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SUMMARY

Developing technology systems requires all manner of investment—engineering tal-

ent, prototypes, test facilities, and more. Even for simple design problems the in-

vestment can be substantial; for complex technology systems, the development costs

can be staggering. The profitability of a corporation in a technology-driven industry

is crucially dependent on maximizing the effectiveness of research and development

investment. Decision-makers charged with allocation of this investment are forced

to choose between the further evolution of existing technologies and the pursuit of

revolutionary technologies. At risk on the one hand is excessive investment in an

evolutionary technology which has only limited availability for further improvement.

On the other hand, the pursuit of a revolutionary technology may mean abandon-

ing momentum and the potential for substantial evolutionary improvement resulting

from the years of accumulated knowledge. The informed answer to this question,

evolutionary or revolutionary, requires knowledge of the expected rate of improve-

ment and the potential a technology offers for further improvement. This research

is dedicated to formulating the assessment and forecasting tools necessary to acquire

this knowledge.

The same physical laws and principles that enable the development and improve-

ment of specific technologies also limit the ultimate capability of those technolo-

gies. Researchers have long used this concept as the foundation for modeling techno-

logical advancement through extrapolation by analogy to biological growth models.

These models are employed to depict technology development as it asymptotically ap-

proaches limits established by the fundamental principles on which the technological
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approach is based. This has proven an effective and accurate approach to modeling

and forecasting simple single-attribute technologies. With increased system complex-

ity and the introduction of multiple system objectives, however, the usefulness of this

modeling technique begins to diminish.

With the introduction of multiple objectives, researchers often abandon technology

growth models for scoring models and technology frontiers. While both approaches

possess advantages over current growth models for the assessment of multi-objective

technologies, each lacks a necessary dimension for comprehensive technology assess-

ment. By collapsing multiple system metrics into a single, non-intuitive technology

measure, scoring models provide a succinct framework for multi-objective technology

assessment and forecasting. Yet, with no consideration of physical limits, scoring

models provide no insight as to the feasibility of a particular combination of system

capabilities. They only indicate that a given combination of system capabilities yields

a particular score. Conversely, technology frontiers are constructed with the distinct

objective of providing insight into the feasibility of system capability combinations.

Yet again, upper limits to overall system performance are ignored. Furthermore, the

data required to forecast subsequent technology frontiers is often inhibitive.

In an attempt to reincorporate the fundamental nature of technology advancement

as bound by physical principles, researchers have sought to normalize multi-objective

systems whereby the variability of a single system objective is eliminated as a result

of changes in the remaining objectives. This drastically limits the applicability of

the resulting technology model because it is only applicable for a single setting of all

other system attributes. Attempts to maintain the interaction between the growth

curves of each technical objective of a complex system have thus far been limited to

qualitative and subjective consideration.

This research proposes the formulation of multidimensional growth models as

an approach to simulating the advancement of multi-objective technologies towards
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their upper limits. Multidimensional growth models were formulated by noticing

and exploiting the correlation between technology growth models and technology

frontiers. Both are frontiers in actuality. The technology growth curve is a frontier

between capability levels of a single attribute and time, while a technology frontier is

a frontier between the capability levels of two or more attributes. Multidimensional

growth models are formulated by exploiting the mathematical significance of this

correlation. The result is a model that can capture both the interaction between

multiple system attributes and their expected rates of improvement over time. The

fundamental nature of technology development is maintained, and interdependent

growth curves are generated for each system metric with minimal data requirements.

Being founded on the basic nature of technology advancement, relative to physical

limits, the availability for further improvement can be determined for a single metric

relative to other system measures of merit. A by-product of this modeling approach

is a single n-dimensional technology frontier linking all n system attributes with time.

This provides an environment capable of forecasting future system capability in the

form of advancing technology frontiers.

The ability of a multidimensional growth model to capture the expected improve-

ment of a specific technological approach is dependent on accurately identifying the

physical limitations to each pertinent attribute. This research investigates two poten-

tial approaches to identifying those physical limits, a physics-based approach and a

regression-based approach. The regression-based approach has found limited accep-

tance among forecasters, although it does show potential for estimating upper limits

with a specified degree of uncertainty. Forecasters have long favored physics-based

approaches for establishing the upper limit to unidimensional growth models. The

task of accurately identifying upper limits has become increasingly difficult with the

extension of growth models into multiple dimensions. A lone researcher may be able

to identify the physical limitation to a single attribute of a simple system; however, as
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system complexity and the number of attributes increases, the attention of researchers

from multiple fields of study is required. Thus, limit identification is itself an area of

research and development requiring some level of investment. Whether estimated by

physics or regression-based approaches, predicted limits will always have some degree

of uncertainty. This research takes the approach of quantifying the impact of that

uncertainty on model forecasts rather than heavily endorsing a single technique to

limit identification.

In addition to formulating the multidimensional growth model, this research pro-

vides a systematic procedure for applying that model to specific technology architec-

tures. Researchers and decision-makers are able to investigate the potential for addi-

tional improvement within that technology architecture and to estimate the expected

cost of each incremental improvement relative to the cost of past improvements. In

this manner, multidimensional growth models provide the necessary information to

set reasonable program goals for the further evolution of a particular technological

approach or to establish the need for revolutionary approaches in light of the con-

straining limits of conventional approaches.

xxi



CHAPTER I

MOTIVATION

Sometimes the pointless and the ridiculous are obvious; sometimes they are not.

Consider the perpetual motion machine. For centuries, scientists, engineers, and

entrepreneurs dreamed of perpetual motion machines and sought to conjure them

into existence [2]. It seemed that if one could only set a wheel to spinning exactly

so, it might spin forever. If one could lay a watercourse just right, the water would

continually push itself along and even drive a power wheel as illustrated in Figure 1.

Figure 1: A Proposed Perpetual Motion Machine [2]

These were to be machines that, once placed in operation, would continue to operate

indefinitely and, in many cases, even produce useful work with no additional infusion
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of energy. Such a development would be a profound contribution to both science and

humanity. No wonder even great minds turned their energies to the pursuit of this

technical grail. Unfortunately, all attempts have failed completely because of two

developmental barriers: the natural conditions expressed in the first and second laws

of thermodynamics. No matter how hard one tries, it is not possible to create energy

from nothing. No matter how hard one tries, it is not possible to stem the gener-

ation of entropy. These are precisely what perpetual motion machines strive to do.

While there was a time some centuries ago when it made a certain sense to test these

particular physical limits, to accumulate the experiential wisdom that produced the

laws of thermodynamics, this is no longer the case. The laws of thermodynamics are

time-honored and universally accepted. Perpetual motion machines, though momen-

tarily curious, have become laughable for their blatant disregard for the inevitability

of these laws. The perpetual motion machine is pointless and ridiculous.

As universal laws of physics, the first and second laws of thermodynamics establish

limits that bound the design envelope or design space for all plausible systems, even

though their applicability in a particular situation may be temporarily obscured.

Additionally, there are many other physical laws that, like the first and second law,

also establish boundaries limiting the realization of all conceivable systems. Not all

such physical laws are as obvious and universal as the first and second laws; however,

the boundaries they establish for a particular system are no less insurmountable.

Designers may–and probably sometimes do–conceive of schemes that violate one or

another of a myriad of natural laws, and while such schemes may be brilliant with

promise, they are no more likely to succeed than a perpetual motion machine.

1.1 Perpetual Motion Implausibility

There are two primary characteristics of the perpetual motion design problem that

make the nonexistence of a solution obvious. The first is its simplicity as a design
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problem. There is a single objective—perpetual motion—that is easily quantified by

one engineering parameter. This single objective can be expressed as the constancy

or increase of the aggregate kinetic and potential energies over all time for the sys-

tem undergoing perpetual motion. Having only one objective greatly simplifies the

evaluation of proposed designs.

The second characteristic that makes it easy to evaluate the potential for a solution

is the clearly defined upper bounds relative to the single objective. Again, these are

the laws of thermodynamics. In the case of increasing the aggregate energies of the

system, the objective exceeds the theoretical limits of the design envelope; that is, it

violates the first law of thermodynamics by intending to create energy from nothing.

In the case of maintaining the aggregate energies of the system, there are, again,

clear theoretical and practical limits. Only in the case of a purely reversible system

is literal, perpetual motion even theoretically possible. Given that all real systems

are subject to irreversibility—the ravages of entropy, of time, friction, and the like,—

this theoretical limit cannot be achieved or exceeded, only approached. This clearly

defined upper limit for the only system objective of all perpetual motion machines

definitively establishes the implausibility of all such systems.

For more complex multi-objective systems with few, if any, clearly defined upper

limits it is much more difficult to identify the boundaries of the design envelope for

all realizable systems. Such systems may be repeatedly refined and redesigned in

hopes of achieving higher and higher levels of performance with little consideration

for whether or not the design envelope allows for further improvement. In a world of

amateurs dedicating spare hours to hobbies such a gamble might not matter, but in a

world with limited resources to invest, much hinges upon whether or not a technology

can be significantly improved.
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1.2 Design Limits

The Thomas W. Lawson, a sailing ship, was designed to compete with the speed and

capacity of steamships. Her seven masts, required to achieve such speeds, greatly

reduced her stability, and she capsized on December 13, 1907, while at anchor [3].

The features that made her fast had compromised her ability to stay afloat; her

fate eloquently illustrates the limits of a technology, of mast and sail as a means of

achieving speed over water.

There are design envelopes that limit the potential of any future system within

a general technology base or system architecture. Analogous to operating beyond

the operational envelope of a system is attempting to design beyond the theoretical

and engineering limits of a particular technology base. The resulting system may not

always be condemned to catastrophic failure as was the Thomas W. Lawson; however,

all are destined to operate below their targeted capability. The investment required

to research and develop the system intended to achieve these targets is lost.

The possibility, for example, that turbine engine technology has reached its engi-

neering limit has been a point of discussion for decades. Earnest Simpson, the former

Turbine Engine Division Chief for the United States Air Force (serving from 1956 to

1980), has been quoted as saying, “I have been told three times in my career . . .

there was no more research to be done on the gas turbine engine” [4]. Clearly, there

were premature opinions that the technology had filled the design envelope, when

in fact it had not. His successor, Jeffrey Striker, has been met with similar doubt

concerning the future development of turbine engines at the onset of the Integrated

High Performance Turbine Engine Technology program and the Versatile, Affordable,

Advanced Turbine Engine program—two aggressive programs for the further devel-

opment of the gas turbine engine [5]. These programs have raised the question of just

how much research remains to be done on the gas turbine engine. The pertinent ques-

tion, however, is not just how much research remains to be done; more research can
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always be done. The pertinent question is what improvement can be expected from

that research. In effect, what availability for further improvement remains? Are the

proposed performance targets and time lines for these programs reasonable? Are they

even possible? Has turbine engine technology reached a limit beyond which it cannot

improve? These are the types of questions this research is devoted to answering, not

solely for the turbofan but by formulating the necessary tools, for any technology

architecture. At risk on the one hand is excessive investment in the technology, that

is, too much time and engineering effort given to pursuing a solution that lies without

the bounds of physical possibility. There is the risk of pursuing a solution that simply

does not exist. At risk on the other hand is failing to finish technological improvement

that is nearly completed and into which much has already been invested. There is

the risk of abandoning a technological promised land.

The objective of this research is to formulate an approach to evaluate the cur-

rent state of the art of a technology architecture having multiple attributes relative

to impending limits. This will enable decision-makers to include consideration of

the availability for further improvement within a given technology architecture when

choosing between technology alternatives.
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CHAPTER II

INTRODUCTION TO TECHNOLOGY

GROWTH MODELS

This chapter reviews concepts regarding technology development and some of the

highly disparate language used to describe that development. The discussion neces-

sarily focuses on the concepts and terms that this study uses in its development of a

multidimensional growth model for assessment and forecasting technology attributes.

The first part of this chapter speaks generally to the terminology of technology devel-

opment, and the second half focuses the discussion on an introduction of the current

best quantitative and graphic model for measuring technology development, namely

the S-curve.

2.1 Technology

2.1.1 Definition

Technology is a term that is used by many different disciplines and that brings to mind

a host of gadgetry and technique, machinery and process. It derives from a Greek

word meaning ‘the systematic treatment of an art [or skill],’ yet its use, throughout

a wide variety of literature, implies much more [6]. Here follows a sample of the

definitions found in the literature:

[Technology is] the totality of means employed to provide objects necessary

for human sustenance and comfort [7].

[It is] the application of scientific knowledge for the satisfaction of human

needs [8].
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[It is] the stock of knowledge that pertains primarily to the production of

goods and services [9].

[Technology is] a knowledge of techniques, methods and designs which work

even if, at times, the reason why they work cannot always be explained [10].

[It is] the structured application of scientific principles and practical knowl-

edge to physical entities and systems [11].

[Technology comprises] the tools, techniques, and procedures used to ac-

complish some desired human purpose [12].

Collectively these definitions address three distinct aspects of technology: its

source, that is, knowledge; its substance, such as techniques or equipment; and its

purpose, namely, serving humanity.

Knowledge is the source for technology. This may mean scientific principles, or it

may refer to practical knowledge, to craft or skill [11]. The distinct difference between

scientific principles and practical knowledge is addressed by Rosenberg [10]. Accord-

ing to Rosenberg technology derived from scientific principles, through the rigors of

mathematics and the strict application of scientific laws, is based on an understand-

ing of those fundamental laws that govern a system. In contrast, technology derived

from practical knowledge is based on astute empirical observation without particu-

lar understanding of, or concern for, the underlying principles. This distinction is

made to clarify that technology is not only the result of scientific pursuits but can

also result from practical experience. Moreover, the distinction is important to this

study. Identifying the scientific laws that apply to a technology and, more specifically,

the physical limitations that are expressed by those laws has long been considered

a critical component of assessing technology development, because the physical lim-

itations expressed in the scientific laws directly affect the potential for technological

development [13, 8, 14].
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The substance of technology constitutes both the tangible and the intangible. It

consists of the totality of means—the stock of knowledge, techniques, procedures,

and methods—as well as the resulting objects—the tools, goods, physical entities,

systems, and even services—that are developed for the purpose of fulfilling human

needs and desires. As used within this research, technology will more precisely refer

to physical devices used to fulfill a specified set of objectives.

In regard to purpose, recall the old adage that necessity is the mother of inven-

tion. Of course, the inventor’s vision often outstrips need, requiring the suggestion

that technology is the fulfillment of human needs and desires. Whose needs and

desires? They are those of investors, consumers, marketers, technicians, engineers,

manufacturers, and more, each with a separate notion of what a technology should

provide.

2.1.2 Descriptors and Classifications

Of greater difficulty than marshaling a definition of technology is clearly organizing

the myriad descriptors and the overlapping technology classifications that abound in

the literature. It seems that there are as many descriptors and classifications as there

are humans to need or desire technology. At least, this nearly holds true for those who

write the literature on the analysis of technology development. Historians, designers,

and forecasters—to name some varied people groups with an interest in technology

development—all have different perspectives and different ways of discussing tech-

nology. Perhaps this is why the literature of technology development is not unified

in its terminology. In the interest of brevity, the following discussion will introduce

and explain those terms and classifications that are pertinent to this study and its

perspective.

This research is interested in developing tools to assess and forecast the develop-

ment of technology attributes. For the purposes of exploring the relevant terminology,
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there are five questions that organize the numerous considerations into classification

systems.

• First, what should the technology do or accomplish?

• Second, what are the physical possibilities for achieving a technology’s goals?

• Third, how developed is the technology in terms of accomplishing its goals?

• Fourth, how much research and development has been required or will be re-

quired for a technology to accomplish its goals?

• Fifth, how can an analyst organize and understand the information addressed

by the preceding four questions?

Again, this section intends only to introduce the terminology related to each of these

questions. Mathematical and graphical expressions, interactions, and manipulations

of the concepts and realities represented by the terminology are the matter of the

subsequent sections and chapters.

What should the technology do or accomplish? Attributes, metrics, dimensions,

and capability are terms that practitioners use relative to this question. Attributes

addresses the question most directly, for it is used to suggest what characteristics a

technology should have. Speed, reliability, and efficiency are examples of attributes

that a technology might be expected to have. Metrics implies that the attributes

have been identified or expressed in a way that they may be evaluated or measured.

Sometimes, the term figures of merit is used synonymously with metrics. Dimensions

is typically employed to reference succinctly the number of attributes that are of

concern. If a single attribute is in question, the term unidimensional describes the

technology. For multiple attributes, the term multidimensional applies. The term

capability implies that at least in some way or at some level the technology of interest

does possess the attribute in question.
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What are the physical possibilities for achieving a technology’s goals, for acquir-

ing the desired attributes? This set of concerns finds expression in words such as

limits and design space. Limits refers to the fact that physical realities prevent the

realization of some schemes that designers might envision. For example, the first and

second laws of thermodynamics prohibit perpetual motion machines. Generally, an-

alysts write and speak of upper limits, which describe the best that a technology can

hope to accomplish. Sometimes limits are distinguished as scientific or theoretical as

opposed to engineering or practical. The theoretical area bounded by limits is referred

to as the design envelope, which describes the possibilities for design. Throughout

most of the literature that deals with quantitative evaluation of technology, limits

and design space refer to the possibility for acquiring a single attribute. This study’s

interest extends to the limits, that is the possibilities of development, for a technology

with multiple attributes.

Technology potential is defined here as the possibility for further development

or more precisely the availability for further improvement of a technology attribute

relative to impending limits. It is the remaining distance between the current state of

the art of a technology attribute and its upper limit. Technology potential quantifies

the future potential of a technology architecture for a specified dimension of capability.

This potential, however, will only be realized if both the willingness and resources

exist to further advance the dimension of capability within technology architecture.

Consequently, technology potential is not a forecast of what will actually be achieved

but rather the additional improvement that is possible given the willingness and

necessary resources.

Because the third question requires extended treatment, the discussion will first

address the fourth and fifth questions. How much research and development has

been required and will be required for a technology to accomplish its goals? This set

of issues is sometimes described in terms of the effort devoted to the development
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of the technology. Because, however, it can be difficult to distinguish the quality

and intensity of the effort expended, sometimes analysts refer instead to the passage

of time once development begins. How can an analyst organize and understand

the information addressed by the technology development? Analysts refer to tools,

approaches, models, and methods that allow them to assess, to predict, and to forecast

trends in technology development. Two common tools are S-curves and technology

frontiers, which later sections will explore.

How developed is a technology in terms of accomplishing its goals? This ques-

tion, perhaps, references the set of concepts and issues most important to this study.

These issues also seem to be the most complex and confused. The literature usually

describes development by comparing available technologies in terms of their newness,

where newer technologies are equated with being more advanced. A literature review

by Garcia has revealed twenty-five distinctly different classification schemes based on

the relative newness of a technology [15, 16]. These schemes vary in a number of

aspects. For example, there is disagreement on the number of categories necessary to

adequately classify technologies based on relative newness. Some classification con-

structs have as many as eight different classes into which technologies are categorized

[17], while others have as few as two [18, 19, 20]. There is also little commonality

in taxonomy of classification categories. Within the twenty-five qualitative classifi-

cation constructs identified, fifty-two different category descriptors have been found.

Some of the more common categorical descriptors include incremental, discontinuous,

evolutionary, revolutionary, radical, sustaining, and disruptive. (See Appendix A for

a full list.) Even in cases where researchers have agreed on the number and taxon-

omy of classification categories, the same technology has been categorized differently

based on the utilization of dissimilar factors to delineate relative newness. Fifty-one

different factors have been identified in literature that have been employed as criteria

for classifying technologies [15].
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These inconsistencies in classification constructs have inhibited the advancement

of the new product development (NPD) processes regarding different types of inno-

vations. Garcia alludes to the confusion and its limitations:

Researchers often believe that their work is ‘new’ and ‘important’ when

instead it just relabels/redefines/reiterates findings from previous studies

with different labeling of innovations. Findings from other fields . . . are

often overlooked because they emphasize a ‘different’ type of innovation

[15].

Acceptance of new product research by practitioners has also been hindered by the

incongruity within the field.

The objective of this research is not to resolve the many classification inconsis-

tencies and establish a common foundation for NPD taxonomy. The purpose here

is to define clearly the terminology that will be used throughout this research and

establish its relationship to existing vocabulary.

Despite the many differences between classification constructs, there is one similar-

ity. They are all based on the degree of discontinuity of a new technology or product

relative to those that already exist. The disparity in classification results from incon-

sistent answers to the following questions: Exactly what constitutes discontinuity?

For which factors is discontinuity of interest? And, from whose perspective does the

discontinuity exist?

Any new product line or technology, no matter how similar to a previous tech-

nology, is discreetly different. Thus, the transition from the previous technology to

the new could be seen as discontinuous. Oftentimes, however, the differences between

subsequent products, although discrete, are minor and the transition between them

is viewed as continuous. At what point are product (i.e. technology) differences suf-

ficiently large to warrant the classification of their transition as discontinuous? This
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question has been one of several points of divergence for many NPD researchers. The

question of discontinuity, however, is not answered based on product similarity or

dissimilarity but on the divergence of the underlying knowledge base on which subse-

quent innovations are developed. Discontinuity results when the knowledge base used

to develop an existing product must be abandoned and a new knowledge base explored

for the development of a subsequent product, regardless of product similarity—in ap-

pearance or performance. The first automobiles, for example, looked very much like

horse-drawn carriages and in many cases performed no better. They were, however,

based on a radically different knowledge base than their predecessors and represented

a technical discontinuity.

According to Utterback, discontinuity characterizes a “change that sweeps away

much of a firm’s existing investment in technical skills and knowledge, designs, pro-

duction technique, plant and equipment” [20]. Utterback’s definition is focused on

a firm’s abandonment of existing practices. The displacement of existing practices,

however, may occur at several levels—consumer, firm, industry, market, or world. A

discontinuity may occur with respect to any one or more of these entities.

Discontinuity also seems to be a matter of perspective, and classification con-

structs have reflected this. The different perspectives have been grouped into two

levels, macrolevels and microlevels. The macrolevel is concerned with the perceived

degree of discontinuity from the perspective of an industry, the market, or the world.

The microlevel is concerned with the degree of discontinuity perceived by a firm or

customer. For example, imagine the leap Pratt & Whitney, long-time manufacturer

of aircraft engines, would have to make to enter the business of making airframes for

those engines. The effort would constitute a microlevel discontinuity. The endeavor

would require a drastically different knowledge base than the firm currently possesses,

although it would not be new to the industry, market, or world.

For the purpose of classifying an innovation or establishing its relative newness,
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the factors of interest must span both the technical and the marketing aspects of

the innovation’s development. Innovation embodies both the invention and technical

development of a product as well as the production and market introduction of that

product [15]. Thus, when assessing the degree of discontinuity of an innovation from

existing products, the factors considered must include both technical and marketing

aspects throughout micro and macrolevels of consideration.

Garcia has proposed a classification construct for labeling innovations based on

these two foundational dimensions—macro/microlevel and technical/marketing [15].

The construct is based on identifying the presence of a discontinuity in technical

and/or marketing factors at the micro and/or macrolevels. In this construct, radical

innovations are defined as those having micro and macrolevel discontinuities in both

technical and marketing factors. Really new innovations are those having either a

macrolevel technological or marketing discontinuity but not both. Incremental in-

novations are defined as those having a technological and/or marketing discontinuity

at the micro level with no macrolevel discontinuities.

The subject of this research is concerned only with technical factors of innovation

from the macrolevel perspective. There are, therefore, only two innovation categories

of interest—those innovations having a macrolevel technological discontinuity and

those that do not. Those innovations having a macrolevel technological discontinu-

ity independent of market considerations will be referred to herein as revolutionary

innovations or technologies. Under Garcia’s classification construct, revolutionary in-

novations, as defined here, may be categorized as either radical or really new based on

the presence of a macrolevel marketing discontinuity [15]. Also under Garcia’s con-

struct, innovations having no macrolevel technological discontinuity may be classified

as either incremental or really new depending on the presence of a macrolevel mar-

keting discontinuity. This type of innovation will be referred to herein as evolution-

ary—those innovations having no macrolevel technological discontinuities regardless
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of marketing considerations.

The objective of this research is to formulate the necessary tools to identify de-

veloping technologies that, because of their physical limits, designers cannot evolve

appreciably beyond their current capability. It is envisioned that these tools will aid

decision-makers to identify when to stop investing in the evolution of a technology

and begin or increase investing in a revolutionary technology.

2.2 Technology S-curve

The technology S-curve is a graphical representation of the maturing phases of a

particular technology. A notional technology S-curve is displayed in Figure 2. On

the ordinate axis is technical capability, which is representative of any measure of

merit that characterizes the technology of interest. On the abscissa is the engineering

effort—the aggregate effort devoted to implementing physics in hardware in order to

improve the specific technical capability. Time is also frequently used on the abscissa

with slightly different implications.

The level of technical capability achieved by a technology base or system architec-

ture as represented by the vertical scale of a technology S-curve is solely dependent on

the physics of the particular design problem. The capability at any point in time re-

sults from implementing the known physics in hardware. Consequently, higher levels

of technical capability at any point in time are prevented due to limited understanding

of the governing physics or a limited understanding of how to implement the known

physics in hardware.

The time required for advancements in technical capability is solely dependent on

the programmatics of the technology development as represented by the horizontal

scale of the technology S-curve. The progression of a technology towards its upper

limit is not solely dependent on the potential for additional improvement, the technol-

ogy potential, but also the availability of resources and the willingness to devote those
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resources to its further development. As a result, a technology may ‘stall’ indefinitely

at a particular capability level due to low or no investment. In order to normalize

this variability resulting from programmatics, engineering effort can be used as the

horizontal scale for technology S-curves. However, time is most frequently used due

to the difficulty of tracking cumulative engineering effort over the lifetime of a system

architecture. The differences between time and engineering effort as the horizontal

scale for technology S-curves will be addressed in greater detail in later sections.

The limits portrayed in the figure represent the bounds established by the theo-

retical physics and the engineering limitations of realizing that physics in hardware.

These are “hard” limits for the subject technology; they do not change regardless of

engineering effort. The Carnot efficiency for thermodynamic cycles is an example.

The curve itself is the technology S-curve and represents the level of maturity or

capability for the subject technology with respect to the engineering effort invested.
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Figure 2: Technology S-curve

Technology S-curves are used to model technological “growth” based on an analogy

to biological growth patterns. There are four key stages of technology development

that are made evident by the S-curve [21]. The first stage is often referred to as
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the embryonic phase of development. Beginning at the lower left end of the curve

the technology is very young. Many hours of effort are required to achieve even the

slightest degree of improvement. As more and more effort is invested, breakthroughs

are gradually made. With each improvement, additional improvement becomes eas-

ier and easier. The technology transitions into the growth stage, a phase of rapid

development in which subsequent improvements are achieved with significantly less

effort. Analytically, this transition occurs at the point of maximum curvature on

the lower half of the S-curve. At the inflection point of the S-curve the technology

transitions from the growth phase to the maturing phase of development. This stage

of development is characterized by continued growth, although subsequent improve-

ments become progressively more difficult to achieve. As the technology approaches

its engineering limit, it transitions into the aging stage in which each additional unit

of improvement requires exponentially more engineering effort and finally flattens to

asymptotically approach the engineering limit. The transition into the aging stage of

development occurs at the point of maximum curvature on the top half of the S-curve

and is often referred to as the “point of diminishing returns.”

2.2.1 Research and Development Productivity

The slope of the technology S-curve is representative of research and development

(R&D) productivity—the technical improvement per unit of engineering effort. A

plot of R&D productivity is shown in Figure 3. The maximum of the R&D pro-

ductivity curve corresponds to the inflection point of the S-curve. The ‘tails’ of the

productivity curve represent the early embryonic stage of technology exploration and

the final aging stage as the technology approaches its upper limits. The inflection

points of the productivity curve are most critical to the strategic planning of technol-

ogy development. The left inflection point of the productivity curve—the transition

between the embryonic and growth stages of development—indicates the transition
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into a phase of rapid development during which, if a firm is prepared, it can exploit

that explosion in productivity. The right inflection point—the transition between the

maturing and aging stages of development coined the point of diminishing returns—

signals the transition into the phase of rapidly diminishing developmental productiv-

ity. This signals the need to search for a more advanced technology if further progress

in technical capability is to be achieved.
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Figure 3: R&D Productivity

2.2.2 Technology Cycles

The phrase technology cycles refers to the reoccurring pattern of the embryonic,

growth, maturing, and aging stages of subsequently more advanced revolutionary

technologies designed to fulfill a similar function. As one technology approaches its

upper limits and R&D efforts provide little improvement, effort is diverted to a new

technology that may initially have lower performance capability than the incumbent
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technology but possesses greater potential for improvement and higher returns on en-

gineering effort. A series of notional technology cycles is provided in Figure 4. Each

technological cycle is represented by a separate S-curve and unique upper limit.

Notice that each subsequent technology S-curve overlaps the preceding S-curve.

This indicates that research and development for a revolutionary technology begins

while further advancements are still being made to the incumbent technology, and

consequently, that engineering effort is applied to the emerging technology before

the incumbent has exhausted availability for further improvement, i.e. its technology

potential.

In some cases the ‘tail’ of a new S-curve may intersect the S-curve of the in-

cumbent technology before it has reached its aging stage of development, indicating

comparable levels of performance for that specific technical capability. However, due

to the faster R&D productivity of the incumbent technology and the consideration of

other performance criteria, its pursuit was maintained despite the ultimate potential

for higher levels of performance with the emergent, or revolutionary, technology.

2.2.3 Market S-curves

Growth curves, similar to technology S-curves, have also been used to illustrate the

emergence of new technologies into a market. On the ordinate axis is the market share

of a new technology in a particular market, not the market share of an emerging firm.

Upon introduction of the technology it has a very low market share, and initially grows

very slowly. As more is learned about the market and the technology is adapted to

market demand, the new technology’s market share begins to grow with increasing

momentum. As the inflection point of the S-curve is reached, the upper limit to

market share (100%) begins to inhibit the continued rate of growth and the S-curve

begins flattening to asymptotically approach this limit. Unlike technology S-curves,

market S-curves fall after reaching a maximum as they begin to be replaced by more
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Figure 4: Technology Cycles: Reoccurring Developmental Patterns of Subsequently
More Advanced Revolutionary Technologies

advanced technologies. There are many detailed aspects of market S-curves that

have not been extensively discussed herein. They have been introduced only to make

the distinction from technology S-curves and prevent possible confusion. For more

information on market S-curves consult Garcia and Martino [12, 15].

2.3 Technology Capability

Until this point, the technology S-curve has been addressed from a notional perspec-

tive only. However, in order for its application to be meaningful for real technologies,

there are several aspects that require further consideration. This and the remaining

sections of this chapter will address some practical considerations of actually using

the growth curves to assess real technologies.
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2.3.1 Technology S-curve Resolution

The first practical issue to consider when assessing a real technology by means of a

technology S-curve is the resolution at which the technology is to be assessed. Resolu-

tion refers to the degree of precision used to define the technology under consideration.

A highly resolved technology would be one that is very precisely defined by a specific

and detailed hardware implementation. A lesser resolved technology would have a

higher degree of flexibility in the technical implementation of its functional objectives.

As an example, consider the sole functional objective of transportation with the

single technical capability of speed. Most generally, and hence least resolved, the

theoretical upper limit is the speed of light and there are numerous mechanisms—

horse drawn carriage, automobile, piston prop aircraft, turbine engine aircraft, ion

rocket space craft—that can fulfill the objective of transportation with varying speed

capabilities. A handful are shown on a common S-curve in Figure 5.

A more resolved S-curve may only assess a single class of vehicles from the list

above, aircraft, for example. An even higher resolution S-curve may only assess

turbine engine aircraft, and at higher resolution only turbojets, and so on. The more

highly resolved the S-curve assessment the more restricted the assessment is to a

narrow technology class.

Of most interest to this research is an intermediate level of resolution. A high level

of technology resolution results in an assessment that is too narrow to be of practical

value as it applies only to a very precisely defined technology. This level of assessment

tends to be more the analysis of a single system than a class of systems. Conversely

an assessment that is conducted at an extremely low level of technology resolution

results in an assessment that is too broad to be of practical value. An assessment at

this level of resolution is not hardware specific enough to draw conclusions concerning

the technology potential within a technology class. The only resulting information

from such an assessment is the distance of a technology class from the ultimate upper
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Figure 5: Speed Envelope, modified from Lanford and Makridakis [22, 23]

limit bounding all technologies fulfilling a particular functional objective. Proper

selection of the technology resolution will have significant impact on the usefulness of

the resulting assessment. The resolution will also have an impact on both the metric

selection and the upper limit identification.

At lower levels of technology resolution, metric selection must be more general in

order to be applicable to a broader set of possible alternative technologies. Likewise,

upper limit determination must be independent of both the hardware and processes

employed by any one technology alternative; it is dependent only on more general
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physical laws such as the speed of light in the case of speed. For higher levels of tech-

nology resolution, technology capability metrics that are more specific to a particular

technology class can be selected, and upper limits can be determined based on the

specific processes employed by the technology class.

Of most interest to this research is a level of resolution commensurate with system

architectures—a class of systems that are based on common fundamental processes,

although the exact manner in which these processes have been realized in hardware

may differ. Examples of differing system architectures within the field of propulsion

are steam engines, internal combustion engines, turbine engines, rockets, etc. Addi-

tionally each of these would also be classified as revolutionary or radical as compared

to its predecessor.

Also note that for complex technologies such as propulsion systems the evolution

of components comprising the system may individually be described by a technology

S-curve. For instance, the advancement of a turbine engine compressor, combustor,

or turbine may be described according to a technology S-curve. As each component

S-curve approaches its corresponding limits the system as a whole also approaches

its limits. It is by means of component improvement that the system as a whole

improves.

2.3.2 Metric Selection

The usefulness of the technology S-curve is in its ability to establish a technology’s

current capability relative to its upper limits, thereby identifying the technology po-

tential. The next practical consideration that must be addressed is the choice of

technical capability. What measures of technical capability should be selected in

order to adequately assess the future viability of a further evolved technology? Rec-

ognizing the vital importance of identifying technology limits before they inhibited

a technology’s further improvement and subsequently a firms future viability, Foster
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[3] asked a similar question, limits of what? Phrased either way, these two questions

are the same; what technology metrics are most significant to the future viability of a

technology and its developing firm? The answer Owens Corning gave to this question

was the technical factors of our product that were most important to the customer [3].

This can be further generalized to include all factors that influence product design.

The more dedicated a technology is to a single function or objective, the easier it

is to identify an appropriate technical capability to monitor. As an example, consider

a clock which most generally has a single fundamental objective—to accurately mea-

sure time as quantified by error per day, the ultimate limit to which is clearly zero.

Independent of cost and specific hardware implementation, an S-curve representation

of time measurement accuracy is shown in Figure 6. Note the reformulation of the

technical capability as to yield a growth curve.

Figure 6: Accuracy of time measurement, as quantified by error per day

For more complex technologies that have multiple performance and economic ob-

jectives, identifying and monitoring appropriate metrics that comprehensively assess
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the technology is much more difficult. As an example, consider high bypass turbo-

fan engines. The number of system level metrics necessary to completely evaluate

the maturity of such a technology are numerous: thrust, weight, fuel consumption,

emissions, noise, reliability, etc. Furthermore, as multiple technology attributes are

necessary to fully describe a system, interactions between these attributes must be

considered in order to accurately capture the overall system maturity level relative

to its upper limits.

2.3.3 Multi-Objective Metric Correlation

The present application of technology S-curves has been limited to a single technical

capability for any subject technology. For technologies having only one objective, this

approach is quite meaningful and relatively simple to establish an accurate S-curve

model. There are, however, few technologies that truly possess only a single technical

capability. Even for a technology required to fulfill only one functional objective there

are often several metrics that are used to describe its overall performance. Inherent in

all technology designs beyond objective fulfillment are measures of durability, “easy of

use”, maintainability, etc.—all of which can be used to assess the maturity of a given

technology. Technologies having a single objective are modeled using technology S-

curves by eliminating the variability due to all other figures of merit. For very simple

technologies this approach can result in a meaningful assessment. However, for more

complex multi-objective technologies, far too much information is lost in order to

reduce the merit of the technology to a single technical capability providing marginal

insight at best.

As an example, consider a high-temperature alloy for which the technical capa-

bility of interest is the maximum temperature it can withstand. For meaningful

results, a precise definition must be given to “withstand.” This could be defined as

the alloy’s melting point, or, more meaningful, a set threshold of strength, hardness,
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or fatigue performance. The temperature at which any of these properties for the

subject alloy drop below the threshold will be considered its maximum temperature.

The result is an S-curve of alloy maximum temperature as defined by fixed property

characteristics—variability due to other technical capabilities has been removed from

the assessment.

Often in the case of simple systems this type of assessment may be adequate,

however, as the complexity of the subject technology increases so do the number of

system metrics that must be fixed in order to provide a meaningful assessment. In

many cases, this may be both undesirable and impractical. Consider again the alloy

example. How would the resulting maximum temperature S-curve change if either

the tensile strength or hardness thresholds were decreased or increased? While fixing

these thresholds does provide a single meaningful S-curve there is a whole family of

maximum temperature S-curves that could be generated corresponding to different

settings of other attributes.

There are two primary disadvantages to removing the variability of a technical

capability due to all other capability metrics when assessing real technologies. The

first is a practical issue of data collection—seldom is there adequate historical and

even current data to establish a single S-curve independent of variability due to other

technology characteristics. Particularly for complex technologies, available data is

far too sparse to reduce it to a single decoupled S-curve. A second disadvantage

to fully decoupling a single metric from all others is the limited usefulness of the

resulting S-curve. This technology S-curve is only applicable for a single setting of

all other technology attributes. Should interest shift to a different setting for any

of the remaining metrics a completely new assessment would have to be conducted.

Furthermore, the maturity of a technology is rarely defined by a single capability

attribute. Consequently, an S-curve would have to be generated for each metric of

interest in order to conduct a comprehensive assessment. However, to decouple each
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metric from all others during the creation of individual S-curves would not provide an

accurate picture of the underlying physics as it completely neglects the interactions

that exist between the metrics. A more comprehensive approach is required whereby

these interactions can be accurately captured in order to provide an overall picture

of technology maturity.

2.4 Time, Investment, & Engineering Effort

In the notional concept of the technology S-curve, engineering effort is the independent

parameter of the abscissa. Fundamentally, the curve itself represents the level of

technological capability relative to the cumulative effort invested in developing the

technology. However, due to the difficulty in tracking the cumulative effort over an

entire technology cycle, which may last several years or even decades, engineering

effort is rarely used as the independent parameter during the practical application of

technology S-curves. There are two alternative parameters that are often used in place

of engineering effort: research and development investment or time. R&D investment

is the most representative of engineering effort; although, it too can be very difficult

to monitor over an entire technology cycle. As a result, time is most often used.

The date a technology reaches a particular level of technical capability is much more

readily available than either the cumulative engineering effort or R&D investment

devoted to achieving that level of capability. The disadvantage to using time is that

it is not always proportional to engineering effort and as a result technology S-curves

based on time must be interpreted slightly differently.

Time would be an ideal replacement for engineering effort as the independent pa-

rameter of the technology S-curve only if engineering effort were constant with time.

This is illustrated in Figure 7a wherein engineering effort is constant with time and

as a result the S-curves based on engineering effort and time are identical. How-

ever, variability of engineering effort over time which may result from any number of
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socio-economic factors prevents time from being a direct replacement for engineering

effort as illustrated in Figure 7b. Note that any increase or decrease in the rate of

advancement of a technology observed on an S-curve based on time may be the result

of increased or decreased engineering effort over that time rather than the natural

cycle of technology development. Despite this disadvantage, time has proven to be an

effective replacement for engineering effort in the practical application of technology

S-curves. However, some flexibility must be used in the interpretation of these curves

to allow for any variation of engineering effort over time.
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Figure 7: Engineering Effort Versus Time as the S-curve Independent Parameter

This research will be conducted using time as the independent parameter for the

S-curve because of the extreme difficulty in quantifying and compiling engineering

effort data. However, if such data is available the process of conducting the necessary

transformation from time to engineering effort is trivial.
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2.5 The Process of Technology Advancement

A technology advances along an S-curve by means of progressively more advanced

hardware implementations. Despite the continuous lines used to depict S-curves, they

are actually comprised of discrete points which collectively form the s-shaped curve.

Each point signifies the technical capability of a specific hardware implementation or

individual system within the system architecture of which the S-curve is representative

as illustrated in Figure 8.

Individual 
Systems

Figure 8: Individual Systems Comprising S-curve

Each individual system portrayed on an S-curve is the result of a complete design

process that generally includes multiple stages of development. Consequently, all

capability levels used to generate a single technology S-curve must be indicative of

similar stages of development for each system incorporated into the S-curve. Incor-

porating capability levels representing systems at different stages of their individual
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development would introduce variability within the S-curve due to the disparate stages

of development for the individual systems rather than the development of the system

architecture as a whole. The developmental stages of an individual system or hard-

ware implementation can be described by Technology and Manufacturing Readiness

Levels (TRLs & MRLs) [24, 25] as defined in Tables 1 & 2, respectively.

Table 1: NASA Technology Readiness Levels, reproduced from the National Re-
search Council, [24], “Maintaining U.S. Leadership in Aeronautics: Break-through
Technologies to Meet Future Air and Space Transportation Needs and Goals”

Actual system flight proven on operational vehicle9

Actual system completed and flight qualified 
through test and demonstration

8

System prototype demonstrated in flight7

System/subsystem (configuration) model or 
prototype demonstrated or validated in relevant 
environment

6

Component (or breadboard) verification in a relevant 
environment

5

Component and/or application formulated4

Analytical and experimental critical function or 
characteristic proof of concept or completed design

3

Technology concept and/or application formulated 
(candidate selected)

2

Basic principles observed and reported, paper studies1

Technology Readiness DescriptionLevel

Evident from Table 1 is that TRLs quantify the maturity of a technology relative

to its degree of operability [26]. A technology reaches the top of the scale, a TRL

of nine, once the technology has been proven in an operational vehicle. TRLs have

also been used as a basis for quantifying uncertainty in the expected capability of

an individual system prior to achieving operability [27]. This is accomplished by

attributing a distribution to each technology readiness level as illustrated in Figure 9.

A TRL of 1 has the broadest distribution in expected capability and each subsequent

distribution is narrower as the technology approaches operational maturity (TRL =
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Figure 9: Relative Uncertainty of at Various Technology Readiness Levels

9) at which stage the distribution has reduced to a single level of known capability

with no uncertainty.

The technology readiness scale which quantifies the level of operability of an indi-

vidual system should not be confused with the technology S-curve which describes the

evolution of subsequent systems in a system architecture relative to the architecture’s

upper limit. Consequently, each system comprising a technology S-curve should have

achieved the same level of technology readiness. Specifically, they must have a TRL

of nine as it is only then that the technical capability of a system can be known for

certain.

The development of an individual system or technology along the TRL scale,

from 1-9, is very different from the development of a system architecture along its

S-curve. The distinction is most obvious by recognizing that all points along an S-

curve depict actual operational systems. Yet, TRLs 1-5 do not describe operational

systems. Furthermore, a TRL of 9, though indicating an operational system, does

in no way suggest its current capability level has attained the upper limit bounding

the system architecture. A technology having achieved a TRL of nine represents a
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single point on a technology S-curve. Subsequent points on an S-curve result from

progressively more advanced systems achieving a technology readiness level of 9 as

illustrated in Figure 10. Technology readiness levels do not quantify the evolutionary

advancements of operational technologies [28].
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Figure 10: Relative Significance of Technology Readiness Levels and Technology
S-curve

Manufacturing Readiness Levels quantify the maturity of a particular manufacturing

process for a technology under develop. They emphasize the need and quantify the

degree to which concurrent product and process design is implemented. The manu-

facturing readiness level scale has been developed to parallel the technology readiness

scale. Thus an MRL of nine corresponds to a product in low rate production much

like a TRL of nine corresponds to a product or technology proven in an operational

flight. An additional MRL level of ten has been included to distinguish between ini-

tial low rate production and full rate production. If concurrent engineering is not

employed a technology may achieve a TRL of nine while still having a relatively

low MRL stalling its market introduction until manufacturing processes can be de-

veloped. Because manufacturing processes cannot be finalized until the product or

technology is proven the MRL of a technology will always be equal to or lower than

the technology’s TRL. Technology S-curves should be formulated with systems that
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have the same MRLs (9 or 10) to eliminate any variability due to different levels of

producibility between subject systems.

Table 2: Manufacturing Readiness Levels defined by the National Center for Ad-
vanced Technologies [25]

System, component or item previously produced or 
in full rate production

10

System, component or item previously produced or 
in low rate production

9

System, component or item in advanced 
development.  Ready for low rate production

8

System, component or item in advanced 
development.

7

System, component or item in prototype 
demonstration beyond bread board, brass board 
development

6

System, component or item validation in initial 
relevant environment

5

System, component or item validation in laboratory 
environment

4

Manufacturing concepts identified1-3

Manufacturing Readiness DescriptionLevel

Technology and manufacturing readiness levels are not only significant to the gen-

eration of a technology S-curve but also to the interpretation of forecasts resulting

from a technology S-curve. Because all systems used to generate a technology S-curve

have TRLs equal to nine and MRLs greater than eight the resulting forecasts also

correspond to operational systems in low or full rate production.
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CHAPTER III

BACKGROUND

The basis for this research has its foundation in three general areas of knowledge:

technology forecasting, multi-attribute technology assessment, and limit identifica-

tion, some of which have already been mentioned. This chapter will discuss pertinent

elements of each of these fields.

3.1 Technology Forecasting

The elements of technology forecasting of interest to this research are those devoted

to the prediction of a system architecture’s growth as measured by the improvement

in technical capability. Chapter 2 introduced the growth curve or S-curve as a poten-

tial means of forecasting such improvement. Whereas that discussion addressed the

qualitative significance of the S-curve relative to the general elements of technology

development, this chapter will examine the mathematical aspects of generating and

forecasting technology-specific S-curves.

There are many mathematical equations that, at least in part, bear some resem-

blance to an S-shaped curve that can be used to describe the technology growth

patterns discussed in Chapter 2. These equations can be categorized into two main

groups, absolute and relative models. Absolute models quantify the technical capa-

bility, yt, as a function of the independent parameter time, t. Conversely, relative

models quantify the rate of change in technical capability, dyt, as a function of the

most recently achieved level of technical capability, yt−1. These growth models have

found utility for modeling biological growth patterns, sales and marketing patterns,

and technology development patterns. The Logistic and Gompertz equations are most
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commonly used to depict technology development. Table 3 lists several absolute and

relative growth models equations.

Table 3: Commonly Used Growth Model Equations

Model Name Equation

Absolute Models

Logistic [29] yt = L
1+ae−bt

Gompertz [23] yt = Le−ae−bt

Mansfield-Blackman [30, 31, 32] ln ( yt

L−yt
) = β0 + β1t

Linear Gompertz [33] ln (− ln (yt

L
)) = β0 + β1t

Weibull [34] ln ( ln | yt

L−yt
|) = β0 + β1 ln t

Von Bertalanffy’s [23] yt = (1− ae−bt)3

n/a [23] yt = ea−(b/t)

Relative Models

Bass [35, 36, 37] dyt = β0 + β1yt−1 + β2(tt−1)
2

Nonsymmetric Responding Logistic [38, 39] ln dyt = β0 + β1 ln yt−1 + β2 ln(L− yt−1)

Harvey [40] ln dyt = β0 + β1t + β2 ln(yt−1)

Extended Riccati [41] dyt

yt−1
= β0 + β1yt−1 + β2(

1
yt−1

) + β3 ln(yt−1)

In order to make technological forecasts based on any of the above growth models,

forecasters must regress the technological performance data of a technology architec-

ture and must extrapolate the curves into the future beyond the range of available

data. In this way, future technical capability is predicted. Multiple forecasters have

described similar approaches to this process [8, 14, 40], which Twiss succinctly out-

lines in the following six steps [8]:
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1. Identify the appropriate market attribute for the product of the system in which

it is embedded.

2. Determine the technology parameter(s) by which the attribute can be measured.

3. Collect data for the past progress of this parameter over time.

4. Establish the natural/physical limit for the parameter using the technology

being forecasted.

5. Fit an S-curve to the data which becomes asymptotic at the limiting level.

6. Consider events or other trends which may affect the future development of the

technology and thereby influence the shape of the curve, i.e. the emergence of

a new technology or other factor which might affect the funding necessary to

drive the advance.

The accuracy of the resulting forecast, Martino notes, is dependent on the follow-

ing three assumptions: the upper limit is accurately determined, the correct growth

curve with which to regress historical data is selected, and historical data accurately

estimates the coefficients of the growth curve [13]. Each of these requirements has a

pivotal role in ensuring the accuracy of a technology forecast and will be considered

in turn.

3.1.1 Upper Limit Estimations

It is imperative to estimate the upper limit of a growth curve accurately, for this can

have the greatest impact on the accuracy of the forecasts resulting from extrapolat-

ing the curve. There are two approaches often employed for establishing upper limits

to technology growth curves: regression and physics-based calculation. Regression

is the easiest of these approaches. It involves estimating the upper limit simultane-

ously with the other growth curve parameters, which result from regressing against
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historical data. Some researchers employ and advocate this approach [1, 42], while

Martino warns against this practice, arguing that the productivity of early technology

development is only minimally influenced by the upper limit [13]. Thus, historical

data from the early stages of development contain little information as to the location

of the upper limit. As a result, limits estimated in this manner are prone to error,

and this can have a significant impact on the resulting forecast. As an illustration of

this, Martino varied the upper limit to steam engine efficiency from 45 to 55 percent.

Using the Logistic curve to regress available data, Martino found that the midpoint

of the resultant development curve, that is, the projected shift in the technology from

growth to maturity, varied across time significantly. With an upper limit of 45 per-

cent, the midpoint of the curve projected the shift to occur in 1900. With an upper

limit of 55 percent, the forecast put the shift in 1925. [43]. Martino concluded that,

“even a small error in the upper limit can result in a fairly significant error in the

forecast” [13].

Martino proposes that the only proper approach to upper limit estimation is to

employ physics-based calculations. Forecasters perform these through the evaluation

of the limits imposed by nature on a technical approach. Because the specific technical

approach of a developing technology system directly affects the extent to which an

estimated upper limit is meaningful, a forecaster should consult specialists in the

particular field of interest [13]. For certain cases, when the need for accuracy with high

confidence justifies the expense of a team of specialists, forecasters certainly should

follow Martino’s recommendations. For more common analyses, however, regression

may be a credible option. DeBecker and Modis have further investigated the accuracy

of regressing for upper limits and have attempted to quantify any error that might

result from this practice [1]. Because of the conflicting opinions and the importance

of upper limit estimations Chapter 6 will be devoted to these considerations.
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3.1.2 Selecting a Growth Model

Selecting an appropriate growth curve to model the improvement of a technical ap-

proach as it advances towards its upper limit also has a significant impact on the

accuracy of the resulting forecast. Similar to estimating upper limits, a growth curve

should not be selected based on goodness of fit but on matching the behavior of

the selected growth curve to the underlying dynamics of technology growth [44, 45].

Young provides a detailed comparison of growth models as applied to technology de-

velopment in “Technical Growth Curves, a competition of forecasting models,” [42].

Results from Young’s research suggest that in general, relative models are more ac-

curate than absolute models, and in particular the Bass and Harvey growth models

perform well under most circumstances. It is expected that relative models will per-

form better than absolute models, because each new point in a relative model is

anchored to the previous data point. One disadvantage to relative models is that

they generally require a higher number of fitting parameters for which to solve than

do absolute models. Of the absolute models included in Young’s research, the Logis-

tic and Gompertz models were found to provide the most accurate forecasts. Both

Martino and Franses have investigated the relative appropriateness of these curves

[13, 46].

The primary means by which Martino differentiates between the behavior of

growth curves is by evaluating their slopes. Compare the slope of the Logistic curve

in Equation 1 with the slope approximation for y ≥ L/2 of the Gompertz curve in

Equation 2, where y is the technical capability, t is time, L is the upper limit, and a

and b are curve parameters.

dy

dt
=

by(L− y)

L
(1)
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dy

dt
= ab(L− y) (2)

Based on these slopes, the distinction between the Logistic and Gompertz curve is

clear. Change in the Logistic curve is proportional to both the progress to date, y,

and the distance to the upper limit, (L− y); whereas, change in the Gompertz curve

is only proportional to the distance from the upper limit. This distinction between

the behavior of the Logistic versus Gompertz curves can be mapped to differences in

the nature of the underlying dynamics for technology development. That the slope

of a growth curve is proportional to the technical capability (progress to date), y,

indicates that ease of further improvement is dependent on the level of technical

capability already achieved; past progress would seem to make future progress easier.

Martino suggests that this momentum may result from the synergetic interaction

between advancing past progress to its full potential and incorporating additional

improvement [13]. This underlying assumption that future advancement is facilitated

by previous progress may not always be true. In these cases, a growth curve such

as the Gompertz curve may be more representative where further progress is only

dependent upon the relative closeness to the upper limit (L− y).

Franses provides a quantitative approach for selecting between the Logistic and

Gompertz models based on the difference equations provided as Equations 3 and 4 for

each the Logistic and Gompertz models, respectively, where c1 & c2 are constants [46].

Note that the Logistic difference equation is non-linear while the Gompertz logistic

equation is linear. By conducting an auxiliary regression according to Equation 5, the

appropriate model can be selected based on the significance of the parameter τ . If τ

is found to be statistically significant, the Logistic curve should be selected, because

the auxiliary function is non-linear; conversely, if the τ parameter is not found to be

significant, then the Gompertz curve should be selected.

Additional consideration will be given to the selection of a growth model following
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the formulation of the multidimensional growth models.

log(log(yt)− log(yt−1)) ≈ c1 − k1t + (log(log(yt)− log(L)) (3)

log(log(yt)− log(yt−1)) = c2 − k2t (4)

log(log(yt)− log(yt−1)) = δ + γt + τt2 (5)

3.1.3 Calculating Parameter Estimates

The last assumption Martino declared is required for accurate forecasting based on

growth curve extrapolation—that the parameters of the growth curve can be esti-

mated correctly from historical data—is trivial and will not be considered at length.

Both linear and non-linear regression techniques have been shown to accurately de-

termine parameter estimates [13, 47].

Similar approaches to forecasting technological advancement by means of growth

curves are presented by numerous researchers [8, 13, 14]. Twiss is the only of these

to consider the interaction between multiple attributes of the same technology, each

following its own individual growth curve. His consideration, however, is only notional

and qualitative. He does not provide a quantitative approach for simultaneously

generating growth curve forecasts for each technical capability of a multi-attribute

technology. In fact, in order to quantitatively assess multi-attribute technologies,

Twiss abandons growth curves and turns to scoring models to quantify the overall

state of the art (SoA) for multi-attribute technologies [8].

3.2 Multi-Attribute Technology Assessment

The key capability that is lacking in current modeling by technology growth curves

is the simultaneous consideration of multiple attributes. Although Twiss does briefly
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address the need to consider the S-curves for each individual technology attribute

when making development decisions for the technology, as a whole, no approach is

presented for generating the S-curve for each attribute. The topic is only addressed

qualitatively. There is, however, a body of literature that quantifies the merit of

multi-attribute systems through scoring models and technology frontiers. The next

sections review these methods.

3.2.1 Scoring Models

Scoring models are used to combine multiple technology attributes into a single tech-

nology measure, often where no physical basis exists to do so [12]. These models are

often technology specific and non-unique. Two researchers may produce two distinctly

different scoring models for the same set of technology attributes, both of which may

adequately capture the overall technology capability. Regardless of the precise form

of a scoring model as a comprehensive measure of technology capability, all have a

single unifying characteristic. They convert or collapse multiple distinct technology

attributes into a single, aggregate technology measure by means of a transformation.

As a result, scoring models do not provide a reliable means of investigating the inter-

dependence between system attributes. Rather than exploring the interdependence

between attributes, scoring models ignore such interactions.

By collapsing the technology measure to a single quantity, the scoring model

counters the need to accommodate attribute interactions by establishing an overall

measure of merit. While this does provide the ability to assess the technology as a

whole, scoring models are not equipped to capture the necessary information to si-

multaneously evaluate each system attribute relative to the remaining attributes. In

short, this approach to technology measurement does not allow for the tradeoffs be-

tween system attributes in the development of a complex technology system. Because

such comparative evaluation is one of the primary focuses of this research, scoring
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models will not be investigated further here. For more information, consult Martino,

who presents a systematic procedure for developing scoring models [13].

3.2.2 Technology Frontiers

Scoring models collapse a multidimensional technology into a single dimension, and

as a result, they eliminate the potential to evaluate the relationship between these

dimensions. Technology frontiers, on the other hand, preserve the multidimensional-

ity of complex technologies for the purpose of exploring the relationship between a

system’s attributes. The single composite measure of the scoring model is represented

as a surface within the framework of technology frontiers. Multiple combinations of

system capabilities that have the same composite measure fall on this surface. Each

surface within the context of technology frontiers represents a single level of the state

of the art and each point on the surface is a unique combination of attribute values.

These surfaces are often called trade-off surfaces [48], technology frontiers [13], or

Pareto frontiers [49].

Frontiers are used to depict a technology in an n-dimensional space in which

each dimension corresponds to a different technology attribute. A notional, two-

dimensional technology frontier is shown in Figure 11. Each axis represents a differ-

ent system attribute or technology capability, where each combination of technical

capability represents a unique system. The curve depicts the technology frontier and

represents the current state of the art—combinations of the two attributes that are

presently achievable with available technology. The region of the space above the

frontier represents the combinations of the two attributes that are unattainable with

the current state of the art. Conversely, the region below the frontier represents the

combinations of the two attributes that do not fully utilize available technology. As

a result, the corresponding systems perform below the state of the art. While this

notional example has been bound to only two dimensions, the same principles apply
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to systems having numerous measures of technical capability and can be depicted by

an n-dimensional technology frontier.
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Figure 11: Notional Technology Frontier

There are two key questions of interest to researchers concerning technology frontiers—

how best to define the frontier at any stage of technical development and how to

forecast its growth over time.

Consider first the definition of technology frontiers. Numerous approaches have

been employed to define the shape of technology frontiers, ranging from planar fron-

tiers, where the relationship between any two attributes is to be assumed linear,

to concave frontiers, as depicted in Figure 11, and convex frontiers. Alexander

and Nelson developed an approach to planar technology frontiers given by Equa-

tion 6, whereby each level of the state of the art is defined by a hyperplane in an

n-dimensional space as described by [50].

M = β1y1 + β2y2 + ... + βnyn (6)
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The state of the art, M , is defined as a linear combination of the system attributes, yi;

the coefficients βi establish the relationship between each system metric and the state

of the art. The coefficients of this planar frontier model, as described by Alexander

and Nelson, are determined by the regression of historical data. Rather than at-

tempting to define a numerical measure of the state of the art as in scoring models,

the date of introduction for a system is used to quantify the state of the art. The

coefficients are then determined by regressing the model of Equation 6 against the

introduction date of a system and its corresponding technical capabilities, yi. An

advantage of this approach to defining technology frontiers is the ease of forecasting

the growth for the future frontiers. One need only input a future date to investigate

potential combinations of technical capability, or one could define desired levels of

technical capability in order to predict the expected date for achieving those levels of

capability.

There are, however, several disadvantages. The first of these is the potentially poor

accuracy of projecting future levels of the state of the art. No consideration of upper

limits is incorporated into the model. As a result, there is no limit to the technical

capability that may be predicted for a future year. Another disadvantage is that

the planar technology frontier assumes that the relationship between time and the

development of each system attribute is linear. This suggests that the growth of planar

technology frontiers may be accurate only for periods of technology development

spanning the linear section of the technology S-curve. Planar technology frontiers

also assume that the trade-off rate between system attribute pairs will be constant

without consideration of where the system falls on the frontier. Often this does not

accurately describe the underlying nature of trade-offs between system attributes.

Generally, increasingly more of one attribute must be surrendered to improve each

additional unit. This characteristic of technology trade-offs suggests the need for

concave technology frontiers.
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Dodson proposed an approach for defining concave technology frontiers by means

of fitting n-dimensional ellipsoids to historical data using a model of the form shown

in Equation 7 [51, 52].

1 =
n∑

i=1

(xi,j

ci

)2
(7)

Here n is the number of system attributes included in the model; x is the ith value

of the jth system; ci is the ellipsoid intercept of the ith axis [13]. The result of

Dodson’s approach for two system attributes is a technology frontier defined by the

first quadrant of an ellipse as shown in Figure 12. Note the increasing quantity of

y2 relinquished for each additional unit of y1 while moving left on the curve and vice

versa when moving to the right. Martino later modified Dodson’s work by allowing

any even exponent in Equation 7 [53]. The result of raising this exponent increases

the “squareness” of the frontier, as shown by the remaining curves of Figure 12.

c1

c2
Martino’s Increasing 

Exponent

Dodson’s 
Ellipsoid Frontier

y2

y1

Figure 12: Notional Ellipsoid Frontier
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Both Dodson’s and Martino’s approaches are implemented in a similar manner. An-

alysts compile a database of existing attributes, each at the same level of the state of

the art. An ellipsoid frontier is then fit to the data using the model of Equation 7.

The resultant expression describes the technology frontier for that particular level of

the state of the art.

Another approach to evaluating technology frontiers is Data Envelopment Anal-

ysis (DEA). Rather than attempting to fit a predefined function through data of a

common technological level, DEA establishes an envelope which is anchored to the

most advanced systems within a historical database [54, 55]. A notional envelope is

illustrated in Figure 13.
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Figure 13: Data Envelopment Analysis

The discussion has considered several mathematical models used to represent technol-

ogy frontiers. Now it will turn to forecasting their growth into the future. Few detailed

approaches have been identified to address this issue. As already discussed, one such

approach is inherent in the definition of planar technology frontiers by Alexander and

Nelson [50]. The frontiers are defined by a specified year capability (or state of the
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art), and in this model forecasting is simply a matter of extrapolating the regressed

model into the future. These extrapolations are suspect because they assume a linear

relationship between technology development and time. Also, with this approach, a

researcher is bound to the contrived linear relationship between system attributes,

which describes only limited situations that may or may not be of interest.

Another approach to forecasting technology frontier growth is proposed by Mar-

tino and only generally described here [13]. This approach requires that a researcher

collect several successive sets of data. Each of these sets must contain systems of

varying attribute capabilities, yet each also represents a common level of the SoA.

Each set of data is then regressed using an appropriate frontier model. The separa-

tion between successive frontiers is evaluated, and an appropriate forecast for future

frontiers is extrapolated accordingly. However, no formalized approach for making

this forecast is proposed. A disadvantage to this approach is the amount of historical

data required. Such an extensive data requirement can be an inhibiting factor in

attempting to forecast most technologies in this manner.

3.3 Technology Impact Forecasting

Discussion has thus far been directed to the assessment of technology development

based solely on the past improvements that have been realized in system-level at-

tributes. An approach to forecasting has been presented whereby future levels of

technical capability are predicted by extrapolating appropriately defined growth mod-

els from the pattern of past development. No consideration has yet been given to the

specific technical changes required by a system in order to realize forecasted levels of

technical capability.

Technology Impact Forecasting (TIF) is a systematic method for identifying the

specific changes required to a baseline system to provide the greatest potential for

overall system improvement according to customer preferences [56]. By means of
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modeling and simulation, TIF quantifies the system level departure from a specified

baseline resulting from the infusion of a new or alternative technologies as quantified

by technology metrics. TIF possesses the necessary capability to identify the specific

technological changes required to advance a system along its metric-specific, technol-

ogy growth curve. The remainder of this section will be devoted to a description of

the TIF methodology.

The first step to Technology Impact Forecasting is devoted to framing a design

problem in terms of customer requirements, available budget, and specified time

frame. The objective is to translate customer wants and needs, “the voice of the

customer,” into quantifiable economic and engineering terminology, the “voice of the

engineer.” These quantifiable figures of merit, or metrics, form the basis of compari-

son to judge the relative goodness of design alternatives [57].

Defining the concept space encompasses identifying both the alternative concept

space and the design space. These form the basis from which potential systems can

be selected to satisfy customer requirements. The alternative concept space is defined

by all possible system configurations. The purpose of the alterative concept space is

to help prevent the exclusion of possible design alternatives from consideration. One

alternative concept, usually indicative of current capability, is selected as the baseline

concept to investigate system feasibility [57].

The design space is defined by identifying the physical design parameters or control

variables over which the designer has control [58]. These control variables form an n-

dimensional coordinate system, a subspace of which is the design space. The bounds

of the design space are defined according to specified deviations of the control variables

from the baseline system.

Modeling and Simulation (M&S) is used throughout the TIF approach to facilitate

rapid assessment of alternative concepts with minimal expenditure of time and money.

Despite its heavy dependence on a M&S tool, TIF is not model or system specific.
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It has been developed generally to be used with any system for which a M&S tool

possessing several basic features can be found. These required M&S characteristics

are outlined in References [57, 59]. The purpose of the M&S tool is to track the

dependence of quantifiable system metrics on the design space parameters, or control

variables.

M&S is used to track variation in the system metrics that result from changes in

the control variables spanning the entire design space. In effect, the design space, as

defined by the control variables and corresponding ranges, is mapped to the system

metrics by means of the M&S tool. As a result, the system metrics can be determined

for any combination of control variables. In order to evaluate numerous possible

combinations, the M&S is commonly replaced with a metamodel which is then linked

with a Monte Carlo simulation [60, 61, 62, 63, 64]. This linkage allows for the entire

design space to be explored as defined by combinations of control variable settings

[57].

The design space is then investigated for system feasibility—systems that meet

or exceed the targets or constraints specified by the customer. The fraction (if any)

of the design space that lies within the customer’s constraints is identified. This

subspace is called the feasible space. If adequate feasible space is not found, TIF

simulates the infusion of new or alternative technologies to the baseline system as

quantified by technology metrics. Kirby defines a technology metric as “a standard

of measurement used to define the impact of a generic technology area . . . on the

system and includes benefits and degradations,” [56].

A new design space is generated based on these technology metrics, or disciplinary

metrics, and subsequently searched for feasible space. In this way, TIF identifies both

the disciplinary metrics which require technological development and the magnitude of

that improvement that will allow system level targets and constraints to be achieved.

TIF provides the necessary framework within which specific technical improvements
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can be identified that enable a technology to evolve along its technology growth curve

[56, 57].
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CHAPTER IV

RESEARCH FOCUS AND SCOPE

Perpetual motion machines always fail. There are numerous cases that make this

plain. The failure, however, does not explain why perpetual motion machines will

not, cannot work. Some people keep hoping and keep trying to cheat the laws of

thermodynamics. Perhaps, they must reason to themselves, it is a matter of the

particular design and not the impossibility for design. Because they do not or can-

not recognize that the pertinent physical limits disallow any design space for their

simple—yet impossible—problem, they are doomed to fail. Even for design problems

in which the physical limits allow for successful design of one or more attributes con-

sidered individually, that same success may not be possible when all the attributes are

required of a single system. Remember, the Thomas W. Lawson failed because her

designers did not adequately consider the interaction between vital system attributes,

specifically speed and stability. It was possible to achieve the target speeds through

an extensive set of masts and sails, yet the system as a whole failed. The vessel also

had to be stable, and the weighty assembly of masts was fatefully lacking in terms of

that attribute.

In the case of the Thomas W. Lawson, a carefully constructed technology growth

model would have revealed the challenges preventing the success of the target sys-

tems. In the case of the Thomas W. Lawson a multidimensional growth model could

organize the requirements (e.g. for speed, stability, etc.) and their limits in such

a way that it would be apparent how the treatment of one attribute would likely

affect—maybe compromise or enhance—the other attributes. Although the compo-

nents of such a model are evident in the literature on technology development and
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evaluation, a multidimensional growth model suitable for quantitative assessment and

forecasting does not exist.

The objective of this research is to formulate an approach to assess and forecast

the maturity of technologies that have multiple objectives relative to their upper limits

in order to determine the availability for further improvement within their respective

technology architectures.

4.1 Requirements for the Assessment and Fore-

casting Method

Technology growth models will serve as the foundation for the proposed formulation.

Research will focus on extending the practical application of the technology growth

curve from modeling only single-objective systems to comprehensively modeling com-

plex systems that have multiple objectives. The intent is to transform the growth

model from a notional concept of technology maturation to a practical tool for strate-

gic decision-making. This research will accomplish this goal by developing a form of

gap analysis that will focus on technology growth models and will provide answers to

the following research questions:

RQ1 What is the current state of the art as defined by achievable combinations of

attribute capabilities?

RQ2 What is the technology potential of any one attribute relative to specified levels

of the remaining attributes?

RQ3 Has the point of diminishing returns been reached for any of the system at-

tributes?

RQ4 What is the forecasted improvement for each attribute relative to the remaining

attributes?
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Answers to these questions would provide decision makers with the necessary infor-

mation to gauge the potential of a technology architecture and establish reasonable

program goals for its further development or retirement.

4.2 Improvements to the State of the Art

The previous two chapters offered a general introduction to and evaluation of existing

models of assessment and forecasting for technology development. In several ways,

S-curves offer the best current practice for understanding a technology’s develop-

ment. Current S-curve models, however, are not sufficient to meet the requirements

of a functional assessment and forecasting model. There are several general aspects

of technology S-curve modeling that will require further development in order for

these questions to be answered. These include upper limit determination, technol-

ogy growth forecasting, and quantifying uncertainty. Even for simple systems having

a single functional objective, these aspects of technology S-curve modeling require

further development to ensure meaningful results. Moreover, for technology S-curves

to become a practical tool for the assessment of complex systems, it is necessary to

develop an approach that incorporates multiple technology attributes into technology

S-curve modeling. To do so requires extensive development beyond the current use

of growth curves for technology modeling.

The nature of multi-objective systems will not allow all of the system objectives

to be maximized in a single design; recall the Thomas W. Lawson. Therefore, any

one historical system may be designed to favor a particular system objective with

the result that the remaining system objectives perform seemingly below the state of

the art. The actual systems that designers create do not, cannot accurately reflect

the full range of possibilities for all attributes, that is, all of the potential design

space. Actual systems are always subject to compromise, and it is more helpful to

track the range of options available at a given time than to track the history of
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compromises. Consequently, it is necessary to develop an approach for historical data

reduction that is able to capture these interactions between system attributes and

modeling their individual historical trends on coupled technology S-curves. Finally,

the approach formulated to forecast the S-curves into the future must also capture

those interactions providing accurate projections of attribute maturity levels based

on their interdependence.

This research will focus on the formulation of a multidimensional approach to

technology growth modeling and forecasting in order to capture the overall level of

technology maturity relative to upper limits.

4.3 Hypotheses

As stated, the objective of this research is to formulate an approach to assess and

forecast the maturity of multi-objective technologies relative to their upper limits

in order to determine the technology potential within their respective architectures.

In order to formulate such an approach, a revolutionary forecasting model must be

developed, for which attribute upper limits must be established to within an accept-

able degree of certainty. The hypotheses of this research formulated to achieve these

objectives are as follows:

Hypothesis A The proven success of technology growth models for the forecast of a single at-

tribute can be extended to also accurately model multiple system attributes by

precisely defining their mathematical significance to technology frontiers.

Hypothesis B Knowledge of attribute upper limits for multi-attribute technologies can be iden-

tified by both physics-based approaches and by regressing limit-dependent growth

models against available historical data.
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Hypothesis C Analysis methods founded on exergy and work potential provide a suitable frame-

work for the identification of upper limits to select attributes of energy-based

systems.
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CHAPTER V

MULTIDIMENSIONAL GROWTH MODEL

FORMULATION

The technology growth model introduced in Chapter 2, the S-curve, provides a clear

means for the assessment of a technology’s current capability and expected growth

relative to an impending upper limit. Because the current formulation of growth mod-

els is restricted to the consideration of only one attribute the utility of the technology

S-curve for the assessment of complex systems is limited. Conversely, the scoring

models and technology frontiers presented in Chapter 3 provide for the evaluation

of multiple technology attributes but provide little capability for the assessment of

these relationships relative to attribute upper limits or time. This chapter devotes

itself to the formulation of multidimensional growth models that combine the desir-

able characteristics from technology frontiers and S-curves resulting in a single model

for the simultaneous assessment and forecast of multiple attributes relative to their

respective upper limits.

5.1 Multidimensional Growth Model Formulation

The formulation of multidimensional growth models is based on understanding the

relationship between technology frontiers and technology growth models. Consider

the illustration provided in Figure 14. Each axis of the technology frontier corre-

sponds to one of two measures of technical capability describing a subject technology.

Each curve within the technology frontier plot represents the feasible combinations

of technical capabilities that can be achieved at any single point in time. A growth

model or S-curve is also a frontier which forms a boundary of achievable levels of
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technical capability for a single metric at progressive points in time given constant

settings for all other system metrics [8]. This is the underlying principle that enables

the formulation of multidimensional growth models, and it can be restated as:

Assertion 1 The feasible levels of capability that can be achieved by any one attribute of a

complex technology advance over time according to a technology S-curve provided

all other attributes remain constant.
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Figure 14: Technology Frontier and S-curve Relationship

Consider this statement with respect to a technology that has two measures which

completely describe the technology’s performance as illustrated by the technology

frontier of Figure 15. If the metric of the abscissa axis, Capability 2, is held constant

indicated by the vertical line, then the rate of advancement of Capability 1 along

that line can be described by a technology S-curve such as illustrated in the right side

of the figure. This relationship is based on the assumption that engineering effort
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remains constant over time implying that both the willingness and resources exist

to further advance Capability 1. Note from Figure 14 that time advances along the

vertical line which denotes a fixed setting for Capability 2.
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Figure 15: Technology Frontier and S-curve Relationship

Now observe the impact of increasing Capability 2 on the Capability 1 S-curve as

shown in Figure 16. With Capability 2, y2, fixed at level A the corresponding growth

curve results as designated A in the right side of Figure 16. With an increase in Capa-

bility 2 to y2 = B each point of the S-curve designated A is shifted downward forming

the new S-curve designated B. Note, however, the magnitude of that downward shift

varies along the length of the S-curve approaching zero at each extreme. If the as-

sumption is made that the limit of each attribute can be simultaneously achieved as

time approaches infinity, then this down shift, in fact, approaches zero as time goes

to infinity. An equivalent statement of this assumption is that the limit of Capability

1 is unchanged as a result of changes in Capability 2. Consequently, this downward

shift can also be modeled as a rightward shift. This suggests that the influence of a

second metric on a single dimension S-curve can be quantified as a shift in time.
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Very important to note at this point is that neither S-curve A nor B is intended

to model the actual path of improvement for Capability 1, but two possible pathes

given a specified setting of Capability 2. For as many settings of Capability 2 that are

possible at a single point in time, so number the S-curves that describe possible pathes

for the development of Capability 1. The objective of this formulation is to capture the

variability of a metric-specific S-curve as a function of changes to additional metrics.

In this way, this formulation of multidimensional growth models is able to capture

the growth pattern of a single dimension, which otherwise would not appear smooth

due to the variability of other dimensions of capability. Given the assumption that

the limit of each attribute is not influenced by the level of capability of the remaining

attributes, the variability of a metric-specific S-curve can be modeled as a left- or right-

ward shift. The magnitude of that shift is some function of the remaining metrics. As

illustrated in Figure 16 the rightward shift of the Capability 1 S-curve is a function

of magnitude of Capability 2. A basis for determining what this function should

be can be established by considering the functional form of the Logistic equation

provided here as Equation 8. The graphical observation of the relationship between
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time and Capability 1 and Capability 2 can be generically described by Equation

9, where y1 quantifies the magnitude Capability 1 and y2 quantifies the magnitude

Capability 2. Likewise, Equation 10 generically describes the Capability 2 S-curve

provided Capability 1 is permitted to change. Given that both Equations 9 and 10

independently describe the relationships between y1 and y2 and time they can be

solved to yield f(y1) and f(y2).

y =
L

1 + ae−bt
(8)

y1 =
L1

1 + a1e−b1(t−f(y2))
(9)

y2 =
L2

1 + a2e−b2(t−f(y1))
(10)

Solving Equations 9 and 10 for time and equating yields Equation 11 from which the

solutions for f(y1) and f(y2) can be concluded as provided by Equations 12 and 13,

respectively.

f(y2)− 1

b1

ln
(

L1 − y1

a1y1

)
= f(y1)− 1

b2

ln
(

L2 − y2

a2y2

)
(11)

f(y1) = − 1

b1

ln
(

L1 − y1

a1y1

)
(12)

f(y2) = − 1

b2

ln
(

L2 − y2

a2y2

)
(13)

Inserting these solutions back into Equations 9 and 10 result in the two-dimensional

growth models of Equation 14 and 15 which consequently are the exact same model—

one solved for y1 and the other for y2. The model of Equation 14 captures the S-curve
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describing the y1 metric relative to the level of capability specified for y2. Similarly,

solving Equation 14 for y2 results in Equations 15 the S-curve describing y2 at a

specified capability of y1. This same model that describes the y1 and y2 S-curves

relative to one another can also be used to define the technology frontier by solving

for y1 at a specified date over a range of y2 capability levels.

y1 =
L1

1 + a1e
−b1(t+ 1

b2
ln(L2−y2

a2y2
))

(14)

y2 =
L2

1 + a2e
−b2(t+ 1

b1
ln(L1−y1

a1y1
))

(15)

The two dimensional growth model proposed in Equations 14 and 15 seems to capture

the relationships between time and each system metric relative to their respective

upper limits, holding promise for providing insight into many of the research questions

posed throughout this document. Two considerations should be taken into account

before proposing a finalized multidimensional growth model. The first of these can

be addressed with respect to the Logistic growth model on which Equations 14 and

15 are based shown here as equation 16. This growth model assumes that the initial

level of capability of the system metric y is zero from which it advances towards its

upper limit L. Many system metrics, however, may have non-zero starting points,

which will be introduced into the model as an offset, yo, as shown in Equation 17.

Note that the limit is decremented by the offset to prevent y1 from ranging between

the lower bound yo and the upper bound L + yo as opposed its actual upper limit L.

y =
L

1 + ae−bt
(16)

y =
L− yo

1 + ae−bt
+ yo (17)
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The second consideration involves the redundancy of parameters a1 and a2 in Equa-

tions 14 and 15. This redundancy can be made apparent by first rearranging the

Logistic growth model of Equation 16. Equation 18 provides an equivalent form of

this Logistic equation in which the parameter a has been moved to the exponential,

and in Equation 19 the constant ln(a)/b has been replaced with the constant c.

y =
L

1 + e−b(t−ln(a)/b)
(18)

y =
L

1 + e−b(t−c)
(19)

When this form of the Logistic equation is used to generate a two dimensional growth

model using the same approach employed to generate Equations 14 and 15, Equation

20 results. Note that the constants c1 and c2 can be replaced by a single constant a

as shown in Equation 21, and finally combing this result with the yo offset results in

the two-dimensional growth model of Equation 22. A three-dimensional surface plot

of this equation is shown in Figure 17, wherein each limit has been set to one, each yo

has been set to zero, each b has been set to 0.1, and a has been set to 200. Note each

metric-specific S-curve and the technology frontier formed by passing appropriate

planes through this surface.

y1 =
L1

1 + e
−b1(t−c1−c2+ 1

b2
ln(L2−y2

y2
))

(20)

y1 =
L1

1 + e
−b1(t−a+ 1

b2
ln(L2−y2

y2
))

(21)

y1 =
L1 − yo,1

1 + e
−b1(t−a+ 1

b2
ln( L2−y2

y2−yo,2
))

+ yo,1 (22)
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Figure 17: Three-Dimensional View of a Multidimensional Growth Model

The final step to establishing a multidimensional growth model is to extend this

formulation to n-dimensions. This is easiest to visualize when Equation 22 is solved

for time, as shown in Equation 23. In this form it is clear that each dimension or

metric is mathematically represented by each of the logarithmic terms and can be

extend to n-dimensions according to Equation 24. Equation 25 provides this same

n-dimensional growth model solved for a single attribute, yj.
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t = a− 1

b1

ln
(

L1 − y1

y1 − yo,1

)
− 1

b2

ln
(

L2 − y2

y2 − yo,2

)
(23)

t = a−
n∑

i=1

1

bi

ln
(

Li − yi

yi − yo,i

)
(24)

yj =
Lj − yo,j

1 + e
−bj(t−a+

∑n

i=1
1
bi

ln( Li−yi
yi−yo,i

))
+ yo,j (25)

Recall that several assumptions were required to result in this multidimensional

growth model. First was the assertion that the feasible levels of capability achieved

by any one attribute of a complex technology advance over time according to a tech-

nology S-curve provided all other attributes remain constant. Second, the resulting

metric-specific S-curves are based on the assumption that engineering effort remains

constant over time, in effect, both willingness and resources exist to further advance

that metric. And third, the limit of each metric is assumed constant regardless of set-

tings for the remaining metrics. In addition to this assertion and these two assumption

one additional limitation must be specified for the resulting multidimensional growth

model (MDGM). Because the model parameters a and each bi will be estimated based

on regression with historical data, the dimensions of capability, or metrics, included

in the model must be independent—any correlation between two metrics will result

in a misrepresentation of the significance of those metrics within the model.

There is one notable model characteristic resulting from these assumptions that

warrants additional discussion. That characteristic is the manner in which the model

is able to capture both the growth of each attribute over time and the interaction,

or tradeoff, between those dimensions of capability. The accuracy with which the

multidimensional growth model is able to capture each of these behaviors reduces to

a question of sufficient degrees of freedom within the model. The Logistic MDGM of

Equations 24 and 25 has n degrees of freedom—one for each dimension of capability

64



as modeled by each bi. Note that each bi defines the “steepness” of the growth curve

modelling its corresponding dimension. This “steepness” as quantified by bi also

defines the rate of exchange, or tradeoff, between the other dimensions of capability.

This dual significance of bi is a direct result of the underlying assertion and subsequent

assumptions put forward during the formulation of the MDGM.

Recall that the increase in one dimension of capability, y2, impacts the S-curve of

another dimension, y1, by shifting it to the right. This results in a lower capability

level for y1 which suggests a reduction in the aggregate engineering effort, or time,

invested to advance y1. The magnitude of this reduction in engineering effort or time

devoted to y1 is exactly equal to the the increase in engineering effort or time needed

to accommodate the higher capability level of y2. This increase in engineering effort or

time required to achieve a higher capability level of y2 is inversely proportional to the

“steepness” of its corresponding growth curve as quantified by b2. Furthermore, the

decrease in the y1 capability level resulting from diverting engineering effort or time to

y2 is also inversely proportional to the “steepness” of its corresponding growth curve

as quantified by b1. In this way, the interaction, or tradeoff, between dimensions of

capability is modeled by the same degree(s) of freedom that define the rate of growth

in a single dimension.

5.2 Composite Growth Model

The proposed multidimensional growth model (MDGM) of Equation 24 provides the

ability to assess the level of capability for each metric relative to its respective upper

limit. This model even provides the rate of advancement for each individual metric

at any point in time, although in this form it provides limited insight into the rate of

growth for the system architecture as a whole. A composite measure is desired that

quantifies the rate of growth of the technology as a whole relative to a generalized
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upper limit. Consider that if each metric characterizing the capability of a system ad-

vances in time according to an S-curve, then the composite measure of the technology

should also advance over time according to a similar growth model. This compos-

ite measure can be visualized in Figure 18, wherein if each dimension of capability

evolves according to a Logistic curve, then the composite growth of the technology

should also evolve according to a Logistic curve. Starting with the Logistic equation

used to derive the above MDGM shown here as Equation 26, a suitable composite

measure will now be derived.
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Figure 18: Three-Dimensional View of the Composite Technology Growth

y =
L− yo

1 + e−b(t−a)
+ yo (26)

Before the discussion investigates settings for each model parameter, consider the

desired behavior of the composite model. The objective of the composite model is

to capture the overall state of a technology in a single measure wherein the state
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of the technology is quantified by the technical capability of each metric relative to

its respective upper limit. Consequently, if all technical capabilities are at the same

fraction of their respective upper limit, the composite model should also be at that

same fraction of its upper limit. In effect, the composite growth model describes the

growth of the technology over time, given that each metric advances towards its upper

limit at the same rate. Even if all metrics describing a technology do not advance

at the same rate, which is more commonly the case, the composite model should

still capture the collective growth of the metrics and as a result the growth of the

technology as a whole.

With this as the basis of the composite model, consider the specific parameters

of the Logistic curve in Equation 26. Because the composite growth model does not

directly describe a physical quantity but the fractional improvement of a collection of

metrics, the bounds, yo and L, cannot be determined by physics-based analysis but

can be defined according to any scale describing the relative growth of the technology.

Zero and one are obvious choices to bound the composite model resulting in Equation

27 where the growth curve parameters bc and ac must be defined according to the

regression parameters of the MDGM. This can be accomplished by solving both the

composite growth model and the MDGM for time and equating. This results in

Equation 28 from which it is clear that ac = a. Thus, Equation 28 reduces to

Equation 29. Recall that the composite model is defined at any point in time as the

level of capability that can be simultaneously achieved by all metrics relative to their

total range of capability—i.e. all yi/(Li − yo,i) are equal. Thus all (Li − yi)/(yi −
yo,i) are also the same and equal to (1 − yc)/yc revealing that bc = (

∑
1/bi)

−1.

This completely defines the composite growth model of Equation 27, quantifying the

growth of the technology as a whole. Note that given settings for each system metric

yi, the composite measure, yc can be found according to Equation 30.
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yc =
1

1 + e−bc(t−ac)
(27)

ac − 1

bc

ln
(

1− yc

yc

)
= a−

n∑

i=1

1

bi

ln
(

Li − yi

yi − yo,i

)
(28)

1

bc

ln
(

1− yc

yc

)
=

n∑

i=1

1

bi

ln
(

Li − yi

yi − yo,i

)
(29)

yc =
(
1 +

n∏

i=1

(
Li − yi

yi − yo,i

)bc/bi
)−1

(30)

5.3 Alternative Growth Models

The multidimensional growth model presented in Equation 24 is only one of a family of

potential models that can be used to assess technology architectures. It assumes that

the development of each technology attribute can be described by a Logistic equation.

Similar MDGMs can be development by assuming other growth curve relationships

between each technology attribute and time. Because of the gross functional difference

between absolute and relative growth models, the discussion will consider each in turn.

5.3.1 Absolute Growth Models

Three additional MDGMs were formulated in a similar manner to Equation 24 and

are listed in Table 4. Each is based on different absolute growth curves. Appendix B

outlines in detail the specific steps taken to create the remaining three models. Each

of the four technology assessment models presented in Table 4 have slightly different

characteristics and these can be evaluated by considering the differences between the

S-curves on which each model is based. Some of the key characteristics for each S-

curve equation are listed in Table 5 for comparison. To facilitate discussion, each

curve has been designated as A, B, C, or D corresponding to its respective column in

Table 5.
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Table 4: Multidimensional Technology Growth Models

S-curve Equation Multidimensional Technology Growth Model

y = L
1+ae−bt t =

∑n
i=1

−1
bi

ln
(

Li−yi

a(yi−yo,i)

)

y = Le−ae−bt
t =

∑n
i=1

−1
bi

lnln

((
Li−yo,i

yi−yo,i

)) 1
a

y = (1− ae−bt)3 t =
∑n

i=1
−1
bi

ln
(

1
a

(
1−

(
yi−yo,i

Li−yo,i

) 1
3
))

y = ea−(b/t) t = a +
∑n

i=1 bi

(
ln

(
Li−yo,i

yi−yo,i

))−1

The first characteristics to consider when comparing these curves are the limits as t

approaches ∞, 0, and −∞. These boundaries greatly influence the practical usage of

each curve. Consider the limit as time approaches infinity, curves A and B approach

the specified upper limit, L. Whereas, curve C approaches 1 and curve D approaches

ea. As a result, using curves C or D requires normalizing the data to these limits or

modifying curves C and D to also have an upper limit as t →∞ of L. This latter option

was used for the creation of the corresponding technology growth models presented

in Table 4. Appendix B also details these modifications to curves C and D.

Consider now the limit of each curve as time approaches zero. The limits of

curves A, B, and C as t → 0 are each functions of the parameter a while the limit

of curve D is zero. This limit of zero is desirable, indicating that at the introductory

date of a system architecture its technology capability is very low on the S-curve.

Because the limits as t → 0 of A, B, and C are all functions of the parameter a,

it is mathematically possible for these curves to have limits as t → 0 near their

respective upper bounds. Typical regressed values of a, however, result in each of

these functions approaching zero as desired. As discussed previously, in many cases,

entry level technical capability of a technology architecture may be other than zero.
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Table 5: Absolute Growth Model Comparison

A B C D

Characteristic y = L
1+ae−bt y = Le−ae−bt

y = (1− ae−bt)3 y = ea−(b/t)

Pearl’s Gompertz’s Von Bertalanffy’s n/a

Curve Name Equation Equation Equation

limt→∞ L L 1 ea

limt→0
L

1+a
L
ea (1− a)3 0

limt→−∞ 0 0 −∞ ea

t-location of inflection ln(a)/b ln(a)/b ln(3a)/b b/2

y-location of inflection 0.5L Le−1 ∼ 0.363L (2/3)3 ∼ 0.296 e−2a ∼ 0.135ea

Because the limits of all four curves as t → 0 are near zero, they can easily be shifted

up by the entry level capability, yo. This modification has been made in the creation

of each of the models in Table 4.

The limit as t → −∞ is only of minimal importance. Attempting to model the

maturation of a technology prior to its introduction is of no practical significance. It

is, however, instructive to note that the limit as t → −∞ of curves A and B is zero

or yo, if appropriately adjusted, while the limits for curves C and D are −∞ and ea,

respectively. These limits suggest that the domain of the s-shaped curves A and B

includes all values of t, −∞ to ∞, while the domain of the s-shaped curves C and D

has a lower bound. Beyond this lower bound curves C and D no longer maintain an

s-shape. Although they are defined for all values of t, the s-shaped portion of these

equations is confined to the domain t ≥ 0.

The next characteristic to consider for each of the s-shaped curves is the location

of each inflection point along the curves. Note that the y-location of the inflection

point for each curve is independent of the parameters a and b. The inflection point

always occurs at the same fraction of the upper limit. This is the most distinguishing

characteristic of the proposed models in Table 4. Recall that the inflection point of an
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S-curve results from the growth-retarding influence of the upper limit on the curve.

As a result, the y-location of the inflection point also indicates the rate of convergence

of the curve to its limit. The smaller fraction of the upper limit at which an inflection

point occurs, the more retarding influence the upper limit has on the growth of the

curve, and consequently, the slower the curve approaches its upper limit. Curve A

is least influenced by its upper limit in the early stages of growth and more rapidly

approaches its upper limit. Curves B, C, and D are progressively more influenced by

their upper limits such that the productivity of curve D begins to decline after only

achieving 13.5% of its upper limit.

As a result of this characteristic, curves A and B are most commonly used to

model technology development. The low inflection points of curves C and D indicate

very early influence of the upper limit to technology development. More commonly

poor understanding and lack of experience in implementing new physical principles

in hardware limit the early stages of technology development. Curves A and B,

particularly A, better quantify this principle and as a result are more commonly used

to model technology growth. This does not, however, discount curves C and D as

potential models. Cases may arise where the early influence of the upper limit on

technology growth is more appropriate than the later influences modeled by curves A

and B.

5.3.2 Relative Growth Models

Formulating a multidimensional growth model based on a relative growth model is

significantly more difficult than on an absolute model because of the dramatic dif-

ferences in their functional forms. To explore the significance of these differences on

the formulation of a MDGM consider the Logistic MDGM derived earlier and shown

here as Equation 31. Recall that each term in the summation is the inverse function

of each attribute-specific S-curve as illustrated in Figure 19, where tyi
is defined by
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Equation 32.

t = a−
n∑

i=1

1

bi

ln
(

Li − yi

yi − yo,i

)
(31)
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Figure 19: Multi-Attribute Growth Curve Inverse

tyi
=
−1

bi

ln
(

Li − yi

yi − yo,i

)
(32)

Also recall that the time required to advance multiple metric attributes towards

their upper limits is not concurrent but additive. Consequently, the time required

to advance each attribute to a specified level of capability (y1, y2, & y3) from their

entry levels of capability is given by Equation 33; thus, the date at which a system

is expected to be operational with these specified levels of capability is given by

Equation 34.

∆t = ty1 + ty2 + ty3 (33)

year = a + ∆t = a +
n∑

i=1

tyi
(34)
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This same very general principle illustrated in Figure 19 and quantified by Equations

33 and 34 apply to both absolute and relative growth models alike. The complexity in

formulating a relative MDGM arises because no closed form solution for the inverse

to the relative (i.e. incremental) growth model equations can be found. As a result,

no single equation can completely capture a MDGM formulated on a relative model.

At least it can do this no more explicitly than Equation 35, where y−1
i (t) is the inverse

of the integrated relative growth model, which can only be evaluated numerically.

year = a +
n∑

i=1

y−1
i (t) (35)

The following five steps outline an approach to evaluating Equation 35.

1. The initial condition for each of the ith attributes should be set to zero, yi(0) = 0

2. Each attribute-specific S-curve should be numerically integrated according to

the desired relative growth model and timeframe of interest. Equations 36 and

37 employ the Bass relative growth model to demonstrate this process.

dyi(t) = β0,i + β0,iyi(t− 1) + β0,iy
2
i (t− 1) (36)

yi(t) = dyi(t) + yi(t− 1) (37)

3. Add the appropriate attribute offsets, yo,i, to all yi.

yi(t) = yi(t) + yo,i (38)

4. Given a setting for each technical capability yi, perform an inverse on Equation

38 to find the corresponding tyi
, or equivalently y−1

i (t).

5. Evaluate Equation 35.
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The above steps provide a means to evaluate the expected date of introduction of a

system with technical capability settings yi given parameter estimates for each βk,i

and a, where βk,i is the kth curve parameter of the ith technology attribute. These

parameter estimates can be calculated by regressing Equation 35 against historical

data using an appropriate objective function, mean square error (MSE), χ2 distribu-

tion, etc. However, both MSE and χ2 were found to be highly multi-modal objective

functions for the regression of relative MDGMs. As a result of these ill-behaved ob-

jective functions finding the necessary parameter estimates for relative MDGMs is

extremely computationally intensive. Also note that for the Bass, Nonsymmetrical

Responding Logistic, and Harvey relative MDGMs there are 3n + 1 unknowns, and

for the Extended Riccati relative MDGM there are 4n + 1 unknowns requiring sig-

nificantly more data than most absolute MDGMs, which can have as few as n + 1

unknowns.

5.3.3 Non-S-shaped Growth Patterns

Cases may exist where a dimension of capability advances over time according to a

growth pattern other than that of an S-shaped growth model. An example of such a

growth pattern is Moore’s Law which successfully describes the technological growth

of integrated circuits [65]. Moore’s Law states that the complexity of integrated

circuits as quantified by the transistor density doubles every two years [65]. This

growth pattern is generally modeled by Equation 39.

y = yo(2
t/2) (39)

The very general form of the multidimensional growth model provided by Equation

40 allows for the seamless inclusion of dimensions of capability that advance over

time according to Moore’s Law. Furthermore, any growth model which is based on
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the independent parameter of time and for which an inverse can be found can also be

formulated into a multidimensional growth model according to Equation 40.

year = a +
n∑

i=1

y−1
i (t) (40)
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CHAPTER VI

IDENTIFYING UPPER LIMITS

Accurately identifying upper limits for each metric included in a technology assess-

ment is key to formulating an accurate multidimensional growth model. This chapter

will investigate two general approaches for identifying upper limits: statistical and

physics-based approaches. Martino has argued that the only appropriate approach

to identifying attribute upper limits is through physics-based analysis [13]. More

recently he restated this premise as a result of the comparative study conducted by

Young between nine different growth models [42, 66]. Young compared the predictive

capability of each model on its ability to predict the final three data points for each

of thirty-two data sets. In cases where the upper limits were not known, the Logistic

model, Gompertz model, and their variants performed poorly, which suggests that it

is poor practice to solve for the upper limit of an attribute on the basis of available

historical data. DeBecker and Modis, however, explored this possibility further and

attempted to quantify the level of uncertainty associated with a limit that is calcu-

lated from available historical data [1]. Their study suggests that it is indeed possible

to determine attribute upper limits statistically with a known confidence interval.

The discussion in this chapter will first consider the physics-based approaches, and

then it will explore a statistical approach to determining upper limits.

6.1 Physics-Based Approach to Limit Identifica-

tion

Because upper limit identification is highly specific and requires detailed knowledge

of the precise technical approach employed by a developing technology, this study
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will not propose a general, physics-based approach for identifying upper limits. The

numerous and diverse physical laws governing the vast pool of potential technologies

prevent the development of a universal approach to upper limit identification. How-

ever, because technical approaches can be described within a single field of science,

the number of governing principles can, in some cases, be reduced to a manageable

number. As a result, it is possible to formulate systematic approaches to identifying

upper limits within a particular field of science. This is the case for energy-related

technologies.

6.1.1 Fundamentals of Energy-Based Systems

There are only a few very basic principles that govern the general conditions for

energy transfer. These principles dictate a remarkably systematic approach to the

consideration of upper limit identification for select metrics of energy intensive sys-

tems.

Newton’s first law specifies that the dynamic characteristics of a system can only

be altered with the application of an unbalanced force [67]. Furthermore, all force im-

balances and consequently work can only result from preexisting imbalances between

interacting energy reservoirs. In other words, energy gradients must exist between

interacting systems for the potential for work to exist.

Consider most generally the concept of energy. Energy is often understood as

a measure of the ability to do work. Although this definition is often functionally

adequate, it is technically inaccurate. Energy can exist with no ability to do work.

For example, the atmosphere is rich with thermal energy, although, in isolation,

this energy has no ability to do work. No amount of energy in complete isolation

can do work. Consequently, energy cannot be a measure of the ability to do work.

Furthermore, energy is conserved; whereas, the ability to do work is not. Therefore,

the two cannot be equated. The common misconception that energy is a measure
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of the ability to do work disregards the second law of thermodynamics. The Kelvin-

Plank statement of the second law is as follows: It is impossible for any system to

operate in a thermodynamic cycle and deliver a net amount of work to its surroundings

while receiving energy by heat transfer from a single thermal reservoir [68]. It is not

merely the existence of energy that provides the capacity for work but rather the

non-equilibrium that exists between interacting energy reservoirs. Non-equilibrium

in conjunction with energy supplies the universe with the potential for work, not solely

energy. If energy is not a measure of the ability to do work, what is it? Poincaré said

this of energy in Science and Hypothesis :

In every particular case we clearly see what energy is, and we can give it at

least a provisory definition: but it is impossible to find a general definition

of it. If we wish to enunciate the principle in all its generality and apply

it to the universe, we see it vanish, so to speak, and nothing is left but

this—there is something which remains constant. [69]

This principle has informed the creation of many energy-based design and analysis

methods [70, 71, 72]. The conservation principle of energy provides a convenient

bookkeeping framework for the design and analysis of many diverse technologies.

The concept of energy alone, however, is not adequate for establishing the upper

limit to technical capability of energy intensive technologies. Such determinations

also need to consider the concept of exergy. Exergy is a measure of the ability to

do work. More precisely, it is “a thermodynamic state property quantifying the

maximum theoretical work that can be obtained from a system in taking it from a

given chemical composition, temperature, and pressure to a state of chemical, thermal,

and mechanical equilibrium with the environment,” [73].

As previously stated, all force imbalances, and thus work, can only result from

preexisting imbalances between interacting energy reservoirs. Exergy is a quantifica-

tion of the maximum work that can be produced as a result of the energy imbalances
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that exist between these reservoirs. Unlike energy, exergy is not conserved. It can

be and is destroyed as entropy increases, just as the ability to do work is diminished

as the imbalances between energy reservoirs vanish and come to equilibrium. Con-

versely, like energy, exergy cannot be created, although it can be converted from one

form to another. Exergy has the same units as energy and can itself be described as

non-equalized energy.

The concept of exergy simultaneously employs the first and second laws of ther-

modynamics to quantify the available work contained within a specified quantity

of energy. The following derivation of an expression of exergy roughly follows that

presented by Bejan [74].

Consider the first and second laws of thermodynamics for an open system in

thermal contact with only the environment and having one inlet and outlet shown here

as Equations 41 and 42, respectively. In these equations h◦, methalpy, is shorthand

for the quantity (h + V 2

2
+ gz).

dE

dt
= Q̇◦ − Ẇ + ṁh◦in − ṁh◦out (41)

Ṡgen =
dS

dt
− Q̇◦

T◦
− ṁsin + ṁsout ≥ 0 (42)

where E is the total internal energy of the system;

t is time;

Q̇◦ is the rate of heat transfer with the environment;

Ẇ is the rate of work production;

ṁ is the rate of mass flow through the system;

Ṡgen is the rate of entropy generation;
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S is the total entropy internal to the system;

sin/out is the mass specific entropy flowing into and out of the system;

T◦ is the temperature of the environment.

Ẇ = ṁ(h◦in − h◦out)− ṁT◦(sin − sout)− T◦Ṡgen (43)

Ẇ

ṁ
= (h◦in − h◦out)− T◦(sin − sout) (44)

If these two laws are combined by eliminating Q◦, and steady state is assumed for

simplicity, Equation 43 results, and this provides the work production and accounts

for irreversibilities. The maximum achievable work, or exergy, results when entropy

generation is zero, as depicted by Equations 44. This simplistic derivation of exergy

establishes the basic mathematical relationship between the first and second laws and

the definition of exergy.

This analytical definition of exergy can be used to calculate limits for a single

process. Furthermore, complex energy systems can be decomposed into basic pro-

cesses, the limits of each can be evaluated, and the system recomposed to identify

the upper limits for the systems as a whole. Ahern in The Exergy Method of Energy

Systems Analysis proposed a systematic approach to evaluating the transfer of exergy

through a system, the block method of exergy analysis [75]. In this method Ahern

decomposes a system into blocks, each representing a system process or component.

The method calculates the difference between exergy entering and exiting each block.

The second law dependence of exergy requires that this difference always be negative;

less exergy will always exit a block than did enter. Ahern quantifies the efficiency of

exergy transfer through a system block as depicted in Equation 45. For maximum
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performance, this efficiency should be unity for all system blocks. This condition

allows for the calculation of related metric upper limits.

Ex =
Exavailable − Exloss

Exavailable

(45)

Ahern’s exergy block analysis forms a basis for identifying the upper limit to se-

lect metrics of energy systems [75]. However, the resulting upper limit is based on

the assumption that the technical approach employed by the energy systems has the

capacity to extract all the useable work from mechanical, thermal, and chemical equi-

libration. This is often not the case. For example, a turbojet engine does not employ

devices capable of extracting work from the thermal energy contained in the exhaust

flow. Using exergy to calculate the upper limit to turbojet performance would re-

sult in a gross overestimation, because the thermal energy of the exhaust flow is

not available to the engine and would appear as an inefficiency. The use of exergy

for calculating upper limits to energy systems is only applicable to those technolo-

gies employing technical approaches capable of extracting work from all three energy

forms: mechanical, thermal, and chemical. This greatly restricts the applicability of

exergy-based methods for the identification of upper limit calculation. Exergy, how-

ever, is only one of a family of metrics that falls under a broader classification of work

potential.

Whereas exergy is a very precisely defined thermodynamic property, the term work

potential refers to a family of thermodynamic properties that quantify the amount of

work that can be accomplished by bringing a system into complete or partial equilib-

rium with its environment. Partial equilibrium in this case refers to bringing fewer

than all existing energy mode imbalances into complete equilibrium with the envi-

ronment. An example of partial equilibrium would be a system brought into thermal

equilibrium with its environment but neither chemical nor mechanical equilibrium.
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Partial equilibrium does not refer to any single energy mode moving only partially to-

wards equilibrium. Although these energy modes can be altered independently, they

can and frequently do interact in many work potential systems. Three of the most

common energy modes appear in the exergy definition above: thermal, chemical, and

mechanical.

Gas horsepower, also called available energy [73] or ideal work [76], is an example

of a work potential figure of merit. It is defined as the maximum work that can be

achieved by isentropic expansion of a fluid at a specified pressure and temperature

to atmospheric pressure [77]. Gas horsepower is defined mathematically for ideal air

by Equation 46 and only quantifies work available from a pressure differential. This

work potential metric is better suited to applications such as turbine engines, wherein

technical approaches are not employed to extract work from either the chemical or

thermal energy modes of the exhaust flow.

ghp = cpT
[
1−

(
P◦
P

) γ−1
γ ]

(46)

Roth provides further discussion on various work potential metrics as pertaining to

gas turbines in “A Comparison of Thermodynamic Loss Models Suitable for Gas

Turbine Propulsion: Theory and Taxonomy,” [78].

The same block-type analysis method employed to analyze exergy flow through a

system can also be used for work potential figures of merit. Numerous researchers have

formulated similar techniques capable of employing any one or more work potential

metrics for the analysis of highly integrated systems [74, 79, 80, 81, 82]. Roth and

others have implemented several of these techniques in the Numerical Propulsion

System Simulation program to assist users in the conceptual and preliminary design

of a wide range of propulsion concepts [76, 83].

Exergy and work potential analysis methods provide a foundation for a general
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approach to the calculation of select energy and work related limits such as rates of

work generation or minimum fuel consumption. These analysis methods, however,

are best suited for establishing upper limits to well defined systems such as a tur-

bine engine with specified cycle parameters. They are unable to establish an upper

limit on turbine engines as a system architecture without first identifying limitations

on pertinent cycle parameters, which are limited by the technology (i.e. hardware)

employed at the subsystem level. Each subsystem, like the system architecture, ad-

vances along its own growth curve and is also bound by some natural limit. In order

to establish an upper limit for a system architecture, the system must be progressively

decomposed until the limit for each subsystem is no longer dependent on the limit

of an internal component. Once subsystem limits are determined, the system can be

recomposed and system-level limitations calculated based on subsystem limits. For

the assessment of complex systems, this process will without exception span multiple

branches of physics requiring the participation of an interdisciplinary team of experts.

A major investment of time and resources is required to accurately estimate the nat-

ural limits of a complex system. Because of the substantial investment required to

establish credible upper limits through physics-based approaches, these approaches

are not often practical, especially to the independent researcher. Fortunately, despite

the fact that statistical approaches have been previously dismissed, if appropriate

historical data is available for a developing system, statistical approaches can provide

meaningful upper limits. The remainder of this chapter evaluates a promising sta-

tistical method offered by DeBecker and Modis and adjusts that method to fit the

requirements of this research.
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6.2 Regression-Based Approach to Limit Identi-

fication

The statistical approach to identifying an attribute’s upper limit treats the limit as a

regression parameter and calculates its value based on historical data. This process of

determining an upper limit is very simple in practice. The accuracy of the resulting

limit, however, is highly sensitive to any error present in either the historical database

or in the segment of the total growth curve spanned by the available data. DeBecker

and Modis attempted to quantify this sensitivity and to establish confidence intervals

for predicted limits based on an assumed degree of error in the historical data. They

expected that data samples that have a low degree of error and that span a significant

segment of the entire S-curve can be used to statistically predict the upper limit with

a high degree of confidence. The greater the segment of the curve for which there is

data, the more accurately the limit can be predicted by regression. The basis of their

study is a known Logistic curve of the form shown in Equation 47, where the upper

limit, L, is 1, and the curve parameters, b and a are 1 and 0, respectively.

y(t) =
L

1 + e−b(t−a)
(47)

DeBecker and Modis began by selecting twenty equal time bins which span a specified

segment of the complete S-curve. The left side of Figure 20 illustrates one such

range, covering 1−50% of the upper limit L. They proceeded to introduce statistical

fluctuations on the rate of growth of the S-curve to simulate error within the historical

data. These fluctuations were introduced into the data set according to the equation

g̃k = qk + εqk, where qk is the theoretical growth rate of the kth time bin defined

by Equation 48 and where ε is the normal distribution, N(0, σ), in which σ is the

assumed degree of error in the data ranging between 0 and 30%. The right side of
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Figure 20 illustrates the result of applying these statistical fluctuations as introduced

to the growth rate of the known S-curve.

q(tk) =
L

(1 + e−b(t−a))(1 + eb(t−a))
(48)
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Figure 20: Limit Uncertainty Analysis Data Sample

Once the fluctuations are introduced, the model is regressed for L, b, and a by mini-

mizing the χ2 of Equation 49. A Monte Carlo Simulation is then conducted around

the specified range of data (1 to 50 percent of L=1, in this case), and a distribution

of each regressed parameter is obtained, from which confidence intervals can be es-

tablished for specified levels of σ, as shown in Table 6. Figure 2 illustrates the result

of five hundred simulations at the 1 to 50 percent data range and 10 percent error on

the data sample.

U =
m∑

k=1

(
qk − E(Q(tk))

σ(Q(tk))

)2

(49)
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Figure 21: Regression-Based Limit Predictions

DeBecker and Modis [1] provide similar tables for each data range provided in Table

7, and these provide researchers with the ability to establish confidence intervals for

statistically predicted limits given an estimated degree of error present in the historical

data. This confidence interval is calculated according to Equation 50, where the

expected error, EECL, corresponds to a specific range of the historical data, estimated

degree of error on historical data, and the confidence level of interest.

Lreal = Lpred(1± EECL) (50)
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Table 6: Expected error for the data range 1-50 percent as a function of confidence
level and error on historical data, reproduced from [1].

Table 7: Data Ranges Provided by DeBecker and Modis [1]

1 to 20 percent of L
1 to 30 percent of L
1 to 40 percent of L

... ...
1 to 90 percent of L
1 to 99 percent of L

Consider the following example provided by DeBecker and Modis:

Example: A fit on yearly historical data of supertanker construction gives

L = 115. The historical period stops at 80 ships and we estimate an un-

certainty on the reported yearly construction of 5 percent. The range thus

defined is 80/115 = 70% percent. From Table 8 we obtain the uncertainty

on L, namely L = 115± 4.3% with 90 percent confidence level.
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Table 8: Expected uncertainties for the data range 1-70 percent as a function of
confidence level and error on historical data, reproduced from DeBecker and Modis
[1].

This technique proposed by DeBecker and Modis for establishing confidence intervals

around statistically predicted upper limits is a promising approach. Several adjust-

ments to their approach must be made, however, before it can be broadly applied.

The most significant of these adjustments pertains to the definition of the data range

as used to generate Table 8 relative to the definition of the data range used in the

supertanker example. The range of data on which Table 8 is based, covers 1 to 70

percent of the real upper limit. However, the range identified in the quoted example

by 80/115 covers the range 1 to 70 percent of the predicted upper limit. This discrep-

ancy in the definition of the data range can—and does—have a significant impact on

the resulting confidence interval. For instance, given a data sample ranging between

0 and 0.7, which is known to have 25 percent random error, the data is regressed

against the Logistic model of Equation 47, and the limit is found to be 1. This sug-

gests a data range of 70 percent, and according to Table 8, the 90 percent confidence

interval should be 1± 0.22. Now consider a new sample of data describing the same

process as the first and also ranging between 0 and 0.7 with a 25 percent error. The

confidence interval from the first set of data suggests that the predicted limit from

this new data set is likely to fall somewhere between 0.78 and 1.22, which corresponds
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to data ranges of 0.7/0.78 = 89.7% and 0.7/1.22 = 57.4%. Clearly the same absolute

data range, 0 to 0.7 in this case, can result in drastically different relative ranges 1

to 70, 90, or 57 percent because of dependence on the predicted upper limit. This

suggests that the data from which the confidence intervals are established should also

be generated relative to the predicted upper limit rather than fixed to the real upper

limit, which in practice will not be known.

A similar discrepancy is in the calculation of the expected uncertainty. This

discrepancy is most obvious in the uncertainty intervals for the 1-30 percent data

range as provided by DeBecker and Modis and reproduced here as Table 9. Note,

for example, the expected uncertainty of 820 percent, given 25 percent error on the

historical data and a 95 percent confidence interval. This uncertainty is unduly

large. Consider the two possibilities for error when predicting an upper limit: under

prediction or over prediction. In the case of an over prediction, the uncertainty should

never exceed 100 percent, because Lpred ± 100% will, with a 100 percent confidence

level, include the real limit. Thus any expected uncertainty that exceeds 100 percent

can only be the result of an under prediction that assumes the confidence interval

definition of Equation 51.

These extraordinary results called for a test to recreate DeBecker and Modis’

results for this portion of their work. Consequently, this study included a Monte

Carlo simulation that emulated DeBecker and Modis’. In order to test just how low

a limit may be predicted, the simulation (by this author) used a data range of 1-30

percent of the real limit (L = 1) and an error of 25 percent on the sample data. The

lowest under-predicted limit out of one hundred thousand simulations was 0.343. This

would therefore correspond to an expected uncertainty of 1/0.343 - 1 = ±191 percent

with a confidence level of 99.999 percent. Of this sample, 99 percent of the regressed

limits were predicted above 0.489—an expected uncertainty of ±104 percent with

a 99 percent confidence level. The expected uncertainty at a 95 percent confidence
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level is ±74 percent. How does an expected uncertainty of ±820 percent result? Most

likely it results because the expected uncertainty provided by DeBecker and Modis is

not generated according to Equation 51, the equation that DeBecker and Modis state

they intend for such calculations. Rather, the resultant data fit the faulty Equation

52. That is, it seems that when they calculated the confidence intervals, DeBecker

and Modis inadvertently reversed the significance of Lpred and Lreal.

The seemingly minor differences in these equations can have a drastic impact on

the resulting confidence intervals. For example, an over predicted limit could result

in an otherwise impossible expected uncertainty greater than 100 percent. Out of

the same one hundred thousand simulations used to identify the lowest predicted

limit of 0.343, five percent of the limits were predicted above 11, which according to

Equation 52 would yield an expected uncertainty of ±1, 000 percent with a confidence

level of 95 percent. The corresponding expected uncertainty for a confidence level of

90 percent is ±210 percent. This explains how DeBecker and Modis estimated 820

percent with a 95 percent confidence level. It also equates to a 926 percent difference

(that is, 1000%− 74%) at the 95 percent confidence level between how the expected

uncertainties calculated by DeBecker and Modis were generated and how they were

expected to be utilized.

Lreal = Lpred(1± EECL) (51)

Lpred = Lreal(1± EECL) (52)

This research reformulated the approach employed by DeBecker and Modis to yield

confidence intervals for statistically predicting upper limits according to a known

degree of error and the relative range of data available as dependent on the predicted
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Table 9: Limit uncertainties for the data range 1-30 percent as a function of confi-
dence level and error on historical data, reproduced from [1].

upper limit. In order to allow direct comparison to the results from DeBecker and

Modis, error fluctuations were also introduced on the rate of growth and regression

was performed by minimizing the χ2 of Equation 49. Unlike in the DeBecker and

Modis study, the upper bound on the data range was allowed to vary flatly between

20 and 99.9 percent of the real limit, Mreal = 1, and six levels of error fluctuations

were introduced to the data sample in turn, σ = [0.01, 0.05, 0.1, 0.15, 0.2, 0.25]. After

predicting the upper limit, the data range was transformed relative to the resulting

predicted limit. Distributions were then generated according to the upper bound of

their corresponding data range. Distributions corresponding to each of the data range

upper bounds listed in Table 10 were created:

Table 10: Upper Bounds to Data Ranges

19.5-20.5 percent of Lpred

29.5-30.5 percent of Lpred

39.5-40.5 percent of Lpred

... ...
89.5-90.5 percent of Lpred

98.5-99.5 percent of Lpred
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From these distributions, the expected uncertainties on predicted limits were estab-

lished. Table 11 provides these uncertainties for all combinations of the above data

ranges and levels of data fluctuations. This table provides the expected uncertainty

of a regressed limit given a range defined relative to the predicted limit and accord-

ing to the confidence interval of Equation 51 rather than Equation 52. Confidence

intervals are established in the same manner as provided in the supertanker exam-

ple. Reworking the supertanker example with these formulated uncertainties yields

a confidence interval of 115 ± 4.8%—only a minor difference from the 4.3% of De-

Becker and Modis. Consequently the discrepancy between how DeBecker and Modis

generated their expected uncertainty tables and how they were intended to be used

is most significant for small data ranges and high error fluctuations. Table 12 allows

for direct comparison between the expected uncertainties for the 1-30 percent data

range as estimated by DeBecker and Modis and those estimated by this research.

Uncertainties from DeBecker and Modis are shown in italics.

Note that for all levels of error and confidence the expected uncertainties estimated

by this research are lower than those estimated by DeBecker and Modis. This is least

significant at low error and confidence levels. For instance, given 1 percent error

fluctuations on historical data, for a confidence level of 70 percent, DeBecker and

Modis estimated the expected error at 2.7 percent; this research estimated 2.1 percent.

At high error and confidence levels, however, the differences are most significant.

Compare the 820 percent expected error estimated by DeBecker and Modis for the

95 percent confidence level and 25 percent error to the 43 percent estimated by this

research. Contrast these differences with those for a larger data range. Table 13

provides the expected uncertainty for the 1-90 percent data range as estimated by both

DeBecker and Modis and by this research. Expected uncertainties from DeBecker and

Modis are shown in italics.
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Table 11: Limit Uncertainties as a Function of the Predicted Limit

Note that for error fluctuations between 1-15 percent there is little difference be-

tween the two estimates at all confidence levels. For 20 percent and 25 percent error
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Table 12: Comparison of Limit Uncertainties for the Data Range 1-30 Percent

Table 13: Comparison of Limit Uncertainties for the Data Range 1-90 Percent

fluctuations, the differences are minimal for low confidence levels but become more

significant with increased confidence. At the 99 percent confidence level with 25 per-

cent error on historical data, this research estimates an expected uncertainty of 34

percent as compared to the 20 percent estimate of DeBecker and Modis—a 14 percent

difference. This difference drops to only 5 percent at the 95 percent confidence level

and 2 percent at the 90 percent confidence level. The reason for greater uncertainty

at higher confidence levels than DeBecker and Modis predicted is that a vast under

prediction in the limit will result in a higher data range as compared to DeBecker

and Modis’ original formulation.
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One peculiarity of the data provided in Table 11 is that the maximum expected

uncertainty for high confidence level and high data error occurs near the 40 and 50

percent data range rather than the 20 percent data range. It was expected that

a smaller data range would always result in a higher expected uncertainty than a

larger data range. Clearly these results indicate otherwise. Observe the trend in the

expected uncertainty for 25 percent data error and 99 percent confidence level. The

maximum expected uncertainty occurs at a 50 percent data range, two and half times

the expected uncertainty for the 30 percent data range. Also note that the expected

uncertainty for the 30 percent data range is lower than both the 20 and 40 percent

data ranges. There are two phenomena causing this unexpected trend. Both are

related to the manner in which the data ranges are defined relative to the predicted

limit. The first is related to gross over predictions and the second to gross under

predictions.

In the case of a gross over prediction, a small data range will result which increases

the uncertainty at very low data ranges. For instance, consider a data range that

spans 0.01 to 0.5 with data error of 25 percent which is used to regress an upper limit

known to be one. If the regressed limit is a gross over prediction, 2.5, for example, the

resulting data range would be 2.5/0.5 = 20 percent, and the corresponding expected

uncertainty would be 60 percent. Consequently, gross over predictions result in high

expected uncertainties for the low data ranges. The more drastic an over prediction

is, the higher the expected uncertainty will be and the lower the data range will

appear. The 20 percent data range, therefore, is most impacted by this phenomena,

significantly more so than even the 30 percent data range.

Recall that a gross under prediction will result in a greater expected uncertainty

than a gross over prediction. An over predicted limit will never result in an expected

uncertainty greater than 100 percent, where as an under prediction could result in

an expected uncertainty of 191 percent or more as shown previously. Consequently,
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the impact of this second phenomena is more significant than the first. In cases of

a gross under prediction, the resulting data range appears larger and the expected

uncertainty is also much higher. For instance, consider a data range that spans

0.01 to 0.2 with data error of 25 percent. If the regressed limit is found to be 0.4

this would indicate a data range of 50 percent and an expected uncertainty of 150

percent. The middle data ranges (40, 50, and 60 percent) are most impacted by this

phenomena. Higher data ranges are only minimally influenced because rarely is a

limit so grossly under predicted that it results in a data range on the order of 70 or

80 percent or higher. Consider the 1-30 percent data range analyzed previously. The

lowest predicted limit out of one hundred thousand trials was 0.343, which results

in an data range of 0.3/0.343 = 87 percent and corresponds to the 99.999 percent

confidence level. At the 99 percent confidence level the corresponding limit prediction

is 0.489 which results in a 0.3/0.489 = 61 percent data range. Consequently, only at

much higher confidence levels are larger data ranges significantly influenced by this

phenomena.

This research has shown that upper limits can be predicted by means of regression

and that it can be done even more accurately for most data ranges and confidence

levels than DeBecker and Modis proposed. These expected uncertainties can be used

to establish the degree of certainty, or uncertainty, associated with a statistically

predicted upper limit given a known degree of error present in the available historical

data if is comprised of precisely twenty data points. There is one other consideration,

however, that should be taken into account before applying the above uncertainties to

just any statistically predicted limit. All the above data as well as that provided by

DeBecker and Modis is based on a sample size of twenty points regardless of whether

the sample spans 20 percent or 99 percent of the complete S-curve. It is more likely

that the sample size increases with the data range, since larger segments of the S-

curve tend to represent more effort and more technology development. This variation
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in sample size can have a significant impact on the resulting confidence interval. Note

in Table 14 the difference between the expected error for each 10, 20, and 30 data

points all with error fluctuations of 10 percent. Note that the increase in sample size

from 10 to 30 data points generally decreases the expected uncertainty by roughly

half for the higher data ranges, although only minor reductions occur at the lower

data ranges.

Table 14: Influence of Sample Size on Limit Uncertainty

This approach to estimating expected uncertainties for regressed limits, initially pro-

posed by DeBecker and Modis and then reformulated here, establishes regression as a

reasonable approach to identifying upper limits for single-dimension S-curves. Careful

consideration, however, should be given to the sample size and to correctly identifying

the magnitude of error fluctuations within a sample during application.
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6.2.1 Statistically Predicted Upper Limits in Multiple Dimensions

The last section discussed a statistical approach that makes it possible to predict

upper limits with some confidence for a single attribute. This section explores the

reformulation of this technique for multiple dimensions. The first step is to define

the initial growth model into which error fluctuations will be introduced. This initial

MDGM is defined by Equation 53, where all bi are one, all Li are also one, and a is

zero.

t = a−
n∑

i=1

1

bi

ln
(

Li − yi

yi

)
(53)

Not surprisingly, the change of data over which a data sample spans is not as clearly

defined in multiple dimensions as for a single dimension. For a single dimension

the range of data is defined by the highest level of capability within the data sample,

normalized by the upper limit. For multiple dimensions the highest level of capability

is characterized by several attributes, namely all yi. Consequently, the range of

data must be defined according to the composite form of the MDGM shown here

as Equation 54, where bi = (
∑

1/bi)
−1 and a = 0. Recall that yc can be directly

calculated from all yi’s according to Equation 55. Thus, the data range is defined by

normalizing the highest level of yi achieved by each predicted limit, Li.

yc =
1

1 + e−bc(t−a)
(54)

yc =
(
1 +

n∏

i=1

(
Li − yi

yi

)bc/bi
)−1

(55)

It is also more involved to define the initial data sample in multiple dimensions than

in a single dimension. For a single dimension, 20 sample data points were assumed
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to be evenly distributed throughout the time of the defined data range. This same

procedure can be applied to the composite form of a MDGM. Each resulting point

of the composite measure, however, corresponds to a family of yi combinations. By

definition, the composite model progresses in time as if all attributes yi were always

at the same frontier of their respective upper limits. In actuality, they will more often

than not be at different fractions of their respective upper limits. In order to model

this behavior in a simulated data sample, all but one of the attributes was set at a

random fraction of its limits, while the remaining attribute was calculated based on

the random setting according to Equation 56.

yj =
Lj

1 + e
−bj(t−a+

∑n

i6=j
1
bi
ln(Li−yi

yi
))

(56)

Recall that a single attribute’s error fluctuations were introduced to the growth rate of

the Logistic S-curve, according to Equation 57 and 58, where g̃k is the rate of change

corresponding to the kth data point of the sample and ε the normal distribution,

N(0, σ).

g̃k = qk + εqk (57)

q(tk) =
L

(1 + e−b(t−a))(1 + eb(t−a))
(58)

DeBecker and Modis introduced error in this manner, suggesting that historical data is

most often available in terms of growth rate. They cite examples of reproduction rates,

productivities, units sold per trimester, and the like. Data for growth curves modeling

technology advancement is most often available in terms of absolute capability levels

not rates of change in capability. Consequently, error fluctuations should be applied
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directly to the growth curve and not to its derivative. Thus, for multidimensional

analysis, error will be applied according to Equation 59, where yi,k is the kth setting

of the ith attribute within the sample.

g̃i,k = yi,k + εyi,k (59)

Once error fluctuations are introduced, the model is then regressed by minimizing

the sum of χ2 distributions for each dimension as defined by Equation 60. Follow-

ing the regression procedure, the data range is redefined according to the predicted

limits and composite model. As before, a Monte Carlo simulation is conducted, after

each simulation of which predicted limits are grouped into distributions according to

the data ranges listed in Table 15. Expected uncertainties are then estimated for

confidence intervals of interest.

U =
n∑

i=1

m∑

k=1

(
qi,k − E(Qi(tk))

σ(Qi(tk))

)2

(60)

Table 15: Upper Bounds to Data Ranges

1 to 19.5-20.5 percent of Lpred

1 to 29.5-30.5 percent of Lpred

1 to 39.5-40.5 percent of Lpred

... ...
1 to 89.5-90.5 percent of Lpred

1 to 98.5-99.5 percent of Lpred

Table 16 provides the expected uncertainties for each of the above data ranges for one,

two, and three dimensions, assuming 5 percent error fluctuations on historical data.

These uncertainties apply to each of the predicted limits in the MDGM. For instance,

if the limits of a three-dimensional growth model are regressed and the data range has

been estimated to be 1-70 percent and error fluctuations of 5 percent, the 90 percent
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confidence intervals would be L1 ± 28%, L2 ± 28%, and L3 ± 28%. The first point to

note is the difference between the single dimensional growth model uncertainties and

those estimated previously and displayed in Table 11. These estimates are shown side

by side in Table 17 for easy comparison, wherein the previous estimates are shown

in italics. The only effective difference between these estimates is the manner in

which error fluctuations are introduced. The difference in introducing error directly

to the growth model as opposed to its rate of change results in uncertainties three

to four times larger. Consequently, this is an indirect quantification of why relative

models generally perform better than absolute models. Error introduced to the curve’s

derivative has less of an impact on the resulting prediction than error on the curve

itself.

Table 16: Expected uncertainty for limits predicted in multiple dimensions with 5%
error fluctuations
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Table 17: Comparison of error introduction at the 5% error level

Also note the increase in the expected uncertainty for each additional dimension.

Consider the 1-90 percent data range and a confidence level of 95 percent. For a single

dimension the expected uncertainty is 10 percent. For two dimensions the expected

uncertainty increases to 15 percent, and for three dimensions the expected uncertainty

rises to 24 percent. At 25 percent uncertainty a regressed limit provides limited

practical benefit for technology assessment. Furthermore, achieving an uncertainty as

low as 25% requires a data range of 1-90 percent with only 5 percent error fluctuation.

This 25 percent expected uncertainty is also based on randomly distributing the data

points throughout the range of each dimension. In reality, this distribution is not

guaranteed and as a result uncertainties will likely be higher.

Through the research initiated by DeBecker and Modis and its continuation here,

it is possible to evaluate the reasonableness of predicting an upper limit by means

of regression through estimating the corresponding expected uncertainty. In many

instances, this expected uncertainty is likely to fall within a region of acceptability

making limit predictions based on regression a very practical and sound method. The

level of practicality is very dependent on the specific characteristics of a particular
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assessment, however, and its applicability should be tested on a case by case basis.

In general, for high dimensional growth models the expected uncertainty will likely

exceed useful levels.

6.3 Multidimensional Limit Identification

The large investment in time and resources required to implement a physics-based

approach for limit identification has been the motivation for exploring regressive tech-

niques. These have proven to be much faster but require a larger historical database

with a lower degree of error in order to achieve accurate results. Both physics-based

and regressive approaches have merit. Which proves to be the best option will greatly

depend on the available resources pertaining to any particular technology assessment.

This research aims to quantify the impact that limit uncertainty will have on the

MDGM, regardless of the approach employed to establish the required limits. If the

impact is found to be excessive, additional time and resources can be devoted to

reducing limit uncertainty as objectives of the technology assessment dictate. De-

tails of the proposed method are provided in the following chapter on methodology

procedure.
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CHAPTER VII

TECHNOLOGY ASSESSMENT PROCEDURE

Chapter 5 provides the formulation of multidimensional growth models (MDGMs)

that are the basis for the assessment of multi-attribute technologies relative to their

upper limits. This chapter presents the actual process for conducting that assessment.

The discussion will address the way in which the assessment marshalls the information

of the MDGM in order to determine the overall availability for future improvement

in the subject technology. Also covered is how the MDGM is used to set reasonable

program goals for the future evolution of the technology.

The technology assessment procedure has been formulated into five primary steps:

1. Problem Definition. The problem definition includes identifying the technology

of interest and the resolution at which the technology is to be assessed, and it

also includes identifying the system level metrics that adequately describe the

pertinent system attributes.

2. Compilation of Historical Data. Collect historical data regarding development

for each identified system level metric.

3. Upper Limits Estimation. By means of either a regression or physics-based

approach, estimate the limits bounding technology growth.

4. Generation of the Multidimensional Growth Model. Using historical data and

the identified upper limits, formulate and fit an appropriate multidimensional

growth model.

5. Technology Assessment. Evaluate information provided by the technology growth
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model to draw conclusions on the technology’s current maturity level and ex-

pected growth.

Detailed discussion of each step follows. A notional example is conducted throughout

the chapter to illustrate each step of the procedure.

7.1 Step 1: Problem Definition

7.1.1 Technology Identification

Identifying the technology includes both identifying the technology of interest and

precisely defining the level of abstraction—the technology resolution—at which the

technology is to be assessed. The technology or system for which the assessment is

desired must be identified. The degree to which the assessment will be dependent on

specific processes, hardware, or applications must also be determined.

The level of technology resolution at which to conduct the maturity assessment

entirely dictates the type of information desired from the assessment. The forecaster

should select a technology resolution that provides both adequate breadth to encom-

pass all technology variations of interest and adequate precision to provide meaningful

conclusions regarding the maturity of the specific technical approaches employed.

Consider the technology envelope provided in Figure 22. A technology assessment

can be conducted at three different levels of abstraction (1) the envelope, (2) widget

A, B, or C or (3) sublevels of widget A or B—each more resolved than the previous.

Conducting an assessment on the envelope may provide some insight into the

level of capability that may be achieved by some future technology architecture, but it

would provide no information concerning the development of any particular hardware

implementation. Conversely, conducting an assessment on a sublevel of technology

A or B will provide detailed insight into a specific hardware implementation, but the

results may be too narrow in scope to be of practical significance. An assessment rep-

resentative of technology A, B, and C is of most interest because it provides insight
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Figure 22: Example Technology Envelope

into the availability of future improvement of a broad class of systems possibly rep-

resenting a handful of hardware implementations based on a common set of physical

processes.

7.1.2 Metrics Identification

Once the technology and the resolution of interest have been identified, the forecaster

can select an appropriate set of metrics. The metrics should be in accordance with

the technology resolution specified. For high levels of resolution, the chosen metrics

should be more hardware specific in order to provide an assessment of adequate

precision as indicated by the high level of resolution. For lower levels of technology

resolution, metrics should be more general since they must apply to a broader class

of technologies rather than only a few specific hardware configurations. While the

technology resolution of interest is determined when the technology is identified, it is
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realized in the modeling process as a result of metric selection.

After identifying the level of abstraction chosen for each metric, the forecaster

must select an appropriate set of metrics that comprehensively captures the system

attributes of interest. To date, S-curve modeling has been based on a single metric

whereby data has been collected and subsequently reduced to remove variation due

to other attributes. The result is a historic trend of a single metric independent

of all others. While this approach does yield an accurate assessment of the state

of the art for the particular metric being considered, it does not give an accurate

assessment of the technology as a whole. For more complex multi-attribute systems,

this approach provides little meaningful insight for decision-makers. The strategy

proposed in this research attempts to attribute the variation within any one metric

to the other significant system level metrics. As a result it is imperative to identify

significant design drivers.

Furthermore, all metrics included in the assessment must be independent. Because

of the regression that will subsequently be used to fit the MDGM, correlation between

any two metrics can misrepresent the importance of the those metrics. Following the

collection of historical data, a test will be conducted to establish the correlation

between identified metrics.

Example

Four hypothetical metrics of interest have been identified that comprehensively quan-

tify the state of the art for the hypothetical technology identified. They will be

denoted as y1, y2, y3, and y4.

7.2 Step 2: Compilation of Historical Data

The purpose of this step is to collect the historical data necessary to develop an

accurate growth model of the subject technology. The forecaster should compile a

database of past and present systems within the technology architecture and it should
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contain the entry date of each system along with the system’s capability levels for

each metric identified in Step 1. Each system included in the database must represent

the state of the art at the time it was introduced. Including ‘sub-par’ systems will

negatively impact the validity of the assessment. Additionally, indiscriminately com-

piling experimental systems concurrently with operational systems will also distort

the growth model. All systems included in the database should have had a technol-

ogy readiness level of 9 and manufacturing readiness level of 9 for their corresponding

introductory dates.

Each system included in the database represents a point on the technology frontier

for the date it was introduced; thus, it must employ the most advanced technology

available at the time of its development. Systems not employing the most advanced

technology for their date of introduction do not represent the state of the art and

do not fall on the technology frontier. Such systems should not be included in the

growth model because they do not accurately represent what was actually possible

at that time in the technology architecture’s development. Each system included in

the database must have been designed to push the envelope of technical capability in

one or more system level metrics.

Example

Data points were generated for each of the first three metrics by randomly selecting

settings between defined upper and lower bounds. Data for the fourth was generated

as a linear combination of the previous three to simulate a correlated metric. Using

predefined Logistic curve parameters for these metrics, the date corresponding to each

vector of metric settings was calculated within which a small degree of random error

was introduced to simulate real data. Table 18 provides the resulting data.

The correlation coefficient was then calculated for each pair of metrics in order to

establish the independence of each metric. Figure 23 provides a bivariate plot for each

pair of metrics, illustrating their correlation while Table 19 provides quantification of
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Table 18: Notional Historical Data

this correlation for each metric pair. As can be observed in Figure 23, metric y4 is

highly correlated with each of the remaining metrics most of all metric y3, indicated by

the linear trend in the respective bivariate plot. Note the especially high correlation

coefficient between y3 and y4 in the correlation matrix of Table 19. As a result of

this correlation, y4 will be removed from the model and no longer included in the

assessment. One of any highly correlated pair of metrics should be removed from the

model to ensure independence between all metrics remaining in the assessment.
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Figure 23: Bivariate Correlation Plots

Table 19: Metric Correlation Matrix

y1

y2

y3

y4
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-0.0369
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0.9723

1.0000

y1 y2 y3 y4
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7.3 Step 3: Upper Limits Estimation

Two primary approaches for identifying upper limits were extensively presented in

Chapter 6. That discussion concluded that regression is a reasonable approach if

expected uncertainties can be estimated for the resulting limit predictions. In order

for these expected uncertainties to fall within an acceptable range, however, historical

databases must be large, have very small error, and span a large segment of the overall

growth curve. Physics-based limits, on the other hand, are not at all dependent on

historical data. This frees them from the troubles of scant erroneous or skewed lists of

data. Physics-based approaches, however, may require significant investment in time

and resources to assemble the disciplinary experts necessary to accurately estimate

upper limits for each metric.

Whether a regression or physics-based approach is employed, the resulting limit

will not be known precisely but only known with some degree of certainty. Thus,

the approach employed by this research is to quantify the impact of limit uncertainty

on the technology rather than simply endorse one method or the other. This is ac-

complished by defining probability distributions to the upper limit of each metric

considered in the assessment. These distributions can result from statistical tech-

niques similar to those presented in the previous chapter or physics-based approaches

or even expert best guesses. Furthermore, these distributions can take the form of a

very narrow normal distribution, that indicates a high degree of certainty or a very

broad uniform distribution which suggests the limit is only known to be bound be-

tween two extremes. Certainly a more precisely defined limit is desired, but either can

provide valuable information even if the information only indicates that additional

investment should be devoted to more precisely defining the limit.

Consequently, the farther a technology is from its upper limit, the less the upper

limit influences additional growth, while the closer the technology is to its upper limit

the more likely it will be that both limit identification approaches are able to provide
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more precise predictions. If, therefore, a technology assessment is updated periodi-

cally, the level of uncertainty can be reduced as the technology proceeds along the

S-curve and strategic goals can be simultaneously updated as knowledge of availability

for improvement becomes more certain.

Example

A distribution that describes the expected uncertainty for each specific limit should

be selected. The same distribution does not necessarily have to be used for all three

metrics. In cases were very little is known about the limit, a uniform distribution

should be used which would indicate only that the limit is bound between two ex-

tremes. The following Weibull distributions are used to quantify the expected limit

uncertainty for each metric in this example. Weibull distributions are used here to

simulate a high degree of certainty in one limit extreme as illustrated by the left

bound of the Weibull distribution and a lower degree of certainty for the right limit

extreme.
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Figure 24: Metric Limit Distributions
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7.4 Step 4: Generation of the Multidimensional

Growth Model

Step 4 is the core of the assessment procedure. In this step the forecaster integrates

the information gathered in the previous steps into a multidimensional growth model.

This step includes formulating and fitting an appropriate growth model, evaluating

its goodness of fit relative to the historical data, and establishing confidence intervals

around the resulting MDGM.

7.4.1 Formulation of the Multidimensional Growth Model

Formulating the MDGM involves choosing an appropriate growth model to describe

the evolution of the technology towards its upper limits and expanding the selected

model to accommodate each metric identified in Step 1.

Several techniques and considerations for choosing an appropriate growth model

were discussed both in Chapters 3 and 5 and will only briefly be discussed here. The

most significant choice to be made is whether a relative or absolute model will be

employed. Recall that relative models generally have a higher number of unknowns

(3n + 1 or 4n + 1), are much more computationally intensive to solve, though in

some cases they do not require knowledge of the upper limit, and often provide

more accurate predictions than absolute models. Conversely, absolute models can

have as few as n + 1 unknowns and can often be linearized such that regression is

computationally trivial. Once an appropriate growth model is selected, the model

should be extended into n-dimensions as outlined in Chapter 5.

Example

The Logistic growth model will be utilized for this example because of its popularity

for simulating technology growth and because of its simplified linear form. Equation

61 provides the expected MDGM used for this example.

113



t = a− 1

b1

ln
(

L1 − y1

y1 − yo,1

)
− 1

b2

ln
(

L2 − y2

y2 − yo,2

)
− 1

b3

ln
(

L3 − y3

y3 − yo,3

)
(61)

7.4.2 Fitting the Model

The specific procedure used to fit the MDGM will depend on which growth model is

utilized. Regardless of the selected MDGM, however, there are numerous regression

techniques that can be employed to fit each model. Many of the absolute growth

models can be linearized and least squares fit can be employed, while each of the

relative models requires a more sophisticated regression technique. The exact regres-

sion technique employed is not significant to the overall assessment procedure and

because of the wealth of knowledge available on both linear and non-linear regression

techniques they will not be discussed in further detail here [47, 84, 85, 86, 87]. Once

the model has been regressed, the goodness of fit should be evaluated. This research

will focus its attention on three primary considerations, the coefficient of multiple

determination (R2), residual plots, and parameter significance.

R2. The coefficient of multiple determination, R2, should be near unity in which

case the predicted dates resulting from the MDGM would perfectly match the actual

dates of introduction for each historical data point. R2 values should preferably be no

lower than 0.90 and preferably greater than 0.95. A low R2 may indicate a number of

potential problems. There may be systems included in the historical data that did not

represent the state of the art for their introduction date. As a result, the regression

process attempts to fit points to the model that do not lie on the technology frontier

that the model is intended to simulate. This can be remedied by removing those

points that have the highest positive residuals. A low R2 may also suggest that one

or more metrics significant to the state of the art were omitted from consideration—

a reevaluation of the metrics used to quantify the technology should be conducted.

Poor selection of a growth model may also be cause for a low R2.
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Residual Plot. The residuals should be randomly distributed about zero with

no discernable patterns observed on a residual plot. Any patterns present in the

residual plot would suggest that either the selected growth model did not adequately

describe the technology behavior or a metric significant to the state of the art was

neglected from consideration.

If there are no discernable patterns in the residual plot but the points are not

equally distributed about zero, the systems represented in the historical database

may not all represent the state of the art for their date of introduction. If there are

significantly fewer positive residuals, this suggests that one or more of the systems

contained in the historical database were not state of the art for their introduction

date. Significantly few negative residuals would indicate that one or more systems

in the historical data were unusually advanced for their date of introduction. This

might result from including systems in the historical database that were not yet at

a technology readiness level of 9 for their corresponding date of introduction, or it

might result from a significant increase in engineering effort that was devoted to those

systems relative to other systems in the database.

Parameter Significance. The significance of each metric should be evaluated

to assess its importance to the model. The manner in which this is accomplished will

be dependent on the particular model employed. For models that can be linearized

this is most easily assessed by evaluating the t-statistic or P-value for each coefficient

in the model. Metrics having coefficients with a t-statistic greater than 2 or less than

-2 and a P-value less than 0.05 will be considered significant and should remain in

the model. This ensures with 97.5 percent confidence that coefficients meeting these

criteria should be nonzero and as such are significant to the model. Metrics having

coefficients that do not meet these criteria may not be significant to the model, or it

may suggest that the systems contained within the historical database do not provide

enough variation in those particular metrics to adequately capture their significance.
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These metrics should either be removed from the model, or if possible, additional

systems should be included in the historical database that provide a larger range of

variation in these metrics.

Example

The first step to fitting the multidimensional growth model provided in Equation

61 is estimating the S-curve starting point, yo, for each metric. By observation of

the historical data provided in Table 18, starting points, yo,i, for each y1, y2, and y3

are estimated at 0, 1, and 2, respectively. These values are in agreement with those

initially specified to generate the hypothetical data.

By comparing these starting points to the limit distributions specified previously,

it is clear that metric y3 is a “minimum is best” attribute, where as the other two are

“maximum is best” attributes. That is, the direction of improvement for metric y3 is

towards a lower limit rather than towards an upper limit. The fundamental pattern of

technological development, however, is the same as that of an attribute approaching

its upper limit, only the direction of improvement is different. Consequently, the same

growth curves can be employed to model this advancement towards a lower limit as

those used to model advancement towards an upper limit. Only minor changes are

required. In fact, for many growth curves such as the Logistic and Gompertz no

adjustments are required. The limit, L, in these models can just as easily correspond

to a lower limit as an upper limit. Likewise, the starting point, yo, can also be a level

of capability from which the system evolves downward rather than upward. This is

illustrated in Figure 25. Some growth models, however, may require transforming the

data to invert the curve prior to fitting the model. This can be accomplished in many

ways. Figure 26 illustrates one approach whereby the data is reflected about yo.

Once the direction of improvement for each attribute is addressed the MDGM is

linearized by applying the transformation provided in Equation 62. This results in the

regression model of Equation 63, where β0 = a and βi = −1/bi. The only additional
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Figure 25: Inverted S-curve

information required to conduct the regression procedure is the specification of the

upper limits. This initial regression is conducted to evaluate the goodness of fit for

the model, which is not significantly dependent on the specific limits utilized provided

that the distribution for each limit is not excessive. A limit should be selected for

each metric near its most probable value. For this demonstration limits of 1, 2, and

0 were selected for each L1, L2, and L3, respectively. Applying the transformation

of Equation 62 to the historical data according to each yo,i and Li specified above

results in the design matrix shown in Table 27.

Xi = ln
[

Li − yi

yi − yo,i

]
(62)

t = β0 + β1X1 + β2X2 + β3X3 (63)

Numerous approaches can be employed to regress the linear model of Equation 63

against the transformed data provided in Table 27. The statistical package JMP

was used for this demonstration resulting in the fit summarized by Figure 27. Note
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Figure 26: Reflected S-curve Data

each of the three measures describing the goodness of fit. The R2 value of 0.95 is

at an acceptable level which indicates a good fit; however, the residual is noticeably

unbalanced with the majority of points falling below zero. This suggests that one or

more points within the historical database was significantly below the state of the art

for its introduction date, which produced large positive residuals. Note the five red

points distinctly offset from the remainder of the data set. The significantly higher

residuals for these points indicate that they were considerably below the state of the

art as quantified by the dimensions of capability included in the model. Points that

appear below the SoA for their introduction dates may indicate design preference for a

dimension of capability not included in the model. These outliers can be investigated
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Table 20: Transformed Regression Data

to identify any additional system metrics that should be included in the model. If no

additional metrics are identified which included in the model do not serve to lower

the residuals for these systems, they should be removed from consideration. That is

the coarse of action used for this simple demonstration. Before proceeding with the

omission of these points, also note the t-ratio and Prob >| t | shown in Figure 27

which exactly correspond to the the t-statistic and P-value, respectively. Each metric

more than satisfies the criteria set forth above for significance, which confirms that

all three metrics should be included in the model.
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Figure 27: Goodness of Fit Prior to Data Reduction
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Figure 28: Goodness of Fit After Data Reduction
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Omitting each of the five outlying data points and refitting the model results in the fit

summarized by Figure 28. Again note that R2 is now very nearly one, which indicates

an excellent fit. Notice the change in the residual plot. It does not appear to have

any discernable pattern and now seems to be randomly distributed around zero, also

indicating a good fit. Finally, consider the t-ratio and Prob >| t |, each of which

indicate even stronger significance than previously noted. With each criterion for the

goodness of fit satisfied, a forecaster can be fairly confident in the resulting MDGM.

The next step quantifies that confidence by establishing confidence intervals around

forecasts resulting from the MDGM.

7.4.3 Establishing Confidence Intervals

Once the general form of the MDGM model has been formulated and tested for

goodness of fit, uncertainty in the model must be quantified by establishing confidence

intervals around the resulting forecasts. There are two primary sources of uncertainty,

and their effect must be quantified: upper limit estimations and random error present

in the historical database. These sources of uncertainty must be quantified collectively

into a single confidence interval.

Consider how each source of uncertainty contributes to the overall uncertainty of

the MDGM. Uncertainty in the upper limits results from the inability to precisely

calculate the upper limits that a metric approaches. In order to accommodate for

this imprecision, distributions describing its probable location have been defined for

each limit. This uncertainty is introduced into the MDGM during the transformation

of the historical database in order to acquire the design matrix. This uncertainty is

then introduced into the parameter estimates as a result of the regression process.

Random error within the historical database can result from several sources. One

major source of error results from the inevitability that not all systems in the database

will fall precisely on the technology frontier for their respective dates of introduction.
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Another source of error is fluctuations in engineering effort overtime that are not

quantified by a time-based formulation of growth models. Other sources may be as

untraceable as reporting errors or the discretization of reported data. Regardless of

the exact source, this error is accumulated within the historical database. As a result,

it is present even before the MDGM is formulated, and it is propagated through to

the parameter estimates during regression.

Because of the substantially different characteristics between each source of uncer-

tainty, separate steps must be employed to quantify each. The uncertainty resulting

from upper limit estimations will first be quantified, to which the contribution of

uncertainty resulting from the error present in the historical database will be added.

Limit Uncertainty. Because the limit distributions are predefined, a reasonable

approach to quantify their aggregate influence on the resulting MDGM is to employ

a Monte Carlo (MC) simulation. During each iteration, settings for each metric limit

are selected according to the predefined distributions, and the MDGM is refitted

accordingly. The parameter estimates from each iteration are accumulated, which

results in a distribution for each parameter estimate. A convenient form in which

to visualize the accumulated effects of the limit uncertainties is in the composite S-

curve shown in Figure 29. A unique composite S-curve results from each Monte Carlo

simulation, providing a distribution of dates within which a specific level of capability

is achieved. Shown in Figure 29 are the distributions resulting at 25 and 75 percent

of the upper limit.

Once the Monte Carlo simulation has been conducted, it is possible to determine

the mean composite S-curve and the 1−α confidence region. A forecaster can estab-

lish the confidence intervals by identifying the two S-curves within the Monte Carlo

simulation between which the 1 − α fraction of the remaining curves reside. These

two S-curves are identified by analyzing the distributions occurring at two different

fractions of the normalized upper limit—shown in Figure 29 at 25 and 75 percent of
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Figure 29: Uncertainty in a Technologies Composite Measure

the upper limit. For these distributions, the dates corresponding to the mean and

each of the α/2 and 1 − α/2 quantiles are identified. These quantiles are shown

graphically in Figure 30. The mean date at each fraction of the upper limit can be

represented by a single S-curve that intersects the mean date at both the 25 and 75

percent capability levels as depicted by the dashed curve in Figure 30. In this same

manner the α/2 and 1− α/2 confidence bands can also be determined.

Because these confidence intervals are based on the distribution at only two levels

of capability, they are inherently based on the assumption that the S-curves resulting

from the MC simulations do not intersect. If a high percentage of the S-curves

intersect, then the distributions of curves at the 25 and 75 percent performance level

will not necessarily be representative of the distributions at other levels of capability.

Conversely, if no two curves intersect between the 0 and 100 percent capability levels
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Figure 30: Establishing Limit-Based Confidence Intervals

then the S-curve representing a specified probability of occurrence for a particular

level of a capability will represent that same probability of occurrence at all other

levels of capability.

The assumption that the curves contained within the composite S-curve distribu-

tion do not intersect can be tested by conducting a MC simulation on the S-curves.

Two curves are selected at random from the composite S-curve distribution and tested

to determine at what fraction of the normalized upper limit they intersect. All S-

curves from the above distributions intersect at both 0 and 100 percent capability

levels. As a result small differences between parameter estimates can also cause S-

curves to intersect in regions near 0 and 100 percent. For the example problem being

conducted throughout this chapter 10.2 percent of the S-curves were found to inter-

sect between the 10 and 90 percent capability levels, indicating that it is reasonable

to assume that a single S-curve represents the same probability of occurrence at all

capability levels. This assumption is expected to hold for all MDGM formulations

having a high goodness of fit, but can be easily validated for any specific formulation.

Explicit details of the above procedures for quantifying the impacts of uncertainty
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in upper limit estimations will be provided in the example at the conclusion of this

section. The impacts of random error within the historical database will first be

considered.

Once the combined confidence interval width is satisfactory, the confidence inter-

vals can be utilized in one of two ways, Figure 31 provides the resulting confidence

intervals, including uncertainty resulting from both the upper limit estimations and

the historical database. One usage establishes the time interval over which a spec-

ified capability level will be achieved with 1 − α confidence. This can be employed

to bound the forecast of the expected introduction date of a system having specified

capability levels for each metric. Another usage of the confidence intervals establishes

the capability interval that will (with a confidence of 1 − α) include the capability

achieved on a specified introduction date. This can be used to bound the relative

distance a system is from its upper limit at any point in time.
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Figure 31: Confidence Intervals Resulting from Limit Uncertainty
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Data Uncertainty. Forecasters can quantify the uncertainty in the MDGM

resulting from random error within the historical database by using standard sta-

tistical techniques for calculating confidence intervals on regression parameters and

responses. Anytime the MDGM is regressed against the historical data, confidence

intervals can be determined for both the parameter estimates and responses that ac-

count for random error within the historical database. In order that the resulting

confidence interval can be accumulated with the intervals established for upper limit

uncertainty, the regression confidence interval should be determined with respect to

time. By establishing the 1−α confidence region resulting from the regression process

for the mean and each the α/2 and 1 − α/2 S-curves identified previously, the total

confidence interval accounting for both random error in the historical database and

limit uncertainty can be established. Figure 32 illustrates how this is accomplished.

The combined 1 − α confidence interval can be estimated by applying a one-sided

1− α regression confidence interval to each of the S-curves bounding the 1− α limit

confidence interval. The distance between these one-sided regression confidence in-

tervals comprises the combined 1−α confidence interval accounting for both random

error present in the historical database and limit uncertainty.

Figure 32 also provides for the comparison of the relative contributions of uncer-

tainty resulting from random error in the historical database and upper limit esti-

mations. Generally, the contribution from error in the historical data will be small

compared to the limit contribution as large data error would have failed to meet the

goodness of fit criteria. If the combined confidence interval width is found to be ex-

cessive, additional research should be applied to more precisely identify metric limits.

The resulting reduction in distribution width for each metric’s limit will subsequently

diminish the confidence interval for the MDGM.

The following example will demonstrate in detail the formation of these confidence

intervals.
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Example

The first step to estimating the combined confidence intervals is to conduct a Monte

Carlo simulation on the MDGM provided as Equation 61. The software package

Crystal Ball [88] was used to generate 20,000 combinations of limit settings according

to the probability density functions provided in Figure 24. Matlab was then employed

to regress the MDGM for each of the 20,000 simulations. Each simulation included

the following steps:

1. Transform the historical data according to

Xi = ln
[

Li − yi

yi − yo,i

]
(64)

2. Regress the following model by least squares fit

t = β0 + β1X1 + β2X2 + β3X3 (65)

3. Calculate and record the dates at which the composite model achieved 25 and

75 percent of the upper limit, where
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t.25 = β0 +
−1

(
∑3

1 βi)−1
ln(3) (66)

and

t.75 = β0 +
−1

(
∑3

1 βi)−1
ln

(
1

3

)
(67)

In order to establish the contribution to the overall confidence interval of limit uncer-

tainty, the α/2 and 1−α/2 quantiles must be identified at each 25 and 75 percent of

the upper limit. This is accomplished by generating histograms of the dates calculated

for achieving each of these levels of capability. Figure 33 shows the resulting distri-

butions wherein the mean and 5 and 95 percent quantiles are specified corresponding

to a 90 percent confidence interval.
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Figure 33: Distributions Resulting from Monte Carlo Simulation
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The mean at all levels of capability is represented by identifying the S-curve—from

among the MC simulations—that most nearly intersects the mean at each the 25

and 75 percent capability levels. This MC simulation is identified by minimizing the

Euclidean distance between the dates calculated for the 25 and 75 percent capability

levels and for those identified as the means for each corresponding distribution. This

distance was calculated according to Equation 68. The MC simulation having the

lowest distance corresponds to that S-curve which most nearly intersects the mean at

both the 25 and 75 percent capability levels and approximates the mean at all other

levels of capability.

smean =
√

(t.25,i − t̄.25)2 + (t.75,i − t̄.75)2 (68)

This same approach is used to identify the two S-curves that form the boundaries

of the 90 percent confidence interval each corresponding to the 5 and 95 percent

quantiles. The distance used as the criterion for each of these cases is calculated

using Equations 69 and 70. The limits and parameter estimates provided in Figure

34 characterize the S-curves identified for each the mean and confidence interval

boundaries.

sα/2 =
√

(t.25,i − t.25,α/2)2 + (t.75,i − t.75,α/2)2 (69)

s1−α/2 =
√

(t.25,i − t.25,1−α/2)2 + (t.75,i − t.75,1−α/2)2 (70)

Recall that the accuracy with which these S-curves estimate the same quantiles at

other levels of capability is contingent on the assumption that only a small fraction of

the S-curves resulting from the MC simulation intersect at levels of capability within
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the range of interest. To test this assumption, 100,000 pairs of S-curves resulting from

the Monte Carlo simulation were selected at random and tested for an intersection.

Figure 35 provides the resulting distribution of intersection locations relative to the

level of capability. Of the 100,000 pairs that were tested, 36,924 pairs were found to

intersect between the 1 and 99 percent levels of capability. The number of intersections

drops by almost a factor of four by accounting for only those intersections occurring

between 10 and 90 percent capability level. These results confirm that it is reasonable

to assume that the mean and confidence interval boundaries calculated based on the

25 and 75 percent capability levels are valid for other levels of capability, especially

those greater than 25 percent capability.

The S-curves provided in Figure 34 describe the mean and the 90 percent confi-

dence interval at all levels of capability that quantify the impact of uncertainty in the
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estimation of upper limits. Quantifying the impact of random error within the histor-

ical database will now be demonstrated. This will be accomplished by estimating the

standard 1− α confidence interval on time for the S-curves bounding the confidence

region quantifying limit uncertainty.

Recall that a MDGM is regressed against historical data by treating time as the

dependent variable or response while each metric’s capability is treated as an inde-

pendent variable. This can be observed in the general form of the multidimensional

growth model provided in Equation 71, wherein bi and a are the regression parame-

ters. Consequently, the desired confidence interval is actually a prediction interval on

new observations of time, given settings of the predictor variables yi. The composite

form of the MDGM given in Equation 72 will be used in order that the resulting con-

fidence intervals can be directly applied to the composite S-curves used to describe

the mean and interval boundaries above.

t = a +
n∑

i=1

−1

bi

ln
(

Li − yi

yi − yo,i

)
(71)

Also recall that the composite form of the MDGM is given by
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t = a− 1

bc

ln
(

1− yc

yc

)
(72)

where

bc =

(
n∑

i=1

1

bi

)−1

(73)

and

yc =

(
n∏

i=1

(
Li − yi

yi − yo,i

)bc/bi

+ 1

)−1

(74)

The composite S-curve of Equation 72 is transformed according to the transformation

of Equation 75 in order to facilitate estimating the prediction intervals. The result is

the linear model of Equation 76, where tc depicts time, β0 = a and β1 = −1/bc.

Xc = ln
(

1− yc

yc

)
(75)

tc = β0 + β1Xc (76)

With this formulation forecasters can evaluate prediction limits with standard sta-

tistical calculations. Equation 77 provides the two-sided prediction interval for the

predicted date of introduction, th, given a specified composite level of capability, Xh.

When applied to the mean S-curve identified above, the relative contribution of un-

certainty from upper limit estimations and data error can be directly compared as

illustrated by Figure 32.

t̂h = E{th} ± t(1− α/2; n− 2)s{pred} (77)
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where

s2{pred} = MSE

[
1 +

1

n
+

(Xh − X̄)2

∑
(Xi − X̄)2

]
(78)

In order to evaluate the combined confidence interval, one-sided prediction limits are

applied to each S-curve forming the boundaries of the ‘limit-only’ confidence interval.

The one-sided prediction interval of Equation 79 is applied to the α/2 (0.05) S-curve,

and the one-sided prediction interval of Equation 80 is applied to the 1− α/2 (0.95)

S-curve. Figure 36 illustrates these results that form the boundaries of the cumulative

1−α (90%) confidence interval accounting for both uncertainty resulting from upper

limit estimations and random error within the historical database.

t̂CI−,h = E{yCI−,h} − t(1− α; n− 2)s{pred} (79)

t̂CI+,h = E{yCI+,h}+ t(1− α; n− 2)s{pred} (80)
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Figure 36: Composite Growth Model with Cumulative Confidence Interval

7.5 Step 5: Technology Assessment

The previous step yields a multidimensional growth model providing interdependent

technology capability levels for system metrics at any point in time. Effective tech-

nology assessment relies on effectively analyzing and interpreting this comprehensive

technology model, which can take the form of a single composite S-curve, interdepen-

dent technology S-curves, or advancing technology frontiers. Each form provides a

convenient environment to evaluate the current SoA relative to metric upper limits or

to forecast future technology capability levels. This section will discuss the pertinent

information that can be ascertained from each of these forms.

7.5.1 Composite Assessment

The composite S-curve for the ongoing example is provided in Figure 36 and describes

the overall growth of the technology architecture independent of the specific setting

of individual metrics. Recall that the composite S-curve is formulated on the basis
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that all system metrics are at the same fraction of their respective limits for all time.

Consequently, the composite S-curve can be used to estimate the technology’s level

of performance relative to a normalized upper limit and to other significant stages of

development.

The first point of interest is the current state of the art relative to identified upper

limits. Figure 37 provides the expected capability levels for the year 2006. With a 90

percent confidence level each metric of this technology has achieved between 82.3 and

90.3 percent of their respective limits. This suggests an additional 9.7 to 17.7 percent

is available for further improvement. The availability for improvement relative to

the upper limit, however, is not most important because the limit cannot itself be

achieved, and the investment required to advance the last several percent is infinite.

More important is the availability of improvement relative to the point of diminishing

returns.
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Figure 37: Composite Growth Model Specifying the Current State of the Art
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The Point of Diminishing Returns (PDR) by definition occurs at the highest rate of

productivity decline, which corresponds to the right inflection point of the produc-

tivity, curve shown here in Figure 38b. The left inflection point of the productivity

curve corresponds to the maximum rate of productivity growth. Also shown in Figure

38 is the behavior of the second and third derivatives of the Logistic growth model,

illustrating that the zeros of the third derivative correspond to each of the maximum

rates of productivity change. Equations 81 through 84 correspond to Figures 38a -

38d respectively, and Equation 85 provides the time as a function of curve parameters

a and b, at which each maximum rate of productivity change occurs. The latter of

these corresponds to the point of diminishing returns.

y =
L

1 + e−b(t−a)
(81)

dy

dt
=

Lbeb(−t+a)

(1 + eb(−t+a))
2 (82)

d2y

dt2
=

Lb2eb(−t+a)
(
eb(−t+a) − 1

)

(1 + eb(−t+a))
3 (83)

d3y

dt3
=

Lb3eb(−t+a)
(
e2 b(−t+a) − 4 eb(−t+a) + 1

)

(1 + eb(−t+a))
4 (84)

tmax curvature =




ba−ln(2+
√

3)
b

ba−ln(2−√3)
b


 (85)

ypdr = − L

−3 +
√

3
(86)

By substituting the result of Equation 85 into the Logistic model of Equation 81,

the limit fraction at which the point of diminishing returns is found and is shown as

Equation 86. Note that for the Logistic curve, the point of diminishing returns occurs
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Figure 38: Logistic Growth Model Derivatives
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at the same fraction of the upper limit regardless of curve parameters, ypdr = 0.7887L.

Compare this fraction with the expected limit fraction achieved for the year 2006,

which is illustrated in Figure 37. The current state of the art for the year 2006 is

bound between 82.3 and 90.3 with a 90 percent confidence. This suggests that with

greater than 95 percent confidence the point of diminishing returns has already been

surpassed. Figure 39 illustrates the intersection of the ypdr with the S-curves for each

the mean and the boundaries of the 90 percent confidence region. The points of

intersection are the mean and 90 percent confidence bounds for the date at which the

point of diminishing returns is expected to be reached. Note that the upper bound

of the confidence interval is the year 2003 again indicating that with greater than 95

percent confidence level the point of diminishing returns has already occurred for this

hypothetical technology.
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Figure 39: Composite Growth Model Specifying the Point of Diminishing Returns
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At this stage in the technology assessment, the impact of limit uncertainty is fully

quantified in both the current SoA and the date at which the point of diminishing

returns is expected to be the achieved. The width of the resulting confidence intervals

can be assessed to establish their acceptability and to determine if additional research

should be invested to reduce limit uncertainty and subsequently increase the certainty

of the current SoA relative to both the upper limit and the point of diminishing

returns.

7.5.2 Setting Program Goals

The composite S-curve quantifies the overall level of performance of a technology

relative to a normalized upper limit as it develops over time. Its very nature prevents

the assessment of individual metrics relative to one another. This is the objective

of interdependent metric S-curves and technology frontiers. Both are derived from

slightly different interpretations of the MDGM provided by Equation 87.

year = a− 1

b1

ln
(

L1 − y1

y1 − yo,1

)
− 1

b2

ln
(

L2 − y2

y2 − yo,2

)
− 1

b3

ln
(

L3 − y3

y3 − yo,3

)
(87)

An interdependent metric S-curve is defined by specifying settings for all yj 6=i and

by evaluating yi over all time—the result is the metric-specific S-curve for yi, which

is dependent on settings for all other metrics. For instance, if y1 and y3 are each

specified, y2 can be evaluated for any date according to Equation 88. Each metric-

specific S-curve can be determined in this manner.

y2 =
L2 − yo,2

1 + e
−b2(t−a+ 1

b1
ln( L1−y1

y1−yo,1
)+ 1

b3
ln( L3−y3

y3−yo,3
))

+ yo,2 (88)

An interdependent frontier is defined by specifying settings for the date and all yj 6=i 6=k

and evaluating yi over a range of yk. The result is a frontier of achievable combinations

of yi and yk at a specified date given constant settings for all other metrics. This would
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correspond to specifying a date and setting for y3 while evaluating y2 over a range of

y1 settings. These two forms of the MDGM are shown in Figure 40.
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Figure 40: Individual S-curve and Frontier Pair

In the case of the metric specific S-curve, if the settings for either y1 or y3 are

changed, a completely different y2 S-curve would result. Likewise, if either the year or

y3 were changed in the case of the frontier, a new and different frontier would result.

The static nature of these two-dimensional snapshots of the MDGM significantly

limits the degree to which the technology can be assessed.

In order to adequately capture the behavior of the MDGM, a dynamic environ-

ment is needed in which all n+1 dimensions (n attributes plus time) can be visualized

simultaneously. The prediction profiler within the JMP statistical software package

provides such an environment [89]. Figure 41 provides a snapshot of this dynamic

environment, in which the first column of subplots represent the interdependent S-

curves, and all other subplots correspond to the yi-yj technology frontier. The ad-

vantages of this environment are twofold; interdependent S-curves and frontiers can

be viewed simultaneously, but most importantly the S-curves and frontiers respond

in real time to changes in year or metric settings.
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Figure 41: Prediction Profiler Visualization Environment

In the first column of each row is the yi S-curve. The remaining entries of each row

form the yi-yj technology frontier. Each row takes the graphical form of Equation

88—that is yi = f(t, yj 6=i). Consequently each row by itself completely describes the

MDGM. Additional rows are provided in order that all the yi S-curves and frontier

pairs are graphically represented. At the left of each row is the expected value of yi

that can be achieved for the date specified given settings for each yj 6=i displayed at the

bottom of each column. These settings can be adjusted by moving the red hairline

in each column.

Note that because each row independently describes the MDGM it is possible for

each row to represent a different state of the same MDGM. For instance, in Figure

41 the bottom row yields y1 = 0.349 given year = 1980, y2 = 1.6, and y3 = 0.75; the
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middle row yields y2 = 1.298 given year = 1980, y1 = 0.6 and y3 = 0.75. Each row

corresponds to an equally valid but different state of the MDGM characterized by

different settings for y1 and y2. Making all rows correspond to the same state can be

useful for making tradeoffs between metrics and can be achieved by setting any one yi

hairline to its corresponding predicted value. In the case of Figure 41, the y1 hairline

is adjusted to 0.349 resulting in Figure 42, in which all rows represent the same state

of the MDGM. Only when all rows represent the same state can the S-curves in the

first column be compared with one another. The relative distance to their respective

upper limits can only be evaluated if each S-curve (i.e. row) corresponds to the same

state.
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Figure 42: Prediction Profiler Visualization Environment
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This dynamic visualization of the MDGM provided by the prediction profiler can be

used to observe many of the relationships that characterize the MDGM. Apparent

from a snapshot of the environment are the metric S-curves as a function of time and

each frontier pair. Not apparent from a snapshot is the relationship between time,

each attribute, and each frontier pair. Because each row can independently describe

the MDGM, only a single row is necessary to illustrate these relationships. Figure 43

illustrates the relationship between time and each frontier pair. As time progresses,

more aggressive settings for both metrics of the frontier pairs are able to be achieved,

which is characterized by the rightward movement and increased “squareness” of each

frontier.

Figure 43: Time Dependence of Attribute Frontiers

Figure 44 illustrates the relationship between yk and the yi-yj frontier pair. Note

that changes to yk have the exact opposite impact as time to the frontier pair. As

yk decreases more aggressive settings for each metric can be achieved. The relation-

ship between yk and the yi S-curve is also illustrated in Figure 44. Observe that for

decreases in yk, the yi S-curve shifts to the left, which indicates that more aggres-

sive capability levels of yi can be achieved at a given date if lower values of yk are

permitted.
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Figure 44: Time Dependence of Attribute Frontiers

Discussion so far has explained the functionality of this environment; now consider

its utility. By setting the date hairline to any year of interest, the expected rate of

growth for each metric can be estimated, and the tradeoff frontier between any pair of

metrics can be examined. This provides the necessary information to comprehensively

define the current SoA relative to metric upper limits and as such establishes the

technology potential for each metric. Similarly, forecasters can estimate expected

levels of performance for any future date, which enables reasonable goals to be set for

systems under development. Conversely, given desired levels of performance for one

or more metrics the expected date for achieving such levels relative to the capability

for the remaining metrics can be estimated.

7.5.3 Time Horizons of Technology Alternatives

The multidimensional growth model formulated in the previous sections forecasts

future technical capability based on the fundamental nature of technology growth

patterns relative to physical limits and historical data. No consideration, however, is

given to the actual evolutionary changes required in order for the subject technology to

achieve predicted levels of performance. This is the explicit purpose of the Technology

Impact Forecasting (TIF) method; disciplinary changes required to achieve specific
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system level targets are determined. Consequently, TIF is a natural successor to the

goal setting enabled by MDGMs.

A MDGM is used to forecast the evolved performance levels of specific system over

time, after which TIF can be employed to identify the evolutionary changes required

to achieve those forecasted levels of performance. This is a natural progression for

the two methods, starting with the specification of program goals and proceeding

through technology identification for fulfilling those goals.

TIF, which was summarized in Section 3.3, is a well-established methodology

which has been demonstrated on numerous design problems [56, 57, 58, 90, 91, 92, 93].

Another demonstration here would add little to the existing research on the topic.

What is instructive to note is that the MDGM can provide additional information fol-

lowing the TIF approach by estimating expected introduction dates for combinations

of technology metrics. The capability levels achieved by a technology metrics resulting

from TIF can be entered into the corresponding MDGM to yield a top-down estimate

of introduction date given that past levels of engineering effort are maintained. Recall

that the TIF method maps changes in technology metrics, or disciplinary metrics, to

the improvements and degradations of system level metrics. Consider that one func-

tion of a MDGM maps changes in system level metrics to changes in the state of

the art as quantified by introduction date. Consequently, a MDGM can be employed

following a TIF implementation to map the necessary disciplinary changes directly

to expected date of introduction, as illustrated by Figure 45. In this way, forecasters

can simultaneously assess the expected date of introduction with predicted system

performance as a result of changes to disciplinary metrics. Note, however, that this

expected date of introduction assumes previous levels of engineering effort are main-

tained. If TIF is being implemented at the onset of an aggressive development phase,

actual introduction dates of developed systems may occur before those forecasted by

the MDGM.
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Figure 45: Disciplinary Metric Mapping

7.6 Summary

This chapter set forth a systematic procedure for the assessment and forecast of tech-

nology attributes. Central to the procedure is the formulation of a multidimensional

growth model that describes the development pattern of each individual system at-

tribute and the growth of the technology as a whole. Attention is given to carefully

formulate and test the model’s integrity to ensure its accuracy.

The procedure includes an uncertainty analysis to capture imprecision in limit
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estimates and error fluctuations on historical data in order to provide confidence in-

tervals on resulting forecasts. The varied interpretations of the MDGM were explored

and discussed, including explanation on how to identify the current state of the art

relative to both the upper limit and point of diminishing returns. The procedure con-

cludes by providing a visualization environment to facilitate technology assessment

and the setting of program goals.

While Chapters 5 & 6 provide the necessary elements for technology modeling, this

chapter integrates those elements into a formalized approach to assess a technology’s

current state of the art relative to both the upper limit and point of diminishing

returns, clearly establishing what availability for further improvement exists. The

following chapter applies this methodology to assess and forecast turbofan technology.
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CHAPTER VIII

PROOF OF CONCEPT

Chapter 8 provides a realistic application of the technology assessment procedure

proposed in the previous chapter, specifically the evolution of high-thrust (i.e. high-

bypass) turbofan engines relative to the upper limits of several key metrics. Several

factors contributed to the selection of turbofan engines as a subject technology for

this demonstration. The first factor that makes turbofan technology an appropriate

test subject is that engine designers must consider multiple attributes. A high-thrust

turbofan must provide significant levels of thrust with minimal fuel consumption,

noise, and emissions. This must be accomplished while minimizing its weight and

maximizing its reliability. The second factor making the turbofan of interest is the

exceptionally high investment necessary to develop a new engine. With nearly five

billion dollars at risk, knowledge of the existing availability for further improvement

is a significant contribution to decision makers [94]. Furthermore, with over four

decades of aggressive turbofan development to date, the question of just how much

availability for improvement remains is being asked more frequently. One drawback to

turbofan technology as an assessment application is the limited data available in the

public domain. In some respects, this is an advantage in that it tests the robustness

of the assessment procedure in light of limited data, but it also greatly limits the

number of attributes that can be assessed.

The ensuing demonstration will follow step by step the procedure outlined in the

previous chapter.
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8.1 Problem Definition

As stated, the technology architecture of interest to this assessment is the high-thrust

turbofan engine. The level of abstraction of interest is not concerned with the number

of spools, gearing, or specific cycles but only with the requirement that the engine

has thrust greater than 25,000 lbf. The attributes of interest to this study, as alluded

to in the introduction, include fuel consumption, thrust, weight, noise, emissions, and

reliability.

Each attribute will be considered in turn to identify an appropriate corresponding

metric.

Fuel consumption is quantified by the thrust specific fuel consumption

(SFC) at the cruise condition in terms of the units pounds mass per pounds

force hour, lbm/lbf-hr.

Thrust is quantified by the maximum sea level static thrust (Fg) in

pounds force, lbf.

Weight is included in the assessment as a compound metric with thrust

in the form of the thrust to weight ratio (T/W) of the engine.

Noise is quantified by the total takeoff noise in decibels, dB.

Emissions is quantified by the ratio of total oxides of nitrogen (NOx)

emitted during the landing-takeoff cycle per kilogram of fuel burned. This

ratio will be denoted as EINOx and will be given in terms of grams of NOx

per kg of fuel, g/kg.

Reliability data could not be found consistently in the public domain in

any form and, because of this, reliability was removed from consideration.

8.2 Compilation of Historical Data

The historical data for this assessment was collected from a myriad of sources,
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most notably noise data was acquired from the Federal Aviation Administration and

emissions data from International Civil Aviation Organization [94, 95, 96, 97, 98].

Table 21 provides the initial list of compiled data.

Note that each metric as listed in Table 21 applies to a single engine, except for

the takeoff noise, which quantifies both the noise of the aircraft and all engines. In

order to normalize this data to a single engine, this study made the assumption that

during takeoff, aircraft noise is negligible as compared to engine noise [99]. Thus, the

data for noise provided in the table was assumed to only come from the engines. In

order to attribute the fraction of this combined engine noise resulting from a single

engine, the above noise data was transformed from decibels to the underlying pressure

ratio, which was subsequently divided by the number of engines and transformed back

into decibels [100, 101]. This normalization procedure is quantified by Equation 89

and was applied to each system entry in the historical database resulting in the noise

levels per engine listed in Table 22.

dBper engine = 20 log
(

10
dBtot

20

no. of engines

)
(89)

Also provided in Table 22 is the mass flow (m dot), bypass ratio (BPR), overall pres-

sure ratio (OPR), length, and diameter for each system in order to provide comparison

based on disciplinary metrics. Note that engine mass flow varies between 1140 and

3100 lbm/s; BPR varies between 4.1 and 8.5; OPR varies between 21.1 and 39; length

varies between 118 and 204 inches, and diameter varies between 73.2 and 134 inches.

While each engine in the database qualifies as a high bypass or high thrust engine,

variability in these disciplinary metrics indicate that as defined this is a rather broad

technology architecture.

The correlation coefficient for each system level metric pair is calculated accord-

ing to the data provided in Table 22. The results are shown here in Table 23 and
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Table 21: Initial historical database of turbofan engines with dates of introduction
and performance data

illustrated by the bivariate plots of Figure 46. Expectedly, the highest degree of

correlation exists between T/W and thrust, each of which are moderately correlated
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Table 22: Historical database of turbofan engines with dates of introduction and
performance data
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with the remaining metrics, most of all SFC. If either T/W or thrust is removed from

the assessment based solely on correlation, thrust would be the appropriate choice

because it is more strongly correlated with the remaining metrics than T/W. The

metrics’ significance as a design driver, however, should also be considered in this

decision.

Table 23: Metric Correlation Matrix

SFC

T/W

THRUST

NOISE
EINOx

1.0000

-0.3420

-0.4525

-0.1040
-0.1484

-0.3420

1.0000

0.4755

-0.2987
-0.0207

-0.4525

0.4755

1.0000

-0.3777
0.3990

-0.1040

-0.2987

-0.3777

1.0000
0.1633

-0.1484

-0.0207

0.3990

0.1633
1.0000

SFC T/W THRUST NOISE EINOx

Does thrust or T/W more strongly influence design decisions? Insight into this ques-

tion can be gained by viewing the independent advancement of each metric as illus-

trated by Figures 47 and 48 for T/W and thrust, respectively. Each point included in

these graphics most nearly corresponds to the highest performance achieved to date

for the respective metric. Note in Figure 47 the very flat T/W frontier that reaches

a maximum of 6.47 as of 1987, which is less than half a point higher than the 6.18

achieved in 1973 nearly a decade and half earlier. This indicates that either T/W

has already reached its limit or it has ceased to be a dimension of primary interest to

advance for high-thrust turbofans. Conversely, note the steady increase in thrust over

the past three decades. These recent trends suggest that overall thrust more strongly

influences design decisions than does engine thrust to weight in high bypass applica-

tions. That is for large transport aircraft where engine weight comprises only a very

small fraction of the total gross weight of the aircraft absolute thrust is a more sig-

nificant design driver than the thrust to weight ratio. Consequently, despite slightly

higher correlation with the remaining metrics, thrust will remain in the assessment

model while thrust to weight will be eliminated. If the assessment were conducted
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on low bypass turbofans for military fighter applications this conclusion would most

likely be reversed.

40000

Figure 46: Bivariate Correlation Plots
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Figure 47: Historical Trend of Turbofan Thrust-to-Weight Ratio

Figure 48: Historical Trend of Turbofan Thrust Levels

forcing a page break
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8.3 Upper Limits Estimation

As noted in the previous chapter, quantifying the impact of limit uncertainty on the

resulting model is of more interest to this research than precisely calculating upper

limits. Precisely calculating the upper limit for even a single metric of a highly

complex system such as a turbofan may itself be a multi-year endeavor requiring the

involvement of many disciplinary experts. Entering into such an endeavor for each of

the four remaining metrics within the turbofan model was beyond the scope of this

research. Boundaries for the upper limit to each metric were estimated using very

basic physics-based analysis. The approach employed for each metric follows.

Specific Fuel Consumption. The turbofan as a technology architecture is a

highly coupled system. That is, small changes in the performance of any one com-

ponent significantly impact the performance of all other system components. Conse-

quently, any improvement to component efficiencies demand changes to other cycle

parameters for optimal performance. A first-order turbofan engine model was created

in Matlab in order to simulate improvements to component efficiencies after which

cycle parameters were optimized for minimal SFC. This model was based on a ba-

sic energy balance analysis as outlined by Hill and Peterson and was bench-marked

against the GE90-85B cruise condition, thirty-five thousand feet altitude and Mach

number of 0.85 [97, 102]. The actual Matlab coding of this model is provided as Ap-

pendix C. Pertinent cycle parameters and efficiencies for the GE90-85B at the cruise

condition are provided in Table 24. Also provided in Table 24 are cycle parameters

corresponding to two limit estimates.

These limit estimates are representative of technological improvements to compo-

nent efficiencies and compressor pressure ratios. Limit A was estimated by improving

each component efficiency by 0.02 and solving for cycle parameter settings in or-

der to minimize specific fuel consumption while maintaining the same thrust, bypass
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Table 24: Turbofan Model Parameters for SFC Limit Estimation

GE90-85B Limit A Limit B
Component Efficiencies

Fan 0.8991 0.9191 0.9391
Low Pressure Compressor 0.8979 0.9179 0.9379
High Pressure Compressor 0.8638 0.8838 0.9038

Burner Pressure Drop 0.045 0.025 0.005
High Pressure Turbine 0.9182 0.9382 0.9582
Low Pressure Turbine 0.9263 0.9463 0.9663

Cycle Parameters
Fan Pressure Ratio 1.611 1.624 1.630

Low Pressure Compressor Pressure Ratio 1.385 1.379 1.400
High Pressure Compressor Pressure Ratio 20.677 25.686 26.000

Overall Pressure Ratio 46.135 57.534 59.321
Turbine Inlet Temperature (R) 2958.8 2801.8 2586.3

Bypass Ratio 8.34 8.34 8.34
Mass Flow (lbm/s) 1450.7 1450.7 1450.7

Performance
SFC (lbm/lbf − hr) 0.5577 0.4789 0.4107

Thrust (lbf ) 19050.8 19050.8 19050.8

ratio, and mass flow. Bypass ratio and mass flow have been held constant to indi-

cate that the physical size of turbofan engines cannot appreciably increase beyond

the GE90-85B without a revolutionary change in system integration. That is, for

as long as engines are mounted underwing their maximum diameter will be limited

by acceptable ground clearance. The GE90-85B has very nearly reached this limit.

Consequently, technological advancements to turbofan engines will be constrained to

a physical size comparable to the GE90-85B. Thrust has been held constant to pro-

vide for a reasonable comparison between the resulting specific fuel consumptions.

Because SFC is normalized against thrust, changes to thrust can result in SFC vari-

ability not representative of technological advancement; thrust has, therefore, been

held constant to eliminate this variability.

Limit B was estimated in a similar manner to Limit A except component efficien-

cies were increased by 0.04, an additional 0.02 improvement, and the cycle parameters
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were once again optimized in order to minimize SFC. These two estimates, Limit A

and B, bound the SFC limit between 0.4789 and 0.4107.

Thrust. The upper limit to turbofan thrust performance was estimated in a

very similar manner to that used to estimate SFC limits. The same engine model

used for SFC limit estimations was also used for thrust limit estimations. The model

was bench-marked against the GE90-85B at the sea level static condition. Pertinent

cycle parameters and efficiencies for the GE90-85B at this condition are provided in

Table 25. Also provided in Table 25 are cycle parameters corresponding to two limit

estimates.

Table 25: Turbofan Model Parameters for Thrust Limit Estimation

GE90-85B Limit A Limit B
Component Efficiencies

Fan 0.8914 0.9114 0.9314
Low Pressure Compressor 0.8992 0.9192 0.9392
High Pressure Compressor 0.8650 0.8850 0.9050

Burner Pressure Drop 0.045 0.025 0.005
High Pressure Turbine 0.9200 0.9400 0.9600
Low Pressure Turbine 0.9300 0.9500 0.9700

Cycle Parameters
Fan Pressure Ratio 1.5 1.65 1.65

Low Pressure Compressor Pressure Ratio 1.3 1.253 1.257
High Pressure Compressor Pressure Ratio 20 15.661 19.876

Overall Pressure Ratio 39 32.381 41.230
Turbine Inlet Temperature (R) 2958.8 4000 4000

Bypass Ratio 8.5 8.5 8.5
Mass Flow (lbm/s) 3100 3100 3100

Performance
Thrust (lbf ) 86723 130870 139250

Limit A was calculated by improving component efficiencies by 0.02 and optimizing

cycle parameters to maximize thrust while maintaining a constant bypass ratio and

mass flow. Note that the turbine inlet temperature was allowed to advance as high
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as 4000 degrees Rankine representative of an improvement to materials and/or cool-

ing technology. Limit B was calculated in similar manner with an additional 0.02

improvement to component efficiencies. These two estimates, Limit A and B, bound

the thrust limit between 130,870 and 139,250.

Noise. The total takeoff noise of a turbofan engine is the accumulation of noise

resulting from numerous engine sources, however, the exhaust jet is the largest con-

tributor [99]. Consequently, total takeoff noise can be roughly quantified as being

proportional to jet noise which is itself proportional to the exhaust velocity raised to

the eighth power [103]. This relationship is captured by Equation 90, where Vj is the

exhaust jet velocity, ao is the acoustic velocity, and k is a constant of proportionality.

dB = 80 log
(
k · Vj

ao

)
(90)

Estimates for the upper limit to total takeoff noise can be calculated using this equa-

tion given expected limitations to the jet velocity and the constant of proportionality

k. This constant is estimated by regressing each engine of Table 22 against Equation

90. The exhaust velocity for each engine is estimated as the specific thrust in units of

feet per second and the constant of proportionality evaluated according to Equation

91.

k = 10
dB
80

(
a

Vj

)
(91)

The lower bound to these estimates for k was found to be 11.4. Assuming a limit on

exhaust velocity of between 750 and 850 ft/s, the limit for total takeoff noise is found

to be between 71 and 75 dB.
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Emissions. The index for nitrogen oxide emissions is modeled by NASA ac-

cording to Equation 92, where Tt4 is the total turbine inlet temperature, and Tt3

and Pt3 are the total combustor inlet temperature and pressure, respectively. This

indicates that the emissions index is most heavily dependent on overall pressure ratio

(OPR) and the turbine inlet temperature, furthermore, that emissions improves with

decreasing levels of both. This emissions model only applies to a single combustor

type. Similar emissions models exist for other combustor types and are just as heavily

dependent on overall pressure ratio and turbine engine temperature. Consequently,

emissions can be reduced simply by lowering overall pressure ratio and turbine inlet

temperature. The first limit boundary is estimated for EINOx by allowing Tt4 to be

2800 degrees Rankine and overall pressure ratio to be 28. This yields a limit estimate

of EINOx = 10.3. A second limit boundary is established by allowing Tt4 to drop to

as low as 2300 degrees Rankine and OPR to 20. These estimates bound the limit for

EINOx between 5 and 10 grams of NOx emissions per kilogram of fuel burned during

the landing-takeoff cycle.

EINOx = 0.004941 · Tt4

(
Pt3

439

)0.37

e(Tt3−1471)/345 (92)

For each metric two limits have been estimated between which the actual limit is

expected to be. Initially, each metric’s upper limit is defined according to a uniform

distribution as illustrated in Figure 49, which also provides the mean and bounds

for each metric limit. This demonstration selected a uniform distribution because

it gives no preference to any one limit value over another within the distribution; it

simply places bounds upon the metric’s upper limit. Later the demonstration will

apply normal distributions to each upper limit to simulate increased knowledge due

to investment in further resolving each upper limit’s location.
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Attribute
SFC

Thrust
Noise

Emissions

Limit Upper Bound
0.47

139,250
75
10

Limit Upper Bound
0.41

131,000
71
5

Uniform Limit Distribution

Figure 49: Uniform Limit Distributions

8.4 Generation of the Multidimensional Growth

Model

The first step to generating a MDGM is selecting an appropriate growth curve on

which to base the model. This demonstration will avoid relative growth curves be-

cause of the computational intensity necessary to solve for curve parameters in mul-

tiple dimensions. Also, neither Bass nor Harvey relative models require knowledge of

the upper limit, thus preventing the proposed uncertainty analysis on limit location.

Of the absolute models, Young has shown the Logistic curve to provide more consis-

tently accurate forecasts [42]. Consequently, the Logistic curve will be used for this

application, although any growth model, relative or absolute, could be employed to

generate MDGMs as demonstrated in Chapter 7.

The general form of the Logistic based MDGM is shown here as Equation 93

and expanded in Equation 94 to accommodate each turbofan metric in which the

subscript sfc denotes specific fuel consumption, fg denotes thrust, db denotes total

takeoff noise, and ie denotes the NOx emissions index. As with the example in the
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previous chapter, Equation 94 is linearized which results in Equation 95. Recall that

βi corresponds to −1/bi and Xi to the historical data yi that has been transformed

according to Equation 96.

t = a−
n∑

i=1

1

bi

ln
(

Li − yi

yi − yo,i

)
(93)

t = a− 1

bsfc

ln
(

Lsfc − ysfc

ysfc − yo,sfc

)
− 1

bfg

ln
(

Lfg − yfg

yfg − yo,fg

)
− · · ·

1

bdb

ln
(

Ldb − ydb

ydb − yo,db

)
− 1

bei

ln
(

Lei − yei

yei − yo,ei

)
(94)

t = β0 + βsfcXsfc + βt/wXt/w + βdbXdb + βeiXei (95)

Xi = ln
[

Li − yi

yi − yo,i

]
(96)

In order to test the goodness of fit and significance of each metric that is included in

the model, settings for each attribute limit, Li, and lower bound, yo,i, must be iden-

tified. In the case of Li, the mean from the uniform distributions previously defined

for each metric was used. For each yo,i a value slightly beyond the worst contained in

the historical database was selected. In this way, the worst value within the historical

database for each metric represents a starting point for each metric-specific S-curve.

Table 26 shows the limit and the lower bound alongside the worst value within the

database for each metric. The historical database in Table 22 is transformed using

these values according to Equation 96 which results in the regression data provided

in Table 27.

Following this transformation, the statistical package JMP was used to regress

the linearized form of the Logistic MDGM, Equation 95, which results in the fit
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Table 26: Metric Bounds

characterized by Figure 50 [89]. Note the correlation coefficient, denoted as RSq

below the actual-versus-predicted plot, of 0.84, which is the result of regressing all

40 systems contained within the historical database. Consider the possibility that

not all systems within the historical database were representative of the state of the

art as quantified by SFC, thrust, noise, and emissions for their respective dates of

introduction. Several ‘subpar’ systems can be identified by inspection of the historical

database. Looking back to the historical database in Table 22, note in particular data

points 11 and 36, corresponding to the JT9D-7F and PW2040. Each of these engines

perform below the levels of capability previously achieved for each and every metric

being considered. These data points clearly represent systems that for their respective

years of introduction were below the SoA as quantified by the metrics of interest to this

study. Systems below the SoA result in predicted dates of introduction much earlier

than their actual introduction dates, because based on their levels of capability they

could have been introduced sooner and, in many cases, comparable systems were.

These low SoA data points appear above the y = x line in the actual versus predicted

plot in Figure 50 and as positive residuals in the adjacent residual plot. A total of

10 points appear to represent systems that were below the state of the art for their

respective dates of introduction and these systems were removed from the model

resulting in the reduced historical database of Table 28. Also note that systems that

aggressively advance the state of the art for their respective dates of introduction
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Table 27: Design Matrix to Test Model Goodness of Fit

appear below the y = x line in the actual-versus-predicted plot in Figure 50 and as

more strongly negative residuals.

Following this data reduction, the model was once again regressed using JMP,

yielding the fit characterized by Figure 51. Note the improved correlation coefficient
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Figure 50: Initial Regression Results

of 0.96 and the more evenly distributed residual plot as a result of the data reduc-

tion. Now consider the significance of each metric in the model as quantified by

the t-statistic and P-value, each denoted in the model as the t-ratio and Prob > |t|,
respectively. The parameter estimates corresponding to SFC and thrust each have

P-values of less than 0.001. This indicates that with a 99.95 percent confidence level

these parameters should be nonzero. Conversely, P-values for the parameter esti-

mates that correspond to each noise and emissions are appreciably higher than the

threshold of 0.05. This indicates that the certainty that these parameters are nonzero

is not significant. Due to their low significance these turbofan attributes, noise and

emissions, were removed from the assessment. This does not mean that noise and

emissions are not significant design drivers in the ongoing development of turbofan

engines. It does, however, suggest that the systems contained within the historical

database do not provide enough variability in these metrics relative to the variability
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Table 28: Reduced Historical Database

in SFC or thrust for their contributions to the variability in introduction date to be

captured. Consequently, their appearance of insignificance is a result of limited data,

although they may in fact have lower significance than do SFC and thrust.

Results from the updated fit including only SFC and thrust are shown in Figure

52. Note the slightly reduced correlation coefficient, 0.96 to 0.95. This is due to

the removal of noise and emissions from the model. Using this predictive model, the

corresponding composite S-curve was generated as illustrated in Figure 53, wherein

the range spanned by the actual data points can be observed. Also shown in Fig-

ure 53 is the composite score for each the GE90-90B, GE90-94B, and GE90-115B.

These engines were not included in the original historical database because their total
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takeoff noise could not be found at the time of this assessment. These engines were

not included in the historical data used to regress the composite model of Figure 53,

and serve as a sanity check for the near term forecast of the resulting model. Recall,

however, that this composite S-curve is based solely on the mean of each limit distri-

bution defined previously. The impacts of this limit uncertainty and any error within

the historical database is now explored.
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Figure 51: Regression Results Following Data Reduction
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Figure 52: Regression Results Following Model Reduction
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Figure 53: Initial Composite Turbofan Growth Curve
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8.4.1 Uncertainty Analysis

Recall that the contributions to model uncertainty from limit estimations and data

fluctuations are quantified separately. First the contribution from limit uncertainty

is estimated by means of a Monte Carlo simulation. Following this simulation, three

composite growth curves are identified from among the thousands generated. One

represents the mean technology growth given limit uncertainty, and the remaining two

bound the 1− α confidence region. Prediction intervals are then calculated for each

of the three curves in order to capture the model uncertainty resulting from data

fluctuations. This demonstration will establish the 90 percent confidence interval,

α = 0.1.

A Monte Carlo simulation is conducted to assess the impact of limit uncertainty on

the resulting MDGM. During each of 20,000 simulations, an upper limit for each SFC

and thrust was selected according to the uniform distributions defined in Figure 49,

and linear regression was employed to calculate the parameter estimates of Equation

97. Figure 54 shows the resulting composite growth curve for each simulation as

defined by Equation 98. Note the location of the historical data relative to the width

of the limit distribution.

T = β0 + βsfcXsfc + βfgXfg (97)

yc =
1

1 + e−bc(t−a)
(98)

where

bc =

(
1

bsfc

+
1

bfg

)−1

= −(βsfc + βfg)
−1 (99)
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Year

Figure 54: Composite Curves Resulting from Limit Uncertainty Analysis

The distribution of predicted years at which each 20 and 90 percent of the normalized

limit was achieved is also shown in Figure 54. These distributions will be used to iden-

tify composite curves representative of the mean and of 90 percent confidence interval.

The 20 and 90 percent capability levels were selected because of the limited number

of intersections that occur between them as illustrated by the distribution shown

in Figure 55. This distribution is generated by randomly selecting two composite

curves from the 20,000 generated during the Monte Carlo simulation and calculating

at what fraction of the normalized limit they intersect. A total of 20,000 pairs of

curves were tested to form this distribution. The table within Figure 55 indicates the

percentage of composite curve pairs that intersect between the corresponding curve

segments. Note that only three percent of all intersections occur above 99 percent of

the normalized limit or below 1 percent. Also note that just over one percent intersect

between 20 and 90 percent of the normalized limit.
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Figure 55: Distribution of Composite Curve Intersections

Composite curves representative of the mean and the 90 percent confidence interval

bounds are identified by first establishing the mean as well as the 5 and 95 percentiles

of the distributions at both 20 and 90 percent of the normalized limit as provided in

Figure 56. The composite curve representative of the mean is identified by finding

the Monte Carlo simulation that most nearly intersects the mean established for each

distribution. This is accomplished by calculating the Euclidean distance between the

mean date for each 20 and 90 percent of the normalized limit and the dates at which

each MC simulation reached the 20 and 90 percent capability levels. Equation 100

defines this distance, where t̄0.2 and t̄0.9 correspond to the means of each distribution

in Figure 56 and each t0.2,i and t0.9,i correspond to the date at which 20 and 90 percent

of the normalized limit is achieved by the ith MC simulation. The assessment selects

the MC simulation that minimizes this distance to be represent the mean at all levels

of capability. Using this same technique, the composite curve representative of each

boundary of the 90 percent confidence region is identified whereby the distances to

be minimized are calculated according to Equations 101 and 102. The two result-

ing curves bound 90 percent of the remaining Monte Carlo simulations. All three
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composite curves identified as a result of this procedure are illustrated in Figure 57

wherein the limits and parameter estimates for each curve are provided.

smean =
√

(t0.2,i − t̄0.2)2 + (t0.9,i − t̄0.9)2 (100)

s0.05 =
√

(t0.2,i − t0.2,0.05)2 + (t0.9,i − t0.9,0.05)2 (101)

s0.95 =
√

(t0.2,i − t0.2,0.95)2 + (t0.9,i − t0.9,0.95)2 (102)

Mean   
2023.50

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Year 0.2L Achieved 

Year 0.9L Achieved 

Percentile  
0.05
0.95

Quantile
2020.88
2025.95

Percentile  
0.05
0.95

Quantile
1972.14
1974.04

Mean   
1973.09

Date

Date

Figure 56: Distribution of Dates for Reaching 0.2L and 0.9L

Once the composite growth curves representative of the mean and boundaries of the

90 percent confidence interval have been identified, the contribution of uncertainty
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Figure 57: Composite Growth Model with Limit Uncertainty Intervals

from data error can be incorporated. Recall that this is accomplished by calculating

the prediction interval on the linearized form of the composite growth model, shown

here as Equation 103, where T corresponds to the date of introduction, and Xc

corresponds to the transformation of yc according to Equation 104, wherein yc can be

calculated according to Equation 105.

T = β0 + β1Xc (103)

Xc = ln
(

1− yc

yc

)
(104)

yc =

(
1 +

(
Lsfc − ysfc

ysfc − yo,sfc

) bc
bsfc

(
Lfg − yfg

yfg − yo,fg

) bc
bfg

)−1

(105)

The linearized model of Equation 103 is regressed against the historical data for each
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pair of limits, Lsfc and Lfg, corresponding to the growth curves representative of the

mean and 90 percent confidence region boundaries. The resulting parameter estimates

are shown in Table 29 accompanied by the mean, variance, and mean square error,

which are also required for the calculation of prediction intervals.

Table 29: Regression Data for Growth Curves Forming the 90% Confidence Region

Equations 106 and 107 provide the general form of the one-sided prediction intervals

and Equation 108 the two-sided. T̂h is the 1 − α prediction interval of the expected

date corresponding to a new composite level of capability, Xc,h, where Equation 109

defines the variance.

T̂h = E{Th}+ t(1− α; n− 2)s{pred} (106)

T̂h = E{Th} − t(1− α; n− 2)s{pred} (107)

T̂h = E{Th} ± t(1− α/2; n− 2)s{pred} (108)

s2{pred} = MSE

[
1 +

1

n
+

(Xh − X̄)2

∑
(Xi − X̄)2

]
(109)

The two-sided prediction interval is applied to the mean composite curve to bound

variability in the expected mean due to error fluctuations within the historical database.

Equation 110 provides this two-sided confidence interval, which is based on the re-

gression results provided in Table 29, where t(.95, 28) is 1.7011. Equations 111 and
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112 are the one-sided prediction intervals applied to the composite growth curves

that bound the 90 percent confidence region which result from limit uncertainty as

illustrated in Figure 58. These intervals bound the 90 percent confidence region re-

sulting from both limit uncertainty and prediction error due to data fluctuations. The

relative contribution of each can be observed in Figure 58 by comparing the width

of the two-sided prediction region around the mean to the total confidence interval.

In this particular case, the uncertainty contribution to the overall model from each

limit uncertainty and prediction error is comparable.

T̂h,mean = tmean = β0,mean − β1,meanXh

±t(0.95, 28)

[
MSEmean

(
1 +

1

30
+

(Xh − X̄mean)2

∑
(Xi − X̄mean)2

)]1/2

(110)

T̂h,.05 = tCI− = β0,.05 − β1,.05Xh

−t(0.9, 28)

[
MSE.05

(
1 +

1

30
+

(Xh − X̄.05)
2

∑
(Xi − X̄.05)2

)]1/2

(111)

T̂h,.95 = tCI+ = β0,.95 − β1,.95Xh

+t(0.9, 28)

[
MSE.95

(
1 +

1

30
+

(Xh − X̄.95)
2

∑
(Xi − X̄.95)2

)]1/2

(112)

The following section investigates the impacts of this uncertainty on technology as-

sessment metrics of interest, such as the current level of capability relative to both

the upper limit and the point of diminishing returns.
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Figure 58: Composite Growth Curve Combined Confidence Interval

8.5 Technology Assessment

Where is the current SoA relative to impending limits as quantified by SFC and

thrust? Has the point of diminishing returns been reached? To what degree of

certainty can these questions be answered? These questions are the subject of this

section, the answers to which are easily ascertained given the MDGM and confidence

bounds established in the previous section.

8.5.1 Current State of the Art

The current SoA of turbofan technology as quantified by SFC and thrust can be

evaluated by specifying the year, 2006, for the mean and confidence boundary growth

curves illustrated in Figure 58. Each equation is solved for the transformed capability

Xh that is achieved at the year 2006, which is subsequently converted to yc according

to Equation 113.
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yc = (eXi + 1)−1 (113)

Figure 59 illustrates the resulting capability levels. The mean expected capability

for the year 2006 is 72.2 percent of the normalized upper limit. This corresponds

to individual metric settings of 0.722(Li − yo,i) + yo,i, which are 0.517 lbm/lbf-hr

and 106,201 lbf for each SFC and thrust, respectively. These settings, however, can

be exchanged while maintaining the same overall composite level of capability. The

frontier governing this tradeoff for the year 2006 is quantified by Equation 114 or

equivalently by Equation 115.

ysfc =
Lsfc − yo,sfc

1 + e
−bsfc(2006−a+ 1

bfg
ln( Lfg−yfg

yfg−yo,fg
))

+ yo,sfc (114)

0.753 =

(
1 +

(
Lsfc − ysfc

ysfc − yo,sfc

) bc
bsfc

(
Lfg − yfg

yfg − yo,fg

) bc
bfg

)−1

(115)

The 90 percent confidence bands are also shown in Figure 59, which bound the 2006

level of capability between 66 and 79 percent of the normalized upper limit. This

indicates that there is anywhere between 21 and 34 percent availability for further

improvement. Of more interest than the remaining distance to the upper limit is the

location of the point of diminishing returns relative to the current state of the art.

This is explored by the following section.
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Figure 59: Composite Measure of Current SoA

8.5.2 Point of Diminishing Returns

Recall from the previous chapter that the point of diminishing returns (PDR) always

occurs at the same fraction of the upper limit for the Logistic curve, namely 0.789L.

The previous section made clear that it has already been exceeded as quantified by

SFC and thrust. The date at which it was reached is calculated by transforming yc =

0.789 according to Equation 116 and substituting Xc into the equations provided in

Figure 58. Figure 60 illustrates the results and indicates that the point of diminishing

returns will most likely occur in 2011 and with 90 percent confidence will occur

between 2006 and 2016.

Xc = ln
(

1− yc

yc

)
(116)
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Once the point of diminishing returns is reached, each incremental improvement in

SFC and thrust that is achieved requires increasing development time, that is, invest-

ment. Just how much more investment? This can be established by comparing the

rate of change in the composite model at the point of diminishing returns to the rate

of change at the date of interest. This is accomplished by taking the time derivative of

the composite model, which is shown here as Equation 117 and illustrated in Figure

61.

dyc

dt
=

bce
bc(−t+a)

(1 + ebc(−t+a))
2 (117)

The resulting growth rates for each the expected PDR and the year 2006 are, respec-

tively, 1.2e−2 and 1.4e−2 percent of the normalized limit per year. This indicates that
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Figure 61: Research and Development Productivity

during the year 2006 both SFC and thrust should advance 0.014 percent of the range

between their upper and lower bounds. This also indicates that the time and invest-

ment required to advance turbofan technology through SFC or thrust improvements

is expected to be slightly higher today than in 2011—the expected date of the point

of diminishing returns. The ratio of the current rate of change to the rate of change

at the point of diminishing returns provides a factor quantifying current development

productivity relative to that at the point of diminishing returns. This factor for the

year 2006 is 1.2 which indicate that the current development productivity is 20 per-

cent higher than it will be once the point of diminishing returns is reached. Compare

this factor with the 0.8 expected for the year 2016. This indicates that only five years

after the point of diminishing returns is reached, one and half times (that is, 1.2/0.8)

the engineering effort will be required to achieve the same incremental improvement

made in 2006.

The increase in engineering effort required to achieve a specified incremental im-

provement is a convenient measure to assess the expected investment required to

maintain a specified growth rate. This is accomplished by dividing the incremental
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improvement achieved in a specified year by the incremental improvement achieved in

all other years. For instance, if the incremental improvement achieved in 2011—the

expected date of the point of diminishing returns—is divided by the incremental im-

provement achieved in all other years as quantified by Equation 118, the investment

multiple results as illustrated in Figure 62. The investment multiple is here defined

as the multiple increase in engineering effort required to maintain the same growth

rate achieved at the point of diminishing returns. Note from Figure 62 that the engi-

neering effort required in 2026 is expected to be two times greater than that required

in 2011 to make the same incremental improvement. That multiple is expected to

jump to four by 2036 and eight by 2046.

Investment Multiple =
dyc

dt

∣∣∣∣∣
PDR

÷ dyc

dt
(118)

0

2

4

6

8

10

12

14

1920 1940 1960 1980 2000 2020 2040 2060
Time

In
ve

st
m

en
t M

ul
ti

pl
e 20

06
20

11
20

16

20
26

20
36

20
46

PDR

Figure 62: Investment Multiple Required to Maintain PDR Growth Rate

These results, both that 21 to 34 percent availability for improvement exists and

that the point of diminishing returns is likely to be achieved within the next decade,

apply only to the attributes of SFC and thrust. Nothing can be concluded from
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this assessment concerning noise, emissions, reliability, and the like. Furthermore,

these results hold only if the actual limit for each SFC and thrust is contained within

the distributions specified in Section 8.3, Figure 49. Even these rather broad, uni-

form distributions provide valuable insight into the current maturity level of turbofan

technology as quantified by SFC and thrust. With minimal investment, that is, min-

imal relative to the development of a new engine, to further resolve these limits, the

confidence region can be significantly reduced. The following section will explore the

impacts of narrowing limit distributions as a result of such a hypothetical investment.

8.6 Limit Uncertainty Reduction

This section of the demonstration assesses the impact of reduced limit uncertainty

on the resulting MDGM. The uniform distributions previously defined for the limits

of both SFC and thrust are replaced with the normal distributions shown in Figure

63. The mean for each normal distribution is chosen to correspond to the mean of

the uniform distribution used earlier, although the variance was significantly reduced

to simulate limit resolution resulting from research investment. As before, a 20,000

case Monte Carlo simulation was conducted, during each simulation of which a limit

for each SFC and thrust was selected from the distributions defined in Figure 63, and

linear regression was employed to fit the MDGM of Equation 119.

T = β0 + βsfcXsfc + βfgXfg (119)

The composite curve resulting from each MC simulation is provided in Figure 64.

An additional Monte Carlo simulation was conducted to investigate the location of

intersections between composite curve pairs of Figure 64.

The frequency of intersections at each level of capability resulting from the 20,000

curve pairs tested is characterized by the distribution provided in Figure 65. Figure
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Figure 63: Normal Distributions Applied to Limit Estimations

65 also shows the percentage of intersections that occur between various levels of

capability. There is a slight increase over the pervious example in the percentage

intersection that occurs between 20 and 90 percent of the normalized limit, 1.2 to

1.6 percent. This increase, however, is minimal, and these capability levels are again

used to identify the composite curve that is representative of the mean and of each

boundary of the 90 percent confidence interval. The distributions of dates at which

each of these capability levels is achieved is shown in Figure 66, wherein the mean

and 5th and 95th percentiles are provided.

The Euclidean distance is calculated between the dates at which each MC simu-

lation reaches 20 and 90 percent of the normalized limit and the mean and 5th and

95th percentiles at each 20 and 90 percent capability levels. The curves minimizing
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Figure 64: Composite Growth Curves Resulting from Normally Distributed Limits

these distances were identified from among the 20,000 MC simulations as being rep-

resentative of the mean and boundaries of the 90 percent confidence region. Figure

67 provides the limits and parameter estimates corresponding to each of these curves,

and Table 30 provides the mean square error, variance, and parameter estimates re-

sulting from regressing each curve against the linearized composite growth model of

Equation 103. With this data, prediction intervals are calculated for each of the three

curves in Figure 67 in a similar manner to that previously demonstrated. Figure 68

illustrates these intervals with each accompanied by its corresponding equation.
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Figure 67: Mean and Confidence Bands Resulting from Limit Uncertainty

Table 30: Regression Data for Composite Growth Curves

Note that the one-sided prediction intervals for the 0.05 and 0.95 composite curves

bound all 20,000 MC simulations. Also note that the two-sided prediction interval

around the mean illustrated by the dotted lines extends to each the 0.05 and 0.95

one-sided intervals. This indicates that the uncertainty contributed to the overall

model from limit uncertainty is negligible compared to prediction error, and further

reduction in limit uncertainty will provide no significant reduction in overall model

uncertainty.
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Figure 68: Composite Growth Curve Combined Confidence Interval

This new MDGM is now fully defined, and it allows the current capability level to

be compared to both the upper limit and point of diminishing returns. Consider first

the expected capability level for the year 2006, which is calculated by setting T̂h in

each equation of Figure 68 to 2006 and solving for Xh and subsequently yc. Figure 69

shows the results from these calculations and the corresponding estimates based on

the uniform limit distributions, which are shown in parentheses. The new expected

mean is understandably very close to that calculated previously as the mean of each

distribution was unchanged. The 90 percent confidence region, however, has been

reduced by 27 percent, which now indicates between 23 and 33 percent availability

for further improvement, as opposed to the previous 21 to 34 percent.

Consider now the impact of the reduced limit uncertainty on predicting the date

at which the point of diminishing returns is reached. Recall that the date at which

the point of diminishing returns is achieved is calculated by transforming yc = 0.789
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Figure 69: Current Turbofan SoA Based on Normally Distributed Limit Uncertainty

to yield Xc, which is then used in the equations of Figure 68 to calculate T̂h. Fig-

ure 70 illustrates the results from these calculations and also provides the previous

predictions in parentheses. Again, the mean is very nearly the same as previously

calculated, differing by less than a year. The 90 percent confidence region is also

reduced by 27 percent, indicating that the PDR is expected to occur between 2008

and 2015.

The turbofan assessment was conducted for different sets of limit assumptions to

demonstrate the variability of model uncertainty on the precision of limit knowledge.

Also illustrated is that even in cases where little knowledge of the limit exists, demon-

strated by the uniform distribution, meaningful conclusions can still result from the

proposed assessment procedure. Furthermore, forecasters can establish precision tar-

gets on limit estimations that would result in an acceptable level of model certainty.
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Disciplinarians charged with limit identification can use these precision targets to

determine the level of refinement required for their analysis.
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Figure 70: Likely Dates of Achieving the Point of Diminishing Returns

8.7 Setting Program Goals

Assessment of the turbofan architecture has to this point largely been confined to

a consideration of the composite model describing the growth of the technology as

a whole. The remainder of this demonstration focuses on assessing combinations of

specific attribute capability levels and the dates at which they are expected to be

introduced. This is accomplished by thoroughly investigating the turbofan MDGM

as quantified by SFC and thrust and shown here in general form as Equation 120. In

this form the MDGM provides the expected capability level of thrust. This equation

can just as easily take the form of Equation 121 or Equation 122. In Equation 121

thrust is dependent on SFC and year, and in Equation 122 date is dependent on SFC
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and thrust. The ability to visualize each of these forms simultaneously is best for

assessment and goal setting and is illustrated by the prediction profiler of the JMP

statistical software package, a snapshot of which is shown here as Figure 71 [89].

ysfc =
Lsfc − yo,sfc

1 + e
−bsfc(t−a+ 1

bfg
ln( Lfg−yfg

yfg−yo,fg
))

+ yo,sfc (120)

yfg =
Lfg − yo,fg

1 + e
−bfg(t−a+ 1

bsfc
ln( Lsfc−ysfc

ysfc−yo,sfc
))

+ yo,fg (121)

t = a− 1

bsfc

ln
(

Lsfc − ysfc

ysfc − yo,sfc

)
− 1

bfg

ln
(

Lfg − yfg

yfg − yo,fg

)
(122)
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Figure 71: Multidimensional Growth Model Visualization Environment (1995)

The curve parameters used for this rendering are those previously calculated for the

mean composite curve resulting from the uniform limit distributions. Recall from
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Chapter 7 that each row of the prediction profiler completely describes the MDGM;

thus, the top row of plots corresponds to Equation 121 and forecasts SFC (indicated by

the horizontal hairline) based on settings of year and thrust (indicated by the vertical

hairline), and the bottom row of plots corresponds to Equation 121 and predicts

thrust according to settings of year and SFC. Also, recall that the first column of

plots in Figure 71 correspond the S-curves for both SFC and thrust and the remaining

columns are the technology frontiers between the attribute pairs corresponding to the

grid location.

Note that the settings in Figure 71 for year, SFC, and thrust correspond to those

of the GE-90-85B, which was introduced in 1995 with a thrust of 85,000 lbf and SFC

of 0.560 lbm/lbf-hr. Also note that although each row can independently represent

the MDGM, they have been set so as to be in agreement for Figure 71. The S-

curves of the first column indicate that those capability levels correspond to roughly

50 percent of the normalized limits for each SFC and thrust. This environment is

used to evaluate what could have been achieved for SFC and for thrust had design

preferences been different, although the environment is most useful for forecasting

the levels of SFC and thrust that are expected in future years.

Figure 72 illustrates the impact of advancing the date by a decade while leaving

settings for SFC and thrust unchanged. In this figure, the model represented by the

top row indicates that turbofan engines introduced in 2016 with the same thrust as

the GE-90-85B (85,000 lbf) should be capable of achieving an SFC as low as 0.455

lbm/lbf-hr, and the model represented by the bottom row indicates that an engine

introduced in that same year with an SFC comparable to that of the GE-90-85B

should reach a thrust level of nearly 132,000 lbf. Note that each of these instances

results in systems that heavily favor either thrust or SFC as illustrated by each

frontier. Figure 73 also shows the expected state of turbofan technology in 2016 but

provides combinations of thrust and SFC capability levels representative of a more
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Figure 72: Multidimensional Growth Model Visualization Environment (2016)

balanced system. These forecasts indicate that a turbofan introduced in 2016 should

also be capable of achieving thrust levels of approximately 120,000 lbf with an SFC

of 0.49 lbm/lbf-hr. Compare this to the performance of the GE-90-85B introduced

in 1995, which has an SFC of 0.560 lbm/lbf-hr and a thrust of 85,000 lbf.

Also note that the forecasts presented in Figures 72 and 73 assume that there are

no trade-offs between SFC or thrust and any other system attribute. The MDGM only

captures trade-offs and expected growth of these attributes included in the model. In

other words, the resulting forecasts are based on the assumption that previous levels of

investment to advance thrust and SFC will be maintained. If, for instance, resources

were diverted from further advancement of SFC and thrust in order to improve noise
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or emissions, the forecasted levels of SFC and thrust based on this model would be

predicted levels of advancement.

Recall that Figures 71 to 73 are only snapshots of a dynamic environment that

instantaneously updates the year, SFC, and thrust and that it can be used to play

any number of “what-if” games in realtime. They provide the capability levels ex-

pected for further introduction dates; however, no consideration has been given to

the physical or hardware changes necessary to achieve these levels of capability. The

following section addresses this issue.
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Figure 73: Multidimensional Growth Model Visualization Environment (2016)
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8.8 Necessary Hardware Changes

The Technology Impact Forecasting method (TIF) was developed for the explicit

purpose of identifying specific disciplinary changes that could be incorporated into

a baseline system in order to encourage optimum progress in development and the

realization of specified system-level targets [56, 57]. TIF identifies the disciplinary

changes that must be made to a baseline system for it to evolve. As noted in Chapter

7, TIF has been employed in numerous studies to identify technological improve-

ments to a broad range of baseline systems [56, 57, 58, 90, 91, 92, 93]. One such

study implemented a form of TIF to analyze the the impacts of 29 technologies on

a baseline turbofan engine comparable to the GE-90-85B [104]. Resulting from the

study were metamodels in the form of response surface equations mapping the impact

of sixty technology metrics, or disciplinary parameters, to the variability in numer-

ous system attributes, including SFC and thrust. This research was able to leverage

these metamodels. The response surface equations for SFC and thrust—as depen-

dent on fan efficiency (Fan Eff), fan pressure limits (FPR), high-pressure compressor

efficiency (HPC Eff), low-pressure turbine efficiency (LPT Eff), and thrust-to-weight

ratio (TWR) of the aircraft into which the engine is installed—are illustrated in Figure

74.

FPR and each efficiency parameter directly influence the engine cycle, which re-

sults in changes to both SFC and thrust. TWR effectively scales the engine as required

by the aircraft and as such, most directly influences engine thrust. In addition to il-

lustrating the mapping between each disciplinary metric and SFC and thrust, Figure

74 also illustrates the sensitivity of introduction date to the variability of each disci-

plinary metric. This mapping is created indirectly through the resulting performance

levels for each SFC and thrust. The MDGM forecasts the introduction date at which

specified levels of SFC and thrust are expected to be achieved, which themselves, are

predicted based on the settings of the disciplinary metrics. Each disciplinary metric
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Figure 74: Sensitivity of Introduction Date to Disciplinary Parameters (1996)

in Figure 74 is set to its baseline value, which results in SFC and thrust levels com-

parable to that of the GE-90-85B. Note that the forecasted introduction date of 1996

is one year after that of the GE-90-85B. Now consider the forecasted levels of SFC

and thrust illustrated in Figure 73 for the introduction year of 2016. The expected

thrust is approximately 120,000 lbf, and expected SFC is 0.49 lbm/lbf-hr. Figures 75

and 76 illustrate two different settings of disciplinary parameters that result in these

levels of performance for the introduction year of 2016.

This suggests that there are multiple combinations of disciplinary changes that

can result in the specified performance levels. TIF is formulated specifically to iden-

tify the best combinations of technological changes to achieve target levels of per-

formance. The technology assessment procedure is constructed specifically both to

assess a technology’s rate of growth and to set reasonable performance targets.
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Figure 75: Sensitivity of Introduction Date to Disciplinary Parameters (2016)
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Figure 76: Sensitivity of Introduction Date to Disciplinary Parameters (2016)
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8.9 Summary

This chapter applied the assessment procedure formulated in this research to high-

thrust turbofan technology as defined by six dimensions of capability: specific fuel

consumption, thrust, thrust to weight, noise, emissions, and reliability. Reliability,

however, was removed from the assessment due to insufficient data concerning its

past trends, and thrust to weight was also removed from the assessment because of

its strong correlation with thrust. Finally, noise and emissions were removed from the

model due to low significance, leaving SFC and thrust. That noise and emissions ap-

pear insignificant is representative of past design preferences which have favored SFC

and thrust over environmental considerations. As new engines are introduced that

have environmental considerations as a primary design driver, noise and emissions

will increase in their significance to the growth model.

Rather than attempting to precisely define upper limits for SFC and thrust, very

basic physical analyses were employed to establish broad distributions to demonstrate

the impact of limit uncertainty on the resulting model. Even with such a large degree

of uncertainty, resulting forecasts provided valuable insight into the current state of

the art relative to both upper limits and the point of diminishing returns. More re-

solved limit distributions were also assessed simulating investment devoted to limit

identification. Evidence from this assessment indicates that turbofan technology, as

quantified by SFC and thrust, is approaching the point of diminishing returns, and as

a result, each additional improvement to thrust and SFC will soon only result from in-

creasingly more investment—all other attributes being constant. This demonstration

has illustrated the robust nature of the proposed procedure to formulating a multi-

dimensional forecasting model under circumstances of limited data and considerably

uncertain limits.

197



CHAPTER IX

CONCLUSIONS

Developing technology systems requires all manner of investment—engineering talent,

prototypes, test facilities, and more. Even for simple design problems the investment

can be substantial; for technology systems, the development costs can be staggering.

Moreover, investment does not ensure significant technological advance. No won-

der decision-makers want to use caution in launching a new technology development

program or extending an existing one. On the other hand, to halt attempted develop-

ment may mean abandoning momentum and the chance to squeeze more improvement

from the results of previous investment. Impressions that there is no more work to

be done may be accurate, but they may be followed by many years of productive

work and successful evolution of a technology architecture which was the case with

the development of the turbine engine. For many reasons, a suitable forecasting tool

is desirable.

Several forecasting and assessment tools have been available. There are technology

growth models, or S-curves, and they can effectively model and forecast the devel-

opment of a single attribute. But they have not addressed multiple attributes of a

single technology. And there have been technology frontiers that can model multiple

attributes of a single system, but can not forecast the expected improvements to those

attributes. As an alternative one could choose scoring models, but these have been

even less helpful because they collapse all measures of merit into a single composite

measure eliminating the possibility to assess tradeoffs between attributes.

These modeling tools have use and have provided a starting point for this research,

but they leave much more to be desired. In short, there has been no multidimensional
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growth model (MDGM), and practitioners have been obliged to choose between fore-

casting a single attribute or composite measure and assessing multiple attributes at

a single point in time.

The contributions to the field of technology assessment and forecasting made by

this research will be outlined and discussed in Section 9.1. Limitations to these

contributions and considerations for their usage are discussed in Section 9.2. Also

provided in Section 9.2 are recommendations for further research.

9.1 Summary of Contributions

During careful examination of the existing assessment and forecasting tools in the

search for approaches to transform one or another into a multidimensional forecast-

ing tool, a very useful correlation came to light. The S-curve and technology frontier

models relate in a way that allow them to be combined and used to assess and forecast

multidimensional technology architectures. More study revealed that the challenge of

identifying upper limits can be managed in a way that allows for meaningful assess-

ments and forecasts given bound estimates. Through the manipulation and extension

of the relevant equations multidimensional growth models emerged, which can sup-

ply prediction and forecast of multiple technology attributes with respect to physical

limits. In addition, a systematic procedure was formulated to generate and interpret

MDGMs for the assessment and forecast of technology attributes. This section re-

visits each of the contributions to the field of technology assessment and forecasting

made by this research relative to the proposed hypotheses and research questions.

9.1.1 Hypothesis A: Multidimensional Growth Model Formulation

Hypothesis A The proven success of technology growth models for the forecast of a single at-

tribute can be extended to also accurately model multiple system attributes by

precisely defining their mathematical significance to technology frontiers.
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Investigation of the mathematical significance between unidimensional growth mod-

els and technology frontiers did in fact lead to the formulation of multidimensional

growth models that are able to take the form of interdependent technology S-curves,

interdependent technology frontiers, or a composite measure of overall system ma-

turity. These models are founded on Assertion 1 (Section 5.1), which states that

each system attribute evolves towards its respective limit according to an S-curve,

given that capability levels for all remaining system attributes are maintained. The

proposed formulation of multidimensional growth models allows for their derivation

based on any unidimensional growth model, which provides the flexibility to assess

a broad range of developmental growth patterns. This ‘marriage’ between unidi-

mensinal growth models and multidimensional technology frontiers resulting in mul-

tidimensional growth models has proven an effective basis for the assessment and

forecast of multiple system attributes relative to their respective upper limits. In

addition to the above assertion, two assumptions were required for the formulation

of multidimensional growth models:

1. Engineering effort must remain constant over time; both willingness and re-

sources must exist to further advance one or more dimensions of capability

within the model.

2. The limit of each metric within the multidimensional growth model must be

constant regardless of settings for the remaining metrics.

Additionally, this formulation of multidimensional growth models requires that each

dimension of capability included in the model be independent. These assumptions

and this requirement place some limitations on the range of applicability of multi-

dimensional growth models. Discussion later in this chapter will address potential

solutions and alternatives that might avert these limitations.
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The capability to simultaneously model the growth and interaction of multiple

system attributes over time as they approach their respective limits has until now

been unavailable. The formulation of multidimensional growth models which provide

this capability is a significant contribution to the field of technology assessment and

forecasting.

9.1.2 Hypotheses B and C: Limit Identification Methods

Hypothesis B Knowledge of attribute upper limits for multi-attribute technologies can be iden-

tified by both physics-based approaches and by regressing limit-dependent growth

models against available historical data.

Hypothesis C Analysis methods founded on exergy and work potential provide a suitable frame-

work for the identification of upper limits to select attributes of energy-based

systems.

While each of these hypotheses was shown to be true given specific circumstances,

this research has also shown that in many cases, neither regression-based approaches

nor physics-based approaches—founded on exergy or work potential or otherwise—

provide the desired rapid and accurate solution to upper limit identification.

The regression-based approach proved to be rapid, although the accuracy is highly

dependent on the size of the historical database, the amount of error within that data,

the total growth curve spanned by the data, and the number of dimensions included

in the model. A method was formulated that enables an analyst to estimate the

expected uncertainty on regressed limits based on these dependencies. An analyst

can then assess if the expected uncertainty is within an acceptable range.

The accuracy of a physics-based approach is difficult to test. Even if forecasters

assume that a physics-based approach can produce accurate upper limits, identifying

limits in this manner is neither speedy nor inexpensive because of the highly complex
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nature of multi-attribute technologies. Physics-based approaches require the collab-

oration of a team of interdisciplinary experts whether exergy and work potential

analysis methods are employed or not. The time required, however, can be reduced

by choosing to bound the limit between two extremes rather than attempting to define

it precisely.

Upper limit estimations were incorporated into the multidimensional growth model

in the form of distributions which attempt to quantify the uncertainty of limit estima-

tions. This approach to incorporating knowledge of the upper limit into the MDGM

has proven very effective. Even given a broad limit distribution (i.e. high limit un-

certainty), meaningful insights can result from the technology assessment procedure,

both concerning the technology’s maturity and the level of certainty required for limit

estimations in order to be confident enough in assessment results to base strategic

decisions on them.

This research explored two general approaches to upper limit identification, which

result in the following contributions to the field of technology assessment and fore-

casting:

• An existing method for quantifying the expected uncertainty of regression-based

limit predictions for unidimensional growth models was refuted and reformu-

lated.

• A method was formulated for estimating the expected uncertainty of regression-

based limit predictions for multidimensional growth models.

• A method for quantifying the impact of limit uncertainty on multidimensional

growth models was formulated.
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9.1.3 Research Questions: Assessment Procedure

The proposed assessment procedure provides a systematic approach for formulating

and analyzing a multidimensional growth model that describes the development pat-

tern of a specific technology. This procedure provides answers to each of the following

research questions:

RQ1 What is the current state of the art as defined by achievable combinations of

attribute capabilities?

The answer to this question is addressed in Section 7.5.1. The composite mea-

sure formulated in this research is defined relative to the capabilities of each

attribute, which is used to assess the state of the art of the technology as a

whole relative to a normalized upper limit.

RQ2 What is the technology potential of any one attribute relative to specified levels

of the remaining attributes?

The visualization environment of the multidimensional growth model presented

in Section 7.5.2 enables an analyst to assess the potential for improvement of

any one attribute relative to capability levels specified for all others.

RQ3 Has the point of diminishing returns been reached for any of the system at-

tributes?

The answer to this question is addressed in Section 7.5.1 wherein the current

state of the art as defined by a fraction of the normalized upper limit can be

directly compared to the limit fraction at which the point of diminishing returns

occurs. This section also provides an approach to forecast the date at which

the point of diminishing returns is expected to occur within a specified level of

certainty.
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RQ4 What is the forecasted improvement for each attribute relative to the remaining

attributes?

The visualization environment of the multidimensional growth model presented

in Section 7.5.2 also enables an analyst to forecast the expected improvement

of any one attribute relative to the capability levels specified for all other at-

tributes.

The nature of the multidimensional growth model is that once formulated for a specific

technology, the answers to these questions are easily obtained. Answers to questions

concerning technology potential relative to physical limits and the point of diminishing

returns were once confined to a single dimension of technical capability. This research

has contributed the capacity to address these questions in multiple dimensions of

technical capability.

There are, however, several limitations inherent to multidimensional growth mod-

els that surfaced during the proof of concept demonstration in Chapter 8. These

considerations will now be discussed.

9.2 Recommendations and Future Work

Multidimensional growth models and assessment procedure formulated in this re-

search provide decision-makers with quantitative information for the assessment and

forecast of multiple technology attributes. The multidimensional growth model is a

revolutionary addition to the to field of technology assessment and forecasting, and at

the risk of making a qualitative forecast, it seems reasonable to say there is potential

for further evolution. The following discussion provides final insights and areas for

further research and development.
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9.2.1 Usage Considerations

Before the discussion turns to exploring areas for further research, consider both the

utility and limitations of the technology assessment and forecasting procedure formu-

lated in this research. Note that conclusions resulting from a technology assessment

only apply to that specific set of attributes retained in the multidimensional growth

model. Nothing can be said of other system attributes not included in the model.

Furthermore, conclusions resulting from the assessment apply only to that technol-

ogy architecture specified during the problem definition. Consequently, the problem

definition, wherein the technology architecture system attributes are identified, is

exceptionally important to the interpretation of the resulting assessment.

Consider the turbofan demonstration of the previous chapter. The technology ar-

chitecture was defined rather broadly, including comprising all turbofan engines with

a thrust rating greater than 25,000 lbf and with a bypass ratio greater than four.

This macroscopic assessment of turbofan technology resulted in only two significant

dimensions of capability: thrust and specific fuel consumption. The limit for each

of these attributes was estimated based on the one contingency that engine size was

constrained by its underwing placement. This very broad problem definition and

the corresponding limit estimates lead to a macroscopic turbofan assessment provid-

ing very general results concerning the productivity of engineering effort devoted to

the further improvement of thrust or specific fuel consumption. The formulation of

multidimensional growth models proposed in this research seems better suited for mi-

croscopic assessments wherein the technology architecture is very precisely defined.

The resulting forecasts are contingent on specified limits and are only applicable over

a specified time period. This form of contingent forecasting can be used to assess any

number of possible technology development scenarios that could unfold in years to

come.
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Possibly the greatest limitation to the utility of multidimensional growth models

for the assessment of technology architectures is the requirement inherent to the

model that all dimensions of capability included must be independent. As illustrated

in the turbofan demonstration most attributes of a highly complex system are likely

to be moderately correlated. As the multidimensional growth model is currently

formulated, this correlation can lead to error in technology assessment and forecasting.

Consequently, possibly the most important area for further research is eliminating the

requirement that technology attributes be independent. One potential solution to this

limitation is principal component analysis wherein a set of identified metrics can be

transformed or reduced to an independent set of capability dimensions [105].

9.2.2 Multidimensional Growth Model Formulation

The following insights and areas for further research are directly related to the for-

mulation of the multidimensional growth model.

Multidimensional growth models are formulated based on the independent param-

eter of time. That is, each attribute is assumed to advance through time according to

an S-curve. As discussed in this research, engineering effort or research and develop-

ment investment are more appropriate independent parameters. The transformation

required to replace time by either of these independent parameters is quite simple,

although acquiring the necessary data for engineering effort or research and devel-

opment investment is inhibitive. An approach is required to obtain this information

directly through consultation with technology development entities or indirectly by

analyzing correlated metrics—possibly government expenditures, industry strength,

gross domestic product, and the like. Without this element, forecasts based on growth

models, whether unidimensional or multidimensional, are relative to past levels of en-

gineering effort. Thus changes to engineering effort void these forecasts unless the

model can be updated to account for the relative change in engineering effort.
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Further research can also be devoted to MDGMs. As formulated, each attribute of

the subject technology must be modeled by the same unidimensional growth model.

Is it possible that the development of two attributes of the same technology could be

described by different growth models? Maybe one attribute might advance according

to a Gompertz curve, while the other according to a Logistic. Can two or more dis-

parate unidimensional growth models be formulated into a single, multidimensional

growth model? Because the MDGM is formulated as a summation of the inverse of

unidimensional growth models this prospect seems very likely. The difficulty which re-

quires additional research is identifying the appropriate or true unidimensional growth

model for each attribute of a complex system. The task of identifying the appropriate

unidimensional growth model for even a single-dimensional technology is an area of

ongoing research. The added complexity of multiple dimensions further complicates

this task increasing the scope of this ongoing research. One potential solution to this

issue might be a formulation of multidimensional growth models based on the Lotka-

Volterra equations that have been used to date to capture the competition between

technology alternatives [14]. It may be possible to form a multidimensional growth

model within which the Lotka-Volterra equations are used to model the competition

between dimensions of capability within a system architecture.

The formulation of MDGMs on the basis of relative unidimensional growth models

invites further development. This study has shown that it is possible to develop

a MDGM based on unidimensional relative growth models, but the computational

intensity of solving for the high number of curve parameters in a multi-modal space

quickly becomes inhibitive as the number of system attributes increases. Alternative

regression techniques should be further explored to enable these powerful forecasting

models to be employed practically in multiple dimensions.

The last point of further research related to the formulation of the multidimen-

sional growth model concerns the overall measure of performance as defined by the
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composite growth model. As currently defined, the composite growth model quan-

tifies the limit fraction that can be simultaneously achieved by all attributes at a

specified point in time. Consequently, the starting point of the composite curve cor-

responds to a system with all attributes also at their starting points. In some cases

this system may actually exist. The first system in the technology architecture may

very well perform the worst in all dimensions of capability. Other times, however,

this condition, that all attributes must be at their lowest values, may correspond

to a negative ideal system rather than an actual system. If this latter condition is

the case, then the starting point of the composite curve should actually be higher

than that defined by all attributes being at their lowest value. The degree to which

this assumption is an error will affect both the predicted and forecasted composite

measure of growth. In similar manner, the upper limit to the composite model is

normalized on the basis that each attribute has achieved its respective limit. This

too may represent an ideal situation that cannot be realized.

In the case of the composite curve starting point, this is simply a matter of defini-

tion, and research should be devoted to appropriately defining this parameter for any

particular technology assessment procedure. In the case of the upper limit, however,

this requires knowledge concerning the interaction and interdependence between at-

tribute upper limits. This interdependence would also have to result from the same

approach employed for limit identification. Physics-based approaches or possibly,

with further research, regression-based approaches could be formulated that would

also capture the interdependence between limit estimates. In either case, the ideal re-

sult would be a joint probability distribution of attribute limits that can be integrated

seamlessly into the assessment procedure proposed by this study.
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9.2.3 Limit Identification: Investigation and Extension

The primary area for further research in the area of limit identification is the de-

velopment of a formal approach to guide the interaction between a broad group of

disciplinary experts in order to more rapidly establish upper limit estimations with

an acceptable degree of uncertainty. The knowledge base required to identify the

limits of a complex system is both too broad and too detailed to focus on the devel-

opment of a generalized physics-based approach. Research devoted to coordinating

the wealth of knowledge available from disciplinarians would be more effective and in

the end provide a more valuable contribution to assessment forecasting by means of

multidimensional growth models.

Another area for further research, to which the previous section alludes, pertains

to the quantification of interdependence between multiple attribute limits of the same

system. Potential may exist to extend regression-based techniques to quantify this

interdependency, but more likely physics-based approaches will be required to han-

dle this task. This potential for limit interdependence must be formulated into the

approach described above for coordinating the efforts of disciplinary experts.

9.2.4 Assessment Procedure Formulation

Three primary areas for further research have been identified relating to the assess-

ment procedure and are discussed below.

Data reduction. A systematic technique is desired to reduce an available histor-

ical database to only those systems representing the SoA for their respective dates of

introduction. An existing technique that might be modified for this purpose is data

envelopment analysis, also known as DEA. Data envelopment analysis establishes a

frontier not by fitting a function to the available data but, as the name suggests, by

establishing an envelope around the available data [54, 55]. It is capable of analyzing

data in multiple dimensions of capability and could possibly be formulated to step
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through a historical database removing systems introduced at a later date which fall

within the previously established envelope. Each new point in the database should

extend the previously defined envelope.

Insignificant attributes. The cause for an attribute being classified as insignif-

icant during the regression should be explored further. What exactly is the interpre-

tation of an attribute removed from the model due to insignificance? If an attribute

is in fact insignificant, then the remaining metrics do in actuality quantify the overall

state of the art; however, if an eliminated attribute only appears insignificant be-

cause there is insufficient data, then the reduced model is incomplete. For instance,

although noise and emissions are of significant importance to turbofan engine design

today, they have in the past taken a back seat to thrust and SFC and, because of this

are not proportionately represented in the historical database. Consequently, metric

significance is a function of design preference and may vary over the development of a

technology architecture. If preference for a particular metric is not represented in the

historical data, it will not appear as significant to the overall model. These consider-

ations should be explored further and the necessary measures taken to appropriately

interpret resulting models.

The point of diminishing returns. Achieving or surpassing the point of dimin-

ishing returns does not signify that there is no economic value to further advancing

a technology towards its upper limit. The decision to continue to advance a tech-

nology involves socio-economic considerations not addressed by this research, though

results from this research provide a necessary element required to make that decision.

This research provides the capability to assess the increase in investment required to

achieve each additional unit of technical capability. Only by comparing this increased

investment per incremental improvement to the economic benefit resulting from that

improvement will it be possible to make the informed decision regarding whether to

continue or cease development of a technology. Further research is required to forecast
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the economic value of an additional unit of improvement and explore the appropriate

stage at which to halt development and invest in a revolutionary technology.

9.3 Closing

The objective of this research has been to formulate an approach to assess and fore-

cast the maturity of technologies that have multiple objectives relative to their up-

per limits. Resulting from this approach are the models necessary to determine the

availability for further improvement within a technology’s respective architecture.

Achieving this objective has required formulating a revolutionary multidimensional

forecasting model, thoroughly investigating and extending existing limit estimation

techniques, and formulating a systematic approach to technology maturity assess-

ment. This research is a first step into the field of multidimensional growth models

which has proven, even at this stage, to be a valuable tool for technology matu-

rity assessment, although with further refinement, assessment techniques founded on

multidimensional growth models can be invaluable decision making tools.

211



APPENDIX A

Table 31: Innovation Taxonomy: Technology descriptors found throughout litera-
ture that are used to classify the relative newness of technological innovations

adaptation [106] new parts [17]

adoption [107] new products [17]

architectural [108, 109, 110] new user [17]

breakthrough [110, 111] niche creation [109]

continuous [112, 113] normal [16]

discontinuous [112, 113] original [114]

evolutionary [20, 115] pioneering [106]

evolutionary market [115] radically new [116]

evolutionary technical [115] really new [117, 118]

disruptive [18] reformulated [17, 114]

fusion [110] regular [108]

high innovativeness [119] reinnovations [120]

imitative [106] remerchandising [17]

innovations [120] reorientations [121]

instrumental [122] revolutionary [20, 108]

low innovativeness [119] routine [123]

major [124] sustaining [18]

market breakthrough [125] systematic [124]

minor [124] technical breakthrough [125]

moderate innovativeness [119] transformational [16]

modular [108] transitional [16]

new customers [17] true [107]

new generation [116] ultimate [122]

new improvements [17] unrecorded [124]

new market [17] variations [121]

radical [19, 108, 115, 123, 124, 125, 126, 127, 128, 129, 130]

incremental [19, 108, 110, 111, 115, 116, 117, 118]

[124, 125, 126, 127, 128, 129, 130]
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APPENDIX B

There are five general steps to the creation of a multidimensional growth model

starting from a specified S-curve equation, f(t). These five steps are as follows:

1. Identify the domain of the s-shape within f(t); [tA, tB].

2. Shift and scale the equation such that the range of the S-shaped segment is

bound between yo and L.

3. Solve for t and expand to accommodate multiple technology driven attributes.

4. Eliminate any redundant variables resulting from the previous step.

5. Insert into the general growth model shown here as Equation 123

t = to +
n∑

i=1

(tS−curve) (123)

where tS−curve is the expression resulting from Step 4.

These steps will be conducted to create three multi-attribute maturation models

based on the S-curves defined by Gompertz’s equation, Von Bertalanffy’s equation,

and the expression ea−(b/t).

B.1 Gompertz’s Equation

Step 1: The domain of the S-shaped segment of Gopmertz’s equation, shown here as

Equation 124, is (−∞,∞).

y = Le−ae−bt

(124)

Step 2: Adjusting Gompertz equation such that it is bound between yo and L

over the domain of the S-shaped segment results in Equation 125.

y = (L− yo)e
−ae−bt

+ yo (125)
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Step 3: Solving Equation 125 for t and expanding to accommodate additional

attributes also defined by Gompertz’s equation results in Equation 126.

t =
n∑

i=1

−1

bi

lnln

((
Li − yo,i

yi − yo,i

)) 1
ai

(126)

Step 4: Eliminating redundant variables results in replacing attribute specific a′is

with a single a that remains constant for all attributes, as shown in Equation 127.

t =
n∑

i=1

−1

bi

lnln

((
Li − yo,i

yi − yo,i

)) 1
a

(127)

Step 5: This time dependence is now inserted into the general SoA model resulting

in Equation 128—the multidimensional growth model based on Gompertz’s equation.

t = to +
n∑

i=1

−1

bi

lnln

((
Li − yo,i

yi − yo,i

)) 1
a

(128)

B.2 Von Bertalanffy’s Equation

Step 1: The domain the of S-shaped segment of Von Bertalanffy’s equation, shown

here as Equation 129, is (0,∞).

y = (1− ae−bt)3 (129)

Step 2: Adjusting Von Bertalanffy’s equation such that it is bound between yo

and L over the domain of the S-shaped segment results in Equation 130.

y = (L− yo)(1− ae−bt)3 + yo (130)

Step 3: Solving Equation 130 for t and expanding it to accommodate additional

attributes also defined by Von Bertalanffy’s equation results in Equation 131.

t =
n∑

i=1

−1

bi

ln
(

1

ai

(
1−

( yi − yo,i

Li − yo,i

) 1
3
))

(131)
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Step 4: Eliminating redundant variables results in replacing attribute specific a′is

with a single a that remains constant for all attributes, as shown in Equation 132.

t =
n∑

i=1

−1

bi

ln
(

1

a

(
1−

( yi − yo,i

Li − yo,i

) 1
3
))

(132)

Step 5: This time dependence is now inserted into the general SoA model resulting

in Equation 133—the multidimensional growth model based on Von Bertalanffy’s

equation.

t = to +
n∑

i=1

−1

bi

ln
(

1

a

(
1−

( yi − yo,i

Li − yo,i

) 1
3
))

(133)

B.3 S-curve Expression ea−(b/t)

Step 1: The domain of the S-shaped segment of ea−(b/t), shown here as Equation 134,

is (0,∞).

y = ea−(b/t) (134)

Step 2: Adjusting ea−(b/t) such that it is bound between yo and L over the domain

of the S-shaped segment results in Equation 135.

y = (L− yo)(e
−b/t) + yo (135)

Step 3: Solving Equation 135 for t and expanding to accommodate additional

attributes also defined by ea−(b/t) results in Equation 136.

t =
n∑

i=1

bi

(
ln

(Li − yo,i

yi − yo,i

))−1

+ a (136)

Step 4: There are no redundant regression variables requiring elimination.
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Step 5: This time dependence is now inserted into the general SoA model resulting

in Equation 137—the multidimensional growth model based on the S-curve expression

ea−(b/t).

t = to + a +
n∑

i=1

bi

(
ln

(Li − yo,i

yi − yo,i

))−1

(137)
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APPENDIX C

**************************

***Turbofan Engine Model

*** (GE90-85B)

*** Written by: Travis Danner

*** June 22, 2006

**************************

************************** Constants **************************

gamma1 = 1.39977; %pre-combust ratio specific heats lbf-ft/lbm-R

cp1 = 0.2399379; %pre-combust specific heat BTU/lbm-R

gamma2 = 1.35339; %post-combust ratio specific heats lbf-ft/lbm-R

cp2 = R*gamma2/(gamma2 - 1)/778.17; %post-combust specific heat BTU/lbm-R

************************** Engine Specs **************************

faneff = 0.8991; lpceff = 0.8979;

hpceff = 0.8638; burneff = 0.999;

dpburner = 0.955; hpteff = 0.9182;

lpteff = 0.9263; nozeff = 0.9999;

bypass = 8.3396; T04 = 2958.81; %Rankine

LHV = 18400; %BTU/lbm

************************** Pressure Ratios **************************

FPR = 1.611; LPC = 1.385;

HPC = 20.677; OPR = FPR*LPC*HPC;

************************** Flight Conditions **************************

Alt = 35000; %ft
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speedsound = 973.14; %ft/s

mach = 0.85;

Vinf = mach*speedsound;

pa = 3.45833; %psia

Ta = 394.08; %Rankine

T0a = Ta*(1 + (gamma1 - 1)/2*mach2);

p0a = pa*(T0a/Ta)(gamma1/(gamma1−1));

p02 = p0a; T02 = T0a;

************************** Fan **************************

p08 = p02*FPR;

T08 = T02 + T02/(faneff)*(FPR((gamma1−1)/gamma1) - 1);

************************** LPC and HPC **************************

p03 = p08*LPC*HPC;

T03 = T08 + T08/(lpceff*hpceff)*((LPC*HPC)((gamma1−1)/gamma1) - 1);

************************** Duct 1 **************************

dp1 = 0.97327; dT1 = 0.90922;

p03 = p03*dp1; T03 = T03*dT1;

************************** Burner **************************

f = ((T04/T03) - 1)/(LHV/cp1*burneff/T03 - (T04/T03));

p04 =p03*dpburner;

************************** HPT and LPT **************************

p05 = p04*(1 - (1/(faneff*lpceff*hpceff)*((FPR*LPC*HPC)((gamma1−1)/gamma1) ...

- 1) + bypass/faneff*((p08/p0a)((gamma1−1)/gamma1) - 1))/((1 + f)*...

(T04/T0a)*lpteff*hpteff*(cp2/cp1)))(gamma2/(gamma2−1));

T05 = T04*(1 - lpteff*hpteff*(1 - (p05/p04)((gamma2−1)/gamma2)));

************************** Nozzles **************************

exitVprim = (2*gamma2/(gamma2 - 1)*R*32.174*T05*nozeff*(1 - ...
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(pa/p05)((gamma2−1)/gamma2)))0.5; % exit velocity primary stream

exitVsec = (2*gamma1/(gamma1 - 1)*R*32.174*T08*nozeff*(1 - ...

(pa/p05)((gamma1−1)/gamma1)))0.5; % exit velocity secondary stream

acousticVprim = (gamma2*R*T05*32.174)0.5;

Mprim = exitVprim/acousticVprim;

Psprim = p05/(1 + (gamma2 - 1)/2*Mprim2)(gamma2/(gamma2−1));

Tsprim = T05/(1 + (gamma2 - 1)/2*Mprim2);

acousticVsec = (gamma1*R*T08*32.174)0.5;

Msec = exitVsec/acousticVsec;

Pssec = p08/(1 + (gamma1 - 1)/2*Msec2)(gamma1/(gamma1−1));

Tssec = T08/(1 + (gamma1 - 1)/2*Msec2);

************************** Thrust and SFC **************************

massfprim = 155.74; %lbm/s

denprim = Psprim/R/Tsprim/12; %lbm/in3

areaprim = massfprim/exitVprim/denprim/12; %in2

Thrustprim = (1 + f)*exitVprim*massfprim/32.174 + (Psprim - pa)*areaprim;

massfsec = 1288.89; %lbm/s

densec = Pssec/R/Tssec/12; %lbm/in3

areasec = massfsec/exitVsec/densec/12; %in2

Thrustsec = (1 + f)*exitVsec*massfsec/32.174 + (Pssec - pa)*areasec;

Fgross = Thrustprim + Thrustsec;

Fn = Fgross - (massfsec + massfprim)*Vinf/32.174

TSFC = f*massfprim/Fn*3600
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