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FOREWORD

This thesis, whioh is primaerily mathematical in nature, is the
fourth in a series of theses reporting the results of a projeot spon=
sored by the National Soience Foundation and supervised by Dr. M. R.
Carstens of the School of Civil Engineeringe. Its predecessors, which

are based primarily on experimental investigations, are

Unsteady Flow in a Smooth Pipe After Insgtantaneous Opening of

g Downstream Valve

Part I. "iean Flow Characteristios = Velocity,™ by B. G. Christopher;
Part IXl. M"Transition from Leminar to Turbulent Plow,™ by Je. B. Trimble;

Pert III. ™Mean Flow Charaoteristios = Pressure and Boundary Shear,™
by J+ E. Roller.
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SUMMARY

Considered in this thesis are certain aspects of starting flow in
a pipe having at its inlet a large reservoir and at its outlet a valve
abruptly opened to the atmospherees The fluid is considered viscous and
inaompressiblees The analysis is restricted to the period of transient,
laninaer flow.

By applying the assumption that the radial oomponent of veloaity
be zero {and other more plausible assumptions), the Navier=Stokes and
continuity equations are simplified to a single linear partial dif-
ferential equatione This equation was deduced and solved by Szymanslki
for the case of & constant pressure gradient. For the present thesis,
in both the squation and the solution, the pressure gradient is an ar-
bitrary funstion of time. By approximating the unknown pressurse
gradient variation by a linear function of time and substituting this
linear funotion for the erbitrary function of time in the solution to
the simplified equation, a solution which represents an approximation
of the case of reservoir=pips flow is obtsineds. This last solution is
then shown to be a formal and a rigorous solution of the simplifisd
equation with its boundary and initial conditions, and the uniqueness
of this solution is established.

The validity of the solution obtained here is investigated from
the standpoint of agreement with physical faots by comparison with ex=

perimental data from two sources. Data from the thesis by Christopher
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(Part 1 of this investigation) is employed for comparison of the mean
flow velogitye Data from investigations by Crausse is used for oom=
parison of the velocity profile shape. The mean flow veloeity and
velocity profile shape computed from Szymanski's solution are also
shown e

The veloecity profile shapes for this solution and Szymanski's

solution do not show boundary layer development commensurate with

Crausse's data. The mean flow velocity computed from this solution is

a poorer approximation to Christopher's data at the beginning of flow,

but a better approximation at the onset of turbulenoe than the velooity

computed from Szymanski's solution.



INTRODUCTION

This thesis deals with some mathematiocel aspects of the initia~=-
tion of flow in a smooth pipe which has at its inlet a large reservoir

and at its outlet a wvalve abruptly opened to the atmospherse.

Assumptions and Approximations.--Strict applicability of the analysis

to the physical problem is limited by the following assumptions and
approximationsge

(1) The viseosity and density of the fluid are constant.

(2) The flow is laminare. Thus, in particular, the analysis
does not apply after the onset of turbulence.

(3) The pipe is straight, its oross=-section is oiroular, and
the interior surfase is smoothe.

(4) The flow is axially symmetrio and the angular component of
velooity is zeros

(5) The effeot of opening the valve is assumed to be that of
abruptly applying a pressure gradient throughout the fluid in the pipe
rather than abruptly applying a pressure difference to the fluld at the
outlet plane.

(8) The radial component of the velocity is zero.

From the stendpoint of agreement with the physical facts, the
sixth assumption is the least justifiable, partiscularly in the region
Just downstream from the pips inlet. It is made solely for the purpose

of simplifying the mathematioal analysise.



Related Literature.—-Szymanski[:l:land later Gerbes [E:}investigated un=
steady flow in a smooth pipe by simplifying the Navier—Stokes and con=
tinuity equationss This system of quasi=linear partial differential
equations was reduced to a single seocond=-order partial differentisl equa=
tion linearized by assuming, as is done in this thesis, that the radial
somponsnt of velooity is zero. In the simplified equation the pressure
gradient appears as an arbitrary function of time. By partioularizing
this arbitrary function of time, both Szymanski and Gerbes gave solu=

tionsl

of the simplified equation for two different pressure gradients.
First, the pressure gradient was assumed constent; second, the pressure

gradient was assumed a harmonicelly varying function of time.

Purpose of the Research.~=In this thesis, a solution of the simplified

equation is deduced without particularizing the fumetion which rerresents
the pressure gradient; that is, in the solution itself the pressure
gradient appears as an arbitrary funetion of time. A linear approxima=
tion of this arbitrary funotion is then introduced in order ‘o obtain for
the reservoir~fed pipe a more realistioc solution than the one given by

Szymanski for a constant pressure gradient.

1Gerbes obtained the laplace transform of & solution in whioh the

pressure gradient is an arbitrary function of timee Completion of
Gerbes' solution then required substitution of the Laplase tramsform of
a particular pressure gradient into the Laplace transform of the sclu-
tion« The inverse Laplace transform then became the desired soclution.



CHAPTER I

THE PROBLEM AND SOLUTION FROM A

PRIMARILY PHYSICAL VIEWPOINT

This chapter is intended to be an uninterrupted presentation,
from the physical viewpoint, of the work accomplished. Mathematiocal
details not facilitating continuity of presentation of the overall

conocept are deferred until Chapter II.

Notation and Nomenolature.==A straight pipe, cirocular in oross=section,

extends from a large reservoir. Cylindriocal cocordinates (z, r, ©) are
oriented to the pipe as follows (see Figure 1)

(1) z is the dimension of axial length. The pipe inlet plane
is at z = 0 and the outlet plane at z = L.

{(2) r is the dimension of radial distance. The pipe centerline
is at r = 0 and the inside surface of the pipe at r = as

(3) © is the angular dimension of rotation about the z axise
The position of © = 0 and the direction of inoreasing values of ©

do not enter into the analysis.

z=0 2=

Fige 1l Orientation of Cylindriocasl Coordinates to the Pipe



The symbols pertaining to the fluid and the fluid motion are as
follows:

(1) e denotes mass density, = denotes dynamic viscosity, and
v (or )&) denotes kinematic viscositye. These quantities are assumed
constant.

(2) Tgs Vps and ve denote components of instanteneous velosity

in the z, r, ® spaoe.

(3) X,

X, J_TI., and ze denote somponents of body foraes, other than

gravity, in the z, r, 8 space.

(4) + denotes tho time.

(5) p* denotes the instentaneous piezometric pressure at e point,
end is defined by the equation p¥= p + (ogh, in which p is the pressure
potential and ©gh is the potential dus to gravity. py and pj refer
to piezometria pressures in the pipe inlet and outlet planes respeoctively.
p: denotes the piezometric pressure exerted by & column (of height h )
of the fluid being oonsidered.

(6) h, is the vertiosl distence from the pipe axis at the inlet

plane to the surface of the reservoir.

Solution of the Navier-8tokes Fquations for an Arbitrary Variation of

Preasure Gradiente~-For axially symmetrio incompressible flow with v= 0,

the Navier=Stokes equations in oylindrical coordinates [ 3] ares

— 13 e oVn. R 37y
- L= E 4 v . (1)
& - e 3 ©°r ot [y Tz Bz
1 3p* 2 D7, oV, o7,
- + A% = . 2)
L- (o te VT T TG (



The equation of continuity is

=

= (rv,.)+£- (rv,) = 0. (3)

Vz denotes the Laplaoian opsrator:

2 103 .1 2% . 2%
vz Brz-‘-r 3r+;2' 392+3z2 :

The following assumptions are made:

(1) The body foroes zr' g_{'_z,and zeare z6ro0.

(2) The velooity and pressure are independent of O,

(3) The radial oompoment of velosity ve is zero (this assump=
tion in conjunction with assumption (2) is 1inea.rizing).

(4) v, and its partial derivatives appearing in eguations (1),
(2), and (3) are ocontinuous.

With these assumptions, the equations (1), (2),and (3) simplify

to the equation considered by Szymanski [4], namely

3% l3vy_.23v_1 2p* 4
’f’& arz+r ar) B (4)

where v, has been denoted by v.

The boundary and initial conditions to acaompany equaetion (4) are

determined as followss

{1) From the theory of flow of a viscous fluid, the tangential

component of velooity at a stationary surface has the wvalue zerc. Thus

r=a, v=90 for t = 0. (5)



(2) v being independent of © , end the continuity of %?E-require
r

that %_‘L be zero at the pipe centserline. Thus
r

r=20, 2Y _0o for t = 0. (8)
or
(8) The fluid is initially at rest. Thus
t=0, v=0 for O=r=a. (7)

Thus the problem has been reduced to finding the umique solution of
equation (4) satisfying the bowndary oconditions (5) and (6) and the
initial condition (7).

Some significent properties of the pressure gradisnt may be noted
during the manipulations yielding equation (4) (see Chapter II, pages
16 and 17). These propsrties are:

(1) The pressure is a function of z and t onlye.

*
(2) The pressure gradient, %—E—-, ig & funotion of t only. Thus

"
%E——:f(t), in whioh £(%) is an arbitrary funotion of time.

(3) The pressure at any instant is & linear funotion of z.
Since pressure gradient (not pressure level) influences the fluid

motion, p; ig assipgned the value zero and the pressure gradient can be
By
written L—.

By the chenge of variable
.b
v:u-%s () d-b-r (8)
o)

equation (4) with boundary and initial conditions (5), (6),amd (7) is



transformed from a non=homogeneous linear partial differential equation
with homogeneocus boundary and initial oconditions to a homogeneous linear
partial dii‘ferential equation with non-homogeneous boundary conditions
and a homogeneous initial condition. This new system is the eguation

ey 1l 3u du _
+ = #l- = 9)
3r* r ar 3t (

with the boundary conditions

t

r—a, u= -Jaj £f{(p) 4T for + =0, (10)
€ (o]
r=0, B4 _0 for t >0, (11)
or
end the initial sondition
t= 0, u=0 for O0=r=aq. (12)

This system for u is solved by employing the principle of super=-
position embodied in Duhamel's theorem [5]. First, the boundary condition

in equation (10) is replaced by the condition
r—8a, u=1 for t=0. (13)

Separation of variables yields a solution of equation (9) satisfying the
boundary conditions (13) and (11) and the initial condition (12) of the

form

_ £ _3,0gr)
n=1 —-2- ——W- (14:)

Here J0 and Jl denote Begsel funotions of the first kind of orders zero



end one respectively; the positive numbers k, are determined from roots
of the equation J,(ka) = 0. Eguation (14) ocan be shown to be the
Szymenski seclution for the case where %?f: has the value unity. Now
using superposition, a solution of equation (9) satisf'ying the boundary
oonditions (10) and (11) and the initial condition (12) is obtained.
Reverting to the variable v by meens of egquation (8) gives the solution
of equation (4) satisfying the boundary conditions (5) and (8) and the

initial condition (7) in the form
£

o -ki.grt I (k) 1 ke é“&
E e knl J'l'('kn"‘a')' F X e £(2) 4z, (15)

n=1

—

P

¥
in whioh £(t) = %P— .
Z

Solution Incorporating an Approximation to the Pressure Gradient Change

for Reservoir-Pips Flow.~-The time dependence of the pressure gradient

assoociated with the reservoir-pipe flow is needed tc oompletes the solu=
tion. In lieu of a better approximation, & linear pressure gradient

variation,

* * *
_Pg _PomPa /3
£(t) = g (3 n)’ (16)

is assumed. Here g;L_and tn_ denote conditions at either the onset of
turbulence or the ocessation of unsteady flow.

Substitution of squation (18) into equation (15) then gives =
solution of the simplified Navier=Stokes equation for a linear temporal

veriation of pressure gradient. This solution is



2
* = 2 =k, At
-(3_)(1)( )z_gﬂ__klli)_[t-(ﬁ)(i.) (1-.3 n'e } (17)
_ Ty S knd1 (kna) kp
In Chepter II, eguation (17) is shown to be a rigorous solution of egua~-
tion (4) satisfying the boundary conditions (5) emd (6) and the initial

sondition (7).

Numerioal Work and Results.-=The velocitiss of eguation (17) and
Szymanski's solution (sorresponding to a particular physiocal situation
which was investigated experimentally by Christopher) have been computed.
The constants in equation (17) and Szymenski's solution are evaluated
using Christopher's data.l To fecilitate checking these computations
(using the results presented by Szymanski [6] es & reference) the solu-

tions are converted to dimemsionless variables defined by

q:&

7 (18)

S'le,_-p

(19)

ﬁ:

41,
=v (20)
B
p¥a?

(note that - is the Hagen-Poiseuille veloocity at the pipe centerline

® N
-

<1

end

lThis data oorresponds to Figure 21, page 55 of Christorpher's
thesis.
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for a pipe of length L and radius a, and with the inlet end outlet pres—
sures p} and zero respectively).

In the Appendix, Figure 2, veloecity profiles for this solution,
the Szymanski solution, and Crausse's measured data [f] are showne The
profile shape (not velooity level) is to be considered; therefore the
velooities shown have been divided by the flow weighted mean of the velo~

1
oity over the pipe oross=seotion (é v 2}3&/5). Pigure 3 is then a

comparison of the relative distributions of veloeity over the pipe oross=
gsection at a particular instante.

In the Appendix, Figure 3, mean flow velocities as functions of
time are shown for thres ocases:i the present solution, the Szymanski solu-
tion, and Christopher's measured deta. The veloclities are presented in
terms of the dimensionless paramsters of Christopher's thesise. These

parameters are

Mo =/ V2gh, , (21)

Ti= L, (22)
TTZ - gzho t, (23)
L
and 3
gh a
T = Gw? (24)

1
i i = 2 »
in whioch V «i v ;Sdfa

Table 1 of the Appendix contains terms involved in the computation
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of the first nine slements of the serises

i J (kP (25)

n=1 kI'LJl (kn)

whioh are in both the Szymenski solution and the dimensionless form of

equation (17).
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CHAPTER II

THE MATHEMATICAL IETAILS OF THE SOLUTION

In this chapter certain mathematical details of the problem are
examineds First, the simplification of the Navier=-Stokes and continuity
equations is explained. Second, the simplified equation is solved with-
out rigorous justification of the processes involved. Third, this solu-
tion is shown to be a formal solution of the simplified equation and to
satisfy the appropriate boundary and initial conditions. Fourth, this
solution is shown to be an actual solutione. Finally, the uniquensss

of the solution is establishede.

Simplification of the Navier=Stokes and Continuity Equations.=- The Navier=

Stokes and ocontinuity equations for axially symmetrie, incompressible flow

with Vg = O are

L33 p( S i eadeie ) 4
:%:r +vr-aa:r ‘\'Vzg:r' (1)
Lo F (Tl e 3
bt 2:3 +vraaz"=- +v, aa:z , ()
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and
52 (vr) + 2 ()= 0 (3)
The following assumptions ares employed to simplify the above
equationss.
(1) Er, f_fz, and v, are zero.

(2) vp, vy, and p* are independent of S .
(3) Vpr Ty and their derivatives appearing in eguations (1),
(2), and (3) are continuous.

(4) The terms involving %_-and -3'2- are continuous at r = 0.

(5) e and J are constantss
Furthermore, the equations (1), (2), and (3) are considered only in the
region 0 =pr<=4g, 0=<2z=1L, and t =0,

v
For equation (1), vy = O (assumption 1) implies that —a--r-z 0,

or
32‘7 32'9‘ 1l av
£ =0, and 2% =0. Then ==L z 0 for r # O and, with this term
Ir Dz r or
. s 1l 3v, . s
continuous (assumption 4), — 5 = 0 for all r. 8ince vy is independent
ror
.aavr
of & (assumption 2), So? = 0. Equation (1) then reduces to
*
207 -

implying thet p* is independent of r as well as of ©+ Thus

p* = p*(z, t). (27)
Equation (3) reduces to r %13‘- = 0 (under assumption 1), and there=—
z

AL
2z

v
=0 forr ;rf O« But 27z is continuous (assumption 3) so that

fore 3z
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%.l’.. =0 at r= 0. Thus equation (3) becomes
z
o Vg
=0 28
= , (28)
and v, is independent of z as well as of & . Thus
(29)

v, = vz(r, t).

. . s s azvz _AVy, _
For equation (2), sinoe v, is independent of &, VY = aez = 0,

1 2
Then, with assumption 4, — %ézé- = 0 everywhere; snd eguation (28) de=-
r

mends that _aj“_v% = 0. Thus equation (2), reduced and rearranged, becomes
z

_Qdv, _lap*

ot -Eaz : (0)

2
2%, 1av,
'?: Bzz+r3r)

Now acoording to equations (27) and (29), the left member of equation
(30) is & funotion of r and t, and the right member is a funetion of z and
te« The equality is to be wvalid for all r, z, and *; therefore both

*
members of equation (30) must be funotionms of t only. Thus g—B—: £(t),
z
where £(t) is an arbitrary function of time, and equation (30) may be

written

3% 13v\ _3v_1
’?’(a?&"’?ar) _(’f(t), (31)

where v denotes vye

Integration of .%2:. = £(%) gives
z
p¥= z £(t) 4 g(t) (32)

(g(t) is another arbitrary function of time), and for a given t, p* must



15

vary linearly with 2. Furthermore, since only valuss of the partial

*
derivative -g-:s— (not values of p*) direotly influence the ecuations (26)

and (31), p* may be assigned the valus zero at z = L and
p*= £(%) (z - L). (33)

Formal Scolution of the Simplifised Eguation.==The formal solution of

equation (31) (equivalent to equation (4) of Chapter I), satisfying the
boundary conditions (5) and (6) end the initial sondition (7), will be
obtained by using the equetions in the variable u, where u is defined
by equation (8) of Chapter T« In the variable u, the differential equa=

tion bhecomes

2% . 19u du
dr° rdr Feot
the boundary conditions becoms
.t
r= a, =lj f(T) dT for +t2>0; (10)
€
r=0, 2% -0 for tX0; (11)
er
and the initial condition bsoomes
t=0, u=0 for 0=r <a, (12)

The separation of variables technique is applied by assuming the

existence of a solution of equation (9) in the form

w= Em: )] E(r)]. (54)
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Here M (differentiable) and N (twice differontiable) are functions to be
determined. With the derivatives of u obtained from equation (34), equa=

tion {9) can be written in the form

1t
N'' LN
N r

ZIZ
EIE

/‘f: (35)
The left member of equation (35) is a funotion of r only, and the right
member is a funetion of t only; therefore, ths equality can hold for
all r and t undsr consideration if and only if both members are aqual
to a constant.

If this separation oconstant were positive, solutions for M{t) would
arise which become infinite as t increases and require that u and v become
infinite as t inoreases. The steady flow solution for v is known to be
finite; therefore, the separation constant cannot be positive. If the
separation constant were complex, M(t) would have complex solutions and
u would have complex solutions. Only real solutions are of interest
hers. If the separation constent were zero, M(t) would have solutions of
the form M(t) = A, where A is an arbitrary oonstant, and N(r) ﬁould have
golutions of the form N = F + G log r where F and G are arbitrary con-
stantse. If the separation constant were negative, solutions for M(t)
would have the form

u(t) = B e-kz g‘t; (36)

and solutions for N{r) would have ths form

N(r) =D J,(kr) + E ¥,(ikr), (87)
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where J, end Y, denote Bessel funotions of order zero of the first and
seoond kinds, respectively, and D and E denote arbitrary constents.
Since log r and Yo(kr) do not remain finite as r -2 0 , they cannot

be included as terms of solutions for u if u is Yo be continuous on
0= r = a, and therefore the sonstente G and E are chosen zero. Thus

the real, finite separable solutions of equation (9) are of the form

2
-k t
€",

u=b+o J,(kr) e (38)

where the constants b and o and the separation constant k are to be
determined in such a way that the boundary conditions (10) and (11) and
the initial condition (12) are satisfied.

To determine the aonstants b, o, snd k, the boundary ocondition

(10) is first replaced by the oondition
r=a, ul{r, t) =1 for t=0 (39)

(the remaining conditions, (11) and (12), ere unchanged). Boundary con=-

dition (11) is satisfied by any solution of the form in equation (38), for

2 N
- b
sinoe ”‘aor %) =3,(0) k ’g and sinoe J,(0) = 0, %—3 (0, t) =0

for t ™ 0. Boundary sondition (58) requires that

2
-k t
l1=b+o0 J,(ka) e % . (40)
This condition will be satisfied if
b=1 (41)

and Jo(ka) = 0. (22)
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It is well known that the funection Jo(x) has a countable infinity of
zerose. These zeros mey be designated by )’;, n=1, 2, «es, 8tce Since
J (%) = Jy(x) and J (0) =1 >0, only positive values of Y will be
considered. Then the admissible velues of the constant k are chosen

according to the relation

k= 20, (43)

a

where n = 1, 2, es., eto. Thus

2
u(r, €) =1 + 6 I (kyr) e"kn’gt

»

n=1, 2, sse, 0to., are formal solutions of equation (7) satisfying
boundary conditions (11) and (39). Since equation (9) is linear,

2
Xk, Kt

te

u(r, t) = 1+ n_ﬁ;cn Jo(kpr) e (44)

is also & formal solution of equation (9) satisfying oconditions (11) and
(39).
The initial condition, equation (12) requires that
co

> Cp Jolkyr) = -1, (45)

n=l

This determines the coefficients C, as the Fourier-Bessel expansion co-

efficients of the funotion =1 [8]- These coefficients are, formally,

= 2
% = " o) o) (46)

where J; (k,a) #0. Thus the solution (44) becomes



19

m |
S SRE allgn) (47)

-_— - g—
u(r, €)= 1 a k, Jl(kna.)

i\
fal

To solve the homogeneocus equation with its original boundary and
initial oonditions, superposition will be used. If u = H(r, t) is a
solution of eguation (9) with the boundary ocondition of equation (39),
then by the linsarity of equation {(9)y u = Ef]EI(r, t)] is & solution

of equation (9) for the condition
r—a u=—= for +=0,

where Q is a oonstant. Let H(r, t) be defined to be zero for t <& O.
At r = a, let a funotion q(t) (arbitrary for the present) be approximated

on the interval 0 =£% =T by the funotion w(t) in the following manner:

0= T, t €Ty, W) =q(T,) =q(0);

0
see OL0s see

T/\_l_..'t"'T/\ T, w(‘t):Q(TA_l)i

where 0 = T, &< T) < T2 vee LTy s0e <TA-] «TA = T. BSince equation

(9) is linear, with condition (10) replaeced by
r=a, u=w(t) for t20, (48)

a solution of equation (9) at the time T will be
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m=

A
u(r, )= q(0) [H(r. T)] 21 I:q(Tm) - q(Tm_l):'Er(r, T - Tm)]- (49)

Now, if q(t) is continuous on 0 =% <T and differsntiable on 0<L £t LT,

then by the mean velus theorem of the diff'ersntial caloulus

[qmng - q@m_l):[: q'(é‘m)ETm - Tm-lj, (50)

where T, 4é:m £ Tp=y+ Substituting equation (50) into equation (49)

gives

a(r,1) = q(o)@(r.wﬂ g 2 (£) [(Tm . Tm-l)] E(r.se - Tm):[ (51)

where T, 4.5§Q1<.Tm. By Bliss's theorem [ﬁ].

A
% Q'(ém) [(Tm - Tm_l)JE:i(r: T =- Tm)J

T
=j q'('&’) H(I‘s T - -E) d-b-s (52)

1im
|2t [0

for q(t) and H(r, T = t) oontinuous on 0 =+t =T. Here 'Tm = Tpel

denotes the value of the maximum of the mumbers (Ty = T,), (T = T7), «ee,

arbitrary value t, and taking the limit of (49) as ”Tm - Tm_]_“ —» 0,

- T/\-1)3 and as ”Tm = Tm-1 “%' 0, A\ =00, Replacing T by the

gives the formal solution

t
u(r, t) = q(0) [H(r, t)] f q'(T) {B(r, t - t):l il . (53)
[}

Relating the preceding oconcept to the present problem, H(r, t) is

£
identified with the solution (47) and q(t) with -col-f £(T) 47+ Thus
Q
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the formal solution of equation (9) satisfying the boundary conditions
(10) and (11) and the initial condition (12) is

£
u(r, t)= (71,-[ £(C) 4T

o

Jo k 0k2 2
- 2 z i, 9,0 ) frl(;)a (e ’ fgt) (% o {g{t £(T) aT.  (54)
s

Note that in passing from (53) to (54) summation and integration are inter~
changede Reverting to the variable v and rearranging gives a solution
that should satisfy equation (4) and the conditions (5), (6), and (7).

This solution is

£
a5 K 5T
""EE knJlka' f’ ) /(?'f(z)d‘a (15)

n=l

(this equation is identioal with the one shown by Carslaw and Jaeger [?d]
for heat flow in an infinite rod).

In obtaining equation (15), all questions of vigor were ignored.
Thus (15) must yet be showm to be an actual solution of equation (4)
satisfying the oonditions (5), (6), and (7); and the unigueness of the

gsolution must also be established.

Formal Verification of the Solution for a Linear Variation of Pressure

Gradient «—-The assumed linear pressure gradient change and the solution

involving en arbitrary pressure gradient change are

£(t)= -(%;-) +(P: -;p},%(ti“) (16)
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and
o)
=-2S -kn#‘t Jo{kpr) / kn/‘-"‘E
) a‘11=16 ke, Jl(ka € £(T)at. ()

Substitution of equation (16) into equation (15) gives, upon integration

and algebraioc modifiocation,

o o) 2
vE (%)(aa )gkg J’:(;na) l-o . %tj}}
- £ g ok r) 1,2 "k&#‘t
{a/"'(if‘}( p& knJl(;::a.) ° o (f‘)(k_n-) (1 "o € ]} (17)

It will now be shown that equation (17) formally satisfies equation (4)

with the conditions (5), (8), and (7).

The derivative relations

%r- Jo(kyr) = = ky J7 (kyr)

and

& 1 (kgr) = kg Iokpr) = 93 (iyr) (55)

are known properties of the Bessel funotions. Using these derivatives

to differsntiate equation (26) gives formally,

Bv o 2 o0 J(knr) ‘2#-17
5r (P)(a ) Zm o B -:]}
o °° (k1) 2 a2
{ /‘-) »)(P -PJL) kjill:;na) [ '(/@(;1‘;) (1”9 * '5%)] . (56)
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Substitution of equations (56), (57), end (58) into equation (4) gives,

upon algebraio reduoction,

£ ()] )]

- HEEEE)] -

With the assumption that £{t) of egquation (18) is never zero, squation

(59) becomes
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2 Ik, r)

2 R Gea) (60)

The boundary and initial oonditions (equations (5) and (6) and
equation (7)) are easily shown to be satisfied by equation (15), end thus
equation (15) formally satisfies equation (4) with conditions (5), (6),
and (7) provided equation (60) is satisfied. The formal procedure used

above will be verifised in the next seoction.

Rigorous Verification of the Formal Sclution.=-For the se¢lution, egua=

tion (15), to be an motual solution on a region in r and %,

2 coJ(knr) -
EEkn 10k, ay =1

n=l

must hold on that region and the differentiation invelved in obtaining

2
?._V_, g y gv must be meaningful on that region. WMost of the
r t

issues encountered in verifying that equation (15) is a rigorous solu-
tion have been discussed by Szymanski in the verifiecation of his solu-~
tions. BSzymeanski's results will be used wherever possible.

To establish the oconvergence properties of certain series,

Szymenski ocited the following theorems:

Theorem A. Every funotion, (15 {r), with its first two derivatives oon-

tinuous in the interval (0, 1) and venishing for r = 1 ocan be expanded in

a uniformly and absolukely convergent series of the form
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0

:E;l Gy Jolkyr)

where

1
Cp = = 1 jo r gé(r) I(kyr) dr.

j r J(kor) dr
Q

Theorem B. If the funation Vr ¢(r) is piecewise continuous in the

interval (0, 1), the series of Theorem A converges to the value

]-;-?:- I:C}')(r -0) + ¢(r + 0):|

for every point r in the intervel (0, 1) in the vicinity of which @ (r)

is of bounded variation. If, moreover, the function (ﬁ(r) igs continuous

in en interval (a, b) whioh in turn is contained in another interval

.(E.L,@ ) where the funotion is of bounded varistion, the series converges

uniformly to @P(r) in the intervel (a, b)e

Corcllary to Theorem Be If for sall points in the vicinity of the

point r = O, the conditionsg of Theorem B are fulfilled, and if the funec=-

tion Cb(r) is continuous at the point r = 0 and the series of Theorem A
i

is wniformly convergent near r = 0, this series converpes to the value

QS(r) at the point r = Q.

Using the preceding theorems, Szymenski noted that the series

&k, Jy(ka)

n=l
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is the expansion of ¢(r) = 1/2 in a series of the form in Theorem A,

and that this series converges to the value 1/2 for 0 £ r < a. Thus

o0
Jo(knr) _

n=l

except at r = a. At r = a, since each term of the series is zero, the
gories oonverges to the value zero.

By a well known theorem El.l:l let a series, whose terms are funo~-
tions of & single variable having a continuous derivetive on some in=
terval, converge on this interval. Alsoc let & new series, formed by
differentiating the originel series term by term, oconverge uniformly
on this interval. Then the derivative of the sum of the original series

is equal to the sum of the derived series. In the preceding section,

2
the derivatives &Y, 2 Y, and 2.X were obtained formally. If for these

or Brz, ot

series the variable not involved in the differentiation is oonsidersd

constant, the above theorem may be applied. Then the theorem may be
applied for all values of the variable not involved in the differentia=-
tion.

Thus it is necessary to oconsider the umiform convergence of

oo
Jo(knr) "'kg ,E"!:
El (a kn)5 J1(k8) ° ¢ (61)
n=,



a7

© g, (k,r) AL ot
nzl (& k) J1(kpa) ° e (62)

with respect to r and with respeot to t, and also to consider the uni-~

form oonvergence of

.2
f WS (63)

(a k)% 3y (k,8)

n=1

3 (k r) 2 pk
i NETN e ", (64)

nel

and

f Gl o (65)

4 =]
(e X )= Jy(k a)
n=1 kn 1'Vn
with respect to r. Szymanski has shown that series (61) converges uni=
formly end absolutely for 0 == r == a and for 0 == t <= T where T is
arbitrary, and that series (62) aonverges uniformly over the same olosed
region exeept for the point r =48, t = 0.

Szymanskl has alse shown that for sufficiently large n,

Jy (kpr) -kg At 1 .
(8. kn)3 Jl(kna) e (a £ 2 \/F (-—Wkn ‘2)" H (66)

Q0
end sinos E -%%Es-oonverges, the series (64) converges uniformly

)id
n:l(n
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and absolubtely with respeet to r and t. It is a simple matter to extend
this reasoning to the series (63) and (65). For multiplying equation

(66) by (a ky) gives, for suffioiently large n,

3 (g, r) il g 1
=2 ; (87)
(a ) 9y (k8) y T k)%
and multiplying equation (66) by (alkn) gives, for suffioiently large n,
Jq (k1) -kn/&‘t . 1
< 2 . 68
(a k)% dy(kge) C a (a k)17 2 (68)

As Szymanski shows,

(o ,) = E - I L +o<—g):]

(where O(iz-) represents a funotion which vanishes for increasing n to
I

the same order as (-]-'2-)). Also, for positive n,
n

[nv-igﬂ+g}_-r-£+o(§2-)j > En -1] > ESn -n:] > I:n]s

1 1 1 1 1

&=+ Thus < < s and
ak, n (a kn)7/2 (a kn)5/2 n:sf2
o0

then & ky > n and

the convergence of the series E —;'7-2- implies uniform and absolute
n=l ®

gonvergence of series (83) and (65).
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Now define equation (17) to be a solution at r = 0 if v(0) =

lim, 4 v+ Bquation (17) oonsists of terms involving series (62) and

(63) whiclf; are both uniformly convergent on 0 £r &b <a. Thenv
defined by equation (17) is continuous at r =0 and, secording to the
above definition, 1s & solution at r = Q.

Thus for t+ 20 and 0 £ r = a, equation (17) has been shown to be
an actual solubtion of the equation (4) with the boundary conditions (5)

and (6) and the initial condition (7).

Unigueness of the Solution.=-To establish the uniqueness of & solution

of equation (4) satisfying boundsry conditions (5) and (8) and initial
condition (7), it clearly suffices to consider uniqueness of the solu-
tion to the problem represented by equation (9) and sonditions (10),
(11), and (12).

Let uq and ug be two solutions of equation (9) satisfying oondi=-
tions (10), (11), and (12). Then because equation (9) is linear, the

difference u = U =4y is also a continuous solution. The solution u

has the following properties: at r=a, u= uz(a, t) - ul(a, t) = 0.

Ab r =0, 2% = .2 uy(0, t) =R up(0, t)= 0. At £ =0, u= ug(r, 0)
ar dr dr

- ul(r, 0) = 0.

Multiplying equation (9) by r and u gives

2
2 u du du —
ru +1u - ru =—=0 , (69)
3r7  Ar ﬁ dt



and integration of this equation over the region 0 £r<a, 05t £

(here T denotes an arbitrary value of t) gives

-—

T 24
- ru oY, 88 @ 90U g =0, (70)
or ar 3t

Now
'a%-' [u '%-ﬂ= u-g—igﬂ-g—f)z (71)
and
u%?:%%(uz) . (72)
Substituting for u %2_2 and u %— in equation (70) their values from

equations (71) and (72) gives

T a
ff r-a—- )drdt-i-fy w2 gar dt
Sr
QS0
T .a
/f ( )drdt+2 (y —a§-u‘°‘)arat. (73)

(o]

Su .

Since =~ is continuous, the order of integration may be inter-

changed and
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T .a a
3 - 2
_2%;0 £ r 'S:E (uz) dr dt = -z'ijc r [u(r, Tﬂ dr.

Also, integration by parts with respect to r in the first integral of

equation (73) gives

T .a
S R
ff [r-a;?(u-g—r-] dr dt
o ‘0

8 T .a
dt -f[ u &8 4 g,
ar
[a]
[»3 o

T
But at r = a, u:Oanda.tr:O,g—u=0; so thet (ru 2L2)
Sr 9r

()

a
dt = 0.
)
These results permit reducing eguation (73) to

’ S5 2 2
r (—a'-g-) dr dt T E%L r [u(r, T):l dr=0 . (74)
[s] o] (o]

Both integrands of equation (74) are non*negative and continuous

and -2{9— is non-negative. Therefore, both integrands must be identiocally

zero for the equality to holde Furthermore, since r is not identiecally

zero on the interval of integration and _?_u is gontinuous, r (..E_.‘?. =90
r r
implies that 2u = 0 and henoe ulr, t)} is constant for 0 £ r £ a, 0 =t
r

< T The second integrand being zerc and u{r, %) being continuous

imply that u(r, T) =0 for 0% r £a, 0 £t £T. 8ince T is an arbitrary
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value of t, u(r, t)= 0, and hence Up = uje Violation of the sondition

that u, = uwq would imply & oontradiction of eguation (74), and uniqueness
2 1

is therefore established.
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DISCUSSION OF RESULTS

The assumption that the radial component of velocity is zero
appears to have drastic effects on the range of applicability of the
solution, In the first place this assumption immediately prohibits
accounting for inlet effects. This assumption, with the other assump-
tions, also requires that the instantaneous velocity profile at any
two cross sections of the pipe be the same, Thus, at any instant, the
boundary layer thickness must be constant and boundary layer growth
with distance alone is not possible,

For the comparison of velocity profile shapes (Figure 2), four
curves are shown., Two of these were obtained from experimental data
by Crausse (who photographed aluminum particles suspended in water
flowing through a transparent tube section)., The curves from Crausse's
data represent conditions at two different times, one time being larger
and one smaller than the time corresponding to the two remaining curves,
The two remaining curves represent the Szymanski solution for a cone
stant pressure gradient and the present solution for a linear temporal
change of pressure gradient {the constants for the Szymanski solution
and the constants ~ including conditions at the onset of turbulence =
for the present solution were obtained from run number six of Chris.
topher's data.

The shape of the velocity profile obtained from the present solu-
tion is almost identical to the shape of the velocity profile from

Szymanski's solution, at least for the particular case shown. Since
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for this particular physical situation the inlet pressure at the onset
of turbulence is about six tenths of the starting inlet pressure, it is
unlikely that the velocity profiles differ significantly for any of the
physical situations investigated by Christopher,

Neither the present velocity profile nor the Szymanski velocity
profile shows the extent of boundary layer development indicated by
Crausse's data,

For the comparison of mean flow accelerations (Figure 3), three
curves are shown, Christophert's data for run number six is used for
one curve, The constants associated with this run are used to compute
the values for the other two curves, namely the curve for the Szymanski
solution using a constant pressure gradient and the curve for the
present solution using a linear temporal wvariation of pressure gradient.
It appears that the validity of the present solution could be signifi-
cantly improved by making a non-linear approximation to the pressure
gradient,

The Table of the Appendix contains computations for the first
nine terms of the series
ALY

(k)7 3; (k)

n=1

at the stations }3 = 0,1, 0.2, 043, «es; 0.9+ With constants and ex~
ponential terms for a specific physical situation evaluated, these
numbers may then be used to calculate values of the present solution

and the Szymanski solution.



Errors may occur in the last figure of each colum,. With (knﬁ)
given to five decimal places, J (knﬁ) and Jy (kng) may have errors of
+ .00003 and the succeeding columns will be subject to error from this

source,

35



CONCLUSIONS

1. Subject to assumptions, a solution is obtained for viscous,
incompressible flow in a straight pipe within which the pressure gradient
varies linearly with time,

2, This solution cannot account for inlet effects and cannot
account for a boundary layer growth with distance along the pipe.

3. The velocity profile shape implied by this solution is not
consistent with experimental data (at least for the comparison pre-
sented),

4. This solution, using a linear temporal variation of pressure
gradient, gives more realistic mean velocity near the onset of turbu-
lence and less realistic mean velocity at the beginning of flow than the
Szymanski solution using a constant pressure gradient (at least for the

comparison presented),
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Figure '2.

Camparison of Velocity Profile Shapes.

38



1

I v2B8d3

MEAN VELOCITY IN FT/SEC ¥

[+]

wn

39

FROM EQUATION 17,

|

— — — — FROM SZYMANSKI'S SOLUTION,

—---—o0 FROM CHRISTOPHER'S EXPERIMENTAL

DATA (m9(; IS THE DIMENSIONLESS
TIME AT THE ONSET OF TURBULENCE
AS OBSERVED BY CHRISTOPHER).

|

Figure 3.
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Computation of Nine Terms of the Series i

TABLE

n=

3, (kB

10

(k)° 3, (k)

K (k)2 (k)> 3, (k) 7o (0

n n n n 1''n 3

(kn) Jq (kn)
1 + 2,048 + 5.7831 + 13,907 + 51914 + ,13851
2 + §5,5201 + 30,h71 + 168.21 - .3L025 - JO17L73
3 + 8,6537 + 74.886 + 6L8,05 + 27145 + 0056847
i + 11,7915 +139.04 + 1639.5 - .232L6 - 0026239
5 + 14,9309 +222,93 + 3328,6 + 42065) + 001546
6 + 18,0711 +326.56 + 5901,L - 18772 - 00090268
7 + 21,2126 +h4L9.93 + 9543,.8 + ,17326 + 00060476
8 + 24,2535 +593.04 +1hhl2, - 16170 - 00042822
9 + 27.4935 +755.89 +201782, + ,15218 + 00031619
n J, (.1 kn) J, (.2 kn) J, (o3 kn) Js (.4 kn) J (5 kn)
1 + ,98559 + 45300 + 87405 + 78171 + 66993
2 + ,92525 + JTLTTL + 2334 + ,10591 - 16839
3 + 82136 + .38021 - 09496 - 37uL8 - «35628
L + 68147 + ,02)39 - ,38L97 - 26604 + ,12078
5 + 051567 - -25533 - -32520 - ul,-l-296 + 027087
6 + ,33585 - .39309 - ,03386 + ,293L0 - .09893
7 + 15461 - .37038 + ,236L49 + ,04613 - 22704
8 - 01569 - ,21895 + 2877 - 22638 + 0858l
9 - 16383 - ,00722 + 10972 - 1718, + ,19930
n J, (.6 kn) Iy (.7 kn) J, (8 k) J, (9 kn)
1 + 543U + L0759 + 26796 + ,13028
2 - 34692 - Lo2sl - .33896 - 18799
3 - 11262 + 16624 + ,29882 + 21775
I + 429959 + ,10815 - 18261 - 22637
5 - .08002 - 2019 + ,0352L + 21694
6 - ¢19696 + a16979 + n09581 - 019227
7 + 18004 - 01713 + 17277 + ,15555
8 + 06556 - 16510 + 17844 - 11053
9 - 19640 + 16777 - 12004 + 06122




TABLE (Continued)

L1

3 (2K )/(k )7 3y (k)

3
I (o2 )/ (k)7 3y(k)

3 (-3 )/ (k)% (k)

1)

1 + ,13651 + ,13061 + ,12106

2 - 016167 - ,0125)1 - ,0073969

3 + .00L&700 + ,0021617 - 0005399

Ly - 0017881 - 00006400 + ,0010101

5 + 00075008 - ,00037140 - 00047303

6 - 00030317 + 00035483 + 0003056l

7 + 000093501 - .00022399 + 00014302

8 + 000006719 + 000094658 - 00004698l

9 - 000051802 - 00000228 + 000034693

no (el 0 (k) 3 (8K )/ (k)P (k) I W)/ 3 ()

1 + ,10827 + ,092791 + 075271

2 - 0018505 + 0029422 + ,0060616

3 - 0021292 - 0020257 - 00064032

i + 00069806 - 00031691 - 00078607

5 + 00020795 + ,00039400 - 0001164

6 - 00026485 + 00008930 + ,00017779

7 + 00002790 -~ 00013730 + 00010888

8 + 000096939 - ,00003676 - .00002807

9 - 000054271 + 000063017 - 000062101
3 3 3

n JO(.?kn)/(kn) Jl(kn) JO(.Bkn)/(kn) Jl(kn) Jo(.9kn)/(kn) Jl(kn)

1 + ,056L55 + .037115 + .018120

2 + ,0070335 + ,0059225 + 0032847

3 + 00094519 + 0016990 + ,0012381

N - 00028377 + 00047915 + 00059397

5 - 00034938 + .00005126 + ,00031556

6 - 00015327 - 00008649 + 00017356

7 + 00001036 - 00010448 + 000094070

8 + 000070698 - 000076411 + 000047331

9 + ,000053048 - 000037956 + ,00001936
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