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CHAPTER 1 

INTRODUCTION OF COGNITIVE DIAGNOSTIC ASSESSMENT (CDA) 

1.1 Definition and importance of CDA 

The main purpose of the traditional psychometric theories is to assign numbers 

systematically to psychological variables. In order to accurately measure unobservable 

psychological variables, psychometricians have developed two major measurement 

theories. One is classical test theory (CTT) and the other one is item response theory 

(IRT). IRT is a current mainstream in the field of psychometrics. In IRT, the relationship 

between an examinee’ responses on test items and a latent variable is specified by a 

mathematical function, and the test result for the examinee produces only a single score 

as a measure of an underlying latent variable. These test results are useful for ranking and 

comparing examinees, but do not provide valuable information about the performance on 

specific domains within the latent variable. 

Psychometricians also have developed many statistical techniques (e.g., factor 

analysis, structural equation modeling and cluster analysis). These methods allow various 

psychometric models to be fitted to different data sets. However, they tend to focus on 

“metrics” rather than “psychology” and have a limitation to understand fundamental 

psychological nature of the knowledge and skills measured in a test (Leighton & Gierl, 

2007a). Anastasi (1967) argued that “those psychologists specializing in psychometircs 

have been devoting more and more of their efforts to refining techniques of test 

construction, while losing sight of the behavior they set out to measure” (p. 297).  

Mislevy (1993) also described such situation as “the application of the 20th century 

statistics to the 19th century psychology” (p19). As a solution of this problem, Snow and 
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Lohman (1989) suggested to integrate cognitive psychology into psychometrics.  

Embretson (1983) also emphasized the application of cognitive psychology to 

measurement theory and introduced contemporary notions of construct validation. 

Awareness of the limitations of IRT and other psychometric methods promoted a new 

methodology that can provide specific diagnostic information to understand examinee’s 

cognitive processes.  

In addition to the need of change in the field of psychometrics, current mission in 

education in the United States known as the “No Child Left Behind Act of 2001 (NCLB)” 

increased the importance of diagnostic tests to be informative about individual students’ 

cognitive strengths and weaknesses. Many states have struggled with developing large-

scale assessments to evaluate the progress of schools toward the achievement of 

educational standards. In order to accommodate such need of stakeholders, 

psychometricians have developed a new theoretical framework, cognitive diagnostic 

assessment (CDA), in collaboration with cognitive psychologists. 

In general, assessment refers to the process of documenting, usually in 

measurable terms, knowledge, skills, attitudes and beliefs (Mislevy, Steinberg, & 

Almond, 2003). In educational perspective, assessments should promote students’ 

learning and the service of instruction (Griffin and Nix, 1991; Snow, 1989). CDA is a 

theoretical framework which purposes on diagnosis of examinees’ skill profiles. CDA is 

designed to measure specific knowledge structures and cognitive processing skills in a 

given domain. Researchers in educational measurement and cognitive psychology have 

been dedicated to develop tests to provide useful information regarding students’ 

cognitive strengths and weaknesses in specific knowledge structure and processing skills. 
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Students can improve the skills that they do not possess by understanding the diagnostic 

feedback. This cognitive diagnostic feedback also helps instructors in their teaching 

processes. Therefore, CDA is an innovative methodology that can be an appropriate 

theoretical foundation for standards-based assessments. The CDA approach is based on 

the cognitive view of learning. In the cognitive view, knowledge is acquired through a 

systematic processing of information, and learners understand concepts through 

reasoning and. They are supposed to use cognitive and meta-cognitive strategies for 

problem solving and transfer new knowledge to other tasks. This view of learning has 

applied to various assessment situations such as mathematical tests and language tests.  

 

1.2 Principled design of diagnostic assessments  

Three important frameworks for principled design of diagnostic assessments will be 

discussed in the following section.  

1.2.1 The cognitive design system (CDS) approach  

CDA requires the test based upon a substantive theory of the construct that 

describes the cognitive processes. Item or task characteristics that are intended to elicit 

the cognitive processes should be clearly specified in a test. Embretson (1994; 1998) 

suggested the CDS approach to incorporate cognitive theory into the development of 

ability tests. Two different frameworks are included in the CDS approach: a conceptual 

and a procedural framework (Embretson, 1995). First, the conceptual framework was 

motivated to expand the traditional conceptualization of construct validity represented by 

Cronbach and Meehl's (1955) and Bechtoldt's (1959) view. Embretson’s 

conceptualization of construct validity includes two distinguished issues, namely 
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construct representation and nomothetic span (Embretson, 1983). 

 “Construct representation refers to the relative dependence of task responses on the 

processes, strategies, and knowledge stores that are involved in performance” (Embretson, 

1983, p. 180).That is, this aspect of construct validity is related to the methods of 

cognitive psychology to explain cognitive processes that are involved in solving 

psychometric items (Embretson, 1985).  In contrast, nomothetic span refers to “the 

strength and nature of the relationship of the construct that is measured by the assessment 

to other theoretically relevant constructs.” (Rupp, Henson, & Templin, 2010) This 

relationship is investigated by the correlations of a test score with other measures. 

      Next, procedural framework is to concern item parameter estimation as well as item 

selection and development in relation to cognitive theories (Embretson, 1994). The 

principled assessment design processes in the CDS suggested by Embretson (1998) are 

roughly illustrated in Table 1.  

 

Table 1 Processes in Cognitive Diagnostic System 

Specify general goals of measurement 
Construct representation (meaning) 
Nomothetic span (significant) 
 

Identify design features in task domain 
Task-general features (mode, format, conditions) 
Task-specific features 
 

Develop a cognitive model 
Review theories 
Select or develop model for psychometric domain 
Revise model 
Test model 
 

Evaluate cognitive model for psychometric potential 
Evaluate cognitive model plausibility on current test 
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Continued 

Evaluate impact of complexity factors on psychometric properties 
Anticipate properties of new test 
 

Specify item distributions on cognitive complexity 
Distribution of item complexity parameters 
Distribution of item features 
 

Generate items to fit specifications 
Artificial intelligence? 
 

Evaluate cognitive and psychometric properties for revised test domain 
Estimate component latent trait model parameters 
Evaluate plausibility of cognitive model 
Evaluate impact of complexity factors on psychometric properties 
Evaluate plausibility of the psychometric model 
Calibrate final item parameters and ability distributions 
 

Psychometric evaluation 
Measuring processing abilities 
Banks items by cognitive processing demands 
 

Assemble test forms to represent specifications 
Fixed content test 
Adaptive test 
 

Validation: Strong program of hypothesis testing 

 

1.2.2 The evidence centered design (ECD) framework  

Evidence-centered assessment design (ECD) is an approach to constructing 

educational assessments that incorporate evidentiary arguments (Mislevy, Steinberg, & 

Almond, 2003). The tasks in the ECD framework are designed to provide evidence about 

targeted knowledge and skill (Mislevy, Almond, & Lukas, 2004). The design of such 

tasks is achieved by describing the evidentiary arguments that underlies an assessment. 

The terminology introduced by Toulmin (1958) was adapted to represent the structure of 

the evidentiary arguments. Figure 1 shows an example of Toulmin’s (1958) schema. The 
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claim (C) is a proposition that is supported by a data. This is a statement about 

examinee’s proficiency in the ECD framework (Mislevy, et. al., 2003). The data (D) are 

examinee’s behavior. A warrant (W) is expected outcomes of respondents having the 

ability in certain conditions, and it requires backing (B) in the form of theories, research, 

data, or experience (Mislevy, et. al., 2003). Alternative (A) for the observed data (D) 

should qualify the inference, and alternative hypotheses also can be supported or 

weakened by rebuttal (R) data.  

 

 

Figure 1.  An Example of the Assessment Argument Depicted as a Toulmin Diagram 

 

The ECD process consists of 4 steps (Mislevy, et. al., 2003). To begin with, 

‘Domain Analysis’ is to concern substantive information about the domain. For example, 

designing math test includes analysis of theories of mathematical proficiency.  

The next stage of design is ‘domain modeling’ consisting of three paradigms. 

First, proficiency paradigms indicate potential claims about examinees’ abilities or 

competencies. Second, evidence paradigms deal with observable features in examinees’ 
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performances as evidence about these proficiencies. Third, task paradigms are the kinds 

of situations that provide an opportunity for examinees to demonstrate evidence of their 

proficiencies the evidence. 

In the third stage, Conceptual Assessment Framework (CAF) includes five design 

components; the student models, the task models, the evidence models, the assembly 

model, and the presentation model. These CAF models lay out the blueprint for an 

assessment. First, the student model is a statistical characterization of examinees. It 

specifies the variables or aspects of learning that we wish to characterize students 

(Mislevy, et. al., 2003). Since many aspects of knowledge or skills that we want to assess 

are not directly observable, the student model provides a probabilistic model for making 

claims about the underlying traits (Rupp et.al., 2010). Almond and Mislevy (1999) 

pointed out that a student model can be viewed as a fragment of a Bayesian inference 

network, or Bayes net that takes the form of probabilistic distributions for student-model 

variables, and for observable variables conditional on student-model variables.  Second, 

the task model specifies characteristics of tasks that students do in the test. A task model 

provides information about conditions or formats in which what the student says, does, or 

produces. Task-model variables also contain characteristics of stimulus material, 

instructions, help, tools, and so on (Mislevy, et. al., 2003). Third, the evidence model 

specifies the evaluation rules for scoring test tasks (the evaluation component; task 

scoring) and a mechanism used to accumulate data across tasks to update the student 

model variables in examinees’ scoring models (the measurement component; test 

scoring). Fourth, the assembly model describes how the student models, evidence models, 

and task models are linked together to form a particular assessment (Mislevy, et. al., 
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2004). It also describes the strategy used for combining tasks that are selected for 

gathering evidence from students (Mislevy, et. al., 2003). The assembly model concerns 

statistical characteristics of items such as their difficulty and non-statistical 

considerations such as the content of reading passages, timing, sentence complexity, and 

many other task features. The idea of item banks in the assemble model is similar to the 

idea of automatic item generation within the CDS frameworks (Rupp et.al., 2010). Last, 

the presentation model specifies how tasks are presented and interacted with students, 

and what types of format are used (e.g., paper and pencil test vs. computer adaptive test). 

The presentation model also describes how different parts of the assessment (student, 

evidence, and task models) will actually operate within a particular delivery environment. 

As the last stage, operational assessment is a model that deals with people’s 

relation to assessment as something experienced (Mislevy, et. al., 2003). Four-process 

delivery system describes how an operational assessment is functioning (Mislevy, et. al., 

2003). First, presentation indicates something presented, interaction between the 

information and the test-taker, and capturing test-takers’ responses. Second, response 

scoring is to evaluate observations. The third process is summarizing the scores across 

several responses. Last, activity selection is making decision about what might be useful 

to do next (Mislevy, et. al., 2003).  

In conclusion, ECD framework provides a framework for clear articulation of 

what is being measured to establish test validity. Glas (2003) indicated the ECD 

framework is a comprehensive model for the process of educational measurement. He 

also stated that “the ECD model can stimulate a lot of new developmental work in the 

field of psychometrics.” (Glas, 2003) 
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1.2.3 Assessment engineering 
 

Assessment engineering (AE) is to an innovative approach to measurement with 

replicable, scalable solutions for assessment design, item writing, test assembly, and 

psychometrics (Luecht, 2008). In AE framework, traditional test blueprints and related 

specifications were replaced by evidence models and cognitive task models. AE directs 

the test development as well as the analysis, scoring, and reporting of assessment results 

using engineering-based principles. The concept of AE is based on the idea described by 

Drasgow, Luecht, and Bennett (2006): “Our vision of a 21st-century testing program 

capitalizes on modern technology and takes advantage of recent innovations in testing. 

Using an analogy from engineering, we envision a modern testing program as an 

integrated system of systems” (p. 471). 

AE includes the following five processes. The first stage is to define the 

constructs driven from cognitive models of task performance. The cognitive models 

underlying examinees’ task performance is designed to specify the knowledge 

requirements and processing skills (Zhou, 2009). In AE framework, cognitive models 

guide item development, rather than content blueprints. The cognitive models can be 

made by adapting a variety of procedures (e.g., judgmental and logical analyses, 

generalizability studies, and analyses of group differences; Messick, 1989). The verbal 

report method is a broadly used way to generate a cognitive model. In this method, first 

of all, tasks are administered to a group of examinees who represent the intended 

population. Next, they are forced to think aloud when they solve items, and then protocol 

or verbal analysis is conducted with the corresponding verbal data (Leighton, 2004; 

Leighton & Gierl, 2007a). 
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The construct-based validation is not a new concept. Messick stated that “A 

construct-centered approach would begin by asking what complex of knowledge, skills, 

or other attributes should be assessed presumably because they are tied to explicit 

assessed or implicit objectives of instruction or otherwise valued by society. Next, what 

behaviors or performances should reveal those constructs, and what tasks or situations 

should elicit those behaviors?” (Messick, 1994, p. 16) 

Construct mapping is to visually represent a cognitive model (Wilson, 2005). An 

important feature of the construct map is that there is a coherent and substantive 

definition for the content of the construct (Wilson, 2005). Another characteristic of the 

construct map is that the construct is composed of an underlying continuum, and this can 

be manifest by ordering the respondents and/or item responses (Wilson, 2005). Therefore, 

construct maps can be viewed as an ordered performance expectations at various levels 

on a scale (Luecht, 2008). See Figure 2 for details. The construct of interest, X, is 

composed of an ordered set of latent classes  

 

Figure 2. A Generic Construct Map for Construct “X” 
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In the second stage, evidence models as well as cognitive models are developed to 

specify particular proficiency claims. Evidences for the claims should be tangible actions, 

responses, and/or products (Luecht, 2008). Components of an evidence model include 

valid settings or contexts, the plausible range of challenges for the target population, 

relevant actions that could lead to a solution, legitimate auxiliary resources, aids, tools, 

etc. that can be used to solve the problem, concrete exemplar products of successful 

performance (Luecht, 2008). 

 

 

 

Figure 3. A Generic Template of a Task Model 

 

In the third stage, item models and task models should be developed to produce 

replicable assessment tasks. A task model can be viewed as a new way to blueprint. It 
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describes knowledge and skills, descriptions of key features (e.g., objects and their 

properties, variables for difficulty variation) of the task, specifications of task 

representation material and any required condition, and classifications of response actions 

returned for scoring (Zhou, 2009). Zhou (2009) showed a generic template for a task 

model (See Figure 3). The knowledge and skills measured by tasks and any required 

conditions for the objects are provided from these models. Task modeling differ from 

traditional test development approach because it provides theoretical backing for item 

development by regulating features of assessment tasks such as stimulus elements and 

conditions (Zhou, 2009). 

On the other hand, item modeling provides operational foundation for efficient 

and accurate item generation. Explicit item models are intended to control and 

manipulate both the content and difficulty of the items (Zhou, 2009). Items produced by 

each item model are intended to have high psychometric standard consistently.  

An item model serves as an explicit representation of the parts listed in a 

corresponding task model.  An item model consists of the stem, the options, key, and 

oftentimes auxiliary information. The stem formulates context, content, and the question 

that the examinee is required to answer, and the options contain the alternative answers 

with one correct answer and incorrect options or distracters. When dealing with an open-

ended or constructed-response item model, options are not required. The key specifies the 

correct answer for a multiple choice item model or lists of criteria for an open-ended item 

model. Auxiliary information includes any additional materials required to generate an 

item in the stem or option, such as texts, images, tables, or diagrams. Elements in the 

stem and options are denoted as strings (S) which are non-numeric variables and integers 
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(I) which are numeric variables. Measurement specialists can generate large numbers of 

items, at similar or different difficulty levels, for each model by systematically 

manipulating these elements (Zhou, 2009).  Figure 1.5 shows an example of an item 

model. 

 

 

Figure 4. A Generic Template of an Item Model 

 

Computer-based procedures for test assemblies have been developed to select 

items efficiently (van der Linden, 1998; van der Linden, 2005). These procedures are 

referred to automated test assembly in the AE framework. This is the fourth stage of AE 

processes. With computer algorithms, it is possible to manage and construct tests in a 

much more efficient way than traditional manual assembly procedures (Zhou, 2009). 

Automated test assembly procedures consist of three steps. The first step is to define item 

bank by finding the characteristics of each item such as psychometric features, content 
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categories, and any other relevant item features. The second step is to develop a 

mathematical model that incorporates all psychometric and content specifications of the 

test. In the next step, with the model, every possible solution is evaluated until the 

optimal or best possible combination of available items is achieved. Multiple test forms 

can be created from these procedures.  

In the fifth stage, psychometric models are employed in a confirmatory manner to 

assess the model-data fit relative to the intended underlying structure of the constructs or 

traits the test is design to measure (Zhou, 2009). In traditional approach to test 

development, a model is explored through a validation study after a test is administered 

and response data is collected. However, in AE framework, a model is statistically 

confirmed by assessing the consistency between expected and observed responses to 

ensure cognitive principles. The outcomes from the model-data fit analyses allow test 

developers to modify the cognitive and item models. This confirmatory method provides 

a direct connection between cognitive theory and educational measurement (Luecht, 

Gierl, Tan, & Huff, 2006).  
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CHAPTER 2 

THEORETICAL FOUNDATIONS OF COGNITIVE DIAGNOSTIC MODELS  

2.1 Overview 

The union of cognitive psychology and psychometrics led to cognitively based 

psychometric models since 1980’s. Furthermore, with the increased number of large-

scale assessments, it was necessary to develop appropriate psychometric tools for 

interpretation of the test results. For these reasons, researchers have proposed many 

psychometric models to implement CDA over the last two or three decades. Cognitive 

diagnostic models (CDM) can be used to demonstrate how well standards-based 

assessments classify students’ level of proficiency.  

In educational measurement, a cognitive model refers to a, “simplified description of 

human problem solving on standardized educational tasks, which helps to characterize 

the knowledge and skills examinees at different levels of learning have acquired and to 

facilitate the explanation and prediction of examinees’ performance” (Leighton & Gierl, 

2007a, p. 6). Components of a cognitive model are used as attributes to generate 

diagnostic inferences underlying test performance. CDMs refer to psychometric models 

based on a theory of response processing grounded in applied cognitive psychology 

(Rupp & Templin, 2008). Attributes are defined as a description of knowledge, different 

procedures, or skills needed by an examinee to solve a given test item. CDMs enable 

multiple criterion-referenced interpretations because those models contain relatively fine-

grained proficiency dimensions (e.g., multiple attributes), rather than course-grained 

global proficiency variables. In classification-based decision making situation (e.g., 

placement, admission, or certification), examinees are classified into non-mastery or 

http://en.wikipedia.org/wiki/Cognitive_model
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mastery on a specific domain. In addition to the course screening purpose of diagnostic 

tests, diagnostic results analyzed with CDMs can be also used to provide more detailed 

information on a particular area, and make it possible remedial interventions or 

treatments.  

 

2.2 Characteristics of CDMs 

Characteristics of CDMs can be shown by comparing with other latent variable 

models. The following four characteristics of CDMs describe similarities and differences 

between the models. First, CDM has confirmatory nature because its analysis involves a 

hypothesis testing to confirm the relationship between the items and the attributes (Rupp, 

et al., 2010). Most statistical model structures of CDMs involve pre-determined Q-matrix 

in which the loading structure is specified (Tatsuoka, 1983). The rows of the Q-matrix 

pertain to the items, whereas the columns the attributes. The 1s in the jth row of the Q-

matrix identifies the attributes required for item j. 

Second, CDMs, IRT and FA models have similarities in the aspect of the 

observed response variables. Like traditional IRT models, CDMs deal with both 

dichotomous and polytomous response data (Rupp, & Templin, 2008). Even though most 

educational achievement assessments are dichotomously scored (e.g., 1 for correct 

answer and 0 for in correct answer), ordered response scales or Likert scales also used in 

CDMs. There are some CDMs to handle polytomous data (e.g., the reduced non-

compensatory reparameterized unified model; reduced NC-RUM). Different types of 

CDMs according to the response variables will be specifically discussed in next section. 
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Third characteristic of CDMs is related with interpretation of criterion-referenced 

tests. Rupp and Templin (2008) pointed out that multiple criterion-referenced 

interpretations are possible in CDMs. In contrast, most of multidimensional FA or IRT 

models with continuous latent variables allow for multiple norm-referenced 

interpretations. Interestingly, some of recently developed large-scale, standards-based 

assessments have multiple cut-points (e.g., “below standard,” meets standard,” “exceeds 

standard”) for scales estimated with traditional FA or IRT models (Rupp & Templin, 

2008). However, the criterions in those classification methods are set consensually (i.e., 

largely model-external) while the cut scores in CDMs are statistically set to maximize the 

reliable reparation of respondents (i.e., model-internal) (Rupp, et al., 2010). Therefore, 

those classifications in standardized achievement assessments for accountability purposes 

are based on decision-making processes by human judges rather than the results of the 

application of a psychometric model (Rupp, et al., 2010). 

Last, CDM has multidimensional nature like multidimensional IRT models or 

factor analysis (FA) models. However, the definitional grain size of the constructs differ 

each other. While constructs in multidimensional FA models are broadly defined, the 

latent variables (i. e., attributes) in CDMs are more narrowly defined (Rupp, et al., 2010). 

This difference leads to different complexity of the loading structure between CDMs and 

other models. Multidimensional IRT and confirmatory FA (CFA) have a simple loading 

structure that each item only loads on one dimension (Rupp, & Templin, 2008). In 

contrast, loading structures in CDMs are complex because multiple component skills are 

needed for each item as reflected in the Q-matrix. This type of loading structure is called 

“within-item multidimensionality” while simple loading structure corresponds to 
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“between-item multidimensionality” (Adams, Wilson, & Wang, 1997). Rupp, et al. (2010) 

indicated that even though within-item multidimensionality can be handled within the 

context of multidimensional IRT and CFA models, they provide only a continuous 

multidimensional profile, not a discrete multidimensional profile as in CDMs. In addition, 

multidimensional latent variables in FA or IRT are different constructs or different 

aspects of the same construct rather than elementary mental components and their 

interaction (Rupp, & Templin, 2008). 

 

2.3 A taxonomy of CDMs 

CDMs can be classified by considering the following two characteristics: (1) the 

scale type of the latent variables (i.e., latent class models vs. latent trait models), and (2) 

the compensatory or non-compensatory combination of the latent attribute variables. A 

latent class model classifies examinees into categories on a set of skills (e.g., mastery vs. 

nonmastery) by providing attribute mastery patterns or mastery probabilities. On the 

other hand, a latent trait model estimates examinee’s ability on a continuous scale for 

each attribute. Thus, this family of CDMs can be viewed as an extension of 

unidimensional IRT models. However, they are non-compensatory models while 

traditional IRT models compensatory latent variable models (Rupp & Templin, 2008). 

CDMs are also dived into non-compensatory models and compensatory models. 

Non-compensatory models include conjunctive and disjunctive models. A conjunctive 

condensation rule refers to a formula that states all attributes measured by an item need to 

be mastered for respondents to provide a correct response (Rupp., et. al., 2008). In non-

compensatory models, one cannot “make up” for nonmastery of attributes by mastery of 
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other attributes (Henson, Templin, & Willse, 2009). This means that successful 

application of all the required skills is necessary for successful performance on a task. 

These conjunctive models are applicable for skill diagnosis where the solution of a task is 

broken down into a series of steps with conjunctive interaction rather than with 

compensatory interaction (Roussos, DiBello, Henson, Jang, & Templin, 2008). 

Conjunctive models are mostly used for mathematical tests which require all skills to 

perform successfully on an item (Tatsuoka, 1990). In a disjunctive case of models, 

successful performance of the item only requires that a subset (in some cases only one) of 

the possible strategies is successfully applied (DiBello, Roussos & Stout, 2007).  

Therefore, there is no additional benefit for having more than one attribute. Even if an 

examinee mastered only a subset of the required attributes on an item, performance on 

the item would be same as an individual mastered all of the required attributes (Henson. 

et. at., 2009). Disjunctive models are appropriate when multiple strategies exist to solve 

the item.  

On the other hand, compensatory models allow an individual to “make up” for 

what is lacked in one skill by having mastered another. In other words, a high level of 

competence on one skill can compensate for a low level of competence on another skill to 

result in successful performance on a task. Make sure that compensatory models are not 

identical to disjunctive models. In the case of disjunctive models, mastering at least one 

of all required attributes can be allowed, but those attributes do not compensate each 

other. The compensatory models are appropriate for medical and psychological disorder 

diagnosis, where the presence of a certain symptom can compensate the presence or 
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absence of other symptoms (Rousoss et al., 2008). The list of the CDMS for the two 

categories is shown in Table 2. 

 

Table 2 A Taxonomy of CDMs 

 Noncompensatory Compensatory 

Latent 
Class 
Models 

DINA (Haertel, 1989) 

NIDA (Junker & Sijtsma, 2001) 

DINO (Templin & Henson, 2006) 

NIDO (Templin, 2006) 

BIN (Levy & Mislevy, 2004) 

Unified Model (DiBello, Stout, & 

Roussos, 1993) & NC-RUM (Hartz, 

2002) 

LCDM (Henson, Templin, & Willse, 

2009) 

RSM (K. K. Tatsuoka, 1983) 

AHM (Leighton, Gierl, & Hunka, 

2004) 

BIN (Levy & Mislevy, 2004) 

C-RUM (Hartz, 2002) 

LCDM (Henson, et.al., 2009) 

GDM (von Davier, 2005a) 

 

Latent 
Trait 
Models  

LLTM (Fischer, 1973) 

MLTM (Embretson, 1980) 

GLTM (Embretson, 1984) 

MLTM-D (Embretson & Yang, 2008) 

 

Note: RSM = Rule-space method. AHM = Skill hierarchy method. BIN = Bayesian 
inference network. DINA = Deterministic inputs, noisy ‘and’ gate.  LCDM = Loglinear 
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cognitive diagnosis model. DINO = Deterministic inputs, noisy ‘or’ gate. NIDA=Noisy 
inputs, deterministic ‘and’ gate. NIDO = Noisy inputs, deterministic ‘or’ gate. NC-RUM 
= Non- compensatory Reparametrized unified model /Fusion model. C-RUM = 
Compensatory RUM. NC-RUM = Non-compensatory RUM. GDM = General diagnostic 
model. LCDM = Loglinear cognitive diagnosis model. LLTM = Linear logistic test 
model. MLTM = Multidimensional latent trait model. MLTM-D = Multidimensional 
latent trait model for diagnosis. GLTM = General component latent trait model. 

 

In the non-compensatory category, DINA and NIDA are conjunctive models 

while DINO and NIDO are disjunctive models. BIN appears in both columns of the table 

because BIN is a general modeling framework for representing different types of latent 

variable models (Rupp & Templin, 2008). General diagnostic model (GDM; von Davier, 

2005) and loglinear cognitive diagnosis model (LCDM; Henson, Templin, & Willse, 

2009) are general models that subsume other latent variable CDMs and provide great 

flexibility. LCDM is known as a model fit to all core models (i.e., DINA, DINO, NIDA, 

NIDO, RUM, C-RUM, and some applications of the GDM), excluding RSM and AHM 

(Henson, 2009). As a result, this model must be classified as a compensatory model as 

well as a non-compensatory model (Henson, 2009). Details of each model will be 

described in Chapter 3 and 4.  
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CHAPTER 3 

RULE SPACE METHOD 

3.1 Introduction of RSM 

K. K. Tatsuoka is a pioneer in the development of rule space method (RSM; 

Tatsuoka, 1983; Tatsuoka, 1985; Tatsuoka, 1990; Tatsuoka, 1995; Tatsuoka, 2009; 

Tatsuoka, 1971). She introduced Q-matrix theory and rule space model to diagnose 

examinees’ knowledge levels. The Q matrix is an incidence matrix of the attributes 

involved in each item (Tatsuoka, 1993). The scores in the Q matrix are binary and of 

order K x M, where K is the number of attributes and M is the number of items 

(Tatsuoka, 1990). The rows represent attributes (i.e., tasks, subtasks, cognitive 

processes and skills, etc.), and the columns represent items. The elements in the Q 

matrix are mostly scored by domain experts (e.g., teachers) or cognitive psychologists. 

The Q matrix can be viewed as the cognitive blueprint or specifications for the test, 

since the underlying cognitive tasks required in answering test items are specified in a 

Q-matrix (Gierl & Leighton, 2007b). In other words, the Q matrix is a cognitive model 

for test item performance hypothesized by cognitive experts in the domain (Tatsuoka, 

2009). The Q matrix theory has been adapted for developing many other CDMs as well 

RSM. 

Tatsuoka’s rule-space model is a probabilistic model for classifying examinees’ 

item responses into a set of attribute-mastery patterns associated with different 

cognitive skills. This cognitive diagnostic model is based on the item response theory 

(IRT) models to formulating the rule space. The rule space is a two-dimensional 

Cartesian coordinate system that maps knowledge states and observed response 
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patterns are mapped into a classification space by calculating ability parameters (
^
θ ) 

and measures of atypicalty (ζ). The first dimension corresponds to the ability or 

proficiency variable (
^
θ ). This dimension specifies variation in the response patterns 

that can be attributed to differences in examinee proficiency levels. The proficiency 

level can be evaluated through the ability estimation methods. The second dimension 

corresponds to the variable ζ (Tatsuoka, 1984, 1985) which measure the unusualness of 

item-response patterns.  Figure 5 shows an example of the rule space with four 

different points. The details on the ability estimation methods and the ζ index will be 

illustrated later.  
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Figure 5. Example of the Rule Space 
 

 

3.2 The Person-Fit Index, Zeta 

The ζ index as one of the person-fit indexes was developed to detect aberrant 

response patterns caused by unusual behavior such as cheating or guessing (Tatsuoka, 

1984). The ζ index has been used for cognitive error diagnoses in the context of rule 

space model (Tatsuoka, 1985). The purpose of defining the ζ index is to find a 

continuous variable or a function of θ that is orthogonal to the first axis θ, and then 

define a Cartesian product space {( θ, ζ)} as a classification space of item response 

patterns in which an observed item response pattern will be classified into one of the 

predetermined knowledge states (Tatsuoka, 2009).  

The iζ  associated with a particular response vector iX  is calculated as follows: 

2/1)}],({/[),( iiiii xfVarxf θθζ =                                                                      (3.1) 
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)( ijQ θ is 1- )( ijP θ , and the true score function. )( iT θ  is the average of n item response 

functions over all items. )( ijP θ  is the probability of a correct response to the thj  item by 

the thi  examinee as determined from the assumed IRT model. The mathematical 

expression of )( ijP θ is given by   
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(3.2)                                                                     where D  is a scaling constant, a  is the 

item discrimination parameter and the ib  is the item difficulty parameter (Birnbaum, 

1968).  

In the ζ index, the numerator is the conditional covariance of the two residual 

vectors P(θ) – X, and P(θ)- T(θ), and the denominator, is the conditional standard 

deviation of the numerator. The expectation of the numerator is zero (Tatsuoka, 1985). 

Note that iX -)P( iθ  measures the deviation of the item response vector iX  from its 

expected value )P( iθ , and )T( -)P( ii θθ measures the deviation of the expected value of 

the response vector iX  from the overall average probability of a correct response at iθ . 

An important property of ζ is that it reflects whether the response pattern conforms to a 

Guttman pattern or not. If a response pattern has zeros for the harder items and ones for 

easier items, then ),( ii xf θ has a negative value. That means that when a response 

pattern conforms to a Guttman scale defined by the ascending order of )()( iij TP θθ − . 

Thus, ζ indicates the extent to which a response vector X approximates the “Guttman 

vector” at θ. However, when a response pattern conforms to a reversed Guttman scale, 

ζ becomes a larger, positive number. Thus, ζ indicates how well respondents’ patterns 

accord with the underlying IRT model (Sheehan & Kathleen, 1993). Another important 

property of ζ is that items having similar cognitive tacks have similar residual functions, 

)()( iij TP θθ − , because these items have similar estimated IRT parameter values 

(Tatsuoka, 1987).  
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3.3 Analysis of Knowledge States 

Constructing a Q matrix is a critical part to identify knowledge states in the rule 

space analysis because it became a foundation for analyzing knowledge states as 

classification categories. In addition to the Q matrix, an attribute mastery pattern matrix 

should be constructed to identify all possible combinations among K attributes. Those 

theoretical response patterns are called as ‘ideal response patterns’.  Generating ideal 

response patterns is a critical part in the RSM analysis. Note that there are k2 possible 

attribute mastery patterns. For example, when 10 attributes are identified, 102 attribute 

mastery patterns correspond one-to-one to 102  ideal response patterns. Ideal response 

patterns that are derived from the Q matrix and the attribute mastery pattern matrix by 

applying Boolean algebra are considered knowledge states by assuming a specific 

combination of mastered and nonmastered attributes (Tatsuoka, 1995). Thus, the ideal 

response patterns as the knowledge states represent mastery and non-mastery of 

specific combinations of attributes (Tatsuoka, 1993). If five attributes are involved to 

solve an item, 52  response patterns can account for an incorrect answer for the item. 

On the other hand, when all the attributes involved in an item have been mastered, the 

item is assumed to be answered correctly (Tatsuoka, 1993). 

 

3.4 Rule Space Classification 

After the observed item response vectors are projected onto the two-

dimensional rule space, an admissibility criterion for each possible state is determined 

by the Mahalanobis distance ( 2D ) between the examinee’s points in the rule space and 

the points associated each of the ideal response vectors (Fukunaga, 1972; Tatsuoka, 
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1971). The estimated Mahalanobis distance of X, a point in the rule space 

corresponding to the observed response pattern from the j knowledge state is 
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Equation (3.3) can be simplified as follows: 
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where )( ,XRX
Var ζ = 1 and )(

jRI θ = item information = )(/1
jRVar θ . 

    In the traditional classification, each examinee is forced to be classified into 

one of the predetermined knowledge states by finding small error probability as well as 

the closest Mahalanosis distance. This Bayes decision rule for classification is only 

applicable to the case when the number of groups is very few. To resolve these 

problems, Tatsuoka (2009) now classifies response pattern X into a group of several 

knowledge states located in the neighborhood of X, not a single knowledge state. 

Further, these close states are then used to compute attribute mastery probabilities, 

defined as “the probability of applying each attribute correctly to answer the items in a 

test” (Tatsuoka, 2009).  
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    To compute the attribute mastery probabilities, obtaining posterior 

probabilities for each knowledge state should be preceded. Suppose there are L 

attribute mastery patterns associated with L closest knowledge states 1π , …, Lπ and 

their posterior probabilities 1q , …, Lq . The posterior probability of Lπ is denoted by

)|( Xpq ll π= , for l = 1, …, L. )|( Xpq ll π= is calculated as follows: 

∑∑
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ππ                                   (3.5) 

where 2
lD  is squared Mahalanobis distance for l = 1, …, L, and lp is a prior probability 

on a given distribution (e.g., uniform or gamma distribution). 

With L attribute mastery patterns with L closest distances and their posterior 

probabilities, it is possible to calculate the attribute mastery probabilities. The 

probability of attribute kA  for a given response pattern X is given by Equation (3.6): 

∑
=

==
L

l
lklk aqXAp

1
)|1(                                                                                     (3.6) 

where lq = posterior probability for l = 1, …, L and 

           lka = attribute mastery pattern matrix, where k is the number of attributes. 

 Given that the estimated theta values, zeta values, and mahalanobis distances, the 

attribute mastery probabilities are calculated by using Equation 3.5 and 3.6. The RSM 

results are driven from post-hoc approach to provide diagnostic information for 

examinees in a mathematical test. This implies that RSM is not an approach of a 

cognitive model-based test design to incorporate cognitive theories.   
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3.5 Implementation of RSM 

      Tatsuoka (1991) has described an algorithm that generates all possible knowledge 

states from a given Q-matrix by using BUGLIB (Varadi, C. Tatsuoka, & K. Tatsuoka, 

1992; Varadi & K. Tatsuoka, 1989) program. However, the computer program BUGLIB 

is limited to few researchers and not currently used for anyone who wants to apply or 

study RSM. Although the RSM is a well-known CDM and theoretically well-defined 

model, the lack of broadly used software is a crucial limitation of RSM. Simple algorithm 

with computer software should be developed to implement RSM.  
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CHAPTER 4 

COGNITIVE DIAGNOSIS MODELS 

In this chapter, CDMs were reviewed. They are Unified model, Fusion model, 

DINA, NIDA, DINO, NIDO, GDM, LLTM, MLTM, GLTM, LLTM-D, LCDM, AHM 

and BIN.  

 

4.1 Unified Model 

RSM is a pioneering method among the latent class cognitive models, but it has a 

limitation in figuring out sources of variation in response behavior from that predicted by 

Q. With an effort to produce a practical method for modeling and measuring cognitive 

aspects of examinees, the unified model also incorporates four fundamental sources of 

such response variation. The first one is Strategy Selection. According to Tatsuoka’s Q-

matrix (Tatsuoka, 1983), it is assumed that there is a single strategy for correctly 

answering each item, not multiple strategies. However, in reality, an examinee may or 

may not use the strategy based on the Q-matrix. Thus, the unified model considers this 

possibility and includes in the model as jd which is the probability of selecting the Q-

based strategy over all other strategies to solve an item. Second, Completeness is based 
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on an idea that an item j may require skills or attributes left out of the Q-matrix.  In this 

case, the Q-matrix is said to be ‘incomplete’ for the item. Third source is Positivity. An 

examinee who “possesses” an attribute may not apply it successfully to a particular item 

that requires it. In contrast, an examinee who lacks the attribute may apply it correctly. 

When such non-Q-predicted behaviors are prevalent in the population, it can be said that 

the attribute is low positive for that item (DiBello, Stout, & Roussos, 1993). In the 

unified model, ijπ  is defined as the probability of an examinee successfully applies 

attribute i to item j given that 1=ja  for that examinee, and ijr  is defined as the 

probability of an examinee successfully applies attribute i to item j given that 0=ja  that 

examinee. )1( r−π is used as an index of positivity for the combination of attribute i and 

item j . As fourth source, slips indicate random errors committed by examines. Typos or 

lapses in attention can be examples of slips. This term differs from Tatsuoka’s use in that 

any non-Q-predicted responses are regarded as slips in RSM, no matter what its cause 

(DiBello et al, 1993). 

The item response function of the unified model is given in Equation (4.1).  

             ∏
=

⋅−⋅ −+==
K

k
jbijc

q
ik

q
ikijji ii

ikjkikjk PdPrdXP
1

)1( )()1()(),|1( ηηπηα αα

,                (4.1)       

where ),|1( jjiXP ηα= is the probability of answering item i correctly given that 

examinee j has a skill mastery vector of jα , and a supplemental ability parameter of jη . 

jα is obtained by calculating the proportion of the population that has mastered each skill 

k. The inclusion of the supplemental ability jη implies that the Q-matrix is now 

necessarily a complete representation of all skill requirements of every item on the test 
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(Roussos, L. A., DiBello, L. V., Stout W., Hartz, S. M., Henson, R. A., & Templin, J. L., 

2007). ikq indicates whether or not skill k is required by item i on the Q-matrix. )( jhP η is 

a Rasch model (Rasch, 1961) with the difficulty parameter equal to the negative of h, 

which can be expressed as.  

                                      )( jhP η  
2/1)]}(7.1exp[1{ hj +−+= η                                          (4.2) 

where h stands for either ic in the first term or ib is the second term. For each item i on 

the test, there are 32 +ik item parameters: ,id  ,ikπ ,ikr  two IRT Rasch Model parameters 

ic  and .ib  The unified model IRF not only take into account  modeling examinee 

responses influenced by Q-matrix, but also reflect influence of examinee responses 

probability based on non-Q skills with the term )( jci
P η and alternative Q-strategies with 

the term )( jbi
P η  (Roussos, L. A., et al., 2007).  

 

4.2 Fusion Model (Reparameterized Unified Model) 

Although the unified model has cognitively interpretable parameters, 

unfortunately not all parameters are identifiable and thus, statistically estimable. For this 

reason, making a reparameterized version of the original fusion model was required by 

reducing the complexity of the parameter space.  Hartz (2002) reduced the number of 

parameters from 2k + 3 to k + 2 (k = number of skills required to solve an item). 

Therefore, the reduced model, referred to as the Reparameterized Unified Model (RUM), 

has a simple structure of the parameter space and enhanced ability to estimate the 

parameters compared to the original model. However, the RUM still maintains the 
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unified model’s advantages of flexible capacity to fit diagnostic test data and retains most 

important components, such as the supplemental ability parameterη .  

The Fusion model is mathematically equivalent to the original unified model, but 

strategy selection parameter ( id ) in the original unified model was omitted in the RUM 

by setting id  parameter to 1. This means that no examinees may select other strategies 

than the Q-strategy to solve the item. Equation (4.3) presents the RUM IRF.  
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* )( αππ is the probability that an examinee having mastered all the Q 

required skills for solving item i will correctly apply all the skills to answer the item 

under the assumption of conditional independence of individual skill application. *
ikr is a 

similar parameter to the positivity index in the unified model, but expressed as 
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where ikπ is the probability that an examinee successfully 

applies attribute k to item i given that the examinee has mastered the attribute, and ikr is 

the probability that an examinee successfully applies attribute k to item i given that the 

examinee has not mastered the attribute. The more strongly the item depends on mastery 

of a skill 0k , the closer *
0ikr is to zero. Therefore, *

ikr is like an inverse indicator of 

evaluating diagnostic capacity provided by item i about mastery skill k and reflect the 

influence of a skill on each individual item response probability (Roussos et al., 2007). 

The )( jci
P η component was retained from the unified model to consider that the Q-matrix 
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may not contain all relevant cognitive skills for solving an item. The )( jci
P η refers to the 

Rasch model with difficulty parameter ic−  as shown in equation (3.2). ic indicates the 

reliance of the missing multiple sills on the whole item response function. In the RUM, 

the lower the value of ic , the lower the value of )( jci
P η . If )( jci

P η is close to 0 for most 

examinees, the Q-matrix is incomplete and should be fixed. Thus, ic provide important 

diagnostic information to check if a skill is missing from the Q-matrix or if the Q-matrix 

needs to be added more skills.                                                                                                                    

A Bayesian inference technique with the Markov chain Monte Carlo (MCMC) 

procedure has been adapted to estimating the item parameters ( *
iπ , *

ikr , ic ) and examinee 

skills parameters ( jα ). MCMC algorithms are applicable to parametrically complex 

models such as the RUM than EM (expectation and maximization) algorithms. Moreover, 

one can obtain a joint estimated posterior distribution of both the test’s item parameters 

and the examinee skill parameters from MCMC (Patz & Junker, 1999). The WINBUGS 

program (Spiegelhalter, Thomas, Best, & Lunn, 2003) and the Arpeggio program (Hartz, 

Roussos, & Stout, 2002) which is free can be used for parameter estimation of RUM. 

However, the MCMC analysis has heavy computational demand and uncertainty about 

the analysis result, especially with complex models requiring more parameters to estimate 

(Kim & Bolt, 2007). 

In summary, the RUM is an attractive model to users because it has estimable 

parameters, but retains skills based interpretability of the unified model. Furthermore, the 

RUM provides useful information regarding item properties, Q-matrix, and examinees’ 
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skill profiles. However, the RUM has a drawback due to the computational complexity of 

parameter estimation with MCMC.  

 

4.3 DINA, HO-DINA, NIDA, DINO, and NIDO 

The Deterministic Inputs, Noisy “And” gate (DINA; Haertel, 1989) model and the 

Noisy Input, Deterministic “And” gate (NIDA; Junker & Sijtsma, 2001) models are 

conjunctive (non-compensatory) models for skills diagnosis. On the other hand, the 

Deterministic Input; Noisy “Or” gate (DINO; Templin & Henson, 2006) model and the 

Noisy inputs, deterministic “or” gate (NIDO; Templin, 2006) are disjunctive models. 

Those four models (DINA, NIDA, DINO, & NIDO) are very similar in their item 

response functions. 

 

4.3.1 DINA Model 

In the DINA model, a latent variable ijξ for examinee j and ith item is defined as 

follows.  

                                                       ∏
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αξ                                                      (4.4) 

If an attribute k is measured by an item i, then ikq = 1. If an attribute is not measured, then 

ikq =0. The term jka represents whether respondents have mastered the measured attribute. 

For example, suppose that there are four skills in a Q-matrix and skill 1 and 4 are 

required to solve an item. Then, for examinee j, 41
1

4
0
3

0
2

1
1 jjjjjjij aaaaaa ×=×××=ξ . 

Because of the multiplicative term, the ijξ is equal to 1 only when both skills are present, 

which is the conjunctive aspect of the model. The vector of ),...,,( 21 ijjjij ξξξξ = is the 
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deterministic input of the DINA model and the same concept as ideal response patterns in 

the rule space model.  

      However, there is possibility that respondents who have mastered all measure 

attributes ( ijξ =1) incorrectly answer the item or respondents who have not mastered at 

least one of the measured attributes ( ijξ =0) correctly answer the item. The former case is 

called “slip”, and the later one is called “guess”. The slipping and guessing parameter are 

expressed as follows: 

                                             )0|1( === ijiji YPg ξ                                                     (4.5) 

                                               )1|0( === ijiji YPs ξ                                                      (4.6) 

where ijY is a response for examinee j and item i. From equations 5 and 6, the probability 

that an examinee gets an item correct is  

                                            ijij
iiijij gsYP ξξξ −−== 1)1()|1( .                                            (4.7) 

( js−1 ) is the probability of not slipping for item j. If an examinee has mastered all 

necessary attributes of an item, then the response probability is 01)1( jj gs− )1( js−= . If 

this person has not mastered the attributes, jjj ggsP =−= 10)1( . Because ijX is 

considered a Noisy observation of each ijξ and the binary value of ijξ (1 or 0) influence on 

selecting between the probabilities )1( js− and jg , this model is called Deterministic 

Inputs, Noisy “And” gate model.  

 

4.3.2 Higher-Order DINA Model 
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           Higher-order DINA model (HO-DINA; de la Torre & Douglas, 2004) assumes 

that attributes are hierarchically structured. Hierarchy relationships of attributes differ 

from pre-requisite relationships of attributes. A hierarchy relationships means that 

attributes are ordered in difficulty. In the higher-order formulation, the components of 

attribute vector (𝑎𝚥� ) is assumed to be conditionally independent given a higher-order 

latent proficiency𝜃𝑗 (de la Torre & Lee, 2010). The probability model for 𝑎𝚥�  conditional 

on 𝜃𝑗 is 

                                                      P�𝑎𝚥� �𝜃𝑗� = ∏ P�𝑎𝑗𝑘�𝜃𝑗�𝐾
𝑘=1 .                                     (4.8) 

The probability of mastery can be expressed using the following latent logistic regression 

model: 

                               P�𝑎𝑗𝑘 = 1�𝜃𝑗� = � exp�1.7𝜆1�𝜃𝑗−𝜆𝑜𝑘��
1+exp�1.7𝜆1�𝜃𝑗−𝜆𝑜𝑘��

�                                           (4.9) 

where 𝜆1and 𝜆𝑜𝑘 represent the latent discrimination and difficulty parameters, 

respectively. The constant 1.7 was added to give the 𝜆𝑠 similar interpretations as the 

difficulty and discrimination parameters in IRT models (Torre & Douglas, 2008). In this 

formulation, attributes with higher 𝜆𝑜𝑘 are regarded as more difficult to master.  

 

4.3.3 NIDA Model 

Even though aberrant responses are modeled in the DINA model, it does not 

differentiate between respondents who lack only one of the measured attributes and those 

who not mastered any of the attributes. In contrast to the DINA model, the noisy-input, 

deterministic-and-gate (NIDA) model (e.g., Junker & Sijtsma, 2001) has one slipping 

parameter and one guessing parameter per attribute, not per item.  
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                                                   )0|1( === jkijkk aPg ξ                                                 (4.8) 

                                                  )1|0( === jkijkk aPs ξ                                                 (4.9) 

The value of ijkξ indicate whether respondent j correctly apply attribute k for item i 

( 1=ijkξ ) or not ( 0=ijkξ ). The parameter jka is an indicator of attribute mastery for 

examinee j as in the DINA.  The guessing parameter ( kg ) is the probability of the correct 

application of attribute k in the context of item i even though the attribute has not been 

mastered. Likewise, the slipping parameter ( ks ) is the probability of the incorrect 

application of attribute k in the context of item i even though the attribute has been 

mastered. These parameters are defined at the level of attributes, thus they increase with 

the number of attributes. The final item response function of the NIDA model is  
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where ijX is the observed response for item j and examinee i, jkq indicates whether 

attribute k is measure by item i in the Q-matrix, and )1( ks−  is the probability of not 

slipping for attribute k.  

 

4.3.4 DINO Model 

The deterministic input, noisy-or-gate (DINO) model (Templin & Henson, 2006) 

is the compensatory version of the DINA model. While the DINA is a conjunctive (“And” 

gate) model, the DINO is a compensatory (“Or” gate) model. As in the DINA model, 

there is a gate component in the DINO model. The latent response variable ( ijω ) is 

defined for examinee j and item i. 
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where jka and ikq are the same indicators as in the DINA. If an attribute k is measured by 

an item j and an examinee i possess the attribute, 0)11()1( 1 =−=− ikq
jka . If an examinee 

does not possess the measured attribute, 1)01()1( 1 =−=− ikq
jka .  Because the product 

term is defined over all attributes, ijw is 1 if the examinee has satisfied at least one 

attribute (e.g., symptom) for the item. Only when all attributes in the Q-matrix are not 

present, ijw is 0. The DINO model also has the slipping and guessing parameters as in the 

DINA as follows. 

                                            )0|1( === ijiji wYPg                                             (4.12) 

                                                  )1|0( === ijiji wYPs                                                  (4.13) 

The probability of correct response for examinee j and item i is defined as: 

                                                   ijij
iiijij gsYP ωωω −−== 1)1()|1( .                                 (4.14) 

If all measured attributes are absent, the probability is iii ggs ij =− −010)1( , and if at least 

one attribute is present for the examinee, )1()1()1|1( 111
iiiijij sgsYP −=−=== −ω . Since 

the DINO is a compensatory model, it does not matter how many or which particular 

attributes possess for an examinee (DiBello et al., 2007). 

 

4.3.5 NIDO Model 

The noisy input, deterministic-or-gate (NIDO) model is the compensatory version 

of the NIDA model. The NIDO model estimates one intercept and one slope parameter 

for each attribute but with equality constraints across items (Rupp, et. al., 2010). The 
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concept of slope and intercept in the NIDO is originated from regression analysis. In 

order to build the NIDO model, first of all, a “kernel” should be expressed with the 

intercept and slope parameters as follows: 

                                                ikjkk
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k
kj qnel )(ker )(,1.,

1
)(,0., αλλ += ∑
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                               (4.15) 

Where the term jkα is an indicator of whether respondents have mastered the measured 

attribute or not for examinee j, and ikq represents involvement of attribute k in the Q-

matrix for item j. The first subscript in the intercept ( )(,0., kλ ) and slope ( )(,1., kλ ) parameter 

represent the item to which the parameter corresponds (Rupp, et. al., 2010). It is simply 

expressed as a “dot” because all parameters for attributes are equal across items. The 

second subscript determines the characteristic of the parameter; 0 for intercept and 1 for 

slope. The denotation of 0 or 1 is similar to the dummy-coded independent variables in 

the dummy-coded analysis of variance. Thus, the slope parameter )(,1., kλ can be main 

effects in the NIDO model. With the kernel, the formula for the NIDO model is shown as 
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where ijY is the observed response for examinee j and item i, P is the probability of 

correct response, exp( ) is the exponential function (approximately 2.718 raised to the 

power of the terms in the parentheses), the term in the parentheses is the kernel described 

above.  

 

4.4 GDM 
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Among the family of cognitive diagnostic models, the rule space model (Tatsuoka, 

1983) is an approach based on IRT model. Some other CDMs (Haertel, 1989; Maris, 

1999) were developed by extending latent class analysis. The HYBRID model 

(Yamamoto, 1989), the mixed Rasch model (Rost, 1990; von Davier & Rost, 1995) and 

mixture IRT models (Keldermann & Macready, 1990; Mislevy & Verhelst, 1990) 

integrate latent class approaches and IRT. The class of general diagnostic models (GDMs; 

von Davier, 2005) is also an extension of IRT and latent class models.  

However, GDMs extend the applicability of skill profile models to confirmatory 

multidimensional models with discrete latent trait variables. Polytomous items and skills 

with more than two proficiency levels can be dealt with in the GDMs framework. 

Furthermore, both compensatory and non-compensatory models can be specified within 

the GDMs.  Multivariate versions of the Rash’s (1960) model, the two-parameter logistic 

item response theory (2PL IRT) model (Birnbaum, 1968), the generalized partial credit 

model (GPCM; Muraki, 1992) are examples of the GDMs for partial credit data. 

Therefore, GDMs can be said as integrated version of the areas of IRT, latent-class 

analysis (Lazarsfeld & Henry, 1968) and multiple classification latent-class models 

(Goodman, 1974).  

 Like many of the other CDMs, the class of GDMs also uses Q-matrix, but entries 

in the Q-matrix can include polytomous item responses and polytomous attributes. In the 

GDMs, specification of Q-matrix allows researchers to see how skill patterns and the Q-

matrix interact. The GDM allows ordinal skill levels and different forms of skill 

dependencies to be specified (von Davier, 2005a). Therefore, more gradual differences 

between examinees can be modeled in this framework (von Davier, 2010). 
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 The GDM can be specified with a logistic model (Von Davier, 2005a). The class 

of GDMs are defined for dichotomous and polytomous data and with the ability to model 

multiple, potentially mixed, dichotomous and ordinal skill variables. Assume N 

examinees are sampled with observations on I discrete response variables

),,...,,( 21 nInnn xxxx =  each with outcomes }.m ,…1, {0, i∈nx Assume there is a set of 

additional K discrete random variables ),,...,,( 21 nInnn aaaa = with realizations 

)}.(ls ,… (0),{s kkk∈nka which are unobserved for each examinee .,...,1 Nn = : The (l)sk

are skill levels of the kth unobserved skill variable. Typical choices of skill levels as they 

are common in IRT models and profile scoring models are discussed in the subsequent 

section. The na constitute the multidimensional latent variable outcome (referred to as, for 

example, skill profile or attribute pattern, or multiple proficiencies in the literature) for 

examinee n, and are the target of inference in the following exposition. Assume that the 

nx  are independent and identically distributed with 

                             ,),|,...,()|()(),...,( 1
),...,(

1

1

adgaaapgapgPxxP nIn
g aaa

nIn

k

∑ ∫
=

=               (4.17) 

where )|( gaP  denotes the distribution of the unobserved variable in population g and 

),|,...,( 1 gaxxP nIn denotes the conditional distribution of the vector of observed variables 

),...,,( 21 nInn xxx given unobserved variable ),...,,( 21 kaaa and population g. Equation (4.17) 

presents the marginal probability of a vector of observed variables based on the 

conditional distribution given skill variables and allows for more than one population. 

The populations are defined by either manifest grouping variables or as in mixture 

distribution IRT models (Mislevy & Verhelst, 1990; Rost, 1990; von Davier & Rost, 
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1995; Yamamoto, 1989), or a combination of observed and unobserved data in the 

mixing/population indicator (von Davier & Yamamoto, 2004c). 

 For the general diagnostic model, local independence of the components nIx  

given a  is assumed, which yields 

                                                   ∏
=

=
I

i
niinIn axPaxxP

1
1 ),|()|,...,(                               (4.18) 

so that the conditional probability of a vector of observed responses can be written as a 

product of conditional response probabilities of each of the components of the response 

vector. 

           Let Q is a binary I x K matrix where I represents observed response variables, and 

K represents skill variables. That is )( ikqQ = where ,,...,1,,...,1 KJIi == and }{ 1,0∈ikq . 

Like in RSM, Q-matrices are used to determine ideal patterns of observed responses 

given a specific skill profile ),...,,( 21 kaaaa = .  Probabilistic models for cognitive 

diagnosis use this matrix to specify the conditional probability of the observed response 

vector given the latent variable a . Finally, the class of GDM is given by  
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with real-valued difficulty parameters xigβ in population g and with a k-dimensional slope 

parameter ),...,( 1 xigKxigxig γγγ = (used in transposed form Tγ in the equation) for written as 

a multiple group or a discrete mixture model. Multiple group GDMs may be estimated by 

concurrent calibration with completely separate parameter sets or with parameter sets that 

include equality constraints or fixed parameters across groups.  
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 As extensions of GDM, Von Davier also introduced the mixture general 

diagnostic models (MGDM; Von Davier, 2008b) which is the discrete mixture 

distribution version of the GDM and the hierarchical general diagnostic model (HGDM; 

von Davier, 2007). The mdltm softwere (Von Davier, 2005b) is used to estimate MGDMs 

and HGDMs.  

 

4.5 LLTM 

Latent class models are appropriate to obtain classification results (e.g., attribute 

mastery probabilities) for examinees’ skill diagnosis. Unfortunately, those models cannot 

be used for test design based on cognitive theory except AHM. However, most latent trait 

models can test the significance of item parameter estimates in the model, and thus, it is 

possible to construct a test with items that reflect a cognitive theory. Q-matrix is also 

used for latent trait models. The linear logistic test model (LLTM; Fischer, 1973) was the 

first psychometric model that links cognitive psychology to item design. 

LLTM is a generalization of the Rasch model and includes item stimulus features 

as cognitive variables to predict item success. The Rasch model is expressed as  
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where )1( =isXP is the probability that person s passes item i, sθ is the trait level of 

person s, and iβ is the difficulty parameter of item i. Unlike the Rasch model, in LLTM 

iβ  is replaced with a linear function to include cognitive variables: 
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where kη represents the effect of stimulus feature k, ikq is the score (e.g., 0 = absence and 

1 = presence) of stimulus feature k of item i, and 00qη is the intercept of the equation.  

Finally, the full LLTM is expressed as; 
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∑
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The Q matrix which consists of ikq has a I x K matrix (K < I). The elements of ikq are 

dichotomous scores for the item on cognitive model variables. 

 

4.6 MLTM, GLTM, & MLTM-D 

MLTM (Whitely, 1980), GLTM (Embretson, 1984), and MLTM-D (Embretson, 

2013) are non-compensatory multidimensional IRT models.  

 

4.6.1. MLTM 

Most achievement test items require multiple skills or competencies to obtain 

correct responses. The multidimensional latent trait model (MLTM; Whitely, 1980; 

Embretson, 1991; Embretson & Yang, 2006) combines a mathematical model of item 

accuracy with individual differences model. MLTM is based on a continued product of 

processing outcome probabilities to accommodate any number of subtasks. The subtasks 

are also called components in MLTM. MLTM estimates multiple components difficulties 

(item parameters) and multiple component trait levels (person parameters). MLTM is 

given as follows: 
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where )1( =isXP  is the probability that person s performs successfully on item i and 

)( iskk XP∏  is the product of the probabilities that the examinee success on each 

processing component k, given the correct outcome of the preceding component. The 

right side of the equation contains Rasch models for the probability of success on each 

component, where skθ is the trait level of person s on component k and ikβ is the difficulty 

of item i on component k.  

 

4.6.2. GLTM 

The general component latent trait model (GLTM; Embretson, 1984) is a 

generalized form of this model in which ikβ term is replaced by the following equation. 

ikm
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ηβ                                                  (4.24) 

where ikmq  is the score of stimulus feature m on component k for item i, ikmη  is the 

weight of stimulus feature m on component k, and 00 ikk qη  is an intercept. That is, ikβ  

indicates the weighted sum of underlying stimulus factors to represent scored attributes. 

The full GLTM is followed as: 
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The GLTM enables an examination of how the underlying stimulus features will 

impact the difficulty of each component ( ikβ ) based on pre-established cognitive theories. 

Since GLTM is an extension of the MLTM, it also estimates individual ability on each 

component (also called cognitive attribute) as a continuous variable, thus giving detailed 
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information about an examinee’s skill profile. Like MLTM, GLTM requires two kinds of 

data, responses to total items and responses to a series of each component.  

 

4.6.3. MLTM-D 

MLTM-D is a diagnostic, noncompensatory IRT model which has two levels of a 

hierarchical structure, components and attributes. This model is appropriate when two or 

more components affect problem solving and the difficulties of these components are 

influenced by those of attributes. The model identification of MLTM-D is based on the 

structure of the component matrix (C) and the attribute matrix (Q) containing 

independent vectors of item scores.  These matrices are constructed based on a plausible 

theory. That is, the component and attribute matrices can be defined only when a theory 

is available. The C and Q matrix show the relationships between the components and 

specific items as well as the relationships between the attributes and the components. In 

these matrices, if an item is related with two components among all the identified 

components, the corresponding two elements in the matrix indicate 1; otherwise 0. The 

attributes are indicated for each component in the same way. The probability of solving 

item i successfully by examinee j, )1( =ijYP , in MLTM-D is shown as follows:  
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where jmθ  indicate the ability of person  j on component m, imkq  is the score of attribute k 

in components m for item i, mkη  is the weight of attribute k on component m, moη is the 

intercept for component m, and imc is the involvement of component m in item i.  

The ability estimates are obtained for each component, and the level of the 

component is determined by the specific attributes relevant to the component. MLTM-D 

provides two levels of diagnostic information: the trait level estimates on each component 

dimension, jmθ , and skill mastery of attributes underlying the difficulty of each 

component, imkq . SAS and SPSS macros can be used for the person or item parameter 

estimation with MLTM-D (Embretson, 2013).  

 

4.7 LCDM 

The log-linear cognitive diagnostic model (LCDM; Henson et al., 2009) is a 

generalized model to express both conjunctive and disjunctive models.  In LCDM, a non-

compensatory model is viewed as a model where the relationship between any attribute 

required in an item and the item response (x) depends on mastery or nonmastery of the 

remaining other required attribute. On the other hand, a compensatory model is a model 

where there is no conditional relationship between the attributes and x (Henson et al., 

2009). The general form of the LCDM is as follows: 

   𝑃(𝑋𝑟𝑖 = 1|𝜶𝒓 = 𝜶𝒄) = exp [𝝀𝑖
𝑇𝒉(𝒒𝑖,𝜶𝑟)]

1+exp [𝝀𝑖
𝑇𝒉(𝒒𝑖,𝜶𝑟)]

 ,     (4.27) 

where 𝑃(𝑋𝑟𝑖 = 1|𝜶𝒓 = 𝜶𝒄) is the probability that respondent r with the attribute-mastery 

profile 𝜶𝒄 correctly responds to the ith item. 𝝀𝑖𝑇𝒉(𝒒𝑖 ,𝜶𝑟) can be rewritten as: 

                     𝝀𝑖𝑇𝒉(𝒒𝑖 ,𝜶𝑟) = 𝜆𝑖,0 + ∑ 𝜆𝑖,1,(𝑢)(𝛼𝑟𝑢𝑞𝑖𝑢)𝐾
𝑢=1  
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                                           +∑ ∑ 𝜆𝑖,2,(𝑢,𝑣)(𝛼𝑟𝑢𝛼𝑟𝑣𝑞𝑖𝑢𝑞𝑖𝑣)𝑣>𝑢
𝐾
𝑢=1 + ⋯,                (4.28) 

where, 𝝀𝑖𝑇is a 1 × (2𝐾 − 1) vector of weights (k = # of attributes) for the ith item. For 

example, 𝜆𝑖,1,(1) represents a simple main effect of attribute 1, 𝜆𝑖,1,(2) refers to a simple 

main effect of attribute 2, and 𝜆𝑖,2,(1,2) represents a two-way interaction of attributes 1 and 

2. 𝜆𝑖,0 is an intercept. 𝒒𝑖is the Q-matrix entries of attributes to be measured in the ith item 

(𝑘 × 1 vector). 𝜶𝑟 represents the attribute mastery profile of respondent r (1× 𝑘 vector). 

𝒉(𝒒𝑖 ,𝜶𝑟) is a set of linear combinations of 𝒒𝑖 and 𝜶𝑟. Therefore, the probability of a 

correct response for an item which requires two attributes (A1 and A2) can be defined as:  

              𝑃(𝑋𝑟𝑖 = 1|𝜶𝒄) = exp [𝜆𝑖,0+𝜆𝑖,1,(1)(𝛼1)+𝜆𝑖,1,(2)(𝛼2)+𝜆𝑖,2,(1,2)(𝛼1𝛼2)]
1+exp [𝜆𝑖,0+𝜆𝑖,1,(1)(𝛼1)+𝜆𝑖,1,(2)(𝛼2)+𝜆𝑖,2,(1,2)(𝛼1𝛼2)]

 .             (4.29) 

In this equation, if attribute 1 (A1) is mastered (𝛼1=1), then the probability of a correct 

response increases by a factor of 𝑒𝜆𝑖,1,(1) given that other attribute (attribute 2) has not 

been mastered. 𝜆𝑖,2,(1,2) represents the extent to which the conditional relationship of A1 

and the item response depends on attribute 2 (A2). Thus, if A2 is mastered (𝛼2=1), the 

probability of a correct response increases by a factor of 𝑒𝜆𝑖,1,(2)+𝜆𝑖,2,(1,2). Such a model in 

Equation 3.28 can be extended to include all possible main effects and interactions of 

attributes. 

 One important advantage of LCDM is that this model can provide empirical 

information regarding the relationship between attribute mastery and the item response 

patterns without specification of a type of model such as compensatory or non-

compensatory (Henson et al., 2009). Therefore, what type of model could have better fit 

for some test items can be confirmed with LCDM. However, disadvantage of LCDM is 

that the number of item parameters is multiplied by two as one attribute is added to the 

model. In other words, 2k  item parameters are needed when the model has k attributes. 
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Such large number of item parameters (2k) causes even heavy computational demand and 

have large standard errors for the parameter estimation.  

 

4.8 AHM 

 The Attribute Hierarchy Method (AHM; Gierl, 2007; Gierl, Leighton, & Hunka, 

2007; Gierl, Alves, & Majeau, 2010; Leighton, Gierl, & Hunka, 2004) is a framework for 

designing diagnostic items based on attributes which have a hierarchical structure. AHM 

is similar to RSM in that both models use attributes and Q-matrix as a cognitive model. 

Furthermore, expected response patterns which are hypothetically generated are used to 

classify examinees’ response patters in AHM as well as RSM. However, AHM differs 

from RSM with the assumption of dependencies among the attributes within the cognitive 

model. Modeling cognitive attributes using AHM necessitates the specification of a 

hierarchy outlining the dependencies among the attributes. In contrast, RSM makes no 

assumptions regarding the dependencies among the attributes. This difference has lead to 

the development of both IRT and non-IRT based psychometric procedures for analyzing 

test item responses using AHM. AHM also differs from RSM with respect to the 

identification of the cognitive attributes and the logic underlying the diagnostic 

inferences made from the statistical analysis (Gierl, 2007). That is, RSM uses a post-hoc 

approach to the identification of the attributes required to successfully solve each item on 

an existing test, while AHM uses an a priori approach to identifying the attributes and 

specifying their interrelationships in a cognitive model. 

 AHM can be described with four step process. First of all, an AHM analysis 

begins with the specification of a cognitive model of task performance. Then, these 

http://en.wikipedia.org/wiki/IRT
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attributes are structured using a hierarchy so the ordering of the cognitive skills is 

specified. AHM assumes that test performance depends on a set of hierarchically ordered 

attributes (Gierl, et. al., 2007). Likewise in RSM, examinees are supposed to possess the 

attributes to answer test items correctly.  

 

 

 

 

 

 

 

 

Figure 6. Visual Representation of the Four Different Hierarchical Structures 

 

 Leighton et al., (2004) identified four general forms of hierarchical structures in a 

cognitive model, as shown in Figure 6 (A) represents the linear hierarchy; attribute 1 is 

prerequisite to attribute 2, and attributes 1 and 2 are prerequisite to attribute 3.Attributes 1 

to 5 are considered prerequisite to attribute 6. The attribute 6 is the most complex one 

because its existence depends on all other attributes in the model. (B) represents the 

convergent hierarchy; attributes 1 and 2 are prerequisite to attribute 3 and 4, but 3 or 4 are 

prerequisite to 5. (C) represents the divergent hierarchy which have multiple end states 

consisting of two or more attributes. (D) represents the unstructured hierarchy. 

Educational tests that clearly measure different knowledge components could be 

http://upload.wikimedia.org/wikipedia/commons/5/5e/Pic1.ahm.JPG
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characterized as an unstructured hierarchy of attributes because there is no ordering 

among the attributes (Gierl, et. al., 2007).  These forms of hierarchical structures can be 

expanded and combined to form increasingly complex networks of hierarchies.   

 Next, a cognitive model of task performance should be constructed to make 

inferences about examinees’ cognitive skills. The quality of diagnostic inferences 

produced with AHM depends on accuracy of the cognitive model of task performance 

(Gierl, Leighton, & Hunka, 2007). The cognitive model specified by hierarchy structures 

must be identified prior to developing a test because it is a guideline to develop test items 

(Gierl, Leighton, & Hunka, 2000). After identifying hierarchical relationship among the 

attributes, the Q-matrix is constructed by specifying all possible combinations of the 

attributes. Boolean additions are used to create the Q-matrix. The Q-matrix is used as a 

test blueprint to develop items that measure specific attributes outlined in the hierarchy 

structure (Gierl, et. al., 2007).  Test items are developed by using the Q-matrix. Since this 

test specification is pre-determined, cognitive theory can have a clearly defined role in 

the test design. Misspecification of the Q-matrix or less impact of cognitive theory on test 

design can be avoided with this characteristic of the AHM.  

 In the third step, Given the Q-matrix and the attributes that examinees posses, the 

expected response patterns can be obtained. The hypothetical examinees are assumed to 

apply the attributes systematically based on the hierarchical structure. Real examinee’s 

response patterns are classified by using a set of unique expected response patterns. If an 

observed response pattern of an examinee matches with an expected pattern, a “match” is 

noted and it can be inferred which attributes the examinee possesses. However, if the 

expected pattern is not logically included in the observed pattern, meaning that there are 

http://en.wikipedia.org/wiki/Cognitive_model
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unmatched patterns, the likelihood of misfits should be considered. The misfit indicates 

the case where the examinees possess all the attributes to solve an item, but answer 

incorrectly or the opposite case by guessing. These misfits can be occurred in many 

testing situations. However, if there are many discrepancies between the expected 

patterns and the observed patterns, then it should be considered that the attributes were 

accurately identified, the hierarchy was appropriately specified, the items measure the 

attributes, or the test was appropriate for the sample (Gierl, et. al., 2007).           

 The fit of the cognitive model relative to the observed response patterns can be 

evaluated using the Hierarchical Consistency Index (HCI; Cui, Leighton, Gierl, & Hunka, 

2006).  The HCI evaluates “the degree to which the observed response patterns are 

consistent with the attribute hierarchy” (Cui, et. al., 2006).  The HCI for examinee i is 

given by: 

                                                           (4.8.1) 

where J is the total number of items, Xij is examinee i ‘s score (i.e., 1 or 0) to item j, Sj 

includes items that require the subset of attributes of item j, and Nci is the total number of 

comparisons for correctly answered items by examinee i. The values of the HCI range 

from -1 to +1. Values closer to 1 indicate a good fit between the observed response 

pattern and the expected examinee response patterns generated from the hierarchy. 

Conversely, low HCI values indicate a large discrepancy between the observed examinee 

response patterns and the expected examinee response patterns generated from the 

hierarchy. HCI values above 0.70 indicate good model-data fit. If the data is not shown to 

fit the model, then various reasons may account for the discrepancies including: a 

misspecification of the attributes, incorrect ordering of attributes within the hierarchy, 
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items not measuring the specified attributes, or the model is not reflective of the cognitive 

processes used by a given sample of examinees. Therefore, the cognitive model should be 

correctly defined to make appropriate inferences for the examinees’ knowledge and skills. 

 The last step is to report diagnostic results using AHM. Unfortunately, specific 

procedures for the cognitive score reporting are not clearly documented yet in AHM 

framework. Adopting classification procedures in RSM would be a way to solve this 

limitation of AHM. The details regarding classification in RSM will be described in the 

next section. 

 

4.9 BIN 

The idea of hierarchical factor structures in multidimensional FA models has been 

adapted in applications of Bayesian inference networks (BIN; Levy & Mislevy, 2004). In 

BIN, even the higher-order latent variables are typically categorical so that these models 

represent a completely categorical hierarchy of latent variables (Yan, Mislevy, & Almond, 

1993). In the cognitive diagnostic framework, Bayesian networks shows hierarchically 

structured and graphical representation of probabilistic relationships between several 

attributes.  

Bayesian networks are mechanisms for applying Bayes' theorem to complex 

cognitive problems. Bayes' theorem is based on the calculation of conditional 

probabilities to predict the chance of an event. Thus, bayseian inference networks (BINs) 

can be considered an entire class of statistical models with a full probability structure to 

CDMs (Rupp, et al., 2008). As a tool of Bayesian statistics, Bayes’ theorem is easy to 

http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Bayes%27_theorem
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understand and can be used for all situations. The mathematical statement of Bayes’ 

theorem is expressed as  

          𝑃(𝜃𝑖|𝐷) = 𝑃(𝐷∩𝜃𝑖)
𝑃(𝐷) = 𝑃(𝜃𝑖)×𝑃(𝐷|𝜃𝑖)

∑ 𝑃(𝜃𝑖)×𝑃(𝐷|𝜃𝑖)𝑖
                         (4.9.1) 

 where 𝜃𝑖 is an unobservable event (parameter),  

D is an observable event (data), 

P(𝜃𝑖) is the prior probability of event 𝜃𝑖, 

P(D|𝜃𝑖) is the likelihood (conditional probability) of D given 𝜃𝑖,  

∑ 𝑃(𝜃𝑖) × 𝑃(𝐷|𝜃𝑖)𝑖  is the marginal probability of D, and 

P(𝜃𝑖 |D) is the posterior probability of 𝜃𝑖  given D.  

The purpose of applying BINs to diagnostic assessment is to classify respondents 

by using multiple latent variables that represent the attributes to be measured (Rupp, et al., 

2008). Under the Bayesian estimation approach, the classification results can be obtained 

by computing the posterior distribution for the parameters which combine the prior 

information. One important advantage of Bayesian approach over the classical approach 

to statistics is that it allows inference probabilities about the unknown parameters are 

based on the actual occurring data (Bolstad, 2007). Another advantage of BINs is that 

they can be used to specify complex attribute structures and the estimation of parameters 

in the model (Rupp, et al., 2008). However, the estimation for large sample sizes requires 

well-specified prior information.  
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CHAPTER 5 

APPLICATION OF CDMS ACROSS COGNITIVE DOMAINS 

5.1 Issues in the Applications of CDMs 

Cognitive diagnostic assessment (CDA) is a new theoretical framework for 

psychological and educational testing that is designed to diagnose detailed information 

about examinees’ mastery of attributes in a test (specific knowledge structures and 

processing skills). During the last three decades, many psychometric models have been 

developed for CDA. When applying those CDMs to a particular area of measurement 

settings, following issues should be considered. 

 

5.1.1 The Definitional Grain Size of the Attributes 

Attributes are essential components in the applications of CDMs because the 

design of the diagnostic assessment is based on the specification of the Q-matrix 

consisting of attributes. When decomposing cognitive constructs that try to measure in a 

test, the degree of definitional specificity is an important issue. This is often referred to 

as the definitional grain size of the attributes (Rupp, et al, 2009). Choosing a degree of 

the definitional grain size is a trade-off because each grain size has advantages and 

drawbacks. Finely defined attributes for tasks that are restricted in scope are required to 

make specific inferences regarding examinees’ cognitive skills (Gierl & Leighton, 
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2007a). However, a cognitive analysis at a fine grain size may limit depth of construct 

representation and content coverage. On the other hand, coarsely defined attributes for 

tasks that are broader in scope may sacrifice specifications for lower levels of cognitive 

skills that are required in the assessments. In general, course-grained descriptions of 

attributes are used in broad blueprints for educational assessments while fine-grained 

behavioral and process descriptions are used in standards-based assessments that are 

geared to aligning the goals of curriculum, instruction, and assessment (Gierl & 

Leighton, 2007a). CDAs should be specified at the appropriate grain size, and its 

appropriateness depends on the objective of the CDA and type of reporting methods 

used in the assessment (Gierl & Leighton, 2009). Researchers need to determine a 

statistically manageable number of attributes by considering length of the tests and 

number of respondents. The more attributes are involved in a Q-matrix, the more 

number of parameters should be estimated in a given CDM. The large number of 

parameters causes heavy computational demands for the estimation because the number 

of parameters increases as a proportion of the number of attributes (= k) to be measured 

in an item. For example, fusion model has k+2 parameters, the DINO model includes 2k 

parameters, and RSM and LCDM has even 2k parameters.  

 

5.1.2 Reporting Cognitive Diagnostic Results 

As an interface between test developer and users, score reporting conveys 

information regarding the meanings of test results. The test results are psychological 

outcomes from sophisticated assessments based on CDMs. It is an important issue for 

test developers to communicate with different types of test users with appropriate 
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interpretations of test outcomes. Standards claimed by National Council on 

Measurement in Education (1999) indicate that “the interpretations should describe in 

simple language what the test covers, what scores mean, the precision of the scores, 

common misinterpretations of test scores, and how scores will be used”. Another 

important factor for successful score reporting is to minimize lag time between taking a 

test and reporting results without sacrificing the quality and integrity of the assessments 

(Huff & Goodman, 2007). Appropriately reported diagnostic results can be used in 

many different ways. Teachers can use the results to reflect on their instructional 

methods and to plan remedial activities to help individual students. Teachers can also 

use accumulated test results to communicate with parents, school administrators, and 

educational policy makers to enhance the quality of education and allocate the necessary 

resources properly. Students can know their strength and weakness on specific skills or 

knowledge through the test results, and in turn they can enhance their overall 

performance by making their effort on the area shown weak performance. Teachers can 

advise their students to change their learning strategies or use supplemental tutorials if 

necessary.  

 

5.2 Software for CDMs 

CDMs have a lot of advantages over other psychometric models. Although they 

have successfully provided useful diagnostic information about the examinees, utilizing 

in practice is complex. Unfortunately, the parameter estimation with CDMs requires 

complex statistical computations. For some CDMs (e.g., Fusion and LCDM), MCMC 

algorithm is used for the parameter estimation because it is easier to extend to 
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parametrically complex models than Expectation Maximization (EM) algorithms. 

However, the MCMC causes even heavier computational demand than the marginal 

maximum likelihood estimation (MMLE) with the EM algorithm. It takes several hours 

even for a single estimation and a day or more for more complex models or large 

amounts of data. Also, the MCMC can be misused easily because of the complexity of its 

algorithms. Furthermore, most software used for the applications of CDMs are not user-

friendly. Table 3 shows currently available software for estimating CDMs. More user-

friendly software or easy algorisms modified from previous methods should be developed 

in future research. Improvement of methodological tools of CDMs will lead to broad use 

of CDMs in the field of educational and psychological measurement.  

 

Table 3 Software for Estimating CDMs  

 

 

5.3 Applications and Simulation studies in CDMs 
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Whereas earlier CDM literature focused primarily upon theoretical issues such as 

model development, recently issues in practical applications of the CDMs have been 

increasing (Huebner, 2010). First, application studies with empirical data have been 

conducted. Most of the application studies have used tests with mathematical items 

because mathematical items are simple and easy to analyze Q-matrix (Tatsuoka, 1990; de 

la Torre and Douglas, 2004; Templin, Henson, & Douglas, 2008; Henson, Templin, & 

Willse, 2008).  

Although empirical studies with math tests demonstrated CDMs are useful in the 

analysis and interpretation of CDA, the results from the studies cannot be generalizable to 

various test situations. To overcome this limitation, simulation studies have been 

conducted. Simulation studies allow researchers to examine various issues in the models 

and to validate accuracy of diagnostic results from the CDMs across various testing 

conditions. One of the research areas using simulation method is related to the 

implementation of CDA for computer adaptive tests. Those studies deal with the issue of 

how to select items from item banks for diagnostic tests (Huebner, 2010; Cheng, 2009; 

Xu, Chang, Douglas, 2003). Other topics in the research area of the CDMs include 

attribute-based scoring in CDMs (Geirl, Cui, & Zhou, 2009), automated test assembly for 

the CDMs (Finkelman, Kim, & Roussos, 2009), strategies for linking two consecutive 

diagnostic assessments (Xu & von Davier, 2008), and test construction for cognitive 

diagnosis (Henson, & Douglas, 2005).  
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CHAPTER 6 

IMPLICATIONS and FUTURE RESEARCHE 

CDA and CDMs has some implications in educational practice. Cognitive 

diagnostic modeling provides a tool that can aid in the development of tailored lesson 

plans for a student and teachers (Henson, 2009). Through the administration of a series of 

CDA, students can receive individualized diagnostic reports so that they can make an 

effort on the area they need to improve. The teachers and the students can have a 

conference to discuss the kinds of pedagogical actions that they need to take. School 

administrators and curriculum developers could also receive reports summarizing the 

students’ strengths and weaknesses in tested skills. They could use the information to 

evaluate the effectiveness of the curriculum innovation. For better administration of CDA 

in practice, following two issues and future research direction for CDMs are suggested.  

 

6.1 Integrating CDA and Theories of Learning 

Huff and Goodman (2007) found that stakeholders want more instructionally 

relevant assessment results. They indicated that assessments that integrate educational 

context including cognition, learning, and instruction should be developed in the future. 

The union of cognitive psychology and psychometrics has been successfully made over 
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the last several decades. However, little attention was paid to the importance of 

integrating curriculum, instruction, and assessment to promote student learning using 

CDA (Huff & Goodman, 2007). For instance, learning theories such as meta-cognition 

that provide understanding how to use particular strategies for problem solving may help 

developing effective CDA in educational setting. 

6.2. Computer-Based CDA 

One more important direction for future CDA is to develop computer-based CDA 

by using computer technology. E-assessment refers to the use of information technology 

for any assessment-related activity. Computer-based CDA has advantages over traditional 

paper-based assessment. To maximize the use of CDA for instructional practice and 

learning, diagnostic results from any assessments should be sufficiently aligned with the 

content of the curriculum. Computer-based CDA can yield diagnostic inferences on 

curriculum specific content student (Gierl & Leighton, 2007). Furthermore, Computer-

based CDA can provide immediate score reporting for the teacher and student. 

Diagnostic feedback in a timely manner with no time lag can be a key factor for the 

successful assessments. A significant delay between test administration and the reporting 

of test results is an obstacle to teachers' use of the diagnostic information (Huff & 

Goodman, 2007). Development of computer-based CDA will overcome this problem of 

conventional CDA.  

Another advantage of computer-based CDA is that it can incorporate alternative 

item types that are designed to elicit cognitive skills (Jang, 2008). Traditional multiple 

choice items would have a limitation to provide authentic information about learners' 

skill competencies. However, various types of tasks can be used in the computer-assisted 

http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Educational_assessment


 

64 
 

CDA. As an example, those tasks are designed for assessing language skills (Jang, 2008): 

(1) summarizing orally or in writing after listening to a lecture; (2) simulating language 

use in context; (3) transforming information into a different form (tabulation, graphic 

representation); or (4) metacognitive reasoning about the appropriateness of language use 

in a specific context. 

The last advantage of the computer-based CDA is that it utilizes various 

sources of information for diagnosis. The computer-assisted CDA allows the 

assessment developers and users to consider various sources of information beyond the 

correctness of the responses to test items. In addition, the computer-assisted CDA can 

utilize information regarding non-cognitive aspects of learner characteristics in creating 

diagnostic skill profiles. Individual differences, such as socio-cultural and linguistic 

background and motivation, may need to be taken into account for the effective diagnosis 

of learners' skill competencies. Students' self-assessment of skill mastery and problem-

solving strategies may enhance their meta-cognitive awareness of the effectiveness of 

strategy use and facilitate the use of diagnostic feedback for taking remedial actions to 

change their learning. 

Computer-assisted CDA can be used to customize the content of a diagnostic test 

for each individual student. A sufficiently large item bank with a wide range of skills and 

task formats will allow teachers to design a diagnostic test that assesses specific skills. 

The customized tests can be used as tutorials for practice of that students learn. 

In conclusion, future direction of CDA implies importance of integrating theories 

of learning and instruction as well as computer technology into CDA. Such integrations 

will lead innovative assessments.  
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6.3. Future Directions of CDMs 

Although CDMs are innovative methodologies, they are statistically sophisticated 

and hard to use in practice. CDMs should be accessible to broad users with simple 

estimation methods. Developing new tools or refining the algorithms to implement 

CDMs can be a way to resolve this problem, especially for the models that cannot be 

analyzed with current software (e.g., RSM).  

           In addition to the technical issue, comparison among the CDMs under different 

testing conditions is an important area for future research. For those studies, simulation 

method should be adapted to set different number of items, examinees, and attributes. 

The results from the studies can provide insights into the application of the CDMs for 

potential users. Despite of the importance of such simulation studies, less attention has 

been paid to them so far. Specifically, there is no simulation studies using RSM and 

comparing it to other models. Therefore, a comparison of RSM and other models with 

simulated data is an important area for future research.   
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CHAPTER 7 

SIMULATION STUDY 

7.1 Purpose of Study and Simulation Design 

           The main purpose of this study is to compare diagnoses of skill or attribute 

possession from three cognitive diagnostic models using simulated data. Even though 

many CDMs have been developed, comparing diagnosis obtained by Tatsuoka’s rule 

space method (RSM; Tatsuoka, 1983) to those obtained by other CDMs has not been 

investigated. This problem is due in part to lack of broadly used software for the RSM 

analysis. In this study, a customized algorism with SAS macros was developed to 

implement RSM and was applied to simulated data. In addition, the diagnostic results 

were compared to the results from HO-DINA (de la Torre & Douglas, 2004) and MLTM-

D (Embretson & Yang, 2008).  

           Models to be compared. A primary focus of this study is RSM. Two CDMs,  HO-

DINA, and MLTM-D have been selected for model comparisons because, like RSM, the 

diagnoses are based on latent dimensions.  That is, the models are non-compensatory 

cognitive diagnostic models based on IRT models. In RSM, the rule space is constructed 

by ability and item parameters estimated from an IRT model. In HO-DINA, the 

probability of mastery is specified by a latent logistic regression model which is similar 

to IRT models. As a non-compensatory latent trait model, MLTM-D is an extension of 

IRT models. Finally, all three models provide attribute mastery probabilities and 

possession of underlying attributes as diagnostic results. 

            However, there are several differences between the three models in 

dimensionality of the ability parameters. HO-DINA assumes that mastery of an attribute 
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is conditionally independent given a single general ability as shown in Equation 4.9. Thus, 

the proficiency variables in HO-DINA are unidimensional. In contrast, RSM and MLTM-

D assumes multidimensionality of the ability parameters. Although classification in 

traditional RSM is based on one-dimension of  𝜃 due to advantage of interpretability and 

easy computational burden, RSM assumes there are multidimensional latent abilities 

characterized by observable attributes (Tatsuoka, 2012). Therefore, RSM has a 

multidimensional characteristic. MLTM-D is also a multidimensional model, but the 

dimensionality depends on number of component, not attribute level. The other 

difference between the models is specifications of the cognitive variables in tests. While 

RSM and HO-DINA requires only attribute structure to specify underlying cognitive 

process, MLTM-D has two different types of structures: attribute structure matrix (Q-

matrix) and component structure matrix (Embretson and Yang, 2012). The details of the 

three models were described in Chapter 3 and 4. 

         Data generation design. Since three different CDMs are compared in this study, a 

single way to generate simulation data only based on one of the CDMs may result in 

biased true parameters (e.g., attribute patterns or attribute mastery patterns). 

Consequently, diagnostic estimation from such data is more likely accurate for one model 

than others. Therefore, in order to control impact of a model on data generation, multiple 

methods based on different models should be used for data generation. Three different 

methods of data generation were designed by considering three models – HO-DINA, 

MLTM-D and RSM. A brief summary of the three methods is presented in Table 4. 

 

 



 

68 
 

Table 4 Summary of Three Methods used in Data Generation 

Parameter HO-DINA MLTM-D RSM 

Person Unidimensional 
a single latent trait 
(𝜃𝑗) 
 

Multidimensional (2 or 
3) 
a vector of latent trait 
(𝜽𝒋𝒌) 
 

 Multidimensional (6 or 
9) 
a vector of latent trait 
(𝜽𝒋𝒌) 
 

Item location, 
discrimination (𝜆1) 
slope, difficulty ( 𝜆0𝑘) 
slipping (𝑠𝑖) 
guessing (𝑔𝑖) 
 

intercept for component 
m ( moη ) 
weight of attribute k on 
component m ( mkη ) 

)99,.50(.~ Up jk  or  
)49,.01(.~ Up jk  

 

           Based on the three models, attribute mastery patterns (𝑎𝑗𝑘), attribute mastery 

probability (𝑝𝑗𝑘), and item responses (𝑌𝑖𝑗) of hypothetical examinee j were generated. 

The 𝑎𝑗𝑘 indicates whether subject j has mastered attribute k or not. The 𝑝𝑗𝑘 is a 

probability that examinee j has mastered attribute k (e.g., skill or knowledge) given a 

CDM. These two parameters provide diagnostic information and depend on which model 

is used. SAS macros were used for all steps of the data generation.  

         After simulated data sets are generated with three methods based on different 

models, all three models will be applied to all the data sets. Attribute mastery 

probabilities ( jkp
^

) and attribute patterns (
jka

^

�) are estimated from the item response 

patterns for each individual. The accuracy of parameter estimation for each model will be 

evaluated in terms of average signed bias (ASB), root-mean-square error (RMSE), and 

correct classification rate (CCR). For relationships of the models, correlation of pks 

across the models and proportion of the same classification will be obtained.   

         Hypotheses. Comparisons of the diagnostic results will be specifically investigated 
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in terms of 1) trait dimensionality of diagnostic models as shown in Table 4, 2) the 

difficulty level of tests, 3) trait level, and 4) number of attributes or components. These 

variables are manipulated in the simulations. Details will be described in the method 

section.  

         First, as described for the dissimilarity of the three models, HO-DINA is a 

unidimensional model while MLTM-D and RSM are multidimensional models. 

Therefore, it is hypothesized that recovery of parameter, pk for cross applications of the 

models will differ by which model is applied. In other words, for the data set generated 

by RSM perspective, the attribute mastery probability (�̂�𝑘) and the attribute mastery (𝑎�𝑘) 

are more accurately diagnosed when MLTM-D is applied than HO-DINA due to the 

similarity in dimension of RSM and MLTM-D. Likewise, for MLTM-D data, more 

accurate diagnosis is expected with RSM than HO-DINA. Furthermore, correlations of 

diagnostic results between RSM and MLTM-D will be higher than between RSM and 

HO-DINA or MLTM-D and HO-DINA.  

         Second, the diagnostic results will be compared by level of test difficulty (i.e., easy 

vs. hard test).The impact of test difficulty level on classification accuracy will be 

investigated, especially for RSM. In the RSM, classification of a response pattern 

involves finding close ideal response patterns (i.e., knowledge states). Theoretically, 

there are only few ideal response patterns with high raw score because all required 

attributes are necessary for a correct answer in a given knowledge states. When a test is 

easy, the observed response patterns are likely to have high level of θ, but most of the 

ideal response patterns have low level of θ. In this situation, the distribution of θ 

estimated from ideal response patterns will be positively skewed in the rule space 
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projection. When the distance between ideal points and observed points are not close in 

most case, it is not possible to do accurate classification. Therefore, level of test difficulty 

can be an important factor for accurate classification especially in RSM due to the 

discrepancy between observed response patterns and ideal response patterns. Based on 

the theoretical characteristic of ideal responses, it is assumed that RSM will have better 

classification results with difficult test than easy test. It is hypothesized that HO-DINA 

and MLTM-D will have more accurate diagnostic results than RSM for easy test while 

RSM will result in similar or better diagnoses for difficult test data. The test difficulty 

will be adjusted by manipulating attribute difficulty in the data generation. For easy test 

condition, the item-parameters for each model will be set to have the average p-value 

of approximately between .6 and .7. For difficult test condition, the item-parameters 

will be set to have the average p-value of approximately between .4 and .5. P-value is 

item difficulty index in CTT perspective and means the proportion of examinees that pass 

an item in a sample.  

         Third, the diagnostic results will be compared by trait level; θ <  -0.7, -0.7 < θ < 0.7, 

θ > 0.7 for low, moderate, and high level, respectively. In relation with discrepancy 

between observed response patterns and ideal response patterns above, when test is easy, 

RSM is expected to show inaccurate diagnostic results for higher levels of theta than 

lower or moderate levels of theta, and vice versa. It will be investigate which model is 

most suitable for which level of ability.   

         Fourth, the effect of number of attributes on accurate classification will be 

investigated. The number of attributes was decided by considering the number of 

knowledge states in latent class models (RSM and HO-DINA). Because 2𝑘 knowledge 
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states are generated, large number of attributes leads to computational difficulties. On the 

other hand, it might be hard to do accurate classification with few numbers of attributes. 

Hence, both manageable number of knowledge states and accurate classification should 

be considered. In this study, six and nine attributes will be simulated. For RSM 

applications, the distances between the observed response pattern and ideal response 

pattern will be more likely to be close in the 9 attribute design than the 6 attribute design 

because 9 attributes generate a larger number of ideal response patterns than the 6 

attributes. Therefore, it is hypothesized that RSM will have more accurate diagnostic 

results for 9 attribute item design.  

          This simulation study was designed in item side and person side. A total of 20 

replications will be performed for 12 conditions: 2 (item designs) X 2 (level of test 

difficulty) X 3 (methods of data generation). Since main interest of this study is accuracy 

of diagnostic results by three models, not parameter estimation for the models, only 20 

replications were conducted. The number of examinee for each data set is 1,000. It was 

elaborated (1) how to construct the Q-matrices (item side) and (2) how to generate 

simulation data (person side) below. One full replication for 6 and 9 attributes by each of 

3 methods has been done, and parts of the data sets will be shown below.  

  

Table 5 Simulation Conditions 

Data Generation (3)  Item Design (2) Test Difficulty (2) 

HO-DINA 2 component & 6 attributes easy 

MLTM-D 3 component & 9 attributes difficult 

RSM   
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 7.2 Method 

7.2.1 Item Design 

       Two different types of item design specified as Q-matrix were used to simulate 

patterns of attributes in a test. The item designs are intended to apply RSM, DINA and 

MLTM-D. The item designs are hierarchically structured by including component level 

as well as attribute level to simulate MLTM-D model. Two Q-matrices are presented in 

Table 6 and 7, respectively. Components are denoted as ‘C’, and attributes are denoted as 

‘A’ in the Q-matrices. Each component has multiple attributes. The first item design has 

two components and six attributes. The other one has three components and nine 

attributes. The blocks in the tables are constructed by considering possible combinations 

of the components. For example, items in ‘Block 1’ in Table 8 involve only component 1, 

even though they are specified to involve one of the three attributes (A1, A2, or A3). The 

total number of items is 60 for all item designs. For six attribute design, 66.7 % of the 

items are single attribute items and 33.3% of the items involve multiple attributes. In 

contrast, nine attributes design includes 33.3 % of single attribute items and 66.7 % of 

multiple attribute items. 

 

Table 6 Q-matrix with 6 Attributes 

  C1 C2     
Item A1 A2 A3 A4 A5 A6 Attributes Block 

1 1 0 0 0 0 0 A1 

1 

2 1 0 0 0 0 0 A1 
3 1 0 0 0 0 0 A1 
4 1 0 0 0 0 0 A1 
5 1 0 0 0 0 0 A1 
6 1 0 0 0 0 0 A1 
7 1 0 0 0 0 0 A1 
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Continued 

  C1 C2     
Item A1 A2 A3 A4 A5 A6 Attributes Block 

8 0 1 0 0 0 0 A2 

1 

9 0 1 0 0 0 0 A2 
10 0 1 0 0 0 0 A2 
11 0 1 0 0 0 0 A2 
12 0 1 0 0 0 0 A2 
13 0 1 0 0 0 0 A2 
14 0 1 0 0 0 0 A2 
15 0 0 1 0 0 0 A3 
16 0 0 1 0 0 0 A3 
17 0 0 1 0 0 0 A3 
18 0 0 1 0 0 0 A3 
19 0 0 1 0 0 0 A3 
20 0 0 1 0 0 0 A3 
21 0 0 0 1 0 0 A4 
22 0 0 0 1 0 0 A4 
23 0 0 0 1 0 0 A4 
24 0 0 0 1 0 0 A4 
25 0 0 0 1 0 0 A4 
26 0 0 0 1 0 0 A4 
27 0 0 0 1 0 0 A4 
28 0 0 0 0 1 0 A5 

2 

29 0 0 0 0 1 0 A5 
30 0 0 0 0 1 0 A5 
31 0 0 0 0 1 0 A5 
32 0 0 0 0 1 0 A5 
33 0 0 0 0 1 0 A5 
34 0 0 0 0 1 0 A5 
35 0 0 0 0 0 1 A6 
36 0 0 0 0 0 1 A6 
37 0 0 0 0 0 1 A6 
38 0 0 0 0 0 1 A6 
39 0 0 0 0 0 1 A6 
40 0 0 0 0 0 1 A6 
41 1 0 0 1 0 0 A1,A4 
42 1 0 0 0 1 0 A1,A5 
43 1 0 0 0 0 1 A1,A6 
44 1 0 0 1 0 0 A1,A4 
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Continued 

  C1 C2     
Item A1 A2 A3 A4 A5 A6 Attributes Block 
45 1 0 0 0 1 0 A1,A5 

2 46 1 0 0 0 0 1 A1,A6 
47 1 0 0 1 0 0 A1,A4 
48 0 1 0 0 1 0 A2,A5 

3 

49 0 1 0 0 0 1 A2,A6 
50 0 1 0 1 0 0 A2,A4 
51 0 1 0 0 1 0 A2,A5 
52 0 1 0 0 0 1 A2,A6 
53 0 1 0 1 0 0 A2,A4 
54 0 1 0 0 1 0 A2,A5 
55 0 0 1 0 0 1 A3,A6 
56 0 0 1 1 0 0 A3,A4 
57 0 0 1 0 1 0 A3,A5 
58 0 0 1 0 0 1 A3,A6 
59 0 0 1 1 0 0 A3,A4 
60 0 0 1 0 1 0 A3,A5 

 

Table 7 Q-matrix with 9 Attributes 

  C1 C2 C3     
Item A1 A2 A3 A4 A5 A6 A7 A8 A9 Attributes Block 

1 1 0 0  0  0  0  0  0  0 A1 

1 

2 0 1 0  0  0  0  0  0  0 A2 
3 0 0 1  0  0  0  0  0  0 A3 
4 1 0 0  0  0  0  0  0  0 A1 
5 0 1 0  0  0  0  0  0  0 A2 
6 0 0 1  0  0  0  0  0  0 A3 
7 0 0 0 1 0  0  0  0  0 A4 
8 0 0 0 0 1  0  0  0  0 A5 
9 0 0 0 0 0 1 0 0 0 A6 
10 0 0 0 1 0  0  0  0  0 A4 
11 0 0 0  0 1  0  0  0  0 A5 
12 0 0 0  0  0 1 0 0 0 A6 
13 0 0 0  0  0 0 1 0 0 A7 
14 0 0 0  0  0 0 0 1 0 A8 
15 0 0 0  0  0 0 0 0 1 A9 
16 0 0 0  0  0 0 1 0 0 A7 
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Continued 

  C1 C2 C3     
Item A1 A2 A3 A4 A5 A6 A7 A8 A9 Attributes Block 
17 0 0 0  0  0 0 0 1 0 A8 

1 18 0 0 0  0  0 0 0 0 1 A9 
19 0 0 1  0  0 0 0 0 0 A3 
20 0 0 0  0  0 1 0 0 0 A6 
21 1 0 0 0 0 1 0 0 0 A1,A6 

2 

22 1 0 0 0 1 0 0 0 0 A1,A5 
23 1 0 0 1 0 0 0 0 0 A1,A4 
24 0 1 0 0 0 1 0 0 0 A2,A6 
25 0 1 0 0 1 0 0 0 0 A2,A5 
26 0 1 0 1 0 0 0 0 0 A2,A4 
27 0 0 1 0 0 1 0 0 0 A3,A6 
28 0 0 1 0 1 0 0 0 0 A3,A5 
29 0 0 1 1 0 0 0 0 0 A3,A4 
30 1 0  0  0  0 1 0 0 0 A1,A6 
31 1 0  0  0  0  0 0 0 1 A1A9 

3 

32 1 0  0  0  0  0 0 1 0 A1,A8 
33 1 0  0  0  0  0 1 0 0 A1,A7 
34 0 1  0  0  0  0 0 0 1 A2,A9 
35 0 1  0  0  0  0 0 1 0 A2,A8 
36 0 1 0  0  0  0 1 0 0 A2,A7 
37 0 0 1 0 0 0 0 0 1 A3,A9 
38 0 0 1 0 0 0 0 1 0 A3,A8 
39 0 0 1 0 0 0 1 0 0 A3,A7 
40 1  0  0 0 0 0 0 0 1 A1,A9 
41  0  0  0 0 0 1 1 0 0 A6,A7 

4 

42  0  0  0 0 1 0 1 0 0 A5,A7 
43  0  0  0 1 0 0 1 0 0 A4,A7 
44  0  0  0 0 0 1 0 1 0 A6,A8 
45  0  0  0 0 1 0 0 1 0 A5,A8 
46  0  0  0 1 0 0 0 1 0 A4,A8 
47  0  0  0 0 0 1 0 0 1 A6,A9 
48  0  0  0 0 1 0 0 0 1 A5,A9 
49  0  0  0 1 0 0 0 0 1 A4,A9 
50  0  0 0 0 0 1 1 0 0 A6,A7 
51  0 0 1 1 0 0 0 0 1 A3,A4,A9 

5 52 0 1 0 0 1 0 0 1 0 A2,A5,A8 
53 1 0 0 0 0 1 1 0 0  A1,A6,A7 
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Continued 

  C1 C2 C3     
Item A1 A2 A3 A4 A5 A6 A7 A8 A9 Attributes Block 
54 0 0 1 0 0 1 0 0 1 A3,A6,A9  

5 

55 0 1 0 1 0 0 0 1 0 A2,A4,A8  
56 1 0 0 0 1 0 1 0 0  A1,A5,A7 
57 0 0 1 1 0 0 1 0 0 A3,A4,A7 
58 0 1 0 0 1 0 0 0 1 A2,A5,A9 
59 1 0 0 0 0 1 0 1 0  A1,A6,A8 
60 0 0 1 1 0 0 1 0 0  A3,A4,A7 

1 = Measuring, 0 = Not measuring 

 

7.2.2 Data Generation with HO-DINA  

              To generate simulation data in HO-DINA perspective, the general ability 

parameter (𝜃𝑗), higher-order parameters (𝜆0𝑘), and item parameters (𝑠𝑖 and 𝑔𝑖) should be 

determined. These parameters were chosen based on previous simulation studies with 

HO-DINA (de la Torre & Douglas, 2008; de la Torre & Lee, 2010). First, ability 

distributions that involve the HO-DINA model should be defined. The 𝜃𝑗s were drawn 

from a normal distribution with 𝜇𝜃 = 0 and 𝜎𝜃 = 1 (𝜃 ~ 𝑁(0,1)). The item parameter 

values for easy test condition are defined in Table 8. Each component consists of three 

attributes with different levels of difficulty (𝜆0𝑘), but the discriminating parameters (𝜆1) 

are the same across the attributes within a component. 

            The higher-order attributes parameters means that the attributes are ordered in 

terms of difficulty of their mastery (de la Torre & Lee, 2010). In other words, A1 and A4 

are easy to master than A3 and A6. Attribute mastery patterns (𝑎𝑗𝑘) were generated by 

comparing the sampled thetas to the higher-order attribute parameters (𝜆0𝑘). If 𝜃𝑗 > 𝜆0𝑘, 

𝑎𝑗𝑘=1, otherwise 0. Then, the attribute mastery probabilities were computed by using 



 

77 
 

Equation (4.9 ). A sample data was provided in Table 9 with 6 attributes and 15 

examinees.                                                                                           

Table 8 HO-DINA Item Parameters for Easy Test Condition 

Parameter 2 components X 3 attributes 3 components X 3 attributes 

𝜆0𝑘 {−1.5, -1, -0.5, 
−1.5, -1, -0.5} 

{−1.5, -1, -0.5, 
−1.5, -1, -0.5, 
−1.5, -1, -0.5} 

𝜆1 {1.2, 1.2, 1.2, 
0.8, 0.8, 0.8} 

{1.2, 1.2, 1.2, 
1.0, 1.0, 1.0, 
0.8, 0.8, 0.8} 

 

Table 9 Attribute Mastery Probabilities and Attribute Patterns 

j 𝜃𝑗 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑎1 𝑎2𝑎3 𝑎4 𝑎5 𝑎6  

1 1.32 0.98 0.18 0.03 0.42 0.18 0.08 1 0 0 0 0 0 

2 -0.78 0.59 0.11 0.02 0.25 0.11 0.05 1 0 0 0 0 0 

3 -0.30 0.77 0.14 0.03 0.33 0.14 0.06 1 0 0 0 0 0 

4 0.25 0.89 0.16 0.03 0.38 0.16 0.07 1 0 0 0 0 0 

5 1.15 0.97 0.18 0.03 0.42 0.18 0.08 1 0 0 0 0 0 

6 1.22 0.98 0.18 0.03 0.42 0.18 0.08 1 0 0 0 0 0 

7 0.06 0.86 0.16 0.03 0.37 0.16 0.07 1 0 0 0 0 0 

8 -0.59 0.67 0.12 0.02 0.29 0.12 0.05 1 0 0 0 0 0 

9 -0.22 0.79 0.14 0.03 0.34 0.14 0.06 1 0 0 0 0 0 

10 1.70 0.99 0.18 0.03 0.42 0.18 0.08 1 0 0 0 0 0 

11 -0.87 0.56 0.10 0.02 0.24 0.10 0.04 1 0 0 0 0 0 

12 -0.08 0.83 0.15 0.03 0.35 0.15 0.06 1 0 0 0 0 0 

13 0.12 0.87 0.16 0.03 0.37 0.16 0.07 1 0 0 0 0 0 

14 -0.48 0.71 0.13 0.02 0.30 0.13 0.06 1 0 0 0 0 0 

15 0.22 0.89 0.16 0.03 0.38 0.16 0.07 1 0 0 0 0 0 
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           The item responses (𝑌𝑖𝑗) were generated using attribute mastery patterns (𝑎𝑗𝑘) and 

the DINA model shown in Equation (4.7). According the DINA model, if all attributes 

that are required to master an item are mastered by an examinee, the probability passing 

the item (𝑝𝑖) is 1-slipping parameter (𝑠𝑖). If the examinee misses one or more attributes 

involved in the item, the probability of correcting the item (𝑃𝑖) is equal to the guessing 

parameter (𝑔𝑖). The slip and guessing parameters were fixed to s = g = 0.2 for all items. 

Since many large scale assessment tests are multiple-choice test with five options, 0.2 is a 

reasonable value as slip and guessing parameter. Random numbers (u) were sampled 

from uniform distribution between 0 and 1 (U (0,1)). Then, item responses (𝑌𝑖𝑗) were 

marked as 1 if 𝑃𝑖 is equal or greater than u. If pi is less than u, 𝑌𝑖𝑗 were 0. The 𝑃𝑖 should 

be 0.8 or 0.2 because all 𝑠𝑖 and 𝑔𝑖 parameters are 0.2. Table 10 shows a part of item 

responses for 8 random items as an example of this step.  

 

Table 10 Item Response Patterns – HO-DINA  

j 𝑃1 𝑃8 𝑃15 𝑃21 𝑃28 𝑃35 𝑃41 𝑃48 𝑌1 𝑌8 𝑌15 𝑌21 𝑌28 𝑌35 𝑌41 𝑌48 

1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0 0 1 0 1 1 0 

2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1 1 1 0 1 1 1 1 

3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 1 1 0 0 0 0 1 

4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1 1 1 1 0 1 1 1 

5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 1 1 1 1 1 1 1 

6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 1 1 1 1 1 1 1 

7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 1 0 0 1 1 1 1 

8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1 1 1 1 1 0 1 1 

9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1 1 0 1 1 1 1 0 

10 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 1 0 0 0 0 0 0 

11 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0 0 1 0 1 1 0 
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Continued 

j 𝑃1 𝑃8 𝑃15 𝑃21 𝑃28 𝑃35 𝑃41 𝑃48 𝑌1 𝑌8 𝑌15 𝑌21 𝑌28 𝑌35 𝑌41 𝑌48 

12 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1 1 1 0 1 1 1 1 

13 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 1 1 0 0 0 0 1 

14 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1 1 1 1 0 1 1 1 

15 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 1 1 1 1 1 1 1 
 

7.2.3 Data Generation with MLTM-D 

         For the simulation data generation in terms of MLTM-D, similar method as in 

DINA was used except separately generating attribute mastery patterns and attribute 

mastery probabilities by components. The Q-matrix presented in Table 7.2 and Table 7.3 

was constructed by reflecting the component structures. Component structure matrices 

for each item design are shown in Table 11 and Table 12. 

 

Table 11 Component Matrix with 6 Attributes 

 
C1 C2 

 block A1, A2, A3 A4, A5, A6 number of items 
1 1 0 20 
2 0 1 20 
3 1 1 20 

 

Table 12 Component Matrix with 9 Attributes 

 
C1 C2 C3 

 block A1, A2, A3 A4, A5, A6 A7, A8, A9 number of items 
1 1 0 0 10 
2 0 1 0 10 
3 1 1 0 10 
4 1 0 1 10 
5 0 1 1 10 
6 1 1 1 10 
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           Unlike in HO-DINA, different ability parameters (𝜃𝑗𝑐) by component (c) were 

generated from a multivariate normal distribution (𝜽 ~ MVN(0, ∑)). The number of 𝜃𝑗𝑐 is 

two for two components and 6 attributes design and three for three components and 9 

attributes design. It was assumed that each 𝜃𝑐 ~ N (0,1). The relationship between 

dimensions will be assumed to be positively correlated each other. In other words, 

examinees with high level of ability in C1 are more likely to have high level of ability in 

C2 and C3. Low correlations indicate a high degree of multidimensionality of the test and 

vice versa (Templin et al., 2008). The same correlations as used in Embretson and Yang 

(2012)’s simulation study will be adapted to generate the θc for three components 

condition:  

∑ = �
1 . 3 . 4
. 3 1 . 5
. 4 . 5 1

�. 

For two components condition, correlation between C1 and C2 is set to .4: 

∑ = � 1 . 4
. 4 1 �. 

          For two components and six attributes design, the item component difficulty is 

given as 

 imimmimmimmmim qqq εηηηηβ ++++= 3322110 ,         (7.1) 

where mkη  is the weight of attribute k on component m, and moη is the intercept for 

component m, and imkq indicates binary scores of attribute k within component m in the 

item. The imkq can be continuous variables if they are scored for global variables such as 

complexity level (Embretson and Yang, 2012). Since only Q-matrix was specified in this 

study, imkq will be 1 or 0. The moη values were defined to ensure that the overall items 
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have easy or moderate item difficulty. The moη  and mkη  parameter values for each item 

design are given in Table 13. The variance of imε was specified as 0.1 for all items. This 

means that there is a prediction error in testing rather than the attributes perfectly predict 

item component difficulty. This condition is more close to real testing situation than no 

error condition.  

 

Table 13 MLTM-D Item Parameters 

Parameter 2 components X 3 attributes 3 components X 3 attributes 

moη  10η = -1, 20η = -1.5 10η = -2, 20η = -1.6, 30η = -1.2 

mkη  11η =0.3, 12η =0.5, 13η =0.7 

24η =0.3, 25η =0.5, 26η =0.7 
11η =0.3, 12η =0.5, 13η =0.7 

24η =0.3, 25η =0.5, 26η =0.7 

37η =0.3, 38η =0.5, 39η =0.7 
 

 

           MLTM-D model defines component mastery probabilities not attribute mastery 

probabilities as in RSM and HO-DINA. See Equation 4.27 for details. The ijmP  is the 

probability that examinee j applies component m correctly on item i and it is determined 

by the ability parameter and the item parameters on component m. In the item designs, 

each component is composed of three attributes, and all items involve only one of the 

three attributes within components. In other words, each item involves a single attribute 

nested in each component. Multiple attributes in an item are driven from different 

components. For example, item 41inclues A1 from component 1 and A4 from component 

2. This design makes finding attribute mastery probabilities easy. In Equation 4.27, when 

number of k is 1, ijmP  can be simplified as follows by eliminating ∑
=

K

k 1
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In this case, the ijmP can be regarded as the probability mastering attribute k within 

component m (i.e., )ijmijk PP = . Attribute mastery probabilities for examinee j on attribute 

k ( jkP ) is be obtained from the items involving attribute k in the Q-matrix. For example, 

if item 1 involves only A1, then the attribute mastery probability for A1 will be computed 

by 11 jP (i.e., 1jP = 11 jP ). Therefore, attribute mastery probabilities within each component 

will be computed using Equation (7.2). Next, attribute mastery patters will be obtained by 

comparing each of the 𝑝𝑗𝑘 values to the cut-off point of p-value. The cut-off p-value was 

set to 0.5. This step can be expressed as follows:  

�
𝑎𝑗𝑘 =  1, 𝑖𝑓 𝑝𝑗𝑘 ≥ 𝑐𝑢𝑡 𝑝𝑜𝑖𝑛𝑡

          𝑎𝑗𝑘 =  0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

A sample of the data generation with MLTM-D is shown in Table 14. 

  

Table 14 Attribute Mastery Probabilities and Attribute Patterns - MLTM-D 

 Component1 Component2 

j 𝜃1 𝑝1 𝑝2 𝑝3 𝑎1 𝑎2 𝑎3 𝜃2 𝑝4 𝑝5 𝑝6 𝑎4 𝑎5 𝑎6 

1 0.10 0.80 0.59 0.87 1 1 1 0.66 0.14 0.22 0.13 0 0 0 

2 0.00 0.77 0.54 0.85 1 1 1 2.71 0.85 0.90 0.82 1 1 1 

3 0.08 0.79 0.58 0.86 1 1 1 0.47 0.11 0.17 0.09 0 0 0 

4 -0.75 0.48 0.25 0.61 0 0 1 0.79 0.17 0.26 0.15 0 0 0 

5 1.31 0.97 0.92 0.98 1 1 1 2.63 0.83 0.89 0.80 1 1 1 

6 0.43 0.87 0.71 0.92 1 1 1 -0.85 0.01 0.02 0.01 0 0 0 

7 1.43 0.97 0.93 0.98 1 1 1 0.74 0.16 0.25 0.14 0 0 0 

8 -1.12 0.33 0.15 0.45 0 0 0 -0.55 0.02 0.03 0.02 0 0 0 
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Continued 

 Component1 Component2 

j 𝜃1 𝑝1 𝑝2 𝑝3 𝑎1 𝑎2 𝑎3 𝜃2 𝑝4 𝑝5 𝑝6 𝑎4 𝑎5 𝑎6 

9 0.04 0.78 0.56 0.85 1 1 1 1.81 0.55 0.67 0.50 1 1 1 

10 0.26 0.84 0.65 0.90 1 1 1 -0.25 0.04 0.06 0.03 0 0 0 

11 -1.48 0.21 0.09 0.31 0 0 0 -0.67 0.02 0.03 0.01 0 0 0 

12 1.46 0.98 0.93 0.98 1 1 1 0.87 0.19 0.29 0.17 0 0 0 

13 -0.55 0.56 0.32 0.68 1 0 1 1.28 0.33 0.45 0.29 0 0 0 

14 0.04 0.78 0.56 0.85 1 1 1 -0.87 0.01 0.02 0.01 0 0 0 

15 -0.72 0.49 0.26 0.62 0 0 1 -1.24 0.01 0.01 0.01 0 0 0 
 

         To generate item responses for each examinee, the probability that examinee j solve 

item i, P (𝑌𝑖𝑗 =1), should be computed first. Since MLTD-D is a non-compensatory 

model, mastering all attributes is required for a correct response. Thus, the probability 

that examinee j solve item i (𝑃𝑖𝑗) is the product of probabilities that examinee j possess 

component m involved in item i (𝑃𝑖𝑗𝑚) as specified in Equation 4.26. For multiple 

attribute items, the 𝑃𝑖𝑗 is obtained by multiplying all the  𝑃𝑖𝑗𝑚𝑠  while the 𝑃𝑖𝑗 is equal to 

𝑃𝑖𝑗𝑚 for single attribute items. Random number (u) was drawn from uniform distribution 

ranging from 0 to 1: u ~ U (0,1). Then correct response is determined by comparing each 

of 𝑃𝑖𝑗𝑚 to u. This step is simplified as: 

�                  𝑌𝑖𝑗 =  1, 𝑖𝑓 𝑃𝑖𝑗 =  �𝑝𝑗𝑘𝑞𝑖𝑘
𝐾

𝑘=1

≥ 𝑢 ~ U(0,1),

𝑌𝑖𝑗 =  0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     
 

where 𝑞𝑖𝑘 is a binary variable for the involvement of attribute k in item i as specified in 

Q-matrix. Item responses of 8 random items are given in Table 16 
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Table 16 Item Response Patterns- MLTM-D 

j 𝑃1 𝑃8 𝑃15 𝑃21 𝑃28 𝑃35 𝑃41 𝑃48 𝑌1 𝑌8 𝑌15 𝑌21 𝑌28 𝑌35 𝑌41 𝑌48 

1 0.80 0.59 0.87 0.14 0.22 0.13 0.12 0.13 1 1 1 0 0 0 0 0 

2 0.77 0.54 0.85 0.85 0.90 0.82 0.65 0.49 0 0 0 0 0 0 0 0 

3 0.79 0.58 0.86 0.11 0.17 0.09 0.09 0.10 1 1 1 1 1 1 1 1 

4 0.48 0.25 0.61 0.17 0.26 0.15 0.08 0.07 0 0 0 0 0 0 0 0 

5 0.97 0.92 0.98 0.83 0.89 0.80 0.80 0.82 1 1 1 1 1 1 1 1 

6 0.87 0.71 0.92 0.01 0.02 0.01 0.01 0.02 1 1 1 0 0 0 0 0 

7 0.97 0.93 0.98 0.16 0.25 0.14 0.16 0.23 1 1 1 0 1 0 0 1 

8 0.33 0.15 0.45 0.02 0.03 0.02 0.01 0.01 1 0 1 0 0 0 0 0 

9 0.78 0.56 0.85 0.55 0.67 0.50 0.43 0.37 0 0 1 0 0 0 0 0 

10 0.84 0.65 0.90 0.04 0.06 0.03 0.03 0.04 0 0 0 0 0 0 0 0 

11 0.21 0.09 0.31 0.02 0.03 0.01 0.00 0.00 0 0 0 0 0 0 0 0 

12 0.98 0.93 0.98 0.19 0.29 0.17 0.19 0.27 1 1 1 1 1 1 1 1 

13 0.56 0.32 0.68 0.33 0.45 0.29 0.18 0.14 0 0 0 0 0 0 0 0 

14 0.78 0.56 0.85 0.01 0.02 0.01 0.01 0.01 1 0 1 0 0 0 0 0 

15 0.49 0.26 0.62 0.01 0.01 0.01 0.00 0.00 1 0 1 0 0 0 0 0 
 

 

7.2.4 Data Generation with RSM 

            As described in Chapter 3, the final goal of classification with RSM is to find 

attribute mastery probabilities (𝑝𝑗𝑘). To compare accuracy of estimation from RSM to 

other models, true attribute mastery probabilities should be known. However, it is not 

possible to directly obtain true 𝑝𝑗𝑘 from the model because RSM does not specify the 

probability of mastery as a function of item features and person ability. In RSM, the 

estimated 𝑝𝑗𝑘 is based on the distances from the knowledge states in rule space whereas 

the estimated 𝑝𝑗𝑘 is obtained from equations with estimated person and item parameters 

in HO-DINA and MLTM-D. For this reason, the data generation based on RSM was 



 

85 
 

performed in a different way from the other two methods. The attribute patterns were 

obtained at the first step, and then the mastery probabilities were generated.  

          Examinees’ mastery or non-mastery (𝑎𝑗𝑘) of an attribute k is directly related to 

examinees’ latent trait level on the attribute (𝜃𝑗𝑘) which is unknown property. When 𝜃𝑗𝑘 

is known, mastery or non-mastery can be determined by applying cut-off score as 

proficiency level. The cut-off point is denoted as 𝜃𝑐𝑢𝑡.  If a 𝜃𝑗𝑘 is equal or greater than the 

𝜃𝑐𝑢𝑡, the examinee j will be classified as mastery. The attribute mastery patterns were 

generated in this way. To generate 𝜃𝑗𝑘s, the 𝜃𝑗𝑘 distributions should be considered. It is 

assumed that the 𝜃𝑗𝑘s are normally distributed with a mean of 0 and a standard deviation 

of 1 in population. In addition, the 𝜃𝑗𝑘s are assumed to be moderately correlated each 

other as in MLTM-D. However, the correlations within components (e.g., A1 vs. A2 and 

A4 vs. A5) are set to be relatively higher than the correlations between different 

components (e.g., A1 vs. A4) because within component attributes are under the same 

construct in the item design. The correlation matrices for 6 attributes design are shown in 

Table 16.  

 

Table 16 Attribute Correlation Matrix for 6 Attribute Q-matrix 

  A1 A2 A3 A4 A5 A6 
A1 1 .50 .50 .30 .30 .30 
A2 

 
1 .50 .30 .30 .30 

A3 
  

1 .30 .30 .30 
A4 

   
1 .50 .50 

A5 
    

1 .50 
A6 

     
1 
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              For 9 attributes, the same correlations were used as in 6 attributes design 

(i.e., .30 or .50). The 𝜃𝑗𝑘s were sampled from a multivariate normal (MVN) distribution 

with the mean vector of 𝜃𝑘(0) and the attribute correlation matrix. Since RSM assumes 

there are multidimensional latent abilities characterized by observable attributes 

(Tatsuoka, 2012), it is reasonable to sample 𝜃𝑗𝑘s from a multivariate normal distribution.  

           The sampled 𝜃𝑗𝑘s were used to determine mastery of attribute k by comparing 

them to the cut-off scores.  Different cut-off points were applied for different attributes; 

hence allowing them to vary in difficulty. Low 𝜃𝑐𝑢𝑡 indicates that high proportion of 

examinees has mastered the attribute in population, which means the attribute is easy to 

be mastered by the examinees, and vice versa. For example, if 𝜃𝑐𝑢𝑡 is -1for A1 and 0 for 

A2, approximately 84% of the examinees will be classified as mastery for A1while 50% 

of them will master A2. In this case, A2 is difficult to be mastered by the examinees than 

A1. For 6 attribute Q-matrix, 𝜃𝑐𝑢𝑡= {-1.5, -1.0. -0.5, 1.5, -1.0. -0.5} and for 9 attribute Q-

matrix,  𝜃𝑐𝑢𝑡= {-1.5, -1.0. -0.5, 1.5, -1.0. -0.5, 1.5, -1.0. -0.5}. 

           The ability level for each attribute is related to the attribute mastery probabilities. 

However, in RSM, the attribute mastery probabilities are not a perfect function of 𝜃s due 

to the error of measurement and the probability of misclassifications in diagnosing 

individual’s misconceptions. attribute mastery probabilities were randomly drawn from 

different uniform distributions for different 𝜃𝑘 levels. The ranges of 𝜃𝑗𝑘 and the 

corresponding uniform distributions are given in Table 17. The correlations between 𝜃𝑗𝑘 

and 𝑝𝑗𝑘 were around .90. A sample data was provided in Table 18 with 6 attributes and 

10 examinees. For the generation of item responses, same process was used as in MLTM-

D because RSM is also a non-compensatory model.  
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Table 17 Uniform Distributions for Attribute Mastery Probabilities  

Attribute Non-mastery(0) Mastery(1) 

A1, A4,A7 If 𝜃 < -1.8, P ~ U (0, 0.249) 

If -1.8 ≤ 𝜃 < -1.2, P ~ U (0.25, 

0.499) 

If -1.2 ≤ 𝜃 < -0.2, P ~ U (0.5, 0.699) 

If -0.2 ≤ 𝜃 < 0.8, P ~ U (0.7, 0.899) 

If 0.8 ≤ 𝜃, P ~ U (0.9, 1) 

A2, A5,A8 If 𝜃 < -1.3, P ~ U (0, 0.249) 

If -1.3 ≤ 𝜃 < -0.7, P ~ U (0.25, 

0.499) 

If -0.7 ≤ 𝜃 < 0.3, P ~ U (0.5, 0.699) 

If 0.3 ≤ 𝜃 < 1.3, P ~ U (0.7, 0.899) 

If 1.3 ≤ 𝜃, P ~ U (0.9, 1) 

A3, A6,A9 If 𝜃 < -0.8, P ~ U (0, 0.249) 

If -0.8 ≤ 𝜃 < -0.2, P ~ U (0.25, 

0.499) 

If -0.2 ≤ 𝜃 < 0.8, P ~ U (0.5, 0.699) 

If 0.8 ≤ 𝜃 < 1.8, P ~ U (0.7, 0.899) 

If 1.8 ≤ 𝜃, P ~ U (0.9, 1) 

    
    
 
Table 18 Attribute Mastery Probabilities and Attribute Patterns 

j 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝑎1 𝑎2 𝑎3 𝑎4  𝑎5  𝑎6       𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 

1 1.4 0.6 1.3 -0.8 1.2 0.4 1 1 1 0 1 1 0.9 0.8 0.9 0.4 0.7 0.7 

2 1.0 -0.2 0.8 1.0 0.8 0.2 1 0 1 1 1 1 0.6 0.4 0.5 1.0 0.6 1.0 

3 0.9 1.2 -1.0 1.3 0.4 1.7 1 1 0 1 1 1 0.6 0.8 0.3 0.8 0.8 0.7 

4 1.7 0.2 0.8 2.3 1.2 1.1 1 1 1 1 1 1 0.8 0.6 0.7 1.0 1.0 0.9 

5 1.0 0.2 -0.3 2.0 2.8 0.5 1 1 0 1 1 1 1.0 0.7 0.2 0.5 0.6 0.7 

6 -
0.3 0.1 -1.8 -0.8 0.4 -1.0 0 1 0 0 1 0 0.1 0.9 0.2 0.2 0.9 0.5 

7 1.1 2.1 -0.1 1.3 0.3 0.6 1 1 0 1 1 1 0.6 0.9 0.1 0.8 0.8 0.7 

8 1.3 0.5 -0.3 2.2 1.0 2.4 1 1 0 1 1 1 0.8 0.9 0.3 0.8 0.5 1.0 

9 1.3 0.6 -0.2 1.8 1.9 0.8 1 1 0 1 1 1 0.7 0.5 0.2 0.9 0.7 0.7 

10 2.7 1.3 2.8 2.0 2.0 0.6 1 1 1 1 1 1 0.7 0.9 0.6 0.8 0.7 0.7 
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7.2.5 Inspection of Simulated Data 

         A simple item analysis was conducted with the simulated data sets. P-values and 

point-biserial correlations from each testing condition were examined. Table 19 and 

Table 20 shows p-values and point-biserial correlations for a replication of the data sets. 

P-values are item difficulty index in CTT perspective.  Point-biserial correlation 

coefficient as an item discrimination index represents the correlation between the item 

score and the total test score. The descriptive statistics shows acceptable range of item 

characteristics. For easy test condition, item parameters were set to ensure that the mean 

of p-value for each data set is between .60 and .70. For hard test condition, item 

responses were generated from items with the mean of p-value is between .40 and .50. 

 

Table 19 Descriptive Statistics of P-value and Point-Biserial Correlation for Easy Test  

 

 

 

 
P-value 

Method HO- DINA MLTM-D RSM 
Q-matrix 6 9 6 9 6 9 
Mean 0.636 0.669 0.634 0.614 0.607 0.611 
SD 0.086 0.053 0.126 0.128 0.160 0.128 
Max 0.778 0.767 0.862 0.882 0.741 0.771 
Min 0.490 0.597 0.439 0.380 0.335 0.301 

 

 
Point-biserial Correlation 

Method HO- DINA MLTM-D RSM 
Q-matrix 6 9 6 9 6 9 
Mean 0.463 0.513 0.502 0.512 0.483 0.479 
SD 0.097 0.118 0.075 0.078 0.051 0.062 
Max 0.580 0.604 0.610 0.613 0.673 0.642 
Min 0.376 0.345 0.342 0.265 0.343 0.350 
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Table 20 Descriptive Statistics of P-value and Point-Biserial Correlation for Hard Test   

 

 

7.2.6 Cognitive Diagnostic Analysis and Comparisons 

       The three models were applied all the data set generated with three methods. First of 

all, in the RSM analysis, the first step is to generating the ideal response patterns. Ideal 

response patterns are theoretical item score patterns corresponding to each of the attribute 

patters and used as classification category in RSM. 

        The ideal response patterns were generated using three different Q-matrices 

presented above. Constructing an attribute pattern matrix should be proceeded to generate 

ideal response pattern. This attribute pattern matrix includes all possible combinations 

among the attributes. For the first Q-matrix, six attribute patterns were included in the 

matrix. Thus, the total number of attribute patterns is 6426 = . The third Q-matrix include 

512( 92 ) ideal response patterns. The ideal response patterns were generated from the 

attribute pattern matrix and the Q-matrix by applying Boolean algebra. Next step of the 

 
P-value 

Method HO- DINA MLTM-D RSM 
Q-matrix 6 9 6 9 6 9 
Mean 0.427 0.412 0.419 0.417 0.444 0.400 
SD 0.075 0.048 0.098 0.116 0.134 0.129 
Max 0.668 0.767 0.712 0.680 0.701 0.699 
Min 0.210 0.180 0.169 0.170 0.121 0.185 

 

 
Point-biserial Correlation 

Method HO- DINA MLTM-D RSM 
Q-matrix 6 9 6 9 6 9 
Mean 0.482 0.479 0.565 0.467 0.441 0.401 
SD 0.095 0.113 0.087 0.098 0.065 0.061 
Max 0.580 0.604 0.610 0.613 0.653 0.642 
Min 0.201 0.249 0.312 0.246 0.243 0.220 



 

90 
 

RSM analysis is to formulating the rule space was done by calculating the examinees’ 

ability parameters (
^
θ ) and measures of unusualness (ζ) for both the observed and the 

ideal response patterns. First, the IRT parameters were estimated with the two parameter 

logistic model. FlexMIRT (Cai, 2013) was implemented to obtain the Bayesian expected 

a posteriori (EAP) estimates. The zeta index was calculated by following the equation 

(3.1). All the processes to obtain the ζ s were performed utilizing SAS macro. In the 

classification procedure, the Mahalanobis distances were calculated with Equation (3.3). 

10 closest distances within each set of ideal points were chosen as a classification 

category for each response pattern. The attribute mastery probabilities were calculated for 

each examinee by using Equation (3.4). SAS macro was utilized in all processes of 

classification.  

         For HO-DINA, FlexMIRT (Cai, 2013) was used. SAS was also implemented for 

MLTM-D. Since MLTL-D is a latent trait model, not a latent class model, it provides 

estimated examinee’s ability parameter on a continuous scale for each component or 

attribute. To compare three models, attribute mastery patterns (αk) were determined by 

comparing individual 
^
θ  to the cutline.  If  

^
θ > θcutline ,   then αk = 1 and 0, otherwise. 

Unlike HO-DINA and RSM, MLTM-D only estimates attribute mastery probabilities for 

each examinee on an item ( )
^

ijkp , not for overall test. To obtain overall mastery 

probability for each attribute on a test ( jkp
^

), mean values of ijkp
^

for items that involves 

the attribute k were computed and compared to the results from the other two models.  

           The diagnostic results from the three models, RSM, DINA, and MLTM-D, were 

compared. RMSE (root mean square error) and ASB (average signed bias), were used to 
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check the general accuracy of the parameter estimation (�̂�𝑘). These two statistics 

represent discrepancy between true attribute mastery probabilities ( jkp ) for each 

examinee on an attribute and the corresponding estimated probabilities ( jkp
^

) from a 

CDM.  RMSE and ASB can be defined respectively as: 

RMSE=
N

pp
N

j
jkjk∑

=

−
1

2
^

)(
and ASB=

N

pp
N

j
jkjk∑

=

−
1

^
)(

, 

where N is the total number of examinees. CCR (correct classification rate) was used to 

check if a model correctly classifies a response pattern into mastery or non-mastery of an 

attribute. CCR is the proportion of correct classification in attribute mastery patterns 

)( jka for each diagnostic result.  

 

7.3 Results 

7.3.1 General Comparison of Three Models 

         To compare general diagnostic results for each model, comparison statistics were 

obtained. The results from HO-DINA, MLTM-D, and RSM are shown in Table 21, Table 

22, and Table 23, respectively. Means of RMSE, ASB, and CCR at all attributes were 

presented for each simulation condition in the tables. Each value in the tables is a mean 

of 6 or 9 attributes. From RMSE and ASB results, it was found that estimated attribute 

mastery probabilities (�̂�𝑘) in RSM are more biased than DINA and MLTM-D for all 

simulation conditions. Correct classification rates (CCR) also shows better results in HO-

DINA and MLTM-D than RSM for most cases.  
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Table 21 RMSE, ASB, and CCR for HO-DINA 

Attributes Test 
Difficulty 

Data 
Generation 

RMSE ASB CCR 

6 Easy HO-DINA 0.230 -0.056 0.972 
  MLTM-D 0.250 0.054 0.834 
  RSM 0.254 -0.035 0.758 
 Hard HO-DINA 0.251 0.033 0.906 
  MLTM-D 0.234 0.010 0.511 
  RSM 0.261 -0.026 0.721 
9 Easy HO-DINA 0.212 -0.080 0.991 
  MLTM-D 0.250 0.070 0.815 
  RSM 0.317 -0.124 0.755 
 Hard HO-DINA 0.244 0.011 0.963 
  MLTM-D 0.229 0.008 0.692 
  RSM 0.252 0.003 0.686 
 

 

Table 22 RMSE, ASB, and CCR for MLTM-D 

Attributes Test 
Difficulty 

Data 
Generation 

RMSE ASB CCR 

6 Easy HO-DINA 0.172 -0.018 0.840 
  MLTM-D 0.262 0.103 0.765 
  RSM 0.215 0.020 0.732 
 Hard HO-DINA 0.185 -0.035 0.853 
  MLTM-D 0.262 -0.103 0.765 
  RSM 0.219 0.025 0.783 
9 Easy HO-DINA 0.218 -0.058 0.802 
  MLTM-D 0.277 0.115 0.730 
  RSM 0.198 -0.009 0.764 
 Hard HO-DINA 0.183 0.030 0.854 
  MLTM-D 0.247 -0.091 0.800 
  RSM 0.198 -0.020 0.786 
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Table 23 RMSE, ASB, and CCR for RSM 

Attributes Test 
Difficulty 

Data 
Generation 

RMSE ASB CCR 

6 Easy HO-DINA 0.354 0.151 0.615 
  MLTM-D 0.373 0.181 0.561 
  RSM 0.343 0.105 0.561 
 Hard HO-DINA 0.363 -0.063 0.603 
  MLTM-D 0.329 -0.023 0.622 
  RSM 0.352 -0.017 0.512 
9 Easy HO-DINA 0.300 0.165 0.721 
  MLTM-D 0.358 0.235 0.627 
  RSM 0.327 -0.015 0.649 
 Hard HO-DINA 0.299 -0.045 0.692 
  MLTM-D 0.304 0.101 0.662 
  RSM 0.305 -0.053 0.604 
 

 

7.3.2 Number of Attributes 

        In order to investigate impact of number of attributes on correct classification, 

marginal means of CCR were obtained for each attribute design and each model. See 

Table 24 for details. There were no differences in CCR by number of attributes for HO-

DINA and MLTM-D. Both 6 and 9 attributes are appropriate for the two models. 

However, for RSM, CCR was lower in 6 attribute condition than 9 attribute condition. 

 

Table 24 Marginal Means of CCR for Three Models  

Model  
 

6 Attributes  
 

9Attributes  

HO-DINA  0.756 0.810 
    

MLTM-D  0.779 0.783 
    

RSM  0.579 0.671 
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7.3.3 Test Difficulty 

          For RSM applications, it was hypothesized that RSM will show more accurate 

classification for hard test than easy test. To investigate this hypothesis, marginal means 

of RMSE, ASB, and CCR in RSM application were presented for each attribute. Table 25 

is for 6 attribute design, and Table 26 shows results for 9 attribute design. It was found 

that level of test difficulty did not have impact on correct classification for both item 

design. However, all ASBs for easy test are positive while all ASBs for hard test are 

negative. ASB statistic implies a direction of biases on attribute mastery probabilities. 

The positive ASB means that kp
^

s were likely to be under-estimated in easy test and 6 

attribute condition. The negative ASB means that kp
^

s were likely to be over-estimated in 

hard test and 6 attribute condition.  

        Differences on rule space analysis by test difficulty can be observed by projecting 

the simulated response patterns and the ideal patterns into rule space. See Figure 7 and 

Figure 8 for 6 attributes condition and 9 attributes condition, respectively. On the rule 

space, the first dimension represents estimated ability parameters, and the second 

dimension represent ξ index which is fit index in the RSM. The left plot is rule space 

projections from easy tests for each data generation method, and the right ones are results 

from hard tests data. Blue color corresponds to the points of examinees’ response patterns, 

and red color is for ideal response patterns which are knowledge states in the RSM. In 9 

attributes condition, ideal response patterns are positively skewed for easy tests data (left 

side plots).  
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Table 25 Comparisons by Test Difficulty of RSM Application for 6 Attribute Design  

 

 

 

Table 26 Comparisons by Test Difficulty of RSM Application for 9 Attribute Design  

 Easy Test Hard Test 
 RMSE ASB CCR RMSE ASB CCR 

1A  0.236 0.071 0.861 0.261 0.041 0.757 

2A  0.272 0.091 0.769 0.279 0.013 0.659 

3A  0.366 0.229 0.613 0.313 0.014 0.619 

4A  0.257 0.088 0.797 0.280 0.024 0.645 

5A  0.294 0.097 0.680 0.295 0.001 0.610 

6A  0.444 0.288 0.461 0.323 0.017 0.642 

7A  0.283 0.114 0.753 0.269 0.047 0.713 

8A  0.338 0.118 0.611 0.282 0.028 0.617 

9A  0.467 0.056 0.444 0.420 -0.176 0.610 
M 0.328 0.128 0.665 0.302 0.001 0.652 

 Easy Test Hard Test 
 RMSE ASB CCR RMSE ASB CCR 

1A  0.288 0.112 0.743 0.361 -0.002 0.621 

2A  0.374 0.172 0.571 0.345 -0.025 0.537 

3A  0.375 0.135 0.540 0.370 -0.050 0.580 

4A  0.327 0.147 0.586 0.331 -0.016 0.573 

5A  0.379 0.167 0.495 0.328 -0.032 0.574 

6A  0.397 0.142 0.540 0.353 -0.081 0.588 
M 0.357 0.146 0.579 0.348 -0.034 0.579 
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Figure 7. Rule Space for 6 Attribute Condition (left: easy test, right: hard test) 
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Figure 8. Rule Space for 9 Attribute Condition (left: easy test, right: hard test) 

 

7.3.4 Trait Dimensionality 

             As described in the first hypothesis, the three models have differences in trait 



 

98 
 

dimensionality. Based on these differences of the data generation, it is hypothesized that 

recovery of parameter, pk for cross applications of the models will differ by which model 

is applied. However, as shown in Table 21, 22, and 23, the cross application results did 

not support this hypothesis. The diagnostic results from the three models were not 

different by the methods of data generation. In other words, dimensionality of ability 

parameter on the responses data did not influence on accurate classification. HO-DINA 

and MLTM-D provided better diagnosis than RSM in most conditions. From this finding, 

average proportions of same classifications of estimated attribute mastery were obtained 

across the three models for 6 attribute and easy test condition. See Table 27. These values 

are average of each proportion for 6 attributes. The classification results from MLTM-D 

and HO-DINA were more similar to each other than RSM. Other tests conditions also 

provided similar results. 

 

Table 27 Mean Proportion of Same Classification for Attribute Mastery Pattern ( ka
^

) 

Data 
Generation 

HO-DINA vs.  
MLTM-D 

HO-DINA vs.  
RSM 

MLTM-D vs.  
RMS 

HO-DINA 0.837 0.604 0.557 
MLTM-D 0.649 0.533 0.472 
RSM 0.796 0.533 0.541 
 

 

7.3.5 Trait Level for RSM 

         Accuracy of diagnostic results by trait level for RSM was tested. Marginal means of 

the comparisons statistics across all attributes are given in Table 28. Methods of data 
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generations were not considered for this investigation. The estimated attribute mastery 

probabilities from RSM were less biased for low level of trait than for high level of trait.  

 

Table 28 RMSE, ASB, and CCR by Trait Level for RSM 

Attributes Test 
Difficulty 

^
θ  

RMSE ASB CCR 

6 Easy Low 0.327 -0.171 0.574 
  Medium 0.323 0.202 0.633 
  High 0.436 0.367 0.618 
 Hard Low 0.403 -0.329 0.625 
  Medium 0.302 -0.111 0.609 
  High 0.415 0.307 0.566 
9 Easy Low 0.245 -0.056 0.724 
  Medium 0.298 0.225 0.670 
  High 0.420 0.389 0.630 
 Hard Low 0.239 -0.115 0.769 
  Medium 0.296 0.092 0.649 
  High 0.389 0.318 0.588 
 

 

7.3.6 Comparisons of Component Mastery 

            The item designs used in this study have hierarchical structures (i.e., component 

and attribute structure).  Mastery probabilities at component levels were obtained and 

compared by the models. See Table 29, Table 30, and Table 30 for the results by three 

models. MLTM-D has strength when underlying cognitive variables have hierarchical 

structures. In Table 29 and Table 30, RMSE values were smaller for the data generation 

based on MLTM-D than the other two methods. In other words, component mastery 

probabilities from HO-DINA and MLTM-D were less biased when trait dimensions are 

two or three. 
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Table 29 Marginal Means of RMSE and ASB for HO-DINA 

Components Test 
Difficulty 

Data 
Generation 

RMSE ASB 

2 Easy HO-DINA 0.254 0.141 
  MLTM-D 0.173 0.168 
  RSM 0.263 0.125 
 Hard HO-DINA 0.153 0.053 
  MLTM-D 0.129 -0.203 
  RSM 0.192 -0.097 
3 Easy HO-DINA 0.280 0.185 
  MLTM-D 0.168 0.154 
  RSM 0.307 0.045 
 Hard HO-DINA 0.199 -0.085 
  MLTM-D 0.174 -0.131 
  RSM 0.210 -0.093 
 

 

Table 30 Marginal Means of RMSE and ASB for MLTM-D 

Components Test 
Difficulty 

Data 
Generation 

RMSE ASB 

2 Easy HO-DINA 0.254 0.125 
  MLTM-D 0.123 -0.134 
  RSM 0.143 0.089 
 Hard HO-DINA 0.263 0.064 
  MLTM-D 0.129 -0.053 
  RSM 0.142 0.047 
3 Easy HO-DINA 0.289 0. 061 
  MLTM-D 0.112 0.135 
  RSM 0.138 0.019 
 Hard HO-DINA 0.293 -0.048 
  MLTM-D 0.124 0.051 
  RSM 0.203 -0.083 
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Table 31 Marginal Means of RMSE and ASB for RSM 

Components Test 
Difficulty 

Data 
Generation 

RMSE ASB 

2 Easy HO-DINA 0.339 0.179 
  MLTM-D 0.373 0.081 
  RSM 0.348 -0.105 
 Hard HO-DINA 0.357 0.058 
  MLTM-D 0.334 -0.063 
  RSM 0.312 -0.089 
3 Easy HO-DINA 0.330 0.147 
  MLTM-D 0.339 0.136 
  RSM 0.367 -0.059 
 Hard HO-DINA 0.269 0.067 
  MLTM-D 0.312 0.199 
  RSM 0.309 -0.038 
 

 

7.4 Discussion 

         In this study, it was found that HO-DINA and MLTM-D provided more accurate 

diagnostic results than RSM in all simulation conditions. From this finding, it can be 

suggested to apply HO-DINA when ability assumed to be unidimensional (i.e., there is 

only one general ability parameter). When underlying trait is multidimensional, MLTM-

D is an appropriate model to be used for diagnosis. Even though MLTM-D is a latent trait 

model, not latent class model, classification results (i.g., mastery or non-mastery) can be 

obtained by applying cuff-off level of mastery to the attribute or component mastery 

probabilities. Determining the cut-off level should be careful and depends on the purpose 

of diagnostic assessments and level of test difficulty.  

         In this study, diagnosis from RSM was less accurate than HO-DINA and MLTM-D. 

However, RSM classifications for 9 attributes condition were better than 6 attributes 
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condition. This is due in part to the number of ideal response patterns and distances 

between the actual response patterns and the ideal response patterns. Since, 6 attributes 

Q-matrix generates a less number of ideal response patterns than 9 attributes Q-matrix 

(i.e., 64 versus 512 patterns), less number of points are projected into the rule space. This 

situation might result in inaccurate classification. Thus, with the simulation conditions 

used in the current study, it cannot be conclude that RSM is not an appropriate model for 

diagnosis. In future research, other testing conditions for RSM should be investigated 

with various simulation variables and conditions. For example, the number of attributes 

involved in items can be a factor that influences on accurate classification. Since RSM is 

a non-compensatory model, mastery of all required skills is necessary for a correct 

response. Thus, the number of attributes involved in an item is an important factor of 

number of correct responses.  

          Level of test difficulty was not a important factor for accurate diagnosis for HO-

DINA and MLTM-D. However, level of test difficulty should be carefully considered 

when providing attribute mastery probabilities obtained by RSM. In a 6 attributes 

condition, attribute mastery probabilities were likely to be under-estimated for easy test 

while they were likely to be over-estimated for the hard tests. Furthermore, the rule space 

plots in RSM analyses provided less overlap between ideal response points and actual 

response points. In such case, the diagnostic results from RSM may be less reliable than 

the situation where ideal and actual response points are homogeneously distributed. 

Therefore, it is recommended to consider the rule space plot first before obtaining 

diagnostic results from RSM.  
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CHAPTER 8 

EMPIRICAL STUDY: MATHMETICS TEST DATA 

         CDMs can be used to demonstrate how well standards-based assessments classify 

students’ level of proficiency. In empirical study, the RSM, HO-DINA, and MLTM-D 

will be applied to a mathematical test data to estimate real examinees’ attribute mastery 

probability (�̂�𝑗𝑘) and the mastery pattern (𝑎𝑘) of each examinee.  

 

8.1 Method 

8.1.1 Subjects and Instruments 

           The state accountability test consisted of 86-items that were administered to all 8th 

grade students in Kansas. A representative sample of 2993 response patterns was 

obtained. All items in the test were multiple-choice items with four options and they were 

dichotomously scored.  

           Mathematical experts identified that the test for measuring mathematics ability has 

following four standards: number and computation, algebra, geometry and data. Each 

standard has two or three benchmarks, and the total number of benchmarks is 10. The 

benchmarks were used as attributes in the rule space analysis. See Appendix B for details. 

The Q matrix involving 10 attributes and 86 items was constructed by identifying the 

required skills for getting an item correct on the test. The Q-matrix is available in 

Appendix A.  

 

8.1.2 Cognitive Diagnostic Analysis 
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          Three diagnostic models, RSM, HO-DINA, and MLTM-D, were applied to the 

empirical data by following the same process as in the previous simulation study.  

 

8.2 Results 

            Descriptive statistics of diagnostic results will be provided. Attribute mastery 

probabilities of 10 attributes are given in Table 32. Comparisons for classifications are 

available in Table 33. As found in the previous simulation study, HO-DINA and 

MLTM-D provided similar classification.  

 

Table 32 Descriptive Statistics of Attribute Mastery Probabilities (N=2993) 

 HO-DINA MLTM-D RSM 
 Min Max M Min Max M Min Max M 
Raw 
Score 

22 86 60.68 
(15.12) 

22 86 60.68 
(15.12) 

22 86 60.68 
(15.12) 

1

^
p  

0.000 0.999 0.533 0.003 0.999 0.585 0.000 1.000 0.702 
  (0.412)   (0.397)   (0.397) 

2

^
p  

0.001 1.000 0.645 0.005 0.941 0.590 0.000 1.000 0.789 
  (0.402)   (0.278)   (0.278) 

3

^
p  

0.000 1.000 0.651 0.070 0.958 0.619 0.000 1.000 0.706 
  (0.410)   (0.294)   (0.294) 

4

^
p  

0.000 1.000 0.436 0.160 0.929 0.526 0.000 1.000 0.601 
  (0.435)   (0.408)   (0.408) 

5

^
p  

0.000 1.000 0.535 0.030 0.967 0.645 0.000 1.000 0.575 
  (0.416)   (0.402)   (0.402) 

6

^
p  

0.006 1.000 0.637 0.078 0.923 0.596 0.000 1.000 0.606 
  (0.407)   (0.308)   (0.308) 

7

^
p  

0.001 1.000 0.638 0.038 0.926 0.613 0.000 1.000 0.687 
  (0.404)   (0.270)   (0.270) 

8

^
p  

0.166 1.000 0.804 0.129 0.979 0.756 0.000 1.000 0.416 

  (0.287)   (0.254)   (0.254) 

9

^
p  

0.000 1.000 0.432 0.180 0.920 0.530 0.000 1.000 0.440 
  (0.427)   (0.436)   (0.436) 

10

^
p  

0.001 1.000 0.643 0.020 0.959 0.683 0.000 1.000 0.383 
  (0.400)   (0.345)   (0.345) 
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Table 33 Proportion of Same Classification for Examinee Attribute Mastery Pattern ( ka
^

) 

(N=2993) 

 HO-DINA vs. MLTM-D HO-DINA vs. RSM MLTM-D vs. RSM 

1a  0.89 0.49 0.55 

2a  0.78 0.52 0.49 

3a  0.91 0.41 0.54 

4a  0.94 0.38 0.47 

5a  0.71 0.58 0.60 

6a  0.68 0.35 0.46 

7a  0.64 0.56 0.39 

8a  0.71 0.42 0.58 

9a  0.69 0.47 0.35 

10a  0.80 0.58 0.46 

 

 

        Fit Statistics for HO-DINA, MLTM-D, and 2PL IRT model are presented in Table 

34. Since RSM does not provide fit statistics, goodness of fit was tested with 2PL IRT 

model. The results indicated that HO-DINA did not fit as well as the MLTM-D. 

 

Table 34 Goodness of Fit 

 HO-DINA MLTM-D 2PL IRT 

-2lnL 245,935 242,549 238,783 

AIC 246,301 243,818 239,127 

AIC: Akaike Information Criterion 
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            Descriptive statistics for estimated theta and zeta index in RSM are given in 

Table 35. actual

^
θ  and actualζ  were obtained from students’ actual response patterns, and 

were obtained from ideal response patterns. The plot in the rule space is presented in 

Figure 9. An example of diagnostic results by RSM is available in Table 36. 

 

Table 35 Descriptive Statistics for Estimated Theta and Zeta in RSM (N=2993 for actual; 

N=1024 for ideal) 

 
Ideal Score Actual Score actual

^
θ  actualζ  ideal

^
θ  idealζ  

Min 0.00 22.00 -1.94 -2.81 -3.98 0.28 

Max 86.00 86.00 2.62 9.00 1.11 16.10 

Mean 37.03 60.68 0.00 1.02 -1.98 7.11 

SD 14.64 15.12 0.97 1.60 0.73 2.75 

 

Table 36 RSM Classification Results for a Student (
^
θ = -1.76) 

Knowledge 
State Theta Zeta Mahalanobis 

distance 

         
A 
1 

A 
2 

A 
3 

A 
4 

A 
5 

A 
6 

A 
7 

A 
8 

A 
9 

A 
10 

0362 -1.3338 3.8370 0.0024 0 0 1 0 0 1 1 1 1 0 
0653 -1.3334 3.8326 0.0026 1 1 1 0 0 1 1 0 1 1 
0177 -1.3343 3.8798 0.0030 1 1 0 1 0 1 1 1 0 0 
0261 -1.4513 3.8302 0.0031 1 1 0 1 1 0 1 0 1 0 
0657 -1.3334 3.8843 0.0033 1 1 0 1 0 1 1 0 1 1 
0659 -0.1984 3.9088 0.0034 1 1 1 1 0 1 1 0 1 1 
0608 -1.7080 3.8457 0.0036 0 0 1 1 0 1 0 0 1 1 
0763 -1.1366 3.7905 0.0054 1 0 0 1 1 1 1 1 1 1 
0376 -1.3338 3.9098 0.0057 1 0 1 0 1 1 1 1 1 0 
0307 -2.2212 3.8528 0.0060 1 0 0 1 1 0 0 1 1 0 

Attribute Mastery Probabilities = [0.8   0.5   0.5   0.7   0.4   0.8    0.8   0.5   0.9   0.5]  
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Table 36 shows an example of classification results for an examinee. This 

student is classified into 10 knowledge states by finding 10 closest ideal points on 

the rule space. 

 

 

Figure 9. Rule Space Plot (red: ideal, blue: student’s pattern) 

 

8.3 Discussion 

           In the empirical study, the three models were applied to a standard-based 

assessment test data. As found in the previous simulation study, the diagnostic results 

(attribute mastery probabilities and the attribute mastery patterns) from HO-DINA and 

MLTM-D were more similar each other than those from RSM. RSM is a less appropriate 

model to be applied to this data than MLTM-D and HO-DINA. This test has easy level of 

test difficulty because the mean of raw scores was 60.68 out of 86 items and the mean p-

value of the items was moderately high ( M =0.70). However, the attribute structure of 

this test is not simple. The test involves 10 attributes and 28% of the items requires 

multiple attributes for a correct answer. The ideal response patterns based on the Q-

matrix involves only few response patterns (knowledge states) with high level of theta, 
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which result in in accurate classification for students with high level of theta. Since high 

proportion of the examinees have high level of theta, overall diagnostic results from RSM 

could be less reliable than the other models.  

         When considering the characteristics of the Q-matrix, MLTM-D seems to be the 

most appropriate model for the data because the Q-matrix involevs 4 standards and each 

standards has 2 or  3 benchmark. Therefore, multidimensionality of the underlying traits 

should be assumed for diagnosis. Furthermore, order relationships in attribute difficulty 

are not assumed for the Q-matrix. However, if diagnoses are conducted by standards, 

HO-DINA is a good model to be applied. Even though sub indicators for each benchmart 

(attribute) were not presented in the cognitive skill structure, there are several sub 

indicators in the test blue print.  

         In future studies, other CDMS can be applied to this data. Since only compensatory 

models were applied, comparing to non-compensatory models (i.e., GDM or LCDM) will 

be necessary to investigate if this type of test is appropriate for a compensatory model or 

non-compensatory model. 
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APPENDIX A:Q-MARIX FOR KANSAS STATE 8th GRADE MATHEMATICS TEST 

 

Item A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 
1 1 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 1 
3 1 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 1 0 
5 0 1 1 0 0 0 0 0 0 0 
6 0 1 1 0 0 0 0 0 0 0 
7 0 1 1 0 0 0 0 0 0 0 
8 0 1 1 0 0 0 0 0 0 0 
9 0 0 0 0 0 1 0 1 0 0 
10 0 0 0 0 0 1 0 1 0 0 
11 0 0 0 0 0 1 0 1 0 0 
12 0 0 0 0 0 0 1 0 0 0 
13 0 0 0 0 0 0 1 0 0 0 
14 0 0 0 0 0 0 1 0 0 0 
15 0 0 0 0 1 0 0 0 0 0 
16 0 0 0 0 1 0 0 0 0 0 
17 0 1 0 0 0 0 0 0 0 0 
18 0 1 0 0 0 0 0 0 0 0 
19 1 0 0 0 0 0 0 0 0 0 
20 0 0 0 1 0 0 0 0 0 0 
21 0 0 0 1 0 0 0 0 0 0 
22 0 0 0 1 0 0 0 0 0 0 
23 0 0 0 1 0 0 0 0 0 0 
24 0 0 1 0 0 0 0 0 0 0 
25 0 0 1 0 0 0 0 0 0 0 
26 0 0 1 0 0 0 0 0 0 0 
27 0 0 0 0 0 1 0 1 0 0 
28 0 0 1 0 0 0 0 0 0 0 
29 0 0 1 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 0 0 1 
31 0 0 0 0 0 0 0 0 0 1 
32 0 0 0 0 0 0 0 0 0 1 
33 0 0 0 0 0 0 0 0 0 1 
34 0 0 0 0 0 0 0 0 0 1 
35 0 0 1 0 0 1 0 0 0 0 
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Continued 

Item A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 
36 0 0 1 0 0 1 0 0 0 0 
37 0 0 1 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 1 0 0 
39 0 0 0 0 0 1 0 1 0 0 
40 0 0 0 0 0 1 0 1 0 0 
41 0 0 0 0 0 1 0 1 0 0 
42 0 1 0 0 0 0 0 0 0 0 
43 1 0 0 0 0 0 0 0 0 0 
44 0 1 0 0 0 0 0 0 0 0 
45 0 0 0 0 0 0 1 0 0 0 
46 0 1 0 0 0 0 0 0 0 0 
47 0 0 1 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 0 1 0 
49 0 0 0 0 0 0 0 0 1 0 
50 0 0 0 0 0 0 0 0 1 0 
51 0 0 0 0 0 0 0 0 1 0 
52 0 0 0 0 1 0 0 0 0 0 
53 0 0 0 1 0 1 0 0 0 0 
54 0 0 0 1 0 1 0 0 0 0 
55 1 0 0 0 0 0 0 0 0 0 
56 0 0 0 0 0 0 1 0 0 0 
57 0 0 0 0 1 0 0 0 0 0 
58 0 0 0 0 1 0 0 0 0 0 
59 0 0 0 0 1 0 0 0 0 0 
60 0 0 0 0 1 0 0 0 0 0 
61 1 0 0 0 0 0 0 0 0 0 
62 0 0 0 0 0 1 1 0 0 0 
63 0 0 0 0 0 1 1 0 0 0 
64 0 0 0 0 0 1 1 0 0 0 
65 0 0 0 0 0 1 1 0 0 0 
66 0 0 0 0 0 1 1 0 0 0 
67 0 0 1 0 0 0 0 0 0 0 
68 0 0 1 0 0 0 0 0 0 0 
69 0 0 0 1 0 0 0 0 0 0 
70 0 0 1 0 0 0 0 0 0 0 
71 0 0 0 1 0 1 0 0 0 0 
72 0 0 0 1 0 0 0 0 0 0 
73 0 1 0 0 0 0 0 0 0 0 
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Continued 

Item A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 
74 0 0 0 0 0 0 0 0 1 0 
75 0 0 0 0 0 0 0 0 1 0 
76 0 0 0 0 0 0 0 0 1 0 
77 0 0 0 1 0 0 0 0 0 0 
78 0 0 0 1 0 0 0 0 0 0 
79 0 0 0 0 0 0 0 0 1 0 
80 0 0 0 0 0 0 0 0 1 0 
81 0 0 0 0 0 0 0 0 1 0 
82 0 0 1 1 0 0 0 0 0 0 
83 0 0 0 1 0 0 0 0 0 0 
84 0 0 0 1 0 1 0 0 0 0 
85 0 0 1 1 0 0 0 0 0 0 
86 0 0 0 1 0 0 0 0 0 0 
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APPENDIX B: ATTRIBUTES FOR THE KANSAS 8th GRADE MATHENATICS 

TEST 

Attribute Attribute Description 

 
A1 

I.  Number and Computation 
1. Number Sense: The student demonstrates number sense for real numbers 

and simple algebraic expressions in a variety of situations. 

A2 2. Number System and Their Properties: The student demonstrates an 
understanding of the real number system; recognizes, applies, and 
explains their properties; and extends these properties to algebraic 
expressions. 

A3 3. Computation: The student models, performs, and explains computation 
with rational numbers, the irrational number pi, and algebraic expressions 
in a variety of situations. 

 
A4 

II.  Algebra 
4. Variable, Equations, and Inequalities: The student uses variables, 

symbols, real numbers, and algebraic expressions to solve equations and 
inequalities in a variety of situations.  

A5 5. Functions: The student recognizes, describes, and analyzes constant, 
linear, and nonlinear relationships in a variety of situations. 

A6 6. Models: The student generates and uses mathematical models to 
represent and justify mathematical relationships found in a variety of 
situations.  

 
A7 

III.  Geometry 
7. Geometric Figures and Their Properties: The student recognizes 

geometric figures and compares their properties in a variety of 
situations. 

A8 8. Geometry form an Algebraic Perspective: The student uses an algebraic 
perspective to examine the geometry of two dimensional figures in a 
variety of situations. 

 
A9 

IV.  Data 
9. Probability: The student applies the concepts of probability to draw 

conclusions, generate convincing arguments, and make predictions and 
decisions including the use of concrete objects in a variety of situations. 

A10 10. Statistics: The student collects, organizes, displays, explains, and 
interprets numerical (rational) and non-numerical data sets in a variety of 
situations. 
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SUMMARY 
 

Cognitive diagnostic assessment (CDA) is a new theoretical framework that is designed 

to integrate cognitive psychology into measurement theories. The main purpose of CDA 

is to provide examinees with diagnostic information while traditional psychometric 

approaches focus on how latent variables are accurately measured.  Many cognitive 

diagnostic models (CDM) have been developed for CDA. Three cognitive diagnostic 

models- namely the rule space method (RSM), the high-order deterministic inputs, noisy 

‘and’ gate (HO-DINA) model, and the multidimensional latent trait model for diagnosis 

(MLTM-D) model were compared using simulated data and empirical data. For the 

simulation study, three methods of data generation are proposed. Each method was 

designed based on one of the three models. A total of 12 conditions was involved in the 

simulation study: 2 item designs X 2 level of test X 3 methods of data generation. The 

diagnostic results were compared by level of test difficulty, level of ability estimates, and 

level of dimensionality. The effect of number of attributes on accurate classification was 

also investigated. For the empirical study, a mathematics test data was used and the 

diagnostic results were compared. 
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