MATHEMATICAL MODELS OF ACOUSTIC AND ACOUSTIC-GRAVITY WAVE PROPAGATION IN FLUIDS WITH HEIGHT-DEPENDENT SOUND VELOCITIES

A THESIS
Presented to
The Faculty of the Division of Graduate Studies

By
Wayne Alan Kinney

> In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Mechanical Engineering

MATHEMATICAL MODELS OF ACOUSTIC AND ACOUSTIC-GRAVITY

 WAVE PROPAGATION IN FLUIDS WITH HEIGHT-DEPENDENT SOUND VELOCITIES
Approved:

W. James Hadden, or'.

Date approved by Chairman: $6 / 2 / 76$

ACKNOWLEDGMENTS

Professor Allan D. Pierce has worked very closely with me throughout my graduate education. He has given generously of both his ideas and time, and in his fresh approach to teaching he has been a continual inspiration to me. For his generosity and for the honor of having worked with him for five years, I express my profound gratitude.

I wish to thank Professors W. James Hadden, Melvin R. Corley, and G. Lafayette Maynard for their comments on this dissertation. I am especially grateful to Prof. Marvin B. Sledd for the many hours he spent helping me correct my style and grammar.

Mrs. Sharon Butler performed a very competent job of typing this dissertation. For her help and for her patience in working with me, I am grateful.

I wish to acknowledge the help of my parents which has made my educational experience possible. I wish also to express gratitude to my fiancée, Jane, whose patience and unquestioning support have inspired me and afforded me the freedom of action I have needed.

The effort reported on here was sponsored by the Air Force Geophysics Laboratory.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ii
LIST OF TABLES V
LIST OF ILLUSTRATIONS vi
LIST OF SYMBOLS. ix
SUMMARY. xii
Chapter
I. INTRODUCTION. 1
II. PERTURBATION TECHNIQUES FOR THE COMPUTATION OF THE IMAGINARY PART OF THE HORIZONTAL WAVE NUMBER. 5
Introduction
Infrasonic ModesRoots of the Dispersion FunctionTransition of Modes from Non-Leaking to LeakingConcluding Remarks
III. NUMERICAL SYNTHESIS OF WAVEFORMS WHICH INCLUDE LEAKING MODES 33
Introduction
Calculation of Complex Wave Numbers and PhaseVelocities
Input Data for $G R_{0}$ and GR_{1}Waveform SynthesisFurther Example (Housatonic)
IV. ASYMPTOTIC HIGH-FREQUENCY BEHAVIOR OF GUIDED MODES 61
Introduction
The W.K.B.J. Mode1
Comparison of Dispersion CurvesInferences Concerning the Distribution of Energywith Height
Implications for Waveform Synthesis
Chapter Page
V. GEOMETRICAL ACOUSTICAL COMPUTATIONAL MODELFOR THE PREDICTION OF LONG-RANGE PROPAGATION. . . 72
Introduction
The Sound-Speed Profile
Ray Parameters
Rays Connecting Source and Receiver
Spreading of Adjacent Rays
Ray Amplitudes
Concluding Remarks
VI. CONCLUSIONS AND RECOMMENDATIONS 116
Remarks Regarding Leaking Modes
Remarks Regarding the High-Frequency Behavior of Guided Modes
Remarks Regarding the Geometric Acoustical Model
APPENDIX . 122
REFERENCES . 156
VITA . 159

LIST OF TABLES

Table
Page

1. Frequency-Dependent Parameters Corresponding to the GR_{0} and GR_{1} Modes. 23
2. Parameters Characterizing the Eigenmode Dispersion Function Near the Transition from Leaking to Non-Leaking for the GR_{0} and GR_{1} Modes . 29
3. Tabulation of Frequency-Dependent Parameters for the GR_{0} and GR_{1} Modes. 40
4. Ray Parameters and Computed Factors for the Example Described in the Text ($\omega=1 \mathrm{rad} / \mathrm{sec}$). . . 114

LIST OF ILLUSTRATIONS

Figure
Page

1. Integration Contours in the Complex k
(Horizontal Wave Number) Plane. (a) Original
Contour. (b) Deformed Contour. 7
2. Idealizations of Model Atmospheres. (a) Atmosphere Terminated by an Upper Ha1fspace with Constant Sound Speed. (b) Atmosphere Sound Speed Formally Approaching Infinity at Some Finite Altitude10
3. Numerically Derived Plots of Phase Velocity v
Versus Angular Frequency ω for Infrasonic Modes 15
4. Curves of Phase Velocity $\left(v_{n}, v_{a}, v_{b}\right)$ Versus
Angular Frequency $(\omega) .$. 19
5. Numerically Derived Plots of Phase Velocity ω / k_{R} and of the Imaginary Part k_{I} of the Complex Wave Number k Versus Angular Frequency for the GR_{0} and GR_{1} Modes. 24
6. Sketch Illustrating Nature of a Dispersion Curve in the Vicinity of the Line $\mathrm{G}^{2}=0$. 28
7. Graph of Normalized Phase Velocity VersusNormalized Frequency in the Vicinity of thePoint $\left(v_{L}, \omega_{L}\right)$ for the GR_{0} Mode. 31
8. Model Atmosphere Showing Sound Speed Versus
Altitude for Numerical Example Treated in the Present Chapter 34
9. Listing of Input Data Required to GenerateTabulations of R_{11} and R_{12} Versus Phase Velocityand Angular Frequency.. . ${ }^{2}$. 36
10. Sample Printout of R_{11} and R_{2} Versus Phase
Velocity for a Fixed ${ }^{1}$ alue ol ${ }^{2}$ Angular Frequency 37
11. A Sample Listing of $v_{n}(\omega), v_{a}(\omega)$, and $v_{b}(\omega)$ for the GR_{0} and GR_{1} Modes.. 39
12. A Plot of the Parameter α Versus ω for the GR_{1} Mode 44
13. A Plot of the Parameter β Versus ω for the GR_{1} Mode. 45
14. Input Data to Obtain Phase Velocity Versus Angular Frequency Above Cutoff Frequency for the GR_{0} and GR_{1} Modes 47
15. Sample Output of Phase Velocity Versus Angular Frequency at Frequencies Above Cutoff for the GR_{0} and GR_{1} Modes 49
16. Two Model Atmosphere Profiles. (a) The Same asin Fig. 8. (b) The Same Only with the OriginalUpper Halfspace Replaced by a Layer of Finitebut Large Thickness with a Halfspace Above it ofExtremely High Temperature and Sound Speed.51
17. Input Data to Obtain Phase Velocities and Source-Free Amplitudes Below the Cutoff Frequencies forthe GR_{0} and GR_{1}53
18. Sample Output of Phase Velocity and Source-Free Amplitude at Frequencies Below Cutoff for the GR_{0} and GR_{1} Modes. 54
19. Sample Input Data for Synthesis of Infrasonic Waveform Including Leaking Modes 5520. Plots of Modal and Total Waveforms Before andAfter Inclusion of Leaking Modes (50-MegatonBurst)5721. Plots of Modal and Total Waveforms Before andAfter the Inclusion of Leaking Modes (Housatonic) 59
20. Observed and Theoretical Pressure Waveforms atBerkeley, California, Following the HousatonicDetonation.60
21. Profiles of Temperature and Wind Speed Versus Height for Standard Reference Atmospheres. 62
22. Sketches of Sound Speed and Acoustic Pressure Amplitude Versus Height for a Guided Mode Illustrating the Mechanism of Acoustic Ducting. 63

Figure

> Page
25. A Comparison of Theoretical Guided-Mode
Dispersion Curves for the U. S. Standard Atmosphere, 1962 67
26. A Detailed Plot of a Section of Fig. 25 Showing a Region of Resonant Interaction Between Two Modes 69
27. Sketches Illustrating General Propagation Model.(a) Typical Profile of Sound Speed Versus Height.(b) Sketch of Point Source Above a Flat Rigid74
28. Sketch of Acoustic Rays Emanating from a Source in an Atmosphere in Which the Sound Speed Varies with Height 76
29. Examples of the Occurrence of Lacunae in the Propagation of Rays from a Source in a Stratified Atmosphere 79
30. Simplified Hypothetical Sound-Speed Profile with Lattice Points Shown. 80
31. Parameters for Characterizing a Ray 92
32. Definition of Parameter Δ s which Characterizes
Two Adjacent Rays with Horizontal Phase Velocities
$v_{p 1}$ and $v_{p 2} \ldots$ 9633. Definition of Parameters ZUI (Slightly BelowUpper Turning Point ZUP) and ZLI (Slightly AboveLower Turning Point ZLOW).. 99
34. Values of $d s / d v_{p}$ Along Two Adjacent Rays 109

LIST OF SYMBOLS FREQUENTLY USED

	Roman Symbols
${ }^{\text {A }} 11$	defined in Eq. (2.7a)
${ }^{\text {A }} 12$	defined in Eq. (2.7b)
a_{i}	coefficients for cubic splines
$\mathrm{C}_{\text {T }}$	sound speed for upper halfspace
$\mathrm{c}(\mathrm{z})$	sound speed as a function of height
$D(\omega, k)$	eigenmode dispersion function defined in Eq. (2.6)
$\hat{f}(\omega)$	Fourier transform of a time-dependent function that characterizes the source
G	function defined in Eq. (2.3)
$\mathrm{GR}_{0}, \mathrm{GR}_{1}$	gravitational modes
k	horizontal wave number
k_{I}	imaginary part of horizontal wave number
$\mathrm{k}_{\mathrm{n}}(\omega)$	ordered roots of $D(\omega, k)$
k_{R}	real part of horizontal wave number
k_{z}	vertical wave number
N_{c}	number of times a ray has touched a caustic as defined in Eq. (5.63)
p	acoustic pressure
p_{0}	ambient pressure
$\mathrm{q}_{1}, \mathrm{q}_{2}$	defined in Eq. (2.14)
Q	function used in Eq. (2.1)
r	horizontal distance of propagation
R	distance from source in the near field

[R]	transmission matrix
R_{11}	[1,1] element of [R]
R_{12}	[1,2] element of [R]
$\mathrm{r}_{\mathrm{Hor}}$	distance between source and receiver
S	separation distance between adjacent acoustic rays
$\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$,	acoustic modes
S (r)	geometric spreading factor used in Eq. (2.1)
t	time
$t_{\text {ray }}$	time of travel along a ray
$\mathrm{v} \text { and } \mathrm{v}_{\mathrm{p}}$	phase velocity (ω / k)
V	defined in Eq. (2.20)
$\mathrm{v}^{(1)}$	complex phase velocity obtained by first iteration with Eq. (2.10a)
$v_{\mathrm{a}}(\omega)$	roots of $\mathrm{R}_{11}(\omega, v)$
$v_{b}(\omega)$	roots of $\mathrm{R}_{12}(\omega, v)$
v_{L}	cutoff value of phase velocity for a non-leaking mode
$v_{n}(\omega)$	roots of $D(\omega, v)$
w	defined in Eq. (5.5c)
$\overline{\text { w }}$	defined in Eq. (5.5d)
x	horizontal dimension in space
X	defined in Eq. (2.10b)
z	height
$\left(z_{i}, c_{i}\right)$	lattice points for a sound-speed profile
${ }^{2} \mathrm{SC}$	source height
$z_{\text {T }}$	height of bottom of the upper halfspace

	Greek Symbols
α	derivative of $\mathrm{R}_{1} 1_{v}^{(\omega, v)}$ with respect to v and evaluated at $v \stackrel{1}{=} v_{a}$
β	derivative of $R_{12}(\omega, v)$ with respect to v and evaluated at $v{ }^{1} v_{b}$
γ	ratio of specific heats for air
Δc_{i}	defined in Eq. (5.5a)
Δz_{i}	defined in Eq. (5.5b)
ε	defined in Eq. (2.16)
λ	wavelength
μ, ν	defined in Eq. (2.16)
ρ_{0}	ambient density
σ	defined in Eq. (2.18)
ω	angular frequency
Ω	defined in Eq. (2.20)
${ }^{\omega}{ }_{\text {A }}, \omega_{B}$	characteristic frequencies used in Eq. (2.3)
${ }^{\omega}$ L	cutoff frequency for a non-1eaking mode

SUMMARY

Several problems which relate to the propagation of acoustic and acoustic-gravity waves in a medium whose properties vary with height only are considered with the intent of refining existing schemes for the synthesis of waveforms. The contribution from very low frequencies to a modal synthesis of an acoustic-gravity waveform is clarified, and a guide (with numerical examples) is provided for adopting a computer program to include such contributions in the synthesis of waveforms. A1so, for the purpose of improving the selection of modes for synthesis, the asymptotic highfrequency behavior of guided modes is explained by use of the W.K.B.J. approximation. Finally, a geometric acoustical scheme is outlined for the prediction of the amplitudes of waves that propagate over long distances. A number of FORTRAN subprograms are provided that exemplify the numerical implementation of this scheme. Recommendations are given for the refinement at low and high frequencies of schemes for the synthesis of waveforms.

CHAPTER I

INTRODUCTION

It was the intent of this dissertation to investigate theoretically the propagation of acoustic and acousticgravity waves in fluids whose properties vary with height only. The investigations were carried out for the purpose of refining existing schemes for the synthesis of waveforms. Such schemes have been developed by Harkrider, ${ }^{1}$ Pierce and Posey, ${ }^{2}$ and others. ${ }^{3}$ The propagation of waves which correspond to periods between approximately one and 20 minutes is investigated by use of techniques associated with the synthesis of both modal and geometric acoustical waveforms.

It was the intent of one investigation to clarify the contributions of modes at very low frequencies to a synthesis of waveforms associated with the propagation of acousticgravity waves. The computer program INFRASONIC WAVEFORMS ${ }^{2}$ had previously been devised to synthesize an infrasonic pressure-time trace as might be generated at long horizontal distances by a large-scale explosion in the atmosphere. In the course of the investigation described here, this program was modified to include contributions at low frequencies from leaking modes of propagation.

In Chapter II, mathematical perturbation techniques
are described for the computation of the imaginary part of the horizontal wave number (k_{I}) for leaking modes. Numerical studies are described in which k_{I} is calculated for two gravitational modes of interest and for a model atmosphere which is stratified (winds excluded) and terminated by an upper halfspace of constant sound speed. A description of the transition of modes from non-1eaking to leaking propagation is also given, and the contribution from branch line integrals in the associated complete Fourier synthesis ${ }^{2}, 4$ is briefly mentioned.

In Chapter III a detailed description is given of the modification and adaptation of the computer program INFRASONIC WAVEFORMS to include contributions from leaking modes and to improve the accuracy in predicting the early portions of infrasonic arrivals. The numerical implementation of the theory given in Chapter II on the inclusion of leaking modes is also described, and some specific numerical examples which demonstrate that inclusion are given. The complete and current version of INFRASONIC WAVEFORMS is given in the Appendices of reference 5. A hard copy of the program is available from the Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts 01731.

One of the difficulties with the modal approach to the synthesis of waveforms that has arisen in the past has been the presence of what might be called numerical "noise" in derived waveforms due to the fact that the integration over
angular frequency in the associated Fourier synthesis ${ }^{2}$ was truncated at high frequency. It was felt that, to eliminate this "noise," at least two approaches could be taken. First, the modal synthesis might be extended to higher frequencies by devising a scheme which would carefully select modes for contribution at those frequencies. This selection is difficult with the synthesis in its present state. Secondly, for use at high frequencies where the modal approach is inaccurate, a geometric acoustical scheme might be devised to synthesize waveforms which would serve as the continuations of modal waveforms calculated at lower frequencies.

In Chapter IV the first approach is investigated, wherein the W.K.B.J. method of solution is used to explain the asymptotic high-frequency behavior of guided modes. In Chapter V the second approach is investigated in which a geometric acoustical computational scheme is presented for the description of propagation over long distances. While schemes exist which calculate acoustic ray paths, ${ }^{6}$ there appear to be no readily available schemes which are sufficiently accurate to predict the amplitudes of waves that propagate over very 1 ong distances. ${ }^{7}$

In the scheme summarized in Chapter V, cubic splines are used to model profiles of sound speed versus height. ${ }^{8}$ In addition, techniques are outlined for defining ray paths and for finding distances and times of propagation, turning points for rays, and individual rays that connect source with
receiver. Of special significance in the scheme is a parameter that characterizes the spreading of adjacent rays. This parameter is used to determine the number of times that any given ray touches a caustic. It has been shown that a signal propagating along a ray undergoes a phase shift of $-\pi / 2$ at a caustic. ${ }^{9}$ Thus, the ultimate result of the scheme is a method for computing acoustic amplitudes and waveforms by superposing contributions from individual rays and incorporating phase shifts that occur at caustics. A number of FORTRAN subprograms which exemplify the numerical implementation of this method are given in the Appendix. In addition, some simplified numerical examples are presented which demonstrate the utility of these subprograms.

With the possible exception of the technique for the inclusion of leaking modes, the analytical techniques presented are by no means complete as far as the refinement of existing schemes for synthesizing waveforms is concerned. The main intent here was to investigate and understand avenues of approach which could be useful for such a refinement.

CHAPTER II

PERTURBATION TECHNIQUES FOR THE COMPUTATION OF THE IMAGINARY PART OF THE HORIZONTAL WAVE NUMBER

Introduction

In the formulation of the model on which the computer program INFRASONIC WAVEFORMS is based, ${ }^{2,10}$ an intermediate result is derived which expresses the acoustic pressure as a double Fourier integral over angular frequency ω and horizontal wave number k such that

$$
\begin{equation*}
p=S(r) \operatorname{Re}\left\{\int_{0}^{\infty} \hat{f}(\omega) e^{-i \omega t} \int_{-\infty}^{\infty}[Q / D(\omega, k)] e^{i k r} d k d \omega\right\} \tag{2.1}
\end{equation*}
$$

Here $S(r)$ is a geometrical spreading factor, which is $1 / \sqrt{r}$ for horizontally stratified media and $1 /\left[a_{e} \sin \left(r / a_{e}\right)\right]^{1 / 2}$ if the earth's curvature ($a_{e}=$ radius of earth) is approximately taken into account. The quantity $\hat{f}(\omega)$ is a Fourier transform of a time-dependent function that characterizes the source. Q is a function of receiver and source heights z_{r} and z_{S}, respectively, as well as of ω and k, and possibly of the horizontal direction of propagation if winds are included in the formulation. In any case, given z_{r} and z_{S}, Q should have no poles in the complex $k-p l a n e$ when ω is real and positive. The denominator $D(\omega, k)$ (which is termed the eigenmode
dispersion function) may be zero for certain values $k_{n}(\omega)$ of k.

The k integration contour for Eq. (2.1) is chosen to 1ie along the real k-axis except where it skirts below or above poles which lie on the real axis (see Fig. 1a, where branch lines are identified by dash marks, poles are indicated by dots, and the k integration contour is marked by arrowheads that show the direction of integration). Let it suffice here to say that the placing of branch cuts and the selection of the k integration contour must be such that the expression for the acoustic pressure dies out at long distance as long as a small amount of damping is included in the formulation. The guided-mode description in the formulation arises when the contour for the k integral is deformed (permissible because of Cauchy's theorem and of Jordan's lemma ${ }^{11}$) to one such as is sketched in Fig. 1b. The poles indicated there above the initial contour are encircled in the counterclockwise sense, and there are contour segments which encircle (also in the counterclockwise sense) each branch cut that lies above the real axis. The integrals around each pole are evaluated by Cauchy's residue theorem so that what remains is a sum of residue terms plus branch line integrals. Each residue term is considered to correspond to a particular guided mode of propagation.

One approximation that was previously made in the guided-mode formulation was to neglect contributions from

Figure 1. Integration Contours in the Complex k -(Horizontal Wave Number) Plane.
(a) Original Contour.
(b) Deformed Contour.
poles [i.e., the $k_{n}(\omega)$] which were located above the real k-axis. ${ }^{2,10}$ The thought behind this omission was that most of the contributions in the synthesis of waveforms for long propagation distances would come from poles which were on the real k-axis. Another approximation was that, for long distances, the contribution from branch line integrals could be neglected as well. Given these two approximations, the expression for the acoustic pressure in Eq. (2.1) can be approximated as follows:

$$
\begin{equation*}
p=\sum_{n} S(r) \int_{\omega_{L n}}^{\omega_{U n}} A_{n}(\omega) \cos \left[\omega t-k_{n}(\omega) r+\phi_{n}(\omega)\right] d \omega, \tag{2.2}
\end{equation*}
$$

where $A_{n}(\omega)$ and $\phi_{n}(\omega)$ are defined in terms of the magnitude and phase of the residues of the integrand in Eq. (2.1) and the $k_{n}(\omega)$ are the real roots for $D(\omega, k)$ (which are numbered in some order with $n=1,2,3$, etc.). ${ }^{2}$ It is understood that in Eq. (2.2), for any given $n, k_{n}(\omega)$ should be a continuous function of ω between the limits $\omega_{\text {Ln }}$ (lower) and $\omega_{U n}$ (upper). With this understanding, it should be possible to evaluate the resultant integral over ω approximately by the method of stationary phase or by some numerical method.

In spite of the seeming plausibility of the above two approximations, there is a set of circumstances intrinsic to low-frequency infrasonic propagation for which they are not valid, even for distances of propagation of more than 10,000
km . It is these circumstances and their relation to the analytic synthesis of guided-mode atmospheric infrasonic waveforms that are of central interest in the investigation described in this chapter.

Infrasonic Modes

An atmospheric model that is frequently adopted in studies of infrasound ${ }^{2}$ is one in which the sound speed $c(z)$ varies continuously with height z in some reasonably realistic manner up to some specified height z_{T} and is constant (value c_{T}) for all heights exceeding z_{T} (see Fig. 2a). Should winds be included in the formulation, the wind velocities are also assumed to be constant in the upper halfspace $z>z_{T}$. It would seem reasonable to say that one has some choice in specifying the values for both z_{T} and c_{T}, even though the computations of such factors as Q and $D(\omega, k)$ in Eq. (1) become more lengthy with increasing z_{T}. Whatever the choice of z_{T}, it would seem just as reasonable to choose c_{T} to be $\mathrm{c}\left(\mathrm{z}_{\mathrm{T}}\right)$ so that the sound-speed profile would then be continuous with height (this is the case for the profile shown in Fig. 2a). Another seemingly plausible choice in modeling the upper halfspace would be to have c_{T} approach infinity (as illustrated in Fig. 2b). With this choice, the bottom of the upper halfspace would be modeled as a free surface (or pressure release surface) such as is found in models generally adopted in studies of underwater sound for the

Figure 2. Idealizations of Mode1 Atmospheres.
(a) Atmosphere Terminated by an Upper Halfspace with Constant Sound Speed. (b) Atmosphere Sound Speed Formally Approaching Infinity at Some Finite Altitude.
water-air interface. Intuitively, it would seem that if the source and receiver are both near the ground and if the energy actually reaching the receiver travels via modes of propagation channeled primarily in the lower atmosphere, then the actual value of the integral in Eq. (2.1) would be somewhat insensitive to the choices of z_{T} and c_{T}. Since this idea, however, remains to be justified in any rigorous sense, it would not seem reasonable to allow c_{T} to approach infinity at the outset. In typical calculations performed in the past, z_{T} was taken as 225 km , and c_{T} was taken as the sound speed ($\approx 800 \mathrm{~m} / \mathrm{sec})$ at that altitude. ${ }^{2}$

The formulation leading to that version of Eq. (2.1) which is appropriate to infrasound for frequencies at which gravitational effects are important (corresponding to periods greater than one to five minutes) is based on the equations of fluid dynamics with the inclusion of gravitational body forces, the associated nearly exponential decrease of ambient density and pressure with height, and a localized energy source (see in particular pages 17 and 19 of reference 2). When c_{T} is taken to be finite, the incorporation of gravitational effects in this formulation leads to a dispersion relation for plane waves propagating in the upper halfspace which is (winds neglected) ${ }^{2,10}$

$$
\begin{equation*}
k_{z}^{2}=-G^{2}=\left[\omega^{2}-\omega_{A}^{2}\right] / c_{T}^{2}-\left[\omega^{2}-\omega_{\mathrm{B}}^{2}\right] k^{2} / \omega^{2}, \tag{2.3}
\end{equation*}
$$

where the solution of the linearized equations of fluid dynamics for $z>z_{T}$ is of the form

$$
\begin{equation*}
p / \sqrt{\rho_{0}}=\left(\text { Constant) } e^{-i \omega t} e^{i k x} e^{i k_{z} z} .\right. \tag{2.4}
\end{equation*}
$$

In these equations p is again the acoustic pressure, ρ_{o} is ambient density, x is the horizontal space dimension, and k_{z} is the vertical wave number (alternatively written as iG for inhomogeneous plane waves). ω_{A} and ω_{B} are two characteristic frequencies ($\omega_{A}>\omega_{B}$) for wave propagation in an isothermal atmosphere where $\omega_{\mathrm{A}}=(\gamma / 2) \mathrm{g} / \mathrm{c}_{\mathrm{T}}$ and $\omega_{\mathrm{B}}=(\gamma-1)^{1 / 2} \mathrm{~g} / \mathrm{c}_{\mathrm{T}}$ ($\mathrm{g} \approx 9.8 \mathrm{~m} / \mathrm{sec}^{2}$ is the acceleration due to gravity and $\gamma \approx 1.4$ is the specific heat ratio for air). For given real positive ω and real k, k_{z}^{2} can be positive or negative $\left(G^{2}\right.$ negative or positive, respectively). The values of k at which G^{2} is zero turn out, as might be expected, to be the branch points in the k integration in Eq. (2.1). Along the real k-axis, G is either real and positive (so that $e^{i k} z^{z}$ or $e^{-G z}$ dies out with increasing z), or else G is of the form ia where a can be positive or negative. From Eq. (2.3), the two branch points are at

$$
\begin{equation*}
\mathrm{k}_{\mathrm{BR}}^{+,-}(\omega)= \pm \frac{\omega\left[\omega_{\mathrm{A}}^{2}-\omega^{2}\right]^{1 / 2}}{c_{\mathrm{T}}\left[\omega_{\mathrm{B}}^{2}-\omega^{2}\right]^{1 / 2}} \tag{2.5}
\end{equation*}
$$

Note that for $0<\omega<\omega_{B}$, and for k between the branch points on the real axis, G is real and positive. The branch lines extend upwards and downwards from the positive and negative branch points, respectively (recall Fig. 1).

The eigenmode dispersion function $\mathrm{D}(\omega, \mathrm{k})$ in the case of atmospheric infrasound can be written in the general form (see page 47 of reference 2)

$$
\begin{equation*}
\mathrm{D}(\omega, \mathrm{k})=\mathrm{A}_{12} \mathrm{R}_{11}-\mathrm{A}_{11} \mathrm{R}_{12}-\mathrm{R}_{12} \mathrm{G} . \tag{2.6}
\end{equation*}
$$

In this expression, R_{11} and R_{12} are the elements of a transmission matrix [R]. ${ }^{2}$ They depend on the atmospheric properties only in the altitude range zero to z_{T}, and are independent of what is assumed for the upper halfspace. In general, their determination requires numerical integration over height of two simultaneous ordinary differential equations (termed the residual equations ${ }^{2}, 10,12$ in previous literature). They do depend on ω and k (or, alternately, on ω and phase velocity $v=\omega / k$), but are free from branch cuts. Also, they are real when ω and k are real and are finite for all finite values of ω and k. The other parameters A_{12} and A_{11} depend on the properties of the upper halfspace, and on ω and $k . \quad A_{11}$ and A_{12} are given (winds exc1uded) as

$$
\begin{equation*}
A_{11}=\mathrm{gk}{ }^{2} / \omega^{2}-\gamma g /\left[2 \mathrm{c}_{\mathrm{T}}^{2}\right] ; \tag{2.7a}
\end{equation*}
$$

$$
\begin{equation*}
A_{12}=1-c_{T}^{2} k^{2} / \omega^{2} \tag{2.7b}
\end{equation*}
$$

It may be noted further that, since every quantity in Eq. (2.6) (with the possible exception of G) is real when ω and k are real, the poles that lie on the real k-axis (recall that they are the real roots of D) must be in those regions of the (ω, k)-plane [or, alternative1y, the (ω, v)-plane] where $G^{2}>0$. Since at heights above z_{T}, the integrand of Eq. (2.1) divided by $\sqrt{\rho_{0}}$ should vary with z as $e^{-G z} T$, there is no leakage of energy into the upper halfspace for those modes that correspond to the above poles. Such modes are termed fully ducted modes. Modes for which there is leakage of energy are termed leaking. If D is considered as a function of ω and phase velocity v, the locus of its real roots $v(\omega)$ (dispersion curves) has (as has been found by numerical computation with the program INFRASONIC WAVEFORMS) the general form sketched in Fig. 3. The nomenclature for labeling the modes (GR for gravity, S for sound) is due to Press and Harkrider. ${ }^{13}$ It may be noted from Eq. (2.3) that there are two "forbidden regions" (slashed in the figure) in the (ω, v)-plane. These regions correspond to

$$
\begin{equation*}
v<c_{T}\left[\omega_{B}^{2}-\omega^{2}\right]^{1 / 2} /\left[\omega_{A}^{2}-\omega^{2}\right]^{1 / 2} \tag{2.8a}
\end{equation*}
$$

for $\omega<\omega_{B}$ and to

Figure 3. Numerically Derived Plots of Phase Velocity v Versus Angular Frequency ω for Infrasonic Modes.

$$
\begin{equation*}
v>c_{T}\left[\omega^{2}-\omega_{\mathrm{B}}^{2}\right]^{1 / 2} /\left[\omega^{2}-\omega_{\mathrm{A}}^{2}\right]^{1 / 2} \tag{2.8b}
\end{equation*}
$$

for $\omega>\omega_{A}$. Within these regions there are no real roots of the function $D(\omega, v)$ because G is imaginary. The existence of the high-frequency upper "forbidden region" implies that the phase velocities for propagating modes are always less than the sound speed chosen for the upper halfspace. It also implies that, in the high-frequency limit, the branch points in the $k-p l a n e$ are at $\pm \omega / c_{T}$. The low-frequency lower-phase-velocity "forbidden region" appears to be due to the incorporation of gravitational effects into the formulation. However, if c_{T} is allowed to approach infinity, the lower "forbidden region" disappears. Numerical studies were performed with INFRASONIC WAVEFORMS to see just what effect varying c_{T} had on the dispersion curves shown in Fig. 3. Briefly, the result was that while the forms of the GR_{0} and GR_{1} modal curves changed little wi.th increasing c_{T} the lower "forbidden region" shrank in frequency range, and as it did so, the modal curves extended to successively lower frequencies. Thus, it can be seen that the fully ducted GR_{0} and $G R_{1}$ modes both have a lower frequency cutoff [ω_{L} in Eq. (2.2)] which depends on c_{T}. In fact, the larger c_{T} becomes, the smaller this cutoff frequency becomes.

At this point, there should appear to be the following paradoxes. Given that frequencies below ω_{B} may be important
for the synthesis of the total waveform, an apparently plausible computational scheme based on the reasoning leading to Eq. (2.2) will omit much of the information conveyed by such frequencies. Also, in spite of the plausible premise that energy ducted primarily in the lower atmosphere should be insensitive to the choice for c_{T}, it can be seen that this choice governs the cutoff frequencies for certain modes and that certain important frequency ranges could conceivably be omitted entirely by a seemingly logical choice for c_{T}. The resolution of these paradoxes seems to lie in the nature of the approximations made in going from Eq. (2.1) to Eq. (2.2). The latter equation may not be as nearly correct as earlier presumed, and it may be necessary to include contributions from poles off the real axis as well as from the branch line integrals. Even for the case when the propagation distance r is very long, it may be that the imaginary parts of the complex horizontal wave numbers are so small that the magnitude of $e^{i k r}$ in Eq. (2.1) is still not small compared to unity. In addition, a branch line integral may be appreciable in magnitude at large r if there is a pole relatively close to the associated branch cut. These possibilities are investigated in the next section.

Roots of the Dispersion Function

In light of the paradoxes mentioned, it would be desirable to modify the solution represented by Eq. (2.2) so
as to remove the apparent artificial low-frequency cutoffs of the $G R_{0}$ and $G R_{1}$ modes. As a first step, the nature of the eigenmode dispersion function D in the vicinity of the dispersion curve for a particular mode is examined. The curve of values $v_{n}(\omega)$ of phase velocity v versus ω for a given (n-th) mode is known for frequencies greater than the lower cutoff frequency ω_{L}. Given this curve, analogous curves $v_{a}(\omega)$ and $v_{b}(\omega)$ can be found for values of the phase velocity ω / k at which the functions $R_{11}(\omega, v)$ and $R_{12}(\omega, v)$ in Eq. (2.6), respectively, vanish. One characteristic of the curves $\mathrm{v}_{\mathrm{n}}(\omega), \mathrm{v}_{\mathrm{a}}(\omega)$, and $\mathrm{v}_{\mathrm{b}}(\omega)$ which has been checked numerically for $\omega>\omega_{L}$ with the use of the program INFRASONIC WAVEFORMS (see Fig. 4) is that, for a given mode of interest, these curves all lie substantially closer to one another than to the corresponding curves for a different mode.

Given the definitions above of $v_{a}(\omega)$ and $v_{b}(\omega)$, the dispersion relation $D=0$ for a single mode may be approximately expressed, through a simple expansion, as

$$
\begin{equation*}
D \approx\left(A_{12}\right)(\alpha)\left(v-v_{a}\right)-\left[A_{11}+G\right](\beta)\left(v-v_{b}\right)=0 \tag{2.9}
\end{equation*}
$$

where $\alpha=\mathrm{dR}_{11} / \mathrm{dv}$, and $\beta=\mathrm{dR}_{12} / \mathrm{dv}$, evaluated at $\mathrm{v}=\mathrm{v}_{\mathrm{a}}$ and v_{b}, respectively (for simplicity, D is considered here as a function of ω and $v=\omega / k$ rather than of ω and k). The above equation may also be written in the form

Figure 4. Curves of Phase Velocity (v_{n}, v_{a}, v_{b}) Versus Angular Frequency (ω).

$$
\begin{equation*}
\mathrm{v}=\mathrm{v}_{\mathrm{a}}+\left(\mathrm{v}_{\mathrm{a}}-\mathrm{v}_{\mathrm{b}}\right) \mathrm{X} /[1-\mathrm{X}], \tag{2.10a}
\end{equation*}
$$

where

$$
\begin{equation*}
X=(\beta / \alpha)\left(A_{11}+G\right) / A_{12} . \tag{2.10b}
\end{equation*}
$$

Eq. (2.10a) may be considered as a starting point for an iterative solution which develops v in a power series in $v_{a}-v_{b}$. With $v=v_{a}$ as the zeroth iteration, the right hand side of Eq. (2.10a) can be evaluated for the value of v required for the next iteration, etc. This iterative procedure should converge provided that v_{a} or v_{b} is not near a point at which G vanishes and provided that G in the vicinity of v_{a} or v_{b} is not such that the variable X is close to unity. Among other limitations, the iterative scheme is inappropriate for those values of ω in the immediate vicinity of ω_{L}. This limitation is discussed further in the next section.

The iterative solutions obtained by the above scheme follow some interesting general trends. In relation to these trends, there are two general theorems of note, the proofs of which follow along lines previously used by Pierce ${ }^{14}$ in deriving an integral expression for group velocity. These are that, for ω and v positive and real,

$$
\begin{equation*}
\mathrm{R}_{12} \partial \mathrm{R}_{11} / \partial v-\mathrm{R}_{11} \partial \mathrm{R}_{12} / \partial v>0 \tag{2.11a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}_{12} \partial \mathrm{R}_{11} / \partial \omega-\mathrm{R}_{11} \partial \mathrm{R}_{12} / \partial \omega>0 \tag{2.11b}
\end{equation*}
$$

Alternately, for $R_{11}=(\alpha)\left(v-v_{a}\right)$ and $R_{12}=(\beta)\left(v-v_{b}\right)$, it follows that

$$
\begin{gather*}
\alpha \beta\left(v_{a}-v_{b}\right)>0, \tag{2.12a}\\
\left(v-v_{b}\right)\left(v-v_{a}\right)\left(\beta \alpha^{\prime}-\beta^{\prime} \alpha\right)+\beta \alpha\left[v_{b}^{\prime}\left(v-v_{a}\right)-v_{a}^{\prime}\left(v-v_{b}\right)\right]>0, \tag{2.12b}
\end{gather*}
$$

where the primes represent derivatives with respect to ω. Eq. (2.12b) should hold for arbitrary v in the vicinity of v_{a} and v_{b} and lead, upon setting $\mathrm{v}=\mathrm{v}_{\mathrm{a}}, \mathrm{v}=\mathrm{v}_{\mathrm{b}}$, or $\mathrm{v}=\left(\mathrm{v}_{\mathrm{a}} \mathrm{v}_{\mathrm{b}}{ }^{\prime}-\mathrm{v}_{\mathrm{a}}{ }^{\prime} \mathrm{v}_{\mathrm{b}}\right)\left(\mathrm{v}_{\mathrm{b}}{ }^{\prime}-\mathrm{v}_{\mathrm{a}}{ }^{\prime}\right)$, along with the use of Eq. (2.12a), to

$$
\begin{gather*}
\mathrm{v}_{\mathrm{b}}^{\prime}<0, \tag{2.13a}\\
\mathrm{v}_{\mathrm{a}}^{\prime}<0, \tag{2.13b}\\
(\alpha / \beta)^{\prime}>0 . \tag{2.13c}
\end{gather*}
$$

Eq. (2.12a) implies that so long as $\alpha \beta \neq 0$ the two curves $v_{a}(\omega)$ and $v_{b}(\omega)$ do not intersect. If α and β have the same sign, then the v_{a} curve lies above the v_{b} curve. If α and β differ in sign, then the v_{b} curve lies above the v_{a} curve.

To illustrate the general utility of the perturbation approach taken here, values of $\omega, v_{a}, v_{b}, \alpha, \beta, v^{(1)}$, and v_{n} are listed in Table 1 for the $G R_{0}$ and $G R_{1}$ modes, where $v^{(1)}$ is the result of the first iteration for the phase velocity. The values given there are appropriate to the case of a U. S. Standard Atmosphere ${ }^{2}$ without winds which is terminated at a height of 125 km by an upper halfspace possessing a sound speed of $478 \mathrm{~m} / \mathrm{sec}$. Note that, for those frequencies at which v_{n} is computed, the agreement between $v^{(1)}$ and v_{n} is excellent.

For further illustration of the perturbation technique, detailed plots versus angular frequency are given in Fig. 5 of ω / k_{R} which is the reciprocal of the real part of $1 / v^{(1)}$, and of k_{I} which is the imaginary part of $\omega / v^{(1)}\left(k_{R}\right.$ and k_{I} are the real and imaginary parts of k, respectively). Note that k_{I} is zero above the corresponding cutoff frequencies.

Transition of Modes from Non-Leaking to Leaking

The iterative process described by Eqs. (2.10) in the preceding section provides little insight into the behavior of a modal dispersion curve in the immediate vicinity of cutoff (i.e., for values of ω near ω_{L}). In addition, the process may fail to converge when G is near zero. To explore this transition region, it is sufficient to approximate G in Eq. (2.9) by

Table 1. Frequency-Dependent Parameters Corresponding to the GR_{0} and GR_{1} Modes.

$G R_{0}$	ω $\sec ^{-1}$	$V_{\mathrm{km} / \mathrm{sec}}$	V_{b}	$\begin{gathered} \mathcal{\alpha e c} / \mathrm{kn} \end{gathered}$	β	$\begin{gathered} V^{(1)} \\ \mathrm{km} / \sec \end{gathered}$	V_{n}
	0.0052	0.31203	0.31207	917.4	-2783.7	$\begin{aligned} & 0.31202121 \\ & -3.184 \times 10^{-6} 1 \\ & \hline \end{aligned}$	
	0.0113	0.31190	0.31194	767.9	-3254.2	$\begin{aligned} & 0.31189059 \\ & -1.721 \times 10^{-6} 1 \end{aligned}$	
	0.0155	0.31176	0.31181	621.9	-3644.3	0.31173763	0.31172882
	0.0165	0.31172	0.31177	581.5	-3738.2	0.31167504	0.31167509
	0.0186	0.31162	0.31168	497.5	-3910.1	0.31153369	0.31153394
$G R_{1}$,				
	0.0052	0.24229	0.24816	87.8	-3633.0	$\begin{aligned} & 0.25267 \\ & -2.715 \times 10^{-3} 1 \end{aligned}$	
	0.0103	0.23433	0.23844	94.7	-3990.0	$\begin{aligned} & 0.24218 \\ & -1.337 \times 10^{-3} 1 \end{aligned}$	
	0.0144	0.21842	0.22037	150.7	-5307.0	0.21431	0.22178
	0.0165	0.20252	0.20345	265.0	-7767.3	0.20016	0.20463
	0.0175	0.19058	0.19111	418.9	-10,858.0	0.19226	0.19212

Figure 5. Numerically Derived Plots of Phase Velocity $\omega / \mathrm{k}_{\mathrm{R}}$ and of the Imaginary Part k_{I} of the Complex Wave Number k Versus Angular Frequency for the GR_{0} and GR_{1} Modes.

$$
\begin{equation*}
G \simeq\left[\left(q_{1}\right)\left(\omega-\omega_{L}\right)+\left(q_{2}\right)\left(v-v_{L}\right)\right]^{1 / 2}, \tag{2.14}
\end{equation*}
$$

where q_{1} and q_{2} are readily identifiable positive numbers which are independent of ω and v [see Eq. (2.9)] and v_{L} is the limit of the phase velocity on the dispersion curve as ω approaches ${ }^{\omega}$ L from above. The bracketed quantity in Eq. (2.14) may be regarded as a double Taylor series expansion (truncated at first order) of G^{2} about the point $\left(\omega_{L}, v_{L}\right)$ at which G^{2} vanishes (hence there is no zeroth-order term). That q_{1} and q_{2} are positive quantities follows from the fact that G^{2} is positive outside of the lower "forbidden region" in the $(\omega, v)-p l a n e\left(i . e .\right.$, to the upper right of the Iine $G^{2}=0$) and also from the fact that the boundary of the lower "forbidden region" slopes obliquely downwards (see Fig. 3).

With the above approximation for G, a further approximation to the eigenmode dispersion function $D(\omega, v)$ [of Eq. (2.9)] in the vicinity of the point $\left({ }_{L}, v_{L}\right)$ would be

$$
\begin{equation*}
D \approx\left(A_{12} \alpha-A_{11} \beta\right)\left\{(\Delta v+\mu \Delta \omega)+\varepsilon(\Delta v+v \Delta \omega)^{1 / 2}\right\} \tag{2.15}
\end{equation*}
$$

where $\Delta v=v-v_{L}, \Delta \omega=\omega-\omega_{L}, v=q_{1} / q_{2}$ and where the quantity μ is either $-\mathrm{dv}_{\mathrm{a}} / \mathrm{d} \omega$ or $-\mathrm{dv}_{\mathrm{b}} / \mathrm{d} \omega$ (the two being close in value). The use of the minus sign in the expressions for μ assumes that μ is positive. The quantity ε is

$$
\begin{equation*}
\varepsilon=\frac{\left(q_{2}^{1 / 2}\right)(\beta)\left(v-v_{b}\right)}{\beta A_{11}-\alpha A_{12}} \tag{2.16}
\end{equation*}
$$

It should be noted that ε depends on v, although, for the purposes of the analytical investigation given here, v may be set equal to v_{L}. In fact $q_{1}, q_{2}, \beta, \alpha, A_{11}, A_{12}, \mu$, and ν may be considered to be evaluated at $\omega=\omega_{L}$ and $v=v_{L}$. Note again that μ and ν are both positive quantities. Furthermore, note that $\nu>\mu$ as is evidenced by the fact that the curve $G^{2}=0$ in the (ω, v)-plane slopes downward more rapidly than the lines $R_{11}=0$ and $R_{12}=0$ (see Fig. 4).

From Eq. (2.15) the zeros of D are readily found to be

$$
\begin{equation*}
\Delta v=-\mu \Delta \omega+(1 / 2) \varepsilon^{2} \mp \varepsilon(\nu-\mu)^{1 / 2}[\Delta \omega+\sigma]^{1 / 2} \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\varepsilon^{2} /[4(\nu-\mu)] . \tag{2.18}
\end{equation*}
$$

For $|\Delta \omega| \ll \sigma, \Delta v$ may be further approximated by use of the binomial theorem as

$$
\begin{equation*}
\Delta v=-v \Delta \omega+\left[(v-\mu)^{2} / \varepsilon^{2}\right](\Delta \omega)^{2} \tag{2.19a}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta v=\varepsilon^{2}-(2 \mu-\nu) \Delta \omega-\left[(\nu-\mu)^{2} / \varepsilon^{2}\right](\Delta \omega)^{2} \tag{2.19b}
\end{equation*}
$$

for the upper and lower signs of Eq. (2.17), respectively. Eq. (2.19a) (since $\Delta v=0$ when $\Delta \omega=0$) is a description of the dispersion curve in the vicinity of the point $\left(\omega_{L}, v_{L}\right)$. Examination of Eq. (2.19a) shows that as $\Delta \omega$ approaches zero, the dispersion curve becomes tangential to the line $G^{2}=0$. In other words, the two curves do not intersect (refer to Fig. 6). At point A [i.e., at the point $\left.\left(\omega_{L}, v_{L}\right)\right]$ in the sketch, the two curves are tangent. Between the points A and B, there is a finite gap in the frequency range in which there are no poles in the k - (or $v-$) plane corresponding to a given n-th mode. The magnitude of the parameter σ (rad/sec) gives an indication of the width of this frequency gap.

In Table 2 the values of $\omega_{L}, v_{L}, q_{1}, q_{2}, \mu, \nu, \varepsilon$, and σ are given for the $G R_{0}$ and $G R_{1}$ modes for the model atmosphere corresponding to Fig. 2a. The extremely small values of σ should be noted. Also, a plot of Δv versus $\Delta \omega$ which shows both branches of Eq. (2.17) and which is appropriate for the $G R_{0}$ mode is given in Fig. 7. For simplicity, this plot is in normalized form with

$$
\begin{equation*}
V=-\{\mu /[2(\nu-\mu)]\}_{\Omega} \mp[1+\Omega]^{1 / 2}, \tag{2.20}
\end{equation*}
$$

Figure 6. Sketch Illustrating Nature of a Dispersion Curve in the Vicinity of the Line $G^{2}=0$.

Table 2. Parameters Characterizing the Eigenmode Dispersion Function Near the Transition from Leaking to Non-Leaking for the GR_{0} and GR_{1} Modes.

	GR_{0}	GR_{1}
$\omega_{\mathrm{L}}(\mathrm{rad} / \mathrm{s})$	0.0118	0.0125
$\mathrm{v}_{\mathrm{L}}(\mathrm{km} / \mathrm{s})$	0.31188	0.2323
$\mathrm{q}_{1}\left(\mathrm{~s} / \mathrm{km}^{2}\right)$	0.14	0.35
$\mathrm{q}_{2}\left(\mathrm{~s} / \mathrm{km}^{3}\right)$	1.84×10^{-3}	1.86×10^{-3}
$\mu(\mathrm{~km})$	2.94×10^{-2}	4.15
$\nu(\mathrm{~km})$	76	190
$\varepsilon\left(\mathrm{~km}{ }^{1 / 2} / \mathrm{s}^{1 / 2}\right)$	9.6×10^{-6}	1.02×10^{-3}
$\sigma(\mathrm{rads} / \mathrm{s})$	3.04×10^{-13}	1.41×10^{-9}

where $V=\Delta v /[2(\nu-\mu) \sigma]$ and $\Omega=\Delta \omega / \sigma$. Both the real and imaginary parts of V and Ω are shown in the plot. The corresponding plots for the GR_{1} mode differ only slightly from those given for the GR_{0} mode in Fig. 7. As may be seen from Table 2, $\mu \ll \nu$ so that, for both modes, the quotient $\mu /[2(\nu-\mu)]$ is small compared to unity.

Concluding Remarks

Since there is a gap in the range of frequencies for which a pole (corresponding to a mode) may exist, it is evident that evaluation of the integral over k in Eq. (2.1) by merely including residues may be insufficient for certain frequencies. Thus it would seem appropriate to include a contribution from branch line integrals. However, there is a 1 ine of reasoning which demonstrates that all contributions from branch line integrals are insignificant. Further details on this matter are provided in reference 4.

The investigation described here led to a relatively straightforward perturbation technique for the inclusion of contributions from leaking modes in the synthesis of infrasonic waveforms. It was demonstrated that the imaginary parts of complex horizontal wave numbers can be less than $3 \times 10^{-4} \mathrm{~km}^{-1}$. Consequently, it would be expected that the contributions from leaking modes are significant for realistic propagation distances (i.e., between 1000 and $15,000 \mathrm{~km}$).

In this chapter, a theory of leaking modes has been

Figure 7. Graph of Normalized Phase Velocity Versus Normalized Frequency in the Vicinity of the Point $\left(v_{L}, \omega_{L}\right)$ for the GR_{0} Mode.
presented. The details of the modification of the computer program INFRASONIC WAVEFORMS to incorporate this theory are given in Chapter III.

CHAPTER III

NUMERICAL SYNTHESIS OF WAVEFORMS WHICH INCLUDE LEAKING MODES

Introduction

The computer program INFRASONIC WAVEFORMS ${ }^{2}, 5$ has been modified to include contributions at low frequencies from leaking modes (specifically the GR_{0} and GR_{1} modes) to numerically synthesized infrasonic waveforms. The procedure incorporated in this modification involves among other things the calculation (as discussed in Chapter II) of the imaginary and real parts of horizontal wave numbers and phase velocities. The entire procedure for including leaking modes is outlined in detail here. Numbers presented for illustration are appropriate to the case of infrasonic signals observed at $15,000 \mathrm{~km}$ distance from a 50 -megaton explosion, where the explosion is at three km altitude and the atmosphere [shown in Figs. 8 and $2(\mathrm{a})$] is assumed to contain no winds.

Calculation of Complex Wave Numbers

and Phase Velocities
The first step in the calculation of complex wave numbers and phase velocities for the $G R_{0}$ and $G R_{1}$ modes is to obtain values for the phase velocities $v_{n}(\omega), v_{a}(\omega)$, and $v_{b}(\omega)$, and the elements $R_{11}(\omega, v)$ and $R_{12}(\omega, v)$ of the

Figure 8. Model Atmosphere Showing Sound Speed Versus Altitude for Numerical Example Treated in the Present Chapter.
transmission matrix [R]. These calculations are done for frequencies below the cutoff frequencies of the two modes. As mentioned in Chapter II, R_{11} and R_{12} depend on atmospheric properties only in the altitude range zero to z_{T} (the bottom of the upper halfspace) and are independent of what is assumed for the upper halfspace. $v_{n}(\omega)$ is the phase velocity for a given ($n-t h$) mode for values of ω greater than the lower cutoff frequency ω_{L}, and $v_{a}(\omega)$ and $v_{b}(\omega)$ are values of the phase velocity ω / k at which the functions R_{11} and R_{12}, respectively, vanish. For a given mode, the values of v_{a} and v_{b} chosen are those from the curves $\mathrm{v}_{\mathrm{a}}(\omega)$ and $\mathrm{v}_{\mathrm{b}}(\omega)$ which for $\omega>\omega_{L}$ lie closest of all such curves to the curve $v_{n}(\omega)$.

With an alternate version of the subroutine TABLE, INFRASONIC WAVEFORMS may be used to obtain R_{11} and R_{12}. A deck listing of subroutine TABLE with appropriate modifications incorporated is given in Appendix A of reference 5. A deck listing of the input data that is required to calculate R_{11} and R_{12} for the example is given in Fig. 9. Note that only phase velocities between 0.143 and $0.3318 \mathrm{~km} / \mathrm{sec}$ and frequencies between $0.001 \mathrm{rad} / \mathrm{sec}$ and $0.031 \mathrm{rad} / \mathrm{sec}$ are used in this calculation. A sample portion of a printout of R_{11} and R_{12} versus phase velocity is given in Fig. 10 .

Values of $v_{a}(\omega)$ and $v_{b}(\omega)$ for the $G R_{0}$ and $G R_{1}$ modes are obtained by two successive runs of INFRASONIC WAVEFORMS in which two modified versions of the subroutine NMDFN are

```
$NAM1 NSTART=1, NPRNT=1, NPNCH=-1, NCMPL=-1 $END
$NAM2 IMAX=24,
ZI=1.,2.,4.,6.,8. ,10. ,12. ,14. ,16. ,18. ,20.,25. ,30., 35.,40. ,45.,55.,
    65.,75.,85.,95. ,105.,115.,125.,
T=292.,288. ,270.,260.,249.,236.,225.,215.,205.,198.,205.,215.,227.,
    237.,249.,265.,260.,240.,205. ,185. ,184., 200. ,250. ,400. ,570.,
LANGLE=1,
WINDY=25*0.0,
WANGLE=25*0.0
$END
$NAM4
THETKD =35.,
V1 = 0.143, V2 = 0.3318,
M1 = 0.001, }\quad\M2=0.031
NØMI = 30, NVPI = 80,
MAXMめD = 10
$END
$NAM1 NSTART=6, NPRNT=1, NPNCH=-1, NCMPL=-1 $END
```

Figure 9. Listing of Input Data Required to Generate Tabulations of R_{11} and R_{12} Versus Phase Velocity and Angular Frequency.

v_{n}	R_{11}	R_{12}
OMEGA=	$.30928-02$	
$.14300+00$	$.21671+01$	$.65152+02$
$.14539+00$	$-.72963-01$	$.22523+02$
$.14778+00$	$-.19992+01$	$.16898+02$
$.15017+00$	$-.34415+01$	$.49336+02$
$.15256+00$	$-.43200+01$	$.72532+02$
$.15495+00$	$-.46324+01$	$.85619+02$
$.15734+00$	$-.44356+01$	$.88883+02$
$.15973+00$	$-.38270+01$	$.83475+02$
$.16212+00$	$-.29260+01$	$.71114+02$
$.16451+00$	$-.18579+01$	$.53814+02$
$.16690+00$	$-.74204+00$	$.33657+02$
$.16929+00$	$.31761+00$	$. .12611+02$
$.17168+00$	$.12376+01$	$-.75995+01$
$.17407+00$	$. .19579+01$	$-.25568+02$
$.17646+00$	$. .24418+01$	$-.40247+02$
$.17885+00$	$. .26746+01$	$-.50952+02$
$.18124+00$	$.26605+01$	$-.57340+02$
$.18363+00$	$. .24195+01$	$-.59371+02$
$.18602+00$	$. .19834+01$	$-.57261+02$
$.18841+00$	$. .13917+01$	$-.51424+02$
$.19080+00$	$. .68860+00$	$-.42421+02$
$.19319+00$	$-.80574-01$	$-.30906+02$
$.19558+00$	$-.87185+00$	$-.17582+02$
$.19797+00$	$-.16447+01$	$-.31561+01$
$.20036+00$	$-.23637+01$	$. .11690+02$
$.20275+00$	$-.29996+01$	$.26326+02$
$.20514+00$	$-.35295+01$	$.40198+02$
$.20753+00$	$-.39379+01$	$.52832+02$
$.20992+00$	$-.42158+01$	$.63849+02$

Figure 10. Samp1e Printout of R_{11} and R_{12} Versus Phase Velocity for a Fixed Value of Angular Frequency.
used in sequence. These modifications are so minor that they are described here. To obtain $v_{a}(\omega)$, the third-fromend executable FORTRAN statement of subroutine NMDFN need only be changed from

$$
\begin{equation*}
\mathrm{FPP}=\operatorname{RPP}(1,1) * \mathrm{~A}(1,2)-\operatorname{RPP}(1,2) *(\mathrm{GU}+\mathrm{A}(1,1)) \tag{3.1}
\end{equation*}
$$

to

$$
\begin{equation*}
F P P=\operatorname{RPP}(1,1) . \tag{3.2}
\end{equation*}
$$

To obtain $v_{b}(\omega)$, the same statement need only be changed to

$$
\begin{equation*}
F P P=\operatorname{RPP}(1,2) . \tag{3.3}
\end{equation*}
$$

The same limits for phase velocity and angular frequency as are used for the calculation of R_{11} and R_{12} are used in the calculations for v_{n}, v_{a}, and v_{b}. In the example, when these limits are used, the GR_{1} mode corresponds to mode number three and the GR_{0} mode corresponds to mode number four for the case when $v_{n}(\omega)$ is calculated. For the cases when $v_{a}(\omega)$ and $\mathrm{v}_{\mathrm{b}}(\omega)$ are calculated, the GR_{1} mode corresponds to mode number four and the GR_{0} mode corresponds to mode number six. A sample 1 isting of $v_{n}(\omega), v_{a}(\omega)$, and $v_{b}(\omega)$ for the two modes is given in Fig. 11. An additional listing of these phase velocities for the two modes is given in Table 3.

ω	V_{n}
. 112375	. 31185608
.013407.	. 31181806
.014138	. 31177597
.015460	. 31172882
.016501	. 31167509
. 017532	. 31161209
.018563	. 31153394
. 0191170	. 31148010
. $019 n 79$. 31148516
.019595	. 31142505
.019R53	. 31138841
.02011	. 31134515
. Oporaza	. 31122480
. 22.1658	. 31029529
. 021450	. 31029116
. 022005	. 30790129
. ก22130	. 3 n551142
. 022173	. 30475278
.02234n	. 3 n312155
. 222 т29	. 30073168
.02241?	. 29834181
.022490	. 29595194
. 022566	. 29356207
- 222639	. 29117220

$$
\omega \quad v_{n}
$$

.013407 .22781499 .013624 .22664568 .014040 .22425580 .014424 .22186593 .014438 . 22177526 $.014778 .219476 n 6$.015107 .21708619 .015413 .21469631
.015469 .21423833 $.01569^{\circ} .21230644$ $.015^{\circ} 66$. 2n991657 .016217 . 20752670 .016453 .20513682 .016501 .20463309 .016675 . 20274695 . OlGRAG . 20035708 .017085 .19796721 . $017274 \cdot 19557733$.0171154 .19318746 . $017532 \cdot 19211887$.017626 .19079759 $.01779 n .18840772$ $.017046 \cdot 18601784$ $.0181196 \cdot 18362797$ $.01824 n .18123810$

ω	$v_{\text {a }}$
ก3n	.
$02 n 61$. 31205552
003093	.31204906
004124	. 31204001
. 005156	. 31202834
0016187	. 31201405
007318	. 31199710
008751	. 31197748
009781	. 3
010712	. 3
011344	. 3
012.375	. 3118
013407	. 311837
.01443R	. 31180093
. 015466	. 31176104
. 016501	.31171786
. 017532	. 31167120
.018563	. 31162087
. 019595	. 31156653
120f26	. 31150781
21658	.31144415
. 0226889	. 31137478
2372n	. 31129855
.02475?	. 311213

GR_{1} MODE

ω	V
. $00103 n$. 2.4434
. 0021161	.24409612
. 0031193	. 24367787
. 003655	. 243374
. 0104124	. 24307887
. 005156	. 24228453
.0056187	. 241274
. 0016445	. 24 ก98
.0n7?1R	. 2400
. 0nkist	. 238595
.00875n	. 23848240
. 0097881	. 2.3660913
. 0119477	. 23620517
.01031?	. 23432748
.010518	. 23381529
. 111344	. 23153728
.011381	. 2.31423 42
. 012115	. 22903555
.012375	. 22809942
. 01275 ?	. 22664568
.013311	. 22425580
. 013407	. 22381942
$.0130^{\circ}$. 22186593
. 014255	. 21947606
.01443 R	. 21842295

ω	v_{b}
.001030	.31209836
.002061	.31209447
.003093	.31208799
.004124	.3120 .07343
.005156	.31266727
.006187	.31205303
.007218	.31203620
.008256	.31201679
.009281	.31199478
.010312	.31297010
.011344	.31194291
.012375	.31191342
.013407	.31188045
.014438	.31184518
.015469	.31180714
.016501	.31176630
.017532	.31172258
.018563	.31167591
.019595	.31162620
.020626	.31157334
.021658	.31151721
.022689	.31145763
.023720	.31139444
.024752	.31132738
.025783	.31125619

ω	v_{b}
. 001030	. 25073465
. 001738	. 25 J54440
. 002061	. $25 \cup 42454$
. 003093	. 24990029
. 004124	. 24415 Cf 7
. 005156	. 24015908
. 005150	. 2.40151453
. 006187	.24000257
.006963	. 24576466
. 007213	. 24535036
. 008250	. 24346182
.008293	. 24337474
.009281	.24118333
. 009362	. 240198431
. 010260	. 230 ¢9504
010312	. 23844396
011034	. 23620517
011344	. 23514877
. 011712	. 23381529
.01231'4	.23142542
. 012375	. 23116886
121355	. 22903555
13345	. 220614568
. 013407	. 22632580
13790	22425580

Figure 11. A Sample Listing of $v_{n}(\omega), v_{a}(\omega)$, and $v_{b}(\omega)$ for the GR_{0} and GR_{1} Modes.

Table 3. Tabulation of Frequency-Dependent Parameters for the GR_{0} and GR_{1} Modes.

GR 0 MODE

$\mathrm{GR}_{1} \mathrm{MODE}$

ω	v_{a}	V_{b}	α	β	A_{11}	$\mathrm{~A}_{12}$	G
0.001030	0.24434330	0.25073465	87.4	-3578	0.13415774	-2.8317742	0.043592491
0.005156	0.24284530	0.24815908	87.8	-3633	0.13695917	-2.8971705	0.040308491
0.008250	0.23848240	0.24346182	89.6	-3770	0.14232483	-3.0224265	0.033973041
0.011344	0.23153728	0.23514877	100.0	-4144	0.15281704	-3.2673565	0.019880611

ω		X	k_{I}	k_{R}	$\omega / \mathrm{k}_{\mathrm{R}}$
0.001030	1.9394832	$+0.630205181$	4.96794×10^{-5}	4.0319×10^{-3}	0.25546528
0.005156	1.9560589	$+0.575696111$	2.19268×10^{-4}	0.0204383	0.25269766
0.008250	1.9813366	$+0.472946441$	2.67086×10^{-4}	0.0333205	0.24759561
0.011344	1.9381840	$+0.252146541$	2.05014×10^{-4}	0.0474121	0.23926355

The next step in the calculation of complex phase velocities and wave numbers is to calculate manually values for the parameters α and β which are part of the approximate expression [Eq. (2.9) in Chapter II] for the eigenmode dispersion function. These parameters represent the partial derivatives of R_{11} and R_{12}, respectively, with respect to phase velocity v evaluated at $v=v_{a}$ and $v=v_{b}$, respectively. Since R_{11} and R_{12} a1so depend on ω, α and β may be considered as functions of ω and not of phase velocity.

Recall that $v_{a}(\omega)$ and $v_{b}(\omega)$ are values for the phase velocity at which R_{11} and R_{12}, respectively, vanish. From the listing of R_{11} versus v and ω, let the adjacent values $R_{111}, R_{211}, R_{311}$ and R_{411} for R_{11} correspond to the values for phase velocity v_{11}, v_{21}, v_{31} and v_{41}, respectively (for some chosen ω), so that v_{21} and v_{31} bracket a value for v_{a}. The values R_{211} and R_{311} would then be of opposite sign. In the listing of v, R_{11}, and R_{12} for various ω, the values for v should all turn out to be equally spaced. Given this fact, it is possible to approximate α from the listing of R_{11} by the formula

$$
\begin{equation*}
\alpha=\left(1 / \Delta v_{1}\right)\left([5 / 6] e_{11}+[1 / 12] f_{11}+[1 / 4] g_{11} h_{11}\right), \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta v_{1}=v_{41}-v_{31}=v_{31}-v_{21}=v_{21}-v_{11}, \tag{3.5a}
\end{equation*}
$$

$$
\begin{equation*}
e_{11}=R_{311}-R_{211}, \tag{3.5b}
\end{equation*}
$$

$$
\begin{equation*}
g_{11}=\left(R_{211}-R_{311}\right) / e_{11}, \tag{3.5d}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{11}=R_{311}+R_{211}-R_{111}-R_{411} . \tag{3.5e}
\end{equation*}
$$

In like manner, from the listing of R_{12} versus v and w, let the adjacent values $R_{112}, R_{212}, R_{312}$, and R_{412} for R_{12} correspond to the values for phase velocity v_{12}, v_{22}, v_{32}, and v_{42}, respectively (for some chosen ω), such that v_{22} and v_{32} bracket a value for v_{b}. It is then possible to approximate β by the formula

$$
\begin{equation*}
\beta=\left(1 / \Delta v_{2}\right)\left([5 / 6] e_{12}+[1 / 12] f_{12}+[1 / 4] g_{12} h_{12}\right) \tag{3.6}
\end{equation*}
$$

where $\Delta v_{2}, e_{12}, f_{12}, g_{12}$, and h_{12} are defined by equations analogous to Eqs. (3.5) (last subscript changed from 'l' to '2').

Because such an approximate method is used to calculate α and β (it would be preferable to have an explicit formula), there is a small amount of false variation in the values obtained. This variation is noticable only for the GR_{1} mode and may, for all practical purposes, be eliminated by plotting α and β versus ω and then drawing smooth curves through the
respective sets of points (see Figs. 12 and 13). While this graphical procedure is somewhat laborious, it circumvents making additional runs of the computer program to obtain values of R_{11} and R_{12} at more closely spaced values of phase velocity. It also circumvents the elaborate computer programming chore that would be required to calculate α and β automatically. It is suspected that the programming time required for this automation would surpass the time required for manual calculation. In any event, the accuracy of the α and β obtained by Eqs. (3.4) and (3.6) has proven to be more than sufficient.

The complex phase velocity $\mathrm{v}^{(1)}(\omega)$ can be calculated by using Eq. (2.10a) in Chapter II. This expression involves the parameters v_{a}, v_{b}, and X where X depends on $\beta / \alpha, A_{11}, G$, and A_{12} [see Eq. (10b) in Chapter II]. The latter three of these quantities are computed by taking $k^{2} / \omega^{2}=1 / v_{a}^{2}$ and by using Eqs. (2.3), (2.7a) and (2.7b) of Chapter II, respectively. Listings of G, A_{11}, A_{12}, and X for various values of ω and for the $G R_{1}$ and $G R_{0}$ modes in the example are given in Table 3.

As explained in Chapter II, below cutoff (e.g., below $\omega_{L}=0.0125 \mathrm{rad} / \mathrm{sec}$ for GR_{1} and below $\omega_{\mathrm{L}}=0.0118 \mathrm{rad} / \mathrm{sec}$ for GR_{0} in the example) the real part k_{R} of the horizontal wave number is the real part of $\omega / v^{(1)}$, and the imaginary part k_{I} is the imaginary part of $\omega / v^{(1)}$. The extension by first iteration of the normal-mode dispersion curves below

Figure 12. A Plot of the Parameter α Versus ω for the $G R_{1}$ Mode.

Figure 13. A Plot of the Parameter β Versus ω for the GR_{1} Mode.
cutoff is obtained by calculating $\omega / \mathrm{k}_{\mathrm{R}}$. Listings of $\mathrm{v}^{(1)}$, k_{I}, k_{R}, and ω / k_{R} for various ω for the $G R_{0}$ and $G R_{1}$ modes in the example are given in Table 3. In addition, plots of k_{I} and ω / k_{R} are given in Chapter II in Fig. 5.

$$
\text { Input Data for } \mathrm{GR}_{0} \text { and } \mathrm{GR}_{1}
$$

The present version of INFRASONIC WAVEFORMS ${ }^{5}$ allows for the phase velocity $\omega / \mathrm{k}_{\mathrm{R}}$, imaginary component k_{I}, and source-free amplitude AMP to be input as functions of angular frequency ω both below and above cutoff for the GR_{0} and GR_{1} modes. The k_{I} may be obtained by the procedure described in the previous section. What follows is a description of how the remaining portion of the input data may be obtained.

To obtain values of phase velocity and source-free amplitude at frequencies above cutoff, the current version of INFRASONIC WAVEFORMS is run with the variab1e NCMPL of NAMELIST NAM1 set less than zero. This run gives an output similar to that which would be obtained with the original version of the program. The input data for this run is the same as if waveforms were being computed without consideration of leaking modes. A listing of such input data which is appropriate to the example is given in Fig. 14. The run with these data will give mode numbers and tabulations of phase velocity VPHSE and amplitude AMP versus angular frequency OMEGA for the $G R_{0}$ and $G R_{1}$ modes at frequencies above cutoff. The only output which need be retained for future use is the

```
$NAM1 NSTART=1, NPRNT=1, NPNCH=-1, NCMPL=-1 $END
$NAM2 IMAX=24,
ZI=1. ,2. ,4. ,6. ,8. ,10. ,12. ,14. ,16. ,18. ,20.,25.,30. ,35.,40. ,45. ,55.,
    65.,75.,85.,95.,105.,115.,125.,
T=292.,288.,270.,260.,249.,236.,225.,215.,205.,198.,205.,215.,217.,
    237.,249.,265.,260.,240. ,205.,185.,184.,200.,250. ,400. ,570.,
LANGLE = 1,
WINDY = 25*0.0,
WANGLE = 25*0.0
$END
$NAM4
THETKD = 35.,
V1 = 0.15, V2 = 0.495,
\phiMI = 0.005, фM2 = 0.1,
NOMI = 30, NVPI = 30,
MAXMOD = 8
$END
$NAM6 ZSCRCE = 3.0, Z\emptysetBS = 0.0 $END
$NAM8 YIELD = 50.E3 $END
$NAM10 R\emptysetBS = 15000.,
TFIRST }=46.2\textrm{E}3,\textrm{TEND}=52.2\textrm{E}3
DELTT = 15.,
I\emptysetPT = 11,
$END
$NAM1 NSTART=6 $END
```

Figure 14. Input Data to Obtain Phase Velocity Versus Angular Frequency Above Cutoff Frequency for the $G R_{0}$ and GR_{1} Modes.
tabulation of VPHSE versus OMEGA for these two modes. Amplitudes at frequencies above cutoff are computed automatically in any run which utilizes this output as input data. A sample tabulation of the pertinent output for the example considered here is given in Fig. 15.

Input data of phase velocity VPHSE and amplitude AMP for frequencies below cutoff may be obtained by a second run of the program with the variable NCMPL set less than zero, but with the original model atmosphere replaced by one which has a thick intermediate layer plus an upper halfspace in place of the original upper halfspace. In other words, in the NAM2 input 1ist, IMAX is increased by one, and the original $Z I$ and T are left unchanged except that a $Z I$ is added which is 100 km greater than the maximum ZI for the original model atmosphere. In addition, the temperature T for the new layer corresponding to $\operatorname{IMAX}+1$ (i.e., for the new upper halfspace) is set to an arbitrarily large value (e.g., $2 \times 10^{7}{ }^{\circ} \mathrm{K}$). Use of this altered model atmosphere will artificially lower the cutoff frequencies for the $G R_{0}$ and GR_{1} modes down to values which are very close to zero. In the input data for this second run the angular frequency and phase velocity limits V1, V2, ØM1, and $\emptyset \mathrm{M} 2$ of NAM4 must be set to obtain data for the GR_{0} and GR_{1} modes at frequencies below their original cutoff frequencies. It is imperative that $\emptyset \mathrm{M} 2$ not be set too high in value because the program will encounter numerical difficulties at high frequencies when the

GR 0 MODE		$\mathrm{GR}_{1} \mathrm{MODE}$	
OMEGA	v_{n}	OMEGA	v_{n}
. 01482759	. 31175883	. 01482759	. 21913010
. 01646552	. 31167007	. 01601253	. 20948276
. 01728448	. 31162838	. 01646552	. 20500285
. 01810345	. 31157130	. 01711598	. 19758621
. 01892241	. 31150095	. 01728448	. 19544661
. 01933193	. 31145750	. 01756650	. 19163793
. 01974138	. 31140492	. 01796698	. 18568966
. 02137931	. 31079310	. 01810345	. 18350434
. 02151639	. 31060345	. 01832669	. 17974138
. 02178879	. 30980325	. 01865292	. 17379310
. 02202362	. 30762931	. 01892241	. 16844746
. 02210859	. 30614224	. 01895156	. 16784483
. 02214435	. 30539871	. 01909212	. 16487069
. 02216121	. 30502694	. 01922762	. 16189655
. 02217751	. 30465517	. 01933190	. 15953747
. 02219828	. 30416532	. 01948594	. 15594828
. 02220876	. 30391164	. 01973352	. 15000000
. 02223857	. 30316810		
. 02229504	. 30168103		
. 02239972	. 29870690		
. 02259055	. 29275862		
. 02293273	. 28086207		
. 02301724	. 27771666		
. 02324256	. 26896552		
. 02353065	. 25706897		
. 02380369	. 24517241		
. 02406701	. 23327586		
. 02432538	. 22137931		
. 02458369	. 20948278		
. 02465517	. 20622217		
. 02484741	. 19758621		
. 02498335	. 19163793		
. 02512335	. 18568966		
. 02526862	. 17974138		
. 02542062	. 17379310		
. 02558111	. 16784483		
. 02566520	. 16487069		
. 02575227	. 16189655		
. 02593679	. 15594828		
. 02613807	. 15000000		

Figure 15. Samp1e Output of Phase Velocity Versus Angular Frequency at Frequencies Above Cutoff for the GR_{0} and GR_{1} Modes.
bottom of the upper halfspace is set as high as considered here. If it were not for this difficulty this second run could be used to generate the same data as is generated in the first run. For comparison, the atmospheric profiles used in the two runs with NCMPL <0 are shown in Fig. 16.

The second run with NCMPL <0 gives values for the source-free amplitude AMP and phase velocity VPHSE for the GR_{0} and GR_{1} modes at frequencies below cutoff. The VPHSE are expected to be close in value to the $\omega / \mathrm{k}_{\mathrm{R}}$ obtained as described in the previous section. In addition, the sourcefree amplitudes are expected to match on smooth1y above cutoff to those obtained from the first run with NCMPL < 0 even though the model atmospheres used in the two runs are not the same. This expectation is physically reasonable because the energy transported by the GR_{0} and GR_{1} modes is contained predominantly in the lower atmosphere. Furthermore, these amplitudes should be close in value to those which might be obtained by a perturbation technique similar to that described in Chapter II. Below cutoff, the actual amplitudes should have small imaginary parts. However, in view of the relatively small values obtained for the k_{I} (less than 10^{-3} neper/km), these imaginary parts may be neglected with confidence. The only characteristic of leaking modes which is of significance in the synthesis of waveforms is the accumulative exponential decay represented by the factor $\exp \left(-k_{I} r\right)$. This factor is retained in subsequent calculations.

Figure 16. Two Model Atmosphere Profiles. (a) The Same as in Fig. 8. (b) The Same Only with the Original Upper Halfspace Replaced by a Layer of Finite but Large Thickness with a Halfspace Above it of Extremely High Temperature and Sound Speed.

Sample input data for this second run with NCMPL < 0 is given in Fig. 17, and a listing of output values for OMEGA, VPHSE, and AMP below the original cutoff frequencies for the $G R_{0}$ and $G R_{1}$ modes of the example is given in Fig. 18.

Waveform Synthesis
The final step in the synthesis of waveforms with leaking modes is to run the program INFRASONIC WAVEFORMS with input data that contains data computed for the GR_{0} and GR_{1} modes as described in the preceding two sections. The only differences between this run and the first run described in the previous section are that here NCMPL > 0 and values are supplied for the variables in the input list NAM51. A listing of the input data for the run with leaking modes which is appropriate to the example is given in Fig. 19. In those data, the AKIGRO and AKIGR1 are the values of the k_{I} computed by the perturbation technique of Chapter II as outlined in the first section of this chapter. The sourcefree amplitudes AMPGRO and AMPGR1 are taken from the output of the second computer run described in the previous section. The phase velocities VPGRO and VPGR1 are taken from the outputs of both computer runs described in the previous section. The reason that phase velocities for frequencies below cutoff are used as computed by the first computer run described in the previous section rather than as computed by the perturbation technique of Chapter II is that the values

```
$NAM1 NSTART=1, NPRNT=1, NPNCH=-1, NCMPL=-1 $END
$NAM2 IMAX=25,
ZI=1.,2.,4.,6.,8. ,10. ,12.,14. ,16. ,18. ,20. ,25.,30., 35.,40. ,45.,55.,
    65.,75.,85.,95.,105.,115.,125.,225.,
T=292.,288.,270.,260.,249.,236.,225.,215.,205.,198.,205.,215.,227.,
    237.,249.,265.,260.,240.,205. ,185. ,184. ,200. ,250.,400. ,570. ,2.E7,
LANGLE=1,
WINDY=26*0.0,
WANGLE=26*0.0
$END
$NAM4
THETKD= 35.,
V1 = 0.18, V2 = 0.34,
\phiM1 = 0.001, $M2 = 0.02,
N\emptysetMI = 30, NVPI = 30,
MAXMфD = 8
$END
```

\$NAM1 NSTART=6 \$END

Figure 17. Input Data to Obtain Phase Velocities and Source Free Amplitudes Below the Cutoff Frequencies for the $G R_{0}$ and GR_{1} Modes.

0^{0}

> OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
> NNNN NNNNNNNN.
$\infty \infty \infty$ o
○\＆ルト\＆

SNAM1 NSTART=1, NIRNT=1, NPNCII- 1 , NCMPL=1 SEND
SNAM2 IMAX-24,
 65.,75.,85.,95.,105.,115.,125.,
$T=292$, 288.,270.,260.,249.,236.,225.,215.,205,.198.,205.,215,,227., 237.,249.,265.,260.,240.,205.,185.,184.,200.,250.,400.,570.,

LANGLE $=1$,
WINUY $25 * 0.0$,
WANGLE $=25 * 0.0$,
SEND
SNAM4
THETKD=35. .
$\mathrm{V}_{1}=0.15, \mathrm{~V}_{2}=0.495$,
$\emptyset \mathrm{M} 1=0.005, \emptyset \mathrm{M} 2=0.1$,
NQMI $=30$, NVPI $=30$,
$\operatorname{MAXM\varnothing D}=8$,
SEND
SNAMS 1 MNGR1-2, NPGR1=25, MNGRO=3, NPGRO=47,
ФMGR1 $=0.001,0.00231,0.00428,0.00582,0.00805,0.01017,0.01083,0.01178$, $0.01483,0.01592,0.01647,0.01706,0.01729,0.01752,0.01793,0.0181$, $0.0183,0.01864,0.01892,0.01922,0.01933,0.01935,0.01948,0.01961$. 0.01974 ,

VPGR1-0.28308, $0.27983,0.27567,0.26828,0.25122,0.24075,0.23860,0.23517$, $0.21913,0.21034,0.205,0.19828,0.19545,0.19224,0.18621,0.1835,0.18017$, $0.17414,0.16845,0.16207,0.15954,0.15905,0.15603,0.15302,0.15$,
$\emptyset M G R 0=0.001,0.00231,0.00428,0.00624,0.00821,0.01017,0.01083,0.01483,0.01647$, $0.01728,0.0181,0.01892,0.01933,0.01974,0.02138,0.02177,0.02207,0.02214$, $0.02216,0.02218,0.02219,0.0222,0.02221,0.02227,0.02233,0.02253,0.02288$, $0.02302,0.0232,0.02349,0.02377,0.02404,0.02430,0.02456,0.02466,0.02483$. $0.02497,0.02511,0.02526,0.02541,0.02547,0.02575,0.02584,0.02588,0.02593$, $0.02603,0.02614$,
VPGR0 $=0.31206,0.31205,0,31203,0.31201,0.31197,0.31192,0.31190,0.31176$, $0.31168,0.31163,0.31157,0.3115,0.31146,0.31141,0.31079,0.30991,0.30689$, $0.30539,0.30501,0.30463,0.30526,0.30417,0.30388,0.30237,0.30086,0.29483$, $0.28276,0.27772,0.27069,0.25862,0.24655,0.23448,0.22241,0.21034,0.20622$, $0.19828,0.19224,0.18621,0.18017,0.17414,0.17177,0.16207,0.15905,0.15761$, $0.15603,0.15302,0.15$,
AMPGR1 $=-0.00003660,-0.00004009,-0.00004754,-0.00007507,-0.00063749$, $-0.00365399,-0.00365194,-0.00354504$,
AMPGRO $=-0.03102934,-0.03100520,-0.0309326,-0.03081546,-0.03065299$, $-0.03044457,-0.03036475$,
AKIGR1-4, OE-5, 9.0E-5, 1.75E-4,2,4E-4,27E-4,2.5E-4,2.25E-4,1.4E-4,17*0.0,
AXIGRO $=3.0 \mathrm{E}-8,6.0 \mathrm{E}-8,1.2 \mathrm{E}-7,1.9 \mathrm{E}-7,2.5 \mathrm{E}-7,2,7 \mathrm{E}-7,2.3 \mathrm{E}-7,40 * 0.0$,
SEND
SNANIG 2SCRCE $=3.0$, $2 \emptyset B S=0.0$ SEND
SNAM8 YIELD-50.E3 SEND
\$NAM1O RøBS = 15000 ., TFIRST=46.2E3, TEND=52.2E3, DELTT-15., IOPT=11
SEND
SNAM1 NSTART=6, SEND

Figure 19. Sample Input Data for Synthesis of Infrasonic Waveform Including Leaking Modes.
obtained from the computer run are expected to be more accurate. The values of k_{I} have to be computed by the technique of Chapter II since the computer program in its present form will not compute them directly.

In Fig. 20 plots are shown for the example of modal and total waveforms obtained with and without leaking modes. Note that the inclusion of leaking modes has eliminated the spurious precursor in the waveform and has raised the amplitude of the first peak. It is also important to note that the waveform with leaking modes begins with a pressure rise, which is realistic.

Further Example (Housatonic)

As a further example, waveforms were computed to model the case of signals observed at Berkeley, California, following the Housatonic detonation at Johnson Island on October 30, 1962. A comparison of theoretical and observed waveforms for this case is given by Pierce and Posey. ${ }^{10}$ This case also serves as the main example in the 1970 AFCRL report by Pierce and Posey, ${ }^{2}$ and is discussed by Posey ${ }^{15}$ within the context of the theory of the Lamb edge mode.

The model atmosphere assumed (winds included) for the computation here is the same as in Fig. 3-12 of reference 2, except that in the present model the upper halfspace begins at $125 \mathrm{~km}(\operatorname{IMAX}=24)$ rather than at $225 \mathrm{~km}(\operatorname{IMAX}=33)$. To avoid repeating tedious calculations of the k_{I} for the GR_{0}

Figure 20. Plots of Modal and Total Waveforms Before and After Inclusion of Leaking Modes (50-Megaton Burst).
and $G R_{1}$ modes for this model atmosphere, it was assumed that the k_{I} would be close in value to those calculated for the example used in the previous sections.

In Fig. 21, sets of plots for the Housatonic case are shown with and without leaking modes. The set with leaking modes excluded does not agree with comparable plots in Fig. 3-10 of reference 2. This relative disagreement exists because the upper halfspace has been taken here to begin at a lower altitude. In spite of this disagreement, the waveform that includes leaking modes is regarded as an improvement in that among other things the spurious initial pressure drop shown in the original waveform is not present here.

In Fig. 7 of reference 10 observed and theoretical waveforms are shown for the Housatonic case. On the basis of the calculations described in this chapter, this figure was redrawn and is given here as Fig. 22. The only difference between the two figures lies in the central waveform. The false precursor is absent in the waveform shown in Fig. 22, and the first peak to trough amplitude has been changed from $157 \mu \mathrm{bar}$ to 170 pbar (less than a 10% increase). The remainder of the central waveform is virtually unchanged. The discrepancy with the edge-mode synthesis has not been diminished and remains a topic for future study.

Figure 21. Plots of Modal and Total Waveforms Before and After the Inclusion of Leaking Modes (Housatonic).

Figure 22. Observed and Theoretical Pressure Waveforms at Berkeley, California, Following the Housatonic Detonation.

CHAPTER IV

ASYMPTOTIC HIGH-FREQUENCY BEHAVIOR
 OF GUIDED MODES

Introduction

Due to stratification in temperature and wind, the atmosphere possesses sound-speed channels with associated relative sound-speed minima. Fig. 23 shows a standard reference atmosphere wherein two sound-speed channe1s are indicated, one with a minimum occurring at approximately 16 km altitude and the second with a minimum occurring at approximately 86 km altitude. ${ }^{15}$ Given the presence of a channe1, an acoustic ducting phenomenon can occur, as is demonstrated in Fig. 24, wherein the energy associated with an acoustic disturbance can become trapped in the region of a relative sound-speed minimum. It is this mechanism of ducting that is of interest here.

In the computer program INFRASONIC WAVEFORMS, ${ }^{2}$ the computation of modal waveforms involves the numerical integration over angular frequency of a Fourier transform of acoustic pressure where this integration is truncated at high frequency. It has been speculated that this truncation leads to the generation of what might be called "numerical noise" in the computer output. It was felt useful, therefore,

Figure 23. Profiles of Temperature and Wind Speed Versus Height for Standard Reference Atmospheres.

Figure 24. Sketches of Sound Speed and Acoustic Pressure Amplitude Versus Height for a Guided Mode Illustrating the Mechanism of Acoustic Ducting.
to extend this integration beyond the previous upper-angularfrequency limit by means of some high-frequency approximation. In the case of an atmosphere with just one channel, the technique for this extension is well known and dates back to a paper published by N. Haske 11^{16} in 1951. Haskell's technique involves the W.K.B.J. (Wentzel, Kramers, Brillouin, Jeffreys) method of solution (then in common use in quantum mechanics, although its invention dates back to Carlini ${ }^{17}$ and Green ${ }^{18}$ in the early 19 th century).

The approximations associated with the W.K.B.J. method of solution can be applied to the analytical model on which the computer program INFRASONIC WAVEFORMS is based at frequencies above approximately $0.05 \mathrm{radian} / \mathrm{sec}$ (corresponding to periods less than two minutes). Below that frequency, effects due to density stratification in the atmosphere and gravitational forces cannot be neglected. These effects therefore are not germane to the discussion here.

The application of the W.K.B.J. method of solution to the problem of describing propagation of acoustic disturbances in a medium that contains two adjacent sound-speed channels has been discussed in the 1iterature by Eckart. ${ }^{19}$ Eckart introduced the technique of devising a W.K.B.J. model for each of the sound-speed channels separately, then combining the results of the two models rather than treating the problem with a single model. In this chapter, Eckart's method is app1ied to the case of infrasonic waves in the
atmosphere.

The W.K.B.J. Mode1
The W.K.B.J. model for propagation of acoustic disturbances in a single sound-speed channel leads to an approximation for the acoustic pressure p divided by the square root of the ambient density ρ_{o} as follows:

$$
\begin{equation*}
\frac{p}{\sqrt{\rho_{o}}}=\psi(z) e^{-i \omega t} e^{i k x} \tag{4.1}
\end{equation*}
$$

where ω is angular frequency, k is the wave number associated with the horizontal dimension x, and z is altitude. Here $\psi(z)$ satisfies the reduced wave equation

$$
\begin{equation*}
\left[\frac{d^{2}}{d z^{2}}+\frac{\omega^{2}}{c^{2}(z)}-k^{2}\right] \psi=0 \tag{4.2}
\end{equation*}
$$

where $c(z)$ is sound speed as a function of altitude. The W.K.B.J. approximation applies in general to all differential equations of this type if the coefficient of ψ is sufficiently "slowly varying." The approximation would appear to be valid in the present context provided that

$$
\begin{equation*}
\frac{c}{|\nabla c|} \ll \lambda, \tag{4.3}
\end{equation*}
$$

where λ is some representative wavelength of interest.

Eq. (4.3) implies that if the W.K.B.J. model is to apply here, then substantial changes in sound speed should not occur within distances corresponding to a typical wavelength of interest.

Comparison of Dispersion Curves
A particular result of the W.K.B.J. method is that dispersion curves $v(\omega)$ for guided modes can be determined from the equation

$$
\begin{equation*}
\int_{z_{\text {bottom }}}^{z_{\text {top }}}\left[\mathrm{c}^{-2}-\mathrm{v}^{-2}\right]^{1 / 2} \mathrm{~d} z=\frac{(2 \mathrm{n}+1) \pi}{2 \omega}, \tag{4.4}
\end{equation*}
$$

where v is phase velocity, $n=0,1,2,3, \ldots$, and $z_{\text {bottom }}$ and $z_{\text {top }}$ identify the lower and upper bounds of the soundspeed channe1, respectively. ${ }^{20}$

Particular insight into the high-frequency behavior of guided infrasonic modes in the atmosphere is gained when Eq. (4.4) is solved numerically for both the upper and lower channe1s (the model atmosphere being that given in Fig. 23 only without winds). The resulting dispersion curves are shown in the lower portion of Fig. 25. One set of curves (the dashed curves) is appropriate to the W.K.B.J. model for the lower channel, and the other set (the solid curves) is appropriate to the W.K.B.J. model for the upper channe1. In the upper portion of the same figure dispersion curves are

Figure 25. A Comparison of Theoretical Guided-Mode Dispersion Curves for the U. S. Standard Atmosphere, 1962.
shown as generated by the computer model of INFRASONIC WAVEFORMS. The computer model solves a more complex problem in the sense that the approximations inherent in the W.K.B.J. model are not present. ${ }^{2}$

As is illustrated in the lower portion of Fig. 25, the two sets of dispersion curves generated by the W.K.B.J. mode1s intersect at various points. A comparison of the dispersion curves shown in both the upper and lower portions of Fig. 25 reveals that these points of intersection mark regions of near intersection in the (ω, v)-plane between adjacent curves of the computer mode1. In the right hand portion of Fig. 26, one such region of near intersection is shown (denoted "resonant interaction between adjacent modes") with a corresponding point of intersection between two dispersion curves of the W.K.B.J. models shown to the left. It should be mentioned that the dispersion curves for the computer model never intersect one another. An analytical explanation of this fact has been given by Pierce. ${ }^{21}$

Inferences Concerning the Distribution
of Energy with Height
A further comparison of the dispersion curves shown in Fig. 25 reveals that, for relatively high angular frequencies, the dispersion curve corresponding to a given mode of the computer model is comprised of portions of dispersion curves from both sets of the curves generated by the W.K.B.J.

Figure 26. A Detailed Plot of a Section of Fig. 25 Showing a Region of Resonant Interaction Between Two Modes.
mode1s. Two important inferences about the asymptotic highfrequency behavior of guided infrasonic modes can be drawn from this fact. First, for some frequency ranges, and depending on how dispersion curve portions match between curves of the computer model and the W.K.B.J. models, it can be inferred that the acoustic energy associated with a given mode is comprised of energy associated more with propagation of acoustic disturbances in one sound-speed channel than in the other. As frequency increases, this association alternates back and forth between channe1s. To illustrate, if, for a small range of frequencies, a portion of a dispersion curve of the computer model matches [in the (ω, v)-plane] a portion of one of the curves for the W.K.B.J. model for the upper channel, then this matching implies that, for that mode and for that small frequency range, the acoustic energy density associated with that mode is greater in the upper channel than in the lower channel. Secondly, in the standard reference atmosphere, the sound-speed minimum for the upper channel is less than the sound-speed minimum for the lower channe1. It can be inferred, therefore, that those acoustic disturbances for which phase velocities are less than the sound-speed minimum for the lower channel are associated more with acoustic energy trapped in the upper channel than in the lower channel, and thus, for this reason, do not contribute significantly to the acoustic energy at the ground. This second inference implies that care must be taken as to
which modes are chosen in the synthesis of a waveform for a ground location, as some may not contribute while others which do may be inadvertently omitted.

Implications for Waveform Synthesis

Currently, in the synthesis of infrasonic waveforms, acoustic guided modes are numbered in order of increasing phase velocity (i.e., $S_{0}, S_{1}, S_{2}, \ldots$, etc.) and the sum over modes is truncated at a maximum number of modes. ${ }^{2}$ The analysis presented here indicates that this may be a very poor technique for synthesizing high-frequency portions of waveforms for locations near the ground since there is a1ways some frequency above which all of the first N modes correspond to acoustic ducting in the upper sound-speed channe1. For the synthesis of ground-level signals from sources below 50 km altitude, a preferable technique would be to ignore the upper sound-speed channel completely for frequencies above, approximately $0.2 \mathrm{rad} / \mathrm{sec}$ (possibly 0.1 rad/sec). Dispersion curves could then be taken as given by the W.K.B.J. approximation, and profiles of modal amplitude versus height could be computed by using the method out1ined by Haskell. ${ }^{16}$ Dispersion curves and amplitudes so computed would fit directly into the general scheme which forms the theoretical basis for the current version of INFRASONIC WAVEFORMS. ${ }^{2}$ A1tering the technique for synthesis in this manner might eliminate the high-frequency "numerical noise" that is currently present in synthesized waveforms.

CHAPTER V

GEOMETRICAL ACOUSTICAL COMPUTATIONAL MODEL FOR THE PREDICTION OF LONG-RANGE PROPAGATION

Introduction

In this chapter, a description is given of a computational model for the prediction of propagation over long ranges in a medium whose properties vary with height only. This model is based on geometric acoustical concepts and should be applicable for periods less than one minute. To some extent, the model is intended to complement the guidedmode model of propagation which has been discussed in the previous chapters.

The geometric acoustical method of characterizing propagation has a large amount of literature pertaining to it, most of which is concerned with underwater sound. It is not the intent here to discuss the theory associated with the method (that will be assumed to be understood), but rather to present the computational implementation of that theory. Some of the innovations that are introduced here and that are not always included in geometric acoustical models are (1) the use of cubic splines to approximate profiles of sound speed versus height, (2) the inclusion of many acoustic rays which connect source with receiver, (3) a method for computing
ray parameters and amplitudes that is based on analytical differentiation of geometric acoustical formulas which are appropriate to a stratified medium, and (4) the inclusion of phase shifts that occur at caustics.

In the most general sense, the propagation medium considered here exists above a flat rigid surface and is stratified with height z with the sound speed $c(z)$ assumed to be a continuous function. For simplicity, it is assumed that no ambient motion of the medium exists with respect to a frame of reference that is attached to the surface (i.e., no winds). In addition, the ambient density (ρ_{0}) and ambient pressure $\left(p_{o}\right)$ are assumed to be constant throughout (see Fig. 27a). Furthermore, it is assumed that the source is localized at the coordinates $x=0, y=0$, and $z=z_{S C}$ (see Fig. 27b).

What is of prime interest here is the development of a method for obtaining the acoustic pressure $p(\vec{r}, t)$ at moderate distances from a source (greater than 50 km) where $p(\vec{r}, t)$ is taken to be the geometric acoustical solution of the wave equation

$$
\begin{equation*}
\nabla^{2}\left(p / \sqrt{\rho_{o}}\right)-\left(1 / c^{2}\right) \partial^{2}\left(p / \sqrt{\rho_{0}}\right) / \partial t^{2}=-4 \pi f(t) \delta\left(\vec{r}-\vec{r}_{S C}\right) . \tag{5.1}
\end{equation*}
$$

In this equation, \vec{r} is a general vector with x, y, and z components, $\vec{r}_{S C}$ is that vector which locates the source and $f(t)$ is a function which characterizes the time dependence

Figure 27. Sketches Illustrating General Propagation Model.
(a) Typical Profile of Sound Speed Versus Height. (b) Sketch of Point Source Above a Flat Rigid Ground.
of the source. In addition, $p / \sqrt{\rho_{0}}$ is taken to satisfy the boundary condition $\partial p / \partial z=0$ at the ground $(z=0)$.

Acoustic rays are lines that represent paths of propagation which emanate from the source and each of which lies in a vertical plane which contains the source (see Fig. 28). Because of the circular symmetry of the geometry chosen, only those rays that lie in the $(x, z)-p l a n e$ are considered here. A typical ray undergoes refraction. For example, when a ray is proceeding upwards, it will bend downwards if the sound speed in the medium increases with height, or alternatively, the ray will bend upwards if the sound speed decreases with height. Refraction makes it possible for more than one ray to pass through a receiver in the far field. In fact, for long distances of propagation, it would be expected that there be many rays that connect source and receiver. Schemes for computing rays are well known and thoroughly discussed in the 1iterature. ${ }^{22}$

A nonuniform geometric acoustical approximation to the solution of Eq. (5.1) may be taken as

$$
\begin{equation*}
\mathrm{p}=\sum_{\text {rays }} \mathrm{p}_{\text {rays }}, \tag{5.2}
\end{equation*}
$$

where this sum is taken over all rays which connect source and receiver. Individual terms in the sum have signatures and amplitudes which may be computed from the eikonal approximation, 23,24 and from the condition that $p / \sqrt{\rho_{o}}$ reduces

Figure 28. Sketch of Acoustic Rays Emanating from a Source in an Atmosphere in Which the Sound Speed Varies with Height.
to the form $F(t-R / c) / R$ (t being time and R being distance from the source) in the immediate vicinity of the source.

The eikonal approximation is suspect at any point along a ray where ray-tube area vanishes. For the most part, this difficulty with the approximation may be circumvented by including a phase shift of $-\pi / 2$ in the signal associated with a ray every time that ray passes through such a point. ${ }^{25,26}$ In other words, if a function for a signal is considered to be of the form

$$
\begin{equation*}
F(t)=\operatorname{Re} \int_{0}^{\infty} \hat{F}(\omega) e^{-i \omega t} d_{\omega} \tag{5.3}
\end{equation*}
$$

this function would be replaced by

$$
\begin{equation*}
F_{\operatorname{Shift}}(t)=\operatorname{Re} \int_{0}^{\infty} e^{+i \pi / 2} \hat{F}(\omega) e^{-i \omega t} d_{\omega} \tag{5.4}
\end{equation*}
$$

upon a single such passage. The shift of $-\pi / 2$ is applied each time the ray-tube area goes to zero along a ray, and is in addition to that shift which is due to travel time along a ray. The modeling of successive phase shifts by intervals of $\pi / 2$ is relatively straightforward. However, the determination of the number of times that such a shift occurs is more difficult. A method for this determination is provided in this chapter.

For the sake of completeness and versatility in the
modeling of propagation over long distances, it is desirable to include explicitly effects that take place at what are termed caustics and lacunae. Lacunae are regions that are characterized by shadow zones (i.e., regions in which there is a relative absence of rays). A caustic is a surface formed by a locus of points at which adjacent rays intersect (or at which ray-tube areas vanish). As mentioned, the eikonal approximation should be suspect in the vicinity of a caustic (indeed it is invalid directly on a caustic).

A lacuna occurs whenever two adjacent rays separate from one another. This separation leaves a region in which there is one less ray than in adjacent regions (refer to Fig. 29). A lacuna can occur when there is a maximum in a sound-speed profile (see LACUNA A in the sketch). A lacuna can also occur near the ground when the sound speed there decreases with height (see LACUNA B in the sketch).

For simplicity, lacunae are not considered here. It seemed more important to investigate first techniques for the inclusion of effects associated with caustics. It is possible to conceive of a hypothetical model atmosphere in which caustics occur, but lacunae do not. Such a model would be one in which the sound speed had a single minimum with height but no maxima, and for which there was no ground (see Fig. 30). While this model may not be wholly realistic, it should suffice for the demonstration of the computational methods presented in this chapter.

Figure 29. Examples of the Occurrence of Lacunae in the Propagation of Rays from a Source in a Stratified Atmosphere.

Figure 30. Simplified Hypothetical Sound-Speed Profile with Lattice Points Shown.

In the Appendix, a number of documented FORTRAN subprograms are provided which exemplify the numerical implementation of the computational techniques discussed here. It was not the intent of this investigation of geometric acoustical concepts to devise a completely self-contained computer program for the prediction of acoustic waveforms. Nonetheless, the subprograms were designed to be included in such a program. Emphasis in this chapter is placed on a discussion of computational techniques. A number of simple numerical examples which use the subprograms are presented for illustration.

The Sound-Speed Profile

Typically, in modeling a sound-speed profile, discrete values of sound speed are initially provided $\left[c_{i}, i=1,2,3\right.$, ..., NCS (NCS meaning number of c's)] which correspond to discrete values of height $\left(z_{i}, i=1,2,3, \ldots\right.$, NCS). The points ($\left.z_{i}, c_{i}\right)$ are known as lattice points. Lattice points are used to define, by some approximate means, a function $\mathrm{c}(\mathrm{z})$ which provides sound-speed values at arbitrary heights. For the calculations often used in geometric acoustical predictions, values of $\mathrm{dc} / \mathrm{dz}$ and $\mathrm{d}^{2} \mathrm{c} / \mathrm{dz}{ }^{2}$ at arbitrary heights are needed, as well. An interpolation scheme known as the cubic splines method c an be used to approximate $c(z)$ and its first two derivatives. This method was recently introduced into the literature on underwater sound by Moler and Soloman. ${ }^{8}$

Using the notation given in that reference, let

$$
\begin{array}{rlrl}
\Delta z_{i} & =z_{i}-z_{i-1} & i=1, \ldots, \text { NCS, } \\
\Delta c_{i} & =\left(c_{i}-c_{i-1}\right) / \Delta z_{i} & i=1, \ldots, \text { NCS, } \\
w & =\left(z-z_{i-1}\right) / \Delta z_{i} & i=1, \ldots, \text { NCS, } \\
\text { and } \quad \bar{w} & =1-w & i=1, \ldots, \text { NCS. }
\end{array}
$$

Given Eqs. (5.5), the sound speed $c(z)$ for z between z_{i} and z_{i-1} can be approximated by the cubic polynomial
$c(z)=\bar{w}_{i-1}+w c_{i}+\left(\Delta z_{i}\right)^{2}\left[a_{i-1}\left(\bar{w}^{3}-\bar{w}\right)+a_{i}\left(3 w^{2}-1\right)\right],(5.6)$
where the a_{i} are as defined below. Note from Eq. (5.6) that the sound speed is continuous with height. In particular, when $z=z_{i}$ and $z=z_{i-1}, c(z)$ reduces to c_{i} and c_{i-1}, respectively.

According to Eq. (5.6), the first, second, and third derivatives of the sound speed are

$$
\begin{gather*}
\mathrm{dc} / \mathrm{d} z=\Delta \mathrm{c}_{\mathrm{i}}+\Delta z_{\mathrm{i}}\left[-\mathrm{a}_{\mathrm{i}-1}\left(3 \bar{w}^{2}-1\right)+\mathrm{a}_{\mathrm{i}}\left(3 \mathrm{w}^{2}-1\right)\right], \tag{5.7}\\
d^{2} \mathrm{c} / \mathrm{d} z^{2}=6\left(\bar{w} a_{i-1}+w a_{i}\right), \tag{5.8}
\end{gather*}
$$

and

$$
\begin{equation*}
d^{3} c / d z^{3}=6\left(a_{i}-a_{i-1}\right) / \Delta z_{i} \tag{5.9}
\end{equation*}
$$

respectively, so that

$$
\begin{align*}
\mathrm{dc} / \mathrm{d} z & =\Delta c_{i}-\Delta z_{i}\left(a_{i}+2 a_{i-1}\right) & & \text { at } z_{i-1}, \tag{5.10}\\
& =\Delta c_{i}+\Delta z_{i}\left(2 a_{i}+a_{i-1}\right) & & \text { at } z_{i}, \tag{5.11}\\
d^{2} c / d z^{2} & =6 a_{i-1} & & \text { at } z_{i-1} \text {, } \tag{5.12}\\
& =6 a_{i} & & \text { at } z_{i} .
\end{align*}
$$

From these equations it can be seen that $d^{2} c / d z^{2}$ is continuous while continuity of $\mathrm{dc} / \mathrm{dz}$ requires that

$$
\begin{equation*}
\Delta c_{i}+\Delta z_{i}\left(2 a_{i}+a_{i-1}\right)=\Delta c_{i+1}-\Delta z_{i+1}\left(a_{i+1}+2 a_{i}\right) \tag{5.14}
\end{equation*}
$$

for all values of i. Continuity of the third derivative is not imposed on $c(z)$.

As implied by Eq. (5.14), the values for the a_{i} that are required to insure continuity of $\mathrm{dc} / \mathrm{dz}$ must be such that

$$
\begin{gather*}
a_{i+1}=\left(\Delta c_{i+1}-\Delta c_{i}\right) / \Delta z_{i+1}-2 a_{i}\left[1+\Delta z_{i} / \Delta z_{i+1}\right] \\
-a_{i-1} \Delta z_{i} / \Delta z_{i+1} \tag{5.15}
\end{gather*}
$$

Given a_{1} and a_{2}, it is possible to generate all of the succeeding a_{i}. The linear nature of $E q$. (5.15) is such that

$$
\begin{equation*}
a_{i}=K_{i}+L_{i} a_{2}+M_{1} a_{1} \tag{5.16}
\end{equation*}
$$

for $\mathrm{i}>2$, where

$$
\begin{align*}
& K_{i+1}=A_{i}-B_{i} K_{i}-C_{i} K_{i-1} \tag{5.17a}\\
& L_{i+1}=-B_{i} L_{i}-C_{i} L_{i-1} \tag{5.17b}\\
& M_{i+1}=-B_{i} M_{i}-C_{i} M_{i-1} \tag{5.17c}
\end{align*}
$$

$$
\begin{equation*}
A_{i}=\left(\Delta c_{i+1}-\Delta c_{i}\right) / \Delta z_{i+1} \tag{5.18a}
\end{equation*}
$$

$$
\begin{equation*}
B_{i}=2\left[1+\Delta z_{i} / \Delta z_{i+1}\right] \tag{5.18b}
\end{equation*}
$$

$$
\begin{equation*}
C_{i}=z_{i} / \Delta z_{i+1} \tag{5.18c}
\end{equation*}
$$

$$
K_{2}=0 ; \quad K_{3}=A_{2} ; \quad K_{4}=A_{3}-B_{3} A_{2},
$$

$$
\begin{equation*}
L_{2}=1 \tag{5.19b}
\end{equation*}
$$

$$
L_{3}=-B_{2}
$$

$$
L_{4}=B_{3} B_{2}-C_{3},
$$

and

$$
\begin{equation*}
M_{2}=0 ; \tag{5.19c}
\end{equation*}
$$

$$
M_{3}=-C_{2} ; \quad M_{4}=B_{3} B_{2}
$$

Beginning with the values of K_{2} and K_{3} above, it is possible to generate all of the succeeding K_{i}.

The boundary conditions on the a_{i} are taken to be $a_{1}=a_{\text {NCS }}=0$. While these boundary conditions may seem arbitrary, they simply require that the sound-speed profile be linear above $z_{N C S}$ and below z_{1} (these linear portions being, typically, outside the height range of interest). Given the boundary conditions on the a_{i}, it follows that

$$
\begin{equation*}
a_{2}=-K_{\mathrm{NCS}} / L_{\mathrm{NCS}} . \tag{5.20}
\end{equation*}
$$

The a_{i} for $i=3, \ldots$, NCS can now be computed according to Eq. (5.15).

The numerical implementation of the above computational scheme is realized in the subroutine called DASOL, the deck 1isting of which is given in the Appendix. When this subroutine is called, the c_{i} and z_{i} are presumed to be stored in COMMON. The a_{i} [denoted by ASOL(I)] are stored in COMMON when DASOL returns.

When the a_{i} have been computed, the sound speed at a given arbitrary value of z is computed by a function subprogram called CSP (Z). When a value for z is input, this subprogram uses the values for the a_{i}, the c_{i}, and the z_{i} to compute the sound speed at z by Eq. (5.6). In manners analogous to that used in CSP (Z), the function subprograms called $\operatorname{DCDZ}(Z)$ and DCDZS (Z) compute $\mathrm{dc} / \mathrm{dz}$ and $\mathrm{d}^{2} \mathrm{c} / \mathrm{dz}^{2}$, respectively, according
to Eqs. (5.7) and (5.8), respectively. The deck listings of CSP (Z), $\operatorname{DCDZ}(Z)$, and $\operatorname{DCDZS(Z)~are~also~given~in~the~Appendix.~}$

Ray Parameters

For an atmosphere without winds that is vertically stratified in temperature the equations of geometrical acoustics predict that

$$
\begin{equation*}
\mathrm{d} z / \mathrm{d} z= \pm \mathrm{c} /\left(\mathrm{v}_{\mathrm{p}}^{2}-\mathrm{c}^{2}\right)^{1 / 2}, \tag{5.21}
\end{equation*}
$$

where x and z are the horizontal and vertical distances, respectively, which define a given ray, and where v_{p} is the horizontal phase velocity associated with that ray. For any ray, v_{p} is a constant so that Snell's law (which is a corollary of the ray equations) predicts that, at any point on the ray,

$$
\begin{equation*}
v_{p}=c /(\sin \theta)=\text { constant, } \tag{5.22}
\end{equation*}
$$

where c is the local sound speed and θ is the angle between the momentary ray direction and the vertical (z-axis). The sign convention for Eq. (5.21) is such that $d x / d z$ is positive whenever the ray is moving obliquely upward and negative whenever it is moving ob1iquely downward. The equations of geometrical acoustics also predict that the rate of change of net travel time t along a given ray with respect to
height is

$$
\begin{equation*}
\mathrm{dt} / \mathrm{d} z= \pm\left(v_{p} / c\right) /\left(v_{p}^{2}-c^{2}\right)^{1 / 2} \tag{5.23}
\end{equation*}
$$

In the collection of FORTRAN subprograms given in the Appendix, the function subprograms RDXDZ(Z) AND RTDTZ(Z) compute the magnitudes $|d x / d z|$ and $|d t / d z|$, respectively. Both of these subprograms use $\operatorname{CSP}(Z)$ to find the sound speed value at arbitrary height z. The value for v_{p} is assumed to be stored in COMMON.

A turning point for a ray is that value of z at which $c(z)=v_{p}$. In general, when a sound-speed profile contains only one minimum, there are two such turning points, one upper and one lower (denoted ZUP and ZLOW, respectively, in the subprograms). The subroutine TNPNT is used to locate turning points. In TNPNT the horizontal phase velocity VP, and lower and upper height bounds ZBL and ZBU are taken as inputs, and a systematic search is performed between these bounds for the turning points. The search proceeds by dividing the interval ($Z B L, Z B U$) into $N C S+3$ intervals, each of width

$$
\begin{equation*}
\text { DELTA }=(Z B U-Z B L) /(N S C A N+1) \tag{5.24}
\end{equation*}
$$

A search for the root of the function $\operatorname{CMVP}(Z)=\operatorname{CSP}(Z)-V P$ is then conducted by successively examining the sign of

CMVP (Z) at the points ZBL, ZBL + DELTA, ZBL + 2*DELTA, etc., until an interval is found for which the signs of CMVP(Z) at the two interval bounds are opposite. Success at this search implies that a root is bracketed in that interval. The actual value of the root [i.e., the zero of CMVP(Z)] is found by using a library subroutine (see the deck listing of ZREAL2 given in the Appendix). The above search then proceeds to succeeding intervals until a maximum of two roots is found. The output of TNPNT includes NRTS (the number of roots; 0,1 , or 2) and the values $Z A$ and $Z B$ of those roots [ZA is the first root (smallest z), and $Z B$ is the second root (larger z)]. Typically, ZA is expected to correspond to the lower turning point, and $Z B$ to the upper turning point.

In the successive integration between limits (one or both of which are turning points) of expressions such as those given in Eqs. (5.21) and (5.23), care must be taken to insure that these expressions remain real and finite. To insure this, the above search for turning points is supplemented to guarantee that the points are not overshot. For this purpose, another subroutine SHIFT is used to adjust the values of $Z A$ and $Z B$ found by TNPNT to values which are in the immediate neighborhood of these, but which are such that $\operatorname{CSP}(Z L O W)<V P$ and CSP (ZUP) < VP where ZLOW is the shifted value for $Z A$ and $Z U P$ is the shifted value for $Z B$. These adjustments are carried out in units of 10^{-8} until the above criteria are met.

In the subprogram set, the integration in general of any z-dependent quantity between arbitrary limits (not necessarily turning points) is accomplished by the function subprogram called RAINT. For example, in the case of the quantities $|d x / d z|$ and $|d t / d z|$, RAINT performs integration so that

$$
\begin{align*}
& \operatorname{RAINT}(\operatorname{RDXDZ}, \mathrm{ZL}, \mathrm{ZU})=\int_{Z L}^{Z U}|\mathrm{dx} / \mathrm{d} z| \mathrm{d} z \text { and } \tag{5.25}\\
& \text { RAINT (RDTDZ, } Z \mathrm{~L}, \mathrm{ZU})=\int_{Z L}^{Z U}|\mathrm{dt} / \mathrm{d} z| \mathrm{d} z \tag{5.26}
\end{align*}
$$

In the performance of this integration, the range of integration is broken into intervals from ZL to ZAVE and from ZAVE to $Z U$ where $Z A V E=(1 / 2)(Z L+Z U)$. Thus

INTEGRAL $=\int_{Z L}^{Z A V E}$ (INTEGRAND) $\mathrm{dz}-\int_{\text {ZU }}^{\text {ZAVE }}$ (INTEGRAND) $\mathrm{dz} \cdot(5.27$)

The reason for separating the integral is that, to perform the actual integration, RAINT uses a library subroutine (see the deck 1isting of QUAD which is provided in the Appendix) which is most efficient when it integrates away from a singularity. There is the possibility that, as discussed above, the integrand may be singular at the integration limits (e.g., such as is the case with RDXDZ and

RDTDZ at turning points). As will become evident, RAINT is used by a number of subroutines throughout the computational scheme.

In the subroutine RANG, RAINT is used to determine the integrals of $|d x / d z|$ and $|d t / d z|$ between lower and upper turning points. The values of z corresponding to the turning points are supplied as inputs, and the other required information is presumed stored in COMMON. The outputs of RANG are RTIME and RLNTH for the integrals of $|d t / d z|$ and $|d x / d z|$, respectively. These two output parameters are significant because rays for the atmospheric model considered here are periodic in path. For propagation over N ray halfcycles, the travel time is simply (N)*(RTIME), and the horizontal distance traveled is simply (N)*(RLNTH).

Any ray that connects source and receiver may be completely characterized by (1) its associated horizontal phase velocity VP, (2) an index parameter IT (which is one if the ray is proceeding initially obliquely upwards, and minus one if it is proceeding initially obliquely downwards), (3) another index parameter JT (which is one if the ray is proceeding terminally obliquely upwards, and minus one if it is proceeding terminally downwards), (4) the number NUP of upper turning points through which the ray passes, (5) the number NDOWN of lower turning points, (6) the initial height ZSC of the ray (i.e., the source height), and (7) the terminal height ZLIS of the ray (i.e., the receiver height).

The meaning of some of these parameters is graphically illustrated in Fig. 31. It should be noted that, if IT = JT, then NUP $=$ NDOWN, if $I T=1$ and $J T=-1$, then NDOWN $=$ NUP 1 , and if IT $=-1$ and $J T=-1$, then NUP $=$ NDOWN -1 .

Given the above parameters, the total horizontal distance which a ray travels can be computed as follows (refer to Fig. 31 again):

$$
\begin{equation*}
R=(N) *(R L N T H)+R S T+R E N D \tag{5.28}
\end{equation*}
$$

where N is the number of complete half-cycles the ray undergoes given by

$$
\begin{equation*}
N=N U P+N D O W N-1 \tag{5.29}
\end{equation*}
$$

and where

$$
\begin{align*}
\text { RST } & =\int_{\text {ZSC }}^{\text {ZUP }}|\mathrm{dx} / \mathrm{d} z| \mathrm{d} z, & I T=1, \tag{5.30a}\\
& =\int_{\text {ZLOW }}^{\text {ZSC }}|\mathrm{dx} / \mathrm{dz}| \mathrm{d} z, & I T=-1, \tag{5.30b}\\
\text { REND } & =\int_{\text {ZLIS }}^{\text {ZUP }}|\mathrm{dx} / \mathrm{d} z| \mathrm{d} z, & J T=-1, \tag{5.30c}\\
& =\int_{\text {ZLOW }}^{\text {ZLIS }}|\mathrm{dx} / \mathrm{d} z| \mathrm{d} z, & J T=1 . \tag{5.30~d}
\end{align*}
$$

Figure 31. Parameters for Characterizing a Ray.

Eq. (5.28) holds even when NUP and NDOWN are zero. For example, if $I T=J T=1$ and NUP and NDOWN are zero, then

$$
\begin{align*}
R & =\int_{Z S C}^{Z U P}+\int_{Z L O W}^{Z L I S}-\int_{Z L O W}^{Z U P}|d x / d z| d z \\
& =\int_{Z S C}^{Z L I S}|d x / d z| d z \tag{5.31}
\end{align*}
$$

The computation of total range is accomplished by the subroutine TOTRAN. In this subroutine TNPNT is first called to find the turning points, then SHIFT is called to adjust the turning points so that $\operatorname{RDXDZ}(Z)$ remains finite throughout the integration range, and then RANG is called to determine the ray half-cycle length RLNTH. The integrals RST and REND are performed with the use of the function subprogram RAINT. The same general scheme used to compute total range can be used in TOTRAN to compute total travel time T, as we11. It is only necessary to replace RDXDZ by RDTDZ, RLNTH by RTIME, and R by T in the subroutine.

Rays Connecting Source and Receiver

Given that relevant parameters associated with rays can be computed, a related capability to have in any geometric acoustical computational scheme is that of the identification of all rays which connect source and receiver locations.

Let the source and receiver heights be denoted, respectively, by ZSC and ZLIS as before, and the horizontal distance between the source and receiver be denoted by RANGE. As explained in the previous section, given a realistic set of values for the parameters VP, ZSC, ZLIS, IT, JT, NUP, and NDOWN, it is possible to compute the total range of propagation R associated with these values. Given R, it is possible to define a function RMRAYD(VP) which is the difference between RANGE and R. By holding ZSC and ZLIS fixed, the other parameters VP, IT, JT, NUP and NDOWN can be varied so as to vary R until RMRAYD(VP) vanishes. In doing so, it is possible to define completely a ray that connects the source and receiver. In fact, since there are perhaps several (or in the case of very long ranges, many) groups of values for these parameters such that RMRAYD(VP) vanishes, the above scheme can be used to find all rays that connect source and receiver. A ray type can be thought of as being denoted by IT, JT, NUP, and NDOWN, and a specific ray (given the type) can be thought of as being defined by its associated value for VP.

The function subprogram RMRAYD(VP) computes the above defined difference. In RMRAYD(VP), VP is the independent variable and the remaining necessary parameters are made available through COMMON. To find the values of VP at which

$$
\begin{equation*}
\operatorname{RMRAYD}(V P)=0 \tag{5.32}
\end{equation*}
$$

given fixed ZSC, ZLIS, IT, JT, NUP, and NDOWN, the subroutine FNDVP is used. Briefly, FNDVP is used to scan values of VP between the values VPHST and VPHEND at intervals of SDELTA until an interval is found within which RMRAYD(VP) changes sign. Once an interval is found, a library subroutine is called (see ZREAL2 in the Appendix) to find the precise value of the root of RMRAYD(VP). Up to NMAX such roots are found (the number actually found is denoted by NFND), these roots being denoted by VPFND(1), VPFND(2). . .VPFND(NFND). By use of FNDVP, it is possible in principle to find all rays of a given type which connect source and listener. A systematic variation of ray types (IT, JT, NUP, and NDOWN) will, in this manner, identify all the rays that connect source and receiver.

Spreading of Adjacent Rays

Let two coplanar rays, both proceeding initially either obliquely upwards or obliquely downwards, be characterized by phase velocities $v_{p 1}$ and $v_{p 2}$. Assuming that $v_{p 2}$ is arbitrarily close to (but not equal to) $v_{p 1}$, the separation of the two rays may be characterized by a parameter Δ s which (see Fig. 32) is the perpendicular distance from a point on the first ray to the second ray, Δs is positive if the second ray lies above the first, and negative if the

Figure 32. Definition of Parameter $\Delta \mathrm{s}$ Which Characterizes Two Adjacent Rays with Horizontal Phase Velocities $\mathrm{v}_{\mathrm{p} 1}$ and $\mathrm{v}_{\mathrm{p} 2}$.
reverse is true. The parameter $\Delta \mathrm{s}$ may be considered as a function of horizontal distance x and phase velocity v_{p}. The limit

$$
\begin{equation*}
\mathrm{ds} / \mathrm{d} \mathrm{v}_{\mathrm{p}}=\lim _{\mathrm{v}_{\mathrm{p} 2} \rightarrow \mathrm{v}_{\mathrm{p} 1}}\left\{\Delta \mathrm{~s} /\left(\mathrm{v}_{\mathrm{p} 2}-\mathrm{v}_{\mathrm{p} 1}\right)\right\} \tag{5.33}
\end{equation*}
$$

may be considered to be a uniquely defined function of x, v_{p}, ray type $(I T=1$ or -1$)$, and ray initial height $Z S C$. The derivative in Eq. (5.33) is termed the ray spreading function. Note that within any ray segment (i.e. between turning points)

$$
\begin{align*}
d s / d v_{p} & = \pm\left(d x / d v_{p}\right) /\left\{1+(d x / d z)^{2}\right\}^{1 / 2} \\
& = \pm\left(d x / d v_{p}\right)\left\{1-\left(c / v_{p}\right)^{2}\right\}^{1 / 2}, \tag{5.34}
\end{align*}
$$

where the plus sign applies if the ray is proceeding obliquely downwards $(J T=-1)$, and the minus sign applies if it is proceeding obliquely upwards $(J T=1) . d x / d v_{p}$ is the rate of change of the horizontal distance of separation with respect to phase velocity at fixed z and for fixed $Z S C$. $d x / d v_{p}$ may be calculated given the general ray type. For a ray that proceeds initially upwards (IT $=1$), and which goes through NUP upper turning points and NDOWN = NUP lower turning points, and which ends with the direction of propagation obliquely upwards
$x=\int_{Z S C}^{\text {ZUP }}|d x / d z| d z+N \int_{\text {ZLOW }}^{Z U P}|d x / d z| d z+\int_{Z L O W}^{Z}|d x / d z| d z$,
where $N=$ NUP + NDOWN $-1=2 *(N U P)-1$, and where the integrand $|d x / d z|$ is given by Eq. (5.21). To differentiate this expression with respect to v_{p}, it is necessary to take into account the fact that $Z L O W$ and $Z U P$, as well as $|d x / d z|$, depend on v_{p}.

In order to evaluate the derivatives with respect to v_{p} of the integra1s in Eq. (5.35), it is necessary to perform integration by parts since singularities arise upon formal differentiation. For this purpose, it is more convenient to rewrite Eq. (5.35) as

$$
\begin{gather*}
x=I(Z S C, Z U I)+(N+1) * I(Z U I, Z U P)+ \\
+(N+1) * I(Z L O W, Z L I)+(N) * I(Z L I, Z U I)+I(Z L I, Z) \tag{5.36}
\end{gather*}
$$

where $I(Z 1, Z 2)$ represents the integral of $|d x / d z|$ between the indicated limits, ZUI is a fixed (v_{p}-independent) value of z slightly less than ZUP, and ZLI is a fixed value slightly greater than ZLOW (see Fig. 33). I(ZUI,ZUP) can be rewritten as

$$
\begin{equation*}
I(Z U I, Z U P)=\int_{Z U I}^{\infty} U(Z U P-z)|d x / d z| d z, \tag{5.37}
\end{equation*}
$$

RANGE

Figure 33. Definition of Parameters ZUI (Slightly Below Upper Turning Point ZUP) and ZLI (S1ightly Above Lower Turning Point ZLOW).
where $U(Z U P-z)$ is a step function defined so that

$$
\begin{aligned}
U(a-z) & =1, \quad z \leq a \\
& =0, \quad z>a
\end{aligned}
$$

and where

$$
\begin{equation*}
|\mathrm{dx} / \mathrm{dz}|=-(\mathrm{dc} / \mathrm{d} z)^{-1}(\mathrm{~d} / \mathrm{d} z)\left(\mathrm{v}_{\mathrm{p}}^{2}-\mathrm{c}^{2}\right)^{1 / 2} . \tag{5.38}
\end{equation*}
$$

Integration by parts in Eq. (5.37) gives

$$
\begin{gather*}
I(Z U I, Z U P)=\left.\left[(d c / d z)^{-1}\left(v_{p}^{2}-c^{2}\right)^{1 / 2}\right]\right|_{Z U I} \\
+\int_{Z U I}^{\infty}\left(v_{p}^{2}-c^{2}\right)^{1 / 2} U(Z U P-z)(d / d z)(d c / d z)^{-1} d z \tag{5.39}
\end{gather*}
$$

Consequent1y,

$$
\begin{gather*}
\left(d / d v_{p}\right) I(Z U I, Z U P)=\left.\left[\left(v_{p} / c\right)(d c / d z)^{-1} d x / d z\right]\right|_{Z U I} \\
\quad+\int_{Z U I}^{Z U P}\left(v_{p} / c\right)|d x / d z|(d / d z)(d c / d z)^{-1} d z \tag{5.40}
\end{gather*}
$$

Provided that $\mathrm{dc} / \mathrm{dz}$ does not vanish in the interval between ZUI and ZUP, both of the terms in Eq. (5.40) should be finite.

In a similar manner, it can be shown that

$$
\begin{align*}
& \left(\mathrm{d} / \mathrm{d} v_{\mathrm{p}}\right) I(\mathrm{ZLOW}, \mathrm{ZLI})=-\left.\left\{\left(v_{\mathrm{p}} / \mathrm{c}\right)(\mathrm{dc} / \mathrm{dz})^{-1}|\mathrm{dx} / \mathrm{dz}|\right\}\right|_{Z L I} \\
& \quad+\int_{\text {ZLOW }}\left(v_{\mathrm{p}} / \mathrm{c}\right)|\mathrm{dx} / \mathrm{d} z|(\mathrm{d} / \mathrm{d} z)(\mathrm{dc} / \mathrm{d} z)^{-1} \mathrm{~d} z \tag{5.41}
\end{align*}
$$

The derivatives of the remaining terms in the expression for $d x / d v_{p}$ [Eq. (5.36)] are relatively simple to obtain since the integration limits for these terms are independent of v_{p}. In particular

$$
\begin{equation*}
\left(d / d v_{p}\right) I(Z S C, Z U I)=-\int_{Z S C}^{Z U I}\left(v_{p} c\right)\left(v_{p}^{2}-c^{2}\right)^{-3 / 2} d z . \tag{5.42}
\end{equation*}
$$

Thus, the expression for $d x / d v_{p}(I T=1, J T=1)$ can be written

$$
\begin{gather*}
\left.d x / d v_{p}=I 1(Z S C, Z U I)+(N+1) * J 1(Z U I)+N+1\right) * I 2(Z U I, Z U P) \\
-(N+1) * J 1(Z L I)+(N+1) * I 2(Z L O W, Z L I)+(N) I 1(Z L I, Z U I) \\
+ \tag{5.43}\\
+I 1(Z L I, Z),
\end{gather*}
$$

where

$$
\begin{gather*}
I 1(Z A, Z B)=-\int_{Z A}^{Z B} c v_{p}\left(v_{p}^{2}-c^{2}\right)^{-3 / 2} d z \tag{5.44a}\\
J 1(Z A)=\left.\left\{\left(v_{p} / c\right)(d c / d z)^{-1}|d x / d z|\right\}\right|_{Z=Z A}, \tag{5.44b}
\end{gather*}
$$

and

$$
I 2(Z A, Z B)=\int_{Z A}^{Z B}\left(v_{p} / c\right)|d x / d z|(d / d z)(d c / d z)^{-1} d z
$$

In general, for a ray of specified type (IT, JT, NUP, and NDOWN) the corresponding expression for $d x / d v_{p}$ is

$$
\begin{align*}
d x / d v_{p} & =\left\{\begin{array}{c}
I 1(Z S C, Z U I) \\
I 1(Z L I, Z S C)
\end{array}\right\}+(2) *(N U P) * J 1(Z U I)+(2) *(N U P) * I 2(Z U I, Z U P) \\
& -(2) *(N D O W N) * J 1(Z L I)+(2) *(N D O W N) * I 2(Z L O W), Z L I) \\
& +(N U P+N D O W N-1) * I 1(Z L I, Z U I)+\left\{\begin{array}{l}
I 1(Z L I, Z) \\
I 1(Z, Z U I)
\end{array}\right) \quad(5.45) \tag{5.45}
\end{align*}
$$

The upper and lower choices for the first term correspond to $I T=1$ and -1 , respectively, while the upper and lower choices for the last term correspond to $\mathrm{JT}=1$ and -1 , respectively.

The integrand for the integrals of type Il is computed by the function subprogram $\operatorname{FTRM}(Z)$, and twice the values of those of type I2 are computed by the function subprogram FTRMUL(Z). That is,

$$
\begin{equation*}
\operatorname{II}(Z A, Z B)=\operatorname{RAINT}(F T R M, Z A, Z B) \tag{5.46a}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { I2 }(Z A, Z B)=\text { RAINT (FTRMUL, } Z A, Z B) / 2 . \tag{5.46b}
\end{equation*}
$$

In addition, the quantity $2[J 1(Z)]$ is computed by the function subprogram TRNPT(Z). In other words,

$$
\begin{equation*}
\operatorname{TRNPT}(z)=2 v_{p}(d c / d z)^{-1}\left(v_{p}^{2}-c^{2}\right)^{-1 / 2} \tag{5.47}
\end{equation*}
$$

Thus, the expression for $d x / d v_{p}$ can be written as

$$
\begin{align*}
\mathrm{dx} / \mathrm{d} v_{\mathrm{p}} & =\text { TRMI }+(\text { NUP }) * T R N P T(Z U I) \\
& +(N U P) * \text { RAINT (FTRMUL, ZUI , ZUP) } \\
& -(N D O W N) * T R N P T(Z L I) \\
& +(N D O W N) * R A I N T(F T R M U L, Z L O W, Z L I) \\
& +(N U P+N D O W N ~-~ 1) * R A I N T(F T R M, Z L I, Z U I) \\
& +T R M F, \tag{5.48}
\end{align*}
$$

where the first and last terms are

$$
\begin{align*}
& \text { TRMI }=\text { RAINT(FTRM,ZSC,ZUI) for } I T=1 \tag{5.49a}\\
& =\text { RAINT(FTRM,ZLI,ZSC) for } I T=-1 \text {, } \tag{5.49b}\\
& \text { and } \quad \text { TRMF }=\text { RAINT }(F T R M, Z, Z U I) \text { for } J T=-1 \tag{5.50a}\\
& =\text { RAINT (FTRM,ZLI, Z) for } J T=1 \text {. } \tag{5.50b}
\end{align*}
$$

Finally, $d s / d v_{p}$ may be calculated from Eq. (5.34) as follows:

$$
\begin{equation*}
\mathrm{ds} / \mathrm{d} v_{\mathrm{p}}=-\operatorname{SIGN}(\mathrm{JT}) *\left(\mathrm{dx} / \mathrm{d} v_{\mathrm{p}}\right)\left[1-\left(\mathrm{c} / \mathrm{v}_{\mathrm{p}}\right)^{2}\right]^{1 / 2} \tag{5.51}
\end{equation*}
$$

The sequence of computations described above is carried out by the subroutine CDSDVP. The parameters VP, ZSC, Z, IT, JT, NUP, and NDOWN are inputs, and the output is DSDVP. The parameters ZLI and ZUI are computed internally to CDSDVP and are set to

$$
\begin{align*}
& Z L I=Z L O W+.01(Z U P-Z L O W) \tag{5.52a}\\
& Z U I=Z U P-.01(Z U P-Z L O W) . \tag{5.52b}
\end{align*}
$$

The choice of the . 01 factor is of course arbitrary. The chief constraint on the use of CDSDVP is that dc/dz should
not vanish between ZLOW and ZLI and between ZUI and ZUP.
Along a single ray (with $I T=1$) it is apparent that, up to the first upper turning point, $d s / d v_{p}$ is positive since FTRM(Z) is negative and JT is positive. At the turning point

$$
\begin{equation*}
\mathrm{ds} / \mathrm{dv} v_{p}=\operatorname{limit}_{z \rightarrow \operatorname{ZUP}}\left\{\left[1-\left(c / v_{p}\right)^{2}\right]^{1 / 2} \int_{Z S C}^{z} d v_{p}\left(v_{p}^{2}-c^{2}\right)^{-3 / 2} d z\right\} \tag{5.53}
\end{equation*}
$$

This limit can be evaluated easily if c is expanded in a power series about its value v_{p} at $z=Z U P$ so that

$$
\begin{equation*}
c \approx v_{p}+\alpha(z-Z U P), \tag{5.54}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\left.(\mathrm{dc} / \mathrm{dz})\right|_{\text {ZUP }}, \tag{5.55}
\end{equation*}
$$

and if the integral in Eq. (5.53) is broken into integrals from ZSC to ZUI and from ZUI to z, given that ZUI $<z<Z U P$. Following these steps, the expression in the braces of Eq. (5.53) becomes

$$
\begin{align*}
& \left(\frac{2 \alpha}{v_{p}}\right)^{1 / 2}(Z U P-z)\left\{\int_{Z S C}^{Z U I} \frac{\left[v_{p}+\alpha(z-Z U P)\right] v_{p}}{\left\{v_{p}^{2}-\left[v_{p}+\alpha(z-Z U P)\right]^{2}\right\}^{3 / 2}} d z\right. \\
& \left.+\int_{Z U I}^{z} \frac{\left[v_{p}+\alpha(z-Z U P)\right] v_{p}}{\left\{v_{p}^{2}-\left[v_{p}+\alpha(z-Z U P)\right]^{2}\right\}^{3 / 2}} d z\right\} \tag{5.56}
\end{align*}
$$

Thus, in the limit as z approaches ZUP,

$$
\begin{align*}
\mathrm{ds} / \mathrm{dv}_{\mathrm{p}} & =1 / \alpha \\
& =\left.[1 /(\mathrm{dc} / \mathrm{dz})]\right|_{Z U P} \tag{5.57}
\end{align*}
$$

which, interestingly, is independent of ZSC. Between the first upper turning point and the first lower turning point $d s / d v_{p}$ is given by

$$
\mathrm{ds} / \mathrm{d} v_{p}=\left[1-\left(\mathrm{c} / \mathrm{v}_{\mathrm{p}}^{2}\right)^{2}\right]^{1 / 2}\{\text { RAINT (FTRM, ZSC , ZUI })
$$

+ TRNPT(ZUI)
+ RAINT (FTRMUL, ZUI, ZUP)

$$
\begin{equation*}
+\operatorname{RAINT}(\text { FTRM, } \mathrm{Z}, \mathrm{ZUI})\} . \tag{5.58}
\end{equation*}
$$

It can be shown that Eq. (5.58) may be put in a form which is independent of ZUI so that

$$
\begin{align*}
d s / d v_{p} & =\left[1-\left(c / v_{p}\right)^{2}\right]^{1 / 2}\left\{\frac{\left(v_{p} / 2\right)^{1 / 2} / \alpha^{3 / 2}}{(Z U P-Z S C)^{1 / 2}}+\frac{\left(v_{p} / 2\right)^{1 / 2} / \alpha^{3 / 2}}{(Z U P-z)^{1 / 2}}\right. \\
& \left.-\int_{Z S C}^{Z U P} \arg ^{(1)}\left(z_{o}, Z U P\right) d z_{o}-\int_{z}^{Z U P} \operatorname{Arg}^{(1)}\left(z_{o}, Z U P\right) d z_{o}\right\}, \tag{5.59}
\end{align*}
$$

where
$\operatorname{Arg}{ }^{(1)}(z, Z U P)=\frac{c v_{p}}{\left(v_{p}^{2}-c^{2}\right)^{3 / 2}}-\frac{v_{p}^{2}}{(Z U P-z)^{3 / 2}\left(2 \alpha v_{p}\right)^{3 / 2}} \cdot(5.60)$

The presence of the second term in Eq. (5.60) insures that the integrals in Eq. (5.59) exist. As z approaches ZUP, the second term in the braces of Eq. (5.58) dominates so that in the limit as z approaches ZUP

$$
\begin{equation*}
\left[1-\left(c / v_{p}\right)^{2}\right]^{1 / 2} \rightarrow\left(2 \alpha / v_{p}\right)^{1 / 2}(Z U P-z)^{1 / 2} \tag{5.60}
\end{equation*}
$$

which means that $d s / d v_{p}$ approaches $1 / \alpha$ in accordance with Eq. (5.57). On this basis, it can be concluded that the quantity in braces in Eq. (5.58) starts out large and positive for z close to ZUP, decreases monotonically [since FTRM(Z) is always negative] and eventually goes to minus infinity as z
approaches ZLOW. Therefore, there is one and only one point on the ray between the first turning point and the second turning point at which $d s / d v_{p}=0$. This point is identified as a point on a caustic (i.e., where adjacent rays intercept).

At the second turning point (first lower turning point) the same sort of limiting process as described above imp1ies that

$$
\begin{equation*}
\mathrm{ds} / \mathrm{d} v_{\mathrm{p}}=\left.[1 /(\mathrm{dc} / \mathrm{dz})]\right|_{\mathrm{ZLOW}} \tag{5.62}
\end{equation*}
$$

which, as mentioned earlier, is a negative number. Between the first lower (second overall) and the second upper (third overa11) turning points, it may be argued that $d s / d v p$ goes to zero at one and only one point. Before that point, $d s / d v_{p}$ is negative, and after that point it is positive. $d s / d v_{p}$ then approaches $\left.[1 /(\mathrm{dc} / \mathrm{dz})]\right|_{Z U P}$ at the next upper turning point, and so forth. As an illustration, the subprograms given in the Appendix were used to compute a plot of $d s / d v_{p}$ versus range for the model atmosphere shown in Fig. 30 and for the case where $Z S C$ and VP were set to 8 km and $0.31 \mathrm{~km} / \mathrm{sec}$, respectively. This plot is given in Fig. 34.

The number of times $d s / d v_{p}$ goes to zero along a ray (i.e., the number of caustics encountered) is simply

Number of caustics $=$ (Number of complete ray half-cycles)

$$
\begin{equation*}
+ \text { (zero or one). } \tag{5.63}
\end{equation*}
$$

Figure 34. Values of $d s / d v_{p}$ Along Two Adjacent Rays.

The second term in Eq. (5.63) is zero if JT $=1$ (upgoing ray) and the current value of $d s / d v_{p}$ is negative, or if $J T=-1$ (downgoing ray) and the current value of $d s / d v_{p}$ is positive. Otherwise, it is one. The number of complete ray halfcycles is NUP + NDOWN - 1 if either NUP or NDOWN is greater than one. It is a simple matter to determine at a given point on a ray just how many caustics the ray has encountered in passing from the source to that point.

Ray Amplitudes

Given that, in the immediate vicinity of the source, the acoustic pressure $p(\vec{r}, t)$ has the functional form $F(t-R / c) / R$ (R is distance from source), then the Fourier transform $\hat{p}(\omega, \vec{r})$ of the acoustic pressure can be inferred (from the geometric acoustical model) ${ }^{22}$ to be, in the first approximation, given by a sum over rays. That is, $\hat{p}(\omega, \vec{r})$ can be expressed approximately as

$$
\begin{equation*}
\hat{p}(\omega, \vec{r})=\sum_{\text {rays }} \hat{p}_{r a y} \tag{5.64}
\end{equation*}
$$

where $\hat{p}(\omega, \vec{r})$ is defined so that

$$
\begin{equation*}
p(\vec{r}, t)=\operatorname{Re} \int_{0}^{\infty} \hat{p}(\omega, \vec{r}) e^{-i \omega t} d \omega \tag{5.65}
\end{equation*}
$$

The contribution $\hat{p}_{\text {ray }}$ from any particular ray that connects source and receiver can be expressed simply as

$$
\begin{align*}
\hat{p}_{\text {ray }} & =\hat{f}(\omega) \rho_{o}^{1 / 2}\left(z_{S C}\right)\{\text { Atmosphere factor }\}\{\text { Spreading factor }\} \\
& x\left\{(+i){ }^{N_{c}}\right\} e^{i \omega t} \text { ray } \tag{5.66}
\end{align*}
$$

where N_{c} is the number of times that the ray has touched a caustic, $\hat{f}(\omega)$ is the Fourier transform of the function that characterizes the time dependence of the source, $\rho_{o}\left(z_{S C}\right)$ is the ambient density at the source height [in the model considered here, $\rho_{0}(z)$ is assumed constant throughout], and $t_{\text {ray }}$ is the net travel time along a ray. The atmospheric factor is given by

$$
\begin{equation*}
\{\text { Atmospheric factor }\}=\left\{\left(\rho_{o} c\right)_{z} /\left(\rho_{o} c\right)_{S C}\right\}^{1 / 2} \tag{5.67}
\end{equation*}
$$

while the spreading factor is the inverse square root of the ray-tube area normalized so that the factor reduces to $1 / R$ near the source (i.e., at the beginning of the ray). In order to determine these factors, it is necessary that

$$
\begin{equation*}
\left\{\left|\hat{p}_{\text {ray }}\right|^{2} / \rho_{o} c\right\}\{\text { ray tube area }\}=\text { constant } \tag{5.68}
\end{equation*}
$$

along the ray. It is also necessary that the acoustic pressure have the functional form in the vicinity of the source as specified above and that the net phase change in propagation from source to receiver be $-\omega t_{\text {ray }}-N_{c} \pi / 2$.

For a cylindrically symmetric bundle of rays, it can
be shown that the associated ray-tube area at the receiver location should be a constant times $\left|\left(d s / d v_{p}\right)=r_{\text {Hor }}\right|$, where $d s / d v_{p}$ is the quantity (evaluated at the receiver location) discussed in the previous section and where $r_{\text {Hor }}$ is the horizontal distance from source to receiver. It can also be shown that in the vicinity of the source

$$
\begin{equation*}
r_{\text {Hor }}\left|d s / d v_{p}\right|=\frac{R^{2} c^{2} / v_{p}^{3}}{\left[1-\left(c / v_{p}\right)^{2}\right]^{1 / 2}} \tag{5.69}
\end{equation*}
$$

Given Eq. (5.69) the spreading factor can be identified in general as the square root of

$$
\{\text { Spreading factor }\}^{2}=\frac{c^{2} / v_{p}^{3}}{\left[1-\left(c / v_{p}\right)^{2}\right]^{1 / 2}} \frac{1}{r_{H o r} \mid d s / d v_{p} T},(5.70)
$$

where c is taken here as the sound speed at the source height.
It should be noted that the spreading factor blows up whenever $d s / d v_{p}$ goes to zero (i.e., at a caustic). This fact is one indication that the general formula of Eq. (5.60) may not be applicable everywhere. The modification of the method to take explicitly into account proximities to caustics is beyond the scope of the investigation presented here. More information on caustics is available in reference 6.

As an illustration of the above method, the subprograms given in the Appendix were used to compute some of the factors in Eq. (5.66) for the case of a constant-frequency
(taken here as $\omega=1 \mathrm{rad} / \mathrm{sec}$) source. The example chosen is appropriate to the simplified sound-speed profile of Fig. 30 and for the case where the source and receiver heights are 15 and 17 km , respectively, and the distance of propagation is 340 km . For this example, six rays were found to connect the source and receiver. Parameters and factors for these rays are given in Table 4. There, for each ray, tabulations are gliven of VP, IT, JT, NUP, NDOWN, $N_{c}, t_{r a y}, d s / d v_{p}$, the spreading factor according to Eq. (5.70), and the net phase change which is $-t_{\text {ray }}-N_{c} \pi / 2$. From the cubic-spline approximation, the sound speed at the source was found to be $0.23074 \mathrm{~km} / \mathrm{sec}$. The atmospheric factor is, of course, one. Below Table 4, a sum over rays is given of the spreading factor times $e^{i\left(t_{r a y}+N_{c} \pi / 2\right)}$. This sum is then multiplied by $e^{-i t}$. The resulting expression provides information on the amplitude and phase of $p(\vec{r}, t)$ at the receiver.

Concluding Remarks

In summary, the computational scheme described in this chapter will provide much of the information needed to describe long-range propagation for the case of a medium that contains a single sound-speed channel. Given lattice points for a sound-speed profile and source and receiver locations, this scheme will model the profile, find rays that connect source and receiver, compute distances and times of propagation, calculate a parameter that characterizes the spreading

Table 4. Ray Parameters and Computed Factors for the Example Described in the Text $(\omega=1 \mathrm{rad} / \mathrm{sec})$.

VP $(\mathrm{km} / \mathrm{sec})$	IT	JT	NUP	NDOWN	N_{c}	$\mathrm{t}_{\mathrm{ray}}$ (sec)	$\mathrm{ds} / \mathrm{dv}_{\mathrm{p}}$ (sec)	sprading factor $\left(\mathrm{km}^{-1}\right)$	net phase change (radians)
.33392	1	1	4	4	7	1443.6	-407.81	3.78×10^{-3}	-1455.6
.271446	1	-1	5	4	8	1478.80	146.69	1.007×10^{-2}	-1491.37
.24461	1	-1	5	4	9	1480.1	-113.6	1.95×10^{-2}	-1494.2
.33835	-1	-1	4	4	7	1431.0	439.5	3.59×10^{-3}	-1442.0
.271453	-1	1	4	5	8	1478.81	-146.76	1.006×10^{-2}	-1491.38
.24448	-1	1	4	5	9	1480.3	114.0	1.69×10^{-2}	-1494.4

$$
\left[\sum_{\text {rays }}\{\text { spreading factor }\} e^{i(t r a y}+N_{c}^{\pi / 2)}\right] e^{-i t}
$$

$=\left\{\left(1.75 \times 10^{-2}\right) e^{-1.35 i}\right\} e^{-i t}$
of adjacent rays, and allow for the determination of the number of caustics that any given ray has touched. Given that the receiver is not in the vicinity of a caustic, the scheme will provide the information necessary to compute the amplitude and phase of a signal as received in the far field.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Remarks Regarding Leaking Modes

It was shown in Chapter II that, for a model atmosphere in which the sound speed is constant above some arbitrarily large height, the $G R_{0}$ and $G R_{1}$ modes should have low cutoff frequencies and should be leaking below that height. Given these facts, perturbation techniques were provided for the computation of the imaginary and real parts k_{I} and k_{R}, respectively, of the horizontal wave numbers for these modes. Knowledge of the k_{I} then made it possible to include, in a synthesis of waveforms, contributions from the GR_{0} and GR_{1} modes at frequencies where these modes were leaking. It was also learned that these contributions were significant enough to warrant such an inclusion. Finally, another perturbation technique was used to explain the transition of these modes from non-leaking to leaking propagation.

In Chapter III, a description was given of the adaptation of the computer program INFRASONIC WAVEFORMS to include leaking modes. It was shown how the program could be used to compute the parameters necessary to calculate the k_{I} in the manner outlined in Chapter II. It was further shown that, by a judicious choice of model atmospheres, the
phase velocity and the source-free amplitude functions of the $G R_{0}$ and $G R_{1}$ modes cou1d be extended down to frequencies very close to zero. It was then shown how, given these functions and the k_{I}, waveforms could be synthesized with leaking modes. Numerical examples were provided which demonstrated that the contribution from leaking modes was significant and physically meaningful as far as the prediction of the early portions of infrasonic arrivals was concerned.

The question might be raised as to whether the k_{I} themselves are physically meaningful. Such would be the case if the earth's atmosphere were terminated by an upper halfspace, and if there were no physical dissipative mechanisms present. However, neither of these conditions is fulfilled; and it must be kept in mind that the use of an approximate model atmosphere gives rise to approximate results. It must also be remembered that the actual values of the k_{I} depend on the choice made for the height of the bottom of the upper halfspace. To that extent, the k_{I} are arbitrary. Aside from this, the k_{I} are so small in magnitude that the associated derived waveforms are very much like those derived with the $k_{\text {I }}$ nonexistent.

In light of the above comments. it is recommended that, in the synthesis of waveforms, the calculations of the k_{I} not be carried out for the GR_{0} and GR_{1} modes. Instead, the k_{I} should be taken either as given in the numerical example of Chapter II or set equal to $2 \times 10^{-10} \mathrm{~km}^{-1}$ (i.e., for all
practical purposes, zero). The k_{I} cannot be taken to be identically zero because INFRASONIC WAVEFORMS is designed to use the nonzeroness of the k_{I} as a signal that values for the source-free amplitude (AMP) are input at frequencies below cutoff. With the k_{I} set to zero, the program will return zero values for the AMP at these frequencies.

It is important to recognize that, while the relatively simple procedures outlined in Chapter III make the perturbation techniques presented in Chapter II computationally unnecessary, those techniques were necessary to establish a rigorous mathematical basis for the inclusion of leaking modes in the synthesis of infrasonic waveforms. In fact, the careful analysis given there made it evident that leaking modes must be included at low frequencies if accurate predictions are to be made of the early portions of arrivals. It was a contribution of this dissertation to clarify the nature and relative importance of leaking modes and to provide a procedure for the inclusion of these modes in the numerical synthesis of infrasonic waveforms. It is recommended that this procedure be made more automatic than as given here.

Remarks Regarding the High-Frequency

 Behavior of Guided ModesAs discussed in Chapter IV, a modified W.K.B.J. method of approximation may be used to order modes selectively and to compute useful modal parameters at relatively high
frequencies. The inclusion of the method into the multi-modal scheme of the program INFRASONIC WAVEFORMS is not only feasible, but may be recommended. There is, however, some question as to whether in general a multi-modal scheme which inforporates a finite number of modes (even though they may be carefully chosen) could ever adequately synthesize the high-frequency portions of infrasonic waveforms. Indeed, this question is in itself difficult to answer because there is limited empirical data available on such portions. Aside from this fact, it is likely that a more fruitful approach to the refinement at high frequency of schemes for synthesizing waveforms lies with an appropriately designed geometric acoustics model. Nevertheless, it was a contribution of this dissertation to clarify the high-frequency behavior of guided infrasonic modes and to suggest a method of incorporating this knowledge in a numerical scheme for synthesizing infrasonic waveforms.

Remarks Regarding the Geometric

Acoustica1 Mode1
The geometric acoustical computational method presented in Chapter V was designed to overcome many of the limitations customarily associated with such methods. The fact that the method produces amplitudes and phases for rays, rather than merely paths and travel times, is significant. The inclusion into the method of the possibility of having many rays that
connect source and receiver coupled with the ability in the method to locate caustics precisely is important for studies of propagation over long range.

It is important to realize, however, that the method presented here is limited in scope. A comprehensive computational scheme should, of necessity, explicitly include effects that take place in the vicinity of caustics and as a result of the existence of lacunae. In addition, if a model is desired of propagation in a medium with two adjacent sound-speed channe1s (as is typical in the case of the atmosphere), provision would have to be made for the fact that adjacent channels can couple (i.e., some acoustic energy from one channel can penetrate into the other). Finally, and more obviously, a comprehensive computational scheme would incorporate effects due to winds, dispersion due to gravity, spreading due to the earth's curvature, sound absorption due to dissipative processes, and phase shifts as a result of ground reflections. The incorporation of these effects should not be difficult as the theory associated with them is well developed.

A comprehensive geometric acoustical model could be used as a research tool to test simpler models. For example the models developed by P. W. Smith ${ }^{27,28}$ to describe underwater propagation, which are based on statistical notions, would lend themselves well to such testing. The intent in testing simpler models would be to refine such models to the
point where they could provide precise descriptions of waveforms.

The FORTRAN subprograms provided in the Appendix were designed to be incorporated into a comprehensive computer program (as yet unwritten) for synthesizing waveforms. This program would be devised to interpret, in as straightforward a manner as possible, whatever appropriate high-frequency empirical data is available on waveforms. It was a contribution of this dissertation to outline in detail a numerical scheme for the computation of acoustic parameters required for accurate modeling of propagation over long range.

APPENDIX

DECK LISTING OF FORTRAN SUBROUTINES FOR GEOMETRIC ACOUSTICAL COMPUTATIONS IN A MEDIUM WHERE SOUND SPEED

VARIES WITH HEIGHT


```
C
    ROXOZ(Z) ANO RDTDZ(Z) ARE SINGULAR AT ZLOW AND ZUP.I
        IF (IT .LT. O) GO IO 5
        ANS1 = PAINT(RDXDZ,ZUP,ZSC)
        RST = -ANSI
    CALCULATE THE HOPIZONTAL PROPAGATION OISTANCE BETWEEN
    THE LAST TUFNING POINT AND THE RECEIVER.
        GO ro 10
        5 CONTINUE
        ANS2 = RAINT(RDXDZ,ZLOW,ZSC)
        RST = ANSL
    IF THE PAY PDOPAGATES TERMINAL&Y DOWNWARD, GO TO 2O ANO
C CALCULITE THE HORIZONTAL PROPAGATION OISTANCE BETWEEN THE
C LAST UPPEQ TURNINT, POINT AND THE RECFIVEP. OTHERWISE,
C CALGULATE THE HORIZONTAL PROPAGATION OISTANCE BETWEEN THE
C LAST LOWER TURNING POI'IT ANO THE RECEIVER.
    10 IF (JT,LI, O) GȮ IO 20
        ANS3 = RAINT\ROXDZ,ZLOW,ZLIS)
        REND = ANS3
    GO TO 3O A:ID CALCULATE THE TOTAL HORIZONTAL PROPAGATION DISTANEE
C RETWEEN SOUPCE ANO RECEIVER.
    GO IO 30
2? CONTINUS
        ANS4 = QAINT(RDXDZ,ZUP,ZLIS)
        REND = -ANS4
CALCULATE THE TOTAL NUMBER OF RAY HALF-REPETITIONS BETWEEN
SOURCE ANT RECEIVER.
30N = NUP + NDOWN - 1
C CALCULATE THE IOTAL HOPIZONTAL PROPAGATION DISTANCE.
        R = N*QLNTH + RST + REND
        QETURN
        END
```


TOTRAN
TOTPAN
TOTRAN

FNOVP
FNOVP
FNOVP
FNDVP
FNDVP
FNOVP
FNOVP
FNOVP
FNDVP
FNDVP
FNOVP
FNDVP
FNOVP
FNDVP
FNDVP
FNDVP
FNDVP
FNOVP
FNOVP
FNOVP
FNOVP
FNDVP
FNOVP
FNOVP
FNOVP
FNOVP
FNOVP
FNDVP
FNDUP
FNOVP


```
SHIFT
SHIFT
SHIFT
    ZLON =SHIFTED HEIGHT OF LCWEP TURNING POINT SHIFT
    ZUP = SHIFTEO HEIGHT OF UPOED TUPNING POINT SHIFT
    SHIFT
```



```
CALCULATE THE DIFFERENCE BETWEEN THE SOUNO SPEED AT THE LOWER 
CALCULATE THE OIFFERENCE BETWEEN THE SOUNO SPFED AT THE LOWER 
```



```
CALCULATE THE OIFFERENCE BETWEEN THE SOUNO SPFED AT THE LOWER 
CALCULATE THF OIFFERENCE BETWEEN THE SOUNO SPFED AT THE LOWER 
CALCULATE THE OIFFERENCE BETWEEN THE SOUNO SPFED AT THE LOWER 
CALCULATE THE OIFFERENCE BETWEEN THE SOUNO SPFED AT THE LOWER 
```



```
THE SOUNT SPEED IS LESS THAN VP, WE'RE SAFE. SHIFT
1O CHKU = CMVP(ZUP)
    IF(CHKU .LE. O.I) RETURN
    ZUP = ZUP - 1.E-8
    N = N + 1
    IF(N.GE. 1000) RETUPN
    GO 10 13
    ENO
```



```
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
```



```
        ENO
        RANG
```

```
    SUGROUTINE DASOL
```

 SUGROUTINE DASOL
 DASOL (SUBROUTINE)
 DASOL (SUBROUTINE)
 ----ABSTRACT----
 ----ABSTRACT----
 TITLE - DASOL
TITLE - DASOL
THIS SUBROUTINE CALCULATES THE COFFFIGIENTS OF THE
THIS SUBROUTINE CALCULATES THE COFFFIGIENTS OF THE
GUPIT, SPLINES USED TO APPROXIMATE THE SOUND-SPEED
GUPIT, SPLINES USED TO APPROXIMATE THE SOUND-SPEED
PROFILE. THESE COFFFICIENTS AFE DEFINED BY THE
PROFILE. THESE COFFFICIENTS AFE DEFINED BY THE
RELATION*
RELATION*
DELZ(I)*ASOL(I-1) + 2*(DELZ(I) - DELZ(I+1))*ASOL(I) *
DELZ(I)*ASOL(I-1) + 2*(DELZ(I) - DELZ(I+1))*ASOL(I) *
* DELZ(I+1)*ASOL(I*1) = DELC(I+1) - DELC(I)
* DELZ(I+1)*ASOL(I*1) = DELC(I+1) - DELC(I)
WHERE DELZ(I) = Z(I) - Z(I-1)
WHERE DELZ(I) = Z(I) - Z(I-1)
DELC(I) = (C(I) - C(I-1))/DELZ(I).
DELC(I) = (C(I) - C(I-1))/DELZ(I).
LANGUAGE - FORTPAN EXTENDED VERSION 4 (R.M. CDC 60305601)
LANGUAGE - FORTPAN EXTENDED VERSION 4 (R.M. CDC 60305601)
AUTHDRS - W.A.KINNEY AND A.O.PIERCE, GEORGIA TECH.,
AUTHDRS - W.A.KINNEY AND A.O.PIERCE, GEORGIA TECH.,
JANUARY, 1975
JANUARY, 1975
FDUIPMENT - GOC CYSEP 74, N.O.S. 1.1 OPERATING SYSTEM
FDUIPMENT - GOC CYSEP 74, N.O.S. 1.1 OPERATING SYSTEM
COMMON STORAGE USED
GOMYON VP,I1,NCS,ZI(100),CI(100),ASOL(100)
VARIASLE TYPE DIMENSIONS INOUT/OUTPUT
NCS NO I N I N
ZI R
ASOL Q 100 0
----INPUTS----
NCS =NUMBED OF LATTICE POINTS PROVIDED FOR THE GUBIG
SPLINES
ZI =HEIGHT VALUES PROVIDED FOR THE LATTICE POINTS
CI =SJUND SPEED VALUES POJVIDEO FOR THE LATTIGE POINTS
----OUTPUTS--.-
ASOL =COEFFICIENTS CALCULATED FOR THE CUBIC SPLINES. THE
ASOL(II ARE STOREJ IN COMMON WHEN DASOL RETURNS.
----PROGRAM FOLLOWS BELOW----
COMMCN VO,I1,NCS,ZI(100),CI(1CO),ASOL(100)
INITIAL VALUES ARE PROVIDED FOD THE WORKING VARIABLES. THE
RJUNDARY CONOITIONS FOR THE ASQLIII ARE TAKEN IO BE
ASOL(1)=ASOL(NCS) = 0.0.
N=1
DELZ = 1.0
OELC=0.0
DASOL
DASOL
OASOL
DASOL
DASOL
DASOL
DASOL
DASOL
DASOL
DASOL
OASOL
OASOL
OASOL
OASOL
DASOL
OASOL
DASOL
OASOL
DASOL
DASOL
DASOL
DASOL
DASOL
DASOL
OASOL
DASOL
DASOL
DASOL
DASOL
DASOL
DASOL
DASOL
OASOL
OASOL
DASOL
DASOL
DASOL
DASOL
DASOL
OASOL
DASOL
OASOL
OASOL
BASOL
OASOL
DASOL
DASOL
OASOL
DASOL
DASOL
DASOL

```
```

 AKM2 =0.0 DASOL
 ALM2 = 0.0 DASOL
 AKM1 = ..0 DASOL
 ALM1=1.0 DASOL
 NSTP = NCS - 1 DASOL
 DASOL
 C CALCULATE THE DIFFERENCE IN HEIGHT VALUES AND SOUND SDEED
C YALUES PROVIGOJ FOR THE LATTICE POINTS.
1) DELZP = ZI(N+1) - ZI(N)
OELCO = CI (N+1) - CI(N)

- ASOL (2I CAN BE CALCULATED GIVEN THE BOUNDARY CONDITIONS ON
C THE ASOLII.
ALPHA = DELZ
GAMYA = DELZP
BETA = 2.?*(ALPHA + GAMMYA)
DEE = (DELCP/DELZP) - (DELC/DELZ)
IF(N .ED. 1) GO TO 30
AK = (DEE - ALPHA*AKM2 - BETA*AKM1)/GAMMA DASOL
AL = 1 - ALOHA*ALM2 - BETA*ALM1I/GAMMA DASOL
IF(N .E2. NSTP) GO TO 1CO DASOL
AKY2 = AKM1
ALM2 = ALM1
AKM1 = AK
ALM1 = AL
3uN=N+1
DELZ = JELZP
DELC = DELCP
GO TO 10
100 ASOL(1)=0.0
ASOL(2) = -AK/AL
DELZ = 1.0
DELG = 0.0
N=1
113 DELZP = ZI(N+1) - ZI(N)
DELCP = CI(N+1) - CI(N)
ALPHA = DELZ
GAMMA = DELZP
BETA = 2.0*(ALPYA + GAMMA)
OEE = (JELCP/DELZO) - (DELG/OFLZZ)
IF(N .E2. 1) GO IO 130
CALCULATE THE ASOL(M) FOR 2 < M < NCS.
M = N + 1
ASOL(M) = (DEE - ALOHA*ASOLIN-1) - BETA*ASOL(N))/GAMMA
IF(N.EQ. NSTP) GO TO 200
130N=N+1
DELZ = JELZP
DELG = DELCP
GOTO 110
200 RETURN
ENO
FUNCTION CSP(Z)
C CSP (FUNCTION)
----ABSTRACT----
TITLE - CSP
THIS FUNCTION ROUTINE GALCULATES INTERMEDIATE VALUES
OF THE SOUND-SPEED PROFILE ACCORDING TO THE EQUATION

```

```

 CSP
 CSP
 CSP
 CSP
 CSP
 GSP
 CSP
 CSP
CSP
CSP
CSP
CSP

```

```

 GSP TFRM1 + TERM2 CSP
 \triangleETURN GSP
 50 CSP = CI(1)
QETURN
60 CSP = CI(NCS)
PETURN
ENO
CSP
CSP
CSP

```


```

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
PLACE THE PHASE VELOCITY INPUT IN COMMON.
VOT = VO
CALL SUBROUTIVE TNPNT TO CALCULATE*THE TURNING POINTS FOR THE
PHASE VELOCITY WHIR.H IS INPUT.
CALL TNONT(VP,ZAL,ZZU,NSCAN,NRTS,ZLOW,ZUP)
GALL SURROUTINE SHIFT TO MOVE THESE TURNING POINT SO AS TO
AVGID SINGILARITIES UPON INTEGRATION OF THE FUNCTIONS FTRM ANO
FTPMUL.
CAL! SHIFY(ZLOW,ZUP)
CALCULATE A HEIGHT VALUE THAT IS SLIGHTLY BELJW THE UPPER
TURNING POINT ZUP.
ZUI = ZUP - 0.D1*(ZUP - ZLOW)
CALCULATE A HEIGHT VALUE THAT IS SLIGHTLY AROVE THE LONER
TURNING POINT ZLOW.
ZLI = ZLOW + 0.O1*(ZUP - ZLOW)
INTEGPATE THE FUNGTION FTRM EETWESN THESE TWO YALUES.
TQMM = RAINT(FTRM,ZLI,ZUI)
IF THE RAY IN QUESTION PPOPAGATSS INITIALLY UPWAPD, INTEGRATE
FTPM FROM ZSC IO TUI. OTHERWISE, GO TO 10 AND INTEGRATE FTRM
FPOM ZLI TO ZSC.
IF (IT .LT. O) GO TO 10
TR'AI = RAINT(FTRM,ZSC,ZUI)
GO TO 15
10 TPMI = RAINT(FIRM,ZLI,ZSC)
C IF IHE RAY IN QUESTION DPOPAGATES TERMINALLY UPWARD, INTEGRATE
C FTRM FQOM ZLI TO ZC. OTHERWISE, GO TO 2O AND INTEGRATE FIRM
C FRCM ZC TO ZUI.
15 IF (JT.LT. 0) GO TO 20
TRMF = RAINT(FTRM,ZLI,ZC)

```
cosove

\section*{cosove}
cosovp

\section*{cosove}
cosoyp

\section*{cosove}

CDSDVP
cosove
cosDup
cosove
cosove
cosove
cosove
COSOVP
cosove
cosove
cosove
cosoup
cDSDVP
cosDyp
cosove
cosive
cosove
cosove
cDSOVP
cosove
cosove
cosove
cosove
cosove
cosove
cosove
cDSDVP
cosDup
cosove
cosove
cosove
cosove
cosove
cosove
cosove
cosove
cosove
cesove
cosove
cosove
cosove
cosive
cDSDVP
cosove
cosive
cosoup
cosove
CDSDVP
cosove
cosove
cosove
cosdyp
cosove
cosove
cosove
CDSDVP
CDSDVP
cosDvp

\begin{tabular}{|c|c|c|}
\hline C & ----PROGRAM FOLLOWS BELOW--- & FTRM \\
\hline C. & & FIRM \\
\hline C & & FTRM \\
\hline & COMMON VP,K & FTRM \\
\hline C & STUARE THE PHASE VELORITY VALUE. & FTRI \\
\hline & \(V P S 2=V P * * 2\) & FTRM \\
\hline C & SQUADE THF SOUND SDEED. & FIRM \\
\hline & CSPSO \(=\operatorname{CSP}(7) * * 2\) & FTRM \\
\hline C & IF THE PHASE VELDCIIY SQARED IS GREATER THAN OR EQUAL TO THE & FIRM \\
\hline C & SOUND SPEED SQUARED, THEN WE GAN GO TO 20 ANO CALCULATE & FTRM \\
\hline C & THE DEWOYI:ATIR OF FIPMIZ). OTHEPWISE, WE SET THE DENOMINATOR & FIRM \\
\hline C & ERUAL TO 1.E-50, ANO THEN GO TO 20 TO GALCULATE FTRM(Z). & FrRM \\
\hline & IF (VOS) . GE. CSFSG) GO 1020 & FTRM \\
\hline & \(k=1\) & FTRM \\
\hline & 10 TRM1 \(=1 \cdot E-50\) & FIRM \\
\hline & GO 1030 & FTRM \\
\hline & \(20 \mathrm{~K}=0\) & FTRM \\
\hline C & IF WE YAVE ARRIVED HERE, WE CALCULATE THE DFNOMINATOR FOR & FTRM \\
\hline C & FTPM(Z). IF THE DENOMINATOR IS LESS THAN 1.E-50, THEN WE GO & FTRM \\
\hline C & TO 1? ANO SET IT EDUAL TO 1.E-50. & FTRM \\
\hline & TPM1 \(=(S Q R T(V P S Q-\operatorname{CSPSQ}))^{*} * 3\) & FTRM \\
\hline & IF (TR11 . LT, 1.E-50) G 1010 & FTRM \\
\hline C &  & FTRM \\
\hline & TRM \(=\operatorname{CSD}(Z) * V D\) & FTRM \\
\hline C & CALCULATE FTRM(Z). & FTRM \\
\hline & 30 FTQM \(=-\) TRY2/TRM1 & FTRM \\
\hline & RETURN & FTRM \\
\hline & END & FTRM \\
\hline & FUll=TIOサ DCOZS(Z) & DCDZS \\
\hline C & & OCDZS \\
\hline C & DCOZS (FUNCTION) & DCDZS \\
\hline c & & DCDZS \\
\hline C & & DCOZS \\
\hline C & ---ABSTRACT---- & OCDZS \\
\hline C & - & OCDZS \\
\hline C & TITLE - DGOZS & OCOZS \\
\hline C & THE FUNCTION DCOZS \((Z)\) CALCULATES THE SECOND DERIVATIVE & DCOZS \\
\hline C & OF THE SOUND SPEED WITH RESOECT TO HEIGHT \(Z\) ACCORDING & DCDZS \\
\hline C & TO THE EQUATION & DCDZS \\
\hline C & & OCDZS \\
\hline C & DCOZS(Z) \(=6 *(W B A R * A S O L(I-1)+W * A S O L(I))\) & DCDZS \\
\hline C & & DCOZS \\
\hline C & & DCOZS \\
\hline C & LANSUAGE - FORTRAN EXTENDED VERSION 4 (P.M. CDC 60305601 ) & DCOZS \\
\hline C & AUTHORS - W.A.KINNEY AND A.D.PIERCE, GEORGIA IECH., & DCOZS \\
\hline C & JANUARY, 1976 & DCBZS \\
\hline C & EQUIPMENT - CDE CYRER \(74 . N\) N.O.S. 1.1 OPEPATING SYSTEM & DCOZS \\
\hline C & & DCDZS \\
\hline C & & DCOZS \\
\hline C & ----USAGE---- & DCOZS \\
\hline C & & DCOZS \\
\hline C & THE HEIGHT \(Z\) IS THE INDEPENDENT VARIA SLE INPUT. AND THE & DCDZS \\
\hline C & SSCOND OERIVATIVE DCDZS(Z) IS THE DEPENDENT VARIABLE & DCDZS \\
\hline C & OUTPUT. OTHER DEQUIRED QUANTITIES ARE MADE AVAILABLE & DCDZS \\
\hline C & THPOUGH COYMON. THE INPUT VAPIARLES FOR THIS FUNCTION & DCOZS \\
\hline C & ARE THE SAME AS FOR FUNCTION GSP (Z). FOR INFORMATION ON & DCOZS \\
\hline C & THESE VARIABLES, THE USER IS DIRECTED TO THAT FUNCIION ROUTINE. & DCOZS \\
\hline C & & DCOZS \\
\hline C & & DCOZS \\
\hline C & ----OUTPUT---* & DCDZS \\
\hline C & & DCDZS \\
\hline
\end{tabular}


```

 ----USAGE----
 FTRMUL
THE HEIGHT Z IS THF INOEPENDFNT VARIABLE INPUT. THE PHASE FTRMUL
VELJCITY VO IS PASSEO THRЭUGH COMMON, THE SOUND SPEEO FTRMUL
IS OBTAI'IED FROM FUNCTION CSP(Z), AND THE SOUND SPEED FTRMUL
DERIVATIVG IS OBYAINED FROM FUNCTION OCOZ(Z).
----PROGRAM FOLLOWS 3ELOW-...
CCMMON \P,K
SDUADE THE SOUND SPEED, THE PHASE VELOCITY, ANO THE DFRIVATIVE
OF THE SOUNO SOEED.
CSPSQ = \operatorname{SPP}(Z)**2
VPSO = VP**2
OCOZSQ = DCOZ (Z)**2
IF THE SQHARE OF THE PHASE VFLOCITY IS GREATER THAN THE SQUARE
OF THE SJUND SPEED, GO TO 5C AND C,NLCULATE THE DENOMINATOR OF
FTPMUL(Z). OTHERWISE, SET THE DENOMINATOR EQUAL IO 1.E-50,
ANO THEN GO TOGO AND CALCULATE FTRMUL(Z).
IF(VPSQ .GE. CSPSQ) GO TO 50
K = 1
4% ON = 1.E-50
GO IO 5J
5? K=0
C IF WE HAVE ARRIVEO HEPE, WE CALCULATE THE DFNOMINATOR OF
C FTRMUL(Z). IF THE DENOMINATCR IS LESS THAN 1.E-50, THEN WE GO
C IO 40 ANO SET IT EOUAL TO 1.E-50.
DN = DCDZSQ*(SOPT (VOSQ - CSPSQ))
IF(O'1.LT, 1.E-50) GO TO 40
C CALCULATE FTRMUL(Z).
60 FTOYUL = -2.*(VP*DCDZS(Z))/DN
RETURN
ENJ

```
    FTRMUL
    FUNETIOA YRNPT (Z) TRNPT
    THO TRUNTION: TPNPT
TRNPT
TRNPI
TRNPT
TRNPT
TRNPT
TRNPI
TRNPT
TRNP T
TRNPT
TRNPT
TRNPT
TRNPT
TRNPT
TRNPT
TRNPT
LANGUAGE - FORTRAN EXTENDED VERSION 4 (R.M. GDC 50305601 (RNPT
AUTHORS - W.A.KINNEY AND A.D.PIERZE, GEORGIA TECH., TRNPT
TRNPT
TRNPT
TRNPT
TRNPT
TRNPT
TRNPT
TRNPT



```

C DF THE USAGE OF RUAD IS AVAILABLE STARTING ON PAGE 5-272 OF RAINT
C THE COC REFERENCE MANUAL GU327500A. MOQE INFOPMATION MAY BE RAINT
C OGIAINED GY WRITING CONTPOL DATA COPPORATION, DOCUMENTATION RAINT
C DEPARTMENT, 215 MCFFETT PARK DRIVE, SUNNYVALE, CALIFORNIA RAINT

```

```

C
c -..-PROGRAM FOLLOWS BELOW——..
C
C
EXTERNAL DSOTR
C CALCULATE A POINT HALF WAY RETWEEN ZLOW AND ZUP. RAINI
ZAVE = (ZUP + ZLOH)/2.0
C SET THE OARAMETER O FOR QUAD. RAINT
0=1.E-6
C INTSGRATE FFOM ZLOW TO ZAVE. SHOULD ZLOW BE A SINGUARITY,
C IT IS 3EST TO INTEGRATE AHAY FROM IT.
CALL QUAD(ZLOW,ZAVE,D,?EL,1,ANS1,DSDZR,NERR,O)
C INTEGRATE FROM ZUP TO ZAVE. SHOULO ZUO BE A SINGULARITY, RAINT
C IT IS BEST TO INTEGRATE ANAY FQOM, IT AS WELL.
CALL QUAD(ZUP,ZAVE,D,REL,1, ANSZ,DSOZR,NERR,O)
C COMEINE THE TWO INTEGRALS.
RAINT = (ANS1 - ANSZ)
RETUPN
END
RAINT
RAINT
----PROGRAM FOLLOWS BELOW--.- RAINT
RAINT
RAINT
RAINT
RAINT
RAINT
RAINT
CALL MUAO(ZLOW,ZAVE,O,SL,NANSI,DSDZR,NERR,O) RAINT
RAINT
RAINT
RAINT
RAINT
RAINT
RAINT
RAINT
RAINT

```

```

 5 AXI = AES(XI)
 IF (I .EQ. 1) GC TO 1S
 NM1=I-1
 OO 10 J = 1,NM1
 IF (ABS(XI - X(J)) <. EFS2) XI = XI + ETA
 10
 AFXI=}=\triangleES(FXI
 IF (AFXI .LE. EFS) GO TO 25
 CI =.COD1
 IF (AXI .GE. P1) DI = POO1*AXI
 HI=AMIN1(AFXI,DI)
 FXIPHI = F(XI +HI)
 DER = (FXIFH] - FXI)/HI
 IF ([ER .EQ. ZERO) GO TO 2O
 XIPI=FXI/DEF
 IF (LEGVAR(XIPI) .NE. U) GO TO 2C
 XIFI=XI-XIPI
 ERR = ABS(XIFI - XII
 XI = XIPI
 C
C
C
F(AXI_ TEST FOR CONVERGENCE
ERR1=ERR/AXI
IF (LEGVAF(EFR1) .NE. O) ERF1 = ERR
IF(EFR1.LE.CFIT1) GO IC 25
IC = IC +1
IF IIC .LE. ITMAX) GC TO 5
X(I)=111111.
IR=IR+1
IER=33
GO TC 30
C
RCCT NOT FOUND, DERIVATIVE = ©.
XII)=222222.
IR=IF+1
IER=34
GO TC 3!
25 X(I) = XI
3C CONTINUE
ITHAX = IC
IF(IER.EQ.J) GO TO 90J5
IF(IR.LE.1) GO TO 9CDO
IEF=35
gOCO CONTINUE
CALL UEFTST(IER,GHZREAL2)
9005 RETURN
EN[

```

2REL0560
2RELO570
2RELO580
2FELC5GO
ZRELOGOO
2FELC610
2FELC620
2RELO63J
2FELC640
2FELC65J
2RELCGEO
2RELOS7J
2REL0680
2RELCGSU
2RELC7OU
2RELOT10
2FELC720
ZRELU730
2RELG74J
ZRELO750
2RELO7EO
2FELC770
2FELU780
2KELU7CO
2FELC8OO
2FELC810
2RELCB20
2FELC830
ZFELC840
2FELO850
2FELC3EO
2FELCB70
2FELU880
2FELU゙890
2FELC900
2RELO910
ZRELO920
2KELC930
2FELO940
2FELC950
ZRELG960
2RELC970
2FELC980
ZFELC990
2KEL1003
2REL1010
\(90<5\) RETURN
2FEL1620
ZREL1030

\begin{tabular}{|c|c|c|}
\hline & SUBROUTINE GLAC (A, B, D, KEL, \(\mathrm{N}, \mathrm{ANS}\), FLU, NERR, IMAP) & QUAD \\
\hline C & \(A=\) LChER LIMIT CF INTEGRATICN (INPUT) & QUAD \\
\hline c & B = UFFER LIMIT CF INTEGRATICN (INPUT) & QUAD \\
\hline C & D = REGUIRED RELATIVE TOLERANCE (INPUT) & quado \\
\hline C & REL = EStIrate of resulting relative tclerance soutput) & QUAD \\
\hline c & \(N=\) SIAGULARITY FLAG. SET N=0 WHEN NO SINGULARITY ALCNG PATH. & QUAD \\
\hline C & SET N=1 WHEN ONE OR MORE SINGULARITIES LiE ON PATH & QUAD \\
\hline C & ANS = COMFLTED VALLE CF INTEGRAL (CUTPUT) & QuAd \\
\hline C & FUN = AAME CF FUNCTION GENERATING THE INTEGRAND & QUAD \\
\hline C & NERR = ERFCF FLAG (OUTPUT) & QUAD \\
\hline C & NEFF \(=-1\) STEP SIZE CAN NCT BE MACE SMALL ENOUGH & QUAD \\
\hline C & NEFR \(=-2\) GUAD INCCMPLETE IN LIM 2001 TRIES & QUAD \\
\hline C & NEFR \(=-3\) C HAS EEEN SET TOO SMALL & Quad \\
\hline C & nekf eGt. 0 --SUCCESS--GIVES numeer of tries requifed & QUAD \\
\hline C & IMAP \(=\) PROGRESS MAP FLAG. SEI IMAP \(=1\) hHEN MAP IS DESIRED. & QUAD \\
\hline C & SET IMAF \(=0\) WHEN NOT DESIRED & QUAD \\
\hline & CIMENSION h4(2), W8(4),h12(6), Z4(2),Z8(4), Z12(6) & quad \\
\hline & DOUBLE PRECISICN YOBLE & QUAD \\
\hline & CATA \(\mathrm{H} 4(1), \mathrm{h} 4(2)\), (W8(I), \(\mathrm{I}=1,4\) ), (W12(I), \(\mathrm{I}=1,6) / .652145154862546\), & QUAD \\
\hline & \(1.347854845137454, .362683783378362, .313706645877887, .22238103445337\) & Quad \\
\hline & 15, .1C1228536290376,.249147645813403,.233492536538355, & QUAD \\
\hline & 1.20316i4267230 66,. 160 \(78328543346, .105539325995318\), & QUAD \\
\hline & 1.04717533E3A6512) & QUAD \\
\hline c & lim can be changed if either more or less tries are desireo & QUAD \\
\hline & LIM \(=260\) & QUAD \\
\hline & \(\mathrm{C}=0\) & QUAD \\
\hline C & IS C SET ICO SMALL & QUAD \\
\hline & IF (C.LT. 1.E-13) EO TC 290 & QuAd \\
\hline 10 & IF (IMAP.EG. 1) PRINT 1. & QUAD \\
\hline &  & QUAD \\
\hline & 1 11X,19HREL.ERROR IN 8-PPT. , 11X,4H1000) & Quad \\
\hline & HCP \(=0.0\) & QUAD \\
\hline & \(\mathrm{K}=0\) & QUAD \\
\hline & NCNSEK \(=0\) & QUAD \\
\hline & NCLT \(=1\) & QUAD \\
\hline & \(A N S=C\). & QUAD \\
\hline & \(F 2=0\). & QUAD \\
\hline & \(N E R R=0\) & QUAD \\
\hline & \(r=A\) & QUAS \\
\hline & YOBLE = DBLE(Y) & QUAD \\
\hline & \(F=C / 200\). & QUAD \\
\hline & \(\varepsilon=0\). & QUAD \\
\hline C**** & ***************************************************************** & quad \\
\hline C & FIRST IRY ON FULL SPAN AND ALSO LAST STEP GO Through here & QUAD \\
\hline 20 & \(H=(B-r) / 2\). & QUAD \\
\hline & SGN=SIGN(1., \(h\) ) & QUAD \\
\hline & \(H=A E S(H)\) & QUAD \\
\hline & LAST \(=1\) & QUAD \\
\hline C & all intermegiate steps begin here & QUAD \\
\hline 30 & \(x=r+H^{* S G N}\) & QUAD \\
\hline C & IS \(h\) too small to be sensel relative to \(x\) & QUAD \\
\hline & IF ( \(\mathrm{X}+\). \(1 * H . E G . X)\) GO IO 27 C & QUAD \\
\hline & IF (K.GT.LIM) GC to 280 & QUAD \\
\hline C**** & ***************************************************************** & QUAD \\
\hline C & 4 FCINT \(A E S C I S S A E\) & QUAD \\
\hline & \(24(1)=.33\) 9981043584856* H & QUAD \\
\hline & Z4(2) \(=.86113\) ¢311594053*H & QUAD \\
\hline
\end{tabular}


```

C*** QUAO
C
C ERROR EXITS OLAD
27 NERR=-1 QUAD
WRITE(E, 3) H,Y QUAD
3 FORMAT 5 3 3 H GLAD FAILURE, STEF SIZE CANNOT EE MADE SMALL ENCUGH./ QUAD
156H IF YOU \ISH TO CONTINUE MCVE SINGULARITY TC THE ORIGIN./ QUAQ
211H STEP SIZE=,E24.16, 1UX,15HLEFT ENO PCINT=,E24.16) QUAD
GO IO 300
UUAD
280 NERR=-2
WFITE(E, 4) LIM,Y,H
GUAD
4 FORMAT IIGH1GLAD INCONPLETE IN I 4, 7H TRIES.,17H LEFT ENO POINT= QUAD
1E24.1E,10X,11H STEF SI2E=,E24.16) QUAD
GO TO 300 QUAD
290 NERR=-3
QUAD
PRINT 5 QUAO
5 FORMAT (68H REQUESTED TOLERANCE TOO SMALL, ROUTINE WILL FROCEEO US QUAD
IING 10.0E-14 , QUAD
C=10.CE-14 UUAD
GO TC 10 QUAD
C
Q QUAD
C HERE WE RETUFN TO THE MAIN PFCGRAM WITH OR WITHOUT AN ANSWER QUAD
300 REL=2.*E/(AES(ANS) +1.E-290) QUAD
IF(NERF.GE.O.) NERR=K QUAD
IF(B-A.LT.O.) ANS=-ANS QUAD
RETURN QUAD
END QUAO

```

\section*{REFERENCES}
1. D. G. Harkrider, "Theoretical and Observed AcousticGravity Waves from Explosive Sources in the Atmosphere," J. Geophys. Res. 69, 5295-5321 (1964).
2. A. D. Pierce and J. W. Posey, "Theory of the Excitation and Propagation of Lamb's Atmospheric Edge Mode from Nuclear Explosions," Geophys. J. Roy. Astron. Soc. 26, 341-368 (1971).
3. J. E. Thomas, A. D. Pierce, E. A. F1inn, and L. B. Craine, "Bibliography on Infrasonic Waves," Geophys. J. R. Astr. Soc. 26, 399-426 (1971).
4. A. D. Pierce, W. A. Kinney, and C. Y. Kapper, "Atmosphere Acoustic Gravity Modes at Frequencies near and below Low Frequency Cutoff Imposed by Upper Boundary Conditions," Report No. AFCRL-TR-75-0639, Air Force Cambridge Research Laboratories, Hanscom AFB, Mass. 01731 (1 March 1976).
5. A. D. Pierce and W. A. Kinney, "Computational Techniques for the Study of Infrasound Propagation in the Atmosphere," Report No. AFGL-TR-76-0056, Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731 (13 March 1976).
6. A. D. Pierce and W. A. Kinney, "Geometrical Acoustics Techniques in Far Field Infrasonic Waveform Syntheses," Report No. AFGL-TR-76-0055, Air Force Geophysics Laboratory, Hanscom AFB, Mass. 01731 (7 March 1976).
7. L. P. Solomon, et al., "Final Report of the Acoustic Sub-Group of the Technology Group," [P1anning Systems, Inc., 7900 Westpark Drive, Suite 507, McLean, Virginia 22101], Section III, PartE.
8. C. B. Mo1er and L. P. Soloman, "Use of Splines and Numerical Integration in Geometric Acoustics," J. Acoust. Soc. Amer., 48, 739-744, 1970.
9. I. Tolstoy, "Phase Changes and Pulse Deformations in Acoustics," J. Acoust. Soc. Am. 44, 675-683 (1968).
10. A. D. Pierce, J. W. Posey, and E. F. I1iff, "Variation of Nuclear Explosion generated Acoustic-Gravity Waveforms with Burst Height and with Energy Yield," J. Geophys. Res. 76, 5025-5042 (1971).
11. E. T. Copson, An Introduction to the Theory of Functions of a Complex Vāriable (Clarendon Press, Oxford, 1935) p. 137 .
12. A. D. Pierce, "The Multilayer Approximation for Infrasonic Wave Propagation in a Temperature and Wind-Stratified Atmosphere," J. Comp. Phys. 1, 343-366 (1967).
13. F. Press and D. Harkrider, "Propagation of AcousticGravity Waves in the Atmosphere," J. Geophys. Res. 67, 3889-3908 (1962).
14. A. D. Pierce, "Propagation of Acoustic-Gravity Waves in a Temperature and Wind-Stratified Atmosphere," J. Acoust. Soc. Amer. 37, 218-227 (1965).
15. J. W. Posey, "Application of Lamb Edge Mode Theory in the Analysis of Explosively Generated Infrasound," Ph.D. Thesis, Dept. of Mech. Engrg., Mass. Inst. of Tech. (August, 1971).
16. N. A. Haske11, "Asymptotic Approximation for the Normal Modes in Sound Channel Wave Propagation," J. Appl. Phys. 22, 157-168 (1951).
17. F. Carlini, Ricerche sulla convergenza de11a serie che serva alla soluzione del problema di Keplero, Milan (1917).
18. G. Green, "On the Motion of Waves in a Variable Canal of Small Depth and Width," Trans. Camb. Phil. Soc. 6, 457-462 (1837).
19. C. Eckart, "Internal Waves in the Ocean," Phys. of Fluids 4, 791-799 (1961).
20. P. M. Morse and H. Feshbach, "Perturbation Methods for Scattering and Diffraction," Sec. 9.3 in Methods of Theoretical Physics, Vol. II (McGraw-Hill Book Co., New York, 1953) pp. 1092-1106.
21. A. D. Pierce, "Guided Infrasonic Modes in a Temperature and Wind-Stratified Atmosphere," J. Acoust. Soc. Amer. 41, 597-611 (1967).
22. A. D. Pierce, "Geometric Acoustics' Theory of Waves from a Point Source in a Temperature--and Wind--Stratified Atmosphere," Report AFCRL-66-454, Air Force Cambridge Research Laboratories, Bedford, Mass. (August, 1966).
23. D. Blokhintzer, "The Propagation of Sound in an Inhomogeneous and Moving Medium," I., J. Acoust. Soc. Amer. 18, 322-328 (1946), II., J. Acoust. Soc. Amer. 18, 329-334 (1946).
24. A. Sommerfeld and J. Runge, Ann. der. Physik 35, 277298 (1911).
25. H. Poincare, Theorie Analytigue de 1a Lumiere (Georges Carre, Paris, 1889).
26. I. Tolstoy, "Phase Changes and Pulse Deformation in Acoustics," J. Acoust. Soc. Amer. 44, 675-683 (1968).
27. P. W. Smith, "The Average Impulse Responses of a ShallowWater Channe1," J. Acoust. Soc. Amer., 50, 332-336, 1971.
28. P. W. Smith, "Averaged Sound Transmission in RangeDependent Channels," J. Acoust. Soc. Amer., 55, 11971204, 1974.

\section*{VITA}

Wayne Alan Kinney was born on July 27, 1949 in Seatt1e, Washington to Dr. and Mrs. G1enn C. Kinney, now of Harvard, Massachusetts.

Mr. Kinney attended the public schools in Lexington, Massachusetts and graduated from Lexington High School in June, 1967. In May, 1971, he graduated from Boston University with a double Bachelor of Arts Degree in Mathematics and Physics, and was elected to the Epsilon Chapter of Phi Beta Kappa. In February, 1973, he received a Master of Science in Mechanical Engineering from the Massachusetts Institute of Technology. In September of the same year, Mr. Kinney entered the doctoral program in the School of Mechanical Engineering at the Georgia Institute of Technology.```

