pole are evaluated by Cauchy's residue theorem

so that what remains is a sum of residue terms plus branch
line integrals. Each residue term is considered to correspond
to a particular guided mode of propagation.

One approximation that was previously made in the

guided-mode formulation was to neglect contributions from



(a)
— o L - "kR
(b) K,
181
2D
kg
Figure 1. Integration Contours in the Complex

k- (Horizontal Wave Number) Plane.
(a) Original Contour.
(b) Deformed Contour.



poles [i.e., the kn[w)] which were located above the real

2y 10 The thought behind this omission was that most

k-axis.
of the contributions in the synthesis of waveforms for long
propagation distances would come from poles which were on the
real k-axis. Another approximation was that, for long
distances, the contribution from branch line integrals could
be neglected as well., Given these two approximations, the

expression for the acoustic pressure in Eq. (2.1) can be

approximated as follows:

“un
p = Z:S(r) S An(w) cos[wt - kn(w]r + ¢n(w)] dw, (2.2)

where An(w) and ¢n[m) are defined in terms of the magnitude
and phase of the residues of the integrand in Eq. (2.1) and
the kn(m] are the real roots for D(w,k) (which are numbered
in some order with n = 1,2,3, etc.).2 It is understood that
in Eq. (2.2}, for any given n, kn(w) should be a continuous
function of w between the limits Wy (lower) and ¥ (upper).
With this understanding, it should be possible to evaluate
the resultant integral over w approximately by the method of
stationary phase or by some numerical method.

In spite of the seeming plausibility of the above two
approximations, there is a set of circumstances intrinsic to
low-frequency infrasonic propagation for which they are not

valid, even for distances of propagation of more than 10,000



km., It is these circumstances and their relation to the
analytic synthesis of guided-mode atmospheric infrasonic
waveforms that are of central interest in the investigation

described in this chapter.

Infrasonic Modes

An atmospheric model that is frequently adopted in
studies of infrasound2 is one in which the sound speed c(z)
varies continuously with height z in some reasonably realistic
manner up to some specified height Zp and is constant (value
cT) for all heights exceeding Zo (see Fig. 2a). Should
winds be included in the formulation, the wind velocities
are also assumed to be constant in the upper halfspace
zZ > Zgp. It would seem reasonable to say that one has some
choice in specifying the values for both Zp and Cps €ven
though the computations of such factors as Q and D(w,k) in
Eq. (1) become more lengthy with increasing Zope Whatever
the choice of Zps it would seem just as reasonable to choose
cp to be c(zT] so that the sound-speed profile would then be
continuous with height (this is the case for the profile shown
in Fig. 2a). Another seemingly plausible choice in modeling
the upper halfspace would be to have Crp approach infinity
(as illustrated in Fig. 2b). With this choice, the bottom
of the upper halfspace would be modeled as a free surface

(or pressure release surface) such as is found in models

generally adopted in studies of underwater sound for the
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Figure 2. Idealizations of Model Atmospheres.
(a) Atmosphere Terminated by an Upper
Halfspace with Constant Sound Speed.
(b) Atmosphere Sound Speed Formally
Approaching Infinity at Some Finite
Altitude.
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water-air interface. Intuitively, it would seem that if the
source and receiver are both near the ground and if the
energy actually reaching the receiver travels via modes of
propagation channeled primarily in the lower atmosphere, then
the actual value of the integral in Eq. (2.1) would be some-
what insensitive to the choices of Zp and cr. Since this
idea, however, remains to be justified in any rigorous sense,
it would not seem reasonable to allow cp to approach infinity
at the outset. In typical calculations performed in the
past, Zp was taken as 225 km, and Cp was taken as the sound
speed (® 800 m/sec) at that altitude.?
The formulation leading to that version of Eq. (2.1)
which is appropriate to infrasound for frequencies at which
gravitational effects are important (corresponding to
periods greater than one to five minutes) is based on the
equations of fluid dynamics with the inclusion of gravita-
tional body forces, the associated nearly exponential
decrease of ambient density and pressure with height, and a
localized energy source (see in particular pages 17 and 19
of reference 2). When = is taken to be finite, the incorpora-
tion of gravitational effects in this formulation leads to a
dispersion relation for plane waves propagating in the upper

halfspace which is (winds neglected)z’10

2 2

- wi]/c% - [w®™ - wé]szwz, (2:3)
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where the solution of the linearized equations of fluid

dynamics for z > z, is of the form

T

p//Bg = (Constant) o Wt Jikx TT2® (2.4)
In these equations p is again the acoustic pressure, P is
ambient density, x is the horizontal space dimension, and k,
is the vertical wave number (alternatively written as iG for
inhomogeneous plane waves). wa and wp are two characteristic
frequencies (mA > wB) for wave propagation in an isothermal

atmosphere where wy = (y/Z)g/cT and wp = (y - 1)1/2

g/cyp

(g = 9.8 m/sec2 is the acceleration due to gravity and

y ~ 1.4 is the specific heat ratio for air). For given real
positive w and real k, kg can be positive or negative (G2
negative or positive, respectively). The values of k at
which Gz is zero turn out, as might be expected, to be the
branch points in the k integration in Eq. (2.1). Along the
real k-axis, G is either real and positive (so that elkzz or
e_GZ dies out with increasing z), or else G is of the form ia

where a can be positive or negative. From Eq. (2.3), the

two branch points are at

2 _ 2172

- w[wA
kpp (W) = ¢ R

; (2.5)
CT[wB -
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Note that for 0 < w < wg » and for k between the
branch points on the real axis, G is real and positive. The
branch lines extend upwards and downwards from the positive
and negative branch points, respectively (recall Fig. 1).

The eigenmode dispersion function D(w,k) in the case
of atmospheric infrasound can be written in the general

form (see page 47 of reference 2)

- A R “ Ripanla (2.6)

D(w,k) = A 11”12 12

12811

In this expression, R11 and R12 are the elements of a

. They depend on the atmospheric

transmission matrix [R].
properties only in the altitude range zero to Zrs and are
independent of what is assumed for the upper halfspace. In
general, their determination requires numerical integration
over height of two simultaneous ordinary differential

2,10,12

equations (termed the residual equations in previous

literature). They do depend on w and k (or, alternately,

on w and phase velocity v = w/k), but are free from branch
cuts. Also, they are real when w and k are real and are
finite for all finite values of w and k. The other parameters
A12 and All depend on the properties of the upper halfspace,

and on w and k. All and ﬁ12 are given (winds excluded) as

' 2
Ajq = gk"/w” - yg/l2er]; (2.7a)



14

Ky @ 3 = C%kz/mz. (2.7b)

12

It may be noted further that, since every quantity in
Eq. (2.6) (with the possible exception of G) is real when w
and k are real, the poles that lie on the real k-axis (recall
that they are the real roots of D) must be in those regions
of the (w,k)-plane [or, alternatively, the (w,Vv)-plane]

2 the integrand of

T’
-Gz
Eq. (2.1) divided by /Eg should vary with z as e T, there

where G” > 0. Since at heights above z
is no leakage of energy into the upper halfspace for those
modes that correspond to the above poles. Such modes are

termed fully ducted modes. Modes for which there is leakage

of energy are termed leaking. If D is considered as a
function of w and phase velocity v, the locus of its real
roots v(w) (dispersion curves) has (as has been found by
numerical computation with the program INFRASONIC WAVEFORMS)
the general form sketched in Fig. 3. The nomenclature for
labeling the modes (GR for gravity, S for sound) is due to

L may be noted from Eq. (2.3) that

Press and Harkrider.
there are two "forbidden regions' (slashed in the figure) in
the (w,v)-plane. These regions correspond to

2

112
Vv < cT[w% - w ) /

/[wi s m2]l/2 (2.8a)

for w < Wy and to
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Versus Angular Frequency w for Infrasonic Modes.
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2 . 241/2 2 . .251/2
v > CT[m wB] / [w wy ] (2.8Db)
for w > w,. Within these regions there are no real roots of

A
the function D(w,v) because G is imaginary. The existence

of the high-frequency upper "forbidden region'" implies that
the phase velocities for propagating modes are always less
than the sound speed chosen for the upper halfspace. It
also implies that, in the high-frequency 1limit, the branch
points in the k-plane are at # m/cT. The low-frequency
lower-phase-velocity "forbidden region' appears to be due to
the incorporation of gravitational effects into the formula-
tion. However, if Cp is allowed to approach infinity, the
lower "forbidden region' disappears. Numerical studies were
performed with INFRASONIC WAVEFORMS to see just what effect
varying = had on the dispersion curves shown in Fig. 3.
Briefly, the result was that while the forms of the GRO and
GR1 modal curves changed little with increasing Cp the lower
"forbidden region'" shrank in frequency range, and as it did
so, the modal curves extended to successively lower frequen-
cies. Thus, it can be seen that the fully ducted GR, and
GR, modes both have a lower frequency cutoff [wL in Eq.
(2.2)] which depends on Cr s In fact, the larger Cp becomes,
the smaller this cutoff frequency becomes.

At this point, there should appear to be the following

paradoxes. Given that frequencies below wg may be important
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for the synthesis of the total waveform, an apparently
plausible computational scheme based on the reasoning

leading to Eq. (2.2) will omit much of the information
conveyed by such frequencies. Also, in spite of the plausible
premise that energy ducted primarily in the lower atmosphere
should be insensitive to the choice for Cps it can be seen
that this choice governs the cutoff frequencies for certain
modes and that certain important frequency ranges could
conceivably be omitted entirely by a seemingly logical choice
for c¢p. The resolution of these paradoxes seems to lie in
the nature of the approximations made in going from Eq. (2.1)
to Eq. (2.2). The latter equation may not be as nearly correct
as earlier presumed, and it may be necessary to include
contributions from poles off the real axis as well as from
the branch line integrals. Even for the case when the
propagation distance r is very long, it may be that the
imaginary parts of the complex horizontal wave numbers are

so small that the magnitude of eikr in Eq. (2.1) is still not
small compared to unity. In addition, a branch line integral
may be appreciable in magnitude at large r if there is a

pole relatively close to the associated branch cut. These

possibilities are investigated in the next section.

Roots of the Dispersion Function

In light of the paradoxes mentioned, it would be

desirable to modify the solution represented by Eq. (2.2) so
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as to remove the apparent artificial low-frequency cutoffs
of the GRO and GRl modes. As a first step, the nature of
the eigenmode dispersion function D in the vicinity of the
dispersion curve for a particular mode is examined. The
curve of values vn(m) of phase velocity v versus w for a
given (n-th) mode is known for frequencies greater than the
lower cutoff frequency Wy - Given this curve, analogous
curves va(w) and vb(w) can be found for values of the phase
velocity w/k at which the functions Rll(m,v) and Rlz(w,v) in
Eq. (2.6), respectively, vanish. One characteristic of the
curves vn(w), v, (w), and vb(m) which has been checked
numerically for w > wp with the use of the program INFRASONIC
WAVEFORMS (see Fig. 4) is that, for a given mode of interest,
these curves all lie substantially closer to one another than
to the corresponding curves for a different mode.

Given the definitions above of va(m) and vb(m], the
dispersion relation D = 0 for a single mode may be approxi-
mately expressed, through a simple expansion, as

D = {AIZJ(OL)(V m V) = [All + G](B) (v - VbJ =y (2.9)

a

where o = delfdv, and B = dezfdv, evaluated at v = ¥a and
Vy» respectively (for simplicity, D is considered here as
a function of w and v = w/k rather than of w and k). The

above equation may also be written in the form
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v =v_+ (v, - vb]X/[l-X], (2.10a)

a

where

<
I

(B/a)[All + G)/Alz. (2.10b)

Eq. (2.10a) may be considered as a starting point for an
iterative solution which develops v in a power series in

Wi ¥ Vg With v = v, as the zeroth iteration, the right hand
side of Eq. (2.10a) can be evaluated for the value of v
required for the next iteration, etc. This iterative procedure
should converge provided that v, or vy is not near a point

at which G vanishes and provided that G in the vicinity of

vV, Or vy is not such that the variable X is close to unity.
Among other limitations, the iterative scheme is inappropriate
for those values of w in the immediate vicinity of Wy, - This
limitation is discussed further in the next section.

The iterative solutions obtained by the above scheme
follow some interesting general trends. In relation to these
trends, there are two general theorems of note, the proofs
of which follow along lines previously used by Piercel4 in

deriving an integral expression for group velocity. These

are that, for @ and v positive and real,

R aRll/av - R

12 8R12/3V > 0, (2.11a)

11
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R12 BRllfam - Rll aRlz/Bw > 0. (2.11b)
Alternately, for Rll = () (v - va) and R12 = (B)(v - vb),
it follows that
aB(va - vb) > 0, (2.12a)

(v - vp) (v - v )(Ba” - B7a) * Balvy (v - v,) - v,” (v - v)]> 0,

(2.12b)

where the primes represent derivatives with respect to w.
Eq. (2.12b) should hold for arbitrary v in the vicinity of

v_ and vy and lead, upon setting v = v

a’
v = (vavb’ = va'vb)(vb‘ - va’), along with the use of

Eq. (2.12a), to

vy," < 0, (2.13a)
v,” <0, (2.13b)
(e/B)” > 0. (2.13c)

Eq. (2.12a) implies that so long as q8 # 0 the two curves

va(m) and Vb[w) do not intersect. If a and B have the same

sign, then the v, curve lies above the v, curve. If o and B

differ in sign, then the vy, curve lies above the v, curve.
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To illustrate the general utility of the perturbation
approach taken here, values of w, Vas Vi O B, v(l), and
v, are listed in Table 1 for the GR0 and GR1 modes, where
v(l) is the result of the first iteration for the phase
velocity. The values given there are appropriate to the
case of a U, S. Standard Atmosphere2 without winds which is
. terminated at a height of 125 km by an upper halfspace possess-
ing a sound speed of 478 m/sec. Note that, for those frequen-
(1)

cies at which Vi is computed, the agreement between v and

Vi is excellent.

For further illustration of the perturbation technique,
detailed plots versus angular frequency are given in Fig. 5
of w/kR which is the reciprocal of the real part of l/v(l),
and of kI which is the imaginary part of w/vtl) (kR and kI
are the real and imaginary parts of k, respectively). Note

that kI is zero above the corresponding cutoff frequencies.

Transition of Modes from Non-Leaking to Leaking

The iterative process described by Eqs. (2.10) in the
preceding section provides little insight into the behavior
of a modal dispersion curve in the immediate vicinity of
cutoff (i.e., for values of w near wL). In addition, the
process may fail to converge when G is near zero. To explore
this transition region, it is sufficient to approximate G in

Eq. (2.9) by
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Table 1. Frequency-Dependent Parameters Corresponding to the
GR and GR; Modes .

(1)
Vv \" (o 6 Vv Vv
w a b n
seeT km/sec kn/sec sec/km sec km/sec km/sec
0.31202121
0.0052 0.31203 0.31207 917.4 -2783.7 ~3.184 x 10-61
0.31189059
1 -—
0.0113 0.311%0 0.31194 767.9 3254.2 -1.721 % 10-.61
G R o 0,0155 0.31176 0.31181 621.9 -3644.3 0.31173763 0.31172882
0.0165 0.31172 0.31177 581.5 -3738.2 0.31167504 0.31167509
0.0186 0.31162 0.31168 497 .5 -3910.1 0.3115336% 0.31153394
= U, 23267
¢.0052 0.24229 0.24816 87.8 ~3633.0 ~2.715 x 10,3!-
0.24218
0.0103 0.23433 0.23844 94,7 -3990.0 ~1.337 x 10-—]1
GR 1 0.0144 0.21842 0.22037 150.7 -5307.0 0.21431 0.22178
0.0165 0.20252 0.20345 265.0 -7767.3 0.20016 0.20463
0.0175 0.19058 0.19111 418.9 =10,858.0 0.19226 0.19212
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G = [(a)(w - w) *+ (a,) (v - v1YZ, (2.14)

where aq and q, are readily identifiable positive numbers which
are independent of w and v [see Eq. (2.9)] and vy is the limit
of the phase velocity on the dispersion curve as w approaches
w; from above. The bracketed quantity in Eq. (2.14) may be
regarded as a double Taylor series expansion (truncated at
first order) of GZ about the point (mL,VL) at which Gz
vanishes (hence there is no zeroth-order term). That aq and
q, are positive quantities follows from the fact that G2 is
positive outside of the lower '"forbidden region'" in the
(wyv)-plane (i.e., to the upper right of the line G2 = 0)
and also from the fact that the boundary of the lower
"forbidden region'" slopes obliquely downwards (see Fig. 3).
With the above approximation for G, a further approxi-

mation to the eigenmode dispersion function D(w,v) [of

Eq. (2.9)] in the vicinity of the point (mL,vL) would be
" 1/2
D = (Alza - AllBJ {(Av + pAw) + € (AV + vAw) ¥y (2.15)

where Av = v - Vi, Aw = w - wp, VoS ql/q2 and where the
quantity p is either —dvaldw or —dvb/dm (the two being close
in value). The use of the minus sign in the expressions for

u assumes that p is positive. The quantity e 1is
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CRBIOIERS 6
g = . .
BAll = aAlz

It should be noted that & depends on v, although, for the
purposes of the analytical investigation given here, v may

be set equal to v In fact 915 99> B, a, All’ AlZ’ u, and

L
v may be considered to be evaluated at w = Wy and v = vy -

Note again that p and v are both positive quantities. Further-
more, note that v > u as is evidenced by the fact that the
curve g* = 0 in the (w,v)-plane slopes downward more rapidly

than the lines R = 0 and R = 0 (see Fig. 4).

il 12
From Eq. (2.15) the zeros of D are readily found to

be
&Y = il * (L/2YES E e - 0 g » o1, (2.17)

where
o = /140 - W] (2.18)

For |Aw| << o, Av may be further approximated by use of the

binomial theorem as
_ 2w 2 2
AV = -vAw + [(v - u)"/e”] (Aw) (2.19a)

or
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Av = EZ - (2 - v) Aw - [(v - u)z/ez](Aw)z (2.19b)

for the upper and lower signs of Eq. (2.17), respectively.
Eq. (2.19a) (since Av = 0 when Aw = 0) is a description of
the dispersion curve in the vicinity of the point (mL,vL).
Examination of Eq. (2.19a) shows that as Aw approaches
zero, the dispersion curve becomes tangential to the line
G2 = 0. In other words, the two curves do not intersect
(refer to Fig. 6). At point A [i.e., at the point (wL,VL)]
in the sketch, the two curves are tangent. Between the points
A and B, there is a finite gap in the frequency range in
which there are no poles in the k- (or v-) plane corresponding
to a given n-th mode. The magnitude of the parameter ¢
(rad/sec) gives an indication of the width of this frequency
gap.
In Table 2 the values of Wps Vs dys dps Hs V, €, and
o are given for the GRO and GRl modes for the model atmosphere
corresponding to Fig. 2a. The extremely small values of ¢
should be noted. Also, a plot of Av versus Aw which shows
both branches of Eq. (2.17) and which is appropriate for the
GR, mode is given in Fig. 7. For simplicity, this plot is

0
in normalized form with

v = Sp/l2v = wlie ¥ Lo« a]lf2, (2.20)
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Table 2. Parameters Characterizing the Eigenmode Dispersion
Function Near the Transition from Leaking to
Non-Leaking for the GR0 and GRl Modes .

GRO GRl
wr, (rad/s) 0.0118 0.0125
vy, (km/s) 0.31188 0.2323
ql(s/lcmz) 0.14 0.35
qz(s/kmB) 1.84 x 107> 1.86 x 107>
u (km) 2.94 x 1072 4.15
v (km) 76 190
e (/2751 9.6 x 10°° 1.02 x 107
o (rads/s) 3.04 x 1033 Lok 5 10T
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where V = Av/[2(v - u)o] and Q@ = Aw/o. Both the real and
imaginary parts of V and ? are shown in the plot. The
corresponding plots for the GR1 mode differ only slightly

from those given for the GR, mode in Fig. 7. As may be seen

0
from Table 2, p << v so that, for both modes, the quotient

uw/[2(v - w)] is small compared to unity.

Concluding Remarks

Since there is a gap in the range of frequencies for
which a pole (corresponding to a mode) may exist, it 1is
evident that evaluation of the integral over k in Eq. (2.1)
by merely including residues may be insufficient for certain
frequencies. Thus it would seem appropriate to include a
contribution from branch line integrals. However, there is
a line of reasoning which demonstrates that all contributions
from branch line integrals are insignificant. Further details
on this matter are provided in reference 4.

The investigation described here led to a relatively
straightforward perturbation technique for the inclusion of
contributions from leaking modes in the synthesis of infrasonic

waveforms. It was demonstrated that the imaginary parts of

complex horizontal wave numbers can be less than 3 x 10-4 km_l.
Consequently, it would be expected that the contributions

from leaking modes are significant for realistic propagation
distances (i.e., between 1000 and 15,000 km).

In this chapter, a theory of leaking modes has been
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Figure 7. Graph of Normalized Phase Velocity Versus
Normalized Frequency in the Vicinity of
the Point [vL,wL) for the GRO Mode .
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presented, The details of the modification of the computer
program INFRASONIC WAVEFORMS to incorporate this theory are

given in Chapter III.
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CHAPTER III

NUMERICAL SYNTHESIS OF WAVEFORMS
WHICH INCLUDE LEAKING MODES

Introduction

The computer program INFRASONIC WAVEFORMS®’® has been

modified to include contributions at low frequencies from
leaking modes (specifically the GR0 and GRl modes) to
numerically synthesized infrasonic waveforms. The procedure
incorporated in this modification involves among other things
the calculation (as discussed in Chapter II) of the imaginary
and real parts of horizontal wave numbers and phase velocities.
The entire procedure for including leaking modes is outlined
in detail here. Numbers presented for illustration are
appropriate to the case of infrasonic signals observed at
15,000 km distance from a 50-megaton explosion, where the
explosion is at three km altitude and the atmosphere [shown

in Figs. 8 and 2(a)] is assumed to contain no winds.

Calculation of Complex Wave Numbers

and Phase Velocities

The first step in the calculation of complex wave
numbers and phase velocities for the GR0 and GR1 modes is to
obtain values for the phase velocities vn(m}, va(m), and

Vb(m], and the elements Rll(m,v) and Rlz(m,v) of the
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transmission matrix [R]. These calculations are done for
frequencies below the cutoff frequencies of the two modes.

As mentioned in Chapter II, R11 and R12 depend on atmospheric
properties only in the altitude range zero to Zp (the bottom
of the upper halfspace) and are independent of what is
assumed for the upper halfspace. vn(m) is the phase velocity
for a given (n-th) mode for values of w greater than the
lower cutoff frequency Wy and Va(w) and vb(w) are values

of the phase velocity w/k at which the functions R11 and

R respectively, vanish. For a given mode, the values of

12?

¥ and Vi, chosen are those from the curves va(w) and vb[m)

which for ¢ > wp lie closest of all such curves to the curve
Vn(m) .

With an alternate version of the subroutine TABLE,
INFRASONIC WAVEFORMS may be used to obtain Rll and R12' A
deck listing of subroutine TABLE with appropriate modifi-
cations incorporated is given in Appendix A of reference 5.
A deck listing of the input data that is required to calculate
Ry and R, for the example is given in Fig. 9. Note that
only phase velocities between 0.143 and 0.3318 km/sec and
frequencies between 0.001 rad/sec and 0.031 rad/sec are
used in this calculation. A sample portion of a printout
of Rll and R12 versus phase velocity is given in Fig. 10.

Values of va(w) and vb(w) for the GRO and GRl modes
are obtained by two successive runs of INFRASONIC WAVEFORMS

in which two modified versions of the subroutine NMDEN are
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$NAM1 NSTART=1, NPRNT=1, NPNCH=-1, NCMPL=-1 $END

$NAM2 IMAX=24,

z1=1.,2.,4.,6.,8.,10.,12.,14.,16.,18.,20.,25.,30.,35.,40.,45.,55.,
65.,75.,85.,95.,105.,115,,125.,

T=292.,288. ,270. ,260..,249. ,236.,225.,215.,205:,198. ,205; ,215. ,227:,
237.,249.,265.,260.,240.,205.,185.,184,,200.,250.,400.,570.,

LANGLE=1,

WINDY=25%0,0,

WANGLE=25%0.0

$END

$NAMA

THETKD =35.,

V1 = 0.143, V2 = 0.3318,

@1 = 0.001, @M2 = 0.031,

N@MI = 30, NVPI = 80,

MAXMZD = 10

$END

$NAM1 NSTART=6, NPRNT=1, NPNCH=-1, NCMPL=-1 $END

Figure 9. Listing of Input Data Required to Generate

Tabulations of Rll and R12 Versus Phase

Velocity and Angular Frequency.
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R R

n 11 12

OMEGA= .30928-02

. 14300+00 . 21671401 .65152+02
.14539+00 -.72963-01 .22523402
.14778+00 -.19992+01 .16898+02
.15017+00 ~-.34415+01 .49336+02
.15256+00 -.43200+01 .72532+02
.15495+00 -.46324+01 .85619+02
.15734+00 -.44356+01 .88883+02
.15973+00 ~-.38270+01 .83475+02
.16212+00 -,28260+01 L71114+02
.16451+00 -.18579+01 .53814+02
.16690+00 -.74204+00 .336574+02
.16929+00 .31761+00 .12611+02
.17168+00 .12376401 ~.75995+01
.17407+00 .19579+01 -.25568+02
.17646+00 . 24418401 -.40247402
.17885+00 . 26746+01 ~.50952+02
.18124+00 .26605+01 -.57340+02
.18363+00 .24195+401 =.59371+02
.18602+00 .19834401 -.57261+02
.18841+00 .13917+01 -.51424+02
.19080+00 .68860+00 -.42421402
.19319+00 -.80574-01 -.30906+02
.19558+00 -.87185+00 -.17582+02
.19797+00 -.16447+01 -.31561+01
.20036+00 -.23637+01 .11690+02
.20275+00 ~-.29996+01 .26326+02
. 20514400 -.352954+01 .40198+02
.20753400 -.39379+01 .52832402
.20992+00 -.42158+01 .63849+02

Figure 10. Sample Printout of Rll and Rlz Versus

Phase Velocity for a Fixed Value of
Angular Frequency.
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used in sequence. These modifications are so minor that
they are described here. To obtain va(m], the third-from-
end executable FORTRAN statement of subroutine NMDFN need

only be changed from

FPP = RPP{1,1)*A(1;2) - RPP(1;2)%(GU + A(1,1)) (3:1]

to

FPP = RPP(1,1). (3.2)

To obtain Vb(w), the same statement need only be changed to

FPP = RPP(1,;2)]. (5.3)

The same limits for phase velocity and angular frequency as

are used for the calculation of R and R are used in the

1.1 12

calculations for s ¥ and Vy, - In the example, when these

a2
limits are used, the GRl mode corresponds to mode number
three and the GRO mode corresponds to mode number four for
the case when Vn(w) is calculated. For the cases when Va(wj
and vb(m) are calculated, the GR4 mode corresponds to mode
number four and the GRO mode corresponds to mode number

six. A sample listing of vn(w), va(wj, and vb[wj for the

two modes is given in Fig. 11. An additional listing of

these phase velocities for the two modes is given in Table 3.
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'GRO MODE
w vn w Va w Vb
.N12375 ,311856n8 001030 ,31205939 .001030 ,31209836
LO1340T7- 31181806 «002061 31205552 002061 .312n9u4y
L0143 ,31177597 003093 ,31204906 003093 ,312paTq
015460 .311728R82 L0N4124 31204001 004124 .31Zn739
016501 «31167509 .005156 ,31202834 .005156 ,312q6727
017532 ,.31161209 LON6187 ,31201405 006187 .3l2053p3
.018%63 +31153394 L00721AR ,31199710 007218 ,31203620
2019070 31148010 .008250 ,31197748 .008250 ,312091679
019079 .31148516 .009781 .31195515 .UC9281 ,31199478
.01959% 31142505 010312 ,31193006 L010312 ,31197016
.019753 31138841 0113448 ,31190215 L,011344% .3liay29]
L020111 431134515 012375 31187139 LU12375 43119132
L02NA2A «311224A0 L.NL3807 ,31183768 L013407 ,31188045
.N21A58 ,31029529 L014U3A ,31180093 014438 ,311845]8|
«021A59 31029116 [eN15H69 31176104 | « 015469 ;4 31ippT14l
.022005 +30790129 016501 ,31171786 ' L.U16501 ,31176630
022139 ,3n551142 «N17532 431167120 017532 ,31i72258
.022173 ,30475278 018563 31162087 018563 ,31167591
.02224n .3n312155 ,019595 ,31156653 .019595 ,31ig2620
.N22%209 ,3007316A8 «020A26 +31150781 L020626 31157334
.022812 ,29834181 L021658 31148415 .021658 ,31153721
0221090 ,29595194 .022689 , 31137478 022689 31145763
.N22566 29356207 023720 ,31129855 023720 31130444
.NP2A39 ,29117220 «024752 ,31121368 024752 ,31i32738
.022689 ,2894B366 .N25783 31111721 .025783 .31125619
GR1 MODE
v
w n V] Va w Vb

013407 22781499 «00103n ,24434330 ,001030 ,25073045
.013A24 +22604568 +002161 ,24409612 .001738 .25354440
.01unun 22425580 «003n393 , 24367787 ,002061 ,25uy2u5y
.Niuu2y ,22186593 .003A55 ,24337u78 .003093 , 24955059
LN1uU3A 22177526 «008124 ,24307887 L004124 ,244%11067
.014778 .21947606 L005156 ,24228453 L005156 ,245]15998
.015107 21708619 006187 24127431 +005160 .2%615453
015413 «21469631 006445 , 24098491 LU0618T7 (24690257
.N154H9 ,21423833 L00721R ,24n019A84 L006963 , 24576466
.0156A99 21230644 «0NR181 23859504 L007210 ,24535036
.0159%6 «2n991657 008250 , 23848240 008250 .243u6182
.016217 20752670 009281 ,23660913 L00B293 ,24337U7h
.016153 «205136A2 L0N9UTT 23620517 .009281 ,25118333
.016501 «20463309 SN10312 , 23432748 ,009362 240984931
.016ATS « 20274695 «010S18 23331529 .0102/0 42305954
.N16R8AH «20035708 LNL1%48 231537248 L01U312 «23844396
.017n85 «19796721 L011781 . 23142502 L,011034% ,23620517
.017154 »19318746 .N127375 .258099‘42 011712 ,25381529
L017532 «19211887 <012752 20664568 L01231% .23142542
L017626 « 19079759 «013311 ,22425580 ,012375 ,23116886
017790 «18840772 013407 ,22381942 L 0121855 ,22903555
.0170u6 «18601784 «013209 , 25186593 , 013345 .22064568
018196 «18362797 +014255 , 21947606 .013407 .22632580
.01824n 18123810 «01443R 51842295 .013790 ,2242558/0
Figure 11. A Sample Listing of vn(w], va[w), and Vb(w)

for the GRO and GR1 Modes.
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Table 3. Tabulation of Frequency-Dependent Parameters
for the GRO and GR1 Modes.
GR_, MODE
0
v o A A G

. a Y B 11 12
0.001030 0.31205939 0.31209836 957.1 -2648.5 0.07064925 -1,3492340 0.028617464
0.005156 0.31202834 0.31206727 917.4 =2783.7 0.07066928 -1,3497015 0.025859571
0.008250 0.31197748 0.31201679 854.9 -2988.2 0.07070210 =-1.3504677 0.020599491 _,
0.011344 ©0,31190215 0.31194291 767.9 -3254.2 0.07075075 -1.3515959 8.16470 x 10 °4

X k w/

. 1 R kR
0.001030 ©0.14489848 + 0.058693141 3.29323 x 10:? 3.3007'x 107> 0.31205300
0.005156 0.15887128 + 0,058134774¢ 1.68605 x 10, 0.0165355 0.31202121
0.008250 0.18298964 + 0.053315141 2.65003 x 107 0.0264444 0.31197553
0.011344 0.22182228 + 0.02559851: 2.00717 x 10 0.0363822 0.31189059

GR, MODE
1
v o A A

w Vi b i 11 12 G
0.001030 0.24434330 0.25073465 87.4 =3578 0.13415774 =-2.8317742 0.043592491
0.005156 0.24284530 0.24815908 87.8 =-3633 0,13695917 =-2.8971705 0.040308494
0.008250 0.23B48240 0.24346182  89.6 =-3770 0.14232483 =3.0224265 0.033973044
0.011344 0.23153728 0.23514877 100.0 -4144 0.15281704 =-3.2673565 0.019880611

X k

& I kR, Ln/kR
0.001030 1.9354832 + 0.630205184 4.96794 x 10_3 6.0319 x 1077 0.25546528
0.005156 1.9560589 + 0.575696114 2.19268 x 10_, 0.0204383 0.25269766
0.008250 1.9813366 + 0.472946441 2.67086 x 10_, 0.0333205 0.264759561
0.011344 1,9381840 + 0.252146541 2.050164 x 10 0.0474121 0.23926355
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The next step in the calculation of complex phase
velocities and wave numbers is to calculate manually values
for the parameters o and B which are part of the approximate
expression [Eq. (2.9) in Chapter II] for the eigenmode
dispersion function. These parameters represent the partial
derivatives of Rll and RIZ’ respectively, with respect to
phase velocity v evaluated at v = v_ and v = Vi respectively.

a

Since R and R12 also depend on w, ¢ and B may be considered

11
as functions of w and not of phase velocity.

Recall that va(w) and vh(w) are values for the
phase velocity at which Rll and R12’ respectively, vanish.
From the listing of R11 versus v and w, let the adjacent
values Rlll’ Rle, RSll and R411 for Rll correspond to the
values for phase velocity Vi1® V210 Vi1 and Va1o respectively
(for some chosen w), so that Vi1 and Vzq bracket a value
for v, - The values R211 and RSll would then be of opposite
sign. In the listing of v, Rll’ and R12 for various w, the
values for v should all turn out to be equally spaced.

Given this fact, it is possible to approximate o from the

listing of Rll by the formula
o = (1/avy)([5/6]eqq + [1/12]f;; + [1/41g5104q)» (3.4)
where

(3.5a)
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g1 5 By = Borgyn (3.5b)
£11 = Rqa1 - Rs1a * Ro11 - R (3.5¢)
811 = (Ryyy - Ryyqlieqgs (5.5d)
and h = R + R - R - R (3.5e)

In like manner, from the listing of Rlz versus v and w, let
the adjacent values RllZ’ RZlZ’ R312, and R412 for RlZ
correspond to the values for phase velocity Vios Vs Vzos
and Voo respectively (for some chosen w), such that Voo and
bracket a value for v,. It is then possible to approxi-

¥y b
mate B by the formula

8 = (1/8v,) ([5/6]eq, + [1/121€), + [1/4]g,h),)  (3.6)

where Av,, €125 le’ 817> and h12 are defined by equations
analogous to Eqs. (3.5) (last subscript changed from LY %o
121).

Because such an approximate method is used to calculate
o and B (it would be preferable to have an explicit formula),
there is a small amount of false variation in the values
obtained. This variation is noticable only for the GR1 mode
and may, for all practical purposes, be eliminated by plotting

a and B versus w and then drawing smooth curves through the
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respective sets of points (see Figs. 12 and 13). While this
graphical procedure is somewhat laborious, it circumvents
making additional runs of the computer program to obtain
values of Rll and R12 at more closely spaced values of phase
velocity. It also circumvents the elaborate computer
programming chore that would be required to calculate ¢ and B
automatically. It is suspected that the programming time
required for this automation would surpass the time required
for manual calculation. In any event, the accuracy of the

oo and B obtained by Eqs. (3.4) and (3.6) has proven to be
more than sufficient.

The complex phase velocity v(l)(w) can be calculated
by using Eq. (2.10a) in Chapter II. This expression involves
the parameters Vas Vi and X where X depends on B/a, All’ Gy
and AlZ [see Eq. (10b) in Chapter II]. The latter three of
these quantities are computed by taking kz/wz = I/Vaz and by
using Eqs. (2.3), (2.7a) and (2.7b) of Chapter II, respec-
tively. Listings of G, ﬂll’ A12’ and X for various values
of w and for the GR4 and GRO modes in the example are given
in Table 3.

As explained in Chapter II, below cutoff (e.g., below
w, = 0,0125 rad/sec for GRl and below wp = 0.0118 rad/sec

L
for GRO in the example) the real part kR of the horizontal

(1)

wave number is the real part of w/v , and the imaginary

(1

part kI is the imaginary part of w/v The extension by

first iteration of the normal-mode dispersion curves below
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Figure 12. A Plot of the Parameter a Versus w for the GR1
Mode .
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Mode .
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cutoff is obtained by calculating m/kR. Listings of v(l),

kI, kR, and w/kR for various w for the GRO and GRl modes in

the example are given in Table 3. In addition, plots of kI

and w/kR are given in Chapter II in Fig, 5.

Input Data for GR, and GRl

0

5 allows

The present version of INFRASONIC WAVEFORMS
for the phase velocity w/kR, imaginary component kI, and
source-free amplitude AMP to be input as functions of angular
frequency w both below and above cutoff for the GR, and GR4
modes. The k; may be obtained by the procedure described in
the previous section, What follows is a description of how
the remaining portion of the input data may be obtained.

To obtain values of phase velocity and source-free
amplitude at frequencies above cutoff, the current version
of INFRASONIC WAVEFORMS is run with the variable NCMPL of
NAMELIST NAM1 set less than zero. This run gives an output
similar to that which would be obtained with the original
version of the program, The input data for this run is the
same as if waveforms were being computed without considera-
tion of leaking modes. A listing of such input data which is
appropriate to the example is given in Fig. 14. The run with
these data will give mode numbers and tabulations of phase
velocity VPHSE and amplitude AMP versus angular frequency
OMEGA for the GR, and GRl modes at frequencies above cutoff.

The only output which need be retained for future use is the
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$NAML NSTART=1, NPRNT=1, NPNCH=-1, NCMPL=-1 $END

SNAMZ TMAX=24, |

ZTRTs BeoleaB 58 90,020 T4 16, 18 00, /28, 80 _ B8 Af, A5 5L
65.,75.,85.,95.,105.,115.,125.,

T=292.,288.,270.,260.,249.,236.,225.,215.,205.,198.,205.,215.,217.,
237.,249. ,265.,260.,240. ,205.,185. ,184.,200.,250.,400.,570.,

LANGLE = 1,

WINDY = 25%0.0,

WANGLE = 25%0.0

SEND

$NAM4

THETKD = 35.,

V1 = 0.15, V2 = 0.495,

¢M1 = 0.005, @2 = 0.1,

NOMI = 30, NVPI = 30,

MAXMOD = 8

$END

$NAM6 ZSCRCE = 3.0, Z@BS = 0.0 $END
$NAM8 YIELD = 50.E3 $END

$NAMIO R@BS = 15000.,

TFIRST = 46.2E3, TEND = 52.2E3,

DELTT = 15.,

I¢pT = 11,

$END

$NAM1 NSTART=6 $END

Figure 14. Input Data to Obtain Phase Velocity Versus

Angular Frequency Above Cutoff Frequency for

the GRD and GR1 Modes,
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tabulation of VPHSE versus OMEGA for these two modes.
Amplitudes at frequencies above cutoff are computed auto-
matically in any run which utilizes this output as input
data. A sample tabulation of the pertinent output for the
example considered here is given in Fig. 15.

Input data of phase velocity VPHSE and amplitude AMP
for frequencies below cutoff may be obtained by a second run
of the program with the variable NCMPL set less than zero,
but with the original model atmosphere replaced by one which
has a thick intermediate layer plus an upper halfspace in
place of the original upper halfspace. In other words, in
the NAM2 input 1list, IMAX is increased by one, and the
original ZI and T are left unchanged except that a ZI 1is
added which is 100 km greater than the maximum ZI for the
original model atmosphere. In addition, the temperature T
for the new layer corresponding to IMAX+1l (i.e., for the new
upper halfspace) is set to an arbitrarily large value (e.g.,

2 x 107

°K). Use of this altered model atmosphere will
artificially lower the cutoff frequencies for the GRO and
GRl modes down to values which are very close to zero. In
the input data for this second run the angular frequency and
phase velocity limits V1, V2, @M1, and @#M2 of NAM4 must be
set to obtain data for the GR0 and GRl modes at frequencies
below their original cutoff frequencies. It is imperative

that @M2 not be set toc high in value because the program will

encounter numerical difficulties at high frequencies when the



GRO MODE
OMEGA v
n

.01482759 .31175883
.01646552 .31167007
.01728448 .31162838
.01810345 . 31157130
.01892241 .31150095
.01933193 .31145750
.01974138 .31140492
.02137931 .31079310
.02151639 .31060345
.02178879 .30980325
.02202362 .30762931
.02210859 30614224
.02214435 .30539871
.02216121 .30502694
.02217751 .30465517
.02219828 .30416532
.02220876 .30391164
.02223857 .30316810
.02229504 .30168103
.02239972 . 29870690
.02259055 .29275862
.02293273 . 28086207
.02301724 .27771666
.02324256 . 26896552
.02353065 .25706897
.02380369 24517241
.02406701 .23327586
.02432538 .22137931
,02458369 .20948278
.02465517 20622217
.02484741 .19758621
.02498335 .19163793
.02512335 .18568966
.02526862 .17974138
.02542062 .17379310
.02558111 .16784483
.02566520 .16487069
.02575227 .16189655
.02593679 .15594828
.02613807 .15000000
Figure 15,

GRl MODE
OMEGA v
n
.01482759 .21913010
.01601253 .20948276
.01646552 .20500285
.01711598 .19758621
.01728448 .19544661
.01756650 .19163793
.01796698 .18568966
.01810345 .18350434
.01832669 .17974138
.01865292 .17379310
.01892241 16844746
.01895156 .16784483
.01909212 .16487069
.01922762 .16189655
.01933190 .15953747
01948594 .15594828
.01973352 .15000000
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Sample Output of Phase Velocity Versus Angular
Frequency at Frequencies Above Cutoff for the

GR0 and GR, Modes.

1
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bottom of the upper halfspace is set as high as considered
here., If it were not for this difficulty this second run
could be used to generate the same data as is generated in
the first run. For comparison, the atmospheric profiles
used in the two runs with NCMPL < 0 are shown in Fig. 16.

The second run with NCMPL < 0 gives values for the
source-free amplitude AMP and phase velocity VPHSE for the
GRO and GRl modes at frequencies below cutoff. The VPHSE
are expected to be close in value to the m/kR obtained as
described in the previous section. In addition, the source-
free amplitudes are expected to match on smoothly above
cutoff to those obtained from the first run with NCMPL < 0
even though the model atmospheres used in the two runs are
not the same. This expectation is physically reasonable
because the energy transported by the GRO and GR1 modes 1is
contained predominantly in the lower atmosphere. Furthermore,
these amplitudes should be close in value to those which
might be obtained by a perturbation technique similar to that
described in Chapter I1. Below cutoff, the actual amplitudes
should have small imaginary parts. However, in view of the
relatively small values obtained for the k; (less than 1073
neper/km), these imaginary parts may be neglected with
confidence. The only characteristic of leaking modes which
is of significance in the synthesis of waveforms is the
accumulative exponential decay represented by the factor

exp(—kIr). This factor is retained in subsequent calculations.
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Two Model Atmosphere Profiles. (a) The Same as
in Fig. 8. (b) The Same Only with the Original
Upper Halfspace Replaced by a Layer of Finite
but Large Thickness with a Halfspace Above it
of Extremely High Temperature and Sound Speed.
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Sample input data for this second run with NCMPL < 0
is given in Fig. 17, and a listing of output values for
OMEGA, VPHSE, and AMP below the original cutoff frequencies

for the GRO_and GR1 modes of the example is given in Fig. 18.

Waveform Synthesis

The final step in the synthesis of waveforms with
leaking modes is to run the program INFRASONIC WAVEFORMS with
input data that contains data computed for the GR, and GRl
modes as described in the preceding two sections. The only
differences between this run and the first run described in
the previous section are that here NCMPL > 0 and values are
supplied for the variables in the input list NAM51. A
listing of the input data for the run with leaking modes
which is appropriate to the example is given in Fig. 19. In
those data, the AKIGRO and AKIGR1l are the wvalues of the kI
computed by the perturbation technique of Chapter II as
outlined in the first section of this chapter. The source-
free amplitudes AMPGRO and AMPGR1 are taken from the output
of the second computer run described in the previous section.
The phase velocities VPGRO and VPGR1l are taken from the
outputs of both computer runs described in the previous
section. The reason that phase velocities for frequencies
below cutoff are used as computed by the first computer run
described in the previous section rather than as computed by

the perturbation technique of Chapter II is that the values
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$NAML NSTART=1, NPRNT=1, NPNCH=-1, NCMPL=-1 $END

$NAM2 IMAX=25,

z1-1.,2.,4.,6.,8.,10.,12,,14.,16.,18.,20.,25.,30.,35.,40.,45.,55.,
65.,75.,85.,95.,105.,115.,125.,225.,

T=292.,288.,270.,260, , 249,236, ;225. ,215. ,205. ;198., 205, ,215.,227 4
237, ;209,,265,,260,,240,,205.,185.,184, ,200, ,250,,400,,570,,2.E7,

LANGLE=1,

WINDY=26%*0.0,

WANGLE=26*0.0

$END

SNAMA

THETKD= 35.,

V1 = 0.18, V2 = 0.34,

¢gM1 = 0.001, ¢M2 = C.02,

NMI = 30, NVPI = 30,

MAXMPD = 8

$END

$NAM1 NSTART=6 $END

Figure 17. Input Data to Obtain Phase Velocities and Source
Free Amplitudes Below the Cutoff Frequencies

for the GRO and GR1 Modes.



OMEGA
.00100
.00166
«+ 00231
.00297
.00362
.00428
.00493
.00559
.00624
.00690
.00755
.00821
.00853
.00886
.00952
.01017
.01083
.01148
01214
.01279
.01345
.01410
.01476
01541
.01607
.01672
.01738
.01803
.01869
.01934
.02000

Figure 18,

nwc MODE

VPHSE
.31206
» 31205
ok s
.31205
.31204
.31203
.31203
.31202
«31201
.31200
» 31198
« 31197
.31196
. 31196
«31194
+31192
«31190
.31188
.31186
.31184
.31182
« 31179
+ 31176
.31173
31170
.31166
.31162
.31158
« 31152
.31146
.31136

1

H

]

1

1

1

1

1

1

i

i

i

i

i

1

AMP
.03102934
.03101968
.03100520
.03098583
03096170
03093260
.03088855
.03085951
.03081546
.03076637
.03071222
.03065299
.03062146
.03058865
.03051919
03044457
.03036475
.03027370
.03018936
.03009365
.02999248
.02988574
.02977324
02965474
.02952988
.02939809
.02925846
02910932
.02894743
02876557
02854424

OMEGA
.00100
.00166
.00231
.00297
00317
.00362
.00428
00473
.00493
.00559
.00582
00624
.00668
.00690
.00740
.00755
.00805
.00821
.00853
.00878
.00886
00937
.00952
01017
.01019
.01083
.01148
.01178
.01214
01279
01304
.01345
.01406
.01410
.01476
01490
.01541
.01561
.01607
.01621
01672
.01674
+01720
.01738
,01761
.01798
.01803
.01831

ONH MODE

VPHSE
.28308
.28237
. 28129
.27983
« 21931
27797
-27567
.27379
.27289
+ 26958
.26828
.26569
.26276
.26116
25724
.25598
Mt B
.25040
.24780
24621
24571
24345
.24292
.24075
24069
.23860
.23628
23517
23372
.23084
.22966
+ 227358
22414
22387
+»21961
.21862
.21469
.21310
«.20895
.20759
20220
.20207
. 19655
+19420
+19103
18552
.18462
.18000

LI S A D D D T R D A A T B R |

LI I A R R R D U R O R R T R A N O R R A |

AMP
.00003660
.00003722
.00003831
.00004009
.00004082
.00004295
.00004754
.00005235
.00005510
.00006819
.00007507
.00009291
.00012320
.00014672
.00024331
.00029422
.00063749
.00084929
.00156605
.00225436
.00248871
.00335025
.00346229
.00365399
.00365562
.00365194
.00358599
.00354504
.00348656
.00336176
00330833
.00321275
.00305033
.00303760
.00283239
.002784009
.00259141
.00251310
.002307086
.00223902
.00196998
»00196321
.00168722
.00156992
00141297
,00114281
.00109941
.00087957

54

Sample Output of Phase Velocity and Source Free
Amplitude at Frequencies Below Cutoff for the
GR, and mmH Modes.
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SNAM1 NSTART=1,NI'RNT=1, NPNClw-1,NCMPL=1 S$END

SNAMZ IMAX=24,

ZI=1.,2.,4.,6.,8.,10.,12,,14,,16.,18,,20,,25.,30.,35.,40.,45.,55.,
65.,75.,85.,95.,105,,115.,125.,

T=292,,288.,270.,260.,249,,236.,225.,215.,205,,198,,205,,215.,227.,
237.,249.,265.,260.,240,,205,,185,,184,,200.,250.,400.,570.,

LANGLE=1,

WINUY=25%0.0,

WANGLE=25%0.0,

SEND

SNAM4

THETKD=35.,

V1 = 0.15, V2 = 0,495,

PM1 = 0.005, @M2Z = 0.1, ‘

N@MI = 30, NVPI = 30,

MAXMPD = 8,

$END

$NAMS]1  MNGRL=2, NPGR1=25, MNGRO=3, NPGRO=47,

@$MCR1=0.001,0.00231,0.00428,0.00582,0.00805,0,01017,0.01083,0.01178,
0.01483,0.01592,0.01647,0.01706,0.01729,0,01752,0,01793,0.0181,
0.0183,0,01864,0.01892,0.01222,0,01933,0.01935,0.01948,0.01961,
0.01974,

VPGR1-0.28308,0.27983,0.27567,0.26828,0,25122,0,24075,0,23860,0.23517,
0.21913,0.21034,0,205,0.19828,0.19545,0.19224,0.18621,0.1835,0.18017,
0.17414,0.16845,0,16207,0,15954,0.15905,0,15603,0.15302,0.,15,

PMGRO=0.001,0.00231,0.00428,0.00624,0.00821,0.01017,0,01083,0.01483,0.01647,
0.01728,0.0181,0.01892,0.01933,0.01974,0,02138,0,02177,0.02227,0.02214,
0.02216,0.02218,0.02219,0.0222,0.02221,0.02227,0.02233,0.02253,0.02288,
0.02302,0.0252,0.0234%9,0.02377,0.02404,0,02430,0.02456,0.02466,0.02483,
0.02497,0.02511,0,02526,0.02541,0.02547,0,02575,0,02584,0,02588,0.02593,
0.02603,0.02614,

VPGRO=0.31206,0.31205,0,31202,0.31201,0.31197,0,31192,0.31190,0.31176,
0.31168,0.31163,0.31157,0.3115,0.31146,0.31141,0.31079,0,30991,0.30689,
0.30539,0.30501,0.30463,0.30526,0.30417,0,30388,0,30237,0.30086,0-. 29483,
0.28276,0.27772,0.27069,0.25862,0.24655,0.23448,0,22241,0.21034,0.20622,
0.19828,0.19224,0,18621,0.18017,0,17414,0.17177,0.16207,0.15905,0.15761,
0.15603,0.15302,0.15,

AMPGR1=-D.00003660,-0.00004009,-0,00004754,-0.00007507,-0.00063749,
-0.00365399,-0,00365194,-0,00354504,

AMPGRO=-0,03102934,-0.03100520,-0.0309326,-0.03081546,-0.03065299,
-0.03044457,-0.05036475,

AKIGR1»4,0E-5,9.05-5,1,75E-4,2 ,4E-4,27E-4,2,5E-4,2,25E-4,1.4E-4,17%0,0,

AXKIGRO=3.0E-8, 6.0C-8,1.26-7,1.9F-7,2.56-7,2.7E-7,2.3E-7,40%0.0,

$END

$NAM6 ZSCRCE=3.0, I@BS=0.0  §END

$NAMS  YIELD=50.E3  SEND

$NAMIO  RPBS = 15000.,
TFIRST=46.2L3, TEND=52.2E3,
DELTT=15.,
10PT=11

SEND

SNAM1 NSTART=6, $END

Figure 19. Sample Input Data for Synthesis of Infrasonic
Waveform Including Leaking Modes.
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obtained from the computer run are expected to be more
accurate. The values of kI have to be computed by the
technique of Chapter II since the computer program in 1its
present form will not compute them directly.

In Fig. 20 plots are shown for the example of modal
and total waveforms obtained with and without leaking modes.
Note that the inclusion of leaking modes has eliminated the
spurious precursor in the waveform and has raised the
amplitude of the first peak. It is also important to note
that the waveform with leaking modes begins with a pressure

rise, which is realistic.

Further Example (Housatonic)

As a further example, waveforms were computed to model
the case of signals observed at Berkeley, California, following
the Housatonic detonation at Johnson Island on October 30,
1962. A comparison of theoretical and observed waveforms
for this case is given by Pierce and Posey.10 This case also
serves as the main example in the 1970 AFCRL report by Pierce
and Posey,2 and is discussed by Poseyl5 within the context
of the theory of the Lamb edge mode.

The model atmosphere assumed (winds included) for the
computation here is the same as in Fig. 3-12 of reference 2,
except that in the present model the upper halfspace begins
at 125 km (IMAX = 24) rather than at 225 km (IMAX = 33). To

avoid repeating tedious calculations of the kI for the GRO
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and GR, modes for this model atmosphere, it was assumed that

1
the kI would be close in value to those calculated for the
example used in the previous sections.

In Fig. 21, sets of plots for the Housatonic case are
shown with and without leaking modes. The set with leaking
modes excluded does not agree with comparable plots in
Fig. 3-10 of reference 2. This relative disagreement exists
because the upper halfspace has been taken here to begin at
a lower altitude. In spite of this disagreement, the waveform
that includes leaking modes is regarded as an improvement in
that among other things the spurious initial pressure drop
shown in the original waveform is not present here.

In Fig. 7 of reference 10 observed and theoretical
waveforms are shown for the Housatonic case. On the basis
of the calculations described in this chapter, this figure
was redrawn and is given here as Fig. 22. The only difference
between the two figures lies in the central waveform. The
false precursor is absent in the waveform shown in Fig. 22,
and the first peak to trough amplitude has been changed from
157 pbar to 170 ubar (less than a 10% increase). The
remainder of the central waveform is virtually unchanged.

The discrepancy with the edge-mode synthesis has not been

diminished and remains a topic for future study.
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CHAPTER 1V

ASYMPTOTIC HIGH-FREQUENCY BEHAVIOR
OF GUIDED MODES

Introduction

Due to stratification in temperature and wind, the
atmosphere possesses sound-speed channels with associated
relative sound-speed minima. Fig. 23 shows a standard
reference atmosphere wherein two sound-speed channels are
indicated, one with a minimum occurring at approximately
16 km altitude and the second with a minimum occurring at

15 Given the presence of a

approximately 86 km altitude.
channel, an acoustic ducting phenomenon can occur, as 1s
demonstrated in Fig. 24, wherein the energy associated with
an acoustic disturbance can become trapped in the region of
a relative sound-speed minimum. It is this mechanism of
ducting that is of interest here.

Tn the computer program INFRASONIC WAVEFORMS,” the
computation of modal waveforms involves the numerical
integration over angular frequency of a Fourier transform of
acoustic pressure where this integration is truncated at
high frequency. It has been speculated that this truncation

leads to the generation of what might be called "numerical

noise'" in the computer output. It was felt useful, therefore,
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to extend this integration beyond the previous upper-angular-
frequency 1limit by means of some high-frequency approximation.
In the case of an atmosphere with just one channel, the
technique for this extension is well known and dates back to

16 in 1951. Haskell's tech-

a paper published by N. Haskell
nique involves the W.K.B.J. (Wentzel, Kramers, Brillouin,
Jeffreys) method of solution (then in common use in quantum

mechanics, although its invention dates back to Carlinil7

L& in the early 19th century).

and Green
The approximations associated with the W.K.B.J.
method of solution can be applied to the analytical model on
which the computer program INFRASONIC WAVEFORMS is based at
frequencies above approximately 0.05 radian/sec (corresponding
to periods less than two minutes). Below that frequency,
effects due to density stratification in the atmosphere and
gravitational forces cannot be neglected. These effects
therefore are not germane to the discussion here.
The application of the W.K.B.J. method of solution to
the problem of describing propagation of acoustic disturbances
in a medium that contains two adjacent sound-speed channels

13 Eckart

has been discussed in the literature by Eckart.
introduced the technique of devising a W.K.B.J. model for
each of the sound-speed channels separately, then combining
the results of the two models rather than treating the

problem with a single model. In this chapter, Eckart's

method is applied to the case of infrasonic waves in the



65

atmosphere.

The W.K.B.J. Model

The W.K.B.J. model for propagation of acoustic
disturbances in a single sound-speed channel leads to an
approximation for the acoustic pressure p divided by the

square root of the ambient density Py @s follows:

P o y(z)e tuteikx (4.1)

where w is angular frequency, k is the wave number associ-
ated with the horizontal dimension x, and z is altitude.

Here ¢(z) satisfies the reduced wave equation

2 2
{dz R P (4.2)
dz c-{z)
where c(z) is sound speed as a function of altitude. The

W.K.B.J. approximation applies in general to all differential
equations of this type if the coefficient of y is sufficiently
"slowly varying." The approximation would appear to be

valid in the present context provided that

(4.3)

TeeT << %

where X is some representative wavelength of interest.



66

Eq. (4.3) implies that if the W.K.B.J. model is to apply
here, then substantial changes in sound speed should not
occur within distances corresponding to a typical wavelength

of interest.

Comparison of Dispersion Curves

A particular result of the W.K.B.J. method is that
dispersion curves v(w) for guided modes can be determined

from the equation

Z

top
-2 -271/2 ,. _ (2n + 1)«
. [c v ] dz Tl (4.4)
bottom
where v is phase velocity, n =0, 1, 2, 3, ..., and -
and z identify the lower and upper bounds of the sound-

top

speed channel, respectively.zg

Particular insight into the high-frequency behavior
of guided infrasonic modes in the atmosphere is gained when
Eq. (4.4) is solved numerically for both the upper and lower
channels (the model atmosphere being that given in Fig. 23
only without winds). The resulting dispersion curves are
shown in the lower portion of Fig. 25. One set of curves
(the dashed curves) is appropriate to the W.K.B.J. model for
the lower channel, and the other set (the solid curves) is
appropriate to the W.K.B.J. model for the upper channel. In

the upper portion of the same figure dispersion curves are
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shown as generated by the computer model of INFRASONIC WAVEFORMS.
The computer model solves a more complex problem in the sense
that the approximations inherent in the W.K.B.J. model are
not present.2

As is illustrated in the lower portion of Fig. 25,
the two sets of dispersion curves generated by the W.K.B.J.
models intersect at various points. A comparison of the
dispersion curves shown in both the upper and lower portions
of Fig. 25 reveals that these points of intersection mark
regions of near intersection in the (w,Vv)-plane between
adjacent curves of the computer model. 1In the right hand
portion of Fig. 26, one such region of near intersection is
shown (denoted "resonant interaction between adjacent modes')
with a corresponding point of intersection between two
dispersion curves of the W.K.B.J. models shown to the left.
It should be mentioned that the dispersion curves for the
computer model never intersect one another. An analytical

explanation of this fact has been given by Pierce.21

Inferences Concerning the Distribution

of Energy with Height

A further comparison of the dispersion curves shown in
Fig. 25 reveals that, for relatively high angular frequencies,
the dispersion curve corresponding to a given mode of the
computer model is comprised of portions of dispersion curves

from both sets of the curves generated by the W.K.B.J.
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models. Two important inferences about the asymptotic high-
frequency behavior of guided infrasonic modes can be drawn
from this fact. First, for some frequency ranges, and
depending on how dispersion curve portions match between
curves of the computer model and the W.K.B.J. models, it can
be inferred that the acoustic energy associated with a given
mode is comprised of energy associated more with propagation
of acoustic disturbances in one sound-speed channel than in
the other. As frequency increases, this association alternates
back and forth between channels. To illustrate, if, for a
small range of frequencies, a portion of a dispersion curve
of the computer model matches [in the (w,Vv)-plane] a portion
of one of the curves for the W.K.B.J. model for the upper
channel, then this matching implies that, for that mode and
for that small frequency range, the acoustic energy density
associated with that mode is greater in the upper channel
than in the lower channel. Secondly, in the standard refer-
ence atmosphere, the sound-speed minimum for the upper
channel is less than the sound-speed minimum for the lower
channel. It can be inferred, therefore, that those acoustic
disturbances for which phase velocities are less than the
sound-speed minimum for the lower channel are associated more
with acoustic energy trapped in the upper channel than in

the lower channel, and thus, for this reason, do not
contribute significantly to the acoustic energy at the ground.

This second inference implies that care must be taken as to
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which modes are chosen in the synthesis of a waveform for
a ground location, as some may not contribute while others

which do may be inadvertently omitted.

Implications for Waveform Synthesis

Currently, in the synthesis of infrasonic waveforms,
acoustic guided modes are numbered in order of increasing
phase velocity (i.e., SO’ Sl’ SZ’ ..., €tc.) and the sum over
modes 1s truncated at a maximum number of modes.2 The
analysis presented here indicates that this may be a very
poor technique for synthesizing high-frequency portions of
waveforms for locations near the ground since there is
always some frequency above which all of the first N modes
correspond to acoustic ducting in the upper sound-speed
channel. For the synthesis of ground-level signals from
sources below 50 km altitude, a preferable technique would
be to ignore the upper sound-speed channel completely for
frequencies above, approximately 0.2 rad/sec (possibly 0.1
rad/sec). Dispersion curves could then be taken as given by
the W.K.B.J. approximation, and profiles of modal amplitude
versus height could be computed by using the method outlined
by Haske11.16 Dispersion curves and amplitudes so computed
would fit directly into the general scheme which forms the
theoretical basis for the current versien of INFRASONIC
WAVEFORMS.Z Altering the technique for synthesis in this
manner might eliminate the high-frequency ''numerical noise"

that is currently present in synthesized waveforms.
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CHAPTER V

GEOMETRICAL ACOUSTICAL COMPUTATIONAL MODEL FOR THE
PREDICTION OF LONG-RANGE PROPAGATION

Introduction

In this chapter, a description is given of a computa-
tional model for the prediction of propagation over long
ranges in a medium whose properties vary with height only.
This model is based on geometric acoustical concepts and
should be applicable for periods less than one minute. To
some extent, the model is intended to complement the guided-
mode model of propagation which has been discussed in the
previous chapters.

The geometric acoustical method of characterizing
propagation has a large amount of literature pertaining to
it, most of which is concerned with underwater sound. It is
not the intent here to discuss the theory associated with the
method (that will be assumed to be understood), but rather to
present the computational implementation of that theory.

Some of the innovations that are introduced here and that are
not always included in geometric acoustical models are (1)
the use of cubic splines to approximate profiles of sound
speed versus height, (2) the inclusion of many acoustic rays

which connect source with receiver, (3) a method for computing
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ray parameters and amplitudes that is based on analytical

differentiation of geometric acoustical formulas which are
appropriate to a stratified medium, and (4) the inclusion

of phase shifts that occur at caustics.

In the most general sense, the propagation medium
considered here exists above a flat rigid surface and is
stratified with height z with the sound speed c(z) assumed
to be a continuous function, For simplicity, it is assumed
that no ambient motion of the medium exists with respect to
a frame of reference that is attached to the surface (i.e.,
no winds). In addition, the ambient density (po) and
ambient pressure (p,) are assumed to be constant throughout
(see Fig. 27a). Furthermore, it is assumed that the source
is localized at the coordinates x = 0, y = 0, and z = Zgc
(sée Fig. 27b) .

What is of prime interest here is the development of
a method for obtaining the acoustic pressure p(?,t) at
moderate distances from a source (greater than 50 km) where

> . . . .
p(r,t) is taken to be the geometric acoustical solution of

the wave equation
2 = 25 o4 = 2 _ - >
VE(/Vey) - (1/e%)0%(p/vVp )/ at" = -4nf(t)s (T - Tgp). (5.1)

In this equation, T is a general vector with x, y, and z
components, %SC is that vector which locates the source and

f(t) is a function which characterizes the time dependence
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Figure 27. Sketches Illustrating General Propagation Model.
(a) Typical Profile of Sound Speed Versus
Height. (b) Sketch of Point Source Above a
Flat Rigid Ground.
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of the source. In addition, p/ﬂE; is taken to satisfy the
boundary condition 3p/%z = 0 at the ground (z = 0).

Acoustic rays are lines that represent paths of
propagation which emanate from the source and each of which
lies in a vertical plane which contains the source (see
Fig. 28). Because of the circular symmetry of the geometry
chosen, only those rays that lie in the (x,z)-plane are
considered here. A typical ray undergoes refraction. For
example, when a ray is proceeding upwards, it will bend
downwards if the sound speed in the medium increases with
height, or alternatively, the ray will bend wupwards if the
sound speed decreases with height. Refraction makes it
possible for more than one ray to pass through a receiver in
the far field. In fact, for long distances of propagation,
it would be expected that there be many rays that connect
source and receiver. Schemes for computing rays are well
known and thoroughly discussed in the 1iterature.22

A nonuniform geometric acoustical approximation to

the solution of Eq. (5.1) may be taken as

P = P » (5.2)

where this sum is taken over all rays which connect source
and receiver. Individual terms in the sum have signatures

and amplitudes which may be computed from the eikonal

23,24

approximation, and from the condition that p//;o reduces
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with Height.
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to the form F(t - R/c)/R (t being time and R being distance

from the source) in the immediate vicinity of the source.
The eikonal approximation is suspect at any point

along a ray where ray-tube area vanishes. For the most part,

this difficulty with the approximation may be circumvented

by including a phase shift of -n/2 in the signal associated

with a ray every time that ray passes through such a point.ZS’26

In other words, if a function for a signal is considered to

be of the form
E(t) = Ref B (i) ¢ 1ot g (5.3)
8]

this function would be replaced by

Fonige (8 = Refo "I/ () o710t 4y (5.4)

upon a single such passage. The shift of -¢/2 is applied
each time the ray-tube area goes to zero along a ray, and 1is
in addition to that shift which is due to travel time along
a ray. The modeling of successive phase shifts by intervals
of m/2 is relatively straightforward. Howefer, the determi-
nation of the number of times that such a shift occurs is
more difficult. A method for this determination is provided
in this chapter.

For the sake of completeness and versatility in the
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modeling of propagation over long distances, it is desirable
to include explicitly effects that take place at what are
termed caustics and lacunae. Lacunae are regions that are
characterized by shadow zones (i.e., regions in which there
is a relative absence of rays). A caustic is a surface
formed by a locus of points at which adjacent rays intersect
(or at which ray-tube areas vanish). As mentioned, the
eikonal approximation should be suspect in the vicinity of

a caustic (indeed it is invalid directly on a caustic).

A lacuna occurs whenever two adjacent rays separate
from one another. This separation leaves a region in which
there is one less ray than in adjacent regions (refer to
Fig. 29). A lacuna can occur when there is a maximum in a
sound-speed profile (see LACUNA A in the sketch). A lacuna
can also occur near the ground when the sound speed there
decreases with height (see LACUNA B in the sketch).

For simplicity, lacunae are not considered here. It
seemed more important to investigate first techniques for the
inclusion of effects associated with caustics. It is possible
to conceive of a hypothetical model atmosphere in which
caustics occur, but lacunae do not. Such a model would be
one in which the sound speed had a single minimum with height
but no maxima, and for which there was no ground (see Fig.
30). While this model may not be wholly realistic, it should
suffice for the demonstration of the computational methods

presented in this chapter.
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In the Appendix, a number of documented FORTRAN
subprograms are provided which exemplify the numerical imple-
mentation of the computational techniqueg discussed here.

It was not the intent of this investigation of geometric
acoustical concepts to devise a completely self-contained
computer program for the prediction of acoustic waveforms.
Nonetheless, the subprograms were designed to be included in
such a program. Emphasis in this chapter is placed on a
discussion of computational techniques. A number of simple
numerical examples which use the subprograms are presented for

illustration.

The Sound-Speed Profile

Typically, in modeling a sound-speed profile, discrete

values of sound speed are initially provided [ci, i=1,2,3,

.., NCS (NCS meaning number of c¢'s)] which correspond to
discrete values of height {zi, i = 1;2:35.5:5 NCS): The
points (zi, ci) are known as lattice points. Lattice points
are used to define, by some approximate means, a function
c(z) which provides sound-speed values at arbitrary heights.
For the calculations often used in geometric acoustical
predictions, values of dc/dz and dzc/dzz at arbitrary heights
are needed, as well. An interpolation scheme known as the
cubic splines method can be used to approximate c(z) and its
first two derivatives. This method was recently introduced

into the literature on underwater sound by Moler and Soloman.8
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Using the notation given in that reference, let

Az, = Z, 7 %34 i#® 1; sesy NCE; (5.5%)

Ac, = [ci - ci_l)/ﬁz.l i Ly ey NGB, (5.5b)

w = (z - zi_ljfazi i=1, ..., NCS, (55 8€)

and w=1~+-w 1w, ey DB (554

Given Eqs. (5.5), the sound speed c(z) for z between z. and

2,1 can be approximated by the cubic polynomial

c(z) = We. . + we: + (Az:)%[a. (W° - W) + a. (3w’ - 1)],(5.6)
i-1 i 1 i-1 i YA

where the a, are as defined below. Note from Eq. (5.6) that

the sound speed is continuous with height. In particular,

when z = zZy and z = Z; .10 c(z) reduces to c; and Ci_1»

respectively.

According to Eq. (5.6), the first, second, and third

derivatives of the sound speed are

.
de/dz = Ac, + dz;[-a; (3w’ - 1) + a (3w’ - 1)1, (5.7)

Z 2 -
d®c/dz” = 6(wai_1 + wai), (5.8)
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and dsc/dz3 = 6(ai - ai_lj/azi, | (5.9)

respectively, so that

dc/dz = Ac, - azi(ai + Zai_lj at z; 1, (5.10)

= Acg ¢+ Azi(Zai + ai-l) at z;, (5.11)

dzc/dz2 = 6a at z (5.12)
i-1 i-12 *

- 6ai at z,. (5.13)

From these equations it can be seen that dzc/dz2 is continuous

while continuity of dc/dz requires that

Ac, + ﬂzi(Zai ta, q) = ACiq - Azi+1(ai+1 # Zai) (5.14)
for all values of i. Continuity of the third derivative is
not imposed on c(z).

As implied by Eq. (5.14), the values for the a; that

are required to insure continuity of dc/dz must be such that
a;,1 = (Aci+1 - Aci)f&zi+1 - 2a;[1 + azi/ﬂzi+1]



Given ay and a,, it is possible to generate all of the

succeeding a.

a.
1

for i > 2, where

i+l

Ll

=k

K2 = 0;

L2 = 1;
and

M, = 0;

The linear nature of Eq.

Ki + Lia2 + Mlal

i i1 s e T Ly
Bily - Ciligo
ByMy - CiMy g
[&ci+1 = aci)/&zi+1,

2[1 + &zi/&zi+1],

23/825 415
Kz = Ay Ky = Az - B3Ay,
Ly = -By; L, = By, - Cg,
My = By M, = B.B,.

(5

(5.

(5

(5.

(5

(5.

(5.

(5.

(5.

(5
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(5.15) is such that

.16)

17a)

.17b)

17c)

.18a)

18b)

18c)

19a)

19b)

.19¢)
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Beginning with the values of K, and K3 above, it is possible
to generate all of the succeeding Ki‘
The boundary conditions on the a; are taken to be
a; = aycg T 0. While these boundary conditions may seem
arbitrary, they simply require that the sound-speed profile
be linear above Znes and below zq (these linear portions being,

typically, outside the height range of interest). Given the

boundary conditions on the a., it follows that

By = - KmelLigres (5.20)
The a, for 1 = 3, ..., NCS can now be computed according to
Eq. (5.15).

The numerical implementation of the above computational
scheme is realized in the subroutine called DASOL, the deck
listing of which is given in the Appendix., When this
subroutine is called, the 5 and z, are presumed to be stored
in COMMON. The a, [denoted by ASOL(I)] are stored in COMMON
when DASOL returns.

When the a; have been computed, the sound speed at a
given arbitrary value of z is computed by a function subprogram
called CSP(Z). When a value for z is input, this subprogram
uses the values for the a;, the Ci» and the z, to compute the
sound speed at z by Eq. (5.6). In manners analogous to that
used in CSP(Z), the function subprograms called DCDZ(Z) and

DCDZS(Z) compute dc/dz and dzc/dzz, respectively, according
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to Eqs. (5.7) and (5.8), respectively. The deck listings of

CSP(Z), DCDZ(Z), and DCDZS(Z) are also given in the Appendix.

Ray Parameters

For an atmosphere without winds that is vertically
stratified in temperature the equations of geometrical

acoustics predict that
dz/dz = # c/(vs - c2 1/2, (5.21)

where x and z are the horizontal and vertical distances,
respectively, which define a given ray, and where vp is the
horizontal phase velocity associated with that ray. For any
ray, Vp is a constant so that Snell's law (which is a

corollary of the ray equations) predicts that, at any point

on the ray,

vp = ¢/(sin6) = constant, (5.22)
where ¢ is the local sound speed and 6 is the angle between
the momentary ray direction and the vertical (z-axis). The
sign convention for Eq. (5.21) is such that dx/dz is positive
whenever the ray is moving obliquely upward and negative
whenever it is moving obliquely downward. The equations of
geometrical acoustics also predict that the rate of change

of net travel time t along a given ray with respect to
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height is
dt/dz = # (vp/c)/(v; - e, (5.23)

In the collection of FORTRAN subprograms given in the
Appendix, the function subprograms RDXDZ(Z) AND RTDTZ (Z)
compute the magnitudes |dx/dz| and |dt/dz|, respectively.
Both of these subprograms use CSP(Z) to find the sound speed
value at arbitrary height z. The value for Vp is assumed to
be stored in COMMON.

A turning point for a ray is that value of z at which
c(z) = vp. In general, when a sound-speed profile contains
only one minimum, there are two such turning points, one upper
and one lower (denoted ZUP and ZLOW, respectively, in the
subprograms). The subroutine TNPNT is used to locate
turning points. In TNPNT the horizontal phase velocity VP,
and lower and upper height bounds ZBL and ZBU are taken as
inputs, and a systematic search is performed between these
bounds for the turning points. The search proceeds by
dividing the interval (ZBL,ZBU) into NCS + 3 intervals, each

of width
DELTA = (ZBU - ZBL)/(NSCAN + 1). (5.24)

A search for the root of the function CMVP(Z) = CSP(Z) - VP

is then conducted by successively examining the sign of
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CMVP(Z) at the points ZBL, ZBL + DELTA, ZBL + 2%*DELTA, etc.,
until an interval is found for which the signs of CMVP(Z)

at the two interval bounds are opposite. Success at this
search implies that a root is bracketed in that interval.

The actual value of the root [i.e., the zero of CMVP(Z)] is
found by using a library subroutine (see the deck listing of
ZREAL2 given in the Appendix). The above search then proceeds
to succeeding intervals until a maximum of two roots is
found. The output of TNPNT includes NRTS (the number of
roots; 0, 1, or 2) and the values ZA and ZB of those roots
[ZA is the first root (smallest z), and ZB is the second root
(larger z)]. Typically, ZA is expected to correspond to the
lower turning point, and ZB to the upper turning point.

In the successive integration between limits (one or
both of which are turning points) of expressions such as
those given in Eqs. (5.21) and (5.23), care must be taken
to insure that these expressions remain real and finite. To
insure this, the above search for turning points is supple-
mented to guarantee that the points are not overshot. For
this purpose, another subroutine SHIFT is used to adjust
the values of ZA and ZB found by TNPNT to values which are in
the immediate neighborhood of these, but which are such that
CSP(ZLOW) < VP and CSP(ZUP) < VP where ZLOW is the shifted
value for ZA and ZUP is the shifted value for ZB. These

8

adjustments are carried out in units of 10 ° until the above

criteria are met.
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In the subprogram set, the integration in general of
any z-dependent quantity between arbitrary limits (not
necessarily turning points) is accomplished by the function
subprogram called RAINT. For example, in the case of the
quantities |dx/dz| and |dt/dz]|, RAINT performs integration

so that

ZU

RAINT (RDXDZ, ZL, ZU) :S |dx/dz| dz and (5.25)
Zk
ZU

RAINT (RDTDZ, ZL, ZU) = ldt/dz]| dz. (5.26)
ZL

In the performance of this integration, the range of integra-
tion is broken into intervals from ZL to ZAVE and from ZAVE

to ZU where ZAVE = (1/2)(ZL + ZU). Thus

ZAVE
(INTEGRAND) dz - (INTEGRAND) dz.(5.27)
U

ZAVE
INTEGRAL =
ZL

The reason for separating the integral is that, to perform
the actual integration, RAINT uses a library subroutine
(see the deck listing of QUAD which is provided in the
Appendix) which is most efficient when.it integrates away
from a singularity. There is the possibility that, as
discussed above, the integrand may be singular at the

integration limits (e.g., such as is the case with RDXDZ and
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RDTDZ at turning points). As will become evident, RAINT is
used by a number of subroutines throughout the computational
scheme.

In the subroutine RANG, RAINT is used to determine
the integrals of |dx/dz| and |dt/dz| between lower and
upper turning points. The values of z corresponding to the
turning points are supplied as inputs, and the other required
information is presumed stored in COMMON. The outputs of
RANG are RTIME and RLNTH for the integrals of |dt/dz| and
|dx/dz|, respectively. These two output parameters are
significant because rays for the atmospheric model considered
here are periodic in path. For propagation over N ray half-
cycles, the travel time is simply (N)*(RTIME), and the
horizontal distance traveled is simply (N)* (RLNTH).

Any ray that connects source and receiver may be
completely characterized by (1) its associated horizontal
phase velocity VP, (2) an index parameter IT (which is one
if the ray is proceeding initially obliquely upwards, and
minus one if it is proceeding initially obliquely downwards),
(3) another index parameter JT (which is one if the ray is
proceeding terminally obliquely upwards, and minus one if it
is proceeding terminally downwards), (4) the number NUP of
upper turning points through which the ray passes, (5) the
number NDOWN of lower turning points, (6) the initial height
ZSC of the ray (i.e., the source height), and (7) the

terminal height ZLIS of the ray (i.e., the receiver height).
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The meaning of some of these parameters is graphically
illustrated in Fig. 31. It should be noted that, if IT = JT,
then NUP = NDOWN, if IT = 1 and JT = -1, then NDOWN = NUP -
1, and if IT = -1 and JT = -1, then NUP = NDOWN - 1.

Given the above parameters, the total horizontal
distance which a ray travels can be computed as follows

(refer to Fig. 31 again):

R = (N)*(RLNTH) + RST + REND, (5.28)

where N is the number of complete half-cycles the ray under-

goes given by

N = NUP + NDOWN - 1 (5.29)
and where
ZUP
RST = S |dx/dz| dz, IT & 1, (5.30a)
Z5C
ZSC
= S |dx/dz| dz, IT = -1, (5.30b)
ZLOW
ZUP
REND = S |dx/dz| dz, JT = -1, (5.30¢)
ZL 1S
EL1S
= S |dx/dz| dz, JT = 1. (5.30d)

ZLOW
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ZUP

ZSC
ZLow

RST REND

Figure 31. Parameters for Characterizing a Ray.
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Eq. (5.28) holds even when NUP and NDOWN are zero. For

example, if IT = JT = 1 and NUP and NDOWN are zero, then

ZUP ZLIS ZUp
R = g + S - S |dx/dz| dz

ZSC ZLOW ZLOW
ZLIS

= 8 |dx/dz| dz. (5.31)
ZSC

The computation of total range is accomplished by
the subroutine TOTRAN. In this subroutine TNPNT is first
called to find the turning points, then SHIFT is called to
adjust the turning points so that RDXDZ(Z) remains finite
throughout the integration range, and then RANG is called
to determine the ray half-cycle length RLNTH. The integrals
RST and REND are performed with the use of the function
subprogram RAINT. The same general scheme used to compute
total range can be used in TOTRAN to compute total travel
time T, as well. It is only necessary to replace RDXDZ by

RDTDZ, RLNTH by RTIME, and R by T in the subroutine.

Rays Connecting Source and Receiver

Given that relevant parameters associated with rays
can be computed, a related capability to have in any geometric
acoustical computational scheme is that of the identifi-

cation of all rays which connect source and receiver locations.
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Let the source and receiver heights be denoted, respectively,
by ZSC and ZLIS as before, and the horizontal distance
between the source and receiver be denoted by RANGE. As
explained in the previous section, given a realistic set of
values for the parameters VP, ZSC, ZLIS, IT, JT, NUP, and
NDOWN, it is possible to compute the total range of propa-
gation R associated with these values. Given R, it is
possible to define a function RMRAYD(VP) which is the differ-
ence between RANGE and R. By holding ZSC and ZLIS fixed,

the other parameters VP, IT, JT, NUP and NDOWN can be varied
so as to vary R until RMRAYD(VP) vanishes. In doing so,

it is possible to define completely a ray that connects the
source and receiver. In fact, since there are perhaps
several (or in the case of very long ranges, many) groups

of values for these parameters such that RMRAYD(VP) vanishes,
the above scheme can be used to find all rays that connect
source and receiver. A ray type can be thought of as being
denoted by IT, JT, NUP, and NDOWN, and a specific ray (given
the type) can be thought of as being defined by its associ-
ated value for VP.

The function subprogram RMRAYD(VP) computes the above
defined difference. In RMRAYD(VP), VP is the independent
variable and the remaining necessary parameters are made
available through COMMON. To find the values of VP at

which
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RMRAYD(VP) = 0 (5.32)

given fixed ZSC, ZLIS, IT, JT, NUP, and NDOWN, the subroutine
FNDVP is used. Briefly, FNDVP is used to scan values of VP
between the values VPHST and VPHEND at intervals of SDELTA
until an interval is found within which RMRAYD(VP) changes
sign. Once an interval is found, a library subroutine 1is
called (sée ZREALZ in the Appendix) to find the precise
value of the root of RMRAYD(VP). Up to NMAX such roots are
found (the number actually found is denoted by NFND), these
roots being denoted by VPEND(1), VPEND(2). . .VPEND(NFND).
By use of FNDVP, it is possible in principle to find all
rays of a given type which connect source and listener. A
systematic variation of ray types (IT, JT, NUP, and NDOWN)
will, in this manner, identify all the rays that connect

source and receiver.

Spreading of Adjacent Rays

Let two coplanar rays, both proceeding initially
either obliquely upwards or obliquely downwards, be charac-
terized by phase velocities Vpl and VpZ' Assuming that sz
is arbitrarily close to (but not equal to) Vpl’ the separa-
tion of the two rays may be characterized by a parameter
As which (see Fig. 32) is the perpendicular distance from a
point on the first ray to the second ray. As is positive

if the second ray lies above the first, and negative if the
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RAY 2

SOURCE

Figure 32. Definition of Parameter As Which Characterizes
Two Adjacent Rays with Horizontal Phase
Velocities Vpl and Vp2'
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reverse 1is true. The parameter As may be considered as a
function of horizontal distance x and phase velocity vp.

The 1imit

ds/dvp = : 1i$ {as/(vpz - Vpl)} (5.33)
p2 'pl

may be considered to be a uniquely defined function of x,

s ray type (IT = 1 or -1), and ray initial height ZSC.

p’
The derivative in Eq. (5.33) is termed the ray spreading

function. Note that within any ray segment (i.e. between

turning points)

2}1/2

1]

ds/dvp i(dx/dvp]/{l + (dx/dz)

= 2(dx/dv ) {1 - (c/vp)z}l/Z, (5.34)

where the plus sign applies if the ray is proceeding
obliquely downwards (JT = -1), and the minus sign applies if
it is proceeding obliquely upwards (JT = 1). dx/dvp is the
rate of change of the horizontal distance of separation with
respect to phase velocity at fixed z and for fixed ZSC.
dx/dvp may be calculated given the general ray type. For a

ray that proceeds initially upwards (IT = 1), and which goes
through NUP upper turning points and NDOWN = NUP lower

turning points, aﬁd which ends with the direction of propa-

gation obliquely upwards
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ZUp ZUP Z
X = |dx/dz | dz + N |dx/dz | dz + |dx/dz | dz,
ZSC ZLOW ZLOW

(5:35)
where N = NUP + NDOWN - 1 = 2*(NUP) - 1, and where the
integrand |dx/dz| is given by Eq. (5.21). To differentiate
this expression with respect to Vg it is necessary to take
into account the fact that ZLOW and ZUP, as well as |dx/dz]|,
depend on vp.

In order to evaluate the derivatives with respect to
vp of the integrals in Eq. (5.35), it is necessary to perform
integration by parts since singularities arise upon formal
differentiation. For this purpose, it is more convenient to

rewrite EBq. (5.35) as

x = I(ZSC,ZUI) + (N + 1)*I(ZUI,ZUP) +

+ (N + 1)*I(ZLOW,ZLI) + (N)*I(ZLI,ZUI) + I(ZLI,Z), (5.36)

where I(Z1,Z2) represents the integral of |dx/dz| between
the indicated limits, ZUI is a fixed (Vp-independent] value
of z slightly less than ZUP, and ZLI is a fixed value
slightly greater than ZLOW (see Fig. 33). I(ZUI,ZUP) can

be rewritten as

I(ZUI,ZUP) = J- U(ZUP - z)|dx/dz| dz, (5:37)
ZUI
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ZUP
ZUl

ZLl
ZLOW

RANGE

Figure 33. Definition of Parameters ZUI (Slightly Below
Upper Turning Point ZUP) and ZLI (Slightly
Above Lower Turning Point ZLOW).



where U(ZUP - z) is a step function defined so that

U(a - z) =1, z = a
=0, 2z »a
and where
dx/dz| = -(de/d2) T (4/d2) (v - 172,

Integration by parts in Eq. (5.37) gives

I(ZUI,ZUP) = [(dc/dz)'l(vg ¥ cz)l/z]IZUI
+J' (g, A 2yzup - 2) (d/dz) (de/dz) L dz.
ZUI

Consequently,

(d/dv )1 (ZUT,ZUP) = [(vp/c)(dc/dz)'l ax/4z] | yyr

ZUP
+ (vp/c)[dx/dz](d/dz)(dc/dz)'
ZUT

1 dz.

100

(5.38)

(5.39)

(5.40)

Provided that dc/dz does not vanish in the interval between

ZUI and ZUP, both of the terms in Eq. (5.40) should be finite.
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In a similar manner, it can be shown that

(d/dv.)I(ZLOW,ZLI) = - {(v /c)(dc/dz)‘1|dx/dz|}|
P P ZLI
ZLl
. S (vp/c)|dx/dz|(d/dz)(dc/dz)'1 dz. (5.41)
ZLOW

The derivatives of the remaining terms in-the expression
for dx/dvp [Eq. (5.36)] are relatively simple to obtain since
the integration limits for these terms are independent of

vp. In particular

ZUT
(4/dv )1(28C,201) = - v, c)(vs -« g%
75C

32 45, (5.42)

Thus, the expression for dx/dvp (IT = 1, JT = 1) can be

written
dx/dvp = I1(ZSC,ZUI) + (N + 1)*J1(ZUI) + N + 1)*I2(ZUI,ZUP)
- (N + 1)*J1(ZLI) + (N + 1)*I2(ZLOW,ZLI) + (N)I1(ZLI,ZUI)
+ T108LT ., 2) . (5.43)

where
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ZB
T1(ZA,ZB) = - 8 cvp(vé - c2ym32 g, (5.442)
ZA
J1(ZA) = {(v /c)(dc/dz]_1|dx/dz|}I y (5.44b)
P z = ZA
and

2B
12(ZA,ZB) = S (vp!c]]dx/dz[(d/dz)[dc/dz]-l dz.  (5.44c)

ZA

In general, for a ray of specified type (IT, JT, NUP,

and NDOWN) the corresponding expression for dx/dvp is

I1(ZSC,ZUI)

]

dx/de + (2)*(NUP)*J1(ZUI) + (2)*(NUP)*I2(ZUIL,ZUP)

I1(ZLI,ZSC)

(2)*(NDOWN) *J1 (ZLI) + (2)*(NDOWN)*I2(ZLOW),ZLI)

I1(ZLI,Z)
(NUP + NDOWN - 1)*I1(ZLI,ZUI) + o [5edE)
I1(Z,ZUI)

+

The upper and lower choices for the first term correspond to
IT = 1 and -1, respectively, while the upper and lower choices

for the last term correspond to JT = 1 and -1, respectively.
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The integrand for the integrals of type Il is computed

by the function subprogram FTRM(Z), and twice the values of

those of type I2 are computed by the function subprogram

FTRMUL(Z). That is,

I1(ZA,ZB)

and 12(ZA,ZB)

RAINT (FTRM, ZA, ZB) (5.46a)

RAINT (FTRMUL,ZA,ZB) /2. (5.46b)

In addition, the quantity 2[J1(Z)] is computed by the

function subprogram TRNPT(Z). In other words,

TRNPT(Z)

Thus, the expression

dx/d
%/ vp

]

1

2v, (de/dz)” (vé . By uez, (5.47)

for dx/dvp can be written as
TRMI + (NUP)*TRNPT(ZUI)
(NUP) *RAINT (FTRMUL,ZUI, ZUP)

(NDOWN) *TRNPT (ZLI)

(NDOWN) *RAINT (FTRMUL , ZLOW, ZL1)

(NUP + NDOWN - 1)*RAINT(FTRM,ZLI,ZUI)

TRMF, (5.48)
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where the first and last terms are

TRMI = RAINT(FTRM,ZSC,ZUI) for IT =1 (5.49a)

= RAINT(FTRM,ZLI,ZSC) for IT = -1, (5.49Db)

and TRMF = RAINT(FTRM,Z,ZUI) for JT = -1 (5.50a)
= RAINT(FTRM,ZLI,Z) for JI = L. (5.50b)

Finally, ds/dvp may be calculated from Eq. (5.34) as follows:

ds/dv = -SIGN(IT)*(dx/dv ) [1 - (c/vp)z]lfz. (5.51)
The sequence of computations described above is
carried out by the subroutine CDSDVP. The parameters VP,
zsc¢, Z, IT, JT, NUP, and NDOWN are inputs, and the output is
DSDVP. The parameters ZLI and ZUI are computed internally

to CDSDVP and are set to

ZLI ZLOW + .01(ZUP - ZLOW) (5.52a)

I

ZU1 ZUP - ,01(ZUP - ZLOW), 5 .52h)

The choice of the .01 factor is of course arbitrary. The

chief constraint on the use of CDSDVP is that dc/dz should
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not vanish between ZLOW and ZLI and between ZUI and ZUP.

Along a single ray (with IT = 1) it is apparent that,
up to the first upper turning point, ds/dvp is positive
since FTRM(Z) is negative and JT is positive. At the
turning point

limit &

ds/dv_ = [1 - (c/vp)2]1/2 j dv (vg - cz)-s/zdz .
Z

p P
z -+ ZUP
sC (5.53)

This 1imit can be evaluated easily if c¢ is expanded in a

power series about its value Vp at z = ZUP so that

c = vp + o(z - ZUP), (5.54)

where

a = (dc/dz) i (2.253)
ZUP
and if the integral in Eq. (5.53) is broken into integrals
from ZSC to ZUI and from ZUI to z, given that ZUI < z < ZUP.
Following these steps, the expression in the braces of

Eq. (5.53) becomes
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ZUI
20.1/2 ) [vp + a(z - ZUP)]Vp
9 avp - 2) ) 7y dz
p 75C {vp = [vp + a(z - ZUP)]"}
2 [Vv. + a(z - ZUP)]v
* 5 P pz 77 4z - (5.56)
At {vp - [vp + a(z - ZUP)]17}
Thus, in the 1limit as z approaches ZUP,
ds/dvp = 1/«
= [1/(dc/dz)] (5.57)

ZUP

which, interestingly, is independent of ZSC.
Between the first upper turning point and the first
lower turning point ds/dvp is given by
2142
1 /

ds/dv = [1 - (c/vg] {RAINT (FTRM, ZSC, ZUI)

+

TRNPT (ZUI)

+

RAINT (FTRMUL, ZUI , ZUP)

+

RAINT(FTRM,Z,ZUI)} . (5.58)
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It can be shown that Eq. (5.58) may be put in a form which is

independent of ZUI so that

1/2, 3/2 1/2, 3/2
(v./2) /a (v./2) /o
- 2:1/2 P P
ds/dv_ = [1 - (c/v.)"] ™
P P (zup - zs)/%  (zup - z)1/2
ZUP ZUP
- S arg(lj(zo,ZUP}dz0 - \ Argtl)(zo,ZUP)dzO ,
Z8C 2 (5.59)
where
(1) “Yp "xza
Arg (z,ZUP) = - (5.60)
(vg . NS fopp 2)3/2(2mvp)3/2

The presence of the second term in Eq. (5.60) insures that
the integrals in Eq. (5.59) exist. As z approaches ZUP,
the second term in the braces of Eq. (5.58) dominates so that

in the limit as z approaches ZUP
[1 - (c/vp)2]1/2 5 (Za/vp]l/Z(ZUP . R (5.60)

which means that ds/dvp approaches 1/o in accordance with

Eq. (5.57). On this basis, it can be concluded that the
quantity in braces in Eq. (5.58) starts out large and positive
for z close to ZUP, decreases monotonically [since FTRM(Z) is

always negative] and eventually goes to minus infinity as z
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approaches ZLOW. Therefore, there is one and only one point

on the ray between the first turning point and the second

turning point at which ds/dvp = 0. This point is identified

as a point on a caustic (i.e., where adjacent rays intercept).
At the second turning point (first lower turning

point) the same sort of limiting process as described above

implies that

dS/va = [1/(dc/dz]]{ (5.62)
ZLOW

which, as mentioned earlier, is a negative number. Between
the first lower (second overall) and the second upper (third
overall) turning points, it may be argued that ds/dvp goes
to zero at one and only one point. Before that point, ds/dvp
is negative, and after that point it is positive. ds/dvp
then approaches [1/(dc/dz)] 7up 2t the next upper turning
point, and so forth. As an illustration, the subprograms
given in the Appendix were used to compute a plot of ds/dvp
versus range for the model atmosphere shown in Fig. 30 and
for the case where ZSC and VP were set to 8 km and 0.31 km/sec,
respectively. This plot is given in Fig. 34.

The number of times ds/dvp goes to zero along a ray

(i.e., the number of caustics encountered) is simply

Number of caustics = (Number of complete ray half-cycles)

+ (zero or one). (5.63)
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Figure 34. Values of ds/dvp Along Two Adjacent Rays.
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The second term in Eq. (5.63) is zero if JT = 1 (upgoing ray)
and the current value of ds/dvp is negative, or if JT = -1
(downgoing ray) and the current value of ds/dvp is positive.
Otherwise, it is one. The number of complete ray half-
cycles is NUP + NDOWN - 1 if either NUP or NDOWN is greater
than one. It is a simple matter to determine at a given
point on a ray just how many caustics the ray has encountered

in passing from the source to that point.

Ray Amplitudes

Given that, in the immediate vicinity of the source,
the acoustic pressure p(?,t) has the functional form
F(t-R/c)/R (R is distance from source), then the Fourier
transform ﬁ(m,?] of the acoustic pressure can be inferred

af to be, in the first

(from the geometric acoustical model)
- - - - - +
approximation, given by a sum over rays. That is, p(w,T)

can be expressed approximately as

~

P(w,T) = D, P (5.64)
rays Y

where p(m,?) is defined so that
p(T,t) = ReJ- ﬁ(w,?)e-lwt dw. (5.65)
o

The contribution p from any particular ray that connects

ray

source and receiver can be expressed simply as
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pray - f[m)pé/z(zsc){Atmosphere factor}{Spreading factor}
N ;
x {(+i) €} e¥tray , (5.66)

where Nc is the number of times that the ray has touched a
caustic, %(m) is the Fourier transform of the function that
characterizes the time dependence of the source, po(zscj is
the ambient density at the source height [in the model
considered here, po(z) is assumed constant throughout], and
t is the net travel time along a ray. The atmospheric

ray

factor is given by
{Atmospheric factor} = {(p.c)./(p.C) }1/2 (5.67)
. P Pg¥det LPg=+80 .

while the spreading factor is the inverse square root of the
ray-tube area normalized so that the factor reduces to 1/R
near the source (i.e., at the beginning of the ray). In
order to determine these factors, it is necessary that
~ 2 _

{|pray] /poc}{ray tube area} = constant (5.68)
along the ray. It is also necessary that the acoustic
pressure have the functional form in the vicinity of the source
as specified above and that the net phase change in propaga-
tion from source to receiver be -pt - Ncn/Z.

ray
For a cylindrically symmetric bundle of rays, it can
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be shown that the associated ray-tube area at the receiver

location should be a constant times I(ds/dvp) , where

= Thorl
ds/dvp is the quantity (evaluated at the receiver location)

discussed in the previous section and where THor is the

horizontal distance from source to receiver, It can also be
shown that in the vicinity of the source
chz/v3

|ds/dv_| = P : (5.69)
A I N

T
Hor

Given Eq. (5.69) the spreading factor can be identified in
general as the square root of
2;.3
C./Vp 1
(1 - (c/vp§2]17z rHorlds/dvp|

{Spreading factor}z = ; (570)

where ¢ is taken here as the sound speed at the source height.

It should be noted that the spreading factor blows up
whenever ds/dvp goes to zero (i.e., at a caustic). This fact
is one indication that the general formula of Eq. (5.60) may
not be applicable everywhere. The modification of the method
to take explicitly into account proximities to caustics is
beyond the scope of the investigation presented here. More
information on caustics is available in reference 6.

As an illustration of the above method, the subprograms
given in the Appendix were used to compute some of the

factors in Eq. (5.66) for the case of a constant-frequency
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(taken here as w = 1 rad/sec) source. The example chosen is
appropriate to the simplified sound-speed profile of Fig. 30
and for the case where fthe source and receiver heights are

15 and 17 km, respectively, and the distance of propagation
is 340 km. For this example, six rays were found to connect
the source and receiver. Parameters and factors for these

rays are given in Table 4. There, for each ray, tabulations

are given of VP, IT, JT, NUP, NDOWN, N T ds/dvp,

c’ “ray’
the spreading factor according to Eq. (5.70), and the net

phase change which is -t - NCW/Z. From the cubic-spline

ray
approximation, the sound speed at the source was found to be
0.23074 km/sec. The atmospheric factor is, of course, one.
Below Table 4, a sum over rays is given of the spreading factor

2L E + Ncﬂ/ZJ Tt

times e T This sum is then multiplied by e ~~.

The resulting expression provides information on the amplitude

and phase of p(?,t) at the receiver.

Concluding Remarks

In summary, the computational scheme described in
this chépter will provide much of the information needed to
describe long-range propagation for the case of a medium that
contains a single sound-speed channel. Given lattice points
for a sound-speed profile and source and receiver locations,
this scheme will model the profile, find rays that connect
source and receiver, compute distances and times of propaga-

tion, calculate a parameter that characterizes the spreading
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Table 4. Ray Parameters and Computed Factors for the Example
Described in the Text (w = 1 rad/sec).

VP IT JT NUP NDOWN N_ t ds/dv, Spreading phase

(km/sec) € (;zz) [sec)p facf?r change
(km ) (radians)

.33392 1 1 4 4 7 1443.6 -407.81 3.78 x 10-3 -1455.6
.271446 1 = 5 4 8 1478.80 146.69 1.007:{10-2 -1491, 37

.24461 3 =i 5 & 9 1480.1 -113.6 1.95 x 10‘2 -1494.2

.33835 =1 -1 4 4 7 1431.0 439.,5 3.59 x 10-3 -1442.0
.271453 -1 1 4 5 8 1478.81 -146.76 1.006}{10‘2 -1491, 38

.24448 -1 1 4 5 9 1480.3 114.0 1.69 x l‘.'J-2 ~1494.4

|: E {spreading factor} e
rays

= f{TT5 %) 107%Y @ Y501y, =
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of adjacent rays, and allow for the determination of the
number of caustics that any given ray has touched. Given
that the receiver is not in the vicinity of a caustic, the
scheme will provide the information necessary to compute the

amplitude and phase of a signal as received in the far field.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

Remarks Regarding Leaking Modes

It was shown in Chapter II that, for a model atmosphere
in which the sound speed is constant above some arbitrarily
large height, the GR0 and GRl modes should have low cutoff
frequencies and should be leaking below that height. Given
these facts, perturbation techniques were provided for the
computation of the imaginary and real parts kI and kR’
respectively, of the horizontal wave numbers for these modes.

Knowledge of the k., then made it possible to include, in

I
a synthesis of waveforms, contributions from the GR0 and GRl
modes at frequencies where these modes were leaking. It was
also learned that these contributions were significant enough
to warrant such an inclusion. Finally, another perturbation
technique was used to explain the transition of these modes
from non-leaking to leaking propagation.

In Chapter III, a description was given of the
adaptation of the computer program INFRASONIC WAVEFORMS to
include leaking modes. It was shown how_the program could
be used to compute the parameters necessary to calculate the

kI in the manner outlined in Chapter II. It was further

shown that, by a judicious choice of model atmospheres, the
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phase velocity and the source-free amplitude functions of the
GRO and GRl modes could be extended down to frequencies very
close to zero. It was then shown how, given these functions
and the kI, waveforms could be synthesized with leaking modes.
Numerical examples were provided which demonstrated that the
contribution from leaking modes was significant and physically
meaningful as far as the prediction of the early portions of
infrasonic arrivals was concerned.

The question might be raised as to whether the kI
themseives are physically meaningful. Such would be the case
if the earth's atmosphere were terminated by an upper half-
space, and if there were no physical dissipative mechanisms
present. However, neither of these conditions is fulfilled;
and it must be kept in mind that the use of an approximate
model atmosphere gives rise to approximate results. It must
also be remembered that the actual values of the kI depend on
the choice made for the height of the bottom of the upper
halfspace. To that extent, the kI are arbitrary. Aside from
this, the kI are so small in magnitude that the associated
derived waveforms are ver? much like those derived with the
kI nonexistent.

In 1light of the above comments. it is recommended
that, in the synthesis of waveforms, the calculations of the
kI not be carried out for the GRO and GRl modes. Instead,

the kI should be taken either as given in the numerical example

10 =k

of Chapter II or set equal to 2 x 10 km (i.e., for all
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practical purposes, zero). The kI cannot be taken to be
identically zero because INFRASONIC WAVEFORMS is designed to
use the nonzeroness of the kI as a signal that values for
the“source-free amplitude (AMP) are input at frequencies below
cutoff. With the kI set to zero, the program will return

zero values for the AMP at these frequencies.

It is important to recognize that, while the rela-
tively simple procedures outlined in Chapter III make the
perturbation techniques presented in Chapter II computationally
unnecessary, those techniques were necessary to establish a
rigorous mathematical basis for the inclusion of leaking
modes in the synthesis of infrasonic waveforms. In fact, the
careful analysis given there made it evident that leaking modes
must be included at low frequencies if accurate predictions
are to be made of the early portions of arrivals. It was a
contribution of this dissertation to clarify the nature and
relative importance of leaking modes and to provide a
procedure for the inclusion of these modes in the numerical
synthesis of infrasonic waveforms. It is recommended that

this procedure be made more automatic than as given here.

Remarks Regarding the High-Frequency

Behavior of Guided Modes

As discussed in Chapter IV, a modified W.K.B.J.
method of approximation may be used to order modes selectively

and to compute useful modal parameters at relatively high
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frequencies. The inclusion of the method into the multi-modal
scheme of the program INFRASONIC WAVEFORMS is not only
feasible, but may be recommended. There is, however, some

question as to whether in general a multi-modal scheme which

f

inforporates a finite number of modes (even though they may
be carefully chosen) could ever adequately synthesize the
high-frequency portions of infrasonic waveforms. Indeed,
this question is in itself difficult to answer because there
is limited empirical data available on such portions. Aside
from this fact, it is likely that a more fruitful approach

to the refinement at high frequency of schemes for synthesizing
waveforms lies with an appropriately designed geometric
acoustics model. Nevertheless, it was a contribution of this
dissertation to clarify the high-frequency behavior of guided
infrasonic modes and to suggest a method of incorporating
this knowledge in a numerical scheme for synthesizing

infrasonic waveforms.

Remarks Regarding the Geometric

Acoustical Model

The geometric acoustical computational method presented
in Chapter V was designed to overcome many of the limitations
customarily associated with such methods. The fact that the
method produces amplitudes and phases for rays, rather than
merely paths and travel times, is significant. The inclusion

into the method of the possibility of having many rays that
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connect source and receiver coupled with the ability in the
method to locate caustics precisely is important for studies
of propagation over long range.

It is important to realize, however, that the method
presented here is limited in scope. A comprehensive computa-
tional scheme should, of necessity, explicitly include
effects that take place in the vicinity of caustics and as a
result of the existence of lacunae. In addition, if a model
is desired of propagation in a medium with two adjacent
sound-speed channels (as is typical in the case of the atmos-
phere), provision would have to be made for the fact that
adjacent channels can couple (i.e., some acoustic energy
from one channel can penetrate into the other). Finally, and
more obviously, a comprehensive computational scheme would
incorporate effects due to winds, dispersion due to gravity,
spreading due to the earth's curvature, sound absorption due
to dissipative processes, and phase shifts as a result of
ground reflections. The incorporation of these effects
should not be difficult as the theory associated with them
is well developed.

A comprehensive geometric acoustical model could be
used as a research tool to test simpler models. For example

27,28 to describe under-

the models developed by P. W. Smith
water propagation, which are based on statistical notions,
would lend themselves well to such testing. The intent in

testing simpler models would be to refine such models to the
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point where they could provide precise descriptions of
waveforms.

The FORTRAN subprograms provided in the Appendix were
designed to be incorporated into a comprehensive computer
program (as yet unwritten) for synthesizing waveforms. This
program would be devised to interpret, in as straightforward
a manner as possible, whatever appropriate high-frequency
empirical data is available on waveforms. It was a contri-
bution of this dissertation to outline in detail a numerical
scheme for the computation of acoustic parameters required

for accurate modeling of propagation over long range.
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APPENDIX

DECK LISTING OF FORTRAN SUBROUTINES FOR GEOMETRIC ACOUSTICAL
COMPUTATIONS IN A MEDIUM WHERE SOUND SPEED
VARIES WITH HEIGHT
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PROGRAM MAIN {INPUT,0UTPUT,TAPES=INPUT,TAPEA=0UTPUT)

SAMPLE MAIN PROGRAM

=~=~=AESTRACT ===~

THIS SAMPLFE MAIN PROGRAM IS DFSIGNED TCO ILLUSTRATE

HOW THSZ USER MIGHT USE THE FOLLOWING SUPFROGRAMS T3 CALCULATE

A QUANTITY ASSOGCIATEN WITH THE DZISCRIPTION OF RAY

ACDUSTIC PRIPAGATION. IN THIS CASE, THE USER IS SHOWN HOW TO

CALCULATE THE PBAY SPREADING PARAMETER DSLVP GIVEN THE
SOUND=SPEED PROFILZ APPROXIMATED BY CURIC SPLINES, THE
PHASE VELOGITY ASSOCIATED WITH A GIVEN RAY, THE SOURCE
AND PECEIVER HEIGHTS, AND THE RAY TYPE PARAMETERS.

LANGUAGE - FORTRPAN EXTENDED VERSION & {RP.M., CDC 60305601)

AUTHIRS = W ALKINNEY AND ALD.PIERCE, GEORGIA TECH,
JANUARY, 1976

FQUIPMENT - CDC CYBEP 74, N.0O.S. 1.1 OPERATING SYSTEM

- ===BRGUMENT LIST-=---

VARTABLE TYPE OIMENSIONS INPUT/OUTPUT

NCS I ND I
Z1 R ia¢e I
GI R i0¢ I
Ve R ND I
Ir I ND I
JT I ND I
NUP I ND I
HDOWM I ND I
ZSG P ND I
ZLIS R ND I
ASOL R 100 0
DSDVP R ND o]

COMMON STORAGE USED
COMMON VP,TI1,NCS,Z1(100},CI(10),AS0L{100)

(I1 IS A VARIABLE USED NY SOME OF THE FUMNCTION SUBPROGRAMS
IN THEIR OJPERATION. SPACE IS MADE AVAILABLE FOR IT HERE.)

-==-INPUTS---~

NCS =NUMRBER OF LATTICE POINTS PROVIDED FOR THE GURIGC

SPLINE APPOOXIMATION NF THE SOUND-SPEED PROFILE
71 =HEIGHT VALUSS FOR THE LATTICE POINTS IN KM
GI =SQUND SPEEN VALUSS FOR THE LATTICE POINTS IN KM/SEC
vp =PHASE VZLOGCITY IN KM/SEC
IT =1 IF THE RAY PROPAGATES INITIALLY UPWARD
IT ==-1 IF THE RAY PPROPAGATES TNITIALLY DOWNWARD
JT =1 IF THE RAY PROPAGATES TESMINALLY UPWARD
JT ==1 IF THE RAY PROPAGATES TERMINALLY DOWNWARD
NUP =NUMBER 0OF UPPER TURNING POINTS ENCOUNTERED BY RAY
NDOWN =NUMBER OF LOWER TURNING POINTS ENCOUNTERED BY RAY
Zsc =SQURCE HEIGHT IN KM
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MAIN
MATIN
MATIN
MATIN
MAIN
MAIN
MATIM
MAIN
MATN
MAIN
MAIN
MAIN
MATIN
MATN
MATHN
MAIN
MAIN
MAIN
MATIN
MAIN
MAIN
MAIN
HATIN
MAIN
MAIN
MATIN
MATN
MAIN
MATIN
MAIHN
MATIN
MATN
MAIN
MAINM
MATM
MALN
MAIN
MATN
MATIN
MAIN
MATIN
MAIN
MATIN
MATIN
MAIN
MAIN
MAIN
MATIN
MAIN
MATN
MATIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MATIN
MAIN
MAIN
MAIN
MATIN
MAIN
MAIN
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ZLIS =RECEIVER HEIGHT IMN KM :

-=--0UTPUTS ===~

ASOL =CJEFICIENTS CALCULATED FOR THE CURIC SPLINES

nsovp =PAY SPREADING PARAMETEZR: THE DERIVATIVE OF ADJACENT
RAY SEPARATION DISTANCE WITH RESPECT TO PHASE
VELOCTITY

--~=-EXTERNAL SUBR0UTINES CALLED=----

DASOL,COSDVP

-===-PROGRAM FOLLOWS DBELOW==-=-=

THFE ©®HASE VELOCITY, NUYBER CF LATTICE POINTS, AND LATYICE POINT
VALUES ARE STORED IN COMMON IMMEDIATELY, AND THE ASOL ARE
STOPEDN WHEN DCASOL RETURNS.
COMMON V24I14NGS,ZT(L00),CICL003,AS0LCL00)
ALL INPUT VARTABLES CAN BE PEAD IN UNFROMATED FORM
READIS,*YNGS . (ZI(TI),I=1,NCS), (CIC(I),I=1,NCS),
LIITUT o HUPGNONWNLZZSCHZLIS VP
IT IS CONSIDFERED GOOD PRACTICE TO WRITE INPUT VARIABLES

AFTER THEY HAVE BEEN READ. THIS TO0 IS DONE IN UNFORMATED FORM.

WRITE (53 *)NCSH (ZI(I)4I=1,4MCSY»(CI(IV,I=1,NCS),

1IT o JT s MUP W NDOWNSZSCHZLIS VP
DASOL IS CALLED TS CALRULATE THE COEFFICIENTS FOR THE CUBIC
SPLINE APROXIMATION TO THE SOUND-SPEED PROFILE.

CALL DASOL
SUBROUTINE CDSOVYP IS CALLED T0O CALCULATE DSDVP, AND THE ANSWER
IS PRINTED IMN UNFORMATED FORM,.

CALL COSDVP{VP,ZLIS+ZSC,IT4JT,NUP,NDOWN,DS5DVP)

PRINT*,"0S0VP=",0S0VP

CALL EXIT

END .

SUBROUTIKE TOTRANIYP,IT, JT,NUP,NDOWN,ZSC,ZLIS4R)

TOTRAN(SURBROUT INEY

-===ABSTRACT-==-=

TITLE - TOTRAN
THIS SUBROUTINZ CALCULATES THE HORIZONTAL FROPAGATION
DISTANCE 0OF AN ACOUSTIC TAY TRAPPED IN A SOUND-SPEED
CHANNEL GIVEN THE SOURCE AND RECEIVER HEIGHTS, THE
NUMBER OF UPPER AND LOWER TURNING POINTS, AND WHETHER
THE RAY PROPAGATES INITIALLY FROM THE SOURCE IN AN
UPAAPD 0P (DOWNWAPD DIRECTION, AND ALSO WHETHER IT
PROPAGATES TERMINALLY TO THE RECEIVER IN AN UPWARD OR
DIWNWARD DIRFCTION. SINCE 4 RAY IS DEFINED SPECIFICALLY
83Y A PHASE VELOCITY, TOTRAN RETURNS THE PROPAGATION
DISTANMCE OF A RAY GIVEN PHASE VELNCITY AND THE ABQVE
INFORMATION,

LANGUAGE =~ FORTRAN EXTENDED VERSION 4 (R.M, CDC 60305601)
AUTHORS -~ W A.KINNEY AND A,D.PIERCE, GEORGIA VECH.,
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JANUARY, 1976
EQUIPMENT - CDC CYBER 74, N.N.S. 1.1 OPERATING SYSTEM

====ARGUMENT LIST==-=-

VARTIABLE TYPE DIMENSIONS INPUT/ZOUTPUT

ve R ND I
Ir I ND I
Jr I ND I
NuP I MO I
NDOWN I ND I
Z5C R ND I
ZLIS R ND I
R R ND I
weminm TNPUTS==im
vo =HORIZONTAL PHASE VELOCITY IN KM/SEC
Ir =1 IF THE RAY PROPAGATES INITTALLY UPWARD
IT ==1 IF THE RAY PROPAGATES INITIALLY OOWNWARD
JT =1 IF THE RPAY PROPAGATES VERMINALLY UPWARD
JT ==1 IF THE RAY PPOPAGATES TERMINALLY OCWNWARD
NUP =NUMBER 0OF UPPER TURMING POINTS
NDOWN =NUMBER OF LOWER TURNING POINTS
Z5C =SOURCE HEIGHT IN KM
ZLIS =LISTENER HEIGHT TN KM
=== QUTPUT == ==
R =RAY HORIZOMTAL PROPAGATION DISTANCE IN KM

-=-==EXTERNAL SUBPOUTINES REQUIREQ-===
TNPHT ,SHIFT ,RANG
-=-==FUNCTION POUTINES REQUIRED-=---

RAINT,R0XDZ

~===PROGRAM FOLLOWS BELOW-=-=-~

EXTERNAL RDXDZ

OATAIN THE UPPER AND LOWER TURNING POINTS FOR THE VP SPECIFYIED.

CALL TNONTIYP, 78L,Z3U,NSCAN,NRTS,ZLOW,ZUP)
SHIFT THE VALUES FOR THESE SO AS TO AVOID INTEGRATION BY
FUNCTION RAINT THROUGH SINGULARITIES.

CALL SHIFT(ZLOW.ZUR)
NOW O3TAIN THE RAY HALF-PEPETITION HORIZONTAL PROPAGATION
DISTANCE.

CALL RANG(RTIME,RLNTH, 7L OW, ZUP}
IF THE RAY PROPAGATES INIVTIALLY ODDWNWARD, GO TO 5 AND
FIND THE HORIZONTAL PPOPAGATION DISTANCE BETHWEEN THE
SOURPCE AND THE FIRST LOWER TUINING POINT. OTHERWISE, HAVE
RAINT INTEGRATE RDXDZ FROM THE UPPZR TURNING POINT TO THE
SOURCE HEISHT AND TAKE THE NEGATIVE OF THIS RESULT AS THE
HORIZONTAL PPOPAGATION NISTANCE HBETWEEN THE SOURCE AND THE
FIRST UPPER TURNING POINMT. (IT IS RESYT TO INTEGRATE AWAY
FROM SINGULARITIES (SEE FUNCTION RAINT). THE FUNCTION
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ROXDZ1Z) AND RDTOZ(Z) ARE SINGULAR AT ZLOW AND ZUP.)

IF (IT .LT. 0) GO YO 5

ANS1 = 2AINT(RDXDZ,ZUP,Z5C)

RST = =-ANS1
CALCULATE THE HORIZONTAL PROPAGATION DISTANCE BETWEEN
THE LAST TUFNING POINT AND THE RECEIVER.

G0 TO 1D
5 CONTINUE

ANS2 = RAINT(RDXDZ,ZLOW,ZSC)

RST = ANS2
IF THE RAY PROPAGATES TERMINALLY DOWNWARD, GO TO 20 ANO
CALCULATE THE HORIZONTAL PRCPAGATION DISTANCE RETWEEN THE
LAST UPPZ2 TURMING POINT AMD THE REGCFEIVER. OTHERWISE,
CALCULATS THS HORIZONTAL PROPAGATION OISTANCE BETWEEN THE
LAST LOWER TURNING POINMT AND THE REGCEIVER.
10 IF (JT JLT. 0) GO TN 20

AN33 = 2ATNTIRDXDZ,ZLOW,ZLIS)

REND = ANS3
GO TO 33 AUD CALCULATE THF TOTAL HORTZONTAL PROPAGATION DISTANCE
QETWEEN SOURCE AND REGEIVER,.

GO TO 30
20 CONTINUS

ANS4 = RAINTIRDXDZ,ZUP,ZLIS)

QEND = =-AMNSL4
GCALCULATE THE TOTAL NUMBER OF RAY HALF-REPETITIONS BETWEEN
SOURGCE AND RECEIVER,
30 M = NUP + NDOWN - 1
CALCULATE THE TOTAL HORIZOMTAL PROPAGATION DISTANCE.

R = N*2LNTH + RST # REND

RETURN

END

SUBRIUTINE FNDVPINMAX 3ZSCsZLIS,RANGEIT,JT, NUP,NDOWN,VPHST,
IVPHEMD,,SDELTALNFND,,VPFND)

FNOVP (SU3BROUTINE)

~-==ABSTRAGT==-~

TITLE = FNDVP
THIS SURRQUTINE IS DESIGNEN TO FIND THE VALUE OF PHASE
VZLOCITY ASSOCTIATED WITH AN ACQUSTIC PAY TRAPPED IN A
SOUMD=SPEED CHANNEL GIVFN THE SOUND-SPEED PROFILE,
SOURCEZ AND RECEIVER HEIGHTS, THE HORIZOMNRAL RANGE
BETHEEN SUCH, RAY TYPE PARBAMETERS, PHASE VELOCITY
30UNDS DBETWEEN WHICH A SEARCH FOR THE DESIRED PHASE
VELOCITY IS CONDUCTED, AND THE WIOTH OF THE SUBINTERVALS
INTO WHICH THIS DOUNCED RANGE IS DIVIDED FOR A SEARCH.

LANGUAGE =~ FORTRPAN EXTENDED VERSION & 1R.M., CDC 650305601}
AUTHORS = WeA.KINNEY AND A.D.PIERCE, GEORGIA TECH.,
JANUARY, 1976

EQUIPMENT CDC CYRER 744 N.0.S. 1.1 OPERATING SYSTEM

====ARGUMENT LIST====-
VARIASLE TYPE DIMENSIONS INPUT/QUTPUT

NMA X I ND I
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ZSeC R ND I
LIS R ND I
RANGE R ND I
IT I ND 1
Jr I ND I
NU P I ND I
HOOWN I ND I
VPHST R ND I
VPHEND R ND I
SGELTA R ND I
NEND I ND 0
VPEND R 1 0

COMMON STORAGE USED

COMMON VPF,T1,NCS,ZT(100),CT0100),ASOLCL00),
17SCGZLISC,RANGEC, ITCJTC,NUPT, NDOWNEC

IN CCMON STORAGE, THE FIRST SIX B3LOCKS ARE OCCUPIED
BY VARIASLES USEL BY OTHER SUBROUTINES AND FUNCTION
ROUTINES, AND WHICH ARE NOT USED =ZXPLICITLY BY FNDVP,.

-==-INPUTS=-===

NMAX =NUMARER 0OF VALUES FNR y® TN BE FOUND (IMN THIS
VERSION, THE SUBROUTINE IS5 SET TO FIND ONLY ONE
VALUE FOR VP, HOWEVER, IF THE USER KNOWS THAT MORE THAN
ONE VALUE EXISTS, THEN NMAX AND THE NIMENSION OF
VPFND GCOULD BE CHAMGED ACCORDINGLY. FOR EXAMPLE.
IF THE USER KNEW THAT THO SUCH VALUES EXISTED,THEN
HE WOULD SET NMAX = 2, AND GIVE VPFND A DIMENSION OF 2.

IsSG =S5JUPNE HEIGHT IN KM

ZLIS =RECTIVER HEIGHT IN KM

RANGE =HORIZONTAL OISTANCE TJETWEEN SOURCE ANO RECEIVER IN
KM

i =1 IF THE RAY PROPAGATES "INITIALLY UPHWARD

17 =-1 IF THE PAY PPOPAGATZS INITIALLY DCWNWARD

Jr =1 IF THE RAY PRPOPAGATES TERMINALLY UPWARD

JT ==1 IF THE RAY PROPAGATHES TEQMINALLY DOWNWARD

NUP =NUM3ER OF UPPER TURNING POINTS THROUGH WHICH THE RAY
TRAVELS

NDOWN =NUMBER OF LOWER TURMING POINTS THROUGH WHICH THE
RAY TRAVELS

VPHST =LOWER STARTING VALUE OF PHASE VELOCITY WITH WHICH A
SEARCH IS INITIATEOD TN KM/SEC

VPHEND =UPPER FINAL VALUE OF PHASE VELOCITY AT WHICH A
SEARCH IS TERMINATED IN KM/SEC

SMELTA =WIDTH IN PHASZ VELOCITY OF EACH SUSINTERVAL OF THE
RANGE OF SEARCH

-===QUTPUTS-= -~
NFND  =NUMBER OF PHASE VELOCTTY VALUES FOUND
VPFND =YALUE(S) OF PHASE VELOGCITY FOUND
----EXTERNAL SUB20DUTINES REQUIRED----

IREAL2

ZREALZ IS AN INTERNATIONAL MATH SCIENGE LIBRARY ROUTINE
THAT CALCULATES N RFAL ZEROES OF A REAL FUNCTION F{X} WHEN
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THE INITIAL GUESSES APE GOOD. THIS ROUTINE USES MEWTON'S
METHOD WITH A DIVINED NIFFERENCE APPROXIMATION FOR FrfiX).
INFOSMATION ON ZRFALZ IS AVAILAARLE IN THE PUBLICATIOCN

IMSL LIB3-11005 (REVISED NOVEMREP, 19751, MORE INFORMATION
MAY AE O3TAINED RY WPIVING IM5L, SIXTH FLOO®, GMB BUILDING,
7500 BclLLAI®PE BOULEVARD, HOUSTON, TEXAS 77036,

====FUNCTTION ROUYINES REQUIRED=~=~-

RMIIAYD
====PRCGRAM FOLLOMS BELOW====

THE IN2UT VARIABLES Z5C, ZLIS, RANGE, IT, JT, NUP, AND NDOWN
ARE PLACEN IH THF LAST SEYEN COMMON BLOCKS.
COMMON VPFeI1,HCS2I(100),C210100),AS0LC100),
1ZSCN,ZLISC,RANGEC, ITC,JTC,HUPC, NDOWNC
IN THIS VZRSION 0F FNOVe, ONLY NNE VALUE OF PHASE VELOCITY
IS SOUGHT,, SO THAT YPFND IS GIVEMN A DIMENSION OF ONLY ONE.
DIMENSTION YPFNDTL) X (1)
EXTERNAL RMAYD

ZSCG = ZSC
ZLISGC = ZLIS
RANGEC = RANGE
I7c = IT

JTC = Jr

NUPC = MNUP

NODWNC = NDOWHN
THE SSARCH FOR VPFNO IS INITIATED AT VPHST.

NFHD = 3

VP1 = V3HST
CALCULATE THE DIFFERENCE BETWEEN THE INPUT PANGE AND THE ACTUAL
HORIZONTAL PROPAGATION DISTAMNCE CALCULATED FOR VP1.

Fi = RAZAYDIVPIL)
CALCULATE THE UPPER HBOUND FOP THE FIRST SUBINTERVAL OF SEARCH,
J yez2 = yP1 & SDELTA .
THEN CALCULATE THE RANGE OIFFERENCE FOR VP2 AS WITH VP1i.

F2 = IMIAYDIVP2Y
IF THE PROJUCT OF FL1 ANND F2 1S5 NEGATIVE, THFN WE HAVE FOUND A
SUBTNTZRVAL WITH THe DESIRED PHASE VELOCITY VALUE IN IT, IN
WHICH CASE WE GO TO 10. IF IV IS ZERQ OR POSITIVE, THEN WE
MUST CONTINUE THE SEARCH, AND THUS GO T0 5. IF vP2 IS
GREATER THAN YPHEND, THEN WE HAVE REACHED THE UPPER BOUND
FOR THZ SEARPCH AND WE RETURN. OTHERWISE, WE SEr VPl EQUAL TO
Vo2, AMD F1 EQUAL TO F2, AND INITIATE A SEARCH IN THE NEXT
SUBINTERVAL,

IF (F1*F2) 1045,.,5

5 IF (V22 .GT. VPHEND) RETURN

VP1L = yp2
F1 = F2
GO T0 3

IF WE HAVE ARRIVED HERE, WE CAN MAKE A GOOD GUESS FOR THE
VALUE 0OF VOFNO. FOR THIS GUESS, A SIMPLE AND APPROXIMATE
TAYLN?'S SERIES EXPANSION IS USED.
10 572 = yP1L - FL*SNELTAZ(F2 - F1)
ZREALZ IS °I0W CALLED TO FIND A MORE EYACT VALUE FOR THE PHASE
VELOCITY. TO ACCOMPLISH THIS ZREALL2 LOOKS FOR THE ROOT OF
THE FUNCTION RMRAYD(VPI. TIM NTHER WORDS, ZREALZ2 IS USED TO
FIND A VALYE FOP VP FOR WHICH THE CALCULATED PROPAGATION
DISTANCE EJUALS THE VALUE FOR THE INPUT VARIABLE RANGE.
(1) = 62z
CALL ZREALZ(RMRAYN41.E=3:.01,SDELTA5+14¥,10,IER)
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FNDVP
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FNOVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNOVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNOVP
FNDVP
FNDVP
FNDYP
FNOVP
FNDVP
FNDVP
FNOVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNOVP
FNDVP
FNDVP
FNDVP
FNOVP
FNOVP
FNDVP
FNOVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
FNDVP
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IF NMAX W

CONT ITNUE

EQUALLED
NFND =
VPENDI
IF (NF
GO 70
END

FUNCTEI

RMRAYD

TITLE -~ R
Ty
8e
24
T0
HE

LANGUAGE
AUTHORS

EAUIPMENT

THE PHASF
ALL OTHER
IS USEN.

RAMNGE GIV

VeI
ZSCC
ZLTISC
RANGEC

ITC

ITC
JTC
JTGC
Nueg
NDOWNC

RMRAYD

AS CHOSEN TN BE GREATE2 THAN OME, THEN THE USER CGOULD
THE SEARCH FOR MORE ROOTS OF RMRAYD UNTIL NFND

NMAX.

NFND & 1

NENTY = X(1)

ND .E0. NMAX) RETURN
5

I RMRAYDIVPI)

(FUNCTION)

==~ ARSTRAGT== ==

HRAYD
IS FUNCTION ROUTIME CALCULATES THE DIFFEREMNCE
TWEEN AM INPUT VALUS FOF HOPIZANTAL PROPAGATION

NGE AND THE BRANGE THAT IS CALCULATFED BY SUBROUTINE

T2a4 GIVEN PHASE VELNCITY, SOURPCE AND KECEIVER
IGHTS, A&ND THZI RAY TYPE PARAMETERS,

- FORTRAN EXTENDED VERSION 4 [(R.M. COC 60305601)

= W ALKINNEY AND A.OWPIERCE, GEORGIA TECH..,
JANUARY, 1976

- 0OC CYREPRP 74, M.D.S. 1.1 OPERATING SYSTEM

~===USAGE====

VELOCITY VPI IS THE INDFEPENOENT VARIABLE INPUT.
AUANTITIES ARE PASSED THROUGH COMMON WHEN RMRAYD
THZ SUBRJDUTINE TOTRAN IS CALLED TO CALCULATE THE
=N VeI AND THE OTHER QUANTITIES.

-==-INPUTS=-==~

=BHASE VELOGCITY IMN KM/SEC

=50URCE HEIGHT IN KM

=RECEIVER HEIGHT IN KM

=HORTZONTAL P20OPAGATION DISTANCE BETWEEN SOURCE
AND RECE IVER :

=1 IF THE RAY IN QUESTICN PROPAGATES INITIALLY

UPWARD

-1 IF THF RAY PPOPAGATES INITIALLY DOWNWARD

1 IF THE RAY PPQOPAGATTS TERMINALLY UFWARD

-1 IF THE RAY PROPAGATES TERMINALLY DOWNWARD

=HUMBER OF UPPER TURNING POINTS FOR THE RAY

=NUMRER OF LOWER TURMNING POINTS FOR THE RAY

o

~===QUTPUTS~===

=THE DIFFERENCE BETWEEN THE INPUT RANGE AND R, WHERE R IS

CALCULATED BY TOTRAN

====PROGRAM FOLLOWS RELOW=-=-=--
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FNDVP
FNOVP
FNDVP
FNDVP
FNDVP
ENDVP
FNDVP
FNDVP

RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
PMRAYD
RHMRAYD
RMRAYOD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
PMRAYD
RMRAYOD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
PHRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYD
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COMMON YPR,I1,NOS,ZIC100),CTCL10MY ,ASOLLLNOY,
1ZSCC, ZLISC4RANGEC, ITCsJTC,NUPC, NDOKWNC

OBTAIN THZ NZGESSARY QUANTITIES FROM COMMON
725G = 75C0

LIS = ZLISC
2C04 = RAMGEC
IT = IT13
JT = JI1C

MUP = NUPC

NOOWM = NOOWNC
cALL TATRAN YO CALCULATE THE RAMGE FOR VPI AND THE ABQVE
QUANTITIES.

CAaLL TOTQL\N{VF’I;IY |JT1NUP,NDOHNvZSC!ZLIS,R’
CALCULATE IMRAYD.

RMRAYD = RTOM - R

RQETURN

END

SUBRNDUTINE SHIFT(ZLOW,ZUP)

SHIFT{SUBRIOUTINE)

~===ARSTRACT====

TITLE = SHIFT .
SU3R0UTINE SHIFT MOVES THE VALUES OF Z {(ZLOW,ZUP)
FIUND FOR THE TURNIHNG POINTS BY SUBROUTINE THPNT
SO AS 1O AVOIN INTEGFATION THROUGH SINGULARITIES
OF Z-DEPENDENT FUNCTIONS WHERE ONE OR BOTH OF THE
INTEGRATIOHN LIMITS IS A TURINING POINT.

LANGUAGE - FORTRAN EXTENDED VERSION 4 (R.M. COC 60305601}

AUTHORS - W A.KINNEY AND A.D.PIZRCE, GEORGIA TECH.,
JANUARY, 1976 )

EOQUIPMENT - CDC CYBEP 74, M.0,S. 1.1 OPERATING SYSTEM

-=-=SAGE==~-

THIS SUBRAUTINE TAKES THE VALUES FOR ZLOW AND ZUP THAT

ARE CALCULATED BY THPNT AND SHIFTS THEM RBY UNITS OF 1.E£-8
UNTIL THE FUNCTION CHMVP(Z) IS LESS THAN OR EQUAL TO ZERO

FOR THESE VALUES. IMN OTHER WOPDS, THE VALUES FCR C(ZLOW) AND
C(ZUP) (I.5., THE SJOUND SPEED FNR THOSE HEIGHTS) ARE SHIFTED
UNTIL THZY ARE SLIGHTLY LESS THAN A GIVEN VALUE CF PHASE
VELOCITY. THIS PHASE VELOCITY VALUE IS AVATILABLE TO CMVP
THROUGH COMMON.

====ARGUMENT LIST==--

VARIABLE TYPE DIMENSIONS INPUTZOUTPUT

ZLOW R ND BOTH
zZuP R ND 80 TH

-===IHPUTS ===~
ZL OW SUNSHIFTED HEIGHT OF LOWER TURNING POINT

7up =UNSHIFTED HEIGHY OF UPPER TURNING POINT
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RMRAYD
RMRAYD
RMRAYD
RMRAYD
RMRAYO
RMRAYD
RMRAYD
RMRAYD
EMRAYD
RMRAYD
RMRAYD
RMRAYD
PMRAYD
RMRAYD
PMRAYD
PMRAYD
RMRAYD

SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFTY
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
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-=--QUTPUTS ===~
ZLOW =SHIFTED HIIGHT OF LCHEP TURNING POINT
zup =SHIFTEQD HSIGHT OF UPPEP TURNING POINT

-===FUNGTIOM RCUTINES REAUIRED=-=-=-=-

nMyp

~===PROGRAM FOLLOWS DBELQW====

N =0 :
CALCULATE THF DIFFERENCE BETWEEN THE SNOUND SPEED AT
TURNING POINT AND THE PHASE VELODCITY.

5 CHKL = CHVYR(ZLOW)

[F THE SOUND SPECD IS LESS THAN V2, WE'RE SAFE, AND
CHEGCK THT UPPER TUZNING POINT, OTHERWISF, WE ADD A
TN ZLOW AND CONTINUE DOING SO UNTIL THE SOUND SFEEQ

IF(CHKL «LE. 0.7) GO TO 10

ZLOW = ZLOW + 1.E-8

No= N

THE LOWER

WE

GO ON TO

TINY AMOUNT

Is

LESS THAN VP.

IF SHIFD IS UNSUCCESSFUL IN A 1000-TRIESs WE WANT IT 70 STOP.

IF(N «GE. 1000) RETURN
GO TO S

WE TRY THE SAME FOR THE UPPER TURNING POINT, AND AGAIN,

THE SOUND SPEED IS LESS THAN VP, WE'RE SAFE.
10 CHKU = CHMyPLZUP)

IF(CHKU +LE. 0472) RETURN

Zup = 7Zup - 1.E=-8

N o= N+t

IFIN .GE. 1000 RETUPN

GO 10 11

END

FUNGCTION CMYP(Z)
CMVP (FUNCTION)

-~ ==APSTRACT ===~

TITLE - CHM¥P

THIS FUNCTION ROUTINE CALCULATES THE DIFFERENCE

FUNCTION OF HEIGHT Z) SETWEEN THE PHASE VELOCITY
(WHICH IS INPUT) AND THE SOUND SPEED (WHICH IS A

FUNGCT ION OF HEIGHT 2).

AS LONG AS

(AS A

LANGUAGE - FORTPAN EXTENDEN VERSION & (R.M. CDC 60305601)

AUTHORS = WeA.KINNEY AND A.N.PIERGCE, GEORGIA TECH.,
JANUARY, 1976

CQUIPMENT - CDC CYRER T4, NeOusuS. 1.1 OPERATING SYSTEM

~==-USAGE-==~

THE HEIGHT 7 IS THE INDEPENCENT VARIABLE INPUT. AND CMVPI2Z)
IS THE DEPENDENT VARIARLE QUTPUT. THE PHASE VFELOCITY VP IS
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AYATLAALE THROUGH GOMMOM AND THE SOUND SPEED IS CALCULATED
3Y THE FUNCTION POUTINE CSP{Z).

-===PROGRAM FOLLOWS 3ELOW=-=-=-

COMMON VP

CHMYP = CSPILZ) = VP
RETURN

£ND

SU3RDUTINE THPHT VR, Z8L , 77U, NSCAN 4 NRTS, ZA,4,78)
TNENT (SUR0UT INED

-===ABSTRAGT--~-

TITLE = TNPNT
THIS SUBROUTIME FINDS TURNING POINTS (VALUES OF Z AT
WHICH THE DIFFERENCE EBFTWEZM THE SOUND SPEED CSP(Z) AND THE
THE PHASE VELOGITY V2 VANISHES) GIVEN PHASE VELOCITY
AND Z. A TURNTING POINT FOR AN ACOUSTIC RAY OCCURS AT
THAT HEIGHT AT WHICH THE 2AY CHANGES ITS VERTICAL OI-
RECTION OF TRAVEL, THAT IS, FPOM DOWNWARD TO UPWARD OR
F20Y UPWARD TO DOWNWAPD,., FOR AN ACOUSTIC RAY TRAPPED
WITHIN A SOUND=-SPEED CHANNSL, THERE ARE NORMALLY TWO
SUGH TURNING POIMTS,

LANGUAGE = FORTRAN EXTENDED VERSION & (R.M. CCC 6503056010
AUTHORS = WeAJKINNEY AND AWD.PIERCE, GEORGIA TECH, JANUARY,
1976

EQUIPMENT - CDC CYRER T4, N.,0,S. 1.1 OPERATING SYSTEM

~==~ARGUMENT LIST====

VARIASLE TYPE DIMENSIONS INPUTZ0UTPUT

ve R ND b
L R ND I
28y R ND I
NSCAN I ND I
NRTS I ND 0
Za R ND 0
ZB R ND 0

CNMMON STORAGE USED
COMMON VPCsI14NCS,ZIC100)

VPG R ND I
NCS I ND I
Z1 R 100 I
~===TNPUTS====
Ve =PHASE VELOCITY IN KM/SEC
FA-1N SLOWER POUMD FOR HEIGHT AND ABOVE WHICH THE SEARCH
FOR TURNING POINTS IS CONDUCTED. EXPRESSED TN KM.
Zry =UPPER BOUND FOR HEIGHT AND RELOW WHICH THE SEARCH
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FOR TURNING POINTS

IS CONNUCTED. EXPRESSED IN KM.

NSCAN =NUMBER OF SUARAINTERYALS MINUS 1 TNTO WHICH THE
INTERVAL OF SEARCH BETWEEN ZBL AND ZBU IS SuBnI-
VIDED
—-==-NUTPUTS~-~-~
NRTS =NUMRBER OF TURNING PQINTS FOUND (TWO ARE EXPECTEM)
ZAa =LOWER TURNINS POINT (IF FOUND) E€XPRESSED IN XM.
ZB =UPPER TURMING POINT {IF FOUMD) FXPRESSED IN KM.

===-—-EXTERNAL SUBROUTINT

IREAL2A(F ,EPS,EPS2 ,ETALNSIG,N
~---FUNCTION ROUT

CMyP,CSP

S ReQUIRED~==~
W X ITMAX, TER)

INES REQUIRED-=~-~-

-=~=-PROGRAM FOLLOWS BELOW=-=-~-

EXTERNAL CMVP
DIMINSION XI11)
COMM0ON VPC,I1,N0S,2I¢100)
VPC = Ve
THE USER CAN SOECIFY Z3L, ZBU,

INTERNALLY.,
Z2L = ZI(1)
ZEYJ = ZIINCS)
NSCAN = NGS *+ 3
CALGULATE THF WIDTH OF THE SUBT
DELTA = (Z3U - Z3LIZ(NSCAN +
CALCULATE GCSPLZALY - VP.
F1 = GMYPLZBL)
START THE SEARCH AT ZBL.
71 = 7L
NRTS = 1
FIMD THE UPPER LIMIT QOF THE SU
10 Z2 = Z1 ¥ DELTA
CALCULATE £S°(22) - VP
F2 = CMYPI(Z2)
TAKE THE P0OOUST OF F1 AND F2,
FOUND THZ SU3BINTERVAL WITH A TU

NTERVALS.
1)

AINTERVAL.

AND NSCAN EXTERNALLY AS INPUTS, 8UT
IN THIS VERISION OF TNPNT. IT WAS MORE CONVENIENT TO SEY THEM

AN IF IV IS POSITIVE. WE HAVEN'T

RNING POINT IN IT YET, SO WE

AND STARY AT THFE BOTTOM OF THE NEXT SUBINTERVAL.

TEST = FL1*F2
IFCTEST .GT. 0.0) GO TO 15

IF F1*F2 I5 NEGATIVE, WE'VE GOT A SUBINTERVAL WITH A TURNING

POINT IN IT. AT THIS PODINT, WE
TURNING POINT.
GZ = Z1 - F1*DELTA/(F2 - F1)
X1y = G2Z
ZREALZ IS AN IMNTERNATIONAL MATH
FINDING THT ZEROES OF A SPECIFI

FOR MOPE [NFORMATION) . ZREALZ IS CALLED TO FINC THE TURNING

POINT IN QUESTION.
CALL 7CAL2ICMYP,1.E-7,0.01,
NRTS = NRTS ¢ 1

MAKE A GUESS FOR THE

SCIENCE LIBPARY FQUTINE FOR

GO TO 15

ED FUNCTION {SEE SUBROUTINE FNOVP

NELTAs7,14X%X,10, IER)

IF WE HAVE GONE THROUGH THIS LOOP SUCCESSFULLY ONCEs, THEN WE HAVE
IF WE HAVE GONE THROUGH THWICE, WE

FOUND THZ LOWER TURNING POINT.
HAVE FOUND BOTH TURNING POINTS,
IFINRTS .EQ. 1} ZA = X(1)

AND WE'RE DONE.
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TF(NRTS LEQ. 2) Z9 = X{(1)
IFINRTS .EQ. 2Y GO TO 20
15T, = g
F1 = F2
IF WE HAVE SEARCHED ALL THE WAY TO ZRU, WE'PE DONE. NTHERWISE, WE
G0N ON TO THE NEXT SUAINTERVAL.
IF(ZBU .GEs Z1% GO TO 10
2% RETURN
END

SUBROUTINE RAMG (RTIME,RLNTH, ZLOW, ZUP)

RANG (SUBROUTINE)Y

~==-ABSTRACT-=-~

TITLE = RANG
SUAROUTIME RANG CALCULATES RAY RFPETITVION TIME AND LENGTH
Ay IMTEGRATION OF DTs/DZ AND DX/sDZ, RESPECTFULLY, BETWEEN
TURNING POINTS.

LANGUAGE = FORTRAM EXTENDED VERSION & (R.M, COC 60305601)

AUTHARS = WeAJKINNEY AND A O.PIERCF, GFNORGIA TEGH.,
JANUARY, 1976

EQUIPMENT = CDC CYPER 74, M.0.S. 1.1 OPERATING SYSTEM

-===ARGUMENT LIST-=--

VARIAABLE TYPE OIMENSTIONS INPUT/Z0UTPUT

RYIME R ND Q

RLNTH R HD 0

ZLOW R HD I

Zup R ND I
=ws=INPUTS ===~

ZLOW =LOWER TURNING POINT HEIGHY IN KM

Zup =UPPER TURMING POTHT HEIGHT IN KM
====0UTPUTS===="

RTIME =RAY REPETITION TIME IN SEC

RLNTH =RAY REPETIVFTION LENGTH IN KM

-===FUNCTION ROUTINES REQUIRED=-=-=~-

ROXDZ.ROTDZ
====PRNGRAM FOLLOWS BELQW==~--

EXTZRNAL RDTDZ,RDYDZ

RTIME = RAINT(ROTDZyZLOW,ZUP)
RLNTH = RATNTURDXDZ, ZLOW 4 ZUP)
RETURN
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END RANG
SU3ROUTINE DASOL DASOL
DASOL

DASOL (SUBROUTIMNE) DASOL
DASOL

DASOL

—— == ARSTRACT ===~ DASOL

DASOL
TITLE - DASOL DASOL
THTIS SUBROUTINE CALGULATES THF COFFFICIENTS OF THE DASOL
CURIGC SPLINES USED TO APPROXIMATE [HE SOUND=SPEED DASOL
PROFILE., THESE COFFFICIENTS AFRE DEFINED BY THE DASOL
RELATION ~ DASOL
DASOL
DELZ(I)*ASOL(I-1) # 2%(DELZ(I) - DELZII#1))*ASOLLI) + 0ASOL
¢ DELZ(I+1)*ASOLI(TI+1) = DELGII+4) - DELCII) DASOL
DASOL
WHERE DELZAIY = Z(I) - Z(I-1) DASOL

DELCII) = (C(I) - CUI-1))/DELZ(I), DASOL
DASOL

DASOL
LANGUAGE - FORTPAM EXTENDED VERSION & (R.M, GDC 60305601) DASOL
AUTHORS = WeAJKINNEY AND A.N.PIERCE, GEORGIA TECH., DASOL
JANUARY, 1975 DASOL

FAUIPMENT - CDBC CYSER 74, N.0.S. 1.1 OPERATING SYSTEM DASOL
DASOL

DASOL
COMMON STORAGE USED DASOL
DASOL
COMMON VP,I1+NCS,ZIU100),CI{100),ASOLT100) DASOL
DASOL
VARTABLE TYPE DIMENSIONS INPUT/QUTPUT DASOL
DASOL
NCS 1 NOD 1 DASOL
71 R 100 I DASOL
cI R 100 I DASOL
ASOL Q 100 0 DASOL
DASOL

-=--INPUTS-~-=- DASOL
DASOL

NCS =NUM3ER OF LATTICE POINTS PROVIDED FOR THE CusIC DASOL
SPLINES DASOL

ZT =HEIGHT YALUES PROVIDED FOR THE LATTICE POINTS DASOL
cI =SOUND SPEED VALUES PPIVIDED FOR THE LATTIGCE POINTS DASOL
DASOL

-==~=0UTPUTS==~~-~ DASOL

DASOL
ASOL =COFFFICIENTS GALCULATED FOR THE GCURIC SPLINES. THE DASOL
ASOLIT) ARE STNRED IN COMMON WHEN DASOL RETURNS, DASOL
DASOL
DASOL
-=---PROGRAM FOLLOWS BELOW=---- _ DASOL

DASOL

DASOL

COMMON V¥2,T1,NCS,ZT0100),CTC(100),ASOLC100D) DASOL
INITIAL VALUES ARE PROVIDED FO® THE WORKING VARIABLES. THE DASOL
ROUNDARY CONDITIONS FOR THE ASOLII) ARE TAKEN TQ BE DASOL
ASOL (1) = ASOLINCS) = 0.0 DASOL
N =1 DASOL
DELZ = 1.0 DASOL
NELC = 0.0 DASOL
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AKMZ = 0.0
ALM2 = 3.19
AKML = 0.0
ALM1 = 1.0
MSTP = NS = 1

CALCULATE THE DIFFERENCE TM HEIGHT VALUSES AND SOUND SPEED
VALUES PROVIDZD FOR THE LATTICE POINTS.
19 DELZP = ZT(N+#L) = ZT(N)

gELCe = CIIN+#1) - CI(N)
ASOLL2) CAN BE CALCULATED GIVEN THE BOUNDARY CONODITIONS ON
THE ASOLITIV.

ALPHA = DELZ

GAMYMA = DELZP

BEYA = 2.0*%(ALPHA + GAMMAY

DEE = [(DELCP/DELZP)Y - (DELC/DELZ)

IF(N EN. 1) GO TO 30

AK = (DZE - ALPHA*AKM2 - AETA®*AKM1) 7GAMMA

AL = { - ALPHA®ALMZ - BETA*ALM1)/GAMMA

IFIN «EJ. NSTP) GO TO 100

AKM2 = AKML
ALMZ = AaLM1
AKML = AK
ALML = AL
3N =N +
DELZ = DJELZP
DELC = DELCP
GO 1O 10
100 ASOL(1Y = 0.0
ASOL(2) = -AK/AL
0ELZ = 1.0
DELGC = 0.0
N =1
113 DELZP = ZI(N#1) - ZI{(N)
DELGP = CI(N#1) - CI(N)
ALPHA = DELZ
GAMMA = DELZP

BETA = 2.0%(ALPHA + GAMMA) -
DEF = {(JELCP/DELZPY - (DELGC/OFLZY
IF(N .EJ. 1) GO TO 130
CALCULATE THE ASOLIM) FOR 2 < M < NCS.
M =N+ 1
ASOL(M)Y = (DEE = ALPHA*ASOLIN=-1) ~ BETA®ASOLIN))I/GAMMA
IFIN «EQ« NSTP) GO TO 200
130 N = N ¢ 1

DELZ = DELZP

DELC = DELCP

G0 1o 114
200 RETURN

END

FUNCTINN €SP(2)

CSP (FUNCTION)

----ABSTRACT-=--

TITLE - csP
THIS FUNCTION RNUTINE CALCULATES INTERMEDIATE VALUES
OF THE SOUND-SPEED PROFILE ACCORDING TO THE EQUATION

CSP(Z)Y = WRAR*C(I-1) & W*C{I) ¢
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+ ((DELZ(TYI**2)*(ASOL(I-1)*{WBAR**3 - WBAR *
+ ASOL(I)*(W**3 - W)},

LANGUAGE =~ FOPTRAN EXTENDED VERSION 4 (R.M. CDC 60305601)
AUTHO®S = W.ALKINNEY AND A,0.PIERCE, GEORGIA TEGH.,
JANUARY, 1976
FAUIPMENT = COC CYBER® 74, N,0.Ss 1.1 OPERATING SYSTEN
“==-USAGE==~-

THE HEIGHT Z IS THE INIEPENDENT VARIABLE INPUT, AND THE SOUND
SPEEN CSP({Z) IS THE DEPENDENMT VAPIAPLE OQUTPUT. OTHER REAQUIRED
QUANTITIZS ARE MADI AVAILAZLE THPQUGH COMMON.

L
NCS
1
CI
AS3L

CS5P

- == -INPUTS==-=-=

=HEIGHT IN KM

=NUMRBER OF LATTICT POINTS IN THE SNOUND-SPFEQD PROFILE
=LATICE POINT HEIGHTS IN KM

SLATICE POINT SOUND=-SPEED VALUES IN KM/SEGC

=CUDIC SPLINE COEFFICIENTS AS CALCULATED 8Y
SU3RJUTIINE DASOL

- == =QUTPUT ===~

=SOUND SPEED IN KM/SEC

~=-=-=PROGRAM FOLLOWS BELOW---=-

COMMON VP ,T1,NCS,ZI{1C0),CIC(1C0),ASOL(100)
DEFINE THE LOWER AND UPPER BCUNDS OF THE SOUND-SPEFD PROFILE.

L =
IR =

Z111)
ZI(NCS) *

CUTSIDE OF THESE BOUNDS, LET THE SOUND SPEED BE CONSTANT AND EQUAL

o

11

THo
IF (
IF
I =
=

CORPESPONDING ADJACENT WALUES.
Z JLT. ZL) GO T3 50

Z 6GT. ZP) GO TO 60

NCS

I =4

FOR ANY VALUE Z, WE WANT [ SUCH THAT Z IS BETWEEN ZIC(I-1) AND ZI(I).
WE START WITH THE HIGHEST VALUE FOR I AND WORK DOWNWARD UNTIL WE
FIND THE INTERVAL THAT GOMTAINS Z.

ITES

F=2103)

IF Z IS DBETWEEN ZItI-1) AND ZIU(I), WE GO YO 40 AND CALCULATE CSP(Z).

IF (

Z «GT. ZTESTY GO TO 40O

IF Z IS NOT RZTWEEN ZIC(I=-1) AND 7I(I), WE GHOSE THE NEXT VALUE LOWER
FOR 1 AND CONTIMUE THE SEARCH,

40
IF

WE

I =
GO T
CONT
WE A
CAN
DELZ
W =
WBAR
TERM
GUT1
GUT2
TERM

J
0 13
INUZ
RRIVE HEREs THEN Z IS RETWEEN ZI(I-1) AND ZI{(I) SO THAY
NOW CALCULATE CSPLZ) .
= ZI(IY - ZI (Y
(Z - ZICN)I/DELZ
= 1.0 - M
1 = WBAR*CI(JS) + W*CITI)
= WDBAR®*3 - WPAR
=) Hl‘s - W
2 = (DELZ**2) ®F(ASOL(J)*GUTL & ASOLITI)*GUTZ}
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cse
cse
CsP
cse
cse
cse
cse
cse
cse
csp
cse
cse
gsp
cse
cse
cse
cse
CsSP
cse
CSpP
csp
cse
csp
csp
cse
cse
csp
cse
cse
cse
csp
cse
cse
GsSpP
csSP
csp
cse
CSP
csp
cse
cse
csP
cse
cse
cse
csp
CSP
cse
csp
cse
cse
cse
csp
cse
csp
cse
cse
cspP
CSP
cse
csp
cse
csp
cse
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CSP = TERY1L + TERMZ
P ETURN

50 CSP = CI(L)
LETURN

60 CSP = GILI(NCS)
PETURN
END

FUNCTION DZDZ(Z)

NCNZ (FUNCTION)

~===ARSTRACT ===~

TITLE - DOCDZ
THE FUNCTION DCDZUZ) CALCULATES THE FIRST DERIVATIVE
0F THE SOUND SPEED WITH RESPECT TO HEIGHT Z ACCOROING
TO THE EQUATION

DCDZ{ZY = DELCHUI) # DELZ(TY*(-ASOL{I-1)*(3*KBAR¥*2 - 1) &
+ ASCLIDI®(3"W*¥*2 1)1

LAMGUAGE FORTRAN EXTENDED VERSION & (R.M. CBC 50305601}
AUTHORS = WaAJKINHEY AND A.D.PISRCE, GEORGIA TEGCH.,
JANUARY, 1976

CDC CYBER 74, MN.0.5. 1.1 OPEPATING SYSTEM

EQUIPHEINT

-===USAGE===~

THE HEIGHT 7 IS THE INDESENNENT VARIABLE INPUT, AND THE
DERIVATIVE DCDZ(ZY IS THE DEPEMDENT VYARIABLE OQUTPUT. OQTHER
REQUIRED OQUANTITIES ARPE MADS AVAILARLE THROUGH COMMON. THE

TMPUT VARIADLES FOR THIS FUNCTION ARE THE SAME AS FOR FUNCTION
CSe{Z). FNOP IHNFORMATION OM THESE VARTABLES, THE USER IS DOIREGTED
TD THAT FUNCTION,

== —QUTPYT ===~
DCDZ  =FIRST DIRIVATIVE OF SOUND SPEED WITH RESPEGT TO
HEIGHT

-==<PROGRAM FOLLOWS BELOW-==-

COMMON VP ,I11+NCS,7I1(100),CT(1D0)Y,ASOLTL00)
DEFINE THE LOWER AND UPPER PROUNDS OF THE SOUND-SPEED PROFILE.
ZL = ZIt1)
IPp = ZI(NCSY
CUTSIDE OF THESE BOUNDSs LET DC/DZ = 0.
IF{Z .LT. ZL) GO TO 50
IF(Z .GT. ZPY} GO YO 50
I = NCS
10 J = I-1
FOP ANY VALUE Z, WE WANT I SUCH THAT Z IS BFTWEEN ZI(I-1) AND
ZI(I)e MWE START WITH THE HIGHEST VALUE FOR T AND WORK
DOWNWARD UNTIL WE FIND THE INTERVAL THAT CONTAINS Z.
ZYEST = Z1(Y)
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CsSP
cse
CSP
CSP
cse
cse
cse

0ocoz
DCDZ
ncoz
0coZz
DCDZ
DCOZ
0CDZ
DCoZ
ocnz
pC0Z
0602
0CcDZ
ncoz
0C0Z
0cDZ
pcoz
0co0Z
ocoz
DCDZ
DCDZ
DCDZ
0c0Z
0C0Z
DCDZ
DcoZ
DCOZ
DCDZ
0CcozZ
ocoz
DCoZ
0C0Z
DCcDZ
pcoZ
nCoz
0CDZ.
DCOZ
oCoz
DCOZ
DCDZ
0coz
DCDZ
0cDZ
0CDZ
0CDZ
DCDZ
DC0Z
DCDZ
0CDZ
0c0Z
0CDZ
0cozZ
0c 02z
0CcDZ
DCDZ
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IF 2 IS JETWEEN ZI(TI=1) ANO ZI(I), WE GO TO 40 AND CALCULATE
DCoZ 1 2).

IFLZ «GT. ZTESTY GO TO &0
IF Z IS NOT BETWEEM ZIUI-1) AND 7I(I), WE CHOSE THE NEXT
VALUE LOWE? FOR I AND CONTINUE THE SEARCH.

1 =4

Go Y0 11
49 COMTINUE
IF WE ARRIVE HERE, THEN Z IS BEYWEEM ZI(I-1) AMD 7ZI(I} SO
[THAT WE CAM NOW CALCULATFE DCDZ(Z).

DELZ = ZICIVY = ZI LD

JELGCI = (CI(IY - CICJ))/DELZ

4 = (Z = ZIGJY)I/DELT

WAAR = 1.0 - W

TRM3A = ASOL(IV*((3.0%(W**2)) - 1.0}

T-2438 ASOL LI *L(3.0*(WBAR**2)) = 1.0)
TR242 = 2ELZ¥ (TRM3A - TRM3DB)
0COZ = DELCI + TRM3
RETURN
50 OCc37Z = J.3
RETURM
END

SU3RQUTINE COSOVPAIVP,ZCeZST 1T, UT s NUP,NDOWN,NSDVP)

COS0VP(SUBROUTINED

~ == =ARSTPACT ===~

TITLE - LO5DVP
THIS SUBRQUIIMNE CALCULATES THE DERIVATIVE WITH RESPECT
TO PHASE VELACITY OF THE SEPARATION DISTANCE BETVWEEN
TWO ADJACEMNY ACOUSTIC RAYS., THIS DERPIVATIVE IS
EVALUATED AT A GTIVEN VALUE 0OF PHASE VELOCITY WHICH
CHARACTERIZES THE TWO RAYS,  AND FNR ANY POINT ON THE
RAY THAT CN2RESPONDS TO THAT PHASE VELOCITY VALUE AND
SPECIFIED RAY TYPE PAPAMETERS.

LANGUAGE - FORTRAMN EXTENDED VFRSICMN 4 (R.M. CDC 50305601)

AUTHORS - W A KINNTY AND AL.D.PIERCE, GEORGIA TECH.»
JANUARY, LATH

EQUIPMENT = COC CYSER 74, N.0.S5S. 1.1 OPERATING SYSTEM

~===ARGUMENT LIST-=-=--

VAPTABLE TYPE OIMENSTIONS TNPUT/0OUTPUT

ve R ND I
ZC R ND I
ZscC R ND I
IT I ND I
Jr I ND I
NUP I ND I
NDOWN I ND I
CDSDVP R NO 0

COMMON STORAGE USED
COMMON ¥PT
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0cDZz
DcDZ
DCDZ
pcoZ
pcoZ
Dtoz
pcoz
pcoZ
DCDZ
ocoz
DCDZ
gcnz
ocoZ
ocnz
Dconz
0CcDZ
pcoz
DCDZ
pcoz
DCDZ
DCDZ
ocDZ

CDSDVP
cDspvpP
CosSDvP
CDSDVP
Cospve
CDSDVP
cosoyp
cosove
cosoypP
cosove
cospyp
cnsove
cDsovP
Cosnve
cosnve
CDSDVP
Cosoye
CDSOVP
cosove
cosove
CDSDVP
CDSDVP
cosovep
cosove
cnsoye
COSDVYP
cospye
cosove
cCosove
cOSDYP
cosove
cnspv»
Chosove
COSDvP
COSDVP
cosove
COSDVP
CDOSDYP
CDSDVP
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-===INPUTS ===~

vP =SPHASE VILONITY IN KM/SEC

¢ =HEIGHY FOR WHICH THE DERIVAVYIVE NSOVP IS CALCUTATED

Z5cC =SCUPCE HETGHT IN K™

IvT - =1 IF THE FAY IN QUESTION PROPAGATES INITIALLY
UPWARD

17 ==1 IF THE RAY PRCPAGATES INITIALLY OOWNWARD

JT =1 IF THE RAY PFOPAGATES TERMINALLY UPWARD

Jrv ==1 IF THE QAY PROPAGATES TEIYIMNALLY DOWNWARD

NUP =NUMBER OF UPPER TURNING POINTS FOR THE RAY IN
QUESTION

NONAWN  =MNUMBER OF LOWER TURINIMNG POINTS FNR THE RAY

=== =QUTPUTS == ==

DSOV?  =DERIVATIVE NF AY SEPARATION DISTANCE WITH RESPECT
PHASE VYZiOGITY

---—EXTERINAL SUBROUTINES PEQUIRED~-==-=-
THPNT 3 SHIFT
====FUNCTION ROUTINES REQUIREN==~--

RAIMT,FTRMe FTRMUL » TRNPT,CSP

====PROGRAY FCLLOWS BELIW==-==

COMM0ON VPT
EXTIRNAL FTRMUL,FTRM
PLACE THE PHASE VELOGCITY INFUT IN COMMON.
ver = ye
CALL SUBRQUTINE THNPNT TO CALCULATE' THE TURNING POINTS FOR THE
PHASE VELICITY WHIRH TS INPUT.
CALL THNONTIVP,Z3L 4 Z3UZNSCANLNRTS,ZL0OW, ZUP)
CALL SUBROUTINE SHIFT TO MOVE THESE TURNING POINT SO AS 1O

AVGID SINGILARITIES UPON INTEGRATION OF THE FUNCTIONS FTRM AND

FTRMUL.

CALL SHIFT(ZLOW,ZUP)
CALCULATZ A HEIGHT VALUE THAT IS SLIGHYLY BELOW THE UPPER
TURNING POINT ZUP.

ZUI = ZUP - D.01*(ZUP - ZLOW)
CALCULATE A HEIGHT VALUE THAT IS SLIGHTLY AROVE THE LOWER
TURNING POINT ZLOMW.

ZLI = ZLOW + 0.31%(ZUP = ZLOW)
INMTEGSATE THT FUMCTION FTRM FETWESH THESE TWO VALUES.

TRMM = RAINT(FTRM,ZLI,ZUI)
IF THE RAY IN QUESTION SPPOPAGATES INITIALLY UPWARD, INTEGRATE
FTPM FROM ZSC TO 7UI. OTHERWISE, GO TO 10 AND INTEGRATE FTRM
FRCM ZLI T2 ZISC.

IF (IT .LT. 0) GO TO 10

TRMI = RAINT(FTRM,ZSC,ZUI)Y

GO 10O 15
12 TPMI = RAINT(FTRM,ZLI,ZS5C)
IF THEZ RAY IN QUESTION PRQOPAGATES TERMINMNALLY UPWARD, INTEGRATE
FTRM FR0M ZLI TO ZC. OTHERWISE, GO TO 20 AND INTEGRATE FTRM
FRC™ ZC TO ZUIL.
15 IF (JT .LT. 0) GO TO 20

TRMF = RAINTI(FTRM,ZLI,ZC)
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cosbye
cosove
COSDyP
cosoypP
CDSOyYP
cosove
COSDVP
cosoyp
cnsove
cosove
cospyp
cnsoye
CDSDNP
copsonve
cosove
CoOsoyP
cosnvp
cosoyp
Cosovp
cosoyp
CDSDVP
cnsoye
COS0OVP
CDOSDVP
CDSOVP
CDSDVP
cosove
COSDVP
cosovpP
CNSOVP
cosove
cnsove
cosove
cosovpP
CDSODVP
cosove
cosove
cDSDyP
cOsovP
CDSDVP
cosove
cosove
COSOVP
cosSnyP
CDSOoyYP
cospyve
cosovp
cosovp
CDSDVP
cosove
cnsovpP
cnsove
cOSDVP
cDsSDovP
cosopve
cosove
cosove
cosoyp
CDSDVP
cDsDve
cosove
cDSDVP
cosovp
GCDSDVP
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GO 19 2s
2% TRYF = RAINTIFTRM,7ZC,ZUT)
CALCULATE THE REMAINING TERMS NEEDED TO CALCULATE DSDVP.

2% COMTTIHY=E
T24U1 = TRNPTLZULY
TRMLL = TENPT(ZLI)
TRYUZ = RAINT(FTRMUL, ZUP,ZUT)
T2ML2 = RAINT(FTRMUL, ZLOW,ZLT)

BFFIRS GOM2UTING DSDVP, WE CALCULATE AN INTERHMECQIATE QUANTITY
WHINH IS THE DERIVATIVE WITH 2ESPECT T0O PHASE VELOCGCITY QF THE
HORTZOMTAL SEPARATINN DISTANCS AFTWEEMN THE TWN ADJACENT RAYS
THAT A2F CHARAGCTERIZED RY THFE INPUT PHASE VELOCITY.

COXNVP = TRMT # NUP*({TRMUL - T2MU2) + {NUP + NDOWN - 1)*TRMM #

1 NOOWN*(-TAMLY + TRML2) + TRMF
CALCULATE THS SOUARE OF THE ©YASE VELOGITY.

YPS] = pre2 d
CALCULATE THE SOQUND SPEED AT 7C.

LSPZC = CSPL7C)
SCUARZ THIS SOUND SPEED.

CSPZSY = GSPIZC)I**2
TF THE RPAY IM QUESTION PPOPAGATES TERMINALLY UPWARD, THEM CALCULATE
DSDVP ACORJIING TO THE FORPMULA HERS. OTHERWISE, GO TO 30 AND
CALGCULATE [T ACCO®DING TO THE FORMULA GIVEN THERE.

IF (JT .LT, 7)) GO 1O 29

NSOVP = -(CSPZC*{SQA2T(YPSQ - CSPZSQ)/VYPSQ)I)*CDXDVP

G0 TO 35 :
20 DSODVP = (GCSPZC*(SQRT(VPSD - CS2ZSQ)/ZVPSQ)I*COXOVP
35 CONTINUZ

RETYPN

END

FUNGTIOYM FTIRM(Z)

FTRM (FUNCTLON)

~~=-ABSTRACT===~

TITLE - FTM
THIS ROUTINE CALCULATES THE FUNCTIGN THAT IS INTEGRATED
RY SU3RAUTINE CDSDVP BETWEEN THZ LIMITS ZSC AND ZUI OR
ZLI, ZC AND ZUI DR ZLI, AND ZLI AND ZUI. THE EXPRESSION
FOR FTRMIZY IS

' ~CSOEP
FTRM{Z) = =-=cmcmcmoommmmmmmeeo
(VP¥¥2 - CSP¥*2)%¥|, 5
LANGUAGE - FORTRAN FXTEMDED VERSION & (R.M. COC 60305601)
AUTHORS = H.ALKINNEY AND A.D.PISPCE, GEDRGIA TECH.,

JaruaRY, 1976
EQUIPMENT - COC CYBER 74, N.D.Se. 1.1 OPERATING SYSTEM

~===USAGE~===
THE HEIGHT 7 IS THE INDEPENDENT VARIASLE INPUT IN KM. THE

PHASE VELOCITY VP IS MADF AVAILASLE THROUGH COMMON, ANDO THE
SOUND SPEED IS OBTAINED FROM FUNCTION CSFILZ).
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CDSDYP
CDSOYP
CNDSDVP
cosovpP
cosove
cosovp
COSDYP
cosove
cospye
CDSDVP
cosove
COSDNP
cOosDve
cosovp
cosove
COSOVP
COSDVYP
COSDwP
COSDVP
CDSDVP
cospve
Cosove
cDsDvP
cDsDvP
caspypP
cospye
COSDVP
COSDVP
cospve
cospypP

FTRM
FTRM
FTRM
FTRH
FTRHM
FTRM
FTRM
FIRM
FTRM
FTRM
FTRHM
FTRM
FTIRM:
FIRM
FTRM
FTRM
FTRM
FYRM
FTRM
FTRM
FTRM
FTRM
FYRM
FTRM
FTYRM
FTRM
FTRM
FTRM
FTRM
FYRM
FTRM
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-=---PROGRAM FOLLOWS 3ELOW=-===

COMMON VP ,K
SAUARE THE PHASE VELOCITY VALUE.

VPST] = yp*e2
SQUASE THE SOUND SPEED.

CSPSO = CSP(7) **?
IF THE PYASE VELOCITY SOARED IS GREATER THAN OR EQUAL TO THE
SAUND SPESD SAUARED, THEN WE CAN GO TO 20 AND CALCULATE
THE DEHD4INATOR OF FTPMIZ), OTHERWISE, WE SET THE DENOMINATOR
€NUAL TO 1.E-50, AND THEN GO TO 70 TO CALCULATE FTRM(2).

IF (VPS) .GE. CSFSC) GO TO 20

K =1

10 TRHL = 1.E=51
GO0 T0O 30

20 K = 0

IF WE HAVE ARRIVED HERF, WE CALCULATE THE OFNOMINATOR FOR
FYPM(Z) ., [F THE DEHOMIMATOR IS LESS THAN 1.E-50, THEN WE GO
TO 12 AND SET IT EQUAL TO 1.E-50.

TEM1 = (SARAT(VP5Q - CSPSQIY**3

IF (TR4L LV, 1.€-51) GN 10 10
CALCULATE THE NUMERATAOR OF FTRM{Z),

TRMZ = CSPIZYI*YP
CALCULATE FTYRM(Z).
30 FTRY = -TRM2/TRM1

RETURN

END

FUNZTION DCDZS1Z)

OCOZS (FUNCTIOMN)

~=~~ABSTRACT—--~
TITLE - DEDZS
THE FUNCTION DCOZS(Z) CALCULATES THE SECOND DERIVATIVE
OF THT SODUND SPEED WITH RESPECT TO HEIGHT Z ACCORDING
TO THE EQUATION

DCNZS(Z) = 6*{WRBAR*ASOL(I-1) + WTASOL(I))

LAMGUAGE - FORTRAN EXTENDED VERSION & (P.M. COC 650305601)

AUTHORS ~ WeAJKINNEY AND A.DL.PIERCE, GEORGIA TEGH.,
JANUARY, 1976

EQUIPMINT - GDC CYBER 74, N.0.S. 1.1 OPEPATING SYSTEM

-=--USAGE-=--~

THE HEIGHT Z IS THE TNDEPENCENT VARIASLE TINPUT. AND THE

SECOND OZRIVATIVE DCOZS(ZY IS THE DEPENDENT VARIABLE

OUTPUT. OTHER PEQUIRED NUANTITIES ARE MADE AVAILABLE

THR2OUGH COYMON. THE INPUT VAPIAPRLECS FNOR THIS FUNCTION

ARE THE SAME AS FOR FUNCTION CSP(Z). FOR INFORMATION ON

THESE VARIABLES, THE USER IS DIRECTED TO THAT FUNCTION ROUTINE,.

-===QUTPUT ===~

FTRM
FTRM
FTRM
FTRM
FTRHM
FTRM
FTRM
FTRM
FTRM
FTRM
FIRM
FYRM
FTRHM
FTRM
FTRHM
FTRM
FTRM
FTRM
FTRM
FTRM
FTRM
FTRM
FTIRM
FTRM
FTRM
FTRM
FTRM
FTRM

DCDZS
0coZs
DCDZS
DEDZS
DCDZS
0CcDZS
ocozs
0CDZs
ncozs
pDCcDZs
DCDZS
DCDZS
DCDZS
pCcozs
DCDZS
DCDZS
DCDzZs
0CBZs
DcoZs
DCDZS
DeDZs
DCOZS
DCDZS
DCOZS
DCDZS
DCDZS
DCDZS
DCDZS
DCDZs
DCDZS
ncozs
DCDZS
DCozZs
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DCDZS =SEGOND DERIVATIVE OF SOUND SPEED WITH RESPECT TO
HEIGHT Z

====PROGRAM FOLLOWS BELOW==---

COMMON VP, T1,NCS,ZTI0107),CT01C07,ASOLCL00)
DEFINZ THE UPPER AND LOWZIR ROUNDS OF THE SQUND-SPEED PROFILE.
FA S ZIt1)
P ZT1INCS)
QUTISTIDE OF THESE BROUNDS, LET DCDZIS(Z) = 0.
IF(Z LT, ZLY GO TO 57
IF(Z .GT. ZPY GO TO &1
I = HNCS
179 = I-1
FOR ANY VALUE Z4 WE WANT T SUCH THAT Z IS DETWEEN 7I(I-19
AND 2T1I). WE START WITH THE HIGHEST VALUE FOR I AND WORK
DOWHWARD UNTIL WE FIND THE TINTERPVAL THAT CONTAINS 7.
ZTEST = £14J)
IF 7 IS RETHWEEN ZI(I-1} AND ZI(I), WE GO TO 40 AND CALGULATE
onpnZs(z) .
IF{(Z .GT, ZTEST) GOQ TO 4O
IF Z IS NOT SBETWEEN ZIfI=-1) AND ZTI(I), WE CHOSE THE NEXT VALUE
LOWER FOR I AND CONTINUE THE SEARGCH.
I =4 ’
GO 10 19
LT COMTINUE
IF WE HAVE ARRIVED HERE, THEN Z IS BETHWEEN ZIC(I-1) AND ZIC(D)
SO THAT WE CAN NOW CALCULATE 0OCDZIS(Z).
DELZ = ZI(IY = Z1 4.0}
W = (Z - ZItJY)/DELZ
WBAR = 1.0 - W
O0CDZS = 6.0 (LWIARF¥ASCL LYY} & (WYASOLIIN))
RETURN
50 0CNZS = 0.0
RETURN
END

ol

FUNCTION FTRMUL(Z)

FTRMUL (FUNCTION)

~==-ABSTPACT ===~

TITLE - FTIMUL
THIS ROUTINE COMPUTES THE FUNCTION WHICH IS INTEGRATED
OY SUBRDUTINE CDSDVE BETWEEN THE LIMITS ZUP AND ZUI,
AND ZLOW ANDO ZLI. THE FOPMULA FOR FTRMUL(Z) IS

-2.*VP*0OCDZS
FTRMUL(ZY) = ~===c—mmmm e e mem = e e )
(DCOZ**2)* (VP=*2 -CSP*F*2)%%D .5

LANGUAGE = FORTRAN EXTENDED VERSION &% (R.M. CDC 60305601)

AUTHORS - W AKINMEY AND A.DLPIERCF, GEORGIA TECH. s
JANUARY, 1976

EQUIPMENT - CDC CYBER 74, N.0.S. 1.1 OPERATING SYSTEM
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0CDZIsS
0CDZS
DeDZS
DCOZS
DCDZS
DCDZS
0C0nZs
DEDZS
0CDZs
DGDZS
pcozs
DCDZS
0CDZS
ocnis
pcoZs
ocoZs
DCDZS
ocozZs
DcCDZs
OGDZS
DCDZS
0CBZS
nconzs
ocpzs
ocopZs
DeDZS
0CDZS
0CDZs
0CDZs
DCDZS
DCDZS
DCDZS
DCDZS
0CcDZS
0cnZs
DCoZs
0coZs
ocbzs

FTRMUL
FIRMUL
FYRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
FTRMUL
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~===USAGE===~

THE HEIGHT Z IS THE INDEPENDFNT WYARIAALE INPUT. THE PHASE
VELOCITY Vv2 IS PASSED THRAOUGH COMMON, THE SOUND SPEED

IS DOTATINED FROM FUNCTION CSP(Z), AND THE SOUND SPEED
DERIVATIVE IS OBTAINED FROM FUNCTION DCDZCZ) .

----PROGRAM FOLLOWS AELOW-=---

COMMON ¥P,X
SOUARE THI SOUND SPEED, THE PHASE VELOCITY, AND THE DFERIVATIVE
0F THE SQutD SPEED.

CSP53 = CsSp(Z)**2

VP5] = yp*=2 '

0CDZSQ = DCDZ(Z)**2
IF THZ SIAUARE OF THE PHASE VFLOCITY IS GREATER THAN THE SQUARE
0OF THE S2UND SPEED, GO TC 50 4AND GCALCULATE THE CENOMINATOR OF
FIBMUL1Z2Y, OTHERWISE, SET THE NENOMINATOR EQUAL TO 1.E-50,
AMD THEN GO TO 60 AND CALCULATE FTRMUL(Z).

[F(VP5] .GE., C5PSO) GO TO 570

K =1

47 DN = 1.E-50
GN 10 /)

57 K =40

IF WE HAVE ARRIVEN HERE, WE CALCULATE THE OFNOMINATOR OF
FTRMULI(Z). IF THE DENOMINATCR IS5 LESS THAN 1.E-50, THEN WE GO
T2 &40 AND SET IT ECUAL TO 1.E-50.

DN = DCDZSQ*(SN=TIVPSQ - CSPSAN)

IF(ON LT, 1.E-50) GO TO 479
CALCULATE FTRMULCZ).
60 FT24UL = =-2.%(VP*DCNZS5(Z)) /0N

RETURN

END

FUNGTIOH TRNPT (2}

T2HPT (FUNCTION)

~=--ABSTRAGT----

TITLE = TRMPT
THIS RJIUTINE COAPUTES THE FUNCTION WHICH IS EVALUATED
AT TURNING POIMYS BY SUBRQUTINE CDSDVP, THE FORMULA
FAR TRNPT IS

2. P
TANPT(Z) = ====-escemmoecmmccmaccmnnaaea
DEDZ (Z)*((UPSA - CSPSQ)*¥0.5)
LANGUAGE - FORTRAN EXTENDED VERSION & (R.M. GOC A0305601)
AUTHORS = WeA.KINNSY AMD A.D.PIERSE, GEORGIA TECH.,

JANUARY, 1976

EQUIPMENT =~ €OC CY3ER Ty NeOuaSe 1.1 OPERATING SYSTEM

----USAGE---~

THE HEIGHY Z IS THE INDEPENCENT REAL VARIABLE INPUT. THE
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FTRMUL
FTRMUL
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TRNPT
TRNPT
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TRNPT
TRNPT
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PHASE YELOZITY VP IS AVAILAPMLE FRIM COMMON, THE SOUND SPEED IS
JATAINZD FROM FUNCTION CSP(Z), AMD THE DERIVATIVE OF THE SOUND
SPEED IS N3TAIHED FROM FUNGTION DGCDZ(Z).

-=-=-PROGRA FOLLOWS BELOW----

COAMAON VP K
SOUARE THE PHASE VEILOCITY AND SOUND SPEED.

CSP5Q = CSP{Z)**2

VRSN = ypre?2
IF THE PHASE VELOQCITY SQUARED IS GREATER THAN OR EQUAL TO
FTHE SOUMH SPEED SNUARPEN, THEWN GN TO 53 AMD CALCULATE
THE DEMOMINATQOR OF TRNPT(Z),., OTHERWISE, SET THE DENOMINATOR
Fauat TO 1.£-50, AND G2 TO 60 TO CALCULATE TRNPT(Z).

[F (VvPS] .GE. CSPSQ) GO TO 50

X = 1
40 DM = 1.,5-50
GO TO 60

59 K = 0

CALCULATE THE DENOMINATNR OF TRNPT(ZY. IF ITS ABSOLUTE VALUE
IS LESS THAN 1.E-52, THEN GO TO &40 AND SET IT EQUAL TD
1-?"50;

DN = DCIZ(Z)*{SARTIVP5Q - N3PSA))

I (ASIONY JLT. 1.E-50) GN TO 40
CALCULATE TRNPT(Z).
67 TRNPT = (2.*VP)/0ON

RETURN

END

FUNCTION RDXDZ (Z)

ROXDZ (FUNCTIONY

.

-=--AESTRACT---~

TITLE - RDXDZ
THIS FUNCTION ROUTIME CALCULATES THE DERIVATIVE OF
X WITH RESPECT TO Z WHERE X AND Z ARE HORIZONTAL AND
VERTICAL SPACE COORDIMNATES, RESPECTIVELY, WHICH
LOCAYTE POINTS OM A RAY. A GIVEN RAY IS DEFINED BY A
PHASE VELOCITY VP. ROXDZ IS EXPRESSFD AS

17ye
RDOXDZLZ) = =m==mmmmce—eememceeaaeaea
(1/CSP¥¥2 ~ 1/UP¥¥21%%0,.5
LANGUAGE - FORTRAN EXTENDED VERSION & (R.M. CDC 609305601)
AUTHORS = WA KINNEY AND A.D.PIERGE, GEORGIA TECH.,

JANUARY, 1976
EQUIPMENT - COC CYBER 744 N.O.S. 1.1 OPERATING SYSTEM

~===USAGE====
THE HSIGHT Z IS THE INDEPENDENY RTAL VARIARLE INPUT. THE

PHASE VELOCITY VP IS AVAILABLE THROUGH COMMON, AND THE
SNUND SPEED IS OBTAINEO FROM FUNCTION CSPIZ).
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--—-PROGRAM FOLLCWS BSELOW---=

COMM40N VP .K
SAUARET THE SOQUND SPEED AHD THE PHASE VELOCITY.

CSP3Q = CsP(Z2)**2

VPS) = yp¥e2
IF THE SQUARE OF THE SOUND SPEED IS LESS THAN OR FQUAL TO
THE STJARE OF THE PHASE VELCCITY, 50 TO 10 ANOD CALCULATE
THZ SAQUAPS OF TH:Z DENOMINATOF OF RDXDZ{Z). OTHERWISE
SET THZ SJQUAZRID OF THE DENOMINATOR EQUAL TO 1.E-50, AMD THEN
GO TO 20 AND CALCULATE RDXDZ(7).

IF (CSPSN +LE. VPSQ) GI TO 10

< =1
5 DS = 1.E=-50
GO 10 213
10 K =1

IF WE HAVZI ARRIVEN HERE, WE CALCULATE THE SOUARE OF THE
D=HMOMINATOR OF RPDXDZ1Z). IF THE SNUARE OF THE DENOMINATOR
IS LESS THAN 1L,E-50, GO TO 5 AND SET IT EQUAL TO 1 .E-50.
0snL = 1./0SPSN
0sav = 1.r7vP50
nsag = DSGC - 0SV
IF (0S7 LY. 1.£=50) GO ¥O &5
CALCULATE 20DXDZ(Z).
20 ROXNDZ = (1./VPI/SQRTIDOSA}
RETURN
END

FUNCTION RDTDZ(Z)

RNTODZ (FUNCTION)

----ABSTPACT ===~

TITLE - RDXDZ
THIS FUNCTION POUTINE GALCULATES THE OERIVATIVE OF T
WITH RESPECT TO Z WHERES T IS TRAVEL TIME ALONG A RAY
AND WHERE 7 IS THE HEIGHT OF A POINT ON A RAY. A
GIVEN 24y [S DEFINCD BY A PHASE VELOCITY vP. ROTDZ(Z)
IS EXPRESSED AS

17CSp**2
AR EIZA) 5 srstasssnediammusasse ey e
{1/05P¥*2 - {/VRE%2)%8].5
LANGUAGE - FORTRAN EXTENDED VERSION 4 (R.M. CDC K0305601)
AUTHORS - WeA.KTIHNNEY AND A.D.PIERCE, GENRGIA TECH.,
JANUARY, 1976
EQUIPMENT - CDC CYBER 74, N,0.S. 1.1 OPEPATING SYSTEM

~=--USAGE-=-~~

THE HEIGHT 7 IS THE INDEPENDEMT REAL YARIABLE INPUT. THE
PHASE VELQCITY VP IS AVATILAPLE THROUGH GOMMON AND THE SOUND
SPEED IS O3TAINED FROM FUNCTION CSPU(Z).
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==-=-PROGRAM FOLLOWS BELOQW==-=-

COMMON VP ,K
SQUARE THE SOUND SPEED AND THE PHASE VELOCITY.

CSPSQ = CSP(Z)+**2

VPS1 = VYp*=2
IF THF SOQUARE OF THE SOUND SPFEN IS5 LESS THAN OF EQUAL TO
THE SQUARE OF THE PHASE VELQCTITY, GD 7O 30 AND CALCULATE
THE SQUARE OF THE DENOMINATOFP OF ROTDZ(Z)s OTHERWISE,
SET THZ SJAREZ OF THE DENOHINATOR EQUAL YO 1.E-50 AND THEN
GO TO 4C aND CALCULATE RPDTDZ(Z).,

IF (CsSPSQ «LE. VPSCY GO TO 30

K =1

IF WS HAYE ARIIIVED HERE, WE CALCULATE THE SQUARF OF THE
DZNOMINATOI2 OF ROTOZUCZ). IF THE SJUARE OF THE DENOMINATOR
IS LESS THAN 1.E-S0, GO TO 20 AMD SET IT EQUAL TO 1.E-50.
DSAC = 1./C5PSA
0saVv = 1./V250
DsQ = 0sSQc - bSOV
IF (DSOQ .LT. t.E-50) GO TO 20
CALCULATE RDTDZ(Z).

40 RODOTDZ = (1./CS5PSQ)/SART (DS

RETURN
END

FUMCTION RAINTI(DSDZ,ZLONW, ZUP)

RAINT (FUNCTION)

~===ABSTRACYT~=~=~-
TITLE - RAINT
THIS FUMCTION ROUTINE PEPFORMS THE TIMVEGRATION OF
ANY Z~DEPENDENT FUNCTION DIZTWEEN LIMITS ONE OR
30MHd OF WHICH MAY BE SINGULAR POINTS (E.G., TURNING

POINTSY .
LANGUAGE - FORTRAN EXTENDED VFRSION L (R.M. GOC A0305601)
AUTHORS - WeAKINNEY AND A.ND.FIERCE, GEORGIA TEGHa,

JAMNUARY, 139756

EQUIPMENT CDC CYRER T4y N.0.S5. 1.1 OPEPATING SYSTEM

~===USAGE===-

THE FUNCTIAN DSDZR IS5 INTEGRATED BETWEEN THE LIMITS ZLOW AND
ZUP (WHIGH MAY OP MAY NOT BE TUPNIHNG POINTS - SEE SUBROUTINE

TNPNT).
-=-=-=-EXTERNAL SUBPOUTINE REQUIPED----
QUADI(A,3,0,REL 4Ny ANS,FANS,NERR, IMAP)

QUAD IS A CDC MATH SCICNCE LIRBRARY ROUTINE THAT NUMERICALLY
INTEGRATES A SPECIFIECT FUNCTION BETWEEN SPECIFIED LIMITS BY

USE OF THE GUASS-LEGENDRE QUADRATURE TECHNIQUE. A DESCRIPTION
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0F THE USAGE OF NuUAD IS AVATILARLE STARTVING OM PAGE §-272 OF
THE COC REFEREMCE MANUAL #69327500A. MORE TNFOPMATYION MAY BE
OBTATINED 8Y WRITING CONTROL DATA COPPQORATIONM, DOCUMENTATION
DEPARTHMENT, 215 MCFFETT PARK DRIVE, SUNNYVALE, CALIFORNIA
Andshe. THZ SUBPOUTINE REFEREHNCE MUMBER FOR QUAD IS PS-79h.

====PROGRAM FOLLOWS BELOW===~=

EXTERNAL 0SD7P
CALCULATZ A POINT HALF WAY PETWEEN ZLOW AND ZUP.

ZAVE = (ZUP + ZLOWY/2.0
SET THE PARAMETER D FOR QUAD.
D = 1.£-6

INTEGRATE FROM ZLOW TO ZAVE. SHOULD 7ZLOW BE A SINGUARITY,
IT IS 36EST 7O IMTEGRATE AWAY FROM IT.

CALL QUADI(ZLOW,ZAVE,D,2EL,1,ANS51,D5DZR,NFRR,0)
INTEGRATE FROM ZUP TO ZAVE. SHOULD ZU? BE A SINGULARITY,
IT TS 3EST TO IMNTEGRATE AWAY FROM IT AS WELL.

CALL QUAD(7U>, ZAVE,DyR=ZL,1,ANS2,0SDZR,NERR,.Q)

COMBINE THE TWO INTEGRALS.

RAINT = (ANS1 - ANS2)

RETUPN

£ND
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SUEROUTINE ZREALZ

c
C-ZREAL2 ===~ seeSmmmeaanl
c
C  FUNCTION -
c
C  USAGE
Cc FARAMETERS F “
c EFS -
c
c
c Eps2 =
c ETA
c
c
c
c
c
c NSIG -
C
c
c N -
g X -
c
c
C ITHAX =
c
c
c 1ER -
C
c
C
C
&
¢
c
c
c
C
c
c
C  PRECISION -
C FREQU. IFSL RCUTINES =
C LANGUAGE -
R e e e e e
C LATEST REVISICA -
c

DINMENSICH

DATA

IER = 0

IR=0

CRITL = TEN**(-NSIG
D0 20 I=14N

1€ = 1

X1 X1

H]
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FeEPS+EPSZ2+ETAyNSIGyNo X, ITMAX, IER) ZKELOO10
: ZRELGOZO

TERARY T oo i i 5 i o e o ~evsmanceanan==JRELOGIA
, 2ZRELGO4O

ZREAL2 FINLCS THE RgAL ZERCS OF & REAL FUNCTIOMZRELCUED
== USED WFEN INITIAL GUESSES ARE GCCCL ZRELOGED

= CALL ZREALCIFEFS+EPS2sETAsNSIGHNXo ITHAX,IERIZRELOGTU

A FUMCTICN F(X) SUBPRCGKAF WRITTEN EY THE USERZKELOCED
2ND STCFPINC CRITERICN. A RCOT Xx 15 ACCEPTcD ZRELODSO
IF THE AESOLUTE VALLE OF F(X) LEe EPS ZRELO10Q
(INPUT) ZRELC110
SPREAC CRITERIA FOK FULTIFLE RCCTS. IF THE ZRELC120
ITH RCCT (Xx(I)) HAS BEeEnh COMFUTED ANC IT 1S 2KELG130
FOLND THAT THE AOSCLUTE VALUE OF ZRELEC140
XCI)=x(J) LT EFSc WHERE X(J) 1S A ZKELL150
PREVICUSLY CCHPUTED RGOTy THEN ThE 2RELL160
COMPUTATICN IS5 RESTARTEL WITH A GUESS EQUAL 2KELC170
TO X(I) + ETA. C(INFLT) ZKELO180
157 STCFPINC CRITEZRICN. A RCOT IS ACCEPTED IF ZRELLLSO
TWC SLCCESSIVE AFPROIXIMATIONS TO A GIVEN ZRELGZ20G
ROCT AGREt IN THE FIRST NSIG CIGITS. CINPUTIZRELGZ13]
THE MUMEER CF RGGTE 10 EE FOUNC (IANPLT) ZRELCZ220
CN INFUT X IS AN N-VeCTCR OF IMITIAL GLESSES ZRELGZ230
FOR N RCCIS. ON CUTPUTs X COMTAIANS TkE ZKELCZ240
COFPUTED RCOTS. . ZRELLZ250
CN INFUT = THE MAXIMUM ALLOWAELE NUMBER CF ZRELCZED
ITERATIOMNS PER RCOT AMD ON QUIPUT = THE ZRELL270
NUMBER OF ITERATIGMS LSED ON THE LAST RUCT. ZRELLZB8O
ERROK PARAMETER (OQUTFUT) 2RELC2SO
WARNING ERRCR = 32 + N ZRELG3QC

N = 1 INLIUCATES A SINGLE ROOT WAS BYFASSED <RELL310
EECALSE ITMAX WAS EXCEEDED FOR THIS RCCT. ZRELC3ZD

X{I) FCR THIS RCCT 1S SET TO 4111111, ZRELG3 3G
N = 2 INCICATES A SINCLE ROOT WAS BYFASSED ZRELL34Q
EECAUSE Tt DERIVATIVE CF F FOR THIS ZKELL 350
ROQT BECOMES TCC SMALLe X(1I) FCR THIS 2ZRELL360
FOOT IS SET TO £2zéd222. NOTE THAT ThIS ZRELLZ70
ERROR CCNCITION MAY CAUSE AN OVERFLCHW. ZRELC3RD

N = 3 INCICATES THAT SEVEKAL CF THE ABCVE ZRELL3SU
ERROR CCNDITIONS OCULURREDS EACE X{(I) IS ZRELC4OU
SET 10 EITHER 111111« Ok 222222« AS ABCVE zZRELCL1G

SINGLE ZRELCGGL2Q
LERTET ZRELCH3E
FCRTRAN ZRELGL4D
------ e memc s me R s e s n e s ansa s nesew= REL (450
GCTOELER €4 1973 ZRELGYHED
: ZRELL4TD

X (1) ZRELC48U
P1yPO0L 4yZERCyONETEN/ o143 4001 +0.091eCs10.0/ ZRELC4ST
ZRELLS00

ZRELD510

] - ZRELDS520
ZRELCS 20

ZKELUS40

ZRELL55D
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AXI = AES(XI)
IF (I .EQs 1) GC TO 15
NHi=1-1
00 10 J = 1,MM1
IF (ABS(XI = X(J)) .LT.
CONTINUE
FXI = F(XI)
AFXI = ABS{EXI)

CI = €001

IF (AXI «GE. P1) 01 = POC1%AXI

FI = AMINL(AFXILOD)
FXIPRI = F(XI + HI)
DER = (FXIFHI = FXI)/KI

IF (LER &G« ZERO) GO TQO 20

KIP1I=FX1IvsDER

IF (LEGVAR(XIPI) «NE. 0) GO TO 2C

XIFI=xI-XxIPI
ERR = RABSUXIFI - xI1
xI = XIP1

IF(AXI.cCeZERD) AXI=CNE
ERR1I=ERR/AXI

IF (LEGVAR(ERRL) «NE. 0) ERR1

IF(ERR1.LE.CRIT1) GO TIC 25
IC = IC + 1

IF (IC «LE. ITMAX) GC TG 5
RCCT NOT FCUNE,

X(I) = 11i111.,
IR=1R+1

IER=23

GO 7C 30

X{I) = 222222,
IR=1FR+1

IER=134

GO0 TC 319
X(Id=XI

10 CONTINUE

ITKAX = IC

IF(IER.EQ.T) GC TO 9035
IF(IRWLE.1) L0 TO SLC00
IER=35

CONTINUE

CALL UERTSTA(IER,6EHZREALZ)
RETURN

ENC

TEST FOR CUNVERGENCE
IF (AFXI «LE« EFS5) GO TO 25

TEST FOR CONVERGENCE

NO CONVERGENCE

RCCT NOT FOUNUs DERIVATIVE
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SUBROUTINE UERTST (IER,NAMZ) UERTST
UERTST

~UZRTSI===== emecccmemne  JBRARY J-rescmcccccccccccsemcmemmceenssss=as===|JERTST
UERTST

FUMCTION - ERROR MESSAGE GENZRATION UERTST
USAGE = CALL UERTSTU{IER«NAME) UERTST
PARAMETERS IER - ERROR PARAMETER. TYPE + N WHERE UERTST

' TYPE= 128 IMPLIES TERMINAL ERROR UERTST

64 IMPLIZS WARNING WITH FIX UERTST

32 IMPLIES WARNING UERTST

N = ERROR CO0E RZLEVANT TO CALLING ROUTINEUERTST

NAME - INPUT SCALAR CONTAINING THE NAME OF THE UERTST

CALLING RCUTINE AS A 6-CHARACTER LITERAL UERTST

STRING. UERTST

LANGUAGE - FORTRAN VERTST
---------- R e e D LSS S PV h £
LATEST REVISION - AUGUST i, 1973 UERTST
UERTST

DIMENSION ITYP(2,4)4IBIT(4) UERTST
INTEGER HARNyWARF+TERMy PRINTR UERTST
EQUIVALENCE (IBITCL1) ¢ HARN) 4 {IBIT(2) 4HWARF) 4 (IBIT(3),TERM) UERTST
DATA ITYP F1O0HWARNING «10H . UERTST

% L10HWARNINGIWIZ10HTH FIX) . UERTST

* 10HTERMINAL L 10H . UERTST

» 10HNON=-DEF INE y 10HD 5 Iy UERTST

* I8IT / J2464,128,50/ UERTST
DATA PRINTR/6LOUTPUT/ UERTST
IER2=IER UERTST

IF (IcRZ2 4GE«. WARN) GO TO S UERTST
NON=DEFINED UERTST

ISRi=4 UERTST

GO TO 20 : UERTST

5 IF (IZR2 .LT. TERM) GO TO 10 UERTST
TERMINAL UERTST

IERL1=3 UERTST

GO TN 20 UERTST

10 IF (IZR2 JLT. WARF) GO TO 15 UERTST
WARNINGIWITH FIX) UERTST

IERL=2 UERTST

GO T0o 20 UERTST
HARNING UERTST

15 ICR1=1 UERTST
EXTRACT *N=* UERTST

20 ICRE2=IER2-IBIT(IFRY) UERTST
PRINT ERROR MESSAGE UERTST

WRITS (PFINTR+25) (ITYP(I,IER1)+I=142) ,NAME,IERZ, IER UERTST

25 FORMAT (264 *%% T M S LUERTST) *** ,2A10,4X4ABs4XeI2 UERTST
1 8H (IER = 4yI341H)) UERTST
RETURN UERTST

END UERTST
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SUBROUTINE QULAGC(A,B,04REL,N,JANS, FUN,NERR,INAP)

SET N=1 HWHEN ONE OR MORE SINGULARITIEZS LIE ON PATH
ANS = C(OMFUTED VALLE CF INTECGRAL (GUTPUT)
FUN = MAHE CF FUNCTION GENERATING THe INTEGRAND
NERR = ERRCR FLAG (QUTPUT)

NERR = =1 STEP SIZE GAN NCT BE MACE SMALL ENOUGH
NERR = -2 CURD INCCMPLETE IN LIM (200F TRIES
NERR = =3 ©§ FKFAS BEEN SET TOO SMALL

NERR +GT, 0 =-SUCCESS=-~GIVES MNUMBER OF TRIES REQUIRED
IMAP = PROGRESS MAP FLAG. SET IMAP=1 WHEN MAP 1S DESIRED.
SET IMAF=0 WHEN NOT DeSIRED
CIMENSION h4(2) s WB (4D s h121ED s Z4(2),ZBH{U), Z12(H)
gouBLE PRECISICN YOBLE

CATA W4LL) sWU(Z) 9 (WBCI) sI=1,4) 9 (W12(I1)+I=1,6)/.065214515486254L40,
1. 3&785h8h5i3?h5h,.3&26&3?833?&362;.513?966#58??85?;.dE?’ﬁiUShH=33?

15, - 101228526290376+.249147045813403,.233452536538355,
1.2031€742E7230ED+.160073328543346,5.106539325935318,
1.04717533€38€E512/

LIM CAM BE CHANGED IF EITHER MORE OR LESS TRIES ARE ODESIRED
LIM=2C0

C=D

IS C SET 1C0 SKALL

IF (C.LT. 1.E-13) €O TC 2¢O

IF (IMAP.EC. 1) PRINT 13

FORMAT ( 2X,14HLEFT ENGC POINT 20 XyBHLENGTH26X912H8-PTs RESULT
1 11X,19HREL.ERROR IN 8~PTe s11X,4H1000 )

HCP = (.0
K=1
NCNSEK =
NCLT = 1
ANS = (.
F2 = 0.
NERR=0

Yy = A
YOBLE = DBLE(Y)
F = CreB0.

£ = 0.

g

FIKST TRY ON FULL SPAN AND ALSQC LAST STEP GO THROUGH HERE
H = (B-=Y)/2.

SGN=SIGN (1.4, H)

H=AES (H)

LAST = 1

ALL INTERMEOIATE STEPS BEGIN HERE

X = ¥ 4+ H*SGN

IS H TOO SFALL TC BE SENSEL RELATIVE TO X
IF{X+.1%H.EG.X) GO TO 27¢C

IF(K.GT«LIF) GC TO 280

4 FCINT AESCISSAE
Z411)=.3399%81043584856%H
I {2)=.86113€311 594053

A = LCRER LIMIT CF INTEGRATICN (INPUT)

B = UFFER LIMIT CF INTEGRATICHN (INPUT)

D = RECUIRED RELATIVE TOLERAMNCE (INPUT)

REL = ESTIFMATE OF RESULTING RELATIVE TCLERANGCE (QUTPUT)

N = STINGULARITY FLAG. SET N=0 WHEN NO SINGULARITY ALCNG PATH.
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QUAD
QUAD
QUAD
GUAD
QUAD
QUAD
QuUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
GUAD
QUAD
QUAD
QUAD
QUAD
QuUAD
GUAD
GUAD
QUAD
QUAD
QUAD
GQUAD
QUAD
QUAD
QUAD
QUAD
QuAaD
QUAD
QuaAD
QUAD
QUAD
QuAD
QUAD
QUAD
QuAg
GUAD
QUAD
QUAD
QuaD
QUAD
GUAD
Quan
QUAD
QuUAD
QuAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
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C
c

40

50

610

80

8 FCINT AESCISSAE
Z801)=,183434642435650%H
28(2)=,52E5E82240991€329*%H

ZE(3)=.79EEEBLT7L13027T¥H
ZB8(4)=,960c89856437536%H

EVALUATE FUNCTION AND FERFORM WEIGHTED SUM
GU=H* (hWh (1) ¥ (FLNAIX#ZL (1)) ¢FUN(X=Z4L(1)) )+

WG (2)* (FUNIX#ZL L E) ) rFUNIX=ZL (22D D))

Ga=0.

00 40 I=1,4
Z1=FUNIX+ZB (1))
22=FUNIX=-ZE(I})
GB=GE+hB(T)* (Z14+22)
C8=GB8*k

ABG=AES(GBI+1,E-261
TE=ABS (GA-G4)+1.E-14*ABG

RE IS5 THE RELATIVE ERRCR IN THE SUBINTERVAL THE 4 T, RESULT MAKES

IF THE 8 PT. RESULT IS EXACT
RE = 1.E-14 + TE/AEG
IF(K.EGs 1) F=ABG

P IS THE HMAX ABS VALUE OF ENTIRE INTEGRAL AS WE KNOW IT UP TO HERE

K IS THE CCUMTER OF THE NUMBER OF ATTEMPTS

K=K ¢ 1

EW = FpP

ER = TE®*RE

Q= EW/ER

IFC(IMAF.NE.1) GO TO 70
XLGNTER=2"H

ERR=RE**?2

G100=Q%170.0

PRINT 2 +YsXLGNTH.G8 4+ERR,G100

FORMAT (E22.15» 2E20.154 2E22.5)

Q1& = L**,Q0€25 .

D1 = h/2./RE**,125

D2 = H/D1¥C1E

C1 IS THE ESTIMATE OF THE DISTANCE ™A™ TO THE SINGULARITY

02 IS AN IMFCRTANCE FACTCR WHICH NORMALLY RANGES FRCH ABOUT 1Q.
TU Ce1 &« WHEN THE RESULT IS UNIMPORTANT, D2 IS LARGE.

THE MAGIC GC-GC CR NO-CO QUANTITY IS 100Q@ » FCUND AS FOLLCHS.
WE REGLIRE THAT THE RELATIVE ERROR IN THE 8 PT. SUBINTERVAL
VALUE (RE*®Z) TIMES THE IMPCRTANCE OF THE SUBINTEGRAL (ABG/P)
EE LESS THEN HALF THE FEQUIRED TOLERANCE C .

ALTERNATIVELY, (Cr2)*{F/ABG)/(RE**2) MUST BE GREATER THAN 1.0
THE ABCVE EXPRESSIGN, RWHEN MULTIPLIED CUT, IS 100Q.

IF(Q.LEs 0.C1) GO TO 120

COMFARISON CF &4 FT. ANLC 8 PT. LOOKS GCODe.

ES = 0.

IF{N«ME.1) GC TO <00

CHECK THE 1¢ PCINT RESULT
12 FOINT ABSCISSAE
Z12(1)=,12E23340A51146C5*H
Z12(21=+3€7821498958180%H
21213)=.587317C554286617%*H
Z12(4)=.76S90267 41S4H305%H
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QUAD
QuUAD
QLAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
GQUAD
QUAD
QUAD
QUAD
GUAD
QUAD
QUAD
GUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
GQUAD
QUAD
QUAD
QUAD
QuAD
QUAD
QUAD
QUAD
QUAGD
GQUAD
QUAD
QuaAd
QuUAD
QUAD
QUAD
QUAD
QUAD
GUAD
Quap
Quap
QUAD
QuaD
QUAD
QUAD
GUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
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C
C
c

c

CHPFrEFFIFIFFITRL AT VICFFIFRERBATITFFIFFIFARFRNAI IV IFIFIIFI YR EVZREIFRIIVREI RN

110

120

130

190

210
221
234

240

250
260

Z12€5)=.90411725€E370475%H
2121€)=49815€E0E3424E6719%H

EVALLATE FULNCTION ANLC FERFORM WEIGHTED SUM
G1é=0

00 16C I=1,¢
GlZ=C1le*WLZ(II)* (FUNIX+Z212 (1) }+FUNIX=Z12(I}D)
C12=G1z*H

ES=AES(G12-G#8)

G8=6G12

ER=ES

IF(ES = 100.*EW) 200,200,110

NOT GCCD ENCUGH. TRY AGAIN.

H=H/4 .0

F1 = 0.25

GO TC 190

THIS REGIChN CF THE PROGRAM MCOIFIES THE STEP LENGTH WHEN

SUBINTERYVAL IS NOT SMALL ENCUGH
IF(NCLT +NE, 1) GO To 130
FIRST CUTBACK
F1 = Q186
H=AMINI(.75*H,L1*Q16)
GO To 190
SUBSEGLENT CUTBACKS IN THIS SERIES,
F1 = F1*Qie
H = F1*H
NCNSEK = 0
NCUT = 0
LAST = 0
GO TOo 30

SUCCESSFUL SULBINTERVAL INTEGRATION
INCREASE STEP AS INCICATEC
ANS=ANS¢G3

E=E & AMAXI(ER, ESy1.E~14%ABG)
IF(LAST.EQ.1) GO TQ 300

HCP IS AN CLC SUCCESSFLL STEP
IF(HCF) 220,220,230

HCP = F

F2 = 0450"FZ2 ¢« ALOGU(H/HGP]}

HCP = hk

YOBLE = YDELE + DBLE(Z2.0*H¥SGN)
Y = YOELE

NCNSEK = NCNSEK ¢ 1
IF(NCMNSEK «GT. 4 )} GO TO 2540
IF(F2) 240,250,250

F2 «LTe 0. SAYS IT HAS NOT FCRGOTTEN THE PAST FATILURES YET

HC = D01%D27(1.+2.%02)
GO TC 260

FZ2 .GE. 0. SAYS THE HISTORY hAS BEEN SUCCESSFUL

HC = D2%(D1+2.*H)*Q16

k = HC

NCLT = 1

P = AMBX1(F,ABG)

IF (SGh*Y + 2.0*H - SGN¥B) 30,20,20
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C QUAD
c ERROR EXITS QLAD
27 0 NERR=-1 QUAD
WRITE{E, 3 ) H,Y QUAD

3 FORMAT(53H GLAD FAILUKE, STEF STZE CANNOT BE MADE SMALL ENCUGH./ QUAD
16W IF YOU WISH TO CONTINUE MCVE SINGULARITY TC THE ORIGING/ QUAG

€l1H STEP SIZE=4EZ24.1Bs 1uX,1SHLEFT END PCINT=,E24.16) QUAD

GO TO 300 QUAD

280 NERR==-2 GUAD
WRITE(E, 4 ) LIMsY,H QUAD

4 FORMATI19HIGLAD INCOFMPLETE IN T4, 7H TRLIES«s17H LEFT END POINT= QUAD
1624, 164,10X411H STEF SIZE=,E24.16) GQUAD

GQ T4 3090 QUAD

290 NERR=-1 QUAD
PRINT 5 QUAD

5 FORMAT (68K REQUESTED TOLERAMNCE TOO SMALL, ROUTINE WILL FROCEEC US QUAD
1ING 10.0E=-14 ) QUAD
C=10.CE~14 . QUAD

GO0 TG 10 - QUAD

C QUAD
C HERE WE RETURN TO THE MAIN PRCGRAM WITH OR WITHOUT AN ANSHEK QUAD
300 REL= 2.*E/(AES(ANS)+1.E=-290) GQUAD
IFINERR.GE.0+) MNERR=K QUAD
IF(B-A.LT.0.) ANS=-ANS QUAD
RETURN QUAD

END QuUAQ
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