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SUMMARY 

An important problem in the area of system modeling 

and identification is that of det^rmino-ng the dynamic charac­

teristics of a given system while it is in operation. One 

useful measure of the dynamic behavior of a system is its 

impulse response. The impulse response of a linear system 

can be determined while the system is in operation by using 

a crosscorrelation technique. This method consists of 

crosscorrelating an appropriate additive input test signal 

with the system output. . The objective of this thesis is to 

demonstrate the effectiveness of using a pseudo-random noise 

sequence as a test signal and digital techniques to perform 

the crosscorrelation operation. Pseudo-random noise se­

quences possess a number of desirable properties which 

significantly simplify the algorithm involved in performing 

the crosscorrelation calculation* A digital prototype using 

integrated circuit logic war. constructed to implement this 

impulse response calculation process.. The prototype calcu­

lator was tested and found to function as anticipated, thus 

demonstrating the effectiveness of a digital approach to the 

correlation method when pseudo-random noise is used as an 

input test signal. 
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CHAPTER I 

SYSTEM DYNAMIC RESPONSE MEASUREMENTS 

System Modeling and Identification 

A model may be defined for engineering purposes as "a 

representation of the essential aspects of a planned or an 

existing system, which provides the information about that 

system in a usable form."1 A model may be conceptual, 

physical, or mathematical, depending on the essential aspects 

of the system that is to be represented. 

In the engineering field models of systems are used 

extensively. In the area of research, models are often used 

to give an interpretation of measured information or data. 

The designer may use models of components to create an over­

all system that meets specified design criteria. In adap­

tive control systems the actual operation of a system depends 

on certain knowledge about the system. First, suitable 

measurements are made to determine the parameters for an 

appropriate model. This knowledge of the system is then 

evaluated on the basis of predetermined criteria and adjust­

ments are made according to some algorithm on controllable 

parameters of the system.2 

There are a number of basic considerations involved 

in choosing a model for parameter measurements. One is 



2 

whether the dynamic or the static behavior of the system is 

to be represented. Another is whether or not the system to 

be modeled is linear or non-linear. Whether or not measure­

ments may be made while a system is in normal operation must 

also be considered. From this point many more considerations 

are involved that are strongly object-oriented. For example * 

there might be a need to determine conditions under which a 

linear model could be used to represent a non-linear system. 

Other examples are incorporating a priori knowledge, approx­

imating complex systems with simpler models, and judging the 

quality of the model.1 

Dynamic Characteristics 

One important problem in the area of system modeling 

and identification is that of determining the dynamic charac­

teristics of a given system while it is in operation. A 

useful measure of the dynamic behavior of a system is its 

impulse response h(t). If the autocorrelation function of 

the input control signal (#. .) and the crosscorrelation be­

tween input and output (ij;. } are known, then the system 
10 

function or impulse response, h(t), can be found by a decon-

voiution process. That is, solving 

\\). ( T ) = h(t)^±i«T - t)dt (1-1) 
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for h(t). In general, however, the process of deconvolution 

is not a straight forward task.3 By injecting specific test 

signals into the system along with the control signal and 

looking at the output, much information about the dynamic 

characteristics can be obtained. 

Using various sinusoidal test signals with relatively 

small magnitudes, as compared to the control signal, and 

averaging the output over a suitable number of periods, the 

dynamic characteristics in the form of amplitude and phase 

information can be determined. In order to determine the 

impulse response of a system, a test signal consisting simply 

of a large impulse could be used. In this case the normal 

output of the system would be disrupted for a large part of 

the duration of the impulse response. 

There are many systems in which it is undesirable to 

interrupt the normal operation or to have the impulse re­

sponse present at the output. Also, a system may not be 

able to withstand a. large impulse. One solution to these 

problems is to apply small impulses as a test signal and 

average the output. In this way, the impulse response can 

be obtained without drastically affecting the normal opera­

tion or output of the system. The time that it takes to 

obtain the impulse response depends on the relative magnitude 

of the test and control signals. For relatively small test 

impulses (or pulses of short duration with respect to the 

response time of the system) there will be a need to average 
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more output samples in order to obtain useful results. It 

may be the case, as it is in many dynamic systems, that the 

transfer function changes with time faster than the averaging 

time needed to obtain the impulse response. In these cases, 

a faster method is needed. 

Impulse Response Measurements - Correlation Method 

Using a crosscorrelation technique the impulse response 

of a system can be determined in one response time. This 

method consists of crosscorrelating an appropriate input test 

signal with the system output to obtain the impulse response. 

The test signal, which is added to the normal input of the 

system, can be any low level random signal with an autocor­

relation function that approximates an impulse function.4 

The objective of this thesis is thus to demonstrate 

the effectiveness of digital methods in obtaining a measure­

ment of the dynamic characteristics (in the form of the im­

pulse response) of a system using pseudo-random noise and 

the correlation technique. 
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CHAPTER II 

THEORY OF CROSSCORRELATION MEASUREMENTS 

Int.roduc t ion 

This chapter de?.ls with the basic mathematical theory 

involved in the correlation measurement of system impulse re­

sponses. The first section includes the definitions and 

various useful properties of the autocorrelation and cross-

correlation functions. This is followed by a brief develop­

ment of the mathematical technique used in obtaining system 

impulse responses from a crosscorrelation of an input test 

signal and the system output response. Requirements of the 

test signal are also briefly outlined with a detailed dis­

cussion reserved for Chapter III. For an intuitive approach 

to the crosscorrelation technique, a heuristic example is 

presented in Chapter IV. 

Correlation Functions 

The autocorrelation function of a wide sense station­

ary random process is defined as 

<Mt ,t ) - IMT) - E[XY] (2-1) 
1 2 

where X and Y are random variables at times t and t 
1 2 
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respectively and T = t - t . E[XY] is the expectation of 
2 1 

the product XY. The autocorrelation function for any argu­

ment is simply the average of the product xy which are values 

of the function T seconds apart:. If the probability of any 

given product having the first term x between x and x + dx 

and the second term y between y and y + dy is given by 

P
T(x,y)dxdy, then the expected value EtXY] is the summation, 

or integration, of all products multiplied by the respective 

probabilities. That is 

IMT) = E[XY] = J I xyPT(x,y)dxdy (2-2) 
-.00 

If the random process is ergodic, the ensemble average may 

be replaced by a time average involving a single sample 

function x̂^ (t) of the random process [x(t)]. Then, 

E[XY] m <x±(t )x-(t )> (2-3) 
x 1 1 2 

And if t - t + T then, 
2 1 

u) ft) = l i m 1 

^ X X ' ^ T̂ oo 2T 
x.(t )x.(t + x)dt (2-4) 

.T ' 1 x l 

or simply5 
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L ( T ) = 3;ixn i— I x(t)x(t + T)dt (2-5) 
x* *-»•• 2T ,̂ T 

Thus, the correlation function can be thought of in 

two ways. One is from the viewpoint of probability distri­

butions describing a stationary time series. The other is 

in the light of a shifting, multiplying, and averaging 

process. Though both viewpoints are essential for analysis, 

the latter is usually strongly preferable for experimental 

measurements.6 

Since it makes no difference whether the function is 

shifted forward or backward by T seconds before multiplying 

and averaging, the autocorrelation can also be written as 

\h (T) = l i m I 
rxx T-*-00 2T 

rT 
x(t - t)x(t)dt (2-6) 

T 

From these last two expressions it can be seen that the auto­

correlation function is an even function of T; that is 

*xx<T> = *xx("T) (2"7) 

If the random variables X and Y are from different 

random processes, the term crosscorrelation is used to 

represent the expectation E[XY].5 If both random processes 

are ergodic then the crosscorrelation function can be repre­

sented by a time average. That is, 
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H»xy(T) = <x(t)y(t + T)> (2-8) 

The time average can be written in integral form as either 

of the following expressions: 

or 

*xy(T> = T - 2T I X(t)Y(t + T)dt (2_9> 

-T 

^xy(T) = i i : ^ 
,T 
x(t - x)y(t)dt (2-10) 

This is due to the fact that a shift of y(t) by x seconds in 

one direction is equivalent to a shift of x(t) by x seconds 

in the opposite direction. This leads to the property that 

*xy<T> = *yx
(-T) (2-11J 

A form of the crosscorrelation function which will be 

referred to later is one in which the argument x is replaced 

by a shift of T1 - a. 

T 

WT> = ̂ xy(T' " a) = Hi h I X(t " T , ) y ( t " a)dt (2"12) 
-T 
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A result that will be used later concerns the cross-

correlation of a system input signal that is composed of the 

sum of two components with the output of the system. 

Suppose 

g(t) - x(t) + y(t) (2-13) 

Then the crosscorrelation of the functions f(t) and g(t) is 

given by 

T 
î fn.(T) = l

im 1 | f (t - x)g(t)dt (2-14) 
rg T+°° 2T j 

or in terms of x ( t ) and y ( t ) 

-T 
^fa^^ = i±m i - h ( t " T) [x ( t ) + y ( t ) ] d t (2-15) 

r 9 T->°° 2T J 

Finally, writing the right side of the equation as two 

integrals the crosscorrelation becomes 

*f„(T) = l
im i- I f (t - T)x(t)dt + (2-16) rfg T->-OO 2T J 

-T 

fT 
I"? I_ f (t - x)y(t)dt 
T 2T j 

-T 
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or simply 

^fg(T) = ipfx(T) + ipfy(x) (2-17) 

Impulse Response Measurements by Correlation 

The system transfer function or impulse response of 

a causal, time-invariant linear system can be measured by 

calculating the crosscorrelation of an input test signal and 

the system output. To show this, first consider a linear 

system, identified by its impulse response h(t), with input 

f.(t) and corresponding output fQ(t) as illustrated in Figure 

1. 

i(t) [ 
— * h(t) 

fn(t) 

Figure 1. A Causal, Time-Invariant Linear System. 

The crosscorrelation of the input and output ^j_Q(
T) 

is given by 

W T ) - Ti~ 7f 1 fi ( t - ̂ f o ^ > d t <2~18) 
-T 

The relationship between the input and the output of the 
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system is given by the superposition or convolution integral 

fQ(t) = h(x)f±(t - x) dx (2-19) 

The limits of integration are from 0 to °° rather than from 

-°° to °° due to the causality assumption for h(x)* After 

substituting this expression for fQ(t) into the previous 

equation, ty. (T) can be written as 

\h. (T) = lim 1 fi(t - T) h(x)f. (t - x)dxdt 
-T ° 

(2-20) 

Interchanging the order of integration and averaging (which 

is valid where practical systems and signals are concerned) 

yields 

^ io<T> = f0
h<*> [ i i 2 ^ J f i t t - T ) f . ( t - x)dt]dx (2-21) 

The expression in the brackets i s the autocorre la t ion of 
6 Thus f.(t) with argument T - x 

Vio(T) = h(x)i|;ii(T - x)dx (2-22) 

A comparison of this equation with Equation (2-19) indicates 



12 

that if;. (T) would be the output response of the system if 
10 

the input were ^-jj(T)« If ^ i i ^ i s a n i-mPulse function, 

then ^ ^ 0 ( T ) will be the impulse response of the system. 

That is, if 

then 

\|J. • (T) = N 6(T) (2-23) 
1 1 o 

^io(T) = NQh(x) (2-24) 

The problem then is to find a test signal such that its 

autocorrelation is an impulse. 

White noise is defined as any random process whose 

spectral density is constant over all frequencies. It can 

be shown that if the spectral density of white noise is N 

then its autocorrelation is the impulse function N 6(t). 
o 

o 
5 

Because of the infinite power requirements, white noise is 

not physically realizable. However, there are many random 

and pseudo-random noise signals that can be used to approxi­

mate the process. Various noise signals are discussed in 

the next chapter. 

The impulse response can also be obtained using the 

above technique while a system is in normal operation. In 

this case the random noise test signal n.(t) is added to 

the normal output of the system f.(t). The impulse response 
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is then obtained from the crosscorrelation of the input 

noise test signal n.(t) and the output signal y(t). To 

demonstrate this, consider the system in Figure 2. 

fj.(t) +/Cvfi(t) + n±<t 

r+ 

y(t) = fQ(t) + nQ(t) 

ni(t) 

Figure 2. System With Signal Plus Noise Input. 

The output y(t) can be expressed as f (t) + n (t) which are 

the output responses to inputs f.(t) and n.(t) respectively. 

The crosscorrelcition of n. (t) and y(t) can be written as 

Vy<T> = V n <T> + *„.f <T> 
1 1 O 1 O 

(2-25) 

as shown earlier. if the input random noise and the normal 

system output f (t) are uncorrelated, then 

Vf (T) = ° 
i o 

(2-26) 

Thus 
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^ n V ( T ) = ^ n ( i ) = h ( T ) ( 2 - 2 7 ) 
n . y n.-r..„ 

the desired resul t . 
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CHAPTER III 

BINARY NOISE TEST SIGNALS 

Intreduction 

As discussed in the previous chapter, a test signal 

is needed with an autocorrelation function that approximates 

an impulse function as closely as possible. In almost any 

case the input test signal used may be any stationary random 

signal with great bandwidth.4 There are many advantages, 

however, in using a test signal that contains only two 

values, for example ±a. This greatly simplifies the multi­

plication operation required in the computation of the cross-

correlation function. If, furthermore, the test signal 

changes at only multiples of some basic clock period, then 

this simplifies the digital implementation of delaying and 

averaging, as required by the computation. Also, the maxi­

mum energy for a given peak value is obtained with the use 

of such binary signals. It is thus possible to obtain the 

greatest signal to noise ratio for a given degree of system 

disturbance.7 This advantage may be an important considera­

tion in measuring the impulse response of a system if the 

measurement is to be made without drastically disturbing the 

normal operation of the system or driving it into saturation. 

Although there are many types of binary noise, only 



16 

that of discrete interval binary noise will be discussed 

here. As an illustration of the probabilistic view, the 

autocorrelation of truly random discrete interval binary 

noise will be calculated. Also, periodic pseudo-random 

binary noise sequences and their randomness properties will 

be discussed and compared to the truly random noise signals. 

A pseudo-random signal is used in the prototype constructed 

to implement the correlation technique being presented here. 

Discrete Interval Binary Noise 

In the case of discrete interval binary noise the 

times of the transition from one state to the other are 

explicitly specified. The state in each interval is chosen 

independently of the state in any preceding interval. To 

determine the autocorrelation of this type of noise, consider 

the more general case of discrete interval noise. Figure 3 

illustrates a discrete interval random noise signal. The 

signal is constant for a time interval T then jumps to 
1 

another value. There is equal probability of the signal 

being positi.ve or negative, If A is the magnitude of the 
n 

signal f(t) in the interval {nT ,(n + 1)T ], the probability 
\ I " 

that AM lies between x and x + dx is given by 
n u 

P(x < AR < x + dx) = p(x)dx (3-1) 

The autocorrelation function can be computed from the 
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expectation of the product e e . 
1 2 

iMt , t ) = E[e e J -
1 2 1 2 

e e p ( e ,e ; t , t )de de (3-2 
1 2 1 2 1 2 1 2 

Here p(e ,e ;t , t )de de is the probability of f (t) lying 
1 2 1 2 1 2 1 

between e and e + de at time t and T seconds later at 
i l l I 

time t between e and e + de . Since discrete interval 
2 2 2 2 

noise is not a stationary process, the autocorrelation is a 

function of t and r rather than T alone. One procedure 
i 

often used to obtain a function of x where nonstationary 

y. • ( t ) 

i . 

' 
r—i 

——— 

i — 

_ -__ — _ 
• ^ 

t 

T 
i 

Figure 3. A Discrete Interval Noise Signal. 
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processes are concerned is to take a time average of the en­

semble average. This leads to the result6 

.00 

IMT) = (l - -U1) | x2p(x)dx v Ti / jo 
T ^ T 1 (3-3) 

T|»(T) = 0 T > T 

If the signal has amplitudes of only +a and -a, (dis­

crete interval binary noise), then 

p(x) = <S(x - a) + 6(x + g) 
2 2 

(3-4) 

and the autocorrelation function can be written as 

IMT) - - • ( i - J f l . ) 

lp(T) = 0 

T \ <• T 

T > T 

(3-5) 

A sketch of discrete interval binary noise and its 

autocorrelation is shown in Figure 4(a). Figure 4(b) is 

a sketch of white noise and its autocorrelation function.4 

Substitution of the expression for IJJ.. (T ) , the auto­

correlation of discrete interval binary noise, into Equation 

(2-22), gives 
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iK (x) = a2 h(x)(l - il 
' 10 Jo \ IT*) dx (3-6) 

a 

-a 

n(t) 

^ * h.-- - 4 . > i D > 

-H^h-

M'O 

T T 
1 

(a) Discrete Interval Binary Noise 

n(t) 

W\ 
i t 

i|;(x) 

(b) White Noise 

Figure 4. Noise Signals and Autocorrelation Functions. 

A graphical representation of this convolution is shown in 

Figure 5. 
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* U ( T - X) 

Figure 5. Graphical Representation of Convolution. 

By substituting the general expression for the impulse 

response h(t) for a linear system with single poles, Equation 

(3-7) , into Equation (3-6) a comparison of the error can be 

made. 

M N 
h(t) = I P^e a m t + I Bne

 a n t Sin ( a t + <j)n) (3-7) 
m== 0 n= 0 

It can be shown that to minimize the error in I|>J0(T) the 

input noise signal must satisfy two conditions. (1) The 

duration T of the smallest pulse must be much smaller than 

the time constant of the process. (2) The time T must be 
I 

much smaller than the oscillation time of the process.1* 

The final result for the impulse response is then given by 
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Periodic Pseudo-Random Noise 

There are periodic binary sequences whose corresponding 

waveforms possess periodic autocorrelation functions of simi­

lar character as that of discrete interval binary noise. 

Such periodic sequences are not random but absolutely deter­

ministic. They are known as maximum-length shift register 

sequences. 

When a sequence is said to be random, information is 

inferred as to the process by which the sequence was generated 

rather than what the sequence actually looks like. However, 

statistical tests may be devised to determine how plausible 

the hypothesis is that a particular binary sequence was pro­

duced by a specified random process. Any sequence that 

passes a given set of tests for the plausibility of randomness 

can be referred to as a pseudo-random sequence. This is, 

of course, an a posteriori criterion which is neither neces­

sary nor sufficient for true randomness, (which refers to 

the a priori circumstances of sequence generation).8 

Binary sequences of ONE's and ZERO'S can easily be 

generated through the use of a digital device known as a 

shift register. A shift register of degree n consists of n 

consecutive binary storage positions. The contents of each 

* i o(T) 

OTT 
(3-8) 
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position is shifted to the next position down the line in 

time to the count of a clock or other timing device. To 

prevent the shift register from emptying at the end of n 

clock pulses, a feedback term may be computed as a logical 

function of the contents of the n positions and fed back to 

the first position of the shift register. Figure 6 shows 

an example of such a device. 

x X H3 x n 

111--1 r 
r \JZ ,x , x y • , . f x„ ) 

1 2 3 n 

output 
sequence 

Figure 6. Shift Register of Degree n With Logical Feedback 

The output sequence is periodic with period p not exceeding 

2 n - 1. Those sequences with period equal to 2 n - 1 are 

referred to as maximum-length shift register sequences. 

For every n there exists a maximum-length shift 

register sequence. They are all pseudo-random in the sense 

that they satisfy the following three randomness properties.8 

R-l. (The Balance Property) In each period the number 

of ONE's differs from the number of ZERO'S by at 

most 1. 
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R-2. (The Run Property) Among the runs of ONE's and 

of ZERO's in each period, one-half the runs of 

each kind are of length one, one-fourth of each 

kind are of length two, one-eighth are of length 

three, and so on as long as these fractions give 

meaningful numbers of runs. 

R-3. (The Correlation Property) If a period of the 

sequence is compared term by term with any cyclic 

shift of itself, the number of agreements differs 

from the number of disagreements by at most 1. 

As an example of a maximum-length sequence generator, 

consider a shift register of degree 4 with feedback function 

equal to a modulo 2 sum of the contents of the last two 

positions. 

x > 

X © X 
•** 1 2 

Symbol 

X X X © X 
1 2 1 2 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Truth Table 

Figure 7. Modulo 2 Adder. 

The symbol for a modulo 2 adder (exclusive OR function) and 

its truth table is shown in Figure 7. The sequence genera­

tor is shown in Figure 8(a). 
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Clock 

*. Output 
Sequence 

(a) 

Clock X X X X 
Count L : I 3 k < Generated Sequence 

0 1 1 1 1 
1 0 1 1 1 1 
2 0 0 1 1 1 1 
3 0 0 0 1 1 1 1 
4 1 a c 0 1 1 1 1 
5 0 l 0 0 0 1 1 1 1 
6 0 c 1 0 0 0 1 1 1 1 
7 1 c 0 1 0 0 0 1 1 1 1 
8 1 1 0 0 1 0 0 0 T 

II 1 1 1 
9 0 1 1 0 0 1 0 0 0 1 1 1 1 

10 1 0 1 1 0 0 1 0 0 C i 1 1 1 
11 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 
12 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 
13 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 
14 1 1 1 0 1 0 1 1 0 0 1 0 0 Oil 1 1 
15 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 

(b) 

Figure 8* Maximum-Length Shift Register Sequence Generator 

Figure 8(b) indicates the states of x , x , x and x after 
1 2 3 4 

each count and shows the sequence as it is being generated. 

The generated sequence contains eight ONE's and seven 
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ZERO'S which satisfies the randomness property R-l. Of the 

runs of ONE's in the sequence f there are two of length one, 

one of length two and one of length four. Thus, one-half 

are of length one and one-fourth are of length two, which 

satisfies the run property R-2. Similarlyg one-half of the 

runs of ZERO'S are of length one and one-fourth are of length 

two. Finally, the correlation property R-3 is satisfied in 

that by comparing term by term any cyclic shift of the se­

quence with itself, there are seven agreements and eight 

disagreements. 

A periodic waveform corresponding to the sequence in 

the example and its autocorrelation function are shown in 

Figure 9. A ONE in the sequence corresponds to a waveform 

value of +a for a period of time t . Similarly a ZERO in 

the sequence corresponds to a waveform value of -a. The 

expression for the autocorrelation can be written as 

vnn k 

<l>nn<T) = i - 3 

- a2fl - M. H 
15 t 

_ 1 ,2 
nn 15 

pT - t * T * pt + t 

elsewhere 

(3-9) 

where T is the time period of the sequence, t = !L_ and p is 
1 15 

any integer, 

For the more general case of a maximum length sequence 
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1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 

(a) Sequence 

1 k n ( t ) 

a 

t 
i 

t 
- a 

(b) Waveform 

$(T) 

a ' 
15 

(c) A u t o c o r r e l a t i o n 

F i g u r e 9 . Pseudo-Random S e q u e n c e , Waveform 
and A u t o c o r r e l a t i o n . 
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>n with T = (2 - l)t , the autocorrelation can be written as 

v<T' = ^ 

*nn"> 

\2 

\ 

2n \ \j_ 
n - 1/ t 

2 n - 1/ 

pT - t * T * pT + t 
i ^ l 

elsewhere 

(3-10) 

In order to approximate the autocorrelation function 

of random discrete interval binary noise, ^ (T) must be 

zero outside the interval pT - t < T < pT + t . This can 

be accomplished by choosing the waveform levels as +b and -o 

instead of +a and -a where b + c = 2a and1* 

b -
2 n - 1 

r1 - I+/P*) (3-11) 

2 n - 1 V ' 
3-12) 

by 

The autocorrelation under these conditions is given 

ii (T) 
vnn v ' 2 n - 1 V t / 

for (3-13) 

(pT - t ) < T < (pT + t ) 
1 1 

*„„w = ° elsewhere 
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This effect of adding a DC component of 

b - c = 
2 n - 1 

(a/F5") (3-14) 

to the periodic noise signal is illustrated in Figure 10. 

i n ( t ) 

a * 
_ l _ -

-a-

u 
t 

(a) Without DC Component 

b 

-c-

n(t) 

t 
n 

a' 
2"-l 

i L-4-^,1 L * • « * » fr-

b-c 

lp(T) 

t 
- ^ - — ^ i — - X \\ fr-

(b) With DC Component 

Figure 10. Periodic Pseudo-Random Binary Noise 

Autocorrelation Functions. 
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CHAPTER IV 

HEURISTIC EXAMPLE OF CORRELATION METHOD 

Introduction 

At this time an example will be presented to illus­

trate intuitively the correlation technique being presented. 

The system on which the impulse response measurement is to 

be made is assumed to be linear. Thus, the output response 

to a square pulse input will closely approximate the system 

impulse response as the width of the pulse is made smaller. 

The example will illustrate that the crosscorrelation process 

can be thought of in terms of an averaging of a large number 

of small narrow pulse responses. Because of the unique 

properties of binary pseudo-random noise, this averaging is 

done during one impulse response time (the time it takes for 

h(t) to effectively die out). 

In the example to follow, the output waveforms of the 

system will be converted to digital form. This is to illus­

trate the basic digital technique for performing the cross-

correlation operation,, 

Finite Pulse Response Approximation 

As mentioned previously, one method that can be used 

to obtain an approximation of the impulse response of a 

system is to apply a "narrow" pulse to the input. By narrow 
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it is meant that the time duration of the pulse be much 

smaller than the time constant of the process. By de­

creasing the pulse width and thus more closely approximating 

an ideal impulse, the output more closely approximates the 

impulse response, of the system. A change in the amplitude 

of the pulse results only in a proportional change in the 

output approximation of h(t). This is due to the linearity 

assumption of the system. 

In Figure 11 three inputs to a linear system and their 

respective outputs are shown. The input x (t) is a unit 

impulse and therefore the output y (t) is the impulse re­

sponse h(t). Input x (t) is a narrow pulse with unit area. 
2 

As A approaches zero x (t) approaches a unit impulse and 

y (t) approaches the impulse response. Since x (t) is iden-
2 3 

tical to x (t) except for a magnitude scaling, y (t) is iden-
2 3 

tical to y (t) except for the same magnitude scaling. 
2 

If a system has noise or some other signal present at 

the input, an averaging technique can be used to improve the 

result of the pulse response. For example, consider an on­

line process identification cr evaluation. Here the normal 

operation of the system should be disturbed as little as 

possible. Relatively low level test pulses must then be 

used and the output response averaged over a correspondingly 

large number of samples. The primary disadvantage is the 

total time involved in obtaining the averaged response. 

The maximum output sample rate (or the maximum rate of input 
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pulses) will depend on the time constant of the system. 

That is to say the pulse response must die out or become 

negligible before another pulse is applied to the input. 

• x ft; 
ioo1 

(1) 

t 

y (t)-h(t) 
i 

x (t) 
2 

-Of 

I-

y (t)-h(t) 
2 

kA T~ 

x (t) 
3 

u 
w-
A 

-»> 

y (t)M±)Mt) 
3 K 

X(t) iiM 'y(t) 

Figure 11. Impulse and Pulse Inputs 

To System And Associated Responses, 
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System Response To Periodie Binary Pseudo-Noise 

A periodic binary pseudo-random noise signal can be 

considered as the superposition of single pulses occurring 

at discrete time intervals. The output response of a 

linear system to such a binary noise signal can then be con­

sidered as the superposition of single pulse responses occur­

ring at the same discrete time intervals. 

To illustrate this first consider the quantization of 

the pulse response as shown in Figure 12 (a). 

For digital calculations the system output must be 

converted from an analog waveform to a series of discrete 

binary coded magnitudes. The actual binary coding will be 

discussed in the next chapter. In the example the notation 

h will denote the quantized value of h(t) (the pulse response 

approximation of the actual impulse response) in the time 

interval (0,t). Similarly, ĥ  will represent the quantized 

value of h(t) in the interval {t , t ), and so forth. Be-
J 2 

cause the purpose of the example is to illustrate the tech­

nique involved, only a few amplitude quantization levels will 

be used in order to simplify the calculation. 

The quantized output response to a series of periodic 

input pulses is shown in Figure 12 (b). As long as the in­

put pulses occur at intervals greater than 7t , the series 

of output responses will be non-overlapping. 

Now consider a period of seven, pseudo-random noise 

signal n(t) as the system input. Figure 13 illustrates the 
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(b) Periodic Pulse Input and Output Response 

gure 12. Pulse Input and Associated Output Response 
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use of the superposition principle to determine the output 

response y(t). First, the input signal is considered to be 

the sum of seven component signals. Each component signal 

is a series of either positive or negative unit pulses of 

width t and periodic with period 7t . The corresponding 
i i 

output components will be periodic repetitions of a single 

pulse response. The quantized output waveform can thus be 

constructed by summing these output components. By referring 

to Figure 13 it can be seen that 

y = h + h + h - h - h + h - h (4-1) 
0 0 6 5 4 3 2 1 

and similarly 

y = h + h + h - h - h + h - h (4-2) 
1 1 C 6 5 k 3 2 

A convenient form of the relationship between the 

quantized values of y(t) and h(t) is given by the matrix 

equation (4-3). 

The values of n(t) and the quantized values of h(t) 

and y (t) calculated for the example are listed in Table 1. 
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Figure 13. Pseudo-Random Noise Response By Superposition. 
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r 

y , 

y a 

y 3 
= 

y„ 
y

5 

/ 6 _ I 

1 - 1 1 - 1 - 1 1 1 

1 1 - 1 1 - 1 - 1 1 

1 1 1 - 1 1 - 1 - 1 

- 1 1 1 1 - 1 1 - 1 

- 1 - 1 1 1 1 - 1 1 

1 - 1 - 1 1 1 1 - 1 

- 1 1 - 1 - 1 1 1 1 

h 

h 

h 

h 

h 

h 

(4-3 

Table 1. Quantized Values of n(t), h(t), and y(t) 

n ( t ) Mt) y TtT 
n = 

0 
+ 1 h 

0 
= 0 y o = 0 

n = 
i 

+ 1 h 
I 

= 0 . 6 
Y l 

=: 0 . 8 

n = 
2 

+ 1 h 
2 

= 0 . 2 
y 2 

r: 0 . 8 

n = 
3 

- 1 h 
3 

= - 0 . 2 Y, 
J 

= 0 . 8 

n = 
h 

- 1 h 
4 

= - 0 . 4 y, = - 0 . 8 

n -
5 

+ 1 h 
5 

= - 0 . 2 y 
5 

= - 1 . 6 

n h 
6 
= 0 

Digital Crosscorrelation of Input Noise and Output Response 

Using the approach of crosscorrelation as a shifting 

and averaging process, \\> (T) can be calculated for values 

of x = kt , where k is any integer, from the equation 
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*ny(kV 
1 ? 4„4 

For example 

^ny ( 0 ) = 7r~~ C° + 0#8 + ° .8 + 0.8 - 1.6 - 0] (4-5) 

1 
7t 

(0) = 0 

7 t i 
Table 2 lists the values of 7t if; (x) and g ^ n y (

T ) ^ o r t^ie 

example. From this table it can be seen that the final ex­

pression for the impulse response is then 

h(T) = ^ ^ n y < T > (4-6) 

Table 2. Values of Crosscorrelation 

7t $ (r) 
I ny 

7ti # (T) 
8 ny 

c 0 0 

t 4 . 8 0 . 6 

2 t 1 . 6 0 . 2 

3 t - 1 . 6 - 0 . 2 

4 t - 3 . 2 - 0 . 4 

5 t i - 1 . 6 - 0 . 2 

6 t 0 0 
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In order to see more clearly how the properties of 

pseudo-random noise signals enable the recovering of h(t) 

from one period of the output, consider the matrix equation 

7t ) 
i 

4 M 0 •) 

<M t ) 
i 

i> (2t ) 
i 

*J> (3t ) 
i 

4> (4t ) 

ty (5t ) 
l 

^ (6t ) 
l 

1 1 1 - 1 - 1 1 

" 1 1 1 1 - 1 - 1 

1 - 1 1 1 1 - 1 

- 1 1 - 1 1 1 1 

- 1 - 1 1 - 1 1 1 

1 - 1 - 1 I - 1 1 

1 1 - 1 - 1 1 - 1 

11 r° 
i y; 
1 y, 

I y
3 

1 y. 

1 ^ 

I I K 

(4-7) 

which relates ip (T ) with y (t) . Substitution of Equation 4-3 

into this expression yields 

<M 0 ) 7 - 1 - 1 - 1 - 1 - 1 - 1 h 

<M t t ) 
i. 

- 1 7 - 1 - 1 - 1 - 1 - 1 h 

4^(2 t i ) - 1 - 1 7 - 1 - 1 - 1 - 1 h 

( 7 t ) 
i 

^ ( 3 t ) = - 1 - i - 1 7 - 1 - 1 - 1 h 

i> ( 4 t ) - 1 - 1 - 1 - 1 7 - 1 - 1 h 

^ ( 5 t x ) - 1 - 1 - 1 - 1 - 1 7 - 1 h 

^ ( 6 t x ) - 1 - 1 - 1 - 1 - 1 - 1 7 h 

(4-8) 

The symmetry of the 7 by 7 matrix is a direct result 

of the autocorrelation property of the pseudo-random noise 
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signal with values of ±1. From this last equation a general 

expression for the autocorrelation can be written as 

\\i (kt ) =• 
i 

i / 
-i~ I 8h. 
7t V k 

I
 v 

6 \ 

I h> ) 
(4-9) 

The last term represents the area under the signal h(t) 

which was zero in the example. 

One approach in eliminating this constant error term 

is to chose the noise signal magnitudes as +b and -a according 

to Equations (3-13) and (3-14). In this case the peak to 

peak value of the noise signal remains 2a. 

For a signal with period T = (2n - l)t (generated 

from a degree n shift register), equation (4-8) becomes 

(T) 

( 0 ) 

( t ) 
i. 

(2t ) = tat (2n"1)} 

1 0 0 

0 1 0 

0 0 1 

(4-10) 

The general result for h is then given by 

hk =^n - iy iKkt,) 

2n-l J a 2 T 

(4-11) 
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Another method of eliminating the constant error term 

in Equation (4-9) is to calculate its value and remove it 

from each value of $(kt ) t Equation (4-9) can be written 

in general as 

iMkt ) = ± 
i T 

2n-2 
2nh, - I h. 

k i=0 1 
4-12) 

where T = 2 n - 1. Rearranging this equation yields 

T^(kt ) - 2n-2 
• = K - ~T I h 

2n k 2 n i=0 x 
(4-13) 

The third term is the error to be calculated and is found to 

be 

2*1-2 
2n-2 

L_ v h 
2 n i=0 

I ty (it ) 
i=0 -1-
!n (2n 

IT-

(4-14) 

The final result for h is then given by 
Jc 

hk = 

T$ (kt ) 
l 

^n 

2n~2 
I <Mit ) 

i°Q J__ 
2n /2n _ T\ 

(4-15) 



41 

CHAPTER V 

DESIGN AND CONSTRUCTION OF PROTOTYPE 

Introduction 

In the previous chapters the background and theoreti­

cal basis for the correlation measurement of system impulse 

responses has been set forth. The next step is the design 

and construction of a working prototype. 

The function of the prototype is to generate a pseudo­

random noise signal to be added to the input of a test 

system and then to crosscorrelate the system output response 

with this noise signal. A six position shift register with 

mod 2 feedback is used to generate a pseudo-random noise 

signal. The period of this signal is thus (26 - l)t = 63t , 
i i 

where t is the duration of the narrowest pulse. A scaling 
i 

circuit is incorporated in the prototype to provide for 

several values of t so that the impulse response can be 
i 

spread out over cne noise signal period. This enables the 

pulse width of the noise autocorrelation function to be made 

as narrow as possible with respect to the impulse response* 

The crosscorrelation process is done digitally in the 

prototype. The analog output of the test system is sampled 

and converted to a series of binary numbers,, An eleven bit 

sign plus two 's complement binary coding is used in the A/D 
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(analog to digital) conversion and in the digital calculation 

of the crosscorrelation. Table 3 illustrates the eleven bit 

sign plus two's complement binary code. 

Table 3. Sign Plus Two's Complement Code. 

Decimal 
Binary Equivalent 

Sign Least Significant Bit 
"T2 — — j 
0 1 1 1 1 1 1 1 1 1 1 1023 

0 0 0 0 0 0 0 0 0 1 1 *- 3 
0 0 0 0 0 0 0 0 0 1 0 ——* • 2 
0 0 0 0 0 0 0 0 0 0 1 1 

o o o o o o o o o o o —-*- o 
1 1 1 1 1 1 1 1 1 1 1 - -1 
1 1 1 1 1 1 1 1 1 1 0 -2 
1 1 1 1 1 1 1 1 1 0 0 -3 

1 0 0 0 0 0 0 0 0 0 0 - -1024 

Finally, the impulse response is converted from digital to 

analog form for cathode-ray oscilloscope display. Figure 14 

illustrates the basic process. 

Before considering the actual logic design of the 

digital prototype, a description of the algorithm used to 

calculate the crosscorrelation, and hence the impulse re­

sponse, will be discussed. 
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Figure 140 Digital Prototype and Test System. 

Prototype Calculator Algorithm 

The prototype calculator has one input and two out­

puts. Referring to Figure 14, the input y, is the digital 

th 
conversion of the k test system output sample. The out-

th 
put n, is k value of the noise sequence being added to the 

test system input. And the output h| is the set of impulse 

response values from the previous calculation. Those values 

of h! are being stored for output display while the present 

calculation process is in progress. 

The use of a noise test signal with values of ±1 great­

ly reduces the complexity of the crosscorrelation computation 
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process. Under these conditions there is a constant error 

term produced as discussed in Chapter IV. This constant 

term could be calculated and removed through the use of ad­

ditional logic circuitry. However, this type of constant 

error does not significantly affect the results of the tech­

nique being presented here. It is primarily for this reason 

that the prototype is designed to calculate and display only 

the values of 63t ty(kt ) for k a positive integer. These 

values are proportional to the values of h except for the 

constant term. 

The digital crosscorrelation can be written as 

*(kV = 63F" io"1-^1 {5_1 

Since the noise sequence is periodic the values of n,,,, is 
c 3+6 3r 

equivalent to n.. for r equal to any integer * 

The algorithm for computing 63t iMkt ), which will be 

denoted by h' , Ccin be more easily understood by considering 
k 

the following set of equations. 

h ' = n y + n y + n y + ... n y (5-2) 
0 0 0 '.I 2 2. 6 2 S 2 

h ' = n y + n y + n y + ... n y 
6 2 0 0 1 1 2 6 1 6 2 

h ' = n y + n y + n y + .. . n y 
2 6 I £ 8 2 1 0 2 S 0 b 2 

h* = n y + n y + n y + . o . n y 
62 1 0 2 1 S 2 0 6 2 
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A flowchart of the algorithm is shown in Figure 15„ 

After initialization the inputs and outputs are up­

dated. The noise output is set to the value n , The first 
o 

sample of the test system output is made and there is no 

display of previously calculated h1 because there was no 
is 

previous calculation. However, there will be a display 

during subsequent calculations. These I/O values of y and 

n will not change until this -point is again reached in the 

flowchart* At this point, the first term of each of the 

values of h' is calculated (refer to Equation 5-2), That 

is, the first term to be calculated is n y , then n y , 
0 0 6 2 0 

followed by n y and so forth until n y has been calculated. 

At this point i = k + 1, indicating that a component of h1 

6 2 

has been calculated. The prototype output noise value to 

the system under test is updated to n and a value of y is 

taken from the test system output, Now the second component 

of each of the Vcilues of h * is calculated and added to the 

first term. After n y has been calculated and added to 

n y , the I/O values of the prototype are again updated for 
1 0 

the calculation of the third component of the h1 values. It 

should be noted that all 6 3 values of the pseudo-random noise 

sequence are used each time the prototype calculates a com­

ponent of the values of h'» However, as mentioned before, 

the values of the noise sequence that are added to the test 

system input are updated only after each of these component 

calculations. Since the values of the noise are ±1, the 
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Figure 15. Prototype Calculator Algorithm 
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calculation of a value of hf is simply a summing of the 

values of y with appropriate signs. When the last component 

of h' is calculated and added to the total of the other com-
6 1 

ponents, the calculation of a quantized impulse response has 

been completed. These 6 3 vaiues of h1 are then stored for 

display during the next calculation operation0 The stored 

values are denoted by h9 in the flow chart. At this point 
is 

the calculation begins again, 

Basic Overall Design 

In this section a description of the basic oveiau 

design will be presented0 A detailed discussion of the com­

ponents and their operation follows in the next section. 

Figure 16 illustrates the block diagram for the proto­

type design. Data is calculated and stored in a recirculating 

loop memory which consists of a two millisecond delay line 

and an eleven bit shift register denoted by register A in the 

diagram- Information in the loop consists of 6 3 word pairse 

A word pair is made up of two 11 bit. binary numbers as illus­

trated in Figure 17. The right most number in the pair is 

a value of the previously calculated impulse response0 It 

is stored in this position and displayed during the calcula­

tion process. This calculation process takes 63 recircula­

tions of the loop data and is being carried out in the II bit 

words immediately preceeding the stored words0 During the 

64th recirculation, the newly calculated values are shifted 



PSEUDO-RANDOM 
NOISE TO SYSTEM 
UNDER TEST 

PSEUDO­
RANDOM 
NOISE 
GENERATOR 

NOISE SEQUENCE 
FOR ADD/SUBTRACT 
CONTROL 

SERIAL 
ADDER/ 

SUBTRACTER 

TIMING 

INPUT GATING 

r REGISTER B 

OUTPUT OF 
SYSTEM 

1 UNDER TEST 

A/D 
CONVERSION 

!_ZJ TIMING ANDl-
CONTROL 
CIRCUITRY h OUTPUT GATING 

L. 
DELAY LINE MEMORY 

k L -M 
REGISTER A 

SWITCH 1 CONTROL 

-Mo>M 

RECIRCULATING MENORY SWITCH 2 CONTROL 

w, D/A CONVERSION w, D/A CONVERSION w, 
OSCILLOSCOPE 

Figure 16. Block Diagram of Prototype Design. â  
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forward to replace the stored values and calculation of a 

new set is begun once again. 

An impulse response curve is traced on the oscillo­

scope screen once each recirculation. Each time a previ­

ously calculated and stored word is in register A its value 

is transferred through the output gating to the D/A converter. 

This value is held by the gating circuitry until the next 

stored word is in register A, at which time the output to 

the oscilloscope is updated again, 

For the calculation process the output value of the 

system under test is needed in digital form. The input 

gating circuit samples the A/D conversion of this value once 

each recirculation and sets it into the 11 bit shift register 

B. These samples are the values of y , y , y and so forth 
0 1 2 

of Equation (5-2) . Register B forms an 11 bit recirculating 

loop, so that the values of y are available in serial form 

(one bit at a time, least significant bit first). When the 

calculation proce^ss begins, there is a value of zero set in 

the word space for each of the values of h1 to be calculated, 

On the first recirculation of the calculation process the 

first value of y, that is y , is added to or subtracted from 

the initial zero values of hV, This constitutes the first 

component of each of the values of h' that are being calcu­

lated. The add/subtract control is determined by the values 

of the pseudo-random noise sequence. On the second recircu­

lation the second component of the h' values is added to the 
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total by appropriately adding or subtracting y . The pro­

cess is completed after the 63rd recirculation. 

The purpose of switch 1 is to allow the stored words 

to recirculate unaltered during the calculation process. 

When the switch is in the (-) position, a stored word passes 

from the delay line through the switch into register A. 

When it is in the (+) position, a value of y is appropriately 

combined in the adder/subtracter with a word from the delay 

line and this value passes through the switch into register 

A. Switch 2, normally in the (-) position for the calcula­

tion and display mode, controls the shifting mode at the end 

of the calculation process. At the beginning of the shift 

mode, switch 1 changes to the (-) position and remains in 

this position for the entire recirculation. Switch 2 changes 

to the (+) position for the first 11 bit word, allowing the 

newly calculated h' to bypass register A and enter the delay 

line in the position of the stored h1 . The word in regis-
o s 

ter A is set to zero and the switch changes to the (-) posi­

tion allowing the zero value to enter into the first calcula­

tion space. Switch 2 continues to alternate passing the 

newly calculated values of h1 and values of zero into the 

delay line for the remainder of the recirculation. 

Logic Element Descriptions 

The prototype was constructed using Fairchild, Motorola 

and Systems Engineering Laboratories integrated circuit compo­

nents of the following types: 
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1. J-K Flip-Flops (Set and Reset), Systems Engineering 

Laboratories, Type 8528 Micrologic Modules. 

2. J-K Flip-Flops (DC reset only), Motorola RTL logic 

type MC 791 P. 

3. Inverting Buffer Amplifiers, Systems Engineering 

Laboratories type 8501 Micrologic Modules. 

4. Two-Nor gate, Systems Engineering Laboratories 

type 8527 Micrologic Modules. 

5. Quad 2-Input Gates, Motorola RTL logic type MC 724 

P. 

6. Triple 3-Input Gates, Motorola RTL logic type MC 

792 P. 

7. Quad 2-Input Expanders, Motorola RTL logic type MC 

785 P. 

8. Hex Inverters, Motorola RTL type MC 789 P. 

9. High-gain Operational Amplifiers, Fairchild type 

ML709. 

10. Dual high-speed Analog Comparators, Fairchild type 

yL711. 

The symbols used for the J-K flip-flops, NOR gates, buffers, 

and inverters are shown in Figure 18. Expanders are used 

to create multi-input gates. Much of the logic used in the 

prototype was in the form of general purpose printed circuit 

cards. Most of these cards were constructed using the 

Motorola 700 series integrated circuit logic. Photographs 

of these general purpose two-sided cards are shown in 
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DC Set (S.E.L Logic Only) 

Set Level 

Transition Input 

Clear Level 

Output 

Output 

DC Reset 

(a) Symbol for J-K Flip-flop 

O o 
(b) Inverter (e) 2-Input Gate 

E> o (c) Inverting Buffer (f) 3-Input Gate 

D 
S> 

E> 
[d) Expanders Used to Form 

Multiple Input Gate 

'g) Voltage 
Comparator 

(h) Operational 
Amplifier 

Figure 18. Logic Symbols. 
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Figure 19. Several special purpose cards were also con­

structed and are shown in Figures 20 and 21. Details of 

these cards are discussed in the following section. 

Details of Design and Construction 

This section includes a discussion of the subsystems 

that make up the prototype calculator, The function and 

design of these subsystems will be covered as well as their 

interconnections,, Finally, the actual construction of the 

prototype will be discussed. 

The circuit for the crystal clock oscillator that 

provides the basic timing pulses to control the overall sys­

tem is shown in the appendix, The output waveforms of the 

clock are shown in Figure 22. Two DC pulses are provided 

for DC setting during a clock period. The clock frequency 

used is 687 KHz* A photograph of the clock card is shown 

in Figure 20. 

'DC: 

DC 

~L_n_. 
Lf 

LT 

3,6v 

Ov 

3. 6v 

Ov 

3. 6v 

- Ov 

Figure 22. Crystal Clock Waveforms. 
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Twelve Inverters 
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Three J-K Flip-Flops 

Two - NOR Gates Six Buffers 

Figure 19. General Purpose Logic Cards. 
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cl 2+C 

Eight Exclusive OR Gates Crystal Clock 

Figure 20. Special Purpose Logic Cards. 



Figure 21. Delay Line and Input/Output Logic 
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The memory section of the prototype consists of a 1386 

bit recirculating loop (6 3 twenty-two bit word pairs = 1386 

total bits). The data flows in the loop at the basic clock 

rate, that is 687 X 103 bits per second, 

A 2 millisecond sonic magnetostrictive wire delay line 

is employed as the primary storage device of the loop* The 

function of the delay line is to delay the passage of elec­

tric pulses for some time period. At the clock rate of the 

loop the 2 millisecond Computer Devices Corporation delay 

line used in the prototype stores 1374 of the 1386 total in­

formation bits. 

In a magnetostrictive delay line electrical current 

impulses are converted through an input transducer to strain 

waves which travel along the delay wire. An output trans­

ducer at the end of the delay wire generates a voltage pro­

portional to these strain waves. Figure 23 shows the output 

waveforms of the delay line to a step and pulse voltage input,, 

The width of the pulse T should be approximately equal to 
2 

T of the step response. In the delay line used in the pro-
i 

totype the output values for a twelve volt step input were 

T - 0.5ii seconds and V - 4 millivolts. The input circuitry 
i 

to the delay line consists of a transistor current switch 

with an adjustment to vary the input pulse width. This cir­

cuit is shown in the appendix. Detecting and synchronizing 

the output waveform is accomplished using a high speed 

voltage comparator and appropriate logic circuitry. The 
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output circuitry is also illustrated in the appendix. Fig­

ure 21 shows a photograph of the delay line with its input/ 

output circuitry. The I/O circuitry on a printed circuit 

board is mounted directly on the delay line package itself„ 

A ten pin amphenol connector is used to interface power and 

signal leads with the rest of the prototype circuitry. 

Input 

Output 

a) Voltage Step 

Input L_ 

Output 

(b) Voltage Pulse 

Figure 23. Delay Line Input and Output Waveforms 

The recirculating loop is closed through an external 

eleven bit shift register (Register A ) , that is used for 

parallel access to information in the loop. There is also 

a one bit external shift register immediately following the 
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delay line output circuitry that is used to zero the contents 

of the delay line during the initialize mode. The shift 

registers are made using flip-flops as shown in Figure 24. 

Two serial data flow switches are in the loop to con­

trol the calculating and shifting operations. The serial 

switch circuit is illustrated in the appendix and a photo­

graph of the printed circuit card is shown in Figure 20. 

The switch control signals come from the timing and control 

circuitry to be discussed later, 

The analog output waveform of the prototype comes from 

the output ladder decoder. The ladder decoder produces an 

output voltage proportional to the binary number applied to 

its input. The circuit diagram of the ladder decoder is 

shown in the appendix. When a value of h1 (in the form of 

an eleven bit binary number) has been shifted into Register 

A, timing pulses load it into the latches of the output 

gating circuitry. First the reset pulse R , strobed with 

C , resets the latches to zero, Then the pulse ST , 
U^ 1 2 
strobed with Ĉ ~, » sets the latches in which there is a cor-

DC? 

responding ONE in Register A. The value of h1 is then held 

in the latches (and hence the input to the ladder decoder) 

for 22 clock pulses. At this time the timing pulses R and 

ST load a new value of h' into the output gating circuitry 

from Register A. In this manner a complete impulse response 

waveform of 6 3 values is displayed each recirculations 

The analog to digital converter of the prototype 



ANALOG TO DIGITAL CONVERTER 

UP/DOWN COUNTER 

PROTOTYPE INPUT FROM TEST SYSTEM OUTPUT O 

PSEUDO-RANDOM NOISE TEST SIGNAL OUTPUT 

IMPULSE RESPONSE - h(t) 

Figure 24. Logic Design of Prototype Subsystems. 
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consists of an up/down counter, a ladder decoder and a high 

speed voltage comparator. The binary number in the up/down 

counter is converted to an analog voltage by the ladder de­

coder o This voltage is compared to the analog input voltage 

by the high speed comparator. If the output of the ladder 

decoder (the analog equivalent of the binary number in the 

up/down counter) is larger than the input voltage, the com­

parator output applies a down count level to the up/down 

count control flip-flop. On the next C clock pulse this 
L 

count control inforraation is transferred to the counter 

circuitry and the counter counts down., Similarly, if the 

ladder decoder output is lower than the analog input, the 

count control flip-flop is set so that the counter will count 

up. The counter thus counts continuously either up or down 

following the analog voltage input at the basic clock rate 

Once each recirculation the data of the 11 bit recir­

culating loop formed by Register B is updated from the A/D 

converter. First the reset pulse R , strobed with C , 

resets Register B to zero* Then the pulse ST^, strobed with 

C , sets the flip-flops of Register B where there is a ONE 
DC 2 

in the corresponding bit position of the up/down counter„ 

This sample of the test system's output, y, in binary form 

recirculates 126 times in Register B during one recirculation 

of the 1386 bit memory loop. Both loops are clocked at the 

same basic clock rate C . The values of y in digital form 
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are thus supplied to the adder/subtractor in serial form, 

least significant bit first. 

The augend/minuend input to the serial adder/subtractor 

comes from the recirculating loop memory and the addend/ 

subtrahend input comes from Register B as illustrated in 

Figure 24. The sum/difference output of the adder/subtractor 

is fed to the + input of serial data flow switch 1. Switch 

1 changes the data flow every 11 clock pulses during the 

calculation process as discussed earlier, This allows the 

stored values of h1 to pass unaltered from the delay line 

into Register A while the calculation of new values is being 

carried on in adjacent 11 bit words, 

The add/subtract control comes from the maximum-length 

shift register sequence generator that produces the pseudo­

random noise test signal. Every 22 C clock pulses the 
L 

shift register is clocked once by the timing pulse C__- ex-
SEy 

cept at the end of each recirculation of the memory loop. 

At that time the shifting transition is applied to the noise 

generator output flip-flop as C . Thus the noise sequence 

generator is clocked through 63 of its 64 states each recir­

culation of the memory loop and the output noise sequence 

changes once each recirculation. 

The timing and control circuitry is illustrated in 

Figure 25 and Figure 26 shows a timing diagram of the major 

control signals. 
There are four counters that are at the base of the 
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L BASIC CLOCK PULSE TO CLOCK 
— C DELAY LINE, REGISTERS A S, E 

AND THE UP/DOWN COUNTER 

R RESET PULSE FOR OUTPUT GATING 
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ZERO PULSE TO CLEAR REGISTER A 
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Figure 25. Timing and Control Circuitry. 
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timing circuitry. A scale of 11 counter produces a pulse 

every 11 C clock pulses to indicate each time a word passes 

a given point in. the memory loop. These pulses are counted 

by a scale of two counter which indicates when a word pair 

has passed a given point in the loop. The signal from this 

counter is fed to a scale of 63 counter which produces a 

pulse each time information in the loop has made one recir­

culation. Finally, a second scale of 6 3 counter indicates 

the end of the crosscorrelation calculation (63 recircula­

tions of the memory loop). It is from these counter signals 

that the various other timing and control signals are created. 

The scale of 11 binary up counter clocked by C con-
L 

sists of four flip-flops. The set and reset levels of the 

flip-flops are generated as a function of the present state 

of the counter. The initialize pulse DC resets the four 

flip-flops to zero (the state 0000). On the first CL clock 

pulse the right most flip-flop changes state, thus the first 

state of the counter is 0001. The levels of the flip-flops 

are set according to this state of the counter and on the 

second clock pulse the state changes to 0010. The counter 

thus counts up in a binary count sequence. The set and re­

set levels are determined in such a way that on the eleventh 

clock pulse the counter returns to the zero state (0000). 

It is this state that is detected by a five input gate, one 

input from each of the counter flip-flops and a strobe input 

CT. The strobe input is used to keep the negative transition 
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(+3.6 to zero volts) of the output pulse C synchronized 

with the negative transition of C . 
IJ 

The pulse C is used to set the level of flip-flop 1 

shown in Figure 25. This flip-flop, clocked by C , is the 
L 

scale of two counter which indicates when a 22 bit word pair 

has passed a given point in the memory loop. Its output C 
z 

is shown in the timing diagram of Figure 26. By appropri­

ately gating C and C and using this as an input to a one 
bit shift register (flip-flop 2) clocked by C , the pulse C 

L 1 
is formed. The timing signals R and ST are then formed 

2 2 

by strobing C with C! _ and C _ respectively. Inverting 
2 r i DC1 DC2 ^ 
buffers are used to give the needed drive capability. 

The pulse C , strobed with C and C_ to synchronize 
2 i 1 L 

the negative transition with C , forms the pulse C which 
JL ^ s 

is used to clock the first scale of 6 3 counter. This 

counter is actually a maximum length shift register sequence 

generator. By using a six bit shift register with mod 2 

feedback of the last two bit positions, the counter can be 

made to go through 63 different states before repeating. 

The state set by the initializing pulse is 111111. This is 

also the state detected by the gates to form the output 

pulses C and C C n is positive during the entire time Rl R2 Rl 

the counter is in the detected state. The C pulse is 

strobed with Cn . ~Q. and C, to synchronize its negative 
2s i l L 

transition with CL. There is also an inhibit signal input 

to the gate producing C which comes from the sample rate 
R̂i 
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selector switch to be discussed later. The CRn pulse is 

fed to a one bit shift register (flip-flop 5), clocked by 

C , to produce the signal C . The reset pulse R used 
^ S R3 1 

to clear Register B is then formed by ANDing C , C and C 
R3' I DC1. 

Similarly, the strobe in pulse ST used to set values of y 

in Register B is formed by ANDing C , C" and C" 
1 R3 l DC2 

The second scale of 6 3 counter (identical in construc­

tion to the previous scale of 63 counter) is clocked by the 

C pulse. A gate detects the sixty-third state and this 

signal is shifted into a one bit shift register (flip-flop 
6), clocked by C . The output of this flip-flop is C , 

-KJ. SH 

the shift mode signal. This signal is +3.6 volts during the 

recirculation in which the old stored values of h' are re­

placed by the newly calculated values. 
By ANDing C and c , . the control signal SW is formed. 

2 SH l 

This signal controls the serial data flow switch 1 and is es­

sentially the signal C inhibited during the shifting mode. 
2 

Similarly, the signal SW is formed by ANDing C and C 
2 2 SH 

This signal is identical to C during the shifting mode but 

zero otherwise. 

The oscilloscope sweep trigger pulse is formed using 

C" . ANDing C" and C"p is done to eliminate the trigger 
Rl SH " 

pulse before the shifting recirculation. 

The pseudo-random noise generator clock pulse, C! . 

is created in the same manner as C except that its negative 
2 

transition is inhibited once each recirculation. (See Figure 



69 

26). The C negative transition occurs once each recircula­

tion at the time the inhibited C transition would occur. 

C is formed from an ANDing of cL_ and the signal from the 
N Rl 

sample rate selector. It is the C signal that is used to 
N 

inhibit the C signal from setting the levels of flip-flop 

4 once each recirculation. 

The pulse Z, which clears Register A during the 

shifting mode, is formed by ANDing the output of flip-flop 3, 

C , , C! T and SW . 
DC1 SH 2 

When the sample rate selector switch is in positon 1 

(grounded), the timing circuitry functions as described above 

and the prototype calculates an impulse response in 63 recir­

culations of the memory loop (0.127 seconds). When the 

switch is in position 2, the signal SR inhibits the calcula­

tion process every other recirculation. Samples of y are 

taken every other recirculation and the rate at which the 

noise test signal is clocked is reduced by a factor of two. 

It therefore takes 126 recirculations of the memory loop to 

calculate a set of impulse response values (0.254 seconds). 

In position 3 the SR signal allows the calculator process 
3 

to take place only every fourth recirculation, thus producing 

a set of impulse response values every 252 recirculations 

(0.508 seconds). With the switch in the fourth position the 

calculation of a set of values takes 504 recirculations 

(1.017 seconds). 
When the calculate/hold switch is in the calculate 
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position, the sample rate selector switch controls the calcu­

lation rate. In the hold position, the shifting mode is 

ultimately inhibited, and the stored values in the memory 

loop are not changed. The impulse response waveform is held 

on the oscilloscope screen until the switch is returned to 

the calculate position. 

The averaging effect switch shown in the timing cir­

cuitry was used to test the affect of averaging a number of 

output waveforms and will be discussed in the next chapter. 

Figure 27 shows a photograph of the constructed proto­

type calculator. The printed circuit cards containing the 

logic elements were arranged in two rows using Elco 29-pin 

plug-in connectors as shown in the photograph of Figure 28 (a). 

Wiring was done using the wire-wrap technique which allows 

for dense yet reliable connector interconnection. This can 

be seen in the photograph of Figure 28(b). The delay line 

with its I/O circuitry was mounted behind the front panel 

and the power supplies for the logic were mounted in the rear 

of the cabinet. Plug-in jacks on the front panel provided 

for signal interconnections with the prototype. 



Figure 27. Prototype Calculator 

H 
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(a) 

(b) 

Figure 28. Card Locations and Wiring of Prototype. 
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CHAPTER VI 

EXPERIMENTAL TESTS AND RESULTS 

Test Configurations 

After the construction of the prototype calculator 

was completed, a series of tests were conducted to determine 

the effectiveness of its operation. The first tests made 

were conducted to determine the limitations of and the in­

herent error in the digital crosscorrelation process. A 

number of tests were then made using the prototype calculator 

to determine the impulse responses of several test systems. 

Series RC circuits with various time constants were used as 

first order test systems. An EAI TR-20 analog computer was 

used to simulate several different second order systems. 

The analog computer also served as a voltage summing junction 

for combining the various input test signals. Results of 

these tests are illustrated in the oscilloscope photographs 

of Figure 29. 

Tests and Results 

Curve Number 1 of Figure 29 (a) is a sample of the 

crosscorrelator output with a DC input. In this case, the 

input to the crosscorrelator was grounded. Because the 

crosscorrelation of a pseudo-random noise sequence with a 

constant is also a constant, this waveform should be a smooth 
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straight line. The variation in the actual output waveform 

is primarily due to the error in the analog-to-digital con­

version process. This variation would be reduced if a 

larger number of samples were taken which would involve using 

a pseudo-random sequence with a larger period. In this 

manner more points would be calculated per waveform, and each 

point would be the average of a larger number of values. 

The effect of more points per waveform could not be simulated 

with the prototype as constructed; however, the result of 

averaging over a larger number of values could be approximated 

and is illustrated in Figure 29 (a). 

Curve Number 2 of this figure illustrates the result 

of averaging two output waveforms. It was produced by al­

lowing the prototype to calculate two sets of data, one upon 

the other, before shifting them to the stored position for 

display. This is accomplished with the averaging effect 

switch (mentioned in Chapter V and illustrated in the timing 

circuitry of Figure 25) in the ON position and the sample 

rate selector switch in position 2. Similarly, Curve Number 

3 of Figure 29(a) illustrates the result of averaging four 

output waveforms,. In this case, the sample rate selector 

switch was in position 3. With the sample rate selector 

switch in position 4, the result of averaging eight output 

waveforms was produced as illustrated in Curve Number 4. 

The relative variations illustrated by curves 1, 2, 3 and 4 

approximate roughly the variations that would be obtained 
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by using pseudo-random sequences of lengths 63, 127, 255 and 

511 respectively. 

By using the output noise sequence of the prototype as 

the input to the correlator, the resulting output will be the 

autocorrelation of the pseudo-random sequence. This wave­

form is illustrated in Figure 29 (b). 

To determine the extent to which the pseudo-random 

noise test signal would be uncorrelated with a normal test 

system output, a series of tests were conducted in which 

sinusoidal signals of various frequencies were applied to the 

input of the correlator. The output waveform was unaffected 

by the input for most frequencies; however, some correlation 

was noted for a number of the different frequencies tested. 

By using the averaging technique mentioned above, it was 

found that more frequencies were uncorrelated as more output 

calculations were averaged. This indicates that with a 

longer pseudo-random sequence, fewer frequency components 

will possess a noticeable correlation. It should be noted, 

however, that since the pseudo-random sequences are periodic, 

there will always be some frequency components that will be 

correlated. 

The prototype calculator was next used to calculate 

the impulse response of several test systems. Figure 29(c) 

is the calculated, impulse response of an RC network with time 

constant T = 0.025 seconds. In this figure three horizontal 

scale divisions equal 0.127 seconds, Figure 29(d) 
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illustrates a similar first order response curve with T = 0.25 

seconds. In this figure, the sample rate selector switch 

was adjusted so that three horizontal scale divisions equal 

1.017 seconds. The rest of the waveforms illustrated in 

Figure 29 also have this same horizontal time scale. 

Using the analog computer to simulate a second order 

system having a natural frequency to of 30 radians per second 

and a damping ratio 6 of 0.15, the impulse response curve of 

Figure 29(e) was produced by the prototype. The curve of 

Figure 29(f) was calculated using a simulated second order 

system with w equal to 30 radians per second and 6 increased 

to 0.4. Figure 29(g) illustrates the calculated response 

for a second order system with 6 = 0.4 and co decreased to 
o 

10 radians per second. 

Output waveforms taken directly from the analog-to-

digital converter have a "stair step" appearance as illustra­

ted in Figure 29 (h) which is the calculated impulse response 

of a second order system with GO = 2 0 radians per second and 
o 

6 = 0.2. To reduce this appearance and produce the smooth 

curves previously discussed, the output signal was low-pass 

filtered. 
Conclusions 

From the test results it can be concluded that the 

digital approach to the implementation of the crosscorrelation 

algorithm for calculating system impulse responses is highly 
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effective. This is primarily due to the simplified algo­

rithm which greatly reduces the crosscorrelation calculation. 

This in turn reduces the amount of logic required and hence 

the physical size of the calculator„ In taking only 63 

samples per response time, impulse response waveforms were 

produced that compared very well with their corresponding 

theoretical curves, By using longer pseudo-random noise 

sequences and taking more samples per response time, the re­

sults would be greatly improved. 

An important, problem encountered in testing the pro­

totype and one that must be considered in a practical ap­

plication of this technique is that of the A/D conversion 

magnitudes. For optimum A/D conversion the analog voltage 

range of operation was adjusted to cover the digital range 

of an 11 bit sign plus two's complement number. However, 

while operating in this manner, the data being calculated in 

the recirculating loop often exceeded the magnitude of the 

11 bit words. This could be avoided by reducing the ampli­

tude of the analog input signal, but not without, a reduction 

in the accuracy of the A/D conversion because of fewer quanti­

zation levels per volt. One solution to the "overflow" 

problem in the calculation process would be to provide a word 

space larger than 11 bits in the recirculating loop. When 

the calculation process is completed, it would be a simple 

task to digitally normalize the data to within the range of 

an 11 bit number. 
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There are many areas in the engineering field in which 

such a calculator could be used. For example^ in a predominr-

antly second order system the overshoot of a step response is 

uniquely related to the ratio of positive to negative area of 

the impulse response.9 Also-, the final value of the step 

response is equal to the total area of the impulse response.2 

These values could be easily calculated and compared digitally 

to produce a measure of the overshoot. 

The first zero crossing of the impulse response cor­

responds to the peak of the step response.2 This informa­

tion could be used to control the rise time of a control 

system. 

Since the system-gain is proportional to the area of 

the impulse response,, an error signal for gain control could 

easily be calculated.2 

At the present time, much work is being done in the 

area of modeling human dynamic response characteristics. 

The technique presented here may possibly be used along these 

lines. 

These are, of course, but a few of the potential uses 

for an "on-line" system or process identifier. The algorithm 

and digital implementation presented here should provide a 

useful tool for system modeling in many areas of the engi- . 

neering field. 
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Ladder Decoder Circuit 
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