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SUMMARY 

 Residential and commercial buildings account for approximately 41% of total 

energy use in the US. Within households, approximately 50% of total energy use is 

associated with space heating and cooling. Heating, ventilation, and air-conditioning 

(HVAC) systems are designed to provide occupant comfort by meeting heating and 

cooling loads safely and efficiently. Air cleaning devices, particularly particle air filters, 

are important components of HVAC systems that prevent damage to HVAC equipment 

and improve indoor air quality (IAQ) by reducing airborne particle concentrations. 

HVAC filters, however, can also have significant impacts on the performance of HVAC 

equipment in both residential and commercial buildings. 

 Coil fouling, or the deposition of airborne particles on the evaporator coil inside 

an HVAC system’s air handling unit (AHU), will increase system pressure drop and 

reduce heat transfer effectiveness, which decreases airflow and air conditioner (AC) 

performance. Although filters can increase AC performance by decreasing coil fouling, 

filters may also have energy implications, particularly if they are higher pressure drop 

filters or if they become dirty (or “loaded”) over time. In large commercial HVAC 

systems with variable speed blowers, energy implications are simple: fans will simply 

draw more power to overcome a greater pressure drop to deliver the same amount of 

required cooling. In smaller residential systems without sophisticated airflow controls, 

recent research has shown that as filters become loaded, pressure drop across the filter 

increases and airflow is restricted. Cooling systems should therefore run longer as airflow 

is reduced to provide adequate cooling at the reduced capacity, although little quantitative 

information exists on the magnitude of the impacts of filter pressure drop on airflow 

rates, cooling capacities, and system runtimes in real residential systems. Complicating 

the issue is that while most homes currently have inefficient blowers without flow 

controls (i.e., permanent split capacitor, or PSC, motors), new AHU products on the 
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market utilize more sophisticated fans with flow controls (i.e., those with electrically 

commutated motors, or ECM, blowers, also called brushless permanent magnet, or BPM, 

blowers).  

 Therefore, the following report reviews recent research on HVAC filters for 

central forced-air air-conditioning units and electric heat pumps and presents the findings 

of an in-situ evaluation of AC performance under simulated filter loading conditions. The 

study hypothesized that it was possible to develop a methodology for simulating filter 

loading in-situ that would allow for the observation of the impact of filter loading on AC 

performance in-situ and provide a greater understanding of when a filter is “dirty” and 

thus inform when it should be replaced.  

 Six central AC systems in the Atlanta metro-region were evaluated in this work. 

Several conditions of filter loading were artificially induced in the test systems and filter 

pressure drops, airflow rates, temperature and humidity differences across the coil were 

all measured during pseudo-steady-state cooling operation, which allowed for developing 

relationships between simulated filter loading, airflow, and sensible and latent capacity. 

Filter loading was simulated by installing an Energy Conservatory TrueFlow® plate 

airflow metering device and partially taping off the face at three different increments. 

This resulted in measurements at 5 discrete static pressure conditions: no filter, TrueFlow 

measurement, TrueFlow Taped #1, TrueFlow Taped #2, and TrueFlow Taped #3, 

increasing in simulated filter pressure drop at each increment. These in-situ 

measurements revealed that as filter pressure drop increased, airflow rates generally 

decreased, particularly for the known PSC blowers, as is expected from the literature. 

Two of the test systems were apparently ECM blowers as they responded to increased 

filter pressure drop by nearly maintaining airflow rates until reaching a maximum 

pressure and rapidly decreasing in flow, which is consistent with other ECM data. 

Therefore the data herein are considered generally representative of both types of 

systems, even with a limited data set.  



 xvi

With moderate certainty, it was found that as induced filter pressure drop 

increased, the difference in temperature across the evaporator coil (∆T) also increased in 

these systems. These data support what other laboratory and field studies have shown: as 

airflow rates are reduced in the presence of larger filter pressure drops, sensible capacity 

will not decrease linearly with flow because the temperature difference across the coil 

increases slightly and supply air is delivered at a lower temperature. This data also shows 

that there is a stronger relationship between coil ∆T and airflow as opposed to ∆T and 

induced filter pressure drop, as filter pressure drop did not impact airflow rates uniformly 

in the systems.  

There was no observed correlation between absolute humidity differences across 

the evaporator coil (∆W) and either filter pressure drop or system airflow rates. In other 

words, as airflow decreased so did sensible, latent, and total capacity, although these 

relationships were not linear. Because reductions in cooling capacity can be linked to 

increased system runtimes, this research can be used to inform decisions about maximum 

filter loading values that should inform filter replacement schedules. Once a maximum 

acceptable reduction in sensible capacity is established, this data can be used to identify 

the airflow and filter pressure drop thresholds, which can impact future decisions about 

filter replacement timing.   

This relatively limited pilot study provides valuable proof of concept for an 

approach to simulating in-situ filter loading and characterizing associated capacity 

impacts. Taping the face of the TrueFlow plate was shown to work consistently well to 

simulate filter loading. In the future, this study should be expanded to a greater number of 

central air conditioning units and continuous measurements should be recorded using 

data loggers, as one challenge was determining exactly when the AC systems reached 

steady state. Greater certainty may be possible by recording continuous measurements 

and waiting longer between each simulated filter condition.  
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CHAPTER 1 

INTRODUCTION 

 Buildings account for approximately 41% of total energy use in the US (US 

Energy Information Administration 2011). Within households, approximately 50% of 

total energy use is for providing heating and cooling. Heating, ventilation, and air-

conditioning (HVAC) systems are designed to provide occupant comfort safely and 

efficiently. HVAC systems control the indoor environment by heating, cooling, 

recirculating, and filtering the air and managing humidity. When not properly designed, 

installed, and/or maintained, these systems can increase energy consumption while 

compromising indoor air quality (IAQ).  

 Air cleaning devices, particularly particle air filters, are important components of 

HVAC systems that prevent damage to HVAC equipment and improve indoor air quality 

(IAQ) by reducing airborne particle concentrations. HVAC filters, however, can also 

have significant impacts on the performance of HVAC equipment in both residential and 

commercial buildings. Coil fouling, or the deposition of airborne particles on the 

evaporator coil inside an HVAC system’s air handling unit (AHU), will increase system 

pressure drop and reduce heat transfer effectiveness, which decreases airflow and air 

conditioner (AC) performance. Although filters can increase AC performance by 

decreasing coil fouling, filters may also have energy implications, particularly if they are 

higher pressure drop filters or if they become dirty (or “loaded”) over time. In large 

commercial HVAC systems with variable speed blowers, energy implications are simple: 

fans will simply draw more power to overcome a greater pressure drop to deliver the 

same amount of required cooling. In smaller residential systems without sophisticated 

airflow controls, recent research has shown that as filters become loaded, pressure drop 

across the filter increases and airflow is restricted. Cooling systems should therefore run 

longer as airflow is reduced to provide adequate cooling at the reduced capacity, although 
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little quantitative information exists on the magnitude of the impacts of filter pressure 

drop on airflow rates, cooling capacities, and system runtimes in real residential systems. 

Complicating the issue is that while most homes currently have inefficient blowers 

without flow controls (i.e., permanent split capacitor, or PSC, motors), new AHU 

products on the market utilize more sophisticated fans with flow controls (i.e., those with 

electrically commutated motors, or ECM, blowers, also called brushless permanent 

magnet, or BPM, blowers).  

 To date, studies on the impact of filters on residential HVAC system performance 

have used: (i) laboratory test systems (Siegel et al. 2002, Palani et al 1992); (ii) computer 

simulation models (Nassif 2012); (iii) small samples of 2-16 systems in-situ (Chimunk 

and Sellers 2000, Stephens et al 2012, Rodriguez et al 1996); and (iv) some combination 

of these three methods (Yang et al 2004).  

 

Research Objectives 

 The study hypothesized that it was possible to develop a methodology for 

simulating filter loading in-situ that would allow for the observation of the impact of 

filter loading on AC performance in-situ and provide a greater understanding of when a 

filter is “dirty” and thus inform when it should be replaced. In-situ data can then be used 

to evaluate and update computer simulation models as well as increase the model of 

knowledge of actual HVAC performance in residences.  
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CHAPTER 2  

LITERATURE REVIEW 

 The U.S. Energy Information Administration (EIA) publishes the Annual Energy 

Review. The report includes data on: total energy production, consumption, and trade for 

petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and 

international energy; and financial, and environmental indicators. According to the most 

recent edition, buildings account for approximately 41% of total energy use in the US as 

shown in Figure 1 (US EIA 2011). 

 

 

Figure 1. U.S. energy use by sector (US EIA 2011) 

 

In 2005, US households consumed 0.88 quadrillion Btus and spent $25.26 billion 

dollars on electricity for air conditioning (US EIA 2011)1. In that same year, US 

                                                 

 
 
1 The 2005 data is what is available in the most recent Annual Energy Review from the DOE/EIA.  
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households consumed 0.28 quadrillion Btus and spent $7.42 billion dollars on electricity 

for heating purposes. Even a slight improvement in heating and cooling system 

performance would result in significant energy consumption reductions across the 

residential building stock. 

 

HVAC Prevalence 

Most homes require space conditioning, defined as heating, cooling, or both, 

depending on the local climate. The International Residential Code (IRC, the “building 

code”) requires that dwellings in cold climates contain heating equipment that can 

maintain indoor temperature at a minimum of 68°F (ICC 2012). There is no code 

requirement for cooling equipment in any US climate, although central air-conditioning is 

become ubiquitous in warmer climates. 

The American Housing Survey for the United States (AHS) is sponsored by the 

U.S. Department of Housing and Urban Development (HUD) and conducted by the U.S. 

Census Bureau. National data is collected every 2 years and provides the most 

comprehensive national housing survey in the United States. The data covers a range of 

housing types, including single family, manufactured housing, and multifamily housing; 

and housing and resident characteristics, such as family composition, income, housing 

quality, neighborhood quality, housing costs, equipment, and fuel type. The most recent 

data from 2009 was published in 2011 (U.S. Census Bureau 2009). 

Based on the most recent AHS, there are a total of 130,112,000 housing units, 

ranging from single family to multifamily and owner occupied to rental in the U.S. 

Approximately 1.5% of these dwellings are seasonal properties. The median dwelling 

was constructed in 1974 and contains 1,700 square feet. Approximately 63% of all 

American dwellings contain central AC for a total of 82,475,000 central AC units. 

Electric heat pumps are the primary heat source for 12% of American dwellings for a 

total of 16,059,000 heat pumps. Figure 2 shows the growth of AC systems within the 
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U.S. 

 
 

Figure 2. Air-conditioning equipment growth in the US (U.S. Census Bureau 2009). 
 

 

US energy consumption for cooling is increasing as more homes are constructed 

with air conditioning systems. Thus, the importance of central AC system performance is 

also increasing.    

Heating & Cooling Systems 

The key components of HVAC systems are the equipment used to supply energy 

for heating or extract energy for cooling, the fuel sources, and the method used to 

distribute the heating and cooling throughout the house. In forced-air systems, heated and 

cooled air is delivered by bulk convection into spaces that need heating or cooling. 

Individual systems that serve multiple areas of the home are referred to as whole-house 

systems, and those that serve only sections or single rooms are called local or non-

distributed systems. Either of these can provide heating only, cooling only, or both, 

depending on the system type and climate requirements. Fuels can be fossil fuels (e.g., 
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gas or oil), electricity, wood, or, in some cases, solar energy can be employed. Selecting 

the most appropriate distribution system and equipment, combined with proper design 

and installation, are critical to creating an effective and efficient HVAC system.   

Central AC systems and heat pumps consist of a compressor and two coils made 

of copper or aluminum tubing (typically one located inside and one outside) that are 

surrounded by aluminum fins to aid heat transfer. Refrigerant, a chemical compound that 

transfers heat as it changes from a liquid to a gas and back, flows back and forth between 

the indoor and outdoor coils. The compressor, located outdoors, is a mechanical pump 

that increases the refrigerant pressure, raising its temperature. In a conventional AC 

system during cooling operation, the indoor evaporator coil serves to evaporate the 

refrigerant, changing its phase from a liquid to a gas, which absorbs energy from the air 

passing over the coil and thereby cools the airstream. Refrigerant is then piped to the 

condenser unit and heat is rejected to the outside, which acts as a heat sink. Humidity is 

also removed from the warm airstream as it passes over the cooler evaporator coil. 

Moisture leaves the vapor phase and is removed from the air as liquid water and drained 

to the exterior or a sewer system. Heat pumps operate similarly in the cooling mode.  

In the heating mode, heat pumps operate in reverse. The outdoor condenser unit 

acts as an evaporator coil whereby liquid refrigerant in the outdoor unit extracts heat from 

the outdoor air and evaporates into a gas. The indoor coil now acts as a condenser and 

rejects heat into the indoor environment as it condenses back into a liquid. A reversing 

valve, near the compressor, can change the direction of the refrigerant flow for cooling as 

well as for defrosting the outdoor coil in winter.  

 

HVAC Motors 

Electric motors are classified as either alternating current (AC) or direct current 

(DC) motors. AC motors are further broken down by the number of phases and whether 

they are synchronous or asynchronous (induction) motors. Approximately 90% 
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residential fans are permanent split-capacitor (PSC) (Sachs et al 2002), which do not have 

flow controls to maintain specified airflow rates. These fractional horsepower, AC 

induction motors usually have multiple speed windings, are low cost and tend to be 55% 

efficient under full-load (Murray 2012), although electric efficiencies measured in-situ 

are often much lower (Stephens et al 2010). 

The most common alternative to PSC motors is electronically commutated motors 

(ECM), also called brushless permanent magnet (BPM) blowers. Unlike PSC motors, 

ECMs are able to adjust voltage levels to optimize motor torque as rotational speed is 

reduced. For these reasons, ECM motors tend to be much more efficient than comparably 

sized PSC motors, especially at low rotational speeds. They are also typically installed 

with flow controls that allow systems to maintain airflow rates in the presence of higher 

pressure drops. While ECM motors are more efficient, they also are more expensive due 

to the permanent magnets employed and additional circuitry. 

Different HVAC operation modes require different airflows, which require 

varying blower motor speeds. Blower fan speeds for heat pump and air-conditioning 

modes are typically higher than a fan-only mode where no cooling or heating is being 

performed. Fan speeds are selected by the HVAC control system based on the particular 

mode of operation. Motor efficiency may vary based on fan speed. For example, unlike 

PSC motors, the efficiency of ECMs tends to increase as fan speed slows. Test results 

suggest that, on average, ECM motors represent a 51 percent full-load efficiency 

improvement over PSC motors (Murray 2012). 

 

Types of Filters 

Air filtration devices, including particle air filters, are used to protect HVAC 

equipment from damage and coil fouling and to reduce concentrations of airborne 

particulate matter in indoor environments. Filters are normally installed as part of a 

forced-air HVAC system. The three primary types of filters are mechanical, pleated, and 
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electronic. The most common type used in homes, mechanical air filters, uses synthetic 

fibers or fiberglass to remove particles as they pass through the filter media. Pleated air 

filters are more effective than other mechanical air filters because they contain more fiber 

per square inch than mechanical filters. Electronic air filters use electricity to attract 

oppositely charged particles to metal fins. The particle removal efficiency of mechanical 

and pleated filters often improves as they become dirty because smaller and smaller 

particles are captured in the increasingly fine openings and loaded dust acts to increase 

effective fiber area (Earnest et al 2001). The effectiveness of electronic filters typically 

decreases over time without cleaning because the metal fins become ineffective when 

loaded. Filters may be installed at the air handling unit, return register, or as separate 

stand-alone equipment. This study focuses on filters installed at the air handling unit, as 

is common in many homes.  

 

Filter Efficiency 

ANSI/ASHRAE Standard 52.2-2007 is used to address the ability of filtration 

devices to remove particles from the airstream and measure their resistance to airflow 

(ANSI/ASHRAE 2007). Here, efficiency refers to the ability of the filter to remove 

particles from the airstream, represented as one minus the ratio of particle concentrations 

measured downstream of the filter to that measured upstream of the filter. Filter testing is 

conducted at flow rates between 472 CFM (0.22 m3/s) and 3,000 CFM (1.4 m3/s) in 

Standard 52.2 laboratory tests. The test procedure for device efficiency uses laboratory-

generated potassium chloride particles and synthetic dust to simulate field conditions.   

There are two types of pressure within duct systems: static and velocity pressure. 

Static pressure is often simply called “pressure”. Every point in a fluid will have a static 

pressure, which is the force per unit area at that point. The force is equal in all directions. 

Velocity pressure is often called dynamic pressure. Velocity pressure is the pressure from 

a moving fluid when it makes a direct hit on an object, such as a register at the end of a 
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duct. Pressure is measured in inches of water column (IWC) or Pascals (Pa). Total system 

pressure is the sum of the static and velocity pressure at a given point in the HVAC 

system. Pressure drop refers to the pressure difference across the filter or any other 

component within the HVAC system’s air stream (AC evaporator coil, humidifier, etc.).  

Efficiency measurements for mechanical and pleated filters are performed at 

several intervals during a simulated dust-loading procedure in Standard 52.2 to establish 

a curve of efficiency as a function of dust loading. Measurements are taken at the 

following points: 

a. Before any dust is fed to the device; 

b. After an initial conditioning step with a dust loading of 30 g or an increase in 

10 Pa (0.04 in. of water) pressure drop across the device, whichever comes 

first; 

c. After the dust-loading increments have achieved an airflow resistance increase 

of one-quarter, one-half, and three-quarters of the difference between the 

beginning and the prescribed end point limit of airflow resistance; and  

d. After the dust increment that loads the device to its prescribed end point 

resistance limit (ANSI/ASHRAE 2007). 

 

The result of this test is the filter’s Minimum Efficiency Reporting Value 

(MERV) rating, which is a measure of efficiency of the filter at removing particles at 

various size bins from 0.3 to 10 µm. This efficiency-testing standard is also somewhat 

helpful for defining when a filter is “dirty.” The device is assumed to be clean when the 

filter resistance is equal to the initial resistance value in Table 12.1 (ANSI/ASHRAE 

2007). A very dirty (fully loaded) filter has resistance equal to the final resistance value, 

although translation to actual operational environments is difficult. A dirty filter has a 

resistance value in the middle of the two extremes. Beyond these inferences, there is little 

literature on what constitutes a dirty filter.  
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Low-efficiency filters are typically defined as having a MERV rating of under 4. 

Medium-efficiency filters have MERV ratings of 5-10 and high-efficiency filters are 

MERV 11 and above. Most residential HVAC filters are currently sold at 1-inch depths, 

although higher efficiency filters (e.g., MERV 13+) are now being sold at 2-inch and 5-

inch depths, which have the benefit of providing more filter surface area for particle 

collection while minimizing impacts on initial filter pressure drop. 

 

Coil Fouling 

Filters are used to protect HVAC equipment from damage and coil fouling and to 

improve indoor environmental quality for occupants. Coil fouling effects cooling 

capacity in two ways: by reducing the heat transfer coefficient and reducing airflow. 

Siegel et al. (2002) applied experimental and simulation results to estimate the impact of 

coil fouling on AC system performance and capacity. They found that typical coils foul 

enough within 7.5 years to double evaporator pressure drop. When a typical residential 

system coil was fouled, the pressure drop increased by about 40%, the airflow reduced 5-

10%, and the efficiency and capacity of the AC decreased 2-4%. Although this is a 

relatively minor decrease in efficiency and capacity, this is based on assumed correct 

airflow. Residential systems often have low airflow and performance impacts can be 

greater because air conditioner capacity is more sensitive to changes in low airflows 

(Parker et al 1997). 

Yang et al. (2004) studied the impact of different filter types on the performance 

of packaged air conditioners under both clean and fouled conditions. They evaluated 

three packaged systems: one 35-ton, one 5-ton, and one 3-ton unit. The units represent 

typical systems for a medium to large commercial building, small commercial building, 

and a small commercial or residential building, respectively. They introduced a set 

amount of particles to foul the coils over time and measured the percent passing through 
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the filter. Field measurements as well as manufacturers data was collected and integrated 

into a system simulation model, ACMODEL. 

Somewhat surprisingly, Yang et al (2004) found that the heat transfer coefficient 

could actually increase with limited fouling and that under extreme fouling the coefficient 

reduction was minor. Capacity reduction was primarily the result of airflow reduction. 

After introducing the equivalent of one year’s worth of dust loading (600 grams of dust), 

the degradation in cooling capacity from coil fouling was relatively minor: 2-4% for the 

35-ton system, 2-3% for the second 35-ton system, 5-7% for the 5-ton system, and 4-5% 

for the 3-ton system. Depending on the AC unit size, the EER was reduced by 2-10% 

because of fouling.  

 

Pressures within HVAC Systems 

For any fixed system, the relationship between airflow and system pressure 

follows a quadratic relationship, presented in Equation 1 below. 

 

P = k * Q2 

 

(1) 

where 

P = system pressure (IWC or Pa) 

K  = constant based on measured airflow and pressure 

Q  = system flow (CFM or m3/s) 

 

Airflow within an HVAC system may be measured with a Pitot-tube traverse, 

flow hood, flow grid, or an anemometer. Static pressure is measured with a static 

pressure probe (simple Pitot-tube) and a manometer.  
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The static pressure drop across individual components of the HVAC system is 

proportional to the square of the airflow rate and a coefficient of proportionality, C. The 

coefficient C is constant for static system components and is based on the component’s 

geometry. A filter’s coefficient changes over time as loading changes it’s geometry. The 

evaporator’s coefficient will also change as moisture condenses and fouling occurs over 

time. A systems total coefficient is the sum of all components connected in series with 

duct branches connected in parallel (Equation 2) (Stephens et al 2010). 

 

 
(2) 

 

where 

Ctotal = coefficient of proportionality for the entire system 

Creturn = coefficient of proportionality for the return duct 

Cfilter = coefficient of proportionality for the filter 

CCC = coefficient of proportionality for the cooling coil 

CHC = coefficient of proportionality for the heating coil 

CS1 = coefficient of proportionality for the first supply duct branch 

CS2 = coefficient of proportionality for the second supply duct branch 

CS3 = coefficient of proportionality for the third supply duct branch 

 

The power draw of an AHU fan can be described as a function of the required 

pressure increase across the fan and the airflow rate, as shown in Equation 3 (Stephens et 

al 2010). 

 

 (3) 

Ctotal = Creturn + Cfilter +CCC + CHC + CS1 +
CS 2 + CS 3

CS 2 • CS 3
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where  

Wfan  = power draw of fan 

∆Pfan = required pressure increase across the fan 

Qfan =system airflow rate 

ηfan = efficiency of the fan 

ηmotor = efficiency of the fan motor  

C = coefficient of proportionality 

 

In an HVAC system where the airflow rate remains constant through the use of an 

ECM and the motor’s efficiency does not change with airflow rate, the power draw of the 

fan is a linear function of the filter coefficient.2 In this scenario, a 5% increase in total 

pressure drop would cause a 5% increase in fan electric power draw. Most residential 

HVAC fans use PSC motors, however, which do not adjust rotational speed to maintain 

constant airflow rates. Thus, an increase of filter pressure drop will generally decrease the 

airflow rate and also decrease the fan power draw for a PSC motor (Siegel et al 2007, 

Stephens et al 2010). 

Figure 3 represents a theoretical HVAC system without airflow controls 

(Stephens et al 2010). System and fan curves are used to characterize HVAC system 

performance based on pressure and airflow. The graph illustrates the relationship between 

pressure and airflow.  In this example, increasing the filter pressure drop by replacing the 

mid-MERV filter with a high-MERV filter increases the total system pressure and 

decreases the airflow rate (moving the working point from A to B). The reverse effect 

                                                 

 
 
2 The efficiency of many ECM fans, however, changes as a function of rotational speed.  
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occurs when decreasing the filter efficiency or pressure drop (moving from point A to 

point C). In terms of the impacts on pressure and airflow, higher-efficiency filters and 

loaded filters are conceptual equivalents in that they both describe ways to increase filter 

pressure drop. 

 

 

Figure 3. System and fan curves for medium-, high-, and low-pressure-drop filters 

(Stephens et al 2010). 

 

However, calculating the effect of filter pressure drop on air conditioner capacity, 

efficiency, and overall power draw is far from straightforward. The intersection point 

between the fan curve and the system curve determines airflow through an air 

conditioner. The fan and its installation determine the fan curve. The flow resistance of 

all the components throughout the system, including return duct, filter, coil, and supply 

duct, determines the system curve. Increasing the pressure drop of the filter will have a 

different effect on the system curve depending on the flow resistance of the rest of the 
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system. To further complicate matters, residential fan curves have different slopes at 

different points, which means that changing the filter pressure drop of a system operating 

at one point in the curve will have a different effect than changing the pressure at another 

point on the same curve.   

All filters restrict some amount of airflow. This restriction is quantified by 

calculating the difference in pressure immediately upstream and downstream the filter, 

which is known as pressure drop.  One recent study in California measured filter pressure 

drop in 34 split air conditioners with furnaces (Proctor 2012).  They found that the typical 

replacement filter had 0.282 in. w.c. of pressure drop. The pressure drops ranged from 

0.075 to .792 in. w.c. (approximately 20 to 200 Pa). These pressure drops are higher than 

expected and may negatively impact HVAC system performance. The high pressure 

drops reduce evaporate airflow, which “lowers the total EER and the sensible EER of the 

machine” (Proctor 2012). 

 

Airflow within HVAC Systems 

There are three common methods of measuring airflow across the evaporator coil: 

temperature split, balometer (airflow capture hood), and TrueFlow™ plates or an 

equivalent flow grid. The temperature split method was originally promoted by Carrier 

Corporation and allows for a quick check to establish if airflow is likely within an 

acceptable range (Carrier Corporation 1994). Airflow is qualitatively assessed based on 

the dry-bulb temperature drop across the evaporator coil and the return plenum wet-bulb 

temperature. First, the actual temperature split is calculated (return air dry-bulb 

temperature minus the supply air dry-bulb temperature). Second, using the Carrier 

Corporation’s table, identify the target temperature split using the return air wet-bulb 

temperature and return air dry-bulb temperature. And finally, calculate the difference 

between the target and actual temperature split (actual temperature split-target 

temperature split). A difference of ± 3°F is deemed probably acceptable while outside 
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that range requires further investigation.  

Balometers, such as the Alnor Flow Hood and The Energy Conservatory’s 

FlowBlaster™ Capture Hood Accessory for the Duct Blaster®, measure volumetric 

airflow from diffusers, grilles and registers (Figure 4). They consist of a capture device 

(“hood”) that sits over the HVAC register to direct airflow to the fan. The fan speed is 

regulated based on the airflow coming out of the register.  

 

Figure 4. The Alnor EBT Balometer. Image from http://www.alnor-usa.com 

 

The TrueFlow plate is an example of a Pitot array or flow grid (The Energy 

Conservatory 2006). The plate is installed in the filter slot at the air handler or large 

return register. It uses multiple Pitot tubes to calculate an average velocity sampled over 

large area. With the HVAC system running, it provides a measurement of total system 

airflow. One advantage to the TrueFlow device is that it can provide airflow rates at the 

air handler when the filter is installed at the air handler. 
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Figure 5. TrueFlow® Air Handler Flow Meter  (The Energy Conservatory, 2006). 
 

 

Airflow through an HVAC system is limited to the capacity of the air handler fan. 

For example, an air handler fan rated for 800 CFM simply cannot move any additional 

air. The airflow through the system may be reduced due to undersized ducts, dirty filters, 

and dirty evaporator coil. Downey and Proctor (2002) evaluated airflow testing from 

13,258 HVAC systems and found that 21% of the residential and commercial systems 

experienced low air flow across the evaporator coil. Low airflow was usually the result of 

“dirty filters, fouled coils, dirty blower wheels, or incorrect blower speed settings.” 

Reduced airflow impacts an air conditioner’s ability to cool and dehumidify air. The air 

conditioners total cooling capacity consists of the ability to remove latent and sensible 

heat. Reduced airflow reduces sensible heat transfer to the evaporator coil, which reduces 

sensible cooling capacity. This leads to cooler coil surface temperatures, which increases 

moisture removal. The reduced airflow allows longer contact time between the air and 

cooler coil, which improves dehumidification and latent capacity. These interactive 

effects result in a reduction of cooling capacity that is not directly proportional to the 

change in airflow, although information is lacking on in-situ measurements of these 

impacts in real residential environments.  
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Filters Impact on Energy Consumption 

In large commercial and high-efficiency residential systems the fan and motor 

controls typically maintain the required airflow rates regardless of pressure drop. These 

ECMs will adjust airflow rates to compensate for changes in pressure drop.  For this 

reason, a greater pressure drop will generally lead to increased energy consumption 

(Chimack and Sellers 2000, Fisk et al 2002). 

The Chimack and Sellers (2000) study was conducted in an office building in 

Hoffman Estates, Illinois with two nearly identical variable air volume (VAV) fan 

systems to determine if premium air filters are financially sound investments for building 

owners. Premium filters need to be replaced less, reducing maintenance costs, and are 

less restrictive to airflow. One VAV fan system, the control group, operated with 

standard bag-type air filters, while the second VAV operated with premium filters. Bag 

filters use dry media that is arranged in a long stocking shape to extend their surface area 

or to allow recovery of the collected material. Although bag filters are commonly used in 

commercial HVAC systems, many are being replaced with rigid dry filters. Power draw 

of the supply fan motors was monitored for 40 weeks. Static pressure drops across the 

filters were routinely measured, although it was impossible to isolate the pre-filter and 

final filters, so only a total filter system drop was recorded.  

The total power draw of the system with high-MERV filters was approximately 

21 percent less than the control system. The relationship of filter loading to time was 

nearly linear with the prefilter capturing the majority of particles. The authors do not 

provide the static pressure data nor did they measure airflow rates. A payback of 

upgrading filters was calculated at 10-months to 2 years.  

Nassif (2012) explored the impact of air filtration on energy consumption for a 

typical air-conditioning system with a constant- or variable-speed fan.  HVAC 

performance was modeled in eQuest, a software package that uses DOE 2.1-E hourly 

building energy simulation engine, combined with a direct expansion AC (ACDX) 
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computer model (Brandemuehl and Andersen 1993). eQuest was used to evaluate the 

annual energy consumption for the AC systems under a range of flow and capacity 

conditions. ACDX was used to model the effect of reduced airflow rate on cooling 

performance. A typical storefront building was modeled in each of Greensboro (NC), 

Orlando (FL), New York (NY), and San Francisco (CA). For constant-speed AC systems, 

as the filter gets dirty, the static pressure increases and the airflow rate drops. The total 

system cooling capacity and sensible cooling capacity both drop with lower airflow, 

whereas the latent cooling capacity increases.  For example, the ACDX model simulated 

a drop to 80% of designed airflow causing a reduction in the total system capacity to 

96.1% and the sensible capacity to 92.1% of design value. The annual cooling energy use 

was predicted to increase between 50 and 70 kWh per ton and the fan energy use 

increased 60-80 kWh per ton in these commercial simulations. 

For variable-speed AC systems, as dirty filters increase resistance, the fan 

increases its speed to maintain a constant airflow and meet the sensible load requirements 

of the building. Since there is no change in airflow rate there is little to no direct change 

in cooling and heating energy use. Increased fan use generates more waste heat, which 

slightly increases the cooling energy use and reduces heating energy use. The increase in 

fan energy use ranged 15-20 kWh per ton (Nassif 2012). 

Stephens et al. (2010) explored the theoretical, as well as measured, energy 

implications of higher-pressure drop filters. The study analyzed the energy consumption 

of filters in two air conditioning systems in a test house in Austin, Texas over the course 

of four months. The study’s results are summarized in Table 1. 
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Table 1 Results from Stephens et al. (2010) when moving from a low-MERV filter 

Low-MERV 

Replacement 

 

Airflow 

Change 

Fan Power 

Draw 

Outdoor Unit 

Power Draw 

Total Cooling 

Capacity 

High-MERV - 7% and 11% + 3-4% - <1% -3-4% 

Mid-MERV - 3% and 8% +0-2% - <1% and +<1% -1-2% and -6-7% 

  

Compared to low-MERV filters, high-MERV filters decreased airflow rates by 

approximately 7% and 11% and mid-MERV filters decreased airflow rates by 

approximately 3% and 8% in each of the two systems. With high-MERV filters, the fan 

power draw actually increased approximately 3–4% and the power draw of the outdoor 

unit decreased less than 1%. With mid-MERV filters, the fan power draw increased 

between 0%–2% and power draw of the outdoor unit decreased less than 1% in one 

system and increased less than 1% in the other. Total capacity and system efficiency 

decreased approximately 3%–4% in the presence of high-MERV filters and 1%–2% in 

one system and approximately 6%–7% in the other system in the presence of mid-MERV 

filters. The “daily energy consumption did not significantly differ between low- and high-

MERV filter installations” (Stephens et al 2010).  

Nassif (2012) and Stephens et al (2010) acknowledge that elevated pressures 

within the ductwork will increase duct leakage, but no known studies currently explore 

this relationship or account for this in energy calculations.   

Palani et al (1992) used a standard split system air conditioner with a short-tube 

orifice expansion device installed within a laboratory (“bench test”) to evaluate the 

impact of reduced evaporator airflow on system performance.  “Reduction in evaporator 

airflow was simulated using a plywood restriction board to cover the supply air duct. The 

plywood board was pre-drilled at several places to allow airflow from 100 CFM to 1000 

CFM.” The study found that “at 90% reduced evaporator air flow rate, the total power 

consumption decreases by 17% and the EER decreases by 71%.” Reduced airflow also 

resulted in increased moisture removal and a reduced SHR. 
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Rodriguez et al (1996) also looked at the impact of reduced evaporator airflow on 

HVAC system performance. They tested two residential sized air conditioners in a 

psychrometric room. They reduced evaporator airflows between 0 and 50% below 

manufacturers recommendations. One unit used a TXV and the other a short tube orifice. 

For the TXV system, capacity and coefficient of performance (COP) actually improved 

with a 10% reduction in airflow, but then decreased significantly at larger airflow 

reductions. A 20% reduction in airflow resulted in approximately 1% drop in capacity, 

2% reduction in COP, and 1% increase in power consumption. At that same reduced 

airflow the orifice system’s capacity reduced 10%, COP dropped 8%, and power 

consumption increased by 1%. Capacity and COP also decreased as outdoor temperatures 

increased. The impact was greater on the orifice controlled system.  
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CHAPTER 3 

METHODOLOGY 

 
This section details the process for: a) selecting test homes and air conditioning 

equipment; b) performing measurements at different stages of simulated filtration 

loading; and c) data analysis. Figure 6 below outlines the research process. 

 

 
Figure 6 Research process workflow. 
 

Research Design 

As HVAC filters become loaded with dirt, dust, and other pollutants, the airflow 

through the entire duct system becomes restricted, increasing the pressure drop across the 

filter. This restriction of airflow causes cooling systems to run longer to provide adequate 

cooling if they have PSC blowers. If they have ECM blowers, system runtime should not 

change drastically for most loading conditions, although the fan will draw more power to 

overcome the additional pressure drop. Therefore, any energy savings from filter 
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replacement depends on the extent of filter loading (i.e., filter pressure drop) and fan 

blower type, either permanent split-capacitor (PSC) or electronically commutated motors 

(ECM). This study documents the impact of simulated filter loading in-situ on a small, 

but generally representative, sample of Atlanta area homes.  

 

Test House Selection 

This pilot study assessed homes within the Atlanta metro-region. Since the 1970s, 

the Atlanta region has experienced remarkable growth with a sustained influx of new 

residents. According to the Atlanta Regional Commission (ARC) nearly 80% of all 

homes have been built since 1970 (ARC unknown). Although the exact number of homes 

with central air conditioning in the metro-region is unknown, for decades the majority of 

new homes have been built with AC (U.S. Census Bureau 2009). Figure 7 below shows 

the growth of air conditioning in the south.  

 

 

Figure 7. Percent of new homes containing central air conditioners in the south region 

(U.S. Census Bureau 2009). 

 

Four homes within the Atlanta metro-region were selected for testing. The homes 

all contain central forced-air AC or air source heat pump systems located in 
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unconditioned spaces such as basements, attics, or crawlspaces. HVAC systems in the 

Southeast US are commonly located within unconditioned spaces. The selected homes 

ranged in age from nearly 90 years old to approximately 65 years old, and the HVAC 

systems were between 1 and10 years old.  The HVAC systems ranged from 2 to 4 tons.  

They include Rheem, Trane, Ruud, and Carrier brand equipment. Lance Beaton with VIS 

VIVA Energy Consulting, an Atlanta based home performance and HVAC contracting 

company, confirmed that these brands represent some of the most common HVAC 

systems sold in the Atlanta area (Beaton 2013).  Thus the HVAC systems were 

considered representative of those installed in Atlanta homes over the past 10 years.  

A total of 5 AC systems were assessed for this initial phase of testing. Four homes 

had one system each and one home had two systems.  Tested systems were selected to 

include both horizontal and vertical configurations. All systems had filters located at the 

air handling unit (AHU). A range of filter sizes was included. The testing methodology 

compares the HVAC system “as-is” to induced, or simulated, loading conditions. The as-

is conditions serve as the baseline to measure the impact of filter loading. Because our 

testing included only the HVAC system itself and not its ability to cool any particular 

space, housing characteristics such as building structure, thermal envelope, shading from 

sunlight did not impact the testing methodology. Table 2 summarizes the test system 

characteristics.  
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Table 2. Test system characteristics 

Test System Home Characteristics HVAC Characteristics 

Year Built Size (ft2) Year Manufactured Size (tons) Location 

1 1950s 1,700 2009 2.5 Vented Crawlspace 

2 1939 2,014 2012 2.5 Unconditioned Basement 

3 1939 2,014 2012 2 Attic 

4 1927 1,750 Approx. 2003 3.5 Unconditioned Basement 

5 (5- Right) 1950s 1,850 2007 4 Unconditioned Basement 

6 (5-Left) 1950s 1,850 2007 4 Unconditioned Basement 

 

Filter Loading Simulation 

This study simulated filter loading by installing the TrueFlow airflow metering 

device and partially taping off the face at 3 different increments, similar to the procedure 

in Palani et al. (1992). This resulted in measurements at five discrete static pressures and 

simulated loading conditions: no filter, TrueFlow measurement, TrueFlow Taped #1, 

TrueFlow Taped #2, and TrueFlow Taped #3. Examples of the TrueFlow taped for the 

three consecutive measurements are below (Figures 8 - 10). The exact amount and 

placement of the tape varied between homes to take into account the measured 

performance of individual HVAC systems. The TrueFlow was not used to measure 

airflow once taped.   
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Figure 8 An example of a partially taped filter (“TrueFlow Taped 1”) 

 

Figure 9. An example of a partially taped filter (“TrueFlow Taped 2”). 
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Figure 10. An example of a partially taped filter (“TrueFlow Taped 3”). 

 

Data Collection 

The following information about each HVAC system was collected and 

measured: AC indoor and outdoor coil make and model numbers, furnace (if present) 

make and model number, and presence of mechanical ventilation. Testing was performed 

during periods when the outdoor temperature was above 60°F to allow for the safe 

operation of air conditioners.  

Measurements were taken after the HVAC system reached approximately steady 

state. Steady State refers to the point at which the system is running at peak efficiency 

and the evaporator coil is fully cooled. Since AC units cycle on and off as they maintain 

their desired temperature, it is important to properly identify steady state. Steady state 

was identified based on a constant difference of air characteristics (pressure, temperature, 

and relative humidity) across the coil. Palani et al (1992) found that the test bench 
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reached steady state within 4 minutes after switching on the unit. Measurements in this 

work were taken after at least 10 minutes of operation, once steady state was achieved. 

Measurements were recorded with the filter removed, TrueFlow installed, and the 

TrueFlow partially taped at three different intervals.  

Three HVAC system configurations were tested. Figure 11 below shows a vertical 

HVAC system with one central filter. Figure 12 is a horizontal HVAC system with one 

central filter.  

 

 

Figure 11. Vertical HVAC system with one central filter. Image courtesy Terrel Broiles.  
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Figure 12. Horizontal HVAC system with one central filter. Image courtesy Terrel 

Broiles.  

 

The Figure 13 below shows the vertical HVAC system with two return plenums 

each with a central filter. The return plenums were tested independently. This figure 

shows the set up for testing the left side only. 
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Figure 13. Vertical HVAC system with two central filters. Each side of the system was 

tested independently. This shows the configuration to test the left side. Image courtesy 

Terrel Broiles.  

 
Fan Curve Determination Procedure 

A series of measurements were first conducted to establish fan curves and to 

better understand the relationship between airflow and filter pressure drop in the test 

systems. Measurements were recorded within the supply plenum, return plenum, and 

between the evaporator coil and filter. The measurements include static pressure before 

and after the filter; static pressure before and after the evaporator coil; temperature before 

and after the evaporator coil; and relative humidity before and after the evaporator coil. 

Table 3 below summarizes the location and type of measurements recorded.  
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Table 3. Measurement type and location 

Measurement Location Measurements Recorded 

Return plenum Dry-bulb temperature (°C), relative humidity, 
and static pressure (Pa) 

Supply plenum Dry-bulb temperature (°C), relative humidity, 
and static pressure (Pa) 

Coil side of filter Static pressure (Pa) 

 

The testing equipment is presented below in Table 4.  

Table 4. Testing instrumentation 

Measurement Units Equipment Accuracy 

Pressure Pa (IWC) Energy Conservatory 
DG-700 

± 1% of reading or 0.15 Pa 
(0.0006 IWC) 

Temperature °C (°F) Fieldpiece ARH4 ±1°F for readings 32°F to 
113°F 

Relative Humidity  %RH Fieldpiece ARH4 ±2.5%@77°F(25°C), 10% 
to 90% RH 

Airflow m3/h (cfm) Energy Conservatory 
TrueFlow Plate 

±7% of reading 

 

The filter face was partially sealed with tape to restrict overflow, simulating filter 

loading and higher MERV equipment. Airflow rates were calculated in the field using 

Trueflow and the measured supply pressure. System measurements were required with 

the filter removed, TrueFlow installed, and the TrueFlow partially sealed at 3 intervals to 

achieve a total airflow reduction of 40%. Since there is no known research using tape to 

simulate filter loading, this process was carefully evaluated and documented.  

The TrueFlow Manual provides equations for estimating adjusted airflow 

(Equation 4) based on measured supply plenum pressure (The Energy Conservatory 

2006). 

 

 (4) 

 
where 
Qreference = volumetric flow rate of air with measuring device installed, m3/h (cfm) 
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∆Preference = supply plenum pressure with measuring device installed, Pa (in. w.c.) 
∆Poperating = operating supply plenum pressure, Pa (in. w.c.) 

Sensible, latent, and total capacity will be calculated for each of the 5 system 

conditions based on the following equations used by Stephens et al. (2010). The sensible 

capacity, qsensible (kW, kBtu/hr), is calculated using the Equation 5. 

 

qsensible = Q fanρ(Cp∆T )  (5) 

where 
Qfan = volumetric flow rate of air flowing through the cooling coil, m3/s (ft3/hr) 

 = air density, assumed constant, 1.2 kg/m3 (0.075 lbm/ft3) 

Cp = specific heat of air, assumed constant, 1.005 kJ/(kgK), (0.24 Btu/[lbm°F]) 
∆T = temperature difference across the cooling coil, K (°F) 
 
The latent capacity, qlatent (kW, kBtu/hr), is calculated using Equation 6. 

qlatent = Q fanρ(Wh fg )  (6) 

where 
Qfan = volumetric flow rate of air flowing through the cooling coil, m3/s (ft3/hr) 

 = air density, assumed constant, 1.2 kg/m3 (0.075 lbm/ft3) 

∆W = humidity ratio difference across the cooling coil, kg/kg (lbm/lbm) 
hfg  = latent heat of vaporization for water, assumed constant, 2257 kJ/kg (970 Btu/lb) 
 

The total capacity, qtotal (kW, kBtu/hr), is the sum of the sensible capacity 

(Equation 5) and latent capacity (Equation 6). Total capacity is expressed in Equation 7.  

 

qtotal = Q fanρ(Cp∆T +Wh fg )  (7) 

 
 
where 
Qfan = volumetric flow rate of air flowing through the cooling coil, m3/s (ft3/h) 

 = air density, assumed constant, 1.2 kg/m3 (0.075 lbm/ft3) 

C = specific heat of air, assumed constant, 1.005 kJ/(kgK), (0.24 Btu/[lbm°F]) 
∆T = temperature difference across the cooling coil, K (°F) 
∆W = humidity ratio difference across the cooling coil, kg/kg (lbm/lbm) 
hfg  = latent heat of vaporization for water, assumed constant, 2257 kJ/kg (970 Btu/lb) 
 

ρ

ρ

ρ
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Data Analysis 

The data was analyzed to assess the relationship between filter pressure drop and 

airflow rates; filter pressure drop and temperature differences across the coil (∆T); filter 

pressure drop and absolute humidity differences across the coil (∆W); airflow rate and 

temperature differences across the coil (∆T); and airflow rate and absolute humidity 

differences across the coil (∆W). Finally, the relationship between airflow rate and 

sensible, latent, and total capacities were also evaluated. Regression analysis was used to 

determine the strength of each relationship. The results from simulated filter loading were 

also compared to previous studies to estimate the impact of reduced airflow rates on air-

conditioner energy consumption. 

Finally, because the nature of data collection in the field can result in periodic 

improper measurements, a method of calculating an observation’s Z-score was used to 

identify whether or not an observation was a statistical outlier in the dataset. A Z-Score is 

a statistical measurement of an observation’s relationship to the mean in a group of 

scores. The z-score calculation is below in Equation 8. 

 

Ζ
i
=

Υ
i
− Υ

s
 

(8) 

 
 
where 

Υ
i
 = sample value 

Υ = sample mean 

s = standard deviation 
 

A Z-score of 0 means the score is the same as the mean. The Z-score can also be 

positive or negative, indicating whether it is above or below the mean and by how many 

standard deviations. A Z-score of 3.5 means the observation is at least 3.5 standard 

deviations from the mean, which serves as a common criterion for identifying outliers in 
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datasets like this one. The Z-score analysis was eventually used to remove one outlier 

within the data set (see pages 44-55 for additional information). 
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CHAPTER 4 

FIELD RESULTS & DATA ANALYSIS 

 

Test System Descriptions 

Field testing was performed in July, August, and September 2013. Ambient air 

temperature ranged from approximately 64°F to 86°F during the test periods. Twenty 

initial test systems were excluded from analysis for not meeting key criteria. Cause for 

exclusion included the following: system contained a known electrically commutated 

motor (ECM) blower; not enough room to install measurement equipment on either side 

of the filter; and filter located at a central return register and not at the air handler. Four 

out of the six chosen test systems were known permanent split capacitor (PSC) blowers; 

information could not be found for test systems 5 and 6, but from the subsequent airflow 

and pressure data suggest that they were likely ECM blowers or at least variable speed 

blowers.  

 

Test System Locations 

Four houses within the Atlanta metro-region were selected for testing (Figure 14). 

The homes all contain central forced-air AC and/or air source heat pump systems located 

in unconditioned spaces (unconditioned basement, attic, or crawlspace). The houses 

ranged in age from nearly 65 to approximately 90 years old, and the HVAC systems 

ranged from 1 to 10 years old.  The HVAC systems ranged from 2 to 4 tons.  They 

include Rheem, Trane, Ruud, and Carrier brand equipment, which represent some of the 

most common HVAC systems sold in the Atlanta area (Beaton 2013).  Thus the HVAC 

systems were considered generally representative of those installed in Atlanta homes over 

the past 10 years.  
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Figure 14 Location of the 4 test homes in the Atlanta metro-region. 

 
A total of five AC systems were assessed for this initial phase of testing. Two of 

the systems were located within the same home.  HVAC systems included both vertical 

and horizontal configurations. All systems had filters located at the air handler. A range 

of common filter sizes was included, from 14” x 20” to 20” x 24”.  

 

Test System 1 

Test system 1 is located in an unconditioned crawlspace. The house was built in 

the 1950s and has an area of approximately 1,700 ft2.  The 2.5-ton capacity system is 

horizontally configured (Figure 15). 
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Figure 15 Test system 1 is located in an unconditioned crawlspace and is horizontally 

configured. The return plenum is on the right and supply plenum to the left. 

 

Test System 2 

Test system 2 has a 2.5-ton capacity and is located in the unconditioned basement 

of a home built in 1939 (Figure 16). The home has an area of 2,014 ft2. The system was 

installed in 2012.  
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Figure 16 Test system 2 is vertically configured and located in an unconditioned 

basement. The return plenum is on the bottom and supply plenum above.  

 

Test System 3  

Test system 3 has a 2-ton capacity and is located in the unconditioned attic of the 

same home as test system 2. The system is configured horizontally and was installed in 

2012. 

 

Test System 4 

Test system 4 has 3.5-ton capacity and is located in an unconditioned basement 

(Figure 17). The home was built in 1927 and is approximately 1,750 ft2. The system was 

installed in approximately 2003.  
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Figure 17 Test system 4 is vertically configured and located in an unconditioned 

basement. The return plenum is on the left side and supply plenum above.  

 

Test Systems 5 and 6 

Test systems 5 and 6 are actually the same HVAC system. Figure 18 below shows 

how the system has two return plenums. Each plenum has its own filter and was tested 

separately. The system has 4-ton capacity, located in an unconditioned basement, and 

was installed in 2007. The house is approximately 1,850 ft2 and built in the 1950s.  
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Figure 18 Test systems 5 and 6. The photo shows the left side return plenum set up for 

testing.  

 

Analysis 

The following sections describe measured impacts of (i) filter pressure drop on 

system airflow rates, (ii) airflow rate reductions on temperature and absolute humidity 

differences across the coils, and (iii) airflow rate reductions on sensible and latent cooling 

capacity.  

 

Filter Pressure Drop & System Airflow 

The relationship between induced filter pressure drop and system airflow rates 

was first evaluated in each system, as shown in Figure 19 and Table 5. The absolute value 

of the pressure drop across the filter was compared to the reduction in airflow (as a 
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percentage of total system flow without filter installed) for each induced pressure drop 

condition. The induced filter pressure drop ranged from 16 Pa to 231 Pa. At least 75 Pa 

was achieved in each system, although systems 2 and 3 did not reach 100 Pa at their 

maximum level of filter blockage (which was nearly 75% blocked). Airflow rates ranged 

from 100% of total system airflow (i.e. airflow remained unchanged) to as low as 61% 

(i.e., a 39% reduction in airflow at the largest filter pressure drop of 231 Pa). Overall, as 

filter pressure drop increased, airflow rates generally decreased, particularly for the 

known PSC blowers. The two systems that were apparently ECM blowers responded to 

increased filter pressure drop by nearly maintaining airflow rates until reaching a 

maximum pressure and rapidly decreasing in flow, which is consistent with other ECM 

data (Murray 2012).  

 

 

Figure 19 Relationship of induced filter pressure drop and system airflow rate measured 

in the test systems. 
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Similarly, Figure 20 shows the same airflow and filter pressure data measured at 

each site and simulated loading condition, combined across all data points and fit with a 

linear regression. Regression analysis shows an intercept near 1.02, a slope of -0.0014, 

and a coefficient of determination (R2) of 0.71, suggesting that with reasonable certainty, 

each additional 10 Pa in filter pressure drop resulted in a ~1.4% decrease in system 

airflow rates in these systems. 

 

 

Figure 20 System airflow rates normalized to no filter conditions versus filter pressure 

drop. 

 

Table 5 Filter pressure drop and system airflow 

 Filter pressure drop (Pa) Percent of no filter flow (%) 

HVAC  

System 

Name 

No  

Filter 

True  

Flow 

True 

Flow 

Taped 

1 

True 

Flow 

Taped 

2 

True 

Flow 

Taped 

3 

No  

Filter 

True  

Flow 

True 

Flow 

Taped 

1 

True 

Flow 

Taped 

2 

True 

Flow 

Taped 

3 

1 0 49.6 85.6 144.7 180.4 100% 93% 89% 77% 69% 

2 0 27.8 47.3 58.3 76.3 100% 98% 96% 94% 97% 

3 0 16.3 31.9 57.5 81.9 100% 100% 98% 95% 90% 

4 0 51.7 125.3 181.2 230.8 100% 88% 82% 73% 61% 

5 (Right) 0 125.2 127.5 132.2 141.9 100% 97% 95% 91% 83% 

6 (5-Left) 0 36.0 57.7 86.4 115.8 100% 100% 99% 99% 99% 
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Test Systems 5 and 6 could not be verified as having an ECM blower, although 

evidence suggests that they were at least variable speed blowers. These two systems 

responded to increased filter pressure drop by nearly maintaining airflow rates until 

reaching a maximum pressure and rapidly decreasing in flow. System 5 (left return 

plenum) maintained a nearly identical airflow rates regardless of filter pressure drop, at 

least until ~115 Pa. System 6 (right plenum of system 5) maintained airflow rates within 

90% of the no filter flow until rapidly decreasing above 125 Pa. 

  

Filter Pressure Drop & Temperature Difference Across the Coil 

The relationship between induced filter pressure drop and the dry bulb 

temperature difference across the evaporator coil (∆T) was evaluated in each system, as 

shown in Table 6. The difference in temperature (∆T) before passing the evaporator coil 

(before-filter) and after passing the coil (in the supply plenum) was measured. Values of 

∆T at each flow and pressure drop condition were normalized to those measured with no 

filter installed and compared to the absolute value of the pressure drop across the filter. 

The change in ∆T ranged from 152% of total system airflow (i.e. the difference in 

temperature increased) to 97% (i.e., a 3% reduction in ∆T). 

 

Table 6 Filter pressure drop and coil ∆T  

 Pfilt (Pa) Percent of no filter ∆T (%) 

HVAC 

System Name 

No 

Filte

r 

Tru

e 

Flo

w 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

1 0 49.6 85.6 144.7 180.4 100% 94% 100% 108% 123% 

2 0 27.8 47.3 58.3 76.3 100% 
102

% 107% 107% 110% 

3 0 16.3 31.9 57.5 81.9 100% 
108

% 110% 113% 113% 

4 0 51.7 125.3 181.2 230.8 100% 
102

% 111% 152%* 138% 

5 (5-Right) 0 
125.

2 127.5 132.2 141.9 100% 97% 98% 98% 97% 

6 (5-Left) 0 36.0 57.7 86.4 115.8 100% 
107

% 109% 111% 114% 

* Data point is statistically an outlier and removed from analysis. 
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Importantly, the maximum change in ∆T (System 4 with 181.2 Pa filter pressure 

drop) was identified visually to be a likely outlier in the dataset. To determine whether or 

not this was the case, a Z-score was calculated for each of the 30 data points for the 

relative change in ∆T across all systems, as shown here in Equation 9:  

 

Ζ
i
=

Υ
i
− Υ

s
 (9) 

 
where 

Υ
i
 = sample value 

Υ = sample mean 

s = standard deviation of the sample 
 
Z-scores for each data point are shown in Table 7 on the next page. 
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Table 7 Z-scores for each ∆T measurement 

Filter pressure 

drop (Pa) Percent of no filter ∆T (%) Z-score 

0 100% -0.62 

0 100% -0.62 

0 100% -0.62 

0 100% -0.62 

0 100% -0.62 

0 100% -0.62 

49.6 94% -1.14 

27.8 102% -0.47 

16.3 108% -0.01 

51.7 102% -0.42 

125.2 97% -0.89 

36.0 107% -0.09 

85.6 100% -0.62 

47.3 107% -0.03 

31.9 110% 0.19 

125.3 111% 0.28 

127.5 98% -0.80 

57.7 109% 0.09 

144.7 108% 0.06 

58.3 107% -0.03 

57.5 113% 0.46 

181.2 152% 3.60 

132.2 98% -0.80 

86.4 111% 0.27 

180.4 123% 1.26 

76.3 110% 0.19 

81.9 113% 0.46 

230.8 138% 2.49 

141.9 97% -0.89 

115.8 114% 0.54 

 
The apparent outlier measured during the TrueFlow Taped 2 condition at System 

4 was shown to have a Z-score of 3.6, suggesting it was indeed an outlier with a score 

greater than commonly used criteria of Z = 3.5. Therefore, this data point is removed 

from further analysis. The remaining maximum change in ∆T is therefore 138% (at the 

highest filter pressure drop measured). The exact cause for the outlying data is unknown, 

but it was likely caused by experimental error in the field. No combination of airflow and 

pressure measurements was removed, however, because there were no outliers with Z-

scores greater than 3.5.  
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Figure 21 shows the remaining relative ∆T data versus absolute filter pressure 

drop measured in each of the test systems. 

 

Figure 21 Relative ∆T across the coil versus filter pressure drop for each test system. 

 

Similarly, Figure 22 shows the same ∆T and filter pressure drop data measured at 

each site and induced loading condition, combined across all data points and fitted with a 

linear regression. Regression analysis shows an intercept near 1.00, a slope of +0.0008 

with a coefficient of determination (R2) of 0.30, suggesting that with only moderate 

certainty, each additional 10 Pa in filter pressure drop resulted in a ~0.8% increase in 

system ∆T in these systems. Similarly, if filter pressure drop reaches 200 Pa, coil ∆T is 

expected to increase by approximately 16% in these test systems, on average. 
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Figure 22 Relationship of filter pressure drop and ∆T across all systems. 

 

These data suggest what other laboratory and field studies have shown: as airflow 

rates are reduced in the presence of larger filter pressure drops, sensible capacity will not 

decrease linearly with flow because the temperature difference across the coil increases 

slightly and supply air is delivered at a lower temperature (Nassif 2012, Yang et al 2004). 

This relationship is explored further in a subsequent section.  

 

Filter Pressure Drop & Absolute Humidity 

The relationship between induced filter pressure drop and changes in the 

difference in absolute humidity across the coil (∆W) was evaluated in each system, as 

shown in Table 7. The change in ∆W across the coil (as a percentage of ∆W without filter 

installed) was compared to the absolute value of the pressure drop across the filter for 

each induced pressure drop condition. Because ∆W was calculated using the dry bulb 

temperature and relative humidity measurements in each location, data from True Flow 

Taped 2 in System 4 was again excluded as an outlier. The resulting changes in ∆W 
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ranged from a minimum of 41% (i.e., a 59% reduction in ∆W) to a maximum of 100% 

(i.e. ∆W did not change). These data are shown in Figure 23 for each test system. 

 

Table 8 Filter pressure drop and absolute humidity differences across the coil 

 Pfilt (Pa) Percent of no filter ∆W (%) 

HVAC 

System 

Name 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

1 0 49.6 85.6 144.7 180.4 100% 41% 48% 82% 98% 

2 0 27.8 47.3 58.3 76.3 100% 82% 68% 77% 82% 

3 0 16.3 31.9 57.5 81.9 100% 84% 81% 81% 71% 

4 0 51.7 125.3 181.2 230.8 100% 86% 77% 132%* 100% 

5 (Right) 0 125.2 127.5 132.2 141.9 100% 81% 86% 95% 90% 

6 (5-Left) 0 36.0 57.7 86.4 115.8 100% 100% 100% 100% 100% 

*This data point is statistically an outlier and removed from analysis. 

 

 

Figure 23 Relationship of filter pressure drop and ∆W for each test systems.  
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Figure 24 shows the same ∆W and filter pressure data measured at each site and 

induced loading condition, combined across all data points and fitted with a linear 

regression. Regression analysis shows a slope near zero and a coefficient of 

determination (R2) of only 0.01, suggesting that there was no observed correlation 

between filter pressure drop and ∆W.  

 

 

Figure 24 Relationship of filter pressure drop and ∆W for all systems. 

 

Airflow and Temperature Differences Across the Coil 

Because airflow rates and pressure drops were not necessarily directly correlated, 
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Table 9 and Figure 25. The difference in temperature (∆T) before passing the evaporator 
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(∆T) at each flow and pressure drop condition were normalized to those measured with 
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temperature increased) to 97% (i.e., a 3% reduction in ∆T). The reduced airflow ranged 

from 100% of total system airflow (i.e. airflow remained unchanged) to 61%.   

 

Table 9 Fractional airflow and changes in ∆T across the evaporator coil 

 Percent of no filter flow (%) Percent of no filter ∆T (%) 

HVAC 

System 

Name 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

1 100% 93% 89% 77% 69% 100% 94% 100% 108% 123% 

2 100% 98% 96% 94% 97% 100% 102% 107% 107% 110% 

3 100% 100% 98% 95% 90% 100% 108% 110% 113% 113% 

4 100% 88% 82% 73% 61% 100% 102% 111% 152%* 138% 

5 (Right) 100% 97% 95% 91% 83% 100% 97% 98% 98% 97% 

6 (5-Left) 100% 100% 99% 99% 99% 100% 107% 109% 111% 114% 

* Data point is statistically an outlier and removed from analysis. 

 

 

Figure 25 Relationship of airflow and ∆T for each system.  
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Similarly, Figure 26 shows the same ∆T and system airflow data measured at each 

site and induced loading condition, combined across all data points and fit with a linear 

regression. Regression analysis shows an intercept near 0.80, a slope of 1.81, and a 

coefficient of determination (R2) of 0.44, suggesting that with moderate certainty, each 

additional 10% decrease in system airflow resulted in a ~9.8% increase in system ∆T in 

these systems.  

 

 

Figure 26 Relationship of airflow and ∆T for all systems. 

 

These data suggest what other laboratory and field studies have shown: as airflow 
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Airflow and Absolute Humidity Differences Across the Coil 

The relationship between system airflow and changes in the difference in absolute 

humidity across the coil (∆W) was evaluated in each system, as shown in Table 10. 

Because ∆W was calculated using the dry bulb temperature and relative humidity 

measurements in each location, data from True Flow Taped 2 in System 4 was again 

excluded as an outlier. The resulting changes in ∆W ranged from a minimum of 41% (i.e. 

a 59% reduction in ∆W) to a maximum of 100% (i.e. ∆W did not change). The reduced 

airflow ranged from 100% of total system airflow (i.e. airflow remained unchanged) to 

61% (i.e. a 39% reduction in airflow). These data are shown in Figure 27 for each test 

system. 

 

Table 10 System airflow and ∆W across the evaporator coil 

 
Percent of no filter ∆W (%) Percent of no filter flow (%) 

HVAC 

System 

Name 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

1 100% 41% 48% 82% 98% 100% 93% 89% 77% 69% 

2 100% 82% 68% 77% 82% 100% 98% 96% 94% 97% 

3 100% 84% 81% 81% 71% 100% 100% 98% 95% 90% 

4 100% 86% 77% 132% 100% 100% 88% 82% 73% 61% 

5 (Right) 100% 81% 86% 95% 90% 100% 97% 95% 91% 83% 

6 (5-Left) 100% 100% 100% 100% 100% 100% 100% 99% 99% 99% 

*This data point is statistically an outlier and removed from analysis. 
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Figure 27 The relationship of airflow and absolute humidity for each system. 
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Figure 28 Relationship of airflow and absolute humidity for all systems. 
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Table 11 Relationship of airflow and sensible capacity for all systems. 

Percent of no filter flow (%) Percent no Filter Sensible Capacity (kBTU/hr) 

HVAC System 

Name 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

1 100% 93% 89% 77% 69% 100% 87% 89% 84% 86% 

2 100% 98% 96% 94% 97% 100% 99% 103% 100% 106% 

3 100% 100% 98% 95% 90% 100% 107% 107% 108% 102% 

4 100% 88% 82% 73% 61% 100% 90% 92% 111% 85% 

5-Right 100% 97% 95% 91% 83% 100% 94% 93% 89% 80% 

5-Left 100% 100% 99% 99% 99% 100% 106% 108% 110% 113% 

* Data point is statistically an outlier and removed from analysis. 

 

Similarly, Figure 29 shows the same sensible capacity and system airflow data 

measured at each site and simulated loading condition, combined across all data points 

and fit with a linear regression. Regression analysis shows an intercept near 0.36, a slope 

of 0.67, and a coefficient of determination (R2) of 0.53, suggesting that with moderate 

certainty, each 10% reduction in airflow resulted in a ~7% decrease in sensible capacity 

in these systems. If one was concerned with keeping sensible capacity at least 80% of the 

no filter sensible capacity, these data suggest that airflow rates should not be able to 

decrease more than approximately 30%.  

 

Figure 29 Relationship of airflow and sensible capacity for all systems.  
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The change in latent capacity ranged from 100% to 38% (Table 12). Figure 30 

shows the same latent capacity and system airflow data measured at each site and 

simulated loading condition, combined across all data points and fit with a linear 

regression. Regression analysis shows an intercept near 0.04, a slope of 0.84, and a 

coefficient of determination (R2) of 0.23, suggesting that with relatively low certainty, a 

10% decrease in airflow resulted in a ~10.4% decrease in system latent capacity in these 

systems.  

 
Table 12 Relationship of airflow and latent capacity for all systems. 

Percent of no filter flow (%) Percent no Filter Latent Capacity (kBTU/hr) 

HVAC System 

Name 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 

1 

True 

Flow 

Taped 

2 

True 

Flow 

Taped 

3 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 

1 

True 

Flow 

Taped 

2 

True 

Flow 

Taped 

3 

1 100% 93% 89% 77% 69% 100% 38% 43% 63% 68% 

2 100% 98% 96% 94% 97% 100% 80% 65% 72% 79% 

3 100% 100% 98% 95% 90% 100% 84% 79% 77% 64% 

4 100% 88% 82% 73% 61% 100% 76% 64% 97% 61% 

5-Right 100% 97% 95% 91% 83% 100% 79% 82% 86% 75% 

5-Left 100% 100% 99% 99% 99% 100% 100% 99% 99% 99% 

* Data point is statistically an outlier and removed from analysis. 

 

Figure 30 Relationship of airflow and latent capacity for all systems.  
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Finally, the change in total capacity ranged from 108% to 69% (Table 13). Figure 

31 shows the same latent capacity and system airflow data measured at each site and 

simulated loading condition, combined across all data points and fit with a linear 

regression. Regression analysis shows an intercept near 0.33, a slope of 0.64, and a 

coefficient of determination (R2) of 0.36, suggesting that with moderate certainty, each 

additional 10% reduction in airflow resulted in a ~6.7% decrease in total cooling capacity 

in these systems.  

 

Table 13 Relationship of airflow and total capacity for all systems. 

Percent of no filter flow (%) Percent no Filter Total Capacity (kBTU/hr) 

HVAC System 

Name 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 

1 

True 

Flow 

Taped 

2 

True 

Flow 

Taped 

3 

No 

Filter 

True 

Flow 

True 

Flow 

Taped 

1 

True 

Flow 

Taped 

2 

True 

Flow 

Taped 

3 

1 100% 93% 89% 77% 69% 100% 69% 72% 76% 79% 

2 100% 98% 96% 94% 97% 100% 93% 91% 92% 98% 

3 100% 100% 98% 95% 90% 100% 98% 97% 97% 88% 

4 100% 88% 82% 73% 61% 100% 85% 81% 106% 76% 

5-Right 100% 97% 95% 91% 83% 100% 89% 89% 88% 78% 

5-Left 100% 100% 99% 99% 99% 100% 104% 105% 106% 108% 

* Data point is statistically an outlier and removed from analysis. 

 

 

Figure 31 Relationship of airflow and total capacity for all systems.  
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These data suggest what other laboratory and field studies have shown: as airflow 

rates are reduced in the presence of larger filter pressure drops, total cooling capacity is 

reduced. Rodriguez et al. (1996) showed that a 10% reduction in airflow caused capacity 

to decrease by approximately 7% in a laboratory setting. Stephens et al (2010) found that 

decreasing airflow rates by approximately 7% results in only a 3-4% reduction in total 

capacity in field measurements in a controlled test house setting. These are some of the 

first data to systematically report changes in capacity in response to simulated filter 

loading conditions in real residences. 

In other words, as airflow decreased so did sensible, latent, and total capacity, 

although these relationships were not linear. Because reductions in cooling capacity can 

be linked to increased system runtimes, this research can be used to inform decisions 

about maximum filter loading values that should inform filter replacement schedules. 

Once a maximum acceptable reduction in sensible capacity is established, this data can be 

used to identify the airflow and filter pressure drop thresholds, which can impact future 

decisions about filter replacement timing.   

Data herein can be used to inform filter replacement strategies in U.S. homes. 

Once a maximum acceptable reduction in sensible capacity is established, this data can be 

used to identify the airflow and filter pressure drop thresholds, which can impact future 

decisions about filter replacement timing.  Taking values relative to no filter conditions 

(for which 100% flow is impossible in most systems because even the lowest efficiency 

filter will induce more pressure drop than no filter conditions), one could define, say, a 

20% reduction in sensible capacity relative to no filter conditions as the maximum 

allowable value. This sensible capacity reduction is an admittedly arbitrary value that 

should be verified in energy simulations and field tests. According to the data in Figure 

29, sensible capacity is reduced to 80% of no filter sensible capacity when airflow is 

reduced by approximately 30% to only 70% of the no filter airflow. According to Figure 

20, a 30% reduction in airflow would occur at a filter pressure drop of approximately 225 
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Pa. Similarly, if only a 10% reduction in sensible capacity was set as the criteria, a 

maximum of approximately 15% reduction in airflow (relative to no filter) would be 

allowed, which would be reached a filter pressure drop of approximately 125 Pa. 

Although these criteria should be further refined with simulations and larger field studies, 

the methods and results herein suggest that enough information can be gathered to 

establish maximum filter pressure drops allowed in residential HVAC systems, and 

particularly in those that rely on blowers without sophisticated flow controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 60

CHAPTER 5 

CONCLUSION 

 This study sought to: (i) develop and apply a methodology for simulating filter 

loading in-situ; (ii) measure the impact of simulated filter loading on air conditioner (AC) 

performance in-situ; and (iii) provide a greater understanding of when a filter is “dirty” 

and in should be replaced.  Five central AC systems in the Atlanta metro-region were 

evaluated using TrueFlow from The Energy Conservatory. Filter loading was simulated 

by installing the TrueFlow® airflow metering device and partially taping off the face at 

three different increments. This resulted in measurements at five discrete static pressure 

conditions: no filter, TrueFlow, TrueFlow Taped #1, TrueFlow Taped #2, and TrueFlow 

Taped #3. The results strongly suggest that this methodology is an accurate means of 

simulating filter loading in-situ and provides important HVAC performance data. Results 

from each major section are summarized below. 

 

Filter Pressure Drop & System Airflow 

The relationship between induced filter pressure drop and system airflow rates 

was first evaluated in each system. The absolute value of the pressure drop across the 

filter was compared to the reduction in airflow (as a percentage of total system flow 

without filter installed) for each induced pressure drop condition. Overall, as filter 

pressure drop increased, airflow rates generally decreased, particularly for the known 

PSC blowers. The two systems that were apparently ECM blowers (or at least variable 

speed blowers) responded to increased filter pressure drop by nearly maintaining airflow 

rates until reaching a maximum pressure and rapidly decreasing in flow, which is 

consistent with other ECM data.  
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Filter Pressure Drop & Temperature Difference Across the Coil 

The relationship between induced filter pressure drop and the dry bulb 

temperature difference across the evaporator coil (∆T) was evaluated in each system. The 

difference in temperature (∆T) before passing the evaporator coil (pre-filter) and after 

passing the coil (in supply plenum) was measured. With moderate certainty, it was 

concluded that as induced filter pressure drop increased, the ∆T also increased in these 

systems. These data suggest what other laboratory and field studies have shown: as 

airflow rates are reduced in the presence of larger filter pressure drops, sensible capacity 

will not decrease linearly with flow because the temperature difference across the coil 

increases slightly and supply air is delivered at a lower temperature. This section also 

further indicated the validity of this methodology for simulating filter loading in-situ.   

 

Filter Pressure Drop & Absolute Humidity 

The relationship between induced filter pressure drop and changes in the 

difference in absolute humidity across the coil (∆W) was evaluated in each system. The 

change in ∆W across the coil (as a percentage of ∆W without filter installed) was 

compared to the absolute value of the pressure drop across the filter for each induced 

pressure drop condition. There was no observed correlation between filter pressure drop 

and ∆W.  

 

Airflow and Temperature 

The relationship of airflow and the dry bulb temperature difference across the 

evaporator coil (∆T) was evaluated in each system. The difference in temperature (∆T) 

before passing the evaporator coil (pre-filter) and after passing the coil (in supply 

plenum) was measured. These data suggest what other laboratory and field studies have 

shown: as airflow rates are reduced in the presence of larger filter pressure drops, 

temperature difference across the coil increases slightly and supply air is delivered at a 
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lower temperature. This data also indicates that there is a stronger relationship between 

∆T and airflow rates compared to induced filter pressure drop because induced filter 

pressure drop did not affect airflow similarly in each system and it is airflow rates that 

directly impact ∆T. 

 

Airflow and Absolute Humidity 

The relationship between system airflow and changes in the difference in absolute 

humidity across the coil (∆W) was evaluated in each system. There was no observed 

correlation between system airflow and ∆W. 

 

Airflow and System Capacity 

The change in sensible, latent, and total capacities (as a percent of system 

capacity with no filter installed) was compared to the reduction in airflow (as a percent of 

total system flow without filter installed). Overall as airflow decreased in response to 

larger filter pressure drops, so did sensible, latent, and total capacity, although impacts 

were not necessarily linear.  

 

Analysis Summary 

Based on a relatively strong linear regression of system airflow versus induced 

filter pressure drop, airflow rates were reduced 10% from no filter airflow at around 90 

Pa and reduced 20% from no filter airflow at around 150 Pa. This data can inform 

decisions about filter replacement and be used to educate builders, contractors, and 

homeowners about the importance of routine HVAC maintenance. Once a maximum 

acceptable reduction in sensible capacity is established, this data can be used to identify 

the airflow and filter pressure drop thresholds. For example, a 10% reduction in sensible 

capacity would result in approximately a 10% increase in AC run time, all is being equal. 

If a 10% reduction in sensible capacity is selected as the threshold for filter replacement, 
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then the data indicates filters should be replaced at around 80-85% of no filter airflow, 

which is around a filter pressure drop of 150 Pa.   

 

Recommendations 

This pilot study provided valuable proof of concept for an approach to simulating 

filter loading in-situ. Taping the face of the TrueFlow was identified to work consistently 

well to simulate filter loading. In the future, the study should be expanded to a greater 

number of central air conditioners and continuous measurements should be recorded 

using data loggers. One challenge was establishing when the AC reached steady state. 

Greater certainty may be possible by recording continuous measurements and waiting 

longer between each simulated filter condition. Measuring the air handler and condenser 

power draw would also provide potentially valuable data. Additionally, the in-situ AC 

performance data can be used to evaluate and improve current computer models of 

HVAC performance. 
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APPENDIX A 

TEST SYSTEM 1 

 No Filter True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

Supply Measurements      

Relative humidity, Φ (fractional) 0.89 0.92 0.93 0.92 0.93 

Dry-bulb temperature, t (°C) 12.80 13.20 12.50 11.50 10.00 

Humidity ratio, W (kgw/kgda) 0.01 0.01 0.01 0.01 0.01 

Return Measurements      

Relative humidity, Φ (fractional) 0.63 0.62 0.61 0.60 0.58 

Dry-bulb temperature, t (°C) 22.30 22.10 22.00 21.80 21.70 

pressure wrt outside 67.50 58.30 53.80 40.10 32.60 

Humidity ratio, W (kgw/kgda) 0.01 0.01 0.01 0.01 0.01 

Filter Measurement       

Pressure (Coil Side) 67.50 107.90 139.40 184.80 213.00 

Pfilt (pa) 0.00 49.60 85.60 144.70 180.40 

True Flow Pressure (Pa) - 62 - - - 

True Flow Air Flow (CFM) - 906 - - - 

Adjusted airflow (CFM) 975 906 870 751 677 

Percent of no filter flow 100% 93% 89% 77% 69% 

deltaW 0.002 0.001 0.001 0.002 0.002 

Percent of no filter deltaW 100.00% 40.60% 47.91% 81.70% 98.16% 

deltaT 9.50 8.90 9.50 10.30 11.70 

Percent of no filter deltaT 100.00% 93.68% 100.00% 108.42% 123.16% 

System Capacity      

Qfan (m3/s) 0.46 0.43 0.41 0.35 0.32 

Air density (p, kg/m3) 1.2 1.2 1.2 1.2 1.2 

Specific heat of air (C, kJ/(kgK) 1.005 1.005 1.005 1.005 1.005 

deltaT (K) 9.50 8.90 9.50 10.30 11.70 

deltaW (kg/kg) 0.002 0.001 0.001 0.002 0.002 

Hfg (kJ/kg) 2257 2257 2257 2257 2257 

Sensible Capacity (kW) 5.27 4.59 4.71 4.40 4.51 

Latent Capacity (kW) 2.98 1.13 1.28 1.88 2.04 

Total Capacity (kW) 8.25 5.72 5.98 6.28 6.55 

Sensible Capacity (kBTU/hr) 17.99 15.66 16.06 15.03 15.39 

Latent Capacity (kBTU/hr) 10.18 3.84 4.35 6.41 6.94 

Total Capacity (kBTU/hr) 28.16 19.50 20.41 21.44 22.34 

Sensible Capacity (tons) 1.50 1.30 1.34 1.25 1.28 

Latent Capacity (tons) 0.85 0.32 0.36 0.53 0.58 

Total Capacity (tons) 2.35 1.62 1.70 1.79 1.86 

Percent no filter Sensible 

Capacity 

100.00% 87.07% 89.28% 83.57% 85.59% 

Percent no filter Latent Capacity 100.00% 37.73% 42.77% 62.97% 68.22% 

Percent no filter Total Capacity 100.00% 69.24% 72.47% 76.12% 79.31% 
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TEST SYSTEM 2 

 No Filter True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

Supply Measurements      

Relative humidity, Φ (fractional) 0.85 0.87 0.86 0.87 0.87 

Dry-bulb temperature, t (°C) 9.40 8.40 7.30 6.90 6.30 

Humidity ratio, W (kgw/kgda) 0.01 0.01 0.01 0.01 0.01 

pressure wrt house 79.80 78.10 75.00 72.40 69.10 

Return Measurements      

Relative humidity, Φ (fractional) 0.56 0.55 0.51 0.52 0.53 

Dry-bulb temperature, t (°C) 20.40 19.60 19.10 18.70 18.40 

pressure wrt house 62.10 59.20 57.20 54.30 53.30 

Humidity ratio, W (kgw/kgda) 0.0084 0.0078 0.0070 0.0070 0.0069 

Filter Measurement      

Pressure (Coil Side)  87 104.5 112.6 129.6 

Pfilt (pa) 0 27.8 47.3 58.3 76.3 

True Flow Pressure (Pa) - 34 - - - 

True Flow Air Flow (CFM) - 674 - - - 

Adjusted airflow (CFM) 690 674 663 646 668 

Percent of no filter flow 100.00% 97.64% 95.97% 93.51% 96.73% 

deltaW 0.002 0.002 0.002 0.002 0.002 

Percent of no filter deltaW 100.00% 81.82% 68.18% 77.27% 81.82% 

deltaT 11.00 11.20 11.80 11.80 12.10 

Percent of no filter deltaT 100.00% 101.82% 107.27% 107.27% 110.00% 

System Capacity      

Qfan (m3/s) 0.33 0.32 0.31 0.30 0.32 

Air density (p, kg/m3) 1.2 1.2 1.2 1.2 1.2 

Specific heat of air (C, kJ/(kgK) 1.005 1.005 1.005 1.005 1.005 

deltaT (K) 11.00 11.20 11.80 11.80 12.10 

deltaW (kg/kg) 0.002 0.002 0.002 0.002 0.002 

Hfg (kJ/kg) 2257 2257 2257 2257 2257 

Sensible Capacity (kW) 4.32 4.30 4.45 4.34 4.60 

Latent Capacity (kW) 1.94 1.55 1.27 1.40 1.54 

Total Capacity (kW) 6.26 5.85 5.72 5.74 6.14 

Sensible Capacity (kBTU/hr) 14.75 14.66 15.18 14.79 15.69 

Latent Capacity (kBTU/hr) 6.62 5.29 4.33 4.79 5.24 

Total Capacity (kBTU/hr) 21.37 19.95 19.52 19.58 20.93 

Sensible Capacity (tons) 1.23 1.22 1.27 1.23 1.31 

Latent Capacity (tons) 0.55 0.44 0.36 0.40 0.44 

Total Capacity (tons) 1.78 1.66 1.63 1.63 1.74 

Percent no filter Sensible 

Capacity 

100.00% 99.41% 102.95% 100.31% 106.41% 

Percent no filter Latent Capacity 100.00% 79.88% 65.44% 72.26% 79.15% 

Percent no filter Total Capacity 100.00% 93.36% 91.33% 91.62% 97.96% 
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TEST SYSTEM 3 

 No Filter True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

Supply Measurements      

Relative humidity, Φ (fractional) 0.833 0.837 0.837 0.837 0.834 

Dry-bulb temperature, t (°C) 11.30 9.60 9.00 8.30 8.10 

Humidity ratio, W (kgw/kgda) 0.007 0.006 0.006 0.006 0.006 

pressure wrt attic 133.20 130.30 125.80 118.90 107.60 

Return Measurements      

Relative humidity, Φ (fractional) 0.561 0.521 0.513 0.504 0.501 

Dry-bulb temperature, t (°C) 23.30 22.50 22.20 21.90 21.70 

pressure wrt attic 35.10 34.80 33.40 31.90 28.40 

Humidity ratio, W (kgw/kgda) 0.0100 0.0088 0.0085 0.0082 0.0080 

Filter Measurement       

Pressure (Coil Side)  51.1 65.3 89.4 110.3 

Pfilt (pa) 0 16.3 31.9 57.5 81.9 

True Flow Pressure (Pa) - 16.7 - - - 

True Flow Air Flow (CFM) - 474 - - - 

Adjusted airflow (CFM) 476 474 464 454 428 

Percent of no filter flow 100.00% 99.57% 97.55% 95.33% 89.95% 

deltaW 0.003 0.003 0.003 0.003 0.002 

Percent of no filter deltaW 100.00% 83.87% 80.65% 80.65% 70.97% 

deltaT 12.00 12.90 13.20 13.60 13.60 

Percent of no filter deltaT 100.00% 107.50

% 

110.00% 113.33% 113.33% 

System Capacity      

Qfan (m3/s) 0.225 0.224 0.219 0.214 0.202 

Air density (p, kg/m3) 1.2 1.2 1.2 1.2 1.2 

Specific heat of air (C, kJ/(kgK) 1.005 1.005 1.005 1.005 1.005 

deltaT (K) 12.00 12.90 13.20 13.60 13.60 

deltaW (kg/kg) 0.003 0.003 0.003 0.003 0.002 

Hfg (kJ/kg) 2257 2257 2257 2257 2257 

Sensible Capacity (kW) 3.25 3.48 3.49 3.51 3.31 

Latent Capacity (kW) 1.89 1.58 1.48 1.45 1.20 

Total Capacity (kW) 5.14 5.06 4.97 4.96 4.52 

Sensible Capacity (kBTU/hr) 11.09 11.87 11.90 11.99 11.31 

Latent Capacity (kBTU/hr) 6.44 5.37 5.06 4.95 4.11 

Total Capacity (kBTU/hr) 17.53 17.25 16.97 16.93 15.42 

Sensible Capacity (tons) 0.92 0.99 0.99 1.00 0.94 

Latent Capacity (tons) 0.54 0.45 0.42 0.41 0.34 

Total Capacity (tons) 1.46 1.44 1.41 1.41 1.28 

Percent no filter Sensible 

Capacity 

100.00% 107.04

% 

107.30% 108.04% 101.94% 

Percent no filter Latent Capacity 100.00% 83.51% 78.67% 76.88% 63.84% 

Percent no filter Total Capacity 100.00% 98.40% 96.79% 96.60% 87.95% 
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TEST SYSTEM 4 

 No Filter True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

Supply Measurements      

Relative humidity, Φ (fractional) 0.805 0.817 0.859 0.874 0.882 

Dry-bulb temperature, t (°C) 15.20 14.30 13.30 9.40 10.00 

Humidity ratio, W (kgw/kgda) 0.009 0.008 0.008 0.006 0.007 

pressure wrt outside 26.80 23.20 20.80 15.20 11.80 

Return Measurements      

Relative humidity, Φ (fractional) 0.612 0.597 0.589 0.575 0.565 

Dry-bulb temperature, t (°C) 23.30 22.60 22.30 21.70 21.20 

pressure wrt outside 53.50 41.70 36.30 28.80 20.20 

Humidity ratio, W (kgw/kgda) 0.011 0.010 0.010 0.009 0.009 

Filter Measurement       

Pressure (Coil Side) - 93.4 161.6 210 251 

Pfilt (pa) 0 51.7 125.3 181.2 230.8 

True Flow Pressure (Pa) - 69 - - - 

True Flow Air Flow (CFM) - 1279 - - - 

Adjusted airflow (CFM) 1449 1279 1193 1063 890 

Percent of no filter flow 100.00% 88.29% 82.37% 73.37% 61.45% 

deltaW 0.002 0.002 0.002 0.003 0.002 

Percent of no filter deltaW 100.00% 86.36% 77.27% 131.82% 100.00% 

deltaT 8.10 8.30 9.00 12.30 11.20 

Percent of no filter deltaT 100.00% 102.47% 111.11% 151.85% 138.27% 

System Capacity      

Qfan (m3/s) 0.68 0.60 0.56 0.50 0.42 

Air density (p, kg/m3) 1.2 1.2 1.2 1.2 1.2 

Specific heat of air (C, kJ/(kgK) 1.005 1.005 1.005 1.005 1.005 

deltaT (K) 8.10 8.30 9.00 12.30 11.20 

deltaW (kg/kg) 0.002 0.002 0.002 0.003 0.002 

Hfg (kJ/kg) 2257 2257 2257 2257 2257 

Sensible Capacity (kW) 6.68 6.04 6.11 7.44 5.67 

Latent Capacity (kW) 4.07 3.11 2.59 3.94 2.50 

Total Capacity (kW) 10.75 9.15 8.71 11.38 8.18 

Sensible Capacity (kBTU/hr) 22.79 20.62 20.86 25.39 19.36 

Latent Capacity (kBTU/hr) 13.90 10.60 8.85 13.44 8.54 

Total Capacity (kBTU/hr) 36.69 31.21 29.70 38.83 27.90 

Sensible Capacity (tons) 1.90 1.72 1.74 2.12 1.61 

Latent Capacity (tons) 1.16 0.88 0.74 1.12 0.71 

Total Capacity (tons) 3.06 2.60 2.48 3.24 2.33 

Percent no filter Sensible 

Capacity 

100.00% 90.47% 91.52% 111.41% 84.96% 

Percent no filter Latent Capacity 100.00% 76.25% 63.65% 96.72% 61.45% 

Percent no filter Total Capacity 100.00% 85.08% 80.96% 105.85% 76.05% 
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TEST SYSTEM 5 

Supply Measurements No Filter True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

Relative humidity, Φ (fractional) 0.876 0.883 0.88 0.885 0.887 

Dry-bulb temperature, t (°C) 11.60 11.60 11.40 11.40 11.30 

Humidity ratio, W (kgw/kgda) 0.0074 0.0075 0.0074 0.0074 0.0074 

pressure wrt outside 63.5 62.8 62.5 62 59.9 

Return Measurements      

Relative humidity, Φ (fractional) 0.621 0.613 0.617 0.632 0.628 

Dry-bulb temperature, t (°C) 20.8 20.5 20.4 20.4 20.2 

pressure wrt outside 123.4 116.8 111.6 101.4 84.6 

Humidity ratio, W (kgw/kgda) 0.0095 0.0092 0.0092 0.0094 0.0093 

Filter Measurement       

Pressure (Coil Side) 0 125.2 127.5 132.2 141.9 

Pfilt (pa) 0 8.4 15.9 30.8 57.3 

True Flow Pressure (Pa) - 16.2 - - - 

True Flow Air Flow (CFM) - 616 - - - 

Adjusted airflow (CFM) 633 616 602 574 524 

Percent of no filter flow 100.00% 97.29% 95.10% 90.65% 82.80% 

deltaW 0.002 0.002 0.002 0.002 0.002 

Percent of no filter deltaW 100.00% 80.95% 85.71% 95.24% 90.48% 

deltaT 9.20 8.90 9.00 9.00 8.90 

Percent of no filter deltaT 100.00% 96.74% 97.83% 97.83% 96.74% 

System Capacity      

Qfan (m3/s) 0.30 0.29 0.28 0.27 0.25 

Air density (p, kg/m3) 1.2 1.2 1.2 1.2 1.2 

Specific heat of air (C, kJ/(kgK) 1.005 1.005 1.005 1.005 1.005 

deltaT (K) 9.20 8.90 9.00 9.00 8.90 

deltaW (kg/kg) 0.002 0.002 0.002 0.002 0.002 

Hfg (kJ/kg) 2257 2257 2257 2257 2257 

Sensible Capacity (kW) 3.32 3.12 3.08 2.94 2.66 

Latent Capacity (kW) 1.70 1.34 1.39 1.47 1.27 

Total Capacity (kW) 5.02 4.46 4.47 4.41 3.93 

Sensible Capacity (kBTU/hr) 11.3 10.6 10.5 10.0 9.1 

Latent Capacity (kBTU/hr) 5.80 4.57 4.73 5.01 4.34 

Total Capacity (kBTU/hr) 17.1 15.2 15.3 15.0 13.4 

Sensible Capacity (tons) 0.94 0.89 0.88 0.84 0.76 

Latent Capacity (tons) 0.48 0.38 0.39 0.42 0.36 

Total Capacity (tons) 1.43 1.27 1.27 1.25 1.12 

Percent no filter Sensible 

Capacity 

100.00% 94.12% 93.03% 88.68% 80.10% 

Percent no filter Latent Capacity 100.00% 78.76% 81.51% 86.33% 74.91% 

Percent no filter Total Capacity 100.00% 88.91% 89.13% 87.88% 78.34% 



 69

TEST SYSTEM 6 

 No Filter True 

Flow 

True 

Flow 

Taped 1 

True 

Flow 

Taped 2 

True 

Flow 

Taped 3 

Supply Measurements      

Relative humidity, Φ (fractional) 0.852 0.866 0.873 0.876 0.878 

Dry-bulb temperature, t (°C) 13.1 12.4 12.0 11.6 11.2 

Humidity ratio, W (kgw/kgda) 0.0080 0.0078 0.0076 0.0074 0.0073 

pressure wrt outside 65.6 64.6 63.5 59.5 55.3 

Return Measurements      

Relative humidity, Φ (fractional) 0.598 0.592 0.583 0.579 0.576 

Dry-bulb temperature, t (°C) 22.2 22.1 21.9 21.7 21.6 

pressure wrt outside 95.3 82.6 75.9 68.8 60.6 

Humidity ratio, W (kgw/kgda) 0.010 0.010 0.010 0.009 0.009 

Filter Measurement       

Pressure (Coil Side) - 118.6 133.6 155.2 176.4 

Pfilt (pa) 0 36 57.7 86.4 115.8 

True Flow Pressure (Pa) - 46 - - - 

True Flow Air Flow (CFM) - 1044 - - - 

Adjusted airflow (CFM) 1046 1044 1039 1035 1032 

Percent of no filter flow 100.00% 99.77% 99.32% 98.87% 98.64% 

deltaW 0.002 0.002 0.002 0.002 0.002 

Percent of no filter deltaW 100% 100.0% 100.0% 100.0% 100.0% 

deltaT 9.100 9.700 9.900 10.100 10.400 

Percent of no filter deltaT 100.00% 106.59% 108.79% 110.99% 114.29% 

System Capacity      

Qfan (m3/s) 0.49 0.49 0.49 0.49 0.49 

Air density (p, kg/m3) 1.2 1.2 1.2 1.2 1.2 

Specific heat of air (C, kJ/(kgK) 1.005 1.005 1.005 1.005 1.005 

deltaT (K) 9.10 9.70 9.90 10.10 10.40 

deltaW (kg/kg) 0.0020 0.002 0.002 0.002 0.002 

Hfg (kJ/kg) 2257 2257 2257 2257 2257 

Sensible Capacity (kW) 5.42 5.76 5.86 5.95 6.11 

Latent Capacity (kW) 2.67 2.67 2.66 2.64 2.64 

Total Capacity (kW) 8.09 8.43 8.51 8.59 8.75 

Sensible Capacity (kBTU/hr) 18.49 19.67 19.98 20.29 20.85 

Latent Capacity (kBTU/hr) 9.13 9.11 9.07 9.02 9.00 

Total Capacity (kBTU/hr) 27.62 28.77 29.05 29.31 29.85 

Sensible Capacity (tons) 1.54 1.64 1.67 1.69 1.74 

Latent Capacity (tons) 0.76 0.76 0.76 0.75 0.75 

Total Capacity (tons) 2.30 2.40 2.42 2.44 2.49 

Percent no filter Sensible 

Capacity 

100.00% 106.35% 108.05% 109.73% 112.73% 

Percent no filter Latent Capacity 100.00% 99.77% 99.32% 98.87% 98.64% 

Percent no filter Total Capacity 100.00% 104.18% 105.17% 106.14% 108.07% 
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