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SUMMARY

Turbulence in fluid flows is ubiquitous. It is present in rivers, oceans, and the atmo-

sphere. The flow of air past the wings of an airplane or around a car is turbulent, the flow

of water around a boat or down a water pipe is also turbulent. Scientists and engineers

have been trying to understand turbulence for centuries, yet it remains a rather mysterious

phenomenon. This thesis explores a modern approach for describing turbulence using un-

stable nonchaotic (e.g., equilibrium or temporally-periodic) solutions of the Navier-Stokes

equation, called exact coherent structures (ECS). These solutions are closely related to

classical coherent structures – characteristic spatiotemporal patterns that appear fleetingly

and disappear only to reappear at a different place and time – which are found in a variety

of wall-bounded turbulent flows, both in experiment and in simulations. It has been con-

jectured that a hierarchy of ECS forms the skeleton of fluid turbulence: each ECS guides

the dynamics of the flow in its vicinity, with apparent randomness arising from the flow

moving from the neighborhood of one ECS to the neighborhood of another.

Some of the most unexpected discoveries in developing and testing this conjecture have

been made in a system – Kolmogorov-like flow in a thin fluid layer of electrolyte driven

by Lorentz force suspended above a thin lubricating layer of a fluid dielectric – which is

essentially two-dimensional. Due to its effective two-dimensionality, this flow offers an

unprecedented level of access both experimentally and numerically, allowing the kinds of

analysis that would be either prohibitively expensive or simply too difficult in most three-

dimensional flows. The price one pays for this simplification is the requirement of using

an approximate two-dimensional model, which relies on some assumptions. We have de-

veloped, and implemented numerically, an improved “weakly-compressible” model of the

flow which retains the simplicity of the “incompressible” two-dimensional model intro-

duced previously, but also accounts for the thickness variation of the two fluid layers. This

compressible model has been shown to offer a more accurate description of the transition
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to turbulence in this system, compared with its incompressible predecessor.

Most of the previous work has focused on identifying collections of ECS in various

canonical wall-bounded flows and using periodic orbit theory to connect temporal averages

with state averages. However, relatively little attention has been devoted to using the hier-

archy of ECS to describe and predict the global dynamics of turbulent flows. In particular,

there are almost no studies that explain how and why the flow moves from the neighbor-

hood of one ECS to the neighborhood of another. One possibility is that the turbulent flow

follows another type of unstable solutions to Navier-Stokes – heteroclinic connections that

lie at the intersection of the unstable manifold of an origin ECS and the stable manifold of

the destination ECS. To investigate this possibility, these connections have to be computed,

however no reliable methods for computing them for such complicated systems as a fluid

flow have been developed previously. Existing algorithms have been developed mainly for

low-dimensional systems and become computationally prohibitive for fully-resolved dis-

cretizations of Navier-Stokes in realistic geometries. We have developed and tested several

robust and efficient numerical algorithms for computing both ECS and dynamical connec-

tions in high-dimensional dynamical systems. These algorithms should facilitate the next

step in the development of the geometric, deterministic description of fluid turbulence.

xviii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

The flow of Newtonian fluids such as water and air, for which the viscous stress is pro-

portional to the velocity gradient, is governed by the Navier-Stokes equation (NSE), which

was introduced in early 19th century and represents momentum conservation

ρ (∂tv + (v · ∇) v) = −∇p+ µ∇2v + fb, (1.1)

where ρ is the density of the fluid under consideration, v is its velocity, µ is the dynamic

viscosity, p is the pressure, and fb is the density of the body force acting on the fluid. For

flows with velocity much less than the speed of sound, mass conservation leads to the

incompressibility condition

∇ · v = 0. (1.2)

The NSE is deterministic: in principle, given an initial flow state, it unambiguously predicts

the flow state at any later time. Nevertheless, in practice this determinism only holds when

the flow is sufficiently slow (and hence laminar). For fast flows, due to its nonlinearity, the

NSE possesses chaotic solutions (which describe turbulent flows) characterized by expo-

nentially fast separation of close initial conditions, such that in practice the deterministic

predictions can only be made over a finite period of time. Also as a result of nonlinearity,

solutions cannot be expressed in closed form in any geometry, which substantially compli-

cated their mathematical analysis.

The first systematic investigation to understand fluid turbulence was performed circa
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1883 by Osborne Reynolds, who injected dye into the flow of fluid through a pipe to visu-

alize the flow [1]. The experiments showed that the complexity of the flow was determined

solely by the dimensionless parameter

Re =
vs`

ν
(1.3)

where ν = µ/ρ is the kinematic viscosity of the fluid, vs is the characteristic velocity

scale of the flow, and ` is the characteristic length scale of the problem, such as the pipe

diameter. Originally introduced by Stokes in 1851, this parameter now carries Reynolds’

name and can be physically interpreted as the ratio of inertial and viscous forces in the flow,

At small Re, viscous forces dominate and the flow is laminar, i.e., smooth and simple. As

the Reynolds number increases, inertial forces become dominant and the flow becomes

turbulent, i.e., complicated and unpredictable. Though Reynolds was able to explain the

transition from laminar to turbulent flow qualitatively, he failed to produce any kind of a

quantitative description. In fact, in his subsequent paper [2], he concluded that turbulent

flow is too complicated for detailed understanding, and by borrowing ideas from the kinetic

theory of gases he laid the foundation for a statistical description of turbulence by factoring

the flow into the mean and fluctuating components. Since then, most of the research in

fluid turbulence has focused on its statistical properties [3, 4, 5, 6]. However, given the

deterministic nature of the NSE, a deterministic description should be possible. Not only

can it complement – and justify – the statistical description, the deterministic description

is crucial for describing the physical mechanisms responsible for initiating and sustaining

turbulent flow.

The pioneering effort in constructing a deterministic description of turbulence was

made in 1944 by Landau [7]. He proposed that the laminar flow, stable at low Re, be-

comes unstable and gives rise (through a Hopf bifurcation) to a time-periodic flow as Re

is increased. As Re is increased further, this time-periodic flow undergoes another Hopf
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bifurcation, giving rise to a a flow with two temporal frequencies. The process continues

with increasing Re, leading to a quasi-periodic flow with a large number of incommensu-

rate frequencies. Landau argued that the number of different frequencies tends to infinity as

Re increases, resulting in an irregular and apparently random flow behavior, characteristic

of turbulence [7]. In 1948, Eberhard Hopf constructed a theoretical model that reproduced

this scenario [8] and proposed using the corresponding solutions to compute the statisti-

cal properties of turbulence. Though never observed in experiments, this scenario marks

a paradigm shift in our approach to the turbulence problem. In 1971, Ruelle and Takens

showed that the scenario based on an infinite sequence of Hopf bifurcations is not generic

and introduced a refined version [9]. By viewing NSE as a dynamical system, they showed

that the transition to turbulence can involve a finite number of bifurcations. This was later

confirmed in experiments [10, 11], suggesting a possible link between dynamical systems

theory and turbulence.

To make matters more complicated, in addition to being nonlinear, the NSE also in-

volves a large number of degrees of freedom. This can be seen by spatially discretizing

it, which formally yields an infinite set of coupled ordinary differential equations (ODEs).

The first successful attempt to describe temporally complex fluid flows using dynamical

systems theory is due to Edward Lorenz, who in 1963 derived a drastically simplified model

of convection rolls in the atmosphere by truncating a spectral discretization of the NSE ob-

tained by Saltzman [12]. His simplified model involving three coupled nonlinear ODEs

is presently known as the Lorenz system [13]. Using numerical simulations, Lorenz dis-

covered that his simple model generates solutions that are chaotic, i.e., highly sensitive to

initial conditions, similar to fluid turbulence thus strengthening the connection between tur-

bulence and the deterministic chaos. The seminal work of Lorenz in many ways defines the

modern view of turbulence through the lens of dynamical systems theory. The last decade

has seen a lot of progress in this direction in part due to advancements in computing power,

development of sophisticated numerical algorithms, and carefully designed experiments
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[14]. Although still in its early phase, a deterministic description of turbulence is poised to

revolutionize our understanding of fluid turbulence.

1.2 Background

Despite their apparent complexity and unpredictability, turbulent flows commonly exhibit

characteristic patterns known as “coherent structures”. For example, in wall-bounded shear

flows (e.g., the boundary layer in flow past an airfoil), coherent structures are typically ob-

served in the form of streamwise vortices [15] and streaks of streamwise velocity [16].

An example of coherent structures in a pipe flow is shown in Figure 1.1. Coherent struc-

tures in the form of vortices are frequently observed in the ocean and atmosphere [17].

Coherent structures typically play a central role in turbulent transport and mixing [18]. Co-

herent structures are transient; for example, in wall turbulence, vortices and streaks exhibit

a bursting process [19, 20, 21]. Nevertheless, coherent structures are robust features of tur-

bulent flows in that they frequently and repeatedly reappear for a wide range of Reynolds

numbers [22, 21]. Empirical criteria have typically been used to characterizate coherent

structures in turbulence; in wall-bounded flows, for example, turbulent streaks are identi-

fied by well-specified protocols for conditional sampling [23].

Recent theoretical work assisted by large scale numerical simulations has shown that

observed coherent structures can be connected directly to unstable exact solutions of the

NSE [25, 26, 27, 28, 29, 30, 31, 32, 21, 33, 34, 35] as shown in Figure 1.1 for a pipe flow.

These exact solutions therefore became known as “exact coherent structures” (ECS). In

wall-bounded shear flows, ECS prominently feature, like classic coherent structures, both

streamwise vortices and streaks. ECS also exhibit bursting behaviors and can account for

much of the turbulence energy production attributed to classic coherent structures [26, 27,

21]. Most theoretical studies of ECS have focused on flows in straight channels and pipes

at moderate Reynolds numbers (∼ 103); nevertheless, evidence suggests that this approach

extends to much larger Reynolds numbers (∼ 104 or more) [31].
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Figure 1.1: Cross sectional view of the coherent structures and exact coherent structures
in a pipe flow. The top panel shows the coherent structures observed in experiment at (A)
Re = 2000 (C) Re = 2500 (E) Re = 5300. The bottom panel shows the ECS computed in
numerical simulations at (B) Re = 1250 (D) Re = 1360 (F) Re = 2900. Reproduced from
Ref. [24].

These recent results suggest that ECS could provide the building blocks for novel mod-

els of turbulent flow. The foundation stone for this line of thought can be traced back to

Poincaré [36] who realized that unstable periodic orbits provide a skeletal structure that or-

ganizes chaotic dynamics of celestial objects. This idea was later developed in the context

of quantum chaos by Gutzwiller [37] and subsequently applied to high-dimensional chaos

generated by nonlinear PDEs such as the Kuramoto-Sivashinski equation [38, 39] and the

Ginzburg-Landau equation [40]. Although it took the fluid dynamics community some time

to take notice, the same idea eventually started producing new insights into the dynamical

mechanisms underlying turbulence [41, 26]. The last decade has seen an explosion of re-

search in weakly turbulent flows, mostly in Europe and Japan (see [14] for a recent review),

giving us hope that the “the greatest unsolved problem of classical physics” might finally

surrender, paving the way for our understanding, and simplified deterministic description,

of spatiotemporally complex dynamics in numerous other physical and biological systems.

Although the mathematical framework is still under development, its structure has
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started to crystallize. PDEs, such as the NSE (1.1), formally describe infinite-dimensional

systems, but the drastic reduction (due to dissipation) of the effective number of degrees of

freedom suggests that it should also be possible to reduce the complexity of the dynamical

description. As a system is driven further out of equilibrium (e.g., Reynolds numberRe of a

fluid flow is increased), the degree of nonlinearity is increased, formerly stable spatially and

temporally simple solutions become unstable, and new (mostly unstable) solutions appear

through sequences of bifurcations. Bifurcation cascades generate an infinity of unstable

solutions which lead to the emergence of chaotic sets, leading to chaotic dynamics (and

turbulence, in particular). This (standard in low-dimensional dynamical systems) scenario

has recently been verified in high dimensions through numerical simulations for several

canonical fluid flows (plane Poiseuille flow [42] and pipe flow [43]).

In principle, the dynamics of turbulence takes place in an infinite-dimensional state

space, the space formed by the set of all possible flow states. Each point in the state space

corresponds to a snapshot of a particular solution of the governing PDEs (e.g., a flow state

in the physical space for fluids [45]). In particular, each unstable solution in the state

space corresponds to an ECS in the physical space, as Figure 1.2 illustrates. For practi-

cal purposes (e.g., real-time prediction of turbulent flow), a low-dimensional description

of the dynamics must be constructed. Previous efforts have largely relied on global low-

dimensional models constructed by projecting the NSE onto a collection of modes (i.e.,

disturbances around the laminar flow profile) extracted using either proper orthogonal de-

composition (POD) [46, 47] and, more recently, balanced truncation methods [48, 49],

dynamic mode decomposition [50, 51] and Koopman operator technique [52]. These ef-

forts have achieved some measure of success: they provide a qualitative description of the

self-sustaining processes leading to regeneration of turbulent coherent structures. However,

due to fundamental limitations stemming from their inherent linearity, these methods are

largely unsuitable for quantitative description of turbulent dynamics, where both nonlin-

earity and fine-scale structure must be properly represented, especially at higher Reynolds
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(a) (b)

(c) (d)

Figure 1.2: Plane Couette flow in a minimal flow unit. Shown are the snapshots of the flow
along a periodic orbit P97 at intervals ∆t = 15 marked by open magenta dots in Figure 1.3,
starting at the point labeled P97. Reproduced from Ref. [44].
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P97

u
turb

Figure 1.3: A state-space portrait of turbulent plane Couette flow. This 3D projection shows
a turbulent trajectory uturb (solid and dotted black lines) shadowing the P97 periodic orbit
(bold magenta line) and the unstable manifolds (blue, red, and green lines) of symmetry-
related equilibria (solid blue, red, and green dots; the black dot at the origin is the laminar
flow state). Dynamical connections are shown as bold red and blue lines connecting differ-
ent equilibria (filled dots). The Figure is reproduced from Ref. [44].

numbers.

The discovery of ECS suggests a radically different modeling strategy to overcome

the quantitative failures of previous low-dimensional models by describing turbulence as

a walk within a network of unstable ECS. The turbulent dynamics or the spatiotemporally

chaotic dynamics take place on a chaotic set (attractor or repeller) which is embedded in a

relatively low-dimensional inertial manifold (of order ten or so for weakly turbulent fluid

flows in small three-dimensional computational domains [53]). Inertial manifold is, in turn,

embedded within an infinite-dimensional state space. As Figure 1.3 illustrates for a weakly

turbulent plane Couette flow (PCF) [54], unstable nonchaotic solutions (often referred to as

invariant solutions in the literature) inhabit the same region of state space as chaotic solu-

tions and are dense within the chaotic set: a sufficiently long chaotic trajectory approaches

any of these unstable solutions arbitrarily closely. These unstable solutions (equilibria,

periodic and quasi-periodic solutions, etc.) are all saddles, i.e., they have both attracting

(stable) and repelling (unstable) manifolds. A statistical description of the dynamics can
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be obtained by invoking the ergodic hypothesis, assuming it is valid, to relate temporal

averages of any physical observable to an appropriately weighted average over the sad-

dles embedded in the chaotic set. The weights are related to the stability of saddles, with

the least unstable ones providing the largest contribution to the average, according to the

periodic orbit theory (POT) [55, 56], hence there is a clear hierarchy of saddles.

The dynamical description based on unstable solutions is considerably less developed,

but numerical simulations suggest the following general picture. Once a turbulent trajec-

tory (dotted line in Figure 1.3) enters the neighborhood of a particular saddle (e.g., time-

periodic orbit shown as the magenta curve) it follows (shadows) that saddle for a period of

time (the solid black line on the right side of the figure), before leaving that neighborhood

and moving towards another saddle. This process then repeats, with the turbulent trajec-

tory wandering from neighborhood to neighborhood. If one associates the saddles with the

nodes of a network or graph, then the sequence of the nodes visited by the turbulent flow

provides a coarse description of the dynamics. If the initial conditions are well specified,

this sequence is deterministic. In particular, the turbulent trajectory is expected to follow

dynamic (or heteroclinic) connections between the saddles (solid red and blue lines). The

corresponding segments are shown as solid black lines on the left of the figure. If the initial

conditions are not well specified, then one can associate a probability with each of the dy-

namical connections originating at a given node and then the sequence becomes a random

walk on a Markov chain, from which one can readily obtain the statistical description. It is

worth emphasizing that for these descriptions, the ECS and their connections need only be

determined once as these invariant objects do not change in time.

The geometrical interpretation associated with the state space representation of the dy-

namics has similarly proved to be extremely useful. In particular, the shape of ECS in the

state space and the evolution of the corresponding flows structures in the physical space

were found to have a deep physical significance. In particular the dynamical mechanisms

that underlie turbulence have previously been understood, with the help of coherent struc-
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tures, only qualitatively. Identification of ECS allowed a quantitative description, the self-

sustaining process identified by Walleffe [57] being the most famous example, as well as

the realization that their is an entire hierarchy of such mechanisms. Some saddles (termed

edge states) were found to define the local shape of the chaotic set, with their stable man-

ifolds define the boundary between the basins of attraction of the laminar flow and the

chaotic attractor supporting turbulent flow [58, 59]. In contrast, the topological informa-

tion associated with the network of dynamical connections that links distant parts of the

chaotic set, on the other hand, has been largely unexplored.

The framework based on unstable solutions also allows construction of a fine descrip-

tion of the dynamics. Although global embedding of the entire chaotic set may require

a vector space of very high dimensionality (determined by the discretization of the PDEs

required to fully resolve the dynamics), locally the inertial manifold is low-dimensional,

and in the neighborhood of any saddle/connection it can be parametrized using a relatively

small number of degrees of freedom (O(10)). This should be contrasted with more conven-

tional model reduction techniques such as POD or balanced truncation, which may require

many thousands of modes to represent quantitatively the dynamics near even the simplest

time-periodic solutions. The local degrees of freedom can be obtained conveniently by

linearizing the infinite-dimensional governing equations around each saddle/connection,

keeping the slow (i.e., unstable, marginal, and weakly stable) modes and discarding an

infinity of strongly stable modes. The linearization around ECS determines the probabil-

ity for the turbulent evolution to follow various dynamical connections, providing the last

missing link between the dynamical and the statistical descriptions.

1.3 Motivation for the present work

Although substantial progress has been made in developing the foundation of the deter-

ministic, dynamical description of fluid turbulence in recent years, many of its ingredients

remain largely unexplored, untested, and not understood. In particular, we still don’t know
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what types of ECS (equilibria, periodic orbits, quasi-periodic orbits) play the most impor-

tant role in the dynamics. For instance, the dynamically dominant solutions appear to be

relative periodic orbits in pipe flow [60] and in two-dimensional Kolmogorov-like flow

without the Rayleigh friction term [61], while in the same flow with the Rayleigh friction

term equilibria appear to be dynamically dominant [62]. The role of quasi-periodic so-

lutions is not currently understood, primarily due to the practical difficulty in computing

solutions featuring several incommensurate frequencies. The role of dynamical connec-

tions is equally poorly understood, again due to the difficulty of computing this type of

solutions. We have very limited data regarding the statistics of visits to the neighborhoods

of different solutions by the turbulent flow and, in the cases when such data is available it

appears to contradict the predictions of POT [61].

The dynamical description of turbulence requires the computation of both the ECS

and the connections between them. However, the combination of non-linearity and high-

dimensionality of the NSE make the problem of computing these solutions extremely chal-

lenging. Several different approaches for computing absolute and relative equilibria and

time-periodic solutions have been proposed and tested. The shooting method, which re-

lies on time-integration of the NSE combined with Newton-hook-step iterations [63], is the

most common approach. It solves a system of coupled nonlinear equations that defines a

point in the state space the either corresponds to an equilibrium or lies on a closed orbit.

A variational approach, where the entire orbit is discretized using finite differences [64] or

spectral representation [65], offers a more robust alternative for highly unstable solutions

for which the shooting method generally breaks down. Both of these approaches rely on

the Newton’s method to solve the resulting system of equations, which is computation-

ally expensive and prone to stagnation at local minima. To overcome these limitations, an

adjoint-based method has been developed for computing absolute and relative equilibria

[66].

In comparison, no systematic methods for computing dynamical (homoclinic or hetero-
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clinic) connections for the NSE currently exist. Most existing methods are shooting-based

[67, 68, 69] and were only tested for low-dimensional systems. Whether they are applied

for computing time-periodic orbits or dynamical connections, shooting-based methods, es-

pecially ones that employ Newton iterations, require a good initial guess. Such good initial

guesses are generally unavailable for dynamical connections of the NSE and can only be

generated under very restrictive conditions. For instance, in all of the examples where

dynamical connections have been computed for turbulent fluid flows [27, 31, 54], the ori-

gin ECS possessed a very low-dimensional unstable manifold (one- or two-dimensional),

which made a brute-force search for good initial guesses tractable. Such brute-force ap-

proach becomes intractable for typical ECS that have more than a couple of unstable di-

rections. Variational methods, originally developed for computing time-periodic solutions,

offer a viable alternative: a curve in the state space connecting the origin and destination

ECS is discretized and evolved in pseudo-time in such a manner that the tangent along this

curve is everywhere aligned with the direction of the vector flow. Existing implementation

of the variational method [70] relies on Newton iterations, which makes it impractical for

computing the connection in fully-resolved simulations of fluid turbulence with physical

boundary conditions due to the immense computational power and storage requirements. A

lack of memory efficient, robust numerical algorithm for computing the dynamical connec-

tions motivated some of the work presented here. In this thesis, this problem is addressed

by developing an adjoint-based numerical solver for computing the dynamical connections

between unstable equilibria of the NSE, which is both memory-efficient and robust. In

addition, it is shown that adjoint-based approach can also be used for computing unsta-

ble equilibria and time-periodic orbits, though computation of periodic orbits has not been

pursued in this thesis.

Another open problem addressed by this thesis is the lack of a sufficiently accurate

two-dimensional model that can be directly compared with an experimentally realizable

(nearly) two-dimensional flow, such as the Lorentz-force-driven flow in a thin layer of
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electrolyte supported by a thin lubricated layer of fluid dielectric above a horizontal rigid

boundary [71]. Although both the fluid layers in such an experimental setup have a finite

thickness, the flow in the electrolyte layer can be made very nearly two-dimensional due

to the strong confinement in the vertical direction [72]. Two-dimensional flows have been

widely used to investigate fluid turbulence [73, 74, 75, 62], since they reproduce much

of the phenomenology of the three-dimensional turbulence, including subcritical transition

and the energy and enstrophy cascades, but are much easier to study experimentally and

numerically.

The flow in the experimental system considered in this thesis is very similar to the

Kolmogorov flow – a theoretical model of transition to turbulence that has been extensively

studied theoretically, numerically, and experimentally [76, 77, 78, 79, 80, 81, 82, 83, 84,

85, 86, 87, 88, 89]. The Kolmogorov flow is assumed to be strictly two-dimensional and is

driven by a steady body force that varies sinusoidally in space,

f(x, y) = f0 sin(ky)x̂, (1.4)

where f0 is the strength of the forcing, which defines the characteristic flow velocity vs, and

2w = 2π/k is the forcing wavelength. Since theoretical and numerical studies typically

ignore the effect of the lateral boundaries and instead assume periodic boundary conditions

in both directions, w – one half of the forcing period – defines the characteristic length scale

` of the flow. In experiment, the forcing is nearly sinusoidal and the flow is nearly two-

dimensional, hence we refer to it as Kolmogorov-like. A two-dimensional model for this

Kolmogorov-like flow has previously been developed [71, 72] by ignoring the thickness

variation of fluid layers. Comparisons of this model with the experiment show reasonable

agreement at low Reynolds numbers, when the flow is steady. However, as the Re in-

creases, the vertical component of the velocity becomes non-negligible and the thickness

of fluid layers becomes time-dependent. Taking these effects into account allows extending
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the validity of the model to higher Re.

1.4 Thesis outline

The rest of the thesis is organized as follows. We start by presenting a derivation of the

improved, weakly compressible, two-dimensional model of the Kolmogorov-like flow in

Chapter 2. The model is validated by comparing its predictions with experimental obser-

vations in Chapter 3. This chapter also discusses the sequence of bifurcations leading from

laminar flow to turbulence as the Reynolds number increases. Chapter 4 describes the tra-

ditional Newton-based shooting methods for computing ECS and dynamical connections.

Chapter 5 introduces the new, robust, memory efficient, adjoint-based solver for computing

equilibria and the dynamical connections between them. Finally, the main results of this

work and some remaining open questions are discussed in Chapter 6.
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CHAPTER 2

MODEL SYSTEM

The deterministic, dynamical description of turbulence requires validation against both nu-

merical simulations and experiments. As discussed in the introduction, turbulent flows in

two spatial dimensions are much easier to study, compared with their 3D counterparts. This

motivated the studies of 2D turbulence in soap films [90] and thin layers of liquid metals

[91] and liquid electrolytes [92]. In these experiments, the fluid is strongly confined in one

direction, making the flow effectively two-dimensional. Soap-film experiments are poorly

suited for quantitative comparisons, since the thickness (and hence the inertia) of the film

cannot be made sufficiently uniform. On the other hand, experiments which use thin lay-

ers of fluids supported by a rigid horizontal boundary feature flows that are not formally

two-dimensional: the no-slip boundary condition at the bottom of the container imposes a

nonuniform vertical flow profile. The effect of the bottom wall has been traditionally mod-

eled by adding an empiric Rayleigh friction term to the two-dimensional Navier-Stokes

equation. A formal first-principles derivation of both the vertical flow profile and the 2D

evolution equations for the horizontal flow profile featuring the Rayleigh friction term have

been made in Ref. [71] by assuming that the vertical component of the velocity is negli-

gible. Predictions of this model were found to be in good agreement with experiment for

steady flows in pre-turbulent regime [72]. However, at higher Re, when the flow becomes

time-dependent, substantial discrepancy between the experiment and the model predictions

is found. To extend the validity of the 2D model to higher Re, where the flow becomes tur-

bulent, a new 2D model has been derived in this chapter by accounting for the vertical

component of the velocity. This improved model has been compared with experiments and

found to reproduce well the details of the observed subcritical transition to turbulence.
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2.1 Experimental setup

The experimental setup employing a shallow layer of fluid electrolyte driven by Lorentz

force was originally introduced by Bondarenko [92]. The no-slip boundary condition at the

bottom generates a vertical gradient of the horizontal velocity, which gives rise to a nonva-

nishing vertical component through Ekman pumping [93, 94]. To address this problem, a

setup using two immiscible fluid layers was proposed by Rivera et al. [95], where a lighter

layer of electrolyte is suspended on a heavier layer of dielectric fluid. The flow is driven by

an electromagnetic force in the top electrolyte layer, while the bottom dielectric layer acts

as a liquid lubricant and helps generating a nearly two-dimensional flow in the top layer.

Immiscibility of the two layers suppresses the flow along the vertical direction and also

enhances the two-dimensionality of the flow.

The Lorentz force

f = J×B = J(x̂Bz − ẑBx). (2.1)

driving the flow is generated by the interaction of a DC electric current with density J = ŷJ

passed through the electrolyte and the magnetic field B produced by an array of magnets

with alternating polarity placed below the fluid. The experimental setup considered here

consists of 14 magnets with magnetization in the vertical direction (z-axis), as shown in

Figure 2.1a, in order to generate a nearly sinusoidal forcing profile (in the y, or transverse,

direction), like in Kolmogorov flow. A thin glass plate of thickness 0.079 ± 0.005 cm is

placed above the magnets to compensate for the surface irregularities at the bottom. The

shallow layers of dielectric (thickness hd = 3 mm, viscosity = 1.30 mPa·s, density = 1769

kg/m3 at 23.0◦C) and electrolyte (thickness hc = 3 mm, viscosity = 5.85 mPa·s, density =

1192 kg/m3 at 23.0◦C) are placed on the top of the glass plate. The entire setup is placed

in a rectangular aluminum container of dimensions Lx × Ly = 22.86 cm × 17.78 cm, with

a buffer region of dx = 1.27 cm and dy = 2.54 cm between the magnet array and the
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Figure 2.1: Schematic of the experimental setup with the (a) top view and (b) side view.

container walls, as shown in Figure 2.1a. The fluid flow, driven by the Lorentz force in the

x-direction, is constrained by the walls normal to x-axis (henceforth referred to as the end

walls). Two electrodes of length Lx each, mounted to the walls parallel to the x-axis, are

used to drive the electric current through the electrolyte (these are henceforth referred to as

the side walls). Since the dielectric is nonconducting, J = 0 there. In the electrolyte layer

the current density is assumed uniform; a net electric current I corresponds to a current

density J = I/(hcLx).

Each of the magnets in the magnet array is 15.24 cm long and 1.27 cm wide. Both the

electrolyte and the dielectric layer are thin (compared with the forcing length scale which is

determined by the width of one magnet w), essentially making the fluid flow in both layers

horizontal. The speed of the flow, however, depends not only on the x and y coordinates,

but also on the z coordinate, so we will refer to this flow as a quasi-2D flow. This makes

the flow different from strictly 2D flows such as that considered by, e.g., Chandler and

Kerswell [61].
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2.2 Numerical model

2.2.1 Incompressible model

Let the origin of the coordinate system be at the geometric center of the bottom of the

dielectric layer. The velocity field in the fluids is inherently three-dimensional, in the sense

that it generally depends on all three spatial coordinates and time t, v = v(x, y, z, t). It is

governed by the Navier-Stokes equation (1.1) with fb = ρg + f , where ρg = −ρgẑ is the

gravitational force and f is the Lorentz force.

For shallow layers of fluids driven by a weak, in-plane forcing, the velocity compo-

nent along the vertical direction is small compared to the horizontal ones, so lubrication

approximation applies [96] and the horizontal velocity can be written in the form

v‖(x, y, z, t) = q(z)u(x, y, t), (2.2)

where v‖ is the horizontal component of v, and q(z) describes the dependence of the hor-

izontal velocity on z. The no-slip boundary condition at the bottom of the dielectric layer

is imposed by setting q(0) = 0, and the stress-free boundary condition at the surface of

the electrolyte layer (z = h) requires q′(h) = 0, where h = hc + hd. Furthermore, a

normalization condition

q(hc + hd) = 1, (2.3)

is imposed to make the factorization unique, so u(x, y, t) can be interpreted as the velocity

of the free surface of the electrolyte layer.

Assuming that the vertical component of the velocity is negligible and integrating (1.1)

along the z-direction, a 2D evolution equation for u has been derived in [71]

∂tu + β
(
u · ∇‖

)
u = −∇‖p̄+ ν∇2

‖u− αu + f̄ , (2.4)
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where ∇‖ = x̂∂x + ŷ∂y, p̄ is the 2D analogue of pressure, f̄ is the depth-averaged Lorentz

force, and the constant coefficients β, ν, and α will be defined later. This equation is

formally equivalent to the 2D Navier-Stokes equation, where ν is the effective kinematic

viscosity, with two modifications: (i) the coefficient β of the advection term is not equal to

unity and (ii) there is a new term−αu, known as the Rayleigh friction, which describes the

effect of the bottom boundary. The 2D velocity u is divergence-free

∇‖ · u = 0 (2.5)

under the assumption that the vertical component of the velocity, vz = 0. Hence we call

this an “incompressible model.” This model has been compared with experiment and its

predictions were found to be in good agreement with experimental observations for steady

flows at Re . 17, where the Reynolds number (1.3) has been defined using an appropriate

characteristic velocity vs (to be discussed later in more detail), effective kinematic viscosity

ν, and the width w of the bar magnets as the characteristic length scale ` [72].

2.2.2 Weakly compressible model

In order to extend the validity of the model to higher Re when the flow becomes unsteady,

the vertical component of the velocity is nonnegligible, and the variation in the thickness

of the fluid layers has to be taken into account, a new model is derived here. When vz 6= 0,

(2.2) generalizes to

v(x, y, z, t) = q(z)u(x, y, t) + vz(x, y, z, t)ẑ (2.6)

Substitution of (2.6) into (1.1) gives

ρq∂tu + ρq2
(
u · ∇‖

)
u + ρvzq

′u = −∇‖p+ µq∇2
‖u + µq′′u + JBzx̂, (2.7)

ρ∂tvz + ρq
(
u · ∇‖

)
vz + ρvz∂zvz = µ∂2

zvz − ρg − JBx − ∂zp, (2.8)
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Integrating (2.7) over the z coordinate from the bottom of the fluid layer (z = 0) to the

free surface (z = h), we obtain

∂tu + β
(
u · ∇‖

)
u = a + ν∇2

‖u− (α + θ)u + f̄ , (2.9)

where

β = %−1

∫ h

0

ρq2dz,

ν = %−1

∫ h

0

µqdz,

α = %−1µq′(0)

are the parameters common to both models and

% =

∫ h

0

ρqdz. (2.10)

The forcing term F represents the horizontal component of the depth-averaged Lorentz

force

f̄ = %−1Jx̂

∫ h

0

Bzdz (2.11)

and

a = −%−1

∫ h

0

∇‖pdz. (2.12)

Equation (2.9) has the same form as (2.4), with one exception: the Rayleigh friction coef-

ficient has an additional contribution

θ = %−1

∫ h

0

ρvz∂zqdz (2.13)

which is a function of the velocity. It describes advective transport of momentum as op-

posed to the diffusive (viscous) transport represented by the coefficient α. The vertical

component of velocity vz can be computed by substituting the ansatz (2.6) into the incom-

pressibility condition (1.2) and integrating the result along the vertical direction from the
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bottom surface to arbitrary height z. This gives

vz = −χ(z)∇‖ · u, (2.14)

where

χ(z) =

∫ z

0

q(z′)dz′ (2.15)

Substituting (2.14) into (2.13) gives

θ = γ∇‖ · u, (2.16)

where

γ = −%−1

∫ h

0

ρχ∂zqdz

= −%−1

[∫ h

0

ρ∂z(χq)dz −
∫ h

0

ρq∂zχdz

]
= −%−1

[
ρd

∫ hd

0

∂z(χq)dz + ρc

∫ h

hd

∂z(χq)dz −
∫ h

0

ρq2dz

]
= β − %−1 [(ρd − ρc)χdq(hd) + ρc(χc + χd)] . (2.17)

Here we have defined the constants

χd =

∫ hd

0

q(z′)dz′,

χc =

∫ h

hd

q(z′)dz′. (2.18)

Equation (2.14) shows that the vertical component of the velocity is noticeably smaller

than the horizontal components,

vz = −χ(z)∇‖ · u ≤ O(ε)vs, (2.19)
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where ε = hs/w and hs = max(hc, hl) is the characteristic thickness of the liquid layers. In

the present experimental setup ε ≈ 0.24 but, for the range of Reynolds numbers considered

here (Re . 25), the typical magnitude of vz is even smaller (around 1% of vs). The terms

on the left-hand-side of (2.8) are of order ερv2
s/w or less and become negligible compared

to ρg when Re �
√
gw4hs/(hsν) ≈ 2827. Similarly, the term µ∂2

zvz on the right-hand-

side is of order ερνvs/h2
s and is negligible compared with ρg whenRe� ghsw

2/ν2 ≈ 105.

Finally, the magnitude of the term JBx on the right-hand-side is less than the magnitude of

the term JBz which appears on the right-hand-side of (2.7). For inertia-dominated flows

the Lorentz force is balanced by the fluid inertia, i.e., JBz is of order ρv2
s/w and hence the

term JBx in (2.8) is negligible compared with ρg for Re �
√
gw3/ν ≈ 1375. Dropping

these terms yields a dramatically simplified equation

∂zp = −ρg. (2.20)

The pressure can be obtained directly by integrating this equation from the top of the elec-

trolyte layer z = h, where p is equal to the constant atmospheric pressure pa, to a given

depth z. The local thickness of the two layers can be obtained using the relation (2.14),

which gives for each of the two layers

∂thc = vz(h)− vz(hd) = −χc∇‖ · u, (2.21)

∂thd = vz(hd) = −χd∇‖ · u, (2.22)

If we define the mean thickness of the two layers as h̄c and h̄d, then hc = h̄c + χcφ and

hd = h̄d + χdφ, where φ is the non-dimensional variation in thickness which satisfies the

differential equation

∂tφ = −∇‖ · u. (2.23)

Generally ∂tφ 6= 0, so the horizontal flow u becomes weakly compressible.
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Integrating the equation (2.20), we find for the electrolyte layer:

p = ρcg(h̄c + χcφ+ h̄d + χdφ− z)− σc(χc + χd)∇2
‖φ (2.24)

and for the dielectric layer:

p = ρcg(h̄c + χcφ) + ρdg(h̄d + χdφ− z)− σc(χc + χd)∇2
‖φ− σdχd∇2

‖φ, (2.25)

where σc and σd are the surface tensions at the electrolyte-air and dielectric-electrolyte

interface. Substituting (2.24) and (2.25) into (2.12), we find

a = −κ∇‖φ+ κ′∇‖∇2
‖φ, (2.26)

where

κ′ = %−1[(χc + χd)hσc + χdhdσd],

κ = %−1g[χcρch+ χd(ρchc + ρdhd)]. (2.27)

The thicknesses hc and hd depend on x, y, and t. This means that all the parameters

(i.e., β, ν, α, γ, κ, κ′) also vary with space and time. However, the thickness variation of

the two layers in the experiment is very small (a few µm), compared to their mean values

h̄c ≈ h̄d ≈ 3 mm, so we can use these constant mean values to compute all the parameters.

In addition, the second term in equation (2.26) is small compared to the first one

κ′∇‖∇2
‖φ

κ∇‖φ
= O(Bo−1)� 1, (2.28)
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since the Bond number

Bo =
ρsgw

2

σs
≈ 40, (2.29)

defined using ρs = max(ρc, ρd) and σs = max(σc, σd) is large. With these simplifications

we finally arrive at the compressible 2D model of the flow

∂tu + β
(
u · ∇‖

)
u + γ(∇‖ · u)u = −∇‖p+ ν∇2

‖u− αu + f̄ , (2.30)

∂tp = −κ∇‖ · u. (2.31)

where we defined the effective (2D) pressure p = κφ. This pair of coupled equations have

to be solved subject to no-slip boundary conditions u at the lateral walls x = ±Lx/2 and

y = ±Ly/2. The effective pressure p satisfies Neumann boundary conditions as the contact

angle between the electrolyte surface and the container walls is nearly 0◦.

The magnetic field B(x, y, z) required to evaluate the forcing term f̄ is tedious to mea-

sure in the experiment. Therefore, we will follow Ref. [72] modeling each magnet as a

collection of magnetic dipoles pointing in either +ẑ or −ẑ direction and summing their

magnetic fields to compute the net field B(x, y, z), which yields a good approximation of

the experimental measurements [72]. Substituting the resulting magnetic field and current

density into (2.11) we find

f̄ =
I

%hcLx

∫ h

hd

B(x, y, z)dz x̂ = Ia0f̄0(x, y) x̂, (2.32)

where a0 is a normalization constant chosen such that the maximum value of the nondi-

mensional forcing profile f̄0(x, y) is unity. This profile is shown in Figure 2.2. The magnet

array used in the experiment corresponds to a0 = 1.1× 10−4 m/(amp s2).

In order to determine the parameters %, α, β, γ, ν, and κ, the vertical profile q(z) of the

horizontal velocity has to be computed first. This profile is weakly dependent on the hor-
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Figure 2.2: The x-component of normalized forcing profile, f̄0(x, y), used in the simula-
tions, as a function of the nondimensional coordinates. The y-component of the forcing is
identically zero.

izontal velocity profile and can be calculated with reasonable accuracy by considering the

flow in a laterally unbounded domain driven by a sinusoidal forcing profile f̄0 = sin(ky)x̂,

where k = π/w [71]. For sufficiently weak driving, the resulting flow is steady and has

the same form, u = u0 sin(ky)x̂, and the vertical profile q(z) can be computed from the

full 3D Navier-Stokes equation (1.1). The explicit expression for q(z) is not particularly

illuminating and is available in Ref. [71]. The corresponding parameters are α = 0.64 s−1,

β = 0.83, γ = −0.16, ν = 3.26× 10−6 m2/s, and κ = 0.0549 m2/s2.

2.2.3 Nondimensionalization

The dynamical system (u, p) governed by the evolution equations (2.30) and (2.31) have

been nondimensionalized for numerical simulations. Choosing a length scale w, veloc-

ity scale vs, time scale τ = w/vs and nondimensionalizing the spatial coordinates, time,
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velocity field u, and pressure p yields the following evolution equations

∂tu + β
(
u · ∇‖

)
u + γ(∇‖ · u)u =

−∇‖p+Re−1
(
∇2
‖u− α̃u

)
+
Ia0w

v2
s

f̄0x̂, (2.33)

∂tp = −κ̃∇‖ · u. (2.34)

where κ̃ = κ/v2
s and α̃ = αw2/ν = 3.14 describes the relative magnitude of the Rayleigh

friction term αu and viscous term∇2
‖u. The free velocity scale

vs =
√
Ia0w (2.35)

can be chosen such that the coefficient of the forcing profile f̄0 in (2.33) is eliminated

(it corresponds to the balance between the external forcing and the inertia of the fluid

mentioned previously). With these scales, the nondimensional evolution equations become

∂tu + β
(
u · ∇‖

)
u + γ(∇‖ · u)u = −∇‖p+ R̃e

−1 (∇2
‖u− α̃u

)
+ f̄0x̂, (2.36)

∂tp = −κ̃∇‖ · u, (2.37)

where R̃e denotes the Reynolds number computed using the velocity scale (2.35).

The driving current I ranges from 7mA to 25mA in this work, which corresponds to

R̃e varying between 12.1 and 22.8 and κ̃ varying between 5.7×103 and 1.6×103, which

means that this system of PDEs is stiff and care is required to solve it numerically. In

the remainder of the thesis, all the dimensional quantities are specified using their units.

Otherwise, all the quantities are assumed to be nondimensional.

2.2.4 The models and experiment

The compressible model (2.36)-(2.37) is more accurate than its incompressible counterpart

(2.4)-(2.5). However the difference between the solutions is fairly subtle. Since κ̃ is large,
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the pressure evolves at a much faster rate than the velocity fields. If the initial velocity

field is not close to being divergence-free, the pressure rapidly evolves to suppress the

divergence, quickly making the flow almost incompressible. In particular, the equilibria

(or) fixed points of the compressible model defined by (∂tu, ∂tp) = (0, 0) lie in divergence-

free subspace, and so are also the equilibria of the incompressible model.

Quick relaxation of the flow towards a divergence-free subspace is an attractive feature

of the compressible model. Consider, for instance, initialization of the simulations using

experimentally accessible data. The system (2.36)-(2.37) requires an initial condition for

velocity field u and an initial condition for the pressure p. While the former can be easily

obtained using particle image velocimetry [72]. However, it is extremely difficult to mea-

sure the thickness of the two layers with sub-micron precision necessary to reconstruct the

pressure field p. On the other hand, quick relaxation of the pressure means that inaccu-

racy in its initialization plays an almost negligible role on the evolution of the flow field,

allowing one to set, e.g., p = 0 as an initial condition.

An alternative procedure can be applied to initialize both the compressible and the

incompressible model. The measured flow field uexp can be decomposed into divergence-

free and curl-free components using the Helmoltz decomposition

uexp = u∗exp −∇‖p, (2.38)

where∇‖ · u∗exp = 0. Taking the gradient of both sides yields a Poisson equation for p

∇2
‖p = −∇‖ · uexp (2.39)

whose solution gives the initial condition for the pressure, while u∗exp = uexp +∇‖p gives

a divergence-free initial condition for the horizontal velocity.
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2.2.5 Symmetries of the system

In constructing the magnetic field profile (2.32) using dipole summation we assume that the

magnet array is symmetric with respect to the origin, with polarity being an odd function

of y. This means that if the frame of reference is rotated by π about the vertical z axis, the

forcing function merely changes sign

Rf̄0(x, y) = f̄0(−x,−y) = −f̄0(x, y), (2.40)

whereR is the corresponding rotation (or inversion) operator.

The same operation also changes the sign of all the odd spatial derivatives. Writing

the evolution equations (2.36) and (2.37) in the rotated frame of reference and using the

symmetry of the forcing function, we find that the pair (uR, pR), where

uR = −Ru (2.41)

pR = Rp (2.42)

is also a solution of the evolution equations [72].

In general, (u, p) and its symmetric copy, (uR, pR), need not be the same, but if an

initial condition is chosen to lie in the symmetric subspace (uR, pR) = (u, p), the solution

remains symmetric under inversion at all times.

2.2.6 State space

As described in the previous chapter, the evolution of the flow can be visualized as motion

of a point in the state space. So, a flowfield in the physical space corresponds to a point in

the state space and vice versa. By discretizing the physical domain, the state can be written

as a column with each entry representing the value of the pressure field or component of
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velocity field at a particular spatial location, i.e., the state space vector X can be written as

X =

[
u11, · · · , uNxNy , v11, · · · , vNxNy , p11, · · · , pNxNy

]T
(2.43)

where pij , uij , vij respectively are the pressure, and x and y components of u at the grid

location (i, j), where the flow domain is discretized using a grid with Nx ×Ny points. So,

the state space vector has a dimension of N = 3NxNy and hence the state space is a subset

of RN . Note that the choice for the order of the elements in defining the state space is a

mere convenience, and need not necessarily be the way described above. Using equation

(2.43), the evolution equations (2.36) and (2.37) can be written in compact form as

Ẋ = ∂tX = V(X), (2.44)

where the vector function V(X) represents the spatial discretization discussed in more

detail in Appendix A.

Writing (2.43) in compact form as

X =


u(x, y)

v(x, y)

p(x, y)

 , (2.45)

the action of the symmetry operator on the flow state can be written as

RX =


−u(−x,−y)

−v(−x,−y)

p(−x,−y)

 . (2.46)

SinceR2 = 1, together the identity operator 1 andR form a group G = {1,R}.

The system also has an approximate discrete symmetry. Indeed, if the magnet array
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were infinitely extended in the y direction, the evolution equations would not change under

a mirror reflection in the x direction followed by the shift by w in the y direction:

PX =


−u(−x, y + w)

v(−x, y + w)

p(−x, y + w)

 . (2.47)

The finite extent of the magnet array and the side walls of the container weakly break this

symmetry, however the presence of this weakly broken symmetry has a major effect on the

structure of solutions, as shown in Ref. [72] and discussed in more detail in Chapter 3. Un-

likeR, the square of P is not an identity operator, rather it represents another approximate

discrete symmetry T = P2 – the translation by 2w in the y direction:

TX =


u(x, y + 2w)

v(x, y + 2w)

p(x, y + 2w)

 . (2.48)

Together the symmetries T n, T nR, and T nP , where n is any (small) integer make up an

approximate symmetry group G ′ of the flow over a finite-size magnet array.

2.3 Summary

In this Chapter, a 2D model has been developed for the flow inside a thin fluid layer driven

by a nearly sinusoidal in-plane forcing profile. The model has been derived from first prin-

ciples by depth-averaging the 3D Navier-Stokes equation. By taking the thickness variation

of the fluid layers in to account, the model is expected to show improved agreement with

the experiment at higher Re, where the flow becomes turbulent. This model is validated

by comparing its predictions with the experimental observations over a range of Reynolds

numbers in the next Chapter.
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CHAPTER 3

TRANSITION FROM LAMINAR TO TURBULENT FLOW

Although the main focus of this Chapter is on the quality of predictions made by the 2D

model of the flow in the turbulent regime, direct tests of the model against experimental

observations are complicated by the chaotic nature of turbulent flow. For instance, even

the tiniest error in defining the initial conditions in the model will result in its predictions

diverging exponentially fast from the experimental observation. The comparison therefore

has to be performed at lower Re, when the flow in not chaotic. Alternatively, in the turbu-

lent regime at higher Re one should compare metrics that are not affected by the chaotic

nature of the dynamics. Therefore, we will mainly focus on the comparison of various

bifurcations at lower Re and temporal recurrences at higher Re.

The 2D compressible model of the flow is as complicated mathematically as the original

Navier-Stokes equation coupled with the incompressibility condition, and so can only be

studied numerically atRe of interest. A numerical representation of the model was obtained

by finite-difference spatial discretization of the physical domain on a staggered grid and

using velocity-pressure formulation (see Appendix A for details), following the previous

analysis carried out using the incompressible 2D model [72]. Unlike that previous study,

which focused on the bifurcations of steady flows, the present analysis explores the entire

sequence of bifurcations leading to turbulence and even considers the periodic window

embedded in the turbulent regime.

The 2D models of the Kolmogorov-like flow offer a dramatic simplification compared

to the full description of the problem based on a pair of 3D Navier-Stokes equations de-

scribing each of the fluid layers, both of which involve free surfaces. However, there is

a price: both 2D models of the Kolmogorov-like flow involve a set of parameters, none

of which can be measured directly, but rather have to be computed with the help of the
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ansatz (2.6), the accuracy of which can only be assessed indirectly. Unlike the rest of the

parameters, the Reynolds number can be obtained using the velocity field u at the top of

the electrolyte layer, which can be directly measured in experiment or computed in the

numerics. Specifically, we will define the characteristic velocity that enters the definition

(1.3) of the Reynolds number as

vs =
1

Tm

∫ Tm

0

√
〈u · u〉 dt, (3.1)

where Tm is a sufficiently long observation time and 〈·〉 denotes the spatial average in the

central square region of size 4w × 4w, with w being the magnet width. The central region

has been used as opposed to the full domain because the experimental data has larger errors

near the edges of the domain.

Although the corresponding Reynolds number Re enables unambiguous comparison

between the experiment and simulations, this definition has a notable drawback. Unlike

the characteristic velocity (2.35), the one defined using (3.1) depends on the flow and may

not be unique, if several different attractors coexist at a given current. This means that

Re is not a one-to-one function of the current I , which may result in an ambiguity. Since

there does not appear to be a satisfactory way to address this issue, we will refer to both

the Reynolds number Re and the corresponding current I in comparison of the simulations

and experiment in this Chapter. A comparison of the Reynolds numbers defined using the

two definitions of vs is presented in Figure 3.1.

3.1 Pre-turbulent flow

3.1.1 Straight flow

The spatial pattern of a steady flow, which corresponds to an equilibrium in the state

space, can be understood qualitatively using the dominant balance in the governing equa-

tion (2.36). In particular, for weak driving (low Re) the dominant terms are f̄0x̂ (Lorentz
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(a) (b)

Figure 3.1: The dependence of Re (red) and R̃e (blue) on the current I . Panel (b) shows a
zoomed-in version of the circled region in panel (a).

force) and Re−1(∇2
‖u − α̃u) (dissipation due to viscosity). Balancing these terms gives

a flow which resembles the forcing profile. In the case of Kolmogorov flow (for which

f̄0 = sin(ky) with k = π/w), the forcing has only the x component. Consequently the

flow is in the x direction and its y component is negligible on a domain with periodic

boundary conditions [61, 71]

u =
Re

k2ν + α̃
sin(ky)x̂. (3.2)

For the Kolmogorov-like flow in a bounded domain considered here, the flow in the middle

of the domain closely resembles the analytical solution (3.2), but slows down considerably

in the buffer region between the edge of the magnet array and the lateral walls. This flow

state is the analogue of laminar flow, and will be referred to as “straight flow”, denoted as

E1. The “edge effects” due to both the no-slip boundary conditions at the lateral walls and

the decrease in the strength of the magnetic field outside of the magnet array are responsible

for the emergence of a nonzero y component of the flow which is mostly constrained to the

buffer region. The two velocity components of the straight flow in experiment are shown
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(a) (b)

Figure 3.2: (a) x-component and (b) y-component of velocity field of the straight flow in
experiment at Re = 8.06. The driving current used in the experiment is 7 mA.

in Figure 3.2.

At low values of the driving current I , the steady straight flow state is stable and is a

global attractor. Hence it can be computed by performing a long time-integration of the

system starting from an arbitrary initial condition. To speed up convergence, we instead

computed most stable (and all unstable) solutions using numerical continuation in I (de-

scribed in Appendix B) which relies on a Newton-based solver (described in Chapter 4).

The solution of the model is compared with experiment in Figure 3.3, which shows the

vorticity fields ω =
(
∇‖ × u

)
· ẑ. Vorticity is a scalar field and offers a more convenient

representation of the flow compared with the vector field u. As the Figure illustrates, the

model reproduces all features of the experimental flow field, such as the slight tilt of the

shear band due to the global recirculation, the very accurately, justifying the accuracy of

the model. The sections x = 0 and y = 0 of the vorticity field shown in Figure 3.3 provide

a more quantitative comparison of the experimental measurements and numerical results.

Again we find good agreement (the slight discrepancy in Figure 3.3 for −5 . x . 5 is
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mainly due to the insufficient spatial resolution in the experiment).

3.1.2 Primary instability

As the driving current is increased, the straight flow in the experiment undergoes a qualita-

tive change at I1 = 9.6 mA (Re1 = 11.1), with the straight shear bands developing spatial

modulation in the transverse (y) direction that eventually gives rise to a pattern of distinct

stationary vortices (cf. Figure 3.4). We will denote this steady modulated flow state as E2

below. As Ref. [72] demonstrated, the transition from E1 to E2 in the presence of lat-

eral boundaries is not a result of an instability. Indeed, both states correspond to the same

solution branch, and the leading stability exponent associated with this branch becomes

close to marginal near I1, but never vanishes, as Figure 3.5a shows. Instead, the transition

from E1 to E2 is associated with an imperfect pitchfork bifurcation, as described in Ref.

[72] for the incompressible model. Since the equilibria of both the compressible and the

incompressible models are the same, the exact same bifurcation occurs in both the models

at I1 ≈ 8.98 mA (Re1 = 10.81).

Two new solution branches – E3 and E4 – are created in a saddle-node bifurcation at I1

as Figure 3.5b illustrates. They both describe equilibria with the corresponding flow fields

shown in Figure 3.6. The saddle E3 represents the “extension” of the straight flow E1 on

the subcritical side I < I1 to the supercritical side I > I1, and has been computed using

the parametric continuation in I as described in appendix B. The node E4 represents the

symmetry-related analogue of the modulated flow E2 (see below) . Ignoring the imperfect

nature of the pitchfork bifurcation, at I slightly greater than I1, we can write E2 ≈ E3+pe1

and E4 ≈E3−pe1, where e1 is the marginal direction of E3 associated with this bifurcation

and p is a function of I − I1. Hence, once E3 is computed for a particular I > I1, E4 can

be found using Newton’s method with the initial condition E4 ≈ 2E3−E2.

As discussed in Ref. [72], the fact that the pitchfork bifurcation is imperfect is due to

the weak symmetry breaking by the lateral boundaries and a finite size of the magnet array.
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(a) (b)

(c) (d)

Figure 3.3: (a) Vorticity field of the straight flow in experiment at Re = 9.25 (I = 8 mA)
and (b) in simulation at Re = 9.26 (I = 7.65 mA). Comparison of the vorticity fields on
the lines (c) x = 0 and (d) y = 0 between experiment (red) and simulation (blue).
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(a) (b)

Figure 3.4: (a) Vorticity field of the modulated flow in experiment at Re = 14.01 and (b)
in simulation at Re = 14.03. The driving currents used are, respectively, I = 14 mA and
I = 13.89 mA.

Recall that, unlike the rotation symmetry R, the discrete symmetry P which corresponds

to a mirror reflection in the x direction followed by the shift in the y direction by w is

not exact. A perfect pitchfork bifurcation represents breaking of an exact symmetry. An

example is shown in Figure 3.5b, where the flow state E3 which is symmetric under R

undergoes a pitchfork bifurcation at I = 9.04 mA, producing two new solution branches

E5 and E6 (shown in red) that are nearly symmetric underP and are mapped into each other

by R (these branches were hypothesized, but never computed in Ref. [72]). The straight

flow solution E1 which is symmetric underR and nearly symmetric under P , undergoes an

imperfect pitchfork bifurcation which completely breaks P , but preserves R. As a result,

all three solution branches E2, E3, and E4 remain symmetric under R, while E2 and E4

are approximately mapped into each other by P .

Figure 3.5b has been generated by projecting the solutions described above from the

high-dimensional state space onto the two dominant eigenvalues associated with the pitch-
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(a)

(b)

Figure 3.5: (a) Leading stability exponents of the 3 equilibria near the imperfect pitchfork
bifurcation. The branch containing E1 and E2 is plotted in magenta while E3, E4 are
plotted respectively in blue and black. E3 undergoes pitchfork bifurcation (shown as cyan
sphere) by breaking the rotational symmetry R. (b) Projections of these 3 equilibria along
with E5 and E6 (in red), plotted as the driving current varies. The saddle node bifurcation
of E3 and E4 is shown as brown sphere.
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(a) (b) (c)

Figure 3.6: Vorticity fields (from simulations) of the 3 equilibria present in the imperfect
pitchfork bifurcation - (a) E2 (b) E3 and (c) E4 at I = 10.56 mA. This current, far away
from the bifurcation, is chosen as the flow fields look indistinguishable to the naked eye
close to the bifurcation.

fork bifurcation at I = 9.04 mA. Their spatial structure is shown in Figure 3.7. The

eigenvector e2 defines the marginal direction at the bifurcation (it represents the deviation

of E5 and E6 from E3, while the eigenvector e1 defines the unstable direction. The lat-

ter is nearly indistinguishable from the eigenvector which defines the marginal direction at

the saddle-node bifurcation and corresponds to the deviation of E2 and E4 from E3. The

symmetry of the eigenvectors reflects the nature of the two bifurcations and the respective

symmetry breaking: e1 is symmetric under R and approximately antisymmetric under P ,

while e2 is antisymmetric under R and approximately symmetric under P . These results

verify and refine the description of the respective bifurcations proposed in Ref. [72].

The four new equilibria, E3, E4, E5, E6, being either unstable or weakly stable, are not

observed in experiment (or simulations starting from arbitrary initial conditions). Instead,

as I increases, the flow follows the continuous solution branch, which smoothly transitions

from the straight flow E1 to the modulated flow E2 at Re ≈ Re1. This transition can be

quantified using the magnitude of the transverse component of the velocity, which plays

the role of an order parameter. Defined as the normalized spatial mean square of the y

component of velocity in the central square region of the flow domain with dimensions
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(a) (b)

Figure 3.7: Vorticity fields which correspond to eigenvectors (a) e1 and (b) e2.

4w × 4w,

V̂ =
〈v2〉

〈u2〉+ 〈v2〉
, (3.3)

the order parameter increases monotonically with Re (and I), as shown in Figure 3.8. The

Figure also shows that the numerical model accurately captures the critical Re at which

the bifurcation occurs in the experiment, with the critical Reynolds number in simulations

being within 2.6% of that in the experiment.

Qualitatively, the compressible model reproduces the experimental flow structure ex-

tremely well, as Figure 3.4 illustrates. However, comparison of the order parameters shown

in Figure 3.8 indicates that there is a quantitative discrepancy. As discussed in Ref. [72],

this discrepancy is due to the choice of the model parameters which are computed using the

vertical profile q(z) of the velocity which corresponds to the straight flow E1. As discussed

in Chapter 2, the vertical profile q(z) (and hence all model parameters) is weakly dependent

on the horizontal flow profile u which, in turn, depends on Re. The agreement between the

model predictions and experimental observations can be improved by allowing the model

parameters to vary with Re. One promising possibility that is currently being explored is
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Figure 3.8: Order parameter V̂ (cf. Eq. (3.3)) as a function of Re for the modulated flow.
The experimental data is plotted in red and the simulation data in blue.

to extract the values of all the parameters from time series of experimental flow fields using

a sparse regression method [97].

3.1.3 Secondary instability

The modulated flow remains stable over the range I1 < I < I2 (Re1 < Re < Re2),

where I2 = 19.6 mA and Re2 = 17.6 ± 0.1 in experiment. As the current is increased

beyond I2, the modulated flow looses stability and undergoes a Hopf bifurcation, giving

way to a stable time-periodic flow PO1 with the temporal period T1 = 120 ± 1 seconds

(and frequency f1 ≈ 0.008 Hz). Figure 3.10 shows the normalized intensity of the spatially

averaged temporal power spectrum

P (f) =

〈∣∣∣∑N0−1
j=0 e−i2πfjdTu

∣∣∣2〉
N2

0 〈u · u〉
(3.4)

of the flow as a function of frequency f at different Re > Re2. Here the power spectrum

intensity is computed using N0 = 1800 consecutive states uniformly sampled with a time
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(a) (b)

Figure 3.9: (a) Stability exponents of the steady modulated state at I2 = 19.4 mA (Re2 =
17.38). The two complex conjugate exponents crossing the imaginary axis indicate a Hopf
bifurcation. (b) Floquet multipliers of the periodic orbit PO1 at I4 = 20.3 mA (Re4 =
17.96). Complex conjugate Floquet multipliers crossing the unit circle (red) indicate a
Hopf bifurcation. In both panels 25 leading eigenvalues are shown.

step dT = 1 sec. Both the integral of the power spectrum and its maximum

Pmax = max
f

P (f), (3.5)

which characterize the amplitude of oscillation, can be used to define an order parameter

for this bifurcation. We choose to use the latter.

A similar bifurcation is found in both the models, as illustrated using the stability ex-

ponents of the modulated state at I2 in the compressible model. The period at the onset of

time-periodic oscillations is found to be 120.5 seconds in both the models but the critical

Re is different. In compressible model, I2 = 19.4 mA or Re2 = 17.38, which is within 2%

of the experimental value. This should be compared with the incompressible model, which

predicts Re2 = 16.97 (a 3.8% discrepancy with experiment), illustrating the improvement

that can be obtained by taking the thickness variation into account. A comparison of the

order parameter (3.5) as a function of Re for the experiment and the two models is shown

in Figure 3.11, and again we find the compressible model to be substantially more accu-
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(a)

(b)

Figure 3.10: Power spectrum intensity as a function of frequency for various Re in (a)
experiment and (b) the compressible model.
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Figure 3.11: Order parameter (peak power) at various Re and a square root fit for the data
are plotted for experiment (red), the compressible model (blue), and the incompressible
model (black).

rate than the incompressible one. The residual discrepancy in the order parameter and/or

critical Re can be further reduced by a more precise choice of the model parameters, but

this is outside the scope of this thesis. In both models and experiment the amplitude of

the oscillation vanishes at I2 and increases monotonically with I , while the period remains

fairly constant. The scaling of the order parameter Pmax ∝
√
I − I2 is consistent with the

supercritical Hopf bifurcation. It has to be noted here that the orbit, PO1, is stable only in

a narrow range of Reynolds numbers (and a similarly narrow range of currents I) and so,

the experiment should be carefully designed to enable fine adjustments of the current, to

investigate this time-periodic state.

3.2 Two-dimensional turbulence

3.2.1 Transition to turbulence

An interesting feature that is observed in the power spectrum (cf. Figure 3.10a) of the

experiment is the appearance (at Re3 ≈ 17.77) of a second peak with frequency f2 � f1,

which grows in magnitude with increased current (or Reynolds number). Interestingly, the

power spectrum produced by the model does not show this second frequency for mostRe in
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the range where the oscillatory state is stable (cf. Figure 3.10b). This puzzling discrepancy

was resolved by investigating the mechanism which destabilizes the oscillatory state. The

spectrum of Floquet multipliers

Θi = eΛiT (3.6)

associated with this solution at Re4 = 17.96 or I4 = 20.3 mA is shown in Figure 3.9b. It

shows that the periodic orbit PO1 becomes unstable by undergoing another Hopf bifurca-

tion, which results in the creation of a new, quasiperiodic solution QP1. Furthermore, the

Floquet spectrum shows that the phase of the marginal complex conjugate pair associated

with this second Hopf bifurcation at Re4 is φ ≈ π/5 (cf. Figure 3.9b), which corresponds

to a period (2π/φ)T1 ≈ 10T1 ≈ 1200 seconds or a frequency of roughly 0.0008 Hz. If the

Hopf bifurcation at Re = Re4 were subcritical, this could well explain the quasiperiodic

dynamics for Re < Re4.

Figure 3.12 shows the power spectra of the solutions of the compressible model ob-

tained by quasistatically increasing the driving current above I4 and then decreasing it be-

low I4. The top row, which corresponds to increasing I shows a single peak corresponding

to the stable time-periodic solution for Re < Re4. Above Re4 we find a broad spec-

trum characteristic of chaotic dynamics and, indeed, the corresponding flow state becomes

weakly turbulent. If subsequently I is decreased, the turbulent flow persists below I4, but

eventually gives way to a stable quasiperiodic state, as the power spectra in the bottom row

of Figure 3.12 illustrate. The associated frequencies of the quasiperiodic state are 0.008

Hz and 0.0008 Hz, consistent with the frequency calculated from the Floquet spectrum of

PO1. It is this quasiperiodic state that is found in the experiment for Re3 < Re < Re4, as

Figure 3.10a illustrates, where Re4 = 17.88 (in the compressible model Re3 = 17.84 and

Re4 = 17.96). The experimental data set has a duration of ∆T = 1800 seconds, which

limits the frequency resolution to ∆f = 2/∆T ≈ 0.001Hz, clearly insufficient to accu-
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Figure 3.12: The power spectrum P (f) at different I in the compressible model demon-
strates the hysteresis near I4 = 20.3 mA. The top panel shows the power spectrum when
I is quasistatically increased beyond I4, and the bottom panel shows the power spectrum
when I is decreased. The magnitude of I (in mA) is shown at the top of each plot. All the
plot have the same range, as shown for the plot in the top left corner.

rately determine the second frequency f2 ≈ 0.0008 Hz associated with the quasiperiodic

state. Instead, we see a peak at a frequency O(∆f) which may or may not correspond to

f2.

The presence of the hysteresis below Re4 implies that the second Hopf bifurcation is

subcritical. The compressible model predicts that in the range of Re where the hystere-

sis is found, two different attractors are present: the first one is the stable oscillatory state

discussed in the previous section and the second one represents a more complicated dy-

namical regime (quasiperiodic at lower Re, chaotic at higher Re). The basins of attraction

of the two stable states split the state space into two separate parts. The boundary between

them (or at least some part of it) should correspond to the stable manifold of the unstable

quasiperiodic state QP1 which is created at Re4 and appears to exists over the entire range

Re3 < Re < Re4. Which of the two stable states is selected depends on the choice of

initial conditions, i.e., on the protocol used in the simulations or experiment.

The Poincare section shown in Figure 3.13a shows a stable quasiperiodic solution QP2,
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which exists over a portion of the range Re3 < Re < Re4. It corresponds to a 2-torus

in the state space and a loop in the Poincare section. The Poincare section was computed

by calculating the intersections of the trajectory with a hyperplane normal to PO1 at some

point along the orbit. Then, these intersections were projected onto a plane spanned by the

two unstable complex conjugate Floquet vectors of PO1. The resulting sections are plotted

in Figure 3.13, where the horizontal and vertical axes correspond to the real and imaginary

components of the projection.

The quasiperiodic solution QP2 is created at Re3, with both amplitudes being finite,

which indicates a saddle-node bifurcation of two quasi-periodic solutions, one stable and

one unstable. In all likelihood, the unstable one is the quasiperiodic solution QP1 created in

the secondary Hopf bifurcation of PO1. The Poincare section shown in Figure 3.13b shows

that the stable 2-torus QP2 becomes unstable and undergoes a bifurcation (or sequence of

bifurcations) at some Re > Re3, giving rise to an attracting set with eight components,

which are disconnected in the Poincare section. This suggests resonant interaction between

the two frequencies of the 2-torus. In the full state space these components are, of course,

connected, with each component representing an attractor of the period-8 Poincare map.

As Re increases these components grow, overlap, and eventually get transformed into the

chaotic set underlying turbulent dynamics at Re > Re4, as Figure 3.13c and Figure 3.13d

show.

We have restricted our analysis of the hysteresis to numerical simulations. Even within

the numerical model, a detailed study of all the bifurcations and the structure of the result-

ing chaotic sets is quite expensive and so has not been performed. Experimental studies

have their own challenges. The range (∆Re = Re4−Re3 = 0.12) over which the hystere-

sis is found is very narrow and adjusting the current with precision necessary to place the

experimental system into this range is not easy. Furthermore, the frequency associated with

the second Hopf bifurcation at Re4 corresponds to a rather long period of 1200 seconds (or

20 minutes). Reliably extracting this frequency in experiment would require processing
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(a) (b)

(c) (d)

Figure 3.13: Poincare sections at various driving currents at (a) I = 20.2 mA, (b) I = 20.3
mA, (c) I = 20.31 mA, and (d) I = 20.35 mA showing the transition from quasiperiodicity
to turbulence. To illustrate the breakup of the 2-torus, different colors have been used in
panels (b) and (c) to label the eight disconnected components of the resulting attractor (e.g.,
nth crossing is color-coded based on the values of nmod 8).
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many hours worth of PIV data. Processing the latter is in itself a challenge. Due to these

complications hysteresis has not been thoroughly investigated in the experiment.

Although the flow undergoes a number of supercritical bifurcations before transitioning

to turbulence, this transition has all the hallmarks of a subcritical transition to turbulence

found in numerous canonical three-dimensional flows (e.g., channel flow [98], plane Cou-

ette flow [99], pipe flow [100], etc.).

3.2.2 Recurrences

Before discussing the dynamics in the turbulent regime, we introduce recurrence analysis

[101], which is a convenient tool that can be used to analyze the temporal aspect of the

dynamics in both numerical simulations and experiment. It can be used to quickly identify

whether the flow approaches an equilibrium or a time-periodic state, even when such states

are unstable. For instance, if the turbulent flow passes near an unstable solution with tem-

poral period T , the flow state will not exactly recur time T later, but rather one will observe

a near-recurrence. In order to identify such near-recurrences, we will compute a recurrence

diagram obtained by comparing a state at time t with a state at time t − τ . The closeness

of the recurrence can be quantified by using the normalized distance

d(t, τ) =
ming∈G (‖gX(t)−X(t− τ)‖)

‖X(t)‖
(3.7)

where ‖ · ‖ represents the 2-norm and the minimum over the symmetry group G is taken

to account for the rotation symmetry. In this thesis, all the norms used are 2-norms, unless

otherwise specified.

Examples of the recurrence diagram for an asymptotically steady and a time-periodic

state are shown in Figure 3.14, where the horizontal and vertical axis corresponds to

the physical time and time delay, respectively. For example, Figure 3.14a shows that

d(t, τ) → 0 for all τ as t → ∞, which implies that the state approaches a stable equi-
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(a)

(b)

Figure 3.14: Sample recurrence plots at various driving currents. (a) At I = 15 mA the
flow approaches an equilibrium, which is a global attractor. (b) At I = 20 mA the flow
approaches a periodic orbit, which is also a global attractor.

librium. Figure 3.14b, on the other hand, shows that d(t, τ) approaches a function which

is periodic in τ (with the same period T ) and which vanishes at τ = nT with n-integer,

indicating that the flow approaches a stable time-periodic orbit with period T .

3.2.3 Intermittency

At values of Re just above Re4 we find a spatiotemporally intermittent flow which al-

ternates between two very different dynamical regimes which we can broadly refer to as

laminar and turbulent. This type of intermittency, which is triggered by a subcritical Hopf

bifurcation is called “type-2” intermittency, following Pomeau et al. [102]. In this particu-

lar case, laminar flow corresponds to the oscillatory state discussed previously. This is well

illustrated by Figure 3.15 which shows the recurrence plots obtained using numerical solu-

tions and experimental flow fields. The recurrence plots are qualitatively similar, with the

depth of the minima being the most noticeable difference attributable to the significantly

higher level of noise in the experimental recordings compared with the essentially noise-

less numerics. In both numerics and experiment we find extended intervals of time where

dynamics are nearly periodic, as indicated by the the minima of the distance function (3.7)
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(a)

(b)

Figure 3.15: Recurrence plots showing intermittency just above Re4 in (a) simulation at
Re = 18.2 and (b) experiment at Re = 18.1.

at τ = nT0, where T0 is the period of PO1 and n is an integer. During those intervals, the

flow is essentially indistinguishable from that described by PO1, even though this solution

is (weakly) unstable at this Re.

Since PO1 is unstable, the flow will eventually be repelled from this state. Indeed the

recurrence diagrams show that laminar intervals are broken up by short turbulent bursts

where the dynamics are clearly aperiodic (cf. Figure 3.16a). After some excursion away

from PO1, the trajectories again get reinjected into the vicinity of this state and the process

repeats, producing intermittency. The reinjection mechanism is not understood at present.

As the driving current is increased, the orbit PO1 becomes progressively more unstable,

which results in laminar periods becoming shorter and, consequently, turbulent bursts oc-

curring more frequently (cf. Figure 3.16b). Eventually, the laminar intervals completely

disappear and one finds persistent turbulence, with any trace of periodicity completely dis-

appearing from the temporal dynamics (cf. Figure 3.16c). For Re of order a few tens, this

two-dimensional turbulence is weak in the sense that there are no dynamics at multiple

length scales. Instead dissipation occurs on the same length scale w at which the energy
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is injected into the flow. Such flows can be equally accurately described as being chaotic,

rather than turbulent.

3.2.4 Periodic window

As often happens in other nonlinear systems, a window of periodic dynamics is found

within the range of Re where chaotic dynamics are found (cf. Figure 3.16e). This window

corresponds to the driving currents in the interval I5 < I < I8, where I5 ≈ 21.5 mA and

I8 ≈ 21.7 mA, and is associated with the emergence of a stable periodic orbit PO2. In

the simulations, this orbit has a period T2 ≈ 460 s, which is essentially independent of

the driving current. A periodic window is also observed in the experiment at comparable

I , although in that case the period of the orbit is approximately 600 s. As Figure 3.17

illustrates, in both experiment and simulations, following an initial transient, the flow ap-

proaches a time-periodic state.

The orbit PO2 has been computed numerically at I = 21.55 mA using a minimum

in the recurrence diagram as an initial condition and then continued both up and down in

I to investigate its relevance to the chaotic dynamics on either side of the window. This

orbit undergoes a subcritical bifurcation at I5 and becomes unstable below I5, which is

manifested in intermittent flow observed near the left edge of the periodic window (cf.

Figure 3.16d). Unexpectedly, PO2 was found to undergo a period-doubling bifurcation at

I7 = 21.6 mA, i.e., inside the window, with the leading Floquet multiplier crossing the unit

circle at −1, as shown in Figure 3.18.

To find the periodic orbit born out of this period-doubling bifurcation, Newton’s iter-

ations with an initial condition along the marginal direction of PO2 have converged to a

stable periodic orbit PO4 with a period of approximately 2T2. Continuation of PO4 in I

showed that it exists and is stable both below and above I7, as illustrated in Figure 3.19,

suggesting that the bifurcation of PO2 at I7 is subcritical. We also found an unstable pe-

riodic orbit PO3 of period close to 2T2 below I7, which suggests the presence of a new
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.16: Recurrence plots in the simulations of compressible model for I > I4. (a)
I = 20.4 mA and (b) I = 20.6 mA demonstrate that the laminar periods in the intermittent
dynamics become shorter as I increases farther away from I4. (c) I = 21.1 mA shows
chaotic dynamics. (d) I = 21.4 mA shows intermittency near the left edge of the periodic
window. (e) I = 21.5 mA shows dynamics inside the periodic window. (f) I = 21.9
mA and (g) I = 22.6 mA demonstrate that the laminar periods in the intermittent dynam-
ics become shorter as I increases farther away from I8. (h) I = 25 mA shows chaotic
dynamics.
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(a)

(b)

Figure 3.17: Recurrence plots in the stable island, where the state asymptotically settles in
to a periodic orbit. The recurrence plots are computed in (a) simulation at Re = 19.03 and
(b) experiment at Re = 20.1

solution branch that bifurcates off of PO2 at I7 and disappears in a saddle-node bifurcation

with PO4 at some driving current I6, where I5 < I6 < I7, as shown in Figure 3.19.

The flow remains time-periodic as the driving current is increased up to I8, which sug-

gests that PO4 remains stable over that range of I . As the current is increased above I8,

the flow becomes intermittent, as shown in Figure 3.16f, suggesting that PO4 undergoes a

subcritical bifurcation at I8. The nature of this bifurcation (and the existence of PO4 above

I8) has not been investigated. Further increase in the driving current leads to the gradual de-

crease in the fraction of time the flow spends in the time-periodic regime (cf. Figure 3.16g),

and eventually dynamics again become fully chaotic (cf. Figure 3.16h).

3.3 Summary

The weakly compressible model was found to be in qualitative and quantitative agreement

with experiment in predicting the sequence of bifurcations leading up to turbulence. Fur-

thermore, it qualitatively described the hysteretic subcritical transition between turbulence
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Figure 3.18: The dominant 25 Floquet multipliers of the periodic orbit, PO2, plotted in the
complex plane for at I7 = 21.6 mA (Re7 = 19.03). At this driving, the (black) Floquet
multipliers cross the unit circle (in red) resulting in a period-doubling bifurcation.

PO4 

PO2 
PO3 

I5 I6 I7 I8 21.8 21.55 

Figure 3.19: A sketch showing periodic solutions PO2, PO3, and PO4 and their stability
inside the periodic window. Stable (unstable) branches are shown using solid (dashed)
lines and the circles indicate solutions computed using Newton iterations. The horizontal
axis shows the driving current I in mA and the vertical axis corresponds to a direction in
the state space along the leading Floquet multiplier of PO2 at I7. The blue portions of the
branches are based on continuation, while the red portions are speculated based on PO3

computed at one value of I (red open circle).
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and time-periodicity that was observed in experiment. The model also correctly predicted

and explained the appearance of various spatiotemporally intermittent flows and a periodic

window embedded in the chaotic regime, giving us confidence in using it to investigate

quasi-two-dimensional turbulent flows. The remaining qualitative disagreement can likely

be resolved by tuning the model parameters, which is outside the scope of this work.
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CHAPTER 4

NEWTON-BASED METHODS FOR COMPUTING ECS AND DYNAMICAL

CONNECTIONS

This chapter describes Newton-based numerical solvers that have been used to compute

Exact Coherent Structures (ECS) and dynamical connections between them. Due to the

presence of lateral boundaries, the types of ECS that are possible in this system are equi-

libria, time-periodic orbits (and quasiperiodic orbits which are not considered in detail).

Neither relative periodic orbits nor traveling waves (relative equilibria) are present because

the lateral boundaries (primarily end walls) break the continuous translational symmetry in

the longitudinal (x) direction. Due to the presence of a discrete symmetry – rotation about

the center of the flow domain by 180 degrees – it may also be possible to find pre-periodic

orbits X(t + T ) = RX(t) (pairs of such pre-periodic orbits make up the periodic orbits

X(t + 2T ) = X(t)). Section 4.1 describes a matrix-free Newton-Krylov/GMRES method

for computing ECS and Section 4.2 discusses computing dynamical connections between

equilibria. Computation of dynamical connections for which the origin and/or destination

is a periodic orbit is not pursued in this thesis.

4.1 Computing equilibria and periodic orbits

The standard numerical approach to computing unstable solutions of the dynamical system

(2.44) relies on solving an appropriately defined (nonlinear) equation F(X) = 0 using

an iterative Newton’s method [63]. Both isolated stable and unstable solutions and ECS

embedded in the chaotic set can be computed using an essentially identical procedure, with

the main difference being how the initial guess for the iteration is chosen. In particular, for

isolated equilibria such as E3 and E4, initial conditions could be generated using coarse/fine

parameter continuation and/or combinations of known stable/unstable solutions or their
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Figure 4.1: Sample plot of state space speed S(t). Local minima below the threshold
S0 = 0.1 are denoted with black circles. The values of S(t) are O(1) because the system
has been nondimensionalized such that both the relevant length and time scales are unity.

eigenvectors and their symmetry properties near bifurcations. Such an approach was used

to compute for instance various branches of solutions in Figure 3.5b.

The initial guesses for ECS can be obtained by performing a long time-integration of

the evolution equation, discarding the initial transient, and then looking for signatures of

a turbulent trajectory X(t) passing near an ECS of a particular type. For instance, initial

guesses for equilibria were obtained by finding the local minima of the state space speed

S(t) = ‖∂tX(t)‖ ≈
∥∥∥∥X(t+ δt)−X(t)

δt

∥∥∥∥ , (4.1)

where δt is the time step of the numerical integrator. Sufficiently deep minima, such as the

ones circled in Figure 4.1 indicate close passes of the turbulent trajectory near an unstable

fixed point. The state X(t0) at the time instants t0 which correspond to a minimum of S(t)

serves as good initial guess that can be refined to find the nearby fixed point using Newton

iterations.

For time-periodic (or pre-periodic) ECS, initial guesses can be obtained by identifying

near-recurrences as discussed in Section 3.2.2. Again, a local, sufficiently deep minimum

in a recurrence plot, such as the one circled in Figure 4.2, at some (t0, τ0) implies that

over the time interval (t0 − τ0, t0) the turbulent trajectory shadowed an unstable periodic

or pre-periodic orbit of period T ≈ τ0. The snapshot of the turbulent trajectory X(t0 − τ0)

can then be taken as an initial guess that will be refined to find the shadowed (pre-)periodic
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Figure 4.2: Sample recurrence plot at I = 25 mA, where the dynamics is turbulent. A local
minimum in the recurrence below a threshold of d0 = 0.1 is circled in black.

orbit using Newton iterations.

4.1.1 Newton’s method

The equilibria of the dynamical system (2.44) correspond to zeros of its right-hand-side

F(X) = V(X) = 0. (4.2)

This equation can be solved iteratively, generating a sequence Xn, which starts at the initial

guess X0 and converges to X. For small deviation δXn = X −Xn from the solution X,

Eq. (4.2) can be linearized

F(Xn + δXn) = F(Xn) + J(Xn)δXn = 0, (4.3)

where J = ∂F/∂X is the corresponding Jacobian matrix. Solving this for δXn, yields the

following iterative algorithm:

Xn+1 = Xn − JX(Xn)−1F(Xn). (4.4)

For the model considered here, the Jacobian matrix J is sparse, since finite differencing

has been used for spatial discretization, so it can be explicitly computed and stored. For

the problem size considered here, the linear equation involving this Jacobian matrix can be

solved exactly using LU factorization without large memory or time requirements. Hence,
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a direct solve has been used to solve the linear equation (4.4). In cases when the resulting

Newton step did not decrease the norm of the residual F, a parabolic line search [103]

has been used to adjust the step magnitude. Newton iteration was then repeated until the

residual norm decreases to a desired tolerance, an absolute tolerance of 10−12 used here

for equilibria. The dominant stability exponents {Λi} of the converged solution and the

corresponding eigenmodes are given by the smallest eigenvalues and eigenvectors of J ,

which were computed using the function eigs in Matlab. The algorithm optimized for

sparse matrices is described in Refs. [104, 105].

Periodic (and pre-periodic) orbits instead correspond to solutions of the equation

F(X, T ) = gΦT (X)−X = 0, (4.5)

where g = 1 orR and ΦT (X0) denotes the solution X(T ) of (2.44) with the initial condi-

tion X(0). The time period T is a priori unknown and has to be solved for along with X.

The initial guess T0 = τ0 is also obtained from the recurrence plot. Starting with the initial

guess (X0, T0), solutions of equation (4.5) can again be found iteratively. Linearizing Eq.

(4.5) for small deviations δXn = X−Xn and δTn = T − Tn from the solution

F(Xn + δXn, Tn + δTn) = F(Xn) + (gJX(Xn)− 1)δXn + gJT (Xn)δTn = 0, (4.6)

where JX = ∂ΦT/∂X and JT = ∂ΦT/∂T . Equation (4.6) yields an under-determined

linear system for δXn and δT (there are N equations for N + 1 unknowns). To find a

unique solution, we will require that the Newton step be normal to the direction of the state

space flow

δXn ·V(Xn) = 0. (4.7)
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Imposing this constraint yields an augmented linear system

J(Xn)

δXn

δTn

 = −

F(Xn)

0

 , (4.8)

where

J =

gJX − 1 gJT

VT 0

 (4.9)

and the superscript T denotes matrix transpose. Once the system (4.8) is solved, the next

iterate can be computed as

Xn+1 = Xn + δXn,

Tn+1 = Tn + δTn. (4.10)

The dimension of the state space is large N = O(105) and the (N + 1) × (N + 1)

matrix J is dense. It cannot be stored in memory, and constructing it explicitly would be

prohibitively expensive. Direct inversion or iterative methods like Jacobi, Guass-Siedel,

etc. cannot be used to solve systems of equations of such high dimensions either. Hence,

we use a Krylov space method to iteratively solve the linear system (4.8). The method

computes the solution by projecting the linear system onto a Krylov subspace, which is

spanned by the vectors {F1, · · · ,Fm} generated iteratively as Fm+1 = JFm, starting with

an appropriately chosen initial vector F1.

It should be noted that, in order to construct this sequence, the matrix J does not have

to be constructed in explicit form, rather a prescription is needed which defines its action

on an arbitrary vector F. In our case, JT (X) = V(ΦT (X)) and V(X) can be computed
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directly, while the action of the N ×N Jacobian JX can be approximated using

JX (X) F ≈ ΦT (X + εF)−ΦT (X)

ε
(4.11)

for a suitably small ε. Since the Jacobian is not computed explicitly, this method is referred

to as matrix-free. Different variations of Krylov space methods have been developed for

various types of problems. For example, the conjugate gradients method [106] is very effi-

cient for solving systems with symmetric J . For non-symmetric J a generalized minimum

residual (GMRES) method [107, 108] is commonly employed. This is the method that has

been used to solve the system (4.8).

4.1.2 GMRES

GMRES approximates the exact solution of the system Ju = b (where b is assumed to be

normalized, ‖b‖ = 1), by a vector um ∈ Km, which minimizes the norm of the residual

Fm = Jum − b. Here Km is the m-dimensional Krylov subspace spanned by the set of

vectors {b, Jb, · · · , Jm−1b}. A more convenient orthonormal basis {q̂1, · · · , q̂m} for Km

can be constructed using the stabilized Gram-Schmidt method. The algorithm is known as

Arnoldi iteration and generates an associated (m + 1) ×m upper Hessenberg matrix Hm

whose eigenvalue spectrum approximates that of J .

q̂1 = b
for l = 1 to m do

ql+1 = J q̂l // Generate new vector
for j = 1 to l do

Hj,l = ql+1 · q̂j // Projection onto previous vector
ql+1 = ql+1 −Hj,lq̂j // Orthogonalization

end
Hl+1,l = ‖ql‖ // Magnitude of new orthogonal vector
q̂l+1 = ql+1/Hl+1,l // Normalization

end
Algorithm 1: Arnoldi iteration. The hat indicates a unit vector.
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Since um, b ∈ Km, these vectors can be expanded in the basis {q̂1, · · · , q̂m+1} as

um = Qmzm, (4.12)

b = Qm+1v1 (4.13)

where Qm = [q̂1, · · · , q̂m], zm ∈ Rm and v1 = (1, 0, · · · , 0)T ∈ Rm+1. Furthermore,

using the relations JQm = Qm+1Hm and QT
m+1Qm+1 = 1 it can be shown that

‖Fm‖ = ‖Jum − b‖ = ‖Qm+1Hmzm −Qm+1v1‖ = ‖Hmzm − v1‖. (4.14)

This result can be easily generalized to the case of β = ‖b‖ 6= 1 by rescaling

‖Fm‖ = ‖Hmzm − βv1‖. (4.15)

Therefore, minimizing the residual in the full N -dimensional state space is equivalent to

solving a linear least squares problem (4.15) in an m+ 1 dimensions whose solution is

zm = βH∗mv1, (4.16)

where H∗m is the pseudoinverse of Hm. Successive approximations um with increasing

m can be generated until ‖Fm‖ becomes sufficiently small, resulting in two nested loops:

GMRES iteration (over m) within each Newton iteration (over n).

In practice, the linear system typically does not have to be solved exactly, hence this

method is called inexact Newton method. A variety of criteria can be used to stop the

GMRES iteration, as the ultimate objective is to solve the non-linear equation F(X) = 0.

The stopping criterion used in this thesis is based on the eigenvalues of the Hessenberg

matrix and the following procedure is followed. A minimum of 10 GMRES iterations is

always performed. The eigenvalues hm,i ofHm sorted from largest to smallest in magnitude
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are then computed and the products hkm = |hm,1||hm,2| · · · |hm,k| are evaluated. GMRES

iterations are then continued until m ≥ 2k0, where k0 is the smallest k for which hkm < 1.

The motivation behind this constraint is to achieve a balance between unstable and weakly

stable modes for unstable solutions. If the solution is stable, then k0 = 1, and the GMRES

iterations are instead continued until the dominant eigenvalues of Hm converge (to the

eigenvalues of J), i.e.,

|hm,m−1 − hm−1,m−1| ≤ ε|hm−1,1| (4.17)

with ε = 10−3 used here. If none of the above criteria are met, GMRES iterations are

continued until a maximum mmax = 40.

The next step after computing the correction δXn (and δTn for (pre-)periodic orbits)

using GMRES is to compare the norm ‖F(Xn+1)‖ of the new non-linear residual with the

norm ‖F(Xn)‖ of the old one. If the residual decreases, the algorithm proceeds to the next

Newton iteration. However, occasionally the non-linear residual does not decrease. This

means that Xn is far from the solution X, the linear approximation underlying the Newton

method is not valid, and so computed correction is inaccurate. In such a case, a “hook step”

is performed [61] as explained below.

4.1.3 Hook step

In the hook step algorithm, a correction is also computed in the Krylov subspace Km,

however the linear residual Fm is minimized subject to the constraint that zm lies on a hy-

persphere of radius ∆, known as the trust region radius. This is equivalent to a constrained

minimization problem defined by the cost function

L = ‖Hmzm − βv1‖2 + µ (‖zm‖2 −∆2), (4.18)

64



where µ is the Lagrange multiplier. It can be simplified by rotating the basis using the

singular value decomposition of the Hessenberg matrix

Hm = Mm+1DmN
T
m, (4.19)

where Mm+1 and Nm are square orthogonal matrices and Dm is an (m+ 1)×m diagonal

matrix with the last row of all zeros. Then, the residual given by Eq. (4.15) will be

‖Fm‖ = ‖Hmzm − βv1‖

=
∥∥Mm+1DmN

T
mzm − βv1

∥∥
=
∥∥Mm+1(DmN

T
mzm −M−1

m+1βv1)
∥∥

= ‖Dmym − pm‖ (4.20)

where

pm = βM−1
m+1v1 = βMT

m+1v1,

ym = NT
mzm. (4.21)

Since Nm is an orthogonal matrix, ‖ym‖ = ‖zm‖, so (4.18) becomes

L = ‖Dmym − pm‖2 + µ
(
‖ym‖2 −∆2

)
. (4.22)

The solution can be computed by setting the partial derivatives of L with respect to the

components ym,i of ym to zero, which yields

ym,i =
pm,i(Dm)ii
(Dm)2

ii + µ
, 1 ≤ i ≤ m, (4.23)

65



where (Dm)ii is the ith diagonal element ofDm. The unknown constant µ is then computed

by requiring that ‖ym‖ = ∆.

In practice, one does not know ∆ and starts with a trust region radius computed in the

previous Newton iteration. If the hook step succeeds (i.e., the new nonlinear residual is

smaller than the old one), then the trust region radius ∆ is increased and the hook step

is repeated as long as the non-linear residual keeps decreasing. This way, a larger hook

step is taken, reducing the number of expensive Newton iterations. If the hook step fails,

then ∆ is reduced and the hook step is repeated with the new, reduced ∆. The state is

updated using the correction solved by the GMRES-hook step, and the Newton iterations

are continued until the residual norm ‖F‖ decreases to a desired tolerance, an absolute

tolerance of 5× 10−6 used here for periodic orbits.

As pointed out previously, the eigenvalues of the Hessenberg matrix H generated by

GMRES approximate the leading eigenvalues of the Jacobian J when the Krylov subspace

has a sufficiently large dimensionality. Similarly, the eigenspectrum of the Hessenberg ma-

trix HX generated in the arnoldi iteration using the action of JX approximates its dominant

eigenspetrum. These eigenvalues, evaluated at the solution X(T ) = X(0), are simply the

Floquet multipliers (3.6) of the corresponding orbit, which determine its stability.

It is worth mentioning that the Newton-Krylov/GMRES method described here, which

is designed primarily to find periodic orbits, can also be (and often is) used to compute the

equilibria of the dynamical system (2.44). This requires a judicious choice of T that is held

fixed between Newton iterations.

4.2 Computing dynamical connections

4.2.1 Shooting method

Dynamical (or heteroclinic or homoclinic) connections between unstable equilibria can be

computed using a shooting method that has a lot in common with the method for computing

periodic orbits described in the previous section. Let E− be the origin equilibrium where
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the connection starts and E+ be the destination equilibrium where the connection termi-

nates. The connection lies within the unstable manifold of E− and so can, in principle,

be computed by time-integration of (2.44) starting from a suitable initial condition X(0)

which lies on that manifold [109]. The manifold is tangent to a hyperplane spanned by all

the unstable eigenvectors ek of E−, so we can choose

X(0) = E− +
mu∑
k=1

αkek, (4.24)

where mu is the number of unstable eigenvalues of E−. The initial condition X should be

close to E−, i.e.,

‖X(0)− E−‖ = ε−, (4.25)

with ε− sufficiently small to make sure the hyperplane is an accurate approximation to the

manifold. On the other hand, V(X) → 0 for X → X−, so ε− should be large enough to

make the total integration time reasonable. Eq. (4.25) defines a hypersphere of radius ε−

around X−, so the initial condition X(0) lies at the intersection of the hypersphere and the

hyperplane.

Furthermore, the connection should lie within the stable manifold of E+ which is tan-

gent to the hyperplane spanned by all the stable eigenvectors of E+ and so X(T ) should

lie on this hyperplane. While it is possible to express this condition in the form similar to

(4.24), the number of stable eigenvalues for a system such as the one considered here is

very large, ms = O(N). An alternative to impose this constraint is to require

P+u (X(T )− E+) = 0 (4.26)

where P+u is the projection operator onto the low-dimensional unstable eigenspace of E+

and X(T ) = ΦT (X(0)) [67]. However, the projection requires the knowledge of the corre-

sponding adjoint (or left) eigenvectors, which are not generally straightforward to compute.
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On the other hand, V(X) → 0 for X →E+, so we should require that the numerically

computed trajectory that originates at X(0) terminate anywhere inside a hypershere of finite

radius ε+ centered at E+,

‖F(X(0), T )‖ = ‖X(T )− E+‖ = ε+ (4.27)

at some large, but again finite, time T . The constraint (4.27) does not guarantee that X(T )

lies exactly in the stable manifold of E+. However, by choosing a sufficiently small ε+,

we ensure that the trajectory comes arbitrarily close to X+, which is only possible only if

X(T ) lies very close to the stable manifold of the destination. Constraints (4.24), (4.25),

and (4.27) therefore give us a very good approximation for the connection, provided a small

number of “coordinates” αk is chosen correctly.

This is essentially a shooting-type problem, where the initial condition parametrized by

{αk} is varied to minimize the ‖F‖ for a sufficiently large T , with the tolerance determined

by (4.27). Provided that a good initial guess is available, the solution can be obtained

iteratively by refining it using Newton’s method. Minimization of the norm ‖F‖ is, of

course, equivalent to solving the nonlinear equation

F(X, T ) = 0, (4.28)

so we can more or less follow the procedure outlined in the previous section. Let the guess

for the initial condition X(0) at the nth iteration be Xn = X− δXn, where

δXn =
mu∑
k=1

δα
(n)
k ek. (4.29)

Linearizing (4.28) about X and T = Tn + δTn and ignoring the higher order terms, we get

F(Xn + δXn, Tn + δTn) = F(Xn, Tn) +
mu∑
k=1

δα
(n)
k wk + δTnwT = 0 (4.30)

68



where

wk =
∂F

∂α
(n)
k

≈ F(Xn + εek, T )− F(Xn, T )

ε

=
ΦT (Xn + εek)−ΦT (Xn)

ε
,

wT =
∂F

∂T
≈ F(Xn, T + ε)− F(Xn, T )

ε

=
ΦT+ε(Xn)−ΦT (Xn)

ε
(4.31)

with sufficiently small ε. The solution to (4.30) is obtained by minimizing

E(n) =

∥∥∥∥∥F(Xn, Tn) +
mu∑
k=1

δα
(n)
k wk + δTnwT

∥∥∥∥∥
2

. (4.32)

Setting the partial derivatives ∂E(n)/∂δα
(n)
k to zero yields mu linear equations

mu∑
k=1

δα
(n)
k (wj ·wk) + δTn(wj ·wT ) = −wj · F(Xn, T ), 1 ≤ j ≤ mu. (4.33)

Furthermore, the constraint (4.25) requires

mu∑
j=1

Cjδα
(n)
j = 0, (4.34)

where

Cj =
mu∑
i=1

(ei · ej)α(n)
i . (4.35)

Solving the linear system of equations (4.33) and (4.34) uniquely determines the solution

{δα(n)
k } and δTn.

The temporal length of the connection is infinite, so we cannot use this result for δTn,

which is based on linearization, to compute the new guess Tn+1. Instead, once the new

guess Xn+1 has been computed using {δα(n)
k }, the trajectory is computed over a time in-
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terval [0, Tmax], with Tmax � Tn. Then Tn is set as the value of T which minimizes the

left-hand-side of (4.27). It is possible that the residual norm ‖F‖ does not decrease after

the Newton update, which means that the calculated δXn is far outside the region where the

linearization can be considered accurate. In that case, a parabolic line search (see [103]) is

performed by taking a fraction of the computed δXn, and updating Xn+1 and Tn+1 accord-

ingly.

Since Newton search is based on linearization, while the heteroclinic connection is an

unstable solution which exponentially amplifies errors in the choice of the initial condition,

an extremely good initial guess is required to find the heteroclinic connection using shoot-

ing. In general, even moderately good guesses are not readily available. Moreover, it is in

general unknown which pairs of equilibria possess sufficiently short connections. Both of

these problems can be addressed, however, in the following systematic way. Let us take

an equilibrium and continue it, in any parameter(s), until it undergoes a bifurcation. At the

bifurcation it merges with another unstable (or stable) solution. At an infinitesimal distance

away from the bifurcation, the two solutions are connected, with the connection lying in

(or even coinciding with) their center manifold. In many instances (e.g., for saddle-node,

transcritical, and pitchfork bifurcations of equilibria) the center manifold between the two

solutions is one-dimensional, locally straight, and serves as an excellent initial guess for

the connection.

After computing the connection near the bifurcation, the origin and destination equi-

libria and the connection between them can be continued back to the original values of

parameter(s). To illustrate this method, we have computed the heteroclinic connection

between the equilibria E3 and E4 born in a saddle-node bifurcation at I = I1 (the connec-

tion is created at the same bifurcation). The calculations used the following parameters:

ε− = ε+ = 5 × 10−4‖X+‖ and Tmax = 2000 seconds. The connection computed at var-

ious values of the current I , is plotted in Figure 4.3. The destination equilibrium E4 has

no unstable directions below and one unstable direction above the pitchfork bifurcation
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Figure 4.3: Heteroclinic connection (green) between unstable equilibria E3 (blue) and E4

(black) computed at a set of different driving currents to illustrate the continuation proce-
dure. The equilibria at intermediate values of the current are shown as dashed lines and
bifurcations as spheres (brown for the saddle-node, cyan for the pitchforks, and red for the
Hopf bifurcation. The same projection is used as in Figure 3.5b.
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Figure 4.4: Bifurcation diagram showing equilibrium states E1 through E8 (lines). Pitch-
fork bifurcations are labeled with cyan spheres and Hopf bifurcations are labeled with red
spheres. Saddle-node bifurcations are not labeled; they correspond to points where equi-
libria E3 and E4 or E7 and E8 meet. The same projection is used as in Figure 3.5b.

(shown as cyan sphere), while the number of unstable directions for the origin E3 increases

from one to two (at the pitchfork bifurcation) to four (at the Hopf bifurcation, shown as

red sphere, which takes place at I = 11.38 mA). While in general dynamical connections

between ECS may be created or destroyed when either the origin or the destination un-

dergoes a bifurcation, the connection between E3 and E4 persists despite both equilibria

undergoing several bifurcations.

4.2.2 Symmetry constraint

The equilibrium E4 undergoes a Hopf bifurcation at I = 11.74 mA. Just above it, two

equlibria E7 and E8 are born out of a saddle node bifurcation at I = 11.76 mA. A projection

of the bifurcation diagram is shown in Figure 4.4. We have tried to compute the connection

between the saddle E7 and node E8 at a driving current of I = 11.9 mA, which is just above

the location of saddle-node bifurcation, using the shooting method. For this current, the

destination E8 has one unstable direction, while the origin E7 has two unstable directions
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with the corresponding stability exponents Λ1 = 0.037 and Λ2 = 0.004 differing by an

order of magnitude. This large disparity caused the Newton method to fail due to the

extreme amplification of the perturbations in the eigendirection e1 for the connection that

is aligned approximately in the eigendirection e2 (since the latter corresponds to the center

manifold for this bifurcation).

Since the unstable manifold of the origin is just two-dimensional, all trajectories ly-

ing in this manifold can be parameterized using initial conditions lying on the circle of

radius ε− in the plane spanned by e1 and e1. Hence the trajectory connecting E7 to E8 can,

in principle, be found by applying bisection method to this one-dimensional set of initial

conditions. However, even bisection failed to determine the initial condition with suffi-

cient accuracy to generate a trajectory that would approach the destination equilibrium -

numerical accuracy was exceeded first. Instead, all initial conditions produced trajectories

that terminated at the stable equilibrium E2 (which corresponds to the modulated flow) as

illustrated in Figure 4.6b.

Although computation of the connection using shooting in the full symmetry-unrestricted

state space fails, the basic approach can be salvaged by noticing that both E7 and E8 lie

in the rotationally-symmetric subspace (cf. Figure 4.5). So does the connection, at least

close to the bifurcation, where it coincides with the center manifold, whose direction is

given by the eigenvector e2. Indeed, near the saddle-node bifurcation, e2 is proportional to

the difference E7−E8 and so also lies in the symmetry subspace. Since there is no mech-

anism that would break its symmetry, the connection remains symmetric away from the

bifurcation as well. On the other hand, e1 is not rotationally-symmetric, as can be seen

from Figure 4.5. Hence, an initial condition of the form E7+ε−e2, when evolved forward,

should lie in the symmetric subspace.

The numerical noise at every time step weakly breaks rotational symmetry of the state,

which leads to a gradual drift of the trajectory away from the symmetric subspace. These

tiny perturbations due to the numerical noise are exponentially amplified in the domi-
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(a) (b)

(c) (d)

Figure 4.5: Vorticity fields of (a) E7, (b) E8 and the eigenvectors (c) e1, (d) e2 of E7 at
I = 11.9 mA, where the heteroclinc connection is computed.
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(a) (b)

Figure 4.6: (a) Projections of the trajectories that start on the unstable manifold of the ori-
gin equilibrium E7 (blue sphere) onto the subspace spanned by the orthogonal vectors d1,
d2, d3 which are linear combinations of e1, e2, and E8−E7. Without the symmetry con-
straint, all trajectories (black curves) terminate at the global attractor E2 (magenta sphere).
With the symmetry constraint, the trajectory (green curve) from E7+ε−e2 terminates at
the destination equilibrium E8 (red sphere). (b) Zoomed view of (a) near E7 showing the
focusing effect of the dominant unstable direction.
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Figure 4.7: The distance from the destination equilibrium E8 versus time for the symmetry-
constrained trajectory with the initial condition E7+ε−e2.

nant unstable direction, completely destroying the symmetry. In order to eliminate the

symmetry-breaking effect of numerical noise, we projected the solution back into the sym-

metry subspace at every time step. With this correction, the shooting method generates the

instability and produces a trajectory that lies in the symmetric subspace and terminates at

the destination equilibrium as shown in Figure 4.6. To confirm this we computed the dis-

tance from the trajectory to the destination equilibrium E8, which is shown in Figure 4.7.

Note that since the intersection of the symmetry subspace with the unstable manifold of E7

is one-dimensional, no Newton iteration is necessary to find the connection. The choice

of the initial condition along e2 guarantees convergence to E8, since E8 is stable within

the symmetry subspace (although there is an unstable direction that lies outside of the sub-

space).

4.3 Summary

In this chapter, Newton-based methods for computing ECS and their dynamical connec-

tions have been described. Close to the solution, Newton steps are second-order accurate,

i.e., the residual at the nth iteration satisfies ||Fn|| ≤ C||Fn−1||2 for some constant C. This

leads to a super-exponential convergence over multiple iterations [110]. However, such

fast convergence is only observed when the residual is already very small. Such good ini-
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tial guesses are usually unavailable or, as in the case of parameter continuation, costly to

obtain. If/when a very good initial guess is not available, the convergence can be much

slower. In fact, Newton-based methods can completely fail to converge. One reason is

the nonlinearity of the problem. Another, more serious one is the exponential sensitivity

of the numerical solutions obtained by shooting to small perturbations in the initial condi-

tions, which is exacerbated for connecting orbits that have a formally infinite duration. The

algorithm completely breaks down when the initial condition has to be specified with an

accuracy exceeding the accuracy of computer arithmetic. One possible solution to handle

such highly unstable solutions is to use multi-shooting [111], where the trajectory is bro-

ken up into multiple shorter segments, such that on each segment the sensitivity to initial

condition is dramatically decreased. However, multi-shooting increases the dimensionality

of the problem, requiring a substantial increase in both memory and processing power.

The symmetry-based method for computing connections partially overcomes the prob-

lems of the Newton-based methods. While it works extremely well and is very efficient,

it is limited to pairs of solutions that lie in the same symmetry subspace. Furthermore,

it requires that the destination have no unstable directions in the symmetry subspace. An

alternative approach that is both very general and overcomes the limitations of the methods

described above is introduced in the next chapter.
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CHAPTER 5

ADJOINT-BASED METHODS FOR COMPUTING ECS AND DYNAMICAL

CONNECTIONS

In this chapter we describe an alternative method for computing unstable solutions of the

Navier-Stokes equation. It uses the adjoint-based formulation that was introduced into this

class of problems by Farazmand [66], who illustrated its power by computing several new

solutions of the two-dimensional Kolmogorov flow described by (2.4) with β = 1 and

α̃ = 0 and (2.5). In its original form, this method was limited only to equilibria and travel-

ing waves (relative equilibria) on physical domains with periodic boundary conditions. We

have generalized this method in several ways. In particular, the generalized method allows

computing solutions on domains with physical no-slip boundary conditions. Furthermore,

it can be used for computing periodic orbits and heteroclinic connections between equilib-

ria. The method is described in this chapter, starting with its application to a system of two

linear equations which provides a simple geometrical illustration of the main concepts.

5.1 Adjoint evolution equation

Let F(X) be a function from RN to RN . Finding a solution X∗ of the vector equation

F(X) = 0 (5.1)

is equivalent to finding a root of the non-negative scalar function E = FTWF for any

symmetric positive definite weight matrix W (for F-complex, we should use Hermitian

conjugate rather than transpose). Assuming X is a function of a fictitious time τ , we can
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write

∂τE = 2FTW∂τF = 2FTWJ∂τX = 2(JTWF)T∂τX, (5.2)

where J = ∂F/∂X is the Jacobian of F. If we were to require that X evolve in fictitious

time according to

∂τX = −QJTWF(X), (5.3)

where Q = DTD is a symmetric positive-definite acceleration matrix, then E(X) effec-

tively becomes a Lyapunov function for the dynamical system (5.3). Indeed, it is straight-

forward to check that E decreases in time

∂τE = −2‖DJTWF‖2 ≤ 0, (5.4)

except when

JTWF = 0. (5.5)

The last equation is only satisfied either when F = 0 (i.e., a root of (5.1) has been found)

or when F lies in the kernel of JTW . The latter possibility is a potential drawback of the

method that might prevent global convergence, as discussed below.

Since (5.3) involves the transpose of the Jacobian, which defines the adjoint eigenvalue

problem for J , we will refer to this method as “adjoint-based”. The matricesQ andW play

the role of preconditioners and can be used to improve the convergence speed, as will be

shown below. In the special case Q = W = 1 we have E = ‖F‖2 and (5.3) reduces to

∂τX = −JTF = −1

2
∇E. (5.6)
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The evolution of X in fictitious time described by (5.6) clearly corresponds to the steepest

descent direction for E.

5.1.1 Illustrative example

To gain some geometrical intuition about the role of the matrices Q and W , the adjoint-

based method is applied for finding the root of a linear function F(X) = AX in R2, where

X = [x, y] and

A =

a 0

0 1

 , (5.7)

with a = 1/4 and X(0) = (1, 0.5)T . In this problem, J = JT = A. For W = 1 we obtain

the steepest descent equation (5.6), which can be solved analytically:

∂τ

x
y

 = −A2

x
y

 =

−a2x

−y

 , (5.8)

such that

x(τ) = x(0)e−a
2τ ,

y(τ) = y(0)e−τ . (5.9)

The corresponding residual is also found to decay exponentially fast

E(τ) = a2x2(τ) + y2(τ) = a2x2(0)e−2a2τ + y2(0)e−2τ , (5.10)

as shown in Figure 5.1a.

The trajectory X(τ), along with the level sets of E, is shown in Figure 5.1b. The

trajectory is everywhere normal to the level set of E, so since the level sets of E are

stretched along the x-direction relative to the y-direction, the steepest descent trajectory
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(a)

(b)

Figure 5.1: Comparison of the solutions to the adjoint evolution equations with and without
acceleration. (a) The residual E(τ). (b) The “trajectories” X(τ), the level sets of E (cyan
curves), and the solution X∗ (magenta circle). Blue lines correspond to the steepest descent,
black lines – to the accelerated descent, and red – to the momentum method. The same
choice of Q and W has been used in the accelerated descent and the momentum method.
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will approach the solution in the y-direction much faster than that in the x-direction, as

Figure 5.1b illustrates. The x-direction, along which the residual decreases slowly (at a

rate a2 = 0.0625 � 1 in our example), corresponds to a slowly decaying mode. It is such

slowly decaying modes that control the convergence speed [112].

Convergence speed can be increased by requiring that ∂τX be rotated to increase its

component(s) along the slowly decaying mode(s), but such that it remains a descent direc-

tion. This can be achieved by choosing the positive-definite symmetric matrices Q and/or

W accordingly, such that (5.6) is replaced with (5.3). For instance, choosing

W =

w 0

0 1

 , Q =

q 0

0 1

 , (5.11)

with w > 0 and q > 0 yields

∂τ

x
y

 = −QAWA

x
y

 =

−a2qwx

−y

 , (5.12)

such that

x(τ) = x(0)e−a
2qwτ ,

y(τ) = y(0)e−τ (5.13)

and

E(τ) = a2wx2(0)e−2a2qwτ + y2(0)e−2τ . (5.14)

This does not change the convergence rate in the y-direction, but speeds up convergence in

the x-direction, increasing the convergence rate from a2 to a2qw. The results for q = 16

and w = 1 are compared with steepest descent in the Figure 5.1a. It is clear that this choice
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notably accelerates convergence.

5.1.2 Accelerating convergence

When the Jacobian is not symmetric, close to the solution we will find

∂τδX = −QJTWJδX, (5.15)

where δX = X(τ)−X∗ is the deviation from the root, so it is the smallest eigenvalues of the

product QJTWJ that control the convergence speed, with the corresponding eigenvalues

defining the slowly decaying modes. In general, the matricesQ and/orW should be chosen

to remove these small eigenvalues. For instance, choosingQ = (JTJ)−1 andW = 1 yields

QJTWJ = 1, such that

∂τδX = −δX, (5.16)

with all degrees of freedom converging at exactly the same rate (unity). For a discretization

of non-linear PDEs, evaluating the Jacobian, let alone its inverse, is an intractable problem.

However, it is still possible to optimize the choice of Q and W using linearization of the

PDEs. This is discussed in sections 5.2, 5.3, and 5.4, where solutions of 2D Navier-Stokes

equation are computed.

Far from the solution, where (5.15) does not apply, the decay of slow modes can be

accelerated by using a classical momentum acceleration method [113] or its variation pro-

posed by Nesterov [114]. In both cases, once a correction has been computed, a fraction

of the correction at the previous step is added to the correction predicted by the linear

evolution equation (5.3), which is effectively equivalent to adding a “momentum” to the

trajectory X(τ). For instance, if (5.3) is solved numerically using forward Euler with a
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constant time step δτ , the modified correction during the kth iteration will be given by

δXk = −QJTWF|Xk
δτ + pkδXk−1. (5.17)

Note that, to leading order in δτ , (5.17) corresponds to the discretization of the second-

order differential equation

m∂2
τX + ∂τX +QJTWF = 0, (5.18)

where pk = m/δτ , so pk does indeed correspond to inertia or momentum.

In Nesterov’s algorithm the inertia is variable, pk = (µk − 1)/(µk + 1) with

µk =
1 +

√
1 + 4µ2

k−1

2
(5.19)

and µ1 = 1. The corresponding δx may not be a descent direction, so a monotonic decrease

of the residual is not guaranteed. Whenever the residual E increases during the iteration,

the momentum is reset, µk = 1 such that pk = 0, after which the iteration continued. Fig-

ure 5.1a illustrates that adding momentum to the trajectory further accelerates convergence

of the adjoint evolution towards the solution.

5.2 Computing equilibria

In this section, the adjoint based method for finding equilibria of compressible 2D Navier-

Stokes equations (which are also the equilibria of incompressible flow) is described. The
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compressible model (2.33)-(2.37) can be rewritten in the form

u̇ = F u ≡ −β(u∂x + v∂y)u− γ(∂xu+ ∂yv)u+ R̃e
−1 (∇2u− α̃u

)
+ f̄0 − ∂xp,

v̇ = F v ≡ −β(u∂x + v∂y)v − γ(∂xu+ ∂yv)u+ R̃e
−1 (∇2v − α̃v

)
− ∂yp,

ṗ = F p ≡ −κ̃(∂xu+ ∂yv), (5.20)

where u = ux̂+ vŷ and we dropped the subscript ‖ of the gradient operator and the bar on

p, since this cannot cause any confusion in 2D.

With the help of the relation (2.45) between the state space and the physical space

variables, we can see that the equilibria of (5.20) in the physical space correspond to zeros

of the function

F(X) =


F u

F v

F p

 (5.21)

or global minima of E = FTWF in the state space. As discussed above, these minima can

be found by solving the evolution equation (5.3) in fictitious time, where

J =
∂F

∂X
=


∂Fu

∂u
∂Fu

∂v
−∂x

∂F v

∂u
∂F v

∂v
−∂y

−κ̃∂x −κ̃∂y 0

 . (5.22)

For a representation of the differential equations (5.20), where the fields are spatially dis-

cretizated using finite differences, all the operators in (5.22) are replaced with the respective

finite-dimensional sparse matrices that can be used to compute the matrix vector product

−JTF, which enters the evolution equation (5.3) for X.
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5.2.1 Choice of the weight and acceleration matrices

As discussed previously, to achieve reasonably fast convergence, the operator QJTWJ

should not have any small eigenvalues. For Q = W = 1, small eigenvalues do arise due to

the differences in the time scales associated with the evolution of the velocity and pressure

caused by the large value of the constant κ̃ in the compressible model. Indeed, discretizing

the steepest descent evolution equation (5.6) in fictitious time using forward Euler yields

δX = −JTFδτ . According to (5.2) and (5.22), the corresponding change in the residual

E is given by

δE

δτ
= −2‖JTF‖2

=− 2

∣∣∣∣∣
∣∣∣∣∣
(
∂F u

∂u

)T
F u +

(
∂F v

∂u

)T
F v − κ̃(∂x)

TF p

∣∣∣∣∣
∣∣∣∣∣
2

− 2

∣∣∣∣∣
∣∣∣∣∣
(
∂F u

∂v

)T
F u +

(
∂F v

∂v

)T
F v − κ̃(∂y)

TF p

∣∣∣∣∣
∣∣∣∣∣
2

− 2‖(∂x)TF u + (∂y)
TF v‖2, (5.23)

Since κ̃ = O(103), variation of E is highly sensitive to the value of F p, with the associated

eigenvalues being O(κ̃) larger than those associated with F u or F v. Our previous analysis

suggests that the corresponding degrees of freedom (i.e., pressure) should be rescaled by a

factor of κ̃−2 in (5.3), which can be achieved, for instance, by choosing

Q =


1 0 0

0 1 0

0 0 κ̃−2

 . (5.24)

Farazmand only considered the case Q = 1 and W 6= 1 in his study [66]. To explore the

alternative, in the following I will only consider the case W = 1 and Q 6= 1.

A disparity in the magnitude of the eiqenvalues of QJTWJ defined using (5.24) can

also arise due to the presence of the term ∇2 in (5.20). The degrees of freedom associated
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with high wavenumbers in u will have eigenvectors much larger than those associated with

low wavenumbers. As a result, either the low frequency modes converge extremely slowly

or, if a larger step δτ is used, the high frequency modes become numerically unstable. This

can be addressed by using the optimized acceleration matrix

Q =


(α̃1−∇2

D)−1 0 0

0 (α̃1−∇2
D)−1 0

0 0 κ̃−2(∇2
N)−1

 , (5.25)

where ∇2
D and ∇2

N denote the discretization of the Laplacian with Dirichlet and Neumann

boundary conditions, respectively.

Two comments should be made here. The operator (∇2
N)−1 is singular, since∇2

N has a

zero eigenvalue associated with the mode p = const. This mode does not affect the dynam-

ics as pressure appears in the governing equations (5.20) only as ∇p. Hence, this mode of

p is set to zero by imposing an explicit constraint in the solution procedure. Furthermore,

the choice of the acceleration operator Qu = Qv = (α̃1−∇2
D)−1 is not optimal, based on

the analysis presented above. It is, however, cheaper to implement numerically, compared

with the more optimal choice Qu = Qv = (α̃1−∇2
D)−2.

5.2.2 Numerical solution of the adjoint equation

The adjoint evolution equation (5.3) has to be integrated in τ until the residual becomes

sufficiently small. Integration using an implicit scheme, which is stable for large δτ , is

very expensive (and often practically impossible) owing to the large dimensionality of the

system. Integration using an explicit scheme is also expensive, owing to the stiffness of

the system, which requires very small “time” steps. However, we are interested only in the

asymptotic state of the system and not the entire trajectory generated by (5.3). So, in order

to find the asymptotic state of the system, we do not perform an accurate “time” integration

but use an iterative method to evolve the state X as follows.
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Since our governing equations (5.20) are quadratic in X, the residual E(X+Wδτ) can

be written as a 4th degree polynomial in δτ for any X and W. Hence, once the descent

direction Wk = −QJTWF(Xk) has been computed, E(Xk+Wkδτk) is fit to a 4th degree

polynomial along the descent direction and the optimal “time” step δτk, which minimizes

E along W, is calculated. This gives us the intermediate step, δX∗k = Wkδτk. A fraction

of the previous step is added to δX∗k following Nesterov’s algorithm, yielding the step at

the kth iterate

δXk = Wkδτ0 +
µk − 1

µk + 1
δXk−1, (5.26)

where µk is given by equation (5.19). The next iterate Xk+1 = Xk + δXk is then evaluated

and the process proceeds until convergence.

As discussed in Section 5.1.1, momentum should be reset, µk = 1, if the residual does

not decrease. However, it is possible that the residual does not decrease even with µk = 1,

which means that the iterative algorithm reached a local rather than global minimum of E

and got stuck there. In such cases the search was simply restarted with a new initial guess.

Equilibria of the compressible model lie in the divergence-free subspace, just like the

equilibria of the incompressible model, for which∇·u = 0. Hence, in computing the equi-

libria of the incompressible model, Farazmand [66] used initial guesses that are divergence-

free and used a pressure projection to map the velocity field into the divergence-free sub-

space after every iteration during the adjoint evolution. Since the divergence-free condition

is imposed using a projection, rather than as a constraint, the resulting procedure is not guar-

anteed to descrease the residual. Furthermore, in Farazmand’s case computing the pressure

that leads to a divergence-free flow was cheap due to the assumption of periodic boundary

conditions. The physical no-slip boundary conditions considered here make projection to

the divergence-free condition on each step very expensive, however this projection is un-

necessary. In the formulation we have derived for the compressible model, according to
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(5.3), (5.22), and (5.25),

∂τp = −κ̃−2(∇2
N)−1(∂Tx F

u + ∂Ty F
v)

= κ̃−2(∇2
N)−1(∂xF

u + ∂yF
v). (5.27)

Hence, the divergence-free condition is not enforced, instead the pressure is chosen accord-

ing to (5.27) at all times. The incompressibility condition is restored once the solution has

converged to an equilibrium, where ∂τp = 0 and hence∇ · u = 0 according to (5.20).

5.2.3 Results

We used a hybrid adjoint-Newton method introduced by Farazmand [66] to compute the

equilibria solutions of the compressible model (5.20). In this method, adjoint evolution

equation (5.3) along with the momentum is used to reduce the residual norm ‖F‖ to a cer-

tain tolerance, which we chose to be 10−3. The final state produced by the adjoint evolution

is then used as an initial condition for the Newton-Krylov solver described in chapter 4.

Close to an equilibrium Newton-based methods converge faster (i.e., super-exponentially)

than the adjoint-based method, which “only” converge exponentially, according to (5.15).

To assess the sensitivity of the hybrid solver to the choice of the initial guess, we performed

several tests at various values of the current I when the asymptotic state is turbulent. In

both cases, the simulation started with fluid at rest, u = 0 with a small amount of white

noise, and the system was evolved forward for 1000 s, so the flow would settle onto the

chaotic attractor. In the first test, a state after every 500 seconds was chosen as an initial

condition for the solver. In the second test, local minima of the phase space speed S(t) were

used as initial conditions, if the minimum was below a certain threshold. In both cases 100

initial conditions have been generated. The success rate is summarized in Figure 5.2.

In particular, at I = 24 mA, of the 100 initial conditions in the first test, only three

converged to equilibria E9, E10 and E11 shown in Figure 5.3. In the second test, four of
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Figure 5.2: The histogram showing the success rate of finding equilibria using the adjoint
method, as a function of I .

the 100 initial conditions converged, two to E9 and the other two to E11. The rest of the

193 initial conditions got stuck at local minima during the adjoint evolution. This is in

stark contrast with the results obtained by Farazmand [66], who found that arbitrary initial

conditions have converged with 100% success rate to the equilibria of the Kolmogorov flow

with periodic boundary conditions. The success rate of the adjoint-based solver apparently

depends on numerous factors: model parameters, the size of the physical domain, and, as

will be discussed below, on the type of the solutions sought. When it fails, the adjoint-based

solver always converged to a local minimum. Developing efficient methods that can avoid

local minima should enable construction of a globally convergent solver. This is, however,

beyond the scope of this thesis.

5.3 Computing dynamical connections

Although it is simple, the shooting method for computing dynamical connections between

unstable equilibria discussed in Section 4.2 has a number of serious drawbacks. First of all,

choosing the radii ε± of the two hyperspheres that the connection originates and terminates
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(a) (b) (c)

Figure 5.3: Equilibria found using hybrid adjoint-Newton solver at a driving current I = 24
mA. Shown are the vorticity fields of the three equilibria (a) E9, (b) E10 and (c) E11.

on is far from trivial. They need to be small enough for the linearization to be remain

accurate, but large enough for limit the temporal length of the unstable trajectory and the

associated exponential amplification of perturbations. The typical lack of a good initial

guess required for convergence of Newton iterations is an even greater concern. Below

we present an adjoint-based approach for computing dynamical connections that is more

robust method and does not have these drawbacks.

5.3.1 Spectral representation

The problems of the shooting method all stem from (i) the infinite temporal length and (ii)

the temporal instability of the connection. Both of these problems can be sidestepped by

avoiding time-integration altogether, following the approach previously introduced by Liu

et al. [115] in the context of low-dimensional dynamical systems. They represented the

connection between equilibria using a spectral representation on the inifinite time-inteval

t ∈ R. The spectral basis is formed by orthogonal rational functions

Rk(t;ω, t
∗) = cos[k cot−1(ω(t− t∗))], k = 0, 1, 2, · · · . (5.28)
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with some fixed parameters ω and t∗, which are discussed later. The orthogonal rational

functions correspond to remapped Chebyshev polynomials, and their properties are dis-

cussed in great detail by Boyd [116]. Truncating the spectral expansion to the first m0 + 2

basis functions, for some positive integer m0

X(t) =

m0+1∑
k=0

ckRk(t;ω, t
∗) (5.29)

allows us to represent a (smooth) connection in terms ofm0+2 vector coefficients ck ∈ RN .

Differentiating (5.29) with respect to time gives

Ẋ(t) =

m0+1∑
k=0

ckṘk(t;ω, t
∗). (5.30)

Let us define the collocation points

tj = t∗ +
1

ω
cot

(
jπ

m0 + 1

)
, j = 1, · · · ,m0,

t0 = +∞,

tm0+1 =−∞. (5.31)

At these points

Ṙk(tj;ω, t
∗) = ωk sin2

(
jπ

m0 + 1

)
sin

(
kjπ

m0 + 1

)
(5.32)

and

Xj ≡ X(tj) =

m0+1∑
k=0

ck cos

(
kjπ

m0 + 1

)
(5.33)
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The system (5.33) can be inverted to yield

ck =
2

(m0 + 1)dk

m0+1∑
m=0

1

dm
cos

(
mkπ

m0 + 1

)
Xm (5.34)

where dm = 2 for m = 0 or m0 + 1 and dm = 1 otherwise.

Since the connection is a solution of (2.44), we should have

Vj ≡ V (Xj) =

m0+1∑
k=0

ckṘk(tj;ω, t
∗)

= ω sin2

(
jπ

m0 + 1

)m0+1∑
k=0

kck sin

(
kjπ

m0 + 1

)

= ω

m0+1∑
m=0

ÂjmXm (5.35)

for j = 1, · · · ,m0, where

Âjm =
2

m0 + 1
sin2

(
jπ

m0 + 1

)m0+1∑
k=0

k

dkdm
cos

(
mkπ

m0 + 1

)
sin

(
kjπ

m0 + 1

)
(5.36)

This system of m0 equations has to be supplemented with the “boundary conditions”

X0 = X−,

Xm0+1 = X+, (5.37)

where X− and X+ are the origin and the destination equilibria. Defining

Â = [a−, A, a+], (5.38)

were A is an m0 ×m0 matrix and a−, a+ are m0-dimensional vectors which depend only
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on m0, the system (5.35) can be rewritten as

Vj = ω

(
m0∑
m=1

AjmXm + a−j X− + a+
j X+

)
, j = 1, · · · ,m0. (5.39)

Finally, if we define

X̃ =


X1

...

Xm0

 , Ṽ =


V1

...

Vm0

 , X̃± =


a±1 X±

...

a±m0
X±

 (5.40)

and

Ã =


A111 · · · A1m01

... . . . ...

Am011 · · · Am0m01

 , (5.41)

the system (5.39) can be rewritten as

F̃(X̃) = Ṽ − ωÃX̃− ωX̃− − ωX̃+ = 0. (5.42)

This system of equations can be solved using either a Newton-Krylov or an adjoint-

based method discussed in previous sections, where we have redefined E = F̃T W̃ F̃ with

a block-diagonal weight matrix

W̃ =


W · · · 0

... . . . ...

0 · · · W

 , (5.43)
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so that (5.3) is replaced with

∂τX̃ = −Q̃J̃T W̃ F̃, (5.44)

where J̃ = ∂F̃/∂X̃ and

Q̃ =


Q · · · 0

... . . . ...

0 · · · Q

 , (5.45)

is a symmetric positive-definite acceleration matrix.

5.3.2 Tuning the spectral representation

The fixed parameters ω and t∗ perform a linear transform of the infinite time interval defined

by t to ω(t−t∗) and map the infinite interval back onto itself. The location of the collocation

points, however, changes if either the temporal origin t∗ or the temporal scale ω is changed.

Along with m0, these parameters can be used to fine-tune the spectral representation. It

is easy to see that m0 controls the number of the collocation points, ω – (the inverse of)

the temporal separation between the collocation points, and t∗ – the symmetry of their

distribution between the beginning and the end of the connection. The number m0 of basis

functions has to be chosen sufficiently large for the spectral approximation to converge,

and the minimal value clearly depends on the problem (e.g., on how smooth the connection

is). We have not explored the effect of t∗ (all calculations were done using t∗ = 0).

The scaling factor ω controls the density of the collocation points near the ends of the

connection versus its central portion. A poor choice results in numerical instabilities (e.g.,

spurious oscillations) [115], so one has to be careful in choosing ω. A detailed analysis

was performed by Boyd [117], who showed that, for entire functions, the optimal choice

of ω depends on the type of the problem, and also showed that the results are insensitive
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to choice of ω around the optimal value. It is unclear if Boyd’s results are applicable to

the class of problems considered here, due to his focus on entire functions. The work of

Liu et al. [115] also leaves the choice of scaling as an open question. Our own analysis is

presented in Section 5.3.5).

5.3.3 Compressible and incompressible model

The formulation described in section 5.3.1 can be directly applied to the compressible

model (5.20) as the time derivative exists for all of the three fields - u, v, p, but it needs

slight modification for the incompressible model where the first-order ODE for the pres-

sure is replaced with the divergence-free condition ∇ · u = 0. Writing F̃ defined by

equation (5.42) as

F̃ =


F1

...

Fm0

 , Fj =


F u
j

F v
j

F p
j

 , (5.46)

it can be seen that, for the compressible flow,

F p
j = −κ̃∇ · u(tj)−

m0∑
m=1

ωAjmp(tm)− ωa−j p− − ωa+
j p+, (5.47)

where the last three terms represent ∂tp. For the incompressible model, the expressions

F u and F v are the same as those for the compressible one (with γ = 0), but the pressure

component (5.47) would change to

F p
j = −∇ · u(tj), (5.48)

while the general form of the nonlinear problem (5.42) would remain the same.

Both X̃ and F are Nm0-dimensional vectors, where the dimension of the state space

N = O(106) for the spatial discretizations of the model (5.20) considered here. Hence

the number of unknowns is comparable to that (Nmmax) in the shooting-based methods
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considered in the previous Chapter. As discussed there, solving such a large system using

an exact Newton method is not practically feasible, although inexact Newton-Krylov meth-

ods could again be used. Alternatively, an adjoint-based method presented above can be

employed.

5.3.4 Results

In order to test the spectral method, we recomputed the connection between the unstable

equilibria E3 and E4 for I = 9.6 mA. An intentionally poor initial guess was chosen: We

used a set of m0 = 10 points uniformly distributed along the straight line (in the state

space) joining the origin (E3) and the destination (E4) and set the scaling parameter to

ω = 0.1. Solving the resulting system (5.42) using Newton/GMRES method was not

successful. For a Krylov subspace of dimension m = 10 the residual does not decrease

noticeably and quickly stagnates, as Figure 5.4a shows. Increasing the dimension of Krylov

subspace tenfold to m = 100 decreases the residual somewhat more, but convergence rate

slows down dramatically after a few tens of iterations, as Figure 5.4a illustrates. Choosing

an even larger Krylov subspace (with dimension as high as m = 300) does not change

anything qualitatively, with the residual (nearly) stagnating at high value of the residual.

Given the difficulties experienced by the Newton’s method, we have tried to solve

the system (5.42) using the adjoint-based method with momentum. The solution X̃ was

evolved using equation (5.44) with the acceleration operators Q and W chosen to be the

same as those used for finding the equilibria in Section 5.2. Unlike Newton/GMRES,

the adjoint-based method quickly reduces the residual by several orders of magnitude, as

shown in Figure 5.4b. Overall, the adjoint-based method decreased the residual by almost

five orders of magnitude, compared with the initial condition, to ‖F̃‖ = 10−4.

Eventually the residual stagnates, which is expected, because a small number of basis

functions does not allow a sufficiently accurate representation of the connection. This can

be easily seen from the “spectrum” ‖ck‖ of the converged solution shown in Figure 5.5a.
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(a)

(b)

Figure 5.4: Convergence of (a) Newton/GMRES method and (b) the adjoint method for
the heteroclinic connection between E3 and E4 at I = 9.6 mA. The Krylov subspace
dimension (10, 100, 200, or 300) is shown in the figure legend.
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The spectral representation of the connection for m0 = 10 is clearly under-resolved. We

repeated the calculation with m0 = 41 and m0 = 79. As Figure 5.5a shows, both solutions

are well-resolved, with the last spectral coefficients associated with the highest “wavenum-

ber” being between six and seven orders of magnitude smaller than the first spectral coef-

ficient associated with the lowest “wavenumber”. The nearly exponential decay of spectral

coefficients clearly demonstrates the advantages of the spectral formulation. This is in

stark contrast with the finite-difference scheme used to represent the time derivatives by

Dong and Lan [70], which required O(103) collocation points, compared with a few tens

of collocation points for the spectral formulation.

The sparse set of collocation points does not allow reconstructing the connection, which

is a continuous trajectory, at all times. However, there is a one-to-one correspondence

(5.33) between the collocation points Xj and the spectral coefficients ck. Once the solution

X̃ has been obtained, the spectral coefficients can be calculated and the entire trajectory

representing the dynamical connection can be computed at any time t using the spectral ex-

pansion (5.29). The results are plotted in Figure 5.5b, where a two-dimensional projection

of the connection computed using the adjoint-based method is compared with the result of

the shooting-based calculation discussed in Section 4.2. Once again, we see that m0 = 10

produces an under-resolved result, while m0 = 41 and m0 = 79 produce a connection

which is indistinguishable from that computed using shooting.

Figure 5.5b also illustrates and compares the distribution of the collocation points de-

scribing the three choices of parameters. For m0 = 10 and ω = 0.1 the density of colloca-

tion points is clearly too low. The distribution is also strongly skewed towards the destina-

tion equilibrium E4. A more balanced distribution could, in principle, be obtained by using

a nonzero value of the parameter t∗. Choosingm0 = 41 orm0 = 79 and ω = 0.01 produces

the distribution of collocation points that is highly nonuniform, with a much higher density

of points near the ends of the connection. This is crucial for achieving a small value of

the residual, since the connection has fine structure near the ends as shown in Figure 5.6.
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(a)

(b)

Figure 5.5: (a) Spectral coefficients for the connection between E3 and E4 for various
choices of m0 and ω. (b) A 2-D projection of the connection onto the plane spanned by
the two unstable eigenvectors e1 and e2 of the origin E3, with the continuous green line
representing the result of shooting and the symbols showing the collocation points for the
spectral representation. Both (a) and (b) use the same color-coding: m0 = 10 and ω = 0.1
(blue), m0 = 41 and ω = 0.01 (red), m0 = 79 and ω = 0.01 (black).
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(a)

(b)

Figure 5.6: Zoomed view of the connection (a) near the origin E3 and (b) near the destina-
tion E4 at I = 11.31 mA. The connection computed using the spectral method is shown in
blue and the connection computed using the shooting method is shown in green.
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(a) (b)

Figure 5.7: Stability spectra of the origin equilibrium (a) E3 and the destination equilibrium
(b) E4 at I = 11.31 mA.

As can be seen in the figure, this fine structure is only partially resolved by the shooting

method.

The fine structure of the connection near the origin and destination equilibrium can be

understood using their stability spectra shown in Figure 5.7. In particular, the destination

equilibrium E4 undergoes Hopf bifurcation at a driving current (of 11.78 mA) slightly

above the value at which the connection was computed (11.31 mA). Correspondingly, the

stability spectrum features a pair of weakly stable complex conjugate eigenvalues, which

explains the spiraling behavior of the connection in the neighborhood of E4 observed in

Figure 5.6b.

On the other hand, the origin E3 has two real unstable eigenvalues, so we should ex-

pect the connection to align in the direction of one of the two unstable eigenvectors, which

is consistent with the shape of the connection computed using the shooting method. The

spiraling structure of the connection computed using the spectral representation (cf. Fig-

ure 5.6a) is in all likelihood a result of over-resolving this region. Indeed, near the origin

both Ẋ and V(X) are very small, and so is their difference, even if these two vectors point

in completely opposite directions at the corresponding collocation points. This artifact il-

lustrates that care should be taken in choosing the parameters ω and t∗ which control the
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Figure 5.8: Projections of the heteroclinic connection between the origin E7 (blue sphere)
and destination E8 (red sphere). The connection computed using the symmetry constraint
is shown as the green curve. The collocation points on the connection computed using the
spectral/adjoint method are shown as black asterisks. The same projection as in Figure 4.6
is used here.

clustering of collocation points.

As another test of the spectral/adjoint method, we used it to compute the connections

between equilibria E7 and E8 for which the shooting method fails (without the symmetry

constraint) due to the disparity in the magnitude of the unstable eigenvalues of the origin

E7. The initial guess was again chosen as a set of uniformly distributed collocation points

along the line joining the origin and the destination. The adjoint evolution quickly con-

verged from this initial condition to the connection, with the result shown in Figure 5.8,

which shows a low dimensional projection of the connections computed using various

methods. As one can easily see, the spectral/adjoint method finds the same solution as

the one obtained by the symmetry-constrained shooting method.

5.3.5 Optimal choice of the scaling parameter

When m0 is chosen sufficiently large, the accuracy of the adjoint-based method can be

optimized by choosing the scaling parameter ω [115, 117]. Recall that the inverse of ω

determines the temporal separation between the collocation points, so that choosing too

large a value of ω will lead to the collocation points clustering in the central portion of

the connection, while too small a small value will cause the collocation points to cluster
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near the ends of the connection. A poor choice of ω will lead to either the ends or the

central portion of the connection to become under-resolved, which will cause the residual

to stagnate. We have investigated the influence of ω on the computation of the connections

between equilibria E3 and E4 at I = 9.6 mA for m0 = 41. The results are shown in

Figure 5.9, which illustrates that choosing ω = 0.01 results in the residual decreasing

below the threshold (here ‖F̃‖ = 5× 10−5), while choosing a value much lower or higher

than the optimal causes stagnation of the residual before reaching the threshold.

Given that ‖F̃‖ possesses a minimum for some optimal value of ω, this optimal value

can be determined along with the solution X̃ by allowing ω to vary with τ . This yields a

new minimization problem with respect to X̃ and ω, which can again be solved using the

adjoint-based method. The procedure is described in Section 5.4 below, where computation

of periodic orbits is discussed, in which case ω represents the circular frequency of the orbit.

5.3.6 Discussion

Let us conclude this section with a discussion of the general properties of the spectral/adjoint

method in comparison with alternative approaches to computing dynamical connections.

1. As we have shown, the spectral formulation coupled with the adjoint method offers

a general and efficient approach for computing heteroclinic connections between un-

stable equilibria. Unlike Newton’s method, this method does not need a good initial

guess to start with.

2. A similar approach can be used for computing heteroclinic connections between

other types of unstable solutions. When the origin and/or the destination is a periodic

orbit, not only its temporal duration, but also the arc length of the connection in the

state space becomes infinitely long. This can be handled by clipping the connection

at a Poincare section once it enters the linear neighborhood of the origin/destination

periodic orbit, similar to Section 4.2.1.
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(a)

(b)

Figure 5.9: The effect of the scaling parameter ω on the accuracy of the spectral repre-
sentation for the connection between E3 and E4 at I = 9.6 mA. (a) The evolution of the
residual. (b) The decay of spectral coefficients. The values of ω used are 0.01 (blue), 0.05
(red), and 0.1 (black); in all cases m0 = 41.
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3. Since it does not involve temporal integration, this method can handle even highly

unstable connections. This has been demonstrated in this thesis by computing the

connection between equilibria E7 and E8 for which the shooting method, which re-

lies on temporal integration, fails. While, in this particular example, the shooting

method can be “salvaged” by applying a symmetry constraint, in general this is not

possible.

4. There are two different ways to parallelize the calculations. One relies on temporal

decomposition, where each compute node performs all the calculations for one col-

location point. Indeed, the state space velocity Vj = V(X(tj)) at each collocation

point can be evaluated independently. The calculation of the product Q̃J̃T W̃ F̃ in

(5.44) can also be trivially parallelized. However the computation of F̃ and matrix

vector product with JT requires the flow states Xj at all collocation points. Assem-

bling this information is the bottleneck of the temporal decomposition.

5. An alternative parallelization strategy relies on domain decomposition, where each

compute node performs all the calculations for all the collocation points in a sub-

region of the physical domain. Since finite differences have been used for spatial

discretization, computing the relevant components of the state space velocity vector

Ṽ only requires exchanging the information along the boundary of the corresponding

sub-region, which should be much faster.

6. The calculation of J̃T is straightforward for arbitrary boundary conditions when fi-

nite differences are used for spatial discretization of the model. For other types of

discretization, computing J̃T , especially for non-periodic boundary conditions, may

be rather nontrivial. This is however outside of the scope of this thesis.

7. Spectral representation allows parameterization of the entire connection using rel-

atively few spectral coefficients, making this approach more memory-efficient than

single- or multi-shooting methods coupled with Newton/GMRES iterations. By dis-
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tributing these collocation points across multiple computing nodes, connections can

be computed even for memory demanding, high-dimensional systems such as 3D

fluid flows on large computational domains.

8. Unlike the case of equilibria, the computation of heteroclinic connections never got

stuck at a local minimum. The likely reason for this is that the problem of computing

the connection is substantially more constrained (due to the requirement that the con-

nection begin at the origin equilibrium and terminate at the destination equilibrium).

As a result, at least for relatively short connections, the chances of local minima of

E emerging are much slimmer.

9. Although we focused entirely on heteroclinic connections in this section, the same

approach clearly applies to computing homoclinic connections, where the origin and

the destination equilibria are the same. The only substantial difference concerns the

choice of the initial guess, which is far from obvious for a homoclinic connection.

Homoclinic connections are far less common, and in all likelihood a search for one

will only be performed if there is concrete numerical evidence, e.g., near-recurrence

that can be used to initialize the method.

5.4 Computing periodic orbits

The spectral formulation described in Section 5.3.1 can be trivially generalized to periodic

orbits. Due to temporal periodicity of the corresponding solutions, the basis of Fourier

modes is more appropriate. Let Xj = X(tj) with tj = jT/m0 be the locations of the

collocation points, where j = 1, · · · ,m0 and T is the (unknown) period of the orbit. As

shown in Appendix C, the periodic orbit corresponds to a root of the system

F̃(X̃;ω) = Ṽ − ωÃX̃ = 0, (5.49)
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where Ṽ and X̃ are again given by (5.40), the constant matrix Ã depends only on m0 (cf.

Appendix C), and ω = 2π/T is the associated frequency, the inverse of which again deter-

mines temporal separation between the collocation points. In practice, rather than solving

for the root of (5.49) we compute the minimum of E = F̃T W̃ F̃. Similar to the problem

of finding optimal ω in the case of heteroclinic connections, to compute the periodic orbit,

in addition to solving for X̃, one also needs to solve for ω. This can be accomplished in

several different ways described below:

1. Writing the adjoint evolution equation for F̃(X̃;ω) defined by (5.49) results in the

the following equations for X̃ and ω:

∂τX̃ = −Q̃J̃T W̃ F̃ (5.50)

∂τω = −RỸT W̃ F̃, (5.51)

where Ỹ = ÃX̃ and R is an arbitrary positive constant. The two unknowns, X̃ and

ω, can be evolved in pseudo-time in parallel using the above equations.

2. Since F̃ is linear in ω, E is a quadratic function of ω for a fixed X̃. The minimum of

E is achieved for

ω =
ỸT W̃ Ṽ + ṼT W̃ Ỹ

2ỸT W̃ Ỹ
. (5.52)

Hence, X̃ can be evolved using equation (5.50) with ω chosen according to (5.52) at

every pseudo-time step.

3. Once the root of (5.49) has been found, we should have F̃k = 0 and therefore

ω =
Ṽk

Ỹk
(5.53)

108



for all k. So ω can be elimintaed from (5.49) by redefining F̃ as

F̃(X̃) = Ṽ − Ṽk

Ỹk
Ỹ (5.54)

where the index k is chosen such that |Ỹk| is bounded away from zero. The resulting

system can be solved using the adjoint evolution equation (5.50).

Using one of the formulations described above, a periodic orbit can be found by solving

(5.49) using the corresponding adjoint evolution equation(s). Convergence can be further

sped up by switching to Newton/GMRES iterations once the residual decreases sufficiently.

Preliminary investigation shows that all three of the above options allow periodic orbits to

be computed for low-dimensional systems (we tested them on the Lorenz system). How-

ever, we have not explored any of these options in the context of fluid flows thoroughly

enough to meaningfully compare them.

5.5 Summary

An adjoint-based approach allows the problem of computing a variety of different types

of solutions (equilibria, periodic orbits, heteroclinic and homoclinic connections) to be

formulated in a systematic and extremely flexible way. It leads to an evolution equation

which involves the adjoint of the Jacobian, whose action on an arbitrary vector, unlike

that of the inverse of the Jacobian, can be explicitly and relatively easily computed. As a

result, adjoint-based methods are both faster, and require less memory, than Newton-Krylov

methods.

The adjoint-based method for computing equilibria and periodic orbits has not been

fully tested or optimized. For instance, we have not systematically explored the choice of

the weight matrix W and the acceleration matrix Q. This choice could be exploited to both

speed up convergence and avoid local minima in the case of equilibria. Similarly, neither

the choice of the preconditioner matrices nor the choice of the evolution equation for the
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frequency ω has been explored for periodic orbits.

The main focus of this Chapter is on computing heteroclinic connections, for which no

established systematic methods had existed previously. Combining the adjoint method with

spectral representation yields a robust and efficient way to compute connections between

equilibria, which, unlike Newton/shooting method, does not require a good initial guess.

Furthermore, since there is no time-integration involved, the spectral/adjoint method can

be used to compute even highly unstable connections.
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CHAPTER 6

CONCLUSIONS

This thesis makes a number of contributions towards developing a deterministic, geometri-

cal description of turbulent fluid flows. The most significant ones are summarized below.

6.1 Main scientific contributions

First of all, a new 2D model has been derived, and implemented numerically, to describe

the Kolmogorov-like flow in the experiment at moderate Re. The model offers a dramatic

simplification of the problem, compared with the computationally much more expensive

full 3D model of the flow, making possible calculations that would otherwise be essentially

intractable. Although approximate, the model improves on the one introduced previously

[71] by taking into account the small vertical component of the velocity and the associ-

ated deflection of the free surfaces of the two layers (dielectric and electrolyte), which

makes the horizontal flow field weakly compressible. This compressible model is in bet-

ter agreement with the experiment than the incompressible one, especially at higher Re.

In particular, numerical simulations based on the compressible model faithfully reproduce

such experimental details as a hysteretic transition between periodic and turbulent flow

featuring quasiperiodic dynamics and a periodic window inside the turbulent regime.

Another significant contribution is the development of several new approaches for com-

puting dynamical connections between ECS. In particular, we have developed a procedure

that identifies at least some of the ECS a particular one is connected to (either as an ori-

gin or as a destination) by performing a parameter continuation until a bifurcation where

the two ECS merge. This procedure provides a good initial guess for the connection to

be identified (it coincides with the center manifold) and the connection is computed by

refining this initial guess using Newton iterations. Finally, both ECS and the connection
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between them can be continued back to the original value(s) of the paramater(s). This ap-

proach can fail, however, when the connection is aligned along the near-marginal direction

at the origin, due to strong amplification of numerical noise by other unstable directions.

We have shown that, when both ECS lie in the same symmetric subspace, such problems

can be circumvented by restricting the connection to lie in that subspace.

To address these difficulties, we have developed a more general and robust approach

which completely avoids time-integration and the associated stability issues, by combin-

ing a spectral representation of the connection in terms of mapped Chebyshev polynomials

[115] with an adjoint-based solver [66]. In this approach, a continuous curve is evolved in

pseudo-time to gradually align its tangent at a set of collocation points with the direction

of the vector field, until it converges to the connection which is everywhrere parallel to

the vector field, which is similar in spirit to the variational approach [64] for computing

periodic orbits. The spectral discretization affords a substantial reduction in the number of

degrees of freedom, compared with the finite-difference discretization proposed by Dong

et al [70] and allows a continuous connection to be easily reconstructed without resort-

ing to time-integration. Furthermore, we showed that the adjoint-based formulation also

allows determining the optimal parameters, such as the scaling factor ω in a systematic

manner, solving a problem which was not properly addressed previously [117, 115]. We

demonstrated that this approach successfully finds every known unstable dynamical con-

nection without requiring a good initial guess to begin with. Furthermore, it can be easily

generalized to find time-peroidic solutions.

6.2 Open questions

While the compressible two-dimensional model of the flow shows good qualitative agree-

ment with the experiment in the pre-turbulent regime, it fails to show perfect quantitative

agreement, especially at higher Re. The quantitative discrepancies are not intrinsic to the

model, but result from some assumptions made in deriving a reduced two-dimension de-
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scription of what is nominally a three-dimensional flow. In particular, the dimensional

model features several parameters (α, β, γ, ν, and κ) obtained by depth-averaging the ve-

locity ansatz (2.6) with the vertical profile function q(z) which weakly depends on the hori-

zontal velocity profile u(x, y, t). The horizontal flow profile changes rather substantially as

Re increases, so it is quite reasonable to expect that q(z), and hence all of the above param-

eters, should also change compared with the values evaluated for the straight-flow solution

E1 at low Re. The values of these parameters matching a particular experimental setup can

be obtained, for instance, using a variation of the sparse identification method proposed by

Rudy et al. [97]. That method assumes that all state variable are observable. However, in

the compressible model, the pressure p representing with the distortion of the free surfaces

is not directly observable, so not all of the library functions representing various terms

in the evolution equations (2.30)-(2.31) can be reconstructed from the experimental flow

field (u(x, y, t)) measurements. This can be addressed by using the gradient of (2.31) to

eliminate the term ∂t∇p from the time derivative of (2.30), yielding an equation that only

involves u and incorporates all of the unknown parameters:

∂2
t u = −β∂t[(u · ∇‖)u]− γ∂t[(∇ · u)u] + κ∇(∇ · u) + ν∂t∇2

‖u− α∂tu. (6.1)

With a proper choice of the parameters, the validity of the model can likely be extended to

much higher Re.

The compressible model, with the proper choice of parameters, can be used to de-

scribe the subcritical transition to turbulence in the experimental Kolmogorov-like flow.

Our investigation has shown that the transition involves a stable quasi-periodic state with

two frequencies, which corresponds to a 2-torus in the state space. The two frequencies

are roughly in 1:8 ratio and numerical simulations show that the Poincare section of this

2-torus breaks up into eight disconnected components. While some sort of resonant inter-

action between the two frequencies (like in KAM theory [118]) appears likely, it is unclear
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what the exact mechanism is that leads to this breakup. Understanding it would shed new

light on the different mechanisms that could generate chaotic saddles underlying turbulent

dynamics of fluid flows.

We have demonstrated that dynamical connections can be computed using the spec-

tral representation even when they have a rather complex structure near the origin and/or

the destination ECS. However, if the connection has complex structure at multiple loca-

tions along the connection, this basis may not be optimal. One possible workaround in-

volves dividing the connection into several segments, with a separate spectral expansion

for each segment [119]. Such an approach has several advantages, e.g., it can be exploited

to construct a numerical algorithm which can be parallelized more efficiently. Since the

computation on each of the segments of the connection only requires the information from

the neighboring segments, the communication overhead is reduced considerably compared

with the global basis considered in this thesis. The main challenge here is incorporating

the missing the boundary conditions at the ends of the neighboring segments.

The global spectral representation yields a formulation that can be solved relatively

efficiently using an adjoint-based method. However, computing the adjoint of the Jacobian

is not always easy, possible, or convenient. Newton-Krylov methods, which do not require

computing the adjoint, were found to quickly stagnate for global spectral representation.

Segmenting the connection into multiple pieces appears to help in the sense that Newton

iterations can be used to solve the resulting system, at least in low-dimensional cases [119].

It is worth exploring whether this strategy also allows Newton-Krylov methods to succeed

for high-dimensional systems resulting from discretization of fully resolved models of fluid

flows.

As discussed previously, the main problem of the shooting methods is their inherent

instability associated with time-integration. However, this problem can also be circum-

vented by using multiple shooting [120]. The idea of this approach is to introduce multiple

Poincare sections along the connection, which limits the growth of the perturbations when
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a trajectory is time-integrated between one section and the next. Just like the segmented

spectral approach, multi-shooting formulation (i) yields a system of equations which can

be solved using Newton-Krylov methods and (ii) the numerical implementation can be

relatively efficiently parallelized [121]. Since these alternative methods have never been

directly compared, it is presently unclear which of them is the best in terms of the speed

and memory requirements and how robust they are with respect to the choice of the initial

guess.

The problem of computing connections between ECS one (or both) of which is a time-

periodic (or quasiperiodic) state has not been considered in this thesis. The main difficulty

in this case is that the connection becomes infinitely long not just temporally, but also in

terms of its arclength. Hence, the connection has to be broken up into three pieces: the

infinitely long “ends” which can be computed analytically using linearization about the

origin/destination and the finite-length “middle” which is computed numerically. Such an

approach has been used, for instance, to compute connections between an equilibrium and a

time-periodic state [122] and between a pair of time-periodic states [123] using the single-

shooting method. The same approach can be used if the central portion of the connection

is computed using multi-shooting or spectral representation.

One substantial advantage of the adjoint-based solver is its extreme generality. As we

have demonstrated, it can be used to compute a variety of different types of solutions, from

equilibria to periodic solutions, to homo/heteroclinic connections. There are some hurdles

though that still must be overcome, for this method to become truly useful. As discussed

previously, the adjoint integration can get stuck at a local minimum, i.e., ∂τE = 0 when

JTWF = 0 even though F 6= 0. This means that WF lies in the kernel of JT and, rather

than choosing W = 1 and restarting the search from a new initial condition, as we have

done, one can simply change the weight matrix W such that WF is not in the kernel of

JT . The main challenge is choosing the operator W (τ) dynamically, which achieves this

objective while retaining its positive-definite property.
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Another challenge is choosing the acceleration operator Q to eliminate the slow modes

which result in slow convergence. A simple choice of acceleration operator that aims to

speed up convergence has been proposed and tested in this thesis. While constant and inex-

pensive to apply, this operator is not optimal, as the simple example considered in Section

5.1.2 illustrates. A more efficient approach would involve constructing a non-constant ac-

celeration operator Q(X(τ)) using the linearization of the model about the current, evolv-

ing state X(τ), which remains positive-definite, just like in the case of the weight W .
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APPENDIX A

SPATIAL DISCRETIZATION AND NUMERICAL INTEGRATION

A.1 Gauge condition

In the evolution equations (2.36) and (2.37), the pressure p appears only under the sign of

the gradient. It means that adding an arbitrary constant to p does not change the evolution

equations, which results in the Jacobian of the evolution equation being singular. This will

cause a problem in numerically evolving the equations, for instance, if implicit scheme has

been used to update the state. In order to eliminate this singularity, we impose the gauge

condition

p(x0, y0) = 0, (A.1)

where (x0, y0) is an arbitrary spatial location. With this gauge condition, the evolution

equations are transformed to

∂tu + β
(
u · ∇‖

)
u + γ(∇‖ · u)u = R̃e

−1 (∇2
‖u− α̃u

)
+ f̄0x̂−∇‖p, (A.2)

∂tp = −κ̃
(
∇‖ · u− ∇‖ · u

∣∣
(x0,y0)

)
(A.3)

A.2 Spatial discretization

The spatial discretization scheme, the grid parameters, and the method of computing spa-

tial derivatives described here has been originally developed and thoroughly tested by Bal-

achandra Suri [62] for the simulations of 2D incompressible Navier-Stokes on a rectan-

gular domain given by equations (2.4). We have slightly modified it to fit to the weakly

compressible 2D Navier-Stokes in this thesis.

For the simulation of the transformed evolution equations given by (A.2) and (A.3),

the fields (u,p) have been discretized using finite differences on a rectangular “staggered”
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Figure A.1: Schematic of the staggered grid with nx = 3, ny = 4. The locations of the
fields u,v,p are respectively shown using blue circle, cross and dot, and the boundaries of
the domain are represented by the red lines. The figure also shows the ghost points that are
defined outside the physical domain.

grid or marker and cell (MAC) grid, proposed by Harlow et al [124]. In staggered grid

configuration, the domain is divided in to nx×ny identical, rectangular cells with each cell

having dimensions of δx × δy. p field is defined at the cell centers whereas the x and y

components of u, respectively u, v, are defined on the edges of the cell. A schematic of the

distribution of the fields on the grid is shown in Figure A.1. We have used 20 points for

unit non-dimensional length along x and y directions, i.e., δx = δy = 1/20. This would

give nx = 280 and ny = 360 for the dimensions of the experimental setup considered in

this thesis.

Shifting the origin of the coordinate system to the bottom left corner of the domain

and using (i, j) to denote the location (iδx, jδy), it can be seen from the Figure A.1 that

the u, v, p are defined respectively at (i, j + 1/2), (i + 1/2, j) and (i + 1/2, j + 1/2) for

integers i and j. Since these fields are defined at different locations in space, one needs to

do interpolation to get the contribution from one field to the evolution of another field. For
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example, the term
(
∇‖ · u

)
u required for evolution of u is computed as

(
∇‖ · u

)
u
∣∣
(i,j+ 1

2
)

=
1

2

[(
∇‖ · u

)∣∣
(i+ 1

2
,j+ 1

2
)
+
(
∇‖ · u

)∣∣
(i− 1

2
,j+ 1

2
)

]
u

(
i, j +

1

2

)
(A.4)

where∇‖ · u is computed using the nearest neighbors as

∇‖ · u
∣∣
(i+ 1

2
,j+ 1

2
)

=
u(i, j + 1

2
)− u(i− 1, j + 1

2
)

δx

+
v(i+ 1

2
, j)− v(i+ 1

2
, j − 1)

δy
. (A.5)

The term required for temporal evolution of p is computed using the nearest neighbors and

the gauge condition as

∂tp|(i+ 1
2
,j+ 1

2
) = −κ̃

(
∇‖ · u

∣∣
(i+ 1

2
,j+ 1

2
)
− ∇‖ · u

∣∣
(i0+ 1

2
,j0+ 1

2
)

)
, (A.6)

where
(
i0 + 1

2
, j0 + 1

2

)
is the location that fixes the gauge for p. The laplacian term is

computed using the standard 5-point stencil as

∇2
‖u
∣∣
(i,j+ 1

2
)

=
u(i− 1, j + 1

2
)− 2u(i, j + 1

2
) + u(i+ 1, j − 1

2
)

δx2

+
u(i, j − 1

2
)− 2u(i, j + 1

2
) + u(i, j + 3

2
)

δy2 . (A.7)

To compute the laplacian of u at the locations adjacent to left and right boundaries, we need

its values on these boundaries. These are set to zero owing to the physical no-slip boundary

conditions of the velocity, i.e.,

u

(
0, j +

1

2

)
= u

(
nx, j +

1

2

)
= 0. (A.8)

To compute laplacian of u at the locations adjacent to top and bottom boundaries, ghost

points are defined outside these boundaries and the boundary conditions for the ghost points
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are chosen such that no-slip boundary conditions are satisfied at the bottom and top bound-

aries, i.e., u at the ghost points satisfies

u(i, 0) =
u(i,− 1

2
)+u(i,+ 1

2
)

2
= 0 ⇒ u

(
i,−1

2

)
= −u

(
i,+

1

2

)
u(i, ny) =

u(i,ny+ 1
2

)+u(i,ny− 1
2

)

2
= 0 ⇒ u

(
i, ny +

1

2

)
= −u

(
i, ny −

1

2

)
.

(A.9)

Similarly, Neumann boundary conditions for p are implemented using the ghost points

defined outside the boundary as

p

(
−1

2
, j +

1

2

)
= p

(
1

2
, j +

1

2

)
,

p

(
nx +

1

2
, j +

1

2

)
= p

(
nx −

1

2
, j +

1

2

)
,

p

(
i+

1

2
,−1

2

)
= p

(
i+

1

2
,
1

2

)
,

p

(
i+

1

2
, ny +

1

2

)
= p

(
i+

1

2
, ny −

1

2

)
. (A.10)

The non-linear term (u∂x + v∂y)u can be computed using central difference or up-

wind scheme. Central difference scheme has less numerical dissipation but is unstable and

upwind scheme is stable but has high numerical dissipation. So, the non-linear term is com-

puted using a blending of central and upwind schemes, to include the merits of both the

schemes, and the blending parameter b, which is the fraction of contribution from upwind

scheme, is chosen as

b = min (1.2C, 1) (A.11)

where the CFL number C is given by

C = max
(
‖u‖∞

δt

δx
, ‖v‖∞

δt

δy

)
(A.12)
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and ‖·‖∞ denotes the infinity or max-norm. For the numerical stability, we require the CFL

number to be less than 1. Since u, v are O(1) and δx = δy = 1/20, this condition would

translate to the non-dimensional time step δt being less than 1/20. For the range of driving

currents considered here, this would mean the dimensional time step should be less than

0.1. As a safety factor, all the simulations in this thesis are carried out with a dimensional

time step of 1/32, which corresponds to a CFL number less than 0.6.

The procedure thus described to compute the spatial derivatives required for evolution

of u can be similarly extended to compute the spatial derivatives required for evolution of

v. The evolution equations are written only inside the physical domain and the values of

the fields u, v and p only inside the domain are stored thus making their sizes respectively

ny × (nx − 1), (ny − 1) × nx and (ny − 1) × (nx − 1). The ghost points are calculated

using the interior of the fields as and when required. Once the spatial derivatives have

been computed using this discretization, the system is integrated using IMEX scheme as

described in the following section.

A.3 Numerical integration

The evolution equations have been integrated forward in time using Implicit-Explicit scheme

(IMEX), in which the stiff linear terms are evolved implicitly and the non-linear terms are

evolved explicitly using 2nd order Adams-Bashforth method, as described below.

The transformed evolution equations (A.2) and (A.3) can be written as

∂tu = L(u) +N (u) + f̄0x̂− κ̃∇‖p (A.13)

∂tp = −
(
∇‖ · u− ∇‖ · u

∣∣
(i0+ 1

2
,j0+ 1

2
)

)
. (A.14)
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where the linear and non-linear terms, respectively L(u) and N (u), are given by

L(u) = R̃e
−1 (∇2

‖u− α̃u
)

= R̃e
−1 (∇2

‖ − α̃
)
u (A.15)

N (u) = −β
(
u · ∇‖

)
u− γ(∇‖ · u)u. (A.16)

Using implicit evolution for the linear terms, 2nd order Adams Bashforth for the non-

linear terms and forward difference for the temporal derivative, equations (A.13) and (A.14)

become

δun

δt
= L(un) + L(δun) + 1.5N (un)− 0.5N (un−1)

+f̄0x̂−∇‖pn −∇‖δpn (A.17)

δpn

δt
= −κ̃

(
∇‖ · un +∇‖ · δun − ∇‖ · un

∣∣
(i0+ 1

2
,j0+ 1

2
)

)
. (A.18)

where (un, pn) are the fields at the nth time step and (δun, δpn) are the changes in the fields

at this time step. Equations (A.17) and (A.18) can be combined and written as a single

matrix equation for the unknown (δun, δpn) as

1− δtL δt∇‖

κ̃δt∇‖· 1


δun
δpn

 =

L(un) + 1.5N (un)− 0.5N (un−1) + f̄0x̂−∇‖pn

−κ̃
(
∇‖ · un − ∇‖ · un

∣∣
(i0+ 1

2
,j0+ 1

2
)

)
 δt,

(A.19)

where 1 is the identity matrix, and the operators L, ∇‖, ∇‖· are mere finite dimensional

sparse matrices as finite differencing has been used for the grid discretization. The bound-

ary conditions are embedded in the operators L, ∇‖, ∇‖·, which act on the fields in the

interior of the domain. After solving the above matrix equation, the updated fields at the

next time step are computed as

un+1

pn+1

 =

un

pn

+

δun
δpn

 . (A.20)
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The coefficient matrix in equation (A.19) is a sparse and constant matrix. So, it is com-

puted just once before the time integration starts and its LU factorization performed at the

beginning. Using this LU factorization, equation (A.19) is solved at every time step during

the integration.

A.4 Jacobian computation

The Jacobian matrix of the state and the operators L, ∇‖, ∇‖· in equation (A.19) can be

explicitly computed for the grid discretization described here, and they will be a sparse

matrices. For illustration purposes, we explain how the Jacobian of Laplacian of u can be

computed. Let U represent the interior 2D field u when it is written as a single column

vector using column major ordering. Then, an element u
(
i, j + 1

2

)
gets mapped to U(k),

where k = ny(i− 1) + j. If
(
i, j + 1

2

)
represents an interior location that is not adjacent to

any of the boundary walls, the Laplacian of u at this location is given by

∇2
‖u
∣∣
(i,j+ 1

2
)

=
u(i− 1, j + 1

2
)− 2u(i, j + 1

2
) + u(i+ 1, j − 1

2
)

δx2

+
u(i, j − 1

2
)− 2u(i, j + 1

2
) + u(i, j + 3

2
)

δy2

=
U(k − ny)− 2U(k) + U(k + ny)

δx2 +
U(k − 1)− 2U(k) + U(k + 1)

δy2

= ∇2
‖U(k). (A.21)

So, ∇2
‖U(k) depends only on 5 elements of U and hence the kth row of its Jacobian, (say)

J0, has only 5 non-zero elements thus making it a very sparse matrix. It can be written in

compact form as

J0(k, l) =



1
δx2
, l = k ± ny,

1
δy2
, l = k ± 1,

− 2
δx2
− 2

δy2
, l = k,

0, otherwise.

(A.22)
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For the interior points adjacent to the boundary walls, boundary conditions have to be

included while computing the Jacobian. For example, the Laplacian of u at the interior

point
(
1, 1

2

)
is

∇2
‖u
∣∣
(1, 1

2
)

=
u(0, 1

2
)− 2u(1, 1

2
) + u(2, 1

2
)

δx2

+
u(1,−1

2
)− 2u(1, 1

2
) + u(1, 3

2
)

δy2 . (A.23)

Using the boundary conditions given by equations (A.8), (A.9) and (A.9), the above equa-

tion becomes

∇2
‖u
∣∣
(1, 1

2
)

=
−2u(1, 1

2
) + u(2, 1

2
)

δx2 +
−3u(1, 1

2
) + u(1, 3

2
)

δy2

=
−2U(1) + U(ny + 1)

δx2 +
−3U(1) + U(2)

δy2

= ∇2
‖U(1), (A.24)

which implies that the corresponding row of the Jacobian will be

J0(1, l) =



1
δx2
, l = 1 + ny,

1
δy2
, l = 2,

− 2
δx2
− 3

δy2
, l = 1,

0, otherwise.

(A.25)

Likewise, the row of the Jacobian corresponding to all the points adjacent to the boundaries

can be computed.

Similarly, differentiating the finite difference formulas of the evolution equations with

the state vector and using appropriate boundary conditions, one gets explicit formulas to

compute the Jacobian of the evolution equations as a sparse matrix. Computation of this
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Jacobian and the operators defined in equation (A.19) is performed in PETSc [125, 126], a

toolkit very efficient in handling sparse matrices, and is transformed to MATLAB, in which

majority of the computations are performed.
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APPENDIX B

PARAMETRIC CONTINUATION

Suppose that solutions X0, X1, · · · , Xk on a branch have been computed respectively, at the

monotonic sequence of parameter values λ0, λ1, · · · , λk, then a polynomial extrapolation

using the computed solutions can be used to form a good initial guess to compute the

solution at a parameter value λk+1. However, if the degree of the polynomial is large,

then extrapolation can lead to errors. Hence, we have restricted attention to quadratic

extrapolation as explained below.

Using a quadratic approximation for the solution X(λ) over the interval [λk−2, λk+1], it

can be written as

X(λ) = a0 + a1λ+ a2λ
2, (B.1)

where a0, a1, a2 are the coefficients of the quadratic polynomial that need to be determined.

These coefficients can be determined from the previously computed solutions: the quadratic

fit (B.1) requires

Xk−2 = a0 + a1λk−2 + a2λ
2
k−2,

Xk−1 = a0 + a1λk−1 + a2λ
2
k−1,

Xk = a0 + a1λk + a2λ
2
k. (B.2)

The above set of equations can be written in the form of a matrix equation as

[
Xk−2 Xk−1 Xk

]
=

[
a0 a1 a2

]
1 1 1

λk−2 λk−1 λk

λ2
k−2 λ2

k−1 λ2
k

 . (B.3)
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In the above equation, the matrix that is dependent on the parameter values is a 3 × 3

matrix because quadratic approximation has been used for the solution. Had an nth degree

polynomial been used, it will be a square matrix of size n + 1, which is small. Inverting

this matrix gives

[
a0 a1 a2

]
=

[
Xk−2 Xk−1 Xk

]
1 1 1

λk−2 λk−1 λk

λ2
k−2 λ2

k−1 λ2
k


−1

. (B.4)

Substituting these coefficients into (B.1), initial guess at parameter value λk+1 can be com-

puted. Starting the solver from this initial guess, solution Xk+1 can be found. If X repre-

sents a periodic orbit, then there is a time translation symmetry associated with it. So, after

the solution Xk is computed, it has to be shifted along the temporal direction, so that it is in

phase with Xk−1, otherwise the polynomial extrapolation would result in very bad guesses.

The procedure described above smoothly continues the solution along the branch as

long as the branch does not undergo bifurcation in which the stability exponent of the so-

lution crosses zero. When such bifurcation happens, the Jacobian matrix becomes singular

causing problems in the solver, if the latter is based on Newton’s method. To overcome this

problem near such bifurcation, we choose the increment in parameter value to be such that

the new solution (to be computed) is sufficiently far away from the bifurcation so that the

singularity of the Jacobian does not cause numerical errors, and not too far away that the

polynomial extrapolation results in a bad guess. This increment in parameter can be esti-

mated from the rate of change of floquet exponent with the parameter, ∂λΛ|λ≈λb , which can

be approximately computed using the stability exponents of the earlier computed solutions

near the bifurcation.

Once the increment in parameter is obtained, initial guess is constructed from the poly-

nomial extrapolation, as explained previously, and the solution is computed using this initial

guess. After the post bifurcation solution (say Xb) has been computed, its near marginal
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direction defined by the eigenvector associated with the stability exponent that is close to

zero, assuming there is only one, is found. Using this near-marginal direction, we search

for other branches that (possibly) are born out of this bifurcation by initiating the solver

using a guess which is a state on this near marginal direction and at a small distance from

the computed solution. If the solver converges back to the original solution, Xb, then the

distance of the initial guess from Xb is increased and the solver is restarted. This search

is performed for four different cases – along both positive and negative directions of the

marginal direction and on either side of the bifurcation, as it is a priori unknown whether

the bifurcation is subcritical or supercritical.
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APPENDIX C

SPECTRAL FORMULATION FOR PERIODIC ORBITS

A periodic orbit of time period T can be expanded using the Fourier basis,

X(t) =
∞∑

k=−∞

cke
−ikωt, (C.1)

where ω = 2π/T is the angular frequency of the orbit, and ck are the Fourier coefficients.

Truncating the above expansion to m0 + 1 (for an even m0) modes, the above equation

becomes

X(t) =

m0/2∑
k=−m0/2

cke
−ikωt. (C.2)

Differentiating (C.2) with respect to time gives

Ẋ(t) = ω

m0/2∑
k=−m0/2

(−ik)cke
−ikωt. (C.3)

Evaluating (C.2) and (C.3) at the collocation points tj = jT/(m0+1) for j = 1, · · · ,m0+1

yields

Xj = X(tj) =

m0/2∑
k=−m0/2

cke
−i 2πkj

m0+1 (C.4)

and

Ẋj = ω

m0/2∑
k=−m0/2

(−ik)cke
−i 2πkj

m0+1 . (C.5)

The Fourier coefficients ck can be computed using the Discrete Fourier Transform
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(DFT) as

ck =
1

m0 + 1

m0+1∑
m=1

Xme
i 2πkm
m0+1 . (C.6)

Substituting (C.6) into (C.5) gives

Ẋj = ω

m0+1∑
m=1

AjmXm, (C.7)

where

Ajm = − i

m0 + 1

m0/2∑
k=−m0/2

ke
i
2πk(m−j)
m0+1 (C.8)

Finally, with the help of (5.40) and (5.41) the condition that the collocation points lie on a

periodic orbit can be written as

F̃(X̃;ω) = Ṽ − ωÃX̃ = 0. (C.9)
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[63] D. Viswanath, “The Lindstedt-Poincaré technique as an algorithm for finding peri-
odic orbits,” SIAM Review, vol. 43, pp. 478–496, 2002.
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