
An Extensible Interactor Toolkit
for Enhancing Information Awareness

D. Scott McCrickard

Graphics, Visualization, and Usability Center

and College of Computing

Georgia Institute of Technology

Atlanta, GA 30332

Email: mccricks@cc.gatech.edu URL: http://www.cc.gatech.edu/~mccricks/

Abstract

The typical computer application follows a set pattern: it is executed by a user, it

provides responses to commands issued by the user, and it is terminated by the user

when it is no longer needed. However, the advent of networked computers and the

World-Wide Web has changed the way many applications work. Agents and similar

programs constantly access online information databases and identify items that may

be of interest to their users. The problem lies in communicating the collected infor-

mation. Most existing widgets cannot take full advantage of the constant information


ux generated by these programs. They work best as part of a full-screen display, they

do not react well to changes in information, or they cannot attract the attention of

users when new information arrives. This paper explores these problems and describes

a number of interactors that may help alleviate them.

Keywords: Information agents, visualization, information awareness



1 Introduction

The typical computer application follows a set pattern: it is executed by a user, it provides

responses to commands issued by the user, and it is terminated by the user when it is no

longer needed. However, a new class of program, software agents, operate in a di�erent

manner. An agent is a system that performs tasks in an autonomous manner in order to

satisfy the needs of its users. By autonomous we mean that the agent can operate for long

periods of time without direct user intervention. Agents often do the tedious, repetitive,

and time-consuming tasks that humans do not want to do. The dynamic nature of the

World Wide Web drives the need for software agents, which can access online information

and identify items that may be of interest to their users.

One problem that arises in designing agents is in communicating the collected informa-

tion to the user. Most existing interactors (also known as widgets) and interface-building

guidelines were designed for typical computer applications. The constantly changing nature

of agents seems to call for a new widget set and new interface guidelines. Since agents run

constantly, users will want to utilize their computer desktop for other applications most of

the time. This suggests that agent interfaces should not take up much space. Information is

constantly generated by agents, and the display and interface should display this informa-

tion in a hands-o� manner so the user can stay aware of changes with minimal interruption

of other tasks. This paper explores these problems and describes a number of widgets that

may help alleviate them.

The goal of our work is to create a toolkit containing widgets that can increase the

information awareness of their users and a set of guidelines for using the widgets. The

information awareness generated by a widget refers to its ability to provide information

without requiring explicit actions from a user and without distracting users from their

normal daily tasks. One example of programs that use such a widget are the email \bi�"

programs, which show a mailbox 
ag that points up whenever new mail arrives. This graph-

ical box provides important information in a small space without requiring user interaction.

At any time, users can glance at the box and determine the status of their email folder.

As is often the case, we can turn to the entertainment industry to get a glimpse of ways

to communicate this 
ood of information. The Headline News television network (as well

as others) provide a bar at the bottom of the screen that scrolls or rotates between breaking

information such as stock quotes, news headlines, and sports scores. During ball games, Fox

and other major networks provide a small rectangular box in the corner of the screen that

contains the score, current period, time remaining, and other relevant information about the

game being seen. These techniques can allow the user to quickly and easily obtain up-to-

date information about topics of interest while still paying attention to the main television

attraction.

Similar methods for providing information have started to �nd their way onto the com-

puter desktop. ESPN's home page (espn.com) contains a constantly-updated Java widget

that fades between scores of ball games. Users can place it anywhere on their desktop and

stay aware of the game scores while still doing their work. PointCast (pointcast.com) makes

a screen saver that displays news items of interest and has a scrolling line of stock quotes

and sports scores at the bottom of the screen. During times when a computer is not being

used, it can provide its users with information.

Our contribution will be to put these new interaction techniques into the hands of pro-

1



grammers via a widget toolkit. Our toolkit will facilitate the design of agent interfaces by

allowing programmers to incorporate useful display and interaction techniques into their

own programs. We plan to implement the widgets in Tcl/Tk, the language developed

by John Ousterhout at UC-Berkeley and Sun Labs. Tcl/Tk is a platform-independent

scripting language used to design interfaces that \glue" together existing programs, mak-

ing them easier to use. The Tk part of Tcl/Tk is a graphical toolkit that contains com-

mands for creating buttons, scrollbars, graphical canvases, and other widgets. Our wid-

get toolkit will be implemented in Tcl/Tk, thus providing the same platform indepen-

dence as Tcl/Tk itself. Each widget will conform to the Tcl/Tk standards for widget

creation, querying, and modi�cation established by Je�rey Hobbs of CADIX International

(see www.cs.uoregon.edu/research/tcl/script/widget/). In so doing we allow programmers

familiar with the Tcl/Tk toolkit to use our toolkit with ease.

2 Widget descriptions

The widgets that we plan to provide in this toolkit include a navigation bar, a fading widget,

a tickering widget, and several others. The remainder of this section describes each of these

widgets, discusses their current implementation status, and outlines the future plans for

them.

Navigation bar

Many computer applications require a user to �nd and select items from a list using a

rectangular widget called a listbox. However, many lists are too long to be displayed in

their entirety in a listbox, a problem that is magni�ed with the reduced space of agent

interfaces. To change the visible portion of the list, most applications provide a scrollbar,

but a scrollbar provides little information about the contents of the list. To address this

problem, we are developing a navigation bar widget that maintains the familiar scrollbar

paradigm while increasing the amount of information provided to the user. By building on

the existing mental model for a scrollbar, users should have a short learning curve for the

new widget.

The navigation bar communicates information about the list contents by using the space

inside the scrollbar to represent each list entry with a graphical line, where properties of

the list entries are re
ected in properties of the graphical lines. For example, the length of

the list entry could be represented by the length of the line, and the position of the entry

in the list could correspond to the position of the line in the display area. Categories or

classi�cations of the entries could be shown using the color, size, or o�set of the line.

While several systems have used this type of graphical representation to communicate

information [2, 3, 5, 6], none have provided the 
exibility, power, and availability needed

by programmers to include them in their own interfaces. We will address this need with a

Tcl/Tk implementation of the navigation bar. Our implementation will have many of the

same components as a scrollbar (arrows, a thumb, a trough) that will function in a similar

manner, but the trough will contain colored horizontal lines that represent the items in the

list. The length and relative position of each line will correspond to the length and relative

position of its corresponding list entry. The colors correspond to groupings of list items. For

example, a listing of �les might be colored by �le type (red could indicate html �les, blue

2



Figure 1: Prototype of a listbox and navigation bar using the information mural technique.

The listbox contains names, much like you would �nd in an email or Usenet news reader,

and each list item is represented in the navigation bar with a horizontal line. While most

entry representations are grey, certain ones, such as those for Christopher Carothers and Al

Lee, are highlighted with color, making it easy to �nd their location in the list. The thumb

surrounds the representations that are shown in the listbox. As with a scrollbar, the user

can click on the arrows or in the trough to adjust the visible portion of the list.

code �les, and so on) or a listing of email messages could be colored by user-selected sender

name or by frequency of subject. Repeated color patterns can then reveal related items.

The height and layout of the bars will depend on the programmer-con�gurable navigation

bar type, which includes information murals, pile views, zoom views, and �sheye views.

Information murals are compressed graphical displays of information that have been used

in a wide range of applications, including visualizations of software execution, numerical

data, and general information [7]. Information murals represent a large information space

(in this case a textual list) with a smaller graphical space by mapping the elements of the

large space into the smaller one. In the case of a list, the characters in the list map to the

pixels in the navigation bar to create a scaled-down picture of the entire list. To understand

how the information mural is created, think of a navigation bar that isM pixels wide and N

pixels high as an MxN grid that overlaps the entire list. A pixel in the grid is shaded with

intensity corresponding to the number of characters that touch it: the more characters that

map to a pixel, the darker it becomes. If a word is associated with some color as described

previously, the pixels corresponding to the characters in the word take on that color.

The pile metaphor introduces onto the computer desktop the concept of piling items

(in this case, encodings) on top of each other. Just as paper documents can be piled on a

desk and identi�ed by their appearance, items in a pile view can overlap and be recognized

by their color, size, or shape. The pile metaphor was introduced in a desktop document

layout system [8]. Piles created by the user had a disheveled appearance with parts of the

document icon sticking out slightly so the user could �nd a document even if it were in the

middle of the pile. The pile bar will employ the pile metaphor in its arrangement of graphical

bars. Each entry will have a �xed height that is large enough to be seen and clicked. To

show all of the representations in the limited space that is available, the bars must be piled

3



on top of each other, meaning that some bars may be partially or completely obscured. An

additional protocol is needed to de�ne the stacking order, for example, the order in which

the items were inserted may correspond to the stacking order of their graphical bars.

A zoom view provides an intermediate step between the small number of items in a

listbox and the large number in an entire list. The zoom technique is incorporated in many

user interfaces and in fact is central to the Pad++ software system [1]. In a navigation

bar, the graphical bars would be of uniform size and initially would be large enough to be

identi�ed and selected with ease. Users will be able to shrink the size of the bars (zoom

out) to get an overview, or enlarge them (zoom in) to see more detail. Since the bars may

not all �t in the available space, when the view is panned, the navigation bar will adjust

accordingly to show the visible list region and the surrounding items. Although not all of

the bars can be seen simultaneously, those that are visible are unobscured by other bars

(unlike with the pile metaphor), making it easier to �nd items within the visible region.

A �sheye camera lens is a wide angle lens that enlarges items of interest at the center

and shrinks items of less interest along the periphery. George Furnas employed this idea in

his �sheye view algorithm, which enlarged important portions of a graph and shrunk the

less important portions [5]. Others have used this �sheye technique in image magni�cation,

Web browsers, and text readers. In a navigation bar, items of interest could be enlarged

and less interesting items shrunk using a similar algorithm. The interesting areas will have

larger representations than the less interesting areas, thus making them easier to see and

easier to select. The concept of \interesting" will be de�ned using a protocol similar to the

one used to stack representations in the pile view.

To ensure the extensibility of the navigation bar widget, programmers will be able to

introduce their own layout algorithms. These algorithms will have access to data about the

list and will control the size and layout of the bars in the navigation bar.

Fade

Rapid changes in the appearance of a widget often attracts the user's attention to the

widget. While this is advantageous in many situations, it could be detrimental in an agent

interface where the users' attention is primarily focused on other tasks. Instead, we need

a widget that can change continuously to match the large and dynamic information space

but will change gradually to avoid interrupting the everyday tasks of the user.

In our toolkit, we will provide a fade widget, which will display several blocks of text

and graphics within the same space by gradually fading between them. The gradual change

will be less distracting than a sudden switch, yet will allow multiple information blocks to

be displayed in a single area. The speed with which the fade occurs can vary depending

on the nature of the application: if the widget is used in a primary (non-agent) application

interface, a quick fade might be used, while a secondary agent application might call for a

slower, less noticeable fade. See Figure 2 for an example of how the fade widget will work.

The programmer will be able to control the time it takes to fade between blocks of

information as well as many standard options like colors, sizes, and fonts. To achieve the

fading e�ect, the foreground colors gradually will be blended with the background colors

until the foreground can no longer be seen. Di�erent commands can be associated with

mouse actions and key presses to allow the user to access the appearance of the widget.

The location of the text and graphics will be speci�ed using points of the compass (nw for

4



Figure 2: Five snapshots in the operation of a fade widget that displays the scores of baseball

games. The �rst frame shows an initial block of text. The next two frames show how the

text fades away into the background, and the �nal two frames show how the new text will

appear in the same place. The time it takes to fade between text messages can be controlled

by the programmer.

northwest corner, n for north, and so on), plus c to center the block.

Thus far, we have implemented the text-only non-color widget seen in Figure 2 to

show that our concept is feasible. We plan to expand the widget to include full color text

and graphics, a Tk-style programmer interface, and programmer-speci�ed key and mouse

bindings. We then plan to incorporate the fade widget into a number of applications to

demonstrate its usefulness.

Ticker

The fade widget provided one way to show multiple information blocks in a limited space

without distracting the user. However, the information must be formatted into blocks that

will �t in the available space. In addition, there are no natural actions that the user could

perform for controlling the presentation of information. For example, if you as a user saw

a fade widget, how would you cause it to back up to the previous block, or pause, or slow

down?

The ticker widget addresses many of these problems. It provides a ticker-tape-style

display that scrolls or \tickers" the information across the screen. As with the fade widget,

a slow tickering can be less distracting than a sudden switch, but the ticker widget has the

added advantage that a stream of text could be any length since it will ticker across the

screen in a readable way.

In addition, there seems to be a natural reaction to grab and pull the ticker widget to

make it slow down, stop, back up, or move forward. We will include a hand cursor that will

appear when the cursor enters the ticker widget. When users click within the widget, they

can manipulate the information to move in the desired direction and speed. By providing

this functionality, the user has more control over the way in which the information is

displayed. The programmer no longer needs to worry about providing functionality that

will please all users.

The programmer will be able to control the speed with which the ticker widget moves

and the direction (left-right or top-bottom) in which the tickering occurs, plus the usual

color, size, and font options. Thus far, we have implemented a text-only widget that tickers

left-right at a programmer-de�ned speed. We plan to expand the widget to include graphical

icons, user manipulation, and a Tk-style programmer interface. We then plan to incorporate

the ticker widget into a number of applications to demonstrate its usefulness.

Other widgets

We have preliminary plans for several other types of widgets.

5



One widget (or class of widgets) is hidden widgets. A hidden widget overlaps a standard

widget, but remains out of sight until triggered by a user action. Then the widget becomes

visible and acts just like a normal widget. Consider for example adding buttons to the fade

widget that will allow the user to move forward and backward to other information blocks.

It would be wasteful to add button widgets for this functionality { most of the time they

would waste space by sitting unused. Instead, hidden buttons could lie on top of the fade

widget and become visible only when the cursor enters the fade widget, at which time they

would become visible and functional. Users could click on the buttons to browse through

the information blocks at their own pace. When the cursor exits the widget, the hidden

buttons would disappear again. Hidden widgets could prove useful when implemented for

buttons, scrollbars (or navigation bars), or menus.

Signi�cant work has been done in the College of Computing and elsewhere on the use of

anthropomorphism in computer-human communication [4]. It stems in part from the belief

that humans can naturally and easily recognize emotions and meaning in human faces.

Consider incorporating the anthropomorphism into a widget where a face communicates

a general feeling for the state of information: if an important event occurred, the face

could look anxious, if a bad event occurred, the face could look upset, and so on. By

utilizing the brow, eyebrows, eyes, nose, cheeks, lips, and chin, many di�erent emotions

could be communicated. Of course, this type of widget would create the problem of mapping

information changes into emotional states, but for some information resources that might

not be too di�cult.

Much of the content of the World-Wide Web (perhaps the largest and most volatile

information resource ever) is graphical, yet few widgets exist that manipulate graphical

images in useful ways. Consider an agent that �nds graphical images of various sizes that

then need to be displayed in a small space. Based on the size and shape of the original and

on the size and shape of the destination area, a widget could automatically crop (cut o�

parts of the image) and shrink (reduce the size of the image) the original in a way to best

capture the meaning of the image. The widget should be able to put images into categories

such as portraits, landscapes, banners, imagemaps, icons, and so on based on the size, shape,

colors, and other easily attainable image characteristics. Di�erent reduction schemes would

be used with each category. For example, to reduce a portrait, it would be advisable to

crop the lower portion and keep the upper portion (that contains the person's face). On the

other hand, to reduce an icon might not require any cropping and only minimal shrinking.

3 Conclusions and future work

This paper has outlined a set of widgets that will facilitate the design of agent interfaces

by allowing programmers to incorporate useful display and interaction techniques into their

own programs. Many of the techniques are in use in existing interfaces, but there are

no guidelines or set programming principles for how they should be used. The widgets

described in this paper can communicate constantly changing information using di�erent

media types. By providing a programming de�nition in an established interface design lan-

guage for these widgets, we expect that designers will be able to incorporate them into their

interfaces quickly and easily. The agent interface domain provides new interface challenges

for application designers. This widget toolkit can help designers overcome the challenges.

6



References

[1] Benjamin B. Bederson and James D. Hollan. Advances in the pad++ zoomable graphics

widget. In Proceedings of the USENIX Tcl/Tk '95 Workshop, pages 206{207, 1995.

[2] Richard Chimera. Value bars: An information visualization and navigation tool for

multimedia listings. In Proceedings of the ACM Human Factors in Computing Systems

Conference (CHI '92), pages 293{294, Monterey, CA, 1992.

[3] Stephen G. Eick. Data visualization sliders. In Proceedings of the 7th Annual Symposium

on User Interface Software and Technology (UIST '94), pages 119{120, Marina del Rey,

CA, November 1994.

[4] I. Essa and A. Pentland. Coding, analysis, interpretation and recognition of facial

expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7),

July 1997.

[5] GeorgeW. Furnas. Generalized �sheye views. In Proceedings of the ACMHuman Factors

in Computing Systems Conference (CHI '86), pages 16{23, Boston, MA, 1986.

[6] William C. Hill and James D. Hollan. History-enriched digital objects: Prototypes and

policy issues. The Information Society, 10(2), April 1994.

[7] Dean Jerding and John T. Stasko. The information mural: A technique for displaying

and navigating large information spaces. In Proceedings of the IEEE Symposium on

Information Visualization, pages 43{50, Atlanta, GA, November 1995.

[8] Daniel E. Rose, Richard Mander, Tim Oren, Dulce B. Ponceleon, Gitta Salomon, and

Yin Yin Wong. Content awareness in a �le system interface: Implementing the `pile'

metaphor for organizing information. In Proceedings of the International Conference

on Research and Development in Information Retrieval (SIGIR '93), pages 260{269,

Pittsburgh, PA, 1993.

7


