
DUAL REPRESENTATIONS OF POLYNOMIAL MODULES WITH
APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

A Dissertation
Presented to

The Academic Faculty

By

Marc Härkönen

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Sciences

School of Mathematics

Georgia Institute of Technology

May 2022

© Marc Härkönen 2022



DUAL REPRESENTATIONS OF POLYNOMIAL MODULES WITH
APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

Thesis committee:

Dr. Anton Leykin
School of Mathematics
Georgia Institute of Technology

Dr. Josephine Yu
School of Mathematics
Georgia Institute of Technology

Dr. Grigoriy Blekherman
School of Mathematics
Georgia Institute of Technology

Dr. Matthew Baker
School of Mathematics
Georgia Institute of Technology

Dr. Jonas Hirsch
Mathematisches Institut
Universität Leipzig

Date approved: 4/15/2022



ACKNOWLEDGMENTS

A very special thanks goes of course to my advisor, Anton Leykin, for his words of

encouragements, weekly meetings and invaluable connections in the applied algebra com-

munity. Another huge thank you goes to a very dear friend Justin Chen for in-depth dis-

cussions on both math and non-math topics. Other sources of inspiration and interesting

conversations at Georgia Tech include Kisun Lee, Tim Duff, Jaewoo Jung, Jose Acevedo,

Cvetelina Hill, Trevor Gunn, and many of the other algebraically oriented PhD students at

Tech. Outside of Tech, I must mention Bernd Sturmfels for suggesting the PDE point of

view of this dissertation, his ability to connect people, and for the post-doc opportunity at

MPI.

I would like to thank all of my coauthors: Rida Ait El Manssour, Justin Chen, Ya-

iron Cid-Ruiz, Yoshihiro Hirose, Jonas Hirsch, Benjamin Hollering, Robert Krone, Anton
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SUMMARY

In 1939, Wolfgang Gröbner proposed using differential operators to represent ideals

in a polynomial ring. Using Macaulay inverse systems, he showed a one-to-one corre-

spondence between primary ideals whose variety is a rational point, and finite dimensional

vector spaces of differential operators with constant coefficients. The question for general

ideals was left open. Significant progress was made in the 1960’s by analysts, culminat-

ing in a deep result known as the Ehrenpreis-Palamodov fundamental principle, connecting

polynomial ideals and modules to solution sets of linear, homogeneous partial differential

equations with constant coefficients.

This work aims to survey classical results, and provide new constructions, applications,

and insights, merging concepts from analysis and nonlinear algebra. We offer a new for-

mulation generalizing Gröbner’s duality for arbitrary polynomial ideals and modules and

connect it to the analysis of PDEs. This framework is amenable to the development of

symbolic and numerical algorithms. We also study some applications of algebraic methods

in problems from analysis.
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CHAPTER 1

LOCAL DUAL SPACES

The linear differential operators with polynomial coefficients form the Weyl algebra W =

R⟨∂x⟩ = K[x1, . . . , xn]⟨∂1, . . . , ∂n⟩. We shall forget about multiplication (i.e., composi-

tion) of differential operators in W , but retain two R-module structures: for f ∈ R and

D :=
∑
cα∂

α ∈ W we have

• the left action fD :=
∑

(fcα)∂
α, and

• the right action: D · f is the differential operator that multiplies the input by f before

applying D.

The relation between the two actions is given by

∂i · xi = xi∂i + 1 and ∂i · xj = xj∂i, for i ̸= j.

1.1 Definitions

For an R-algebra A, let WA := A⊗RW . Let m denote a maximal ideal in R, and κ(m) :=

R/m the residue field at m. We call Wκ(m) the local differential space (at m). Elements of

Wκ(m) will be commonly called differential operators. In what follows Wκ(m) is perceived

as a left κ(m)-vector space and a right R-module.

For each D ∈ Wκ(m), we define a map D • : R → κ(m) as follows. We can write

D =
∑

α cα∂
α, where cα ∈ R and cα is the image of cα in κ(m). For each f ∈ R, we

define

D • f =
∑
α

cα∂α • f.
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Note that if κ(m) corresponds to a rational point, that is κ(m) = K, then each D ∈ R∗ =

HomK(R,K).

For each D =
∑

α cα∂
α ∈ Wκ(m), we define the degree of the operator as the degree as

a polynomial in the ∂-variables, that is deg(D) = max{|α| : cα ̸= 0}.

Definition 1.1.1. For I ⊆ R, we define the local dual space of I at m

Dm[I] = {D ∈ Wκ(m) : D • f = 0 for all f ∈ I}

The natural dual definition of a local dual space is as follows.

Definition 1.1.2. For Λ ⊆ Wκ(m), we define

Im[Λ] = {f ∈ R : D • f = 0 for all D ∈ Λ}

It is not hard to see that if I is an ideal, its local dual spaceDm[I] is a κ(m)-vector space

and a right R-module. These two properties will appear many times in this paper, which

warrants the following definition.

Definition 1.1.3. A set Λ ⊆ Wκ(m) is called a local dual space if it is a κ(m)-vector space,

and a right R-module.

Remark 1.1.4. Note that if D ∈ Wκ(m) has degree d, then by Leibniz’ formula the commu-

tator xiD−Dxi has degree d−1. For a multi-index α ∈ Nn, we have xi∂α−∂αxi = αi∂
α−i,

where the multi-index α− i = (α1, . . . , αi−1, αi− 1, αi+1, . . . , αn). Therefore the commu-

tator xiD−Dxi can be thought of as the derivative of D with respect to the ∂i variable, and

a right R-module Λ ⊆ Wκ(m) will be closed under taking derivatives with respect to the ∂i

variables. △
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1.2 Rational points

Throughout this section, we will let p = (p1, . . . , pn) ∈ Kn denote a rational point, and

let m = (x1 − p1, . . . , xn − pn) ⊆ R be the corresponding maximal ideal. Then κ(m) =

R/m ∼= K, so the operators in Wκ(m) are differential operators with constant coefficients.

The operator ∂α ∈ Wκ(m) induces a linear map R→ K, where ∂α • f = ∂αf
∂xα

(p). Hence the

space Wκ(m) is a subspace of the dual space R∗ = HomK(R,K), consisting of polynomials

in the “variables” ∂1, . . . , ∂n. Note that a general element in R∗ can be represented as a

formal power series in the variables ∂1, . . . , ∂n. Restricting to polynomials results in the

theory of Gröbner duality [25, 42, 43]. We summarize the main results needed in the

upcoming sections below.

Theorem 1.2.1. Suppose m ⊆ R is a maximal ideal corresponding to a rational point

p ∈ Kn. There is an inclusion reversing bijection between ideals J of the local ring Rm

and local dual spaces Λ ⊆ Wκ(m), given by

J 7→ Dm[J ∩R]

Λ 7→ (Im[Λ])m.

If I is an arbitrary ideal, we have

Dm[I] = Dm[Im ∩R].

Next, we will generalize the above duality result for arbitrary ideals and R-submodules

of Rk.

1.3 General maximal ideals

Let R := K[x1, . . . , xn], where K is not necessarily algebraically closed. Suppose m ⊆ R

is a maximal ideal, and I ⊆ R is m-primary.
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We start with a few results which can be shown using elementary methods. We define

W
(s)
κ(m) := spanκ(m){∂α : |α| ≤ s}, the set of differential operators of degree at most s.

Lemma 1.3.1. For s = 1, 2, . . . , we have

Dm[m
s] = W

(s−1)
κ(m)

Proof. Suppose s = 1. Then clearly 1 ∈ Dm[m]. If D ∈ Wκ(m) is an operator of degree

d > 0, let cα∂α be a term of D of degree d. If pi is the minimal polynomial of xi ∈ R/m

over R, let pα := pα1
1 · · · pαn

n . Then

D • pα = cα∂
α • pα ̸= 0,

but pα ∈ m.

Suppose next that the claim is shown up to a given s, and we want to show that

Dm[m
s+1] = W s

κ(m). We can write any f ∈ ms as f = gh, where g ∈ m, h ∈ ms−1.

Then, for any |α| ≤ s, we have by Leibniz’ rule and the induction assumption

∂α • f =
∑
β≤α

(
α

β

)
(∂β • h) · (∂α−β • g) = (∂α • h) · (1 • g) = 0,

which proves the ⊇ inclusion. For the opposite inclusion, we can proceed as in the base

case. Let D ∈ Wκ(m) whose degree is d > s, let cα∂α be a term of degree d in D, then

pα ∈ md+1 but D • pα ̸= 0.

Proposition 1.3.2. If I ⊆ R is an ideal, then Dm[I] is a local dual space. If in addition I

is m-primary, then Dm[I] is a finite dimensional local dual space.

Proof. Clearly Dm[I] is a κ(m)-vector space. Suppose D ∈ Dm[I], f ∈ R. Then for

(Df) • g = D • (fg) = 0 for any g ∈ I .

4



If I is m-primary, there is some integer N such that mN ⊆ I . This implies that

Dm[I] ⊆ Dm[m
N ] = W

(N−1)
κ(m) .

Proposition 1.3.3. Let Λ ⊆ Wκ(m) be a nonzero local dual space. Then Im[Λ] is an ideal

contained in m. If in addition Λ is a finite dimensional local dual space, then Im[Λ] is

m-primary.

Proof. Let f ∈ Im[Λ], g ∈ R. Then D • (fg) = Dg •f = 0 for all D ∈ Λ. Let 0 ̸= D ∈ Λ.

Since Λ is a right R-module, we can find a polynomial h ∈ R such that deg(Dh) = 0.

Then the operator (D • h)−1Dh = 1 ∈ Λ. Hence if f ∈ Im[Λ], then 1 • f = 0, which

implies that f ∈ m.

If Λ is finite-dimensional, then Λ ⊆ W
(N)
κ(m) for some integer N . Then

mN+1 ⊆ Im[Dm[m
N+1]] = Im[W

(N)
κ(m)] ⊆ Im[Λ] ⊆ m

Since m is maximal, this implies that Im[Λ] is m-primary.

Next, we will consider extending the base field so that m decomposes into a union

of rational points. Let S := R/m ⊗K K[x1, . . . , xn]. Since Sm is no longer necessarily

maximal, we denote Sm =
⋂d
i=1 ni ⊆ S, where each ni is maximal. In what follows, we

will fix some i = 1, . . . , d and let n := ni.

Likewise, we can write a primary decomposition SI =
⋂d
i=1 Ji, where

√
Ji = ni. For

the same fixed i as above, we set J := Ji. We have n ∩ R = m and J ∩ R = I . Note that

the fields κ(m) = R/m and κ(n) = S/n are canonically isomorphic; we will denote these

fields by L when the distinction between κ(m) and κ(n) is not important.

Our first goal will be to relate the local dual spaces Dm[I] ⊆ Wκ(m) and Dn[SI] ⊆

Wκ(n). While κ(m) ∼= κ(n), the distinction between the two local differential spaces Wκ(m)

5



and Wκ(n) is crucial, as the operators in each describe different maps

Wκ(m) ∋ D : R→ L

Wκ(n) ∋ D′ : S → L

To emphasize the distinction, we will use the symbol δ in Wκ(n) instead of ∂ used in Wκ(m).

Hence any operator D ∈ Wκ(m) is of the form

D =
∑
α∈Nn

cα∂
α,

where cα ∈ L, and only finitely many of them are nonzero. Likewise, any operator D′ ∈

Wκ(n) is of the form

D′ =
∑
α∈Nn

cαδ
α,

where cα ∈ L, and only finitely many of them are nonzero. The spaces Wκ(m) and Wκ(n)

are therefore naturally isomorphic L-vector spaces via the map D 7→ D′ which substitutes

∂ by δ.

Lemma 1.3.4. The operators D ∈ Wκ(m) and D′ ∈ Wκ(n) agree on R, i.e.

D • f = D′ • f, for all f ∈ R.

Proof. It suffices to show the claim for D = ∂α, D′ = δα for any α ∈ Nn. If f ∈ R, then

g = ∂αf
∂xα
∈ R. Note that the diagram

R S

R/m S/n
∼=

commutes. Since D • f is the image of g in R/m, and D′ • f is the image of g in S/n, the

6



claim follows.

Theorem 1.3.5. If I ⊆ R is an m-primary ideal, then

Dm[I] = Dn[SI],

where the equality is obtained by identifying D ∈ Wκ(m) and D′ ∈ Wκ(n).

Proof. Let D′ ∈ Dn[SI]. Since I = SI ∩R, then 0 = D′ • f = D • f for all f ∈ I .

For the converse, let {b1, . . . , bd} ⊆ L denote a K-basis of L. Then any f ∈ SI can be

written as f =
∑d

i=1 fibi, where fi ∈ I . If D ∈ Dm[I], then D′ • f =
∑d

i=1 biD
′ • fi =

0.

Instead of starting with I ⊆ R, we may also consider J ⊆ S and compare its dual space

to the dual space of its contraction. To this end, we start with the diagram

R S

Rm Sn

ϕ

ψ

(1.1)

which commutes since m = ϕ−1(n). For an ideal I ⊆ R, Im ⊆ Rm, we denote by ϕ(I),

ψ(Im) the extensions of I , Im under the maps ϕ, ψ respectively.

Lemma 1.3.6. Using the notation of Diagram 1.1, we have ψ(mm) = nn. Moreover, any

nn-primary ideal Jn ⊆ Sn satisfies Jn = ψ(ψ−1(Jn)).

Proof. Since n corresponds to a rational point, it is generated by linear polynomials xi−ci,

for i = 1, . . . , n and ci ∈ L. Let pi(xi) ∈ K[xi] be the minimal polynomial of ci over

K. Since ci is a root of pi, we have pi ∈ L[xi] ∩ n = (xi − ci). Therefore we can write

pi = (xi − ci)qi, where qi ∈ L[xi]. As the extension L/K is separable, we have qi(ci) ̸= 0,

7



so in particular qi(xi) ̸∈ n. Thus for any generator of nn we have

(xi − ci)
1

=
(xi − ci)qi

qi
=

1

qi
ψ
(pi
1

)
,

and since pi ∈ m, we get nn ⊆ ψ(mm). The reverse inclusion follows from the fact that

ψ(mm) = ϕ(m)n ⊆ nn.

Since Jn ⊆ nn, all of its generators are in ψ(Im) for some ideal Im ⊆ Rm. Thus Jn is an

extended ideal, so in particular it is equal to its contraction extension Jn = ψ(ψ−1(Jn)).

We now have a version of Theorem 1.3.5 for ideals in S.

Theorem 1.3.7. If J ⊆ S is an n-primary ideal, then

Dm[J ∩R] = Dn[J ]

Proof. Since Diagram 1.1 commutes, the preimage of Jn in R using the two paths agree.

Hence ψ−1(Jn) ∩ R = ϕ−1(Jn ∩ S). Since J is n-primary, Jn ∩ S = J , so the right hand

side become ϕ−1(J). This is m-primary, so the equality of the ideals is equivalent to the

equality in the localization Rm, in other words ψ−1(Jn) = ϕ−1(J)m. Applying ψ on both

sides and using Lemma 1.3.6 and the commutativity of Diagram 1.1, we get

Jn = ψ(ψ−1(Jn)) = ψ(ϕ−1(J)m) = ϕ(ϕ−1(J))n

This is equivalent to saying that J and the n-primary component of ϕ(ϕ−1(J)) are equal,

hence they have the same local dual spaces over n. By Theorem 1.3.5, we now have

Dm[J ∩R] = Dm[ϕ
−1(J)] = Dn[ϕ(ϕ

−1(J))] = Dn[J ].

If Λ ⊆ Wκ(m), we denote Λ′ := {D′ : D ∈ Λ} ⊆ Wκ(n).
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Theorem 1.3.8. If Λ ⊆ Wκ(m) is a finite dimensional local dual space, then

Im[Λ] = In[Λ
′] ∩R.

Proof. This follows directly from Lemma 1.3.4.

Remark 1.3.9. While similar to the above, we have

SIm[Λ] ̸= In[Λ
′]

Indeed, if we take Λ = {1}, then Im[Λ] = m, In[Λ′] = n, but n ̸= Sm. △

Theorem 1.3.10. If I is m-primary, then

I = Im[Dm[I]]

Proof. The inclusion ⊆ is clear. Suppose f ̸∈ I . We want to find some D ∈ Dm[I] such

that D • f ̸= 0.

Note that f ̸∈ SI , so there is someD′ ∈ Dn[SI] such that 0 ̸= D′•f . By Lemma 1.3.4,

we also have D • f ̸= 0, while by Theorem 1.3.5 D ∈ Dm[SI].

Theorem 1.3.11. If Λ is a finite dimensional local dual space, then

Λ = Dm[Im[Λ]]

Proof. By Theorems 1.3.7 and 1.3.10 we can write

Dm[Im[Λ]] = Dm[In[Λ
′] ∩R] = Dn[In[Λ

′]] = Λ′,

where the last equality follows from Theorem 1.2.1, because we are working over rational

point.
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Combining Theorems 1.3.10 and 1.3.11, we obtain the main duality theorem.

Theorem 1.3.12. There is a bijective, inclusion reversing correspondence between m-

primary ideals I ⊆ R and finite dimensional local dual spaces Λ ⊆ Wκ(m).

Example 1.3.13. Fix R = R[x, y] and the maximal ideal m = (x − y, y2 + 1), so that

κ(m) = C. The ideal I = (2xy − y2 + 1, x2 + 1) is m-primary, and its local dual space is

the 2-dimensional C-vector space Dm[I] = spanC{1, ∂y}.

Let Λ be the local dual space generated by ∂2x + ∂x∂y and ∂2y . This is a 5-dimensional

C-vector space spanned by 1, ∂x, ∂y, ∂
2
y , and ∂2x+∂x∂y. The corresponding m-primary ideal

is

Im[Λ] = ( (x− y)3, (y2 + 1)2 + 4(x− y)2, (y2 + 1)(x2 − 2xy − 1)− 4(x− y)2 ).

△

Corollary 1.3.14. Let I, J ⊆ R be ideals, and let Λ,Ξ be local dual spaces. Then

Dm[I + J ] = Dm[I] ∩Dm[J ].

Im[Λ + Ξ] = Im[Λ] ∩ Im[Ξ]

If furthermore I, J are m-primary, and Λ,Ξ are finite-dimensional, then

Dm[I ∩ J ] = Dm[I] +Dm[J ]

Im[Λ ∩ Ξ] = Im[Λ] +Dm[Ξ]

Proof. The first two statements are immediate from the definitions. For the third one, we

10



can write

Dm[I ∩ J ] = Dm[Im[Dm[I]] ∩ Im[Dm[J ]]]

= Dm[Im[Dm[I] +Dm[J ]]]

= Dm[I] +Dm[J ],

since Dm[I] +Dm[J ] is a finite dimensional local dual space. The fourth statement follows

analogously.

A somewhat surprising result is that we may also take infinite sums and intersections.

Corollary 1.3.15. Let {Ii}i∈N be a set of ideals in R, and let {Λ}i∈N be a set of local dual

spaces in Wκ(m). Then

Dm

[
∞∑
i=1

Ii

]
=

∞⋂
i=1

Dm[Ii],

Im

[
∞∑
i=1

Λi

]
=

∞⋂
i=1

Im[Λi].

If furthermore all Ii are m-primary, and all Λi are finite-dimensional, then

Dm

[
∞⋂
i=1

Ii

]
=

∞∑
i=1

Dm[Ii]

Im

[
∞⋂
i=1

Λi

]
=

∞∑
i=1

Im[Λi].

Proof. Again, the first two statements are immediate from the definitions. For the third

11



one, for any fixed k ∈ N we have
⋂k
i=1 Ii ⊇

⋂∞
i=1 Ii, hence

Dm

[
∞⋂
i=1

Ii

]
⊇ Dm

[
k⋂
i=1

Ii

]
=

k∑
i=1

Dm[Ii].

Letting k →∞ gives us one inclusion. For the other one, we note that for any fixed k ∈ N

we have

Dm

[
k⋂
i=1

Ii

]
=

k∑
i=1

Dm[Ii] ⊆
∞∑
i=1

Dm[Ii]

Letting k →∞ gives us the opposite inclusion.

The fourth statements follows dually.

1.4 Infinite dimensional local dual spaces

In the previous section we established the duality between m-primary ideals and finite

dimensional local dual spaces. Corollary 1.3.15 allows us to extend this to cover potentially

infinite dimensional local dual spaces. We will see that ideals corresponding to local dual

spaces will always be m-closed.

Definition 1.4.1. Let m ⊆ R be a maximal ideal. The m-closure of I is the ideal Im ∩ R.

An ideal I ⊆ R is m-closed if I = Im ∩R.

In other words, an m-closed ideal has all of its associated primes contained in m. Fur-

thermore, the set of m-closed ideals of R corresponds to the set of ideals in the local ring

Rm.

Proposition 1.4.2. Let I ⊆ R be an ideal, m ⊆ R maximal. Then the m-closure of I is

Im ∩R =
∞⋂
d=1

(I +md)

Proof. If I ̸⊆ m, then both sides equal the unit ideal, so we may assume I ⊆ m. Let

12



π : R ↠ R/I =: S be the natural surjection, and set n := m/I . As I +md = π−1(nd) and

Im ∩R = π−1(ker(S → Sn)), it suffices to show that ker(S → Sn) =
⋂∞
d=1 n

d.

Set J :=
⋂∞
d=1 n

d. An application of the Artin-Rees lemma yields J = nJ , so by

Nakayama’s lemma, there exists a ∈ n such that (1 + a)J = 0, hence J ⊆ ker(S → Sn).

Conversely, consider the natural map φ : S →
∏∞

d=1 S/n
d, which has kerφ = J . Since n

is maximal in S, every element of S \ n acts as a unit on S/nd for all d ≥ 1. This implies

that φ factors through the localization S → Sn, hence ker(S → Sn) ⊆ kerφ.

Dually, the local dual spaces are infinite sums of their truncations by degree, in symbols

Λ =
∞∑
d=1

(Λ ∩W (d−1)
κ(m) ).

Next we establish the main correspondence results between m-closed ideals and local

dual spaces.

Proposition 1.4.3.

1. If I is an ideal, then Dm[I] is a local dual space.

2. If Λ is a local dual space, then Im[Λ] is m-closed.

3. If I is m-closed, then I = Im[Dm[I]].

4. If Λ is a local dual space, then Λ = Dm[Im[Λ]].

Proof.

1. The proof is essentially identical to the one in Proposition 1.3.2.

2. Recall that md = Im[W
(d−1)
κ(m) ], so we have

∞⋂
d=1

(Im[Λ] +md) =
∞⋂
d=1

Im[Λ ∩W (d−1)
κ(m) ] = Im

[
∞∑
d=1

(
Λ ∩W (d−1)

κ(m)

)]
= Im[Λ]
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3. If I is m-closed, then I is an infinite intersection of m-primary ideals by Proposi-

tion 1.4.2. Thus by Corollary 1.3.15 we have

I =
∞⋂
d=1

(I +md)

=
∞⋂
d=1

Im[Dm[I +md]]

= Im

[
∞∑
d=1

Dm[I +md]

]

= Im

[
Dm

[
∞⋂
d=1

I +md

]]

= Im [Dm [I]]

4. Since Λ =
∑∞

d=1(Λ ∩W
(d−1)
κ(n) ), we have

Dm[Im[Λ]] =
∞∑
i=1

Dm[Im[Λ ∩W d−1
κ(m)]] =

∞∑
i=1

Λ ∩W d−1
κ(m) = Λ

In particular we see that for an arbitrary ideal I , the local dual space only records the

m-closure.

Corollary 1.4.4. If I ⊆ R is an arbitrary ideal, then Dm[I] = Dm[Im ∩R].

Proof. We get the inclusion⊇ for free, since I ⊆ Im∩R. For the opposite inclusion, we first

note that I ⊆ Im[Dm[I]], hence also Im∩R ⊆ Im[Dm[I]]m∩R. Since Im[Dm[I]] is m-closed,

we get Im∩R ⊆ Im[Dm[I]]. Applying Dm[·] on both sides yields Dm[Im∩R] ⊇ Dm[I].

Theorem 1.4.5. There is a bijective, inclusion reversing correspondence between m-closed

ideals and local dual spaces.

We saw already in Corollary 1.3.15 that Dm and Im turn arbitrary sums into intersec-

tions. The converse is also true for m-closed ideals and local dual spaces
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Corollary 1.4.6. Let I, J be m-closed, Λ,Ξ be local dual spaces. Then

Dm[I ∩ J ] = Dm[I] +Dm[J ]

Im[Λ ∩ Ξ] = Im[Λ] + Im[Ξ]

Proof. If I, J are m-closed, so is I ∩ J ; likewise if Λ,Ξ are local dual spaces, so is Λ ∩ Ξ.

Therefore

Dm[I ∩ J ] = Dm[Im[Dm[I]] ∩ Im[Dm[J ]]]

= Dm[Im[Dm[I] +Dm[J ]]]

= Dm[I] +Dm[J ]

The result for Λ,Ξ follows analogously.

Using Corollary 1.4.6, one can also take infinite intersections. The proof is omitted as

it is essentially identical to the proof of Corollary 1.3.15.

Corollary 1.4.7. If {Ii}i is a set of m-closed ideals, {Λi}i a set of local dual spaces, then

Dm

[
∞⋂
i=1

Ii

]
=

∞∑
i=1

Dm[Ii]

Im

[
∞⋂
i=1

Λi

]
=

∞∑
i=1

Im[Λi]

The following is also a straightforward consequence of Corollary 1.4.4 and theorem 1.4.5.

Corollary 1.4.8. The set I ⊆ R is an ideal if and only if Dm[I] is a local dual space. The

set Λ ⊆ Wκ(m) is a local dual space if and only if Im[Λ] is an ideal.
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1.5 Non-maximal ideals

Until now we’ve developed the theory of local dual spaces for maximal ideals m. One of

the key properties is that m-primary ideals lead to finite dimensional local dual spaces.

For a general prime ideal p, one could naively define a local dual space as

Dp[I] := {D ∈ Wκ(p) : D • f = 0 for all f ∈ I}

This leads to issues however, as we lose any hope of finiteness. Take for example the prime

p = (x) ⊆ C[x, y]. Then the operators 1, ∂y, ∂2y , . . . are all in Dp[p], and are κ(p)-linearly

independent.

Instead, we will use localization to turn p into a maximal ideal.

Definition 1.5.1. Let p ⊆ K[x1, . . . , xn] =: R be a prime ideal. A set of variables

{xi1 , . . . , xid} is said to be independent if their images in R/p are algebraically indepen-

dent. Equivalently, p ∩K[xi1 , . . . , xid ] = (0).

The following theorem, originally by Gröbner, relates the dimension of an ideal to the

size of a maximal independent set of variables.

Theorem 1.5.2 ([42, Thm. 27.11.6]). The dimension of p is d if and only if there exists a

maximal set of independent variables of size d.

Given a prime p of dimension d, we fix a maximal set {xi1 , . . . , xid} of indepen-

dent variables. We will relabel the variables in the original polynomial ring so that t =

{t1, . . . , td} := {xi1 , . . . , xid} and y = {y1, . . . , yn−d} are the remaining variables. We

denote by ·(t) localization at the multiplicatively closed set K[t1, . . . , td] \ {0}. Thus we

have

R := K[t1, . . . , td, y1, . . . , yn−d] = K[t,y]

R(t) := K(t1, . . . , td)[y1, . . . , yn−d] = K(t)[y]
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We note that R(t) can be thought of as an intermediate step to Rp. Indeed, recall that if

S, T ⊆ R are multiplicatively closed sets, and U is the image of S in T−1R, then we have

an isomorphism U−1(T−1R) ∼= (ST )−1R. If we let S = K[t] \ {0} and T = R \ p, by

independence of the t variables we have S ⊆ T , and hence ST = T . In our notation, this

means that

(R(t))p(t)
∼= (Rp)

(t) ∼= Rp (1.2)

This implies also that κ(p) = κ(p(t)), as

κ(p(t)) = (R(t)/p(t))p(t) = R/p⊗R (R(t))p(t) = R/p⊗R Rp = (R/p)p = κ(p).

Proposition 1.5.3. The ideal p(t) ⊆ R(t) is maximal.

Proof. Since {t1, . . . , td} is a maximal set of independent variables, for each yi there is a

polynomial

pi(t, yi) = pi,si(t)y
si
i + pi,si−1(t)y

si−1
i + · · ·+ pi,0(t) ∈ p,

where the pi,j ∈ K[t]. Thus R(t)/p(t) is integral over the field K(t), so R(t)/p(t) is also a

field

Since p(t) ⊆ R(t) is now maximal, we can study local dual spaces at p(t). We emphasize

that since R(t) is a polynomial ring in the n − d variables y1, . . . , yn−d, the differential

operators inDp(t) will be polynomials in ∂y1 , . . . , ∂yn−d
; the operators ∂t1 , . . . , ∂td are not in

Wκ(p(t)). Thus, despite κ(p) being isomorphic to κ(p(t)), the local differential spaces satisfy

Wκ(p(t)) ⊂ Wκ(p). Thus we can, and often will, consider elements of Wκ(p(t)) as elements of

Wκ(p). This is similar to the distinction between to Wκ(m) and Wκ(n) in Section 1.3.

Observe that extending and contracting ideals via the localization map R → R(t) pre-

serves primaryness. Therefore given a p-primary ideal I , the extended ideal I(t) is p(t)-
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primary, so the local dual space Dp(t) [I
(t)] is a finite dimensional κ(p(t))-vector space.

Conversely, any finite dimensional local dual space corresponds to a p(t)-primary ideal,

whose contraction is p-primary. Therefore we obtain yet another duality theorem.

Theorem 1.5.4. Fix a prime ideal p ⊆ R and a maximal set t of independent variables

over p. There is an inclusion reversing bijection between p-primary ideals I ⊆ R and finite

dimensional local dual spaces Λ ⊆ Wκ(p(t)). The bijection is given by

I 7→ Dp(t) [I
(t)]

Λ 7→ Ip(t) [Λ] ∩R.

The concept of p-closed ideals also makes sense when p is non-maximal prime: these

are simply ideals whose associated primes are contained in p. The p-closure of an ideal

I ⊆ R is Ip∩R. Note that we don’t have an analogue of Proposition 1.4.2 for non-maximal

primes.

Example 1.5.5. Let R = Q[t, x, y] and I = (x2, y2 − tx). Here I is a p = (x, y)-primary

ideal. If we fix t = {t} as a maximal set of independent variables, our dual space elements

will be polynomials in ∂x and ∂y variables, with coefficients in κ(p(t)) = Q(t). We can

compute

Dp(t) [I
(t)] = spanκ(p)

{
1, ∂y, ∂

2
y +

2

t
∂x, ∂

3
y +

6

t
∂y∂x

}
.

By clearing denominators, we may also write the local dual space as the κ(p)-span of

elements with polynomial coefficients, i.e.

Dp(t) [I
(t)] = spanκ(p)

{
1, ∂y, t∂

2
y + 2∂x, t∂

3
y + t∂y∂x

}
.

△
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We will next establish the duality between p-closed ideals I ⊆ R and local dual spaces

Λ ⊆ Wκ(p(t)). As was the case for primary ideals, we only need that p-closed ideals extend

to p(t)-closed ideals, and conversely that p(t)-closed ideals contract to p-closed ideals.

In general, every ideal in R(t) is the extension of an ideal in R, but an arbitrary ideal in

R does not have to be a contraction of an ideal in R(t). However, if I ⊆ R is p-closed, then

it is a contraction. To see this, we note that if I =
⋂s
i=1Qi is a minimal irredundant primary

decomposition, then Qi∩ (K[t]\{0}) ⊆ p∩ (K[t]\{0}) = ∅, so I(t) =
⋂s
i=1Q

(t)
i is also a

minimal irredundant primary decomposition. Contracting, we get I(t) ∩R =
⋂s
i=1Qi = I .

Lemma 1.5.6. Let p ⊆ R be a prime, t a maximal set of independent variables over p. The

ideal I ⊆ R is p-closed if and only if I(t) ⊆ R(t) is p(t)-closed.

Proof. Suppose I is p-closed. If I =
⋂s
i=1Qi is a minimal primary decomposition, then

I(t) =
⋂s
i=1Q

(t)
i is also a minimal primary decomposition. Since

√
Qi ⊆ p, then

√
Q

(t)
i ⊆

p(t).

Conversely, suppose I(t) is p(t)-closed, and let I(t) =
⋂s
i=1Q

(t)
i be a minimal irre-

dundant primary decomposition. Taking contractions, by the above discussion we get

I =
⋂s
i=1Qi. Since

√
Q

(t)
i ⊆ p(t), we must have

√
Qi ⊆ p.

Theorem 1.5.7. Suppose p ⊆ R is prime, and t is a maximal independent set over p. There

is a inclusion reversing bijective correspondence between p-closed ideals I ⊆ R and local

dual spaces Λ ⊆ Wκ(p(t)), given by

I 7→ Dp(t) [I
(t)]

Λ 7→ Ip(t) [Λ] ∩R.

The correspondence turns (infinite) sums into (infinite) intersections, and vice versa.

As was the case for m-closed ideals in Corollary 1.4.4, the maps in Theorem 1.5.7

retains only the p-closure of an arbitrary ideal.
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Corollary 1.5.8. If I ⊆ R is an arbitrary ideal, then Dp(t) [I
(t)] = Dp(t) [(Ip ∩R)(t)].

Proof. By Corollary 1.4.4, we have Dp(t) [I
(t)] = Dp(t) [(I

(t))p(t) ∩ R(t)]. Since by eq. (1.2)

the diagram

R Rp = (R(t))p(t)

R(t)

commutes, so we have (I(t))p(t) ∩R(t) = (Ip ∩R)(t).

1.6 Noetherian operators

Suppose I ⊆ R = K[t,y] is a p-primary ideal, where t is a maximal set of independent

variables over p. The corresponding local dual space Dp(t) [I
(t)] is finite κ(p)-dimensional,

and consists of differential operators of the form

D =
∑
α

cα∂
α
y : R

(t) → κ(p)

where cα ∈ κ(p(t)) = κ(p), and a finite number of cα are non-zero. We can restrict the

domain ofD toR: by slight abuse of notation, for f ∈ R, the result ofD•f will be defined

as D • f
1
.

Definition 1.6.1. Let p ⊆ R be a prime ideal, t a maximal set of independent variables

over p. A set of Noetherian operators of the p-primary ideal I is a finite set D ⊆ Wκ(p(t))

whose κ(p(t))-span is Dp(t) [I
(t)].

As a direct consequence of the duality theorem in Theorem 1.5.4 we obtain a represen-

tation of I via a finite number of differential constraints.

Proposition 1.6.2. Let p ⊆ R be a prime ideal, t a maximal set of independent variables

over p, I ⊆ R a p-primary ideal, and D ⊆Wκ(p(t)) a set of Noetherian operators. Then

I = {f ∈ R : D • f = 0 for all D ∈ D}.
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Proof. By duality, the polynomial f ∈ I if and only if f is annihilated by all elements of

Dp(t) [I
(t)], which is equivalent to f being annihilated by a κ(p(t)) basis of Dp(t) [I

(t)], i.e. a

set of Noetherian operators.

We note that this dual representation of I also characterizes all sets of Noetherian op-

erators.

Proposition 1.6.3. Let p ⊆ R be a prime ideal, t a maximal set of independent variables

over p. Suppose I ⊆ R is an ideal, and D ⊆ Wκ(p(t)) is a finite set such that

I = {f ∈ R : D • f = 0 for all D ∈ D},

then I is p-primary and D is a set of Noetherian operators.

Proof. Let Λ = spanκ(p(t))D, and J = Ip(t) [Λ] ∩ R. By Theorem 1.5.4, J is p-primary.

The set D is a set of Noetherian operators for J by construction, so we have

J = {f ∈ R : D • f = 0 for all D ∈ D} = I.

We point out that our definition of Noetherian operators differs slightly from historical

definitions. In 1939, Wolfgang Gröbner [25] asked the question of ideal membership via

differential operators with polynomial coefficients. In other words, for a p-primary ideal I ,

he wanted to find operators D ⊆WR, as opposed to Wκ(p(t)) such that

I = {f ∈ R : D • f ∈ p for all D ∈ D}. (1.3)

The question was solved for zero-dimensional ideals by Gröbner using Macaulay’s inverse

systems [39]; this was the content of Section 1.2. The question was left open for posi-

tive dimensional ideals. Progress was made by analysts in the 1960’s, culminating in the
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Ehrenpreis-Palamodov fundamental principle [6, 16, 31, 51, 66], Theorem 2.7.1. A more

precise study of the fundamental principle and its implications will be revisited in Sec-

tion 2.7. Informally, the fundamental principle states that a system of PDE corresponding

to a primary ideal I has solutions that are integrals of products of polynomials and expo-

nential functions. The polynomials appearing in these integrals would correspond precisely

to operators in WR satisfying eq. (1.3). For this reason perhaps Noetherian operators have

continued to be defined as differential operators with polynomial coefficients, even in re-

cent work such as [12, 35, 48, 63].

Next, we argue that the historical definition is compatible with our definition. Suppose

D = {D1, . . . , Ds} ⊆ Wκ(p(t)) is a set of Noetherian operators. Each operator can be

represented as a polynomial in the ∂y-variables, with coefficients in κ(p) = (R/p)p, rep-

resented by fractions. We can multiply each Di ∈ D by the least common multiple of all

denominators to get an operator D′
i of the form

D′
i =

∑
α

fi,α
1
∂αy ,

where fi,α is the image of fi,α ∈ R in R/p. The set D′ = {D′
1, . . . , D

′
s} consists of κ(p)-

multiples of elements of D, and therefore is still a set of Noetherian operators for I . For

each i = 1, . . . , s, define

Ei :=
∑
α

fi,α∂
α
y ∈ WR.

The key observation here is that for any f ∈ R, we have Ei • f ∈ p ⇐⇒ Di • f = 0, so

in particular by Proposition 1.6.2 we get a representation of I using differential operators

with polynomial coefficients, as in eq. (1.3).

We also have a partial converse to the above. Again, let p ⊆ R be a prime and t be a

maximal set of independent variables over p. Suppose E1, . . . , Es ∈ WR are differential
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operators with polynomial coefficients not involving the ∂t-variables. Thus we can write

Ei =
∑
α

fi,α∂
α
y ,

where fi,α ∈ R. We can send each Ei to Wκ(p) to get the operators

Di =
∑
α

fi,α
1
∂αy ,

and we haveEi•f ∈ p if and only ifDi•f = 0. If I = {f ∈ R : Ei•f for all i = 1, . . . , s},

then by Proposition 1.6.3 the set {D1, . . . , Ds} is a set of Noetherian operators.

Remark 1.6.4. At first glance it may seem like restriction to operators involving only ∂y-

variables, and no ∂t-variables, is a limitation of our definition. In fact, such a caveat is

also present in all other definitions of Noetherian operators, all the way from the original

formulation by Ehrenpreis [16] and [51]. △

1.7 Differential primary decomposition

Next, consider a p-closed ideal I ⊆ R, and fix a maximal set t of independent variables over

p. We can write I = Q ∩ (I : p∞), where Q is either p-primary, or Q = R if p ̸∈ Ass(I).

The latter case is uninteresting, as it gives a decomposition I = R ∩ I , so in what follows

we will assume that p is an associated prime of I . In that case, the ideal Q will be a p-

primary component in a primary decomposition of I , and (I : p∞) is the intersection of all

other components. Note that both Q and (I : p∞) are p-closed, so we get

Dp(t) [I
(t)] = Dp(t) [Q

(t)] +Dp(t) [(I : p
∞)(t)]
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Since Q is p-primary, the quotient

Dp(t) [I
(t)]

Dp(t) [(I : p
∞)(t)]

=
Dp(t) [Q

(t)] +Dp(t) [(I : p
∞)(t)]

Dp(t) [(I : p
∞)(t)]

is a finite-dimensional κ(p)-vector space. Note that the quotient is still finite-dimensional

even when p is not an associated prime; in that case the quotient is trivial. Furthermore,

since local dual spaces only see the p-closure of an ideal (c.f. Corollary 1.5.8), the above

quotient is finite-dimensional for arbitrary ideals I . This motivates the following definition.

Definition 1.7.1. Let I ⊆ R be an ideal, p a prime, and t a maximal set of independent

variables over p. The excess dual space is the finite dimensional κ(p)-vector space

Ep(t) [I
(t)] := Dp(t) [I

(t)]/Dp(t) [(I : p
∞)(t)]

Pick any basis D = {D1, . . . , Ds} of the excess dual space. Let D = {D1, . . . , Ds} ⊆

Dp(t) [I
(t)] be a set of lifts of D.

Example 1.7.2. Let I = (y4, xy3, x3y2). A primary decomposition yields

I = Q1 ∩Q2 = (y2) ∩ (x3, y4, x3y2),

where p1 =
√
Q1 = (y) and p2 =

√
Q2 = (x, y). Since the Qi are monomial ideals, the

sets

D1 = {1, ∂y}

D2 = {1, ∂x, ∂2x,

∂y, ∂y∂x, ∂y∂
2
x,

∂2y , ∂
2
y∂x, ∂

2
y∂

2
x, ∂

3
y}

are sets of Noetherian operators, with maximal independent sets t1 = {x} and t2 = ∅
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respectively.

We note that while the set {(pi, ti,Di)}i=1,2 is a differential primary decomposition of

I , there is another one consisting of fewer operators. Indeed, the excess dual space at p2

is only four dimensional, and can be spanned by the images of D′
2 = {∂2y , ∂2y∂x, ∂2y∂2x, ∂3y}.

The reason why this is true becomes apparent when looking at the staircase diagram in

Figure 1.1.

∂x

∂y

Figure 1.1: Diagram of local dual spaces in Example 1.7.2. Each lattice point corresponds
to a monomial ∂ix∂

j
y. The points under the dotted lines are a basis of Dp2 [I : p

∞
2 ], while the

points under the dashed line are a basis of Dp2 [I]. The excess dual space is generated by
the four points wedged between the lines.

△

Lemma 1.7.3. Let I ⊆ R be a p-closed ideal, and suppose f ∈ (I : p∞). Then f ∈ I if

and only if Di • f = 0 for all i = 1, . . . , s.

Proof. If f ∈ I , clearly D • f = 0 for all Dp(t) [I
(t)]. For the converse, we can dually show

that D • f = 0 for all D ∈ Dp(t) [I
(t)]. Any D ∈ Dp(t) [I

(t)] can be written as a κ(p)-linear

combination

D′ =
s∑
i=1

ciDi + cE,
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where E ∈ Dp(t) [(I : p
∞)(t)]. By assumption 0 = E • f = Di • f , which concludes the

proof.

As a consequence of Lemma 1.7.3, we can now describe an arbitrary ideal using only

a finite number of dual space elements. Let I ⊆ R, and suppose dim(I) = d. Let q be

a d-dimensional associated prime. Such a prime is isolated, so the q-closure J = Iq ∩ R

is simply the q-primary component of I . The excess dual space of J is equal to the local

dual space, and suppose it’s spanned by Dq. Clearly J is q-closed, and since J : q∞ = R,

Lemma 1.7.3 says that f ∈ J if and only if D′ • f = 0 for all D ∈ Dq.

We define the k-dimensional hull of I , denoted Ik, to be the intersection of all primary

components of I of dimension≥ k. ComputingDq for all associated primes q of dimension

d = dim(I) gives us a characterization of the d-dimensional hull of I: a polynomial f ∈ Id

if and only if D • f = 0 for all D ∈ Dq, dim q = d.

Next, let q be a d−1 dimensional associated prime, and let J = Iq∩R be the q-closure

of I . Again, let Dq be a lift of a basis of the excess dual space. Now the ideal (J : q∞)

contains the d-dimensional hull of I , so by Lemma 1.7.3, if f is in the d-dimensional hull

Id, then f ∈ J if and only if D • f = 0 for all D ∈ Dq. Note that the d − 1 dimensional

hull is the intersection of the d dimensional hull and the q-closures of I for all associated

primes q whose dimension is d − 1. We conclude that f ∈ Id−1 if and only if D • f = 0

for all D ∈ Dq, dim q ≥ d− 1.

Clearly the 0-dimensional hull of I is just I itself, so repeating this procedure dimension

by dimension, we obtain a set {Dq}q∈Ass consisting of finitely many differential operators,

with the property

f ∈ I ⇐⇒ D • f = 0 for all D ∈ Dq and q ∈ Ass(I).

We will call such a representation of the ideal I a differential primary decomposition.

Definition 1.7.4. Let I ⊆ R be an ideal. For each p ∈ Ass(I), let tp be a maximal set of
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independent variables over p, and suppose thatDp ⊆ Wκ(p(tp)) is a (finite) set of differential

operators whose images span the excess dual space Ep(tp) [I
(tp)]. Then the set of triples

D := {(p, tp,Dp)}p∈Ass(I) is called a differential primary decomposition.

Example 1.7.5. Let I = (x(y − z), x2z, x3) ⊆ Q[x, y, z]. Geometrically, this corresponds

to the plane x = 0, with the embedded line x = y − z = 0, with a further embedded point

at the origin. If we set

p1 = (x) p2 = (x, y − z) p3 = (x, y, z)

t1 = {y, z} t2 = {z} t3 = ∅

D1 = {1} D2 = {∂x} D3 = {∂2x},

then the set D = {(pi, ti,Di)}i=1,2,3 is a differential primary decomposition for I . △

Similarly to Noetherian operators for primary ideals, a differential primary decompo-

sition describes an arbitrary ideal using finitely many differential conditions in R. The

following proposition summarizes the discussion above.

Proposition 1.7.6. Suppose {(p, tp,Dp)}p∈Ass(I) is a differential primary decomposition.

Then

I = {f ∈ R : D • f ∈ p for all D ∈ Dp, p ∈ Ass(I)}

Example 1.7.7. Let I = (x21, x1x2) ⊆ Q[x1, x2]. From a differential primary decomposi-

tion, we can conclude that I is the set of polynomials f ∈ R such that f vanishes on the

line x1 = 0 and ∂f
∂x1

vanishes at the origin. △

In fact, one may use a differential primary decomposition to describe any p-closure of

I . Thus we recover the definition of a differential primary decomposition given in [7].
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Proposition 1.7.8. Suppose {(p, tp,Dp)}p∈Ass(I) is a differential primary decomposition.

Then

Ip ∩R = {f ∈ R : D • f = 0 for all D ∈ Dq, q ∈ Ass(I) such that q ⊆ p}

Proof. Suppose p is an isolated prime, i.e. it is minimal among associated primes. Thus

it suffices to show that Dp is a set of Noetherian operators for the p-primary ideal Ip ∩ R.

In this case, the excess dual space is just the local dual space, so Dp ⊆ Wκ(p(tp)) spans

Dp(tp) [I
(tp)], which is equal to Dp(tp) [(Ip ∩ R)(tp)] by Corollary 1.5.8. Thus Dp is indeed a

set of Noetherian operators for the p-closure of I .

Next suppose p is an arbitrary associated prime, and suppose the claim is proved for all

q ⊊ p. Note that this implies

(Ip ∩R) : p∞ = {f ∈ R : D • f = 0 for all D ∈ Dq, q ∈ Ass(I) such that q ⊊ p}

Since D′
p spans the excess dual space of Ip ∩R, the claim follows from Lemma 1.7.3.

We note that this property fully describes differential primary decompositions.

Proposition 1.7.9. Let I ⊆ R be an ideal. For each associated prime p ∈ Ass(I), let tp be

a maximal set of independent variables over p, and suppose that Dp ⊆ Wκ(p(tp)) is a finite

set of differential operators such that for each p ∈ Ass(I)

Ip ∩R = {f ∈ R : D • f = 0 for all D ∈ Dq, q ∈ Ass(I) such that q ⊆ p}.

Then {(p, tp,Dp)}p∈Ass(I) is a differential primary decomposition of I .

Proof. We need to show that Dp spans each excess dual space of I , which is equal to the

excess dual space of the p-closure Ip ∩R.

Fix some p ∈ Ass(I). Let Λ = spanκ(p)Dp. If we denote J = Ip ∩ R, then we want to

show that Dp(t) [J
(t)] = Λ +Dp(t) [(J : p

∞)(t)].
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We note that our hypothesis means that

J = (Ipt [Λ] ∩R) ∩ (J : p∞). (1.4)

Take Λ +Dp(t) [(J : p
∞)(t)]. Dualizing this yields J by eq. (1.4) and the fact that dualizing

turns sums into intersections, regardless of whether Λ is a local dual space or not. By

Corollary 1.4.8, Λ +Dp(t) [(J : p
∞)(t)] is a local dual space, namely Dp(t) [J

(t)], and hence

Dp spans the excess dual space.

As its name suggests, a differential primary decomposition can be used to construct a

primary decomposition. Special care needs to be taken, as the κ(p(tp))-span of Dp may not

be a local dual space.

Theorem 1.7.10. Let D = {(p,Dp, tp)}p∈Ass(I) be a differential primary decomposition.

For each p ∈ Ass(I), let Λp ⊆ Wκ(p(tp)) be the right R-module generated by Dp, i.e. the

smallest local dual space containing Dp. If Qp = Ip(tp) [Λp]∩R, then I =
⋂

p∈Ass(I)Qp is a

minimal, irredundant primary decomposition.

Proof. Since each Λp is finite dimensional, each Qp is p-primary. Fix some prime p ∈

Ass(I), and let Dp = {D1, . . . , Ds}. By construction, every D ∈ Dp(tp) [I
(tp)] is of the

form

D =
s∑
i=1

ciDi + E,

where ci ∈ κ(p) and E ∈ Dp(tp) [(I : p
∞)(tp)]. In particular, each Di ∈ Dp(tp) [I

(tp)], so

Λp, the right R-module generated by the Di, is contained in Dp(tp) [I
(tp)]. By duality, this

implies that Qp ⊇ Ip ∩R ⊇ I . Taking intersections, we have
⋂

p∈Ass(I)Qp ⊇ I .

For the converse, we first show that for each p ∈ Ass(I)

⋂
q⊆p

Qq ⊆ Ip ∩R.
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Let f ∈
⋂

q⊆pQq, so by construction D • f = 0 for all D ∈ Dq such that q ⊆ p. By

Proposition 1.7.8 f lies in Ip ∩R. Finally, we conclude that

⋂
p∈Ass(I)

Qp =
⋂

p∈Ass(I)

⋂
q⊆p

Qq ⊆
⋂

p∈Ass(I)

(Ip ∩R) = I.

Remark 1.7.11. As was the case with Noetherian operators, we can lift a differential pri-

mary decomposition toWR. More precisely, if {(p, tp,Dp)}p∈Ass(I) is a differential primary

decomposition, we can find, for each p ∈ Ass(I) and D ∈ Dp, an operator E ⊆ WR not

involving ∂tp-variables, such that D • f = 0 ⇐⇒ E • f ∈ p. Thus we obtain a dual

representation

I = {f ∈ R : E • f ∈ p for all E ∈ Ep, p ∈ Ass(I)}

in the spirit of Gröbner’s representation in eq. (1.3), but for arbitrary ideals as opposed to

primary ideals. Primary decompositions and p-closures can also be obtained analogously

using operators in WR. △

We end this section with a result by Sturmfels, Cid-Ruiz and Chen [7, 11] about the

minimal size of a differential primary decomposition. The size of a differential primary de-

composition {(p, tp,Dp)}p∈Ass(I) is the total number of differential operators involved, i.e.

the integer
∑

p∈Ass(I) |Dp|. Our algorithms in Chapter 3 will output a differential primary

decomposition of minimal size.

Definition 1.7.12. For p ∈ Ass(I), we let the multiplicity of I along p is the positive integer

multI(p) = lengthRp

(
Ip : p

∞
p

Ip

)
,

The arithmetic multiplicity of I is the sum of all multiplicities of I along associated
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primes

amult(I) =
∑

p∈Ass(I)

multI(p).

Remark 1.7.13. The multiplicity of I along p can be computed in Macaulay2 using the

command

degree( saturate(I, P) / I) // degree( P )

Alternatively, a command amult for computing arithmetic multiplicities is included in the

package NoetherianOperators [8]. △

Since our definition of differential primary decomposition is compatible with the one

in [7, 11], the following theorem applies.

Theorem 1.7.14 ([7, 11]). Fix an ideal I ⊆ R. The size of a differential primary decom-

position is at least amult(I), and this bound is tight. More precisely

1. If {(p, tp,Dp)}p∈Ass(I) is a differential primary decomposition, then |Dp| ≥ multI(p)

for all p ∈ Ass(I).

2. There exists a differential primary decomposition such that |Dp| = multI(p).

Example 1.7.15. In Example 1.7.2, the differential primary decomposition

{(p1, t1,D1), (p2, t2,D′
2)}

has minimal size: multI(p1) = 2 = |D1|, and multI(p2) = 4 = |D′
2|. △

1.8 Operations on ideals

In standard textbooks, many operations on ideals are described at the level of generators.

For example, a sum of two ideals is generated by the union of generators for both ideals. As
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differential primary decompositions give us an equally valid alternative representation of

an arbitrary ideal I ⊆ R, we investigate the effect on differential primary decompositions

of certain common operations.

1.8.1 Intersections

Suppose I, J ⊆ R are ideals with a differential primary decompositions

{(p, tp,Dp)}p∈Ass(I) {(p, tp,Bp)}p∈Ass(J) (1.5)

respectively. Note that we assume that for any prime p ∈ Ass(I)∩Ass(J) we have chosen

the same maximal set tp of independent variables. Since local dual spaces turn intersections

into sums, a differential primary decomposition for the ideal I∩J can be obtained by taking

unions of the sets Dp and Bp.

Proposition 1.8.1. A differential primary decomposition for I ∩ J is given by

{(p, tp,Dp ∪ Bp)}p∈Ass(I)∪Ass(J).

Here Bp,Dp are defined to be empty sets whenever p ̸∈ Ass(J), p ̸∈ Ass(I) respectively.

Proof. Let p ∈ Ass(I). The excess dual space of I ∩ J at p is

Dp(t) [(I ∩ J)(t)]
Dp(t) [((I ∩ J) : p∞)(t)]

=
Dp(t) [I

(t)] +Dp(t) [J
(t)]

Dp(t) [(I : p
∞)(t)] +Dp(t) [(J : p

∞)(t)]

Since the images of Dp and Bp span the excess dual spaces of I, J at p, the image of their

union spans the above κ(p)-vector space.

Remark 1.8.2. Even if we start with two minimal differential primary decompositions of

sizes amult(I) and amult(J), the resulting decomposition for I ∩ J may not be minimal:

the union of basis elements may not be a basis. △
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1.8.2 Sums

While summing two is trivial when given generators, the computation is not so straight

forward when dealing with differential primary decompositions. We keep the notation

from eq. (1.5).

Proposition 1.8.3. A differential primary decomposition for I + J is given by

{(p, tp, Cp)}p∈Ass(I)∩Ass(J),

where Cp spans spanκ(p)Dp ∩ spanκ(p) Bp.

Proof. The image of Cp spans

Dp(t) [I
(t)] ∩Dp(t) [J

(t)]

Dp(t) [(I : p
∞)(t)] ∩Dp(t) [(J : p

∞)(t)]
=

Dp(t) [(I + J)(t)]

Dp(t) [(I : p
∞)(t) + (J : p∞)(t)]

,

from which we have a surjection onto the excess dual space of I + J ,

Dp(t) [(I + J)(t)]

Dp(t) [((I + J) : p∞)(t)]
,

1.8.3 Quotients

Let J ⊆ R. If Λ is a local dual space, we define ΛJ to be the local dual space generated by

elements of the form Dg where D ∈ Λ, g ∈ J .

Proposition 1.8.4. Let I, J ⊆ R be ideals, p ⊆ R a prime. Then Dp(t) [(I : J)
(t)] =

Dp(t) [I]J and Dp(t) [(I : f)
(t)] = Dp(t) [I

(t)]f .

Proof. Suppose that I is p-closed; if not, replace I by its p-closure Ip ∩ R. If D ∈

Dp(t) [I
(t)]J , then D =

∑
Digi for some Di ∈ Dp(t) [I

(t)] and gi ∈ J . Let f ∈ I : J ,

then D • f =
∑
Di • (gif) = 0. This proves the ⊇ direction.
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For the opposite inclusion, we dualize. Let f ∈ Ip(t) [Dp(t) [I
(t)]J ], so D • (gf) = 0 for

all D ∈ Dp(t) [I
(t)] and g ∈ J . Thus gf ∈ I for all g ∈ J , implying that f ∈ I : J .

Naturally this also allow us to compute saturations: if N is an integer so that I : p∞ =

I : pN , then Dp(t) [(I : p
∞)(t)] = Dp(t) [I

(t)]pN .

1.8.4 Ring maps

Suppose S = K[y1, . . . , ym], R = K[x1, . . . , xn] and ϕ : S → R is a ring map. If I ⊆ R is

a p-primary ideal, then J = ϕ−1(I) ⊆ S is a q-primary ideal, where q = ϕ−1(p). Thus by

duality I corresponds to a finite dimensional local dual space in Wκ(p) and J corresponds

to a finite dimensional local dual space in Wκ(q). Our goal will be to recover the latter from

the former.

The map ϕ induces a map Φ: κ(q) → κ(p) on the residue fields. Thus we obtain a

field extension κ(q) ⊆ κ(p); fix a (possibly infinite) basis {b1, b2, . . . } of κ(p) over κ(q).

Any element D ∈ Wκ(p) can be expressed as a polynomial in variables ∂x1 , . . . , ∂xn and

coefficients in κ(p). Furthermore, by the multivariable chain rule (Faà di Bruno’s formula)

there are finitely many non-zero operators {Ek}k ∈ Wκ(q) such that

D • ϕ(f) =
∑
k

Φ(Ek • f)bk

for all f ∈ S, and only a finite number of the Ek are non-zero.

Proposition 1.8.5. Let t, s be maximal sets of independent variables over p and q respec-

tively. Suppose {D1, . . . , Ds} is a basis of Dp(t) [I
(t)]. For each Di, let {Ei,k}k be a finite

set of operators in Wκ(q) such that

Di • ϕ(f) =
∑
k

Φ(Ei,k • f)bk (1.6)

for any f ∈ S. Then the set
⋃s
i=1

⋃
k{Ei,k} spans Dq(s) [J

(s)].
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Proof. Let Λ = spanκ(q)
⋃s
i=1

⋃
k{Ei,k}. Note that since the Di are a basis for a local dual

space, Λ must also be a local dual space.

If f ∈ J , then ϕ(f) ∈ I and Di • ϕ(f) = 0. Since bk is a basis of κ(p) over κ(q), we

must have Φ(Ei,k • f) = 0 for all i, k, thus Λ ⊆ Dq(s) [J
(s)].

Conversely, let f ∈ Iq(s) [Λ] ∩ S. Then Di • ϕ(f) = 0, so ϕ(f) ∈ I , or equivalently

f ∈ J . Thus Iq(s) [Λ] ∩ S ⊆ J , and by duality Λ ⊇ Dq(s) [J
(s)].

1.8.5 Elimination

In general, computing the Ei,k from a basis Di of a local dual space is difficult to do in

practice, but can be done explicitly if the map ϕ : S → R is simple enough. Elimination of

variables is one such instance.

We start by eliminating a single variable. Thus we have a map

ϕ : K[y1, . . . , yn−1]→ K[x1, . . . , xn]

yi 7→ xi for all i = 1, . . . , n− 1

Suppose I ⊆ R a p-primary ideal. The elimination ideal of I , that is the ideal obtained

by eliminating the variable xn, is the ideal J = I ∩S, which is q-primary, where q = p∩S.

Thus both the local dual spaces of I and J are finite dimensional. Let t, s be a maximal set

of independent variables over p and q respectively. Our goal will be to explicitly compute

the local dual space corresponding to J from the one corresponding to I , i.e. we want to

obtain Dq(s) [J
(s)] from Dp(t) [I

(t)].

Let α ∈ Nn such that αn > 0. Then clearly ∂αx • ϕ(y) = 0, since ϕ(y) is not a function

of xn. If αn = 0, then ∂αx • ϕ(f) = Φ(∂αy • f), where by abuse of notation we denote

∂αy = ∂α1
y1
· · · ∂αn−1

yn−1
.

Note that the field extension κ(q) ↪→ κ(p) is a simple extension, generated by the image

of the missing variable xn. Thus we have a basis {1, xn, x2n, . . . } of κ(p) over κ(q).
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Let D1, . . . , Dr be a basis of Dp(t) [I
(t)]. Each Di ∈ Wκ(p) can be written as a finite

linear combination

Di =
∑
k

Di,kx
k
n,

where Di,k =
∑

αΦ(ci,k,α)∂
α
x is an operator with coefficient in the subfield κ(q). We then

define

Ei,k =
∑

α : αn=0

ci,k,α∂
α
y .

By the discussion above, the operators Ei,k satisfy (1.6), and thus are a basis for the local

dual space of the elimination ideal J by Proposition 1.8.5.

1.9 Extension to modules

So far we have studied ideals of R and their local dual spaces. With slightly modified

definitions, the theory extends to R-submodules of U ⊆ Rk. While polynomial mod-

ules are certainly less familiar than ideals, they play a major role in analysis. As we will

see in Chapter 2, ideals correspond to PDE systems whose solutions are scalar functions

u(z) : Rn → C, while module correspond to PDE systems whose solutions are vector val-

ued functions u(z) : Rn → Ck. Many of the proofs translate to this new setting almost

verbatim; we will not repeat these here.

For this section, let k ∈ N, and let e1, . . . , ek denote the standard basis vectors, so that

Rk =
⊕k

i=1Rei. Suppose p ⊆ R is a prime, and let D = (D1, . . . , Dk) ∈ W k
κ(p). We can

also write

D =
k∑
i=1

∑
α

cα,i∂αei,

in which case the degree of D is the largest |α| such that cα,i ̸= 0. We define the result of
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applying D to some f = (f1, . . . , fk) ∈ Rk to be

D • f =
k∑
i=1

Di • fi; (1.7)

thus D corresponds to a map Rk → κ(p). We also have a right R-action defined as (Dg) •

f := D • (gf), where g ∈ R, f ∈ Rk.

Definition 1.9.1. Let U ⊆ Rk be an R-module, m ⊆ R a maximal ideal. The local dual

space of U at m is

Dm[U ] = {D ∈ W k
κ(m) : D • f = 0 for all f ∈ U}.

Dually, if Λ ⊆ W k
κ(m), define

Im[Λ] = {f ∈ Rk : D • f = 0 for all D ∈ Λ}.

For submodules of Rk (and indeed submodules of any module), we have properties

analogue to extensions and contractions of ideals under localization. We will summarize

the main ones. Let ϕ : Rk → Rk
p be the natural map. If N ⊆ Rk

p is a submodule, we denote

by N ∩ Rk the module ϕ−1(N) ⊆ Rk. Likewise if U ⊆ Rk is a submodule, we denote by

Up the module URk
p .

1. For any submodule N ⊆ Rk
p , we have N = (N ∩Rk)p.

2. A submodule U ⊆ Rk is of the form N ∩ Rk for some submodule N ⊆ Rk
p if and

only if U = Up ∩Rk. In this case we say that U is p-closed.

Breaking from standard notation in commutative algebra, we say that a prime p ⊆ R is

associated to U if there exists some u ∈ Rk such that

p = (U : u) := {f ∈ R : fu ∈ U}.
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The set of associated primes ofU is denoted Ass(U), and sinceR is Noetherian, it is a finite,

nonempty set of prime ideals Ass(U) := {p1, . . . , ps}. The R-submodule U ⊆ Rk is said

to be p-primary if s = 1, i.e. Ass(U) = {p}, or equivalently if x ̸∈ p and xu ∈ U implies

u ∈ U . A minimal irredundant primary decomposition of U is a list of R-submodules

U1, . . . , Us ⊆ Rk such that U =
⋂s
i=1 Us, and each Ui is pi-primary.

Remark 1.9.2. In reference textbooks on commutative algebra, e.g. [4, 17], what we defined

as Ass(U) would be called Ass(Rk/U). We motivate our change of convention by the fact

that we only consider submodules of Rk. This is also in line with the notation used for

ideals (k = 1), where Ass(I) is the set of associated primes of the R-module R/I . △

Similarly to ideals, each module U ⊆ Rk comes equipped with a variety, V (U) ⊆ Kn,

referred to as the support of U by algebraists, or the characteristic variety by analysts. We

define it as

V (U) :=
⋃

p∈Ass(U)

V (p);

see also Section 2.6 for alternative characterizations.

Next, we will translate some of our results to the language of modules. We include

proofs only if they differ significantly from the respective proof for ideals.

Proposition 1.9.3 (c.f. Theorem 1.2.1). Suppose m ⊆ R is a maximal ideal corresponding

to a rational point p ∈ Kn. There is an inclusion reversion bijection between Rm sub-

modules V ⊆ Rk
m and local dual spaces Λ ⊆ W k

κ(m), given by J 7→ Dm[J ∩ Rk] and

Λ 7→ (Im[Λ])m. If U ⊆ Rk is an R-submodule, we have Dm[U ] = Dm[Um ∩Rk].

Proof sketch. While the module case was not explicitly covered, one can adapt the con-

structions in [42, Chapt. 28 and 31]. The key observation is that (Rk)∗ = (R∗)k, and that

a linear functional D = (D1, . . . , Dk) acts on a k-tuple of polynomials f = (f1, . . . , fk)
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precisely as in (1.7), that is

D(f) =
k∑
i=1

Di(fi).

Lemma 1.9.4 (c.f. Lemma 1.3.1). Suppose m ⊆ R is a maximal ideal. For s = 1, 2, . . .

we have

Dm[m
sRk] =

(
W

(s−1)
κ(m)

)k
,

where
(
W

(s−1)
κ(m)

)k
is the set of operators in W k

κ(m) of degree at most s− 1.

Proposition 1.9.5 (c.f. Proposition 1.3.3). Let Λ ⊆ W k
κ(m) be a nonzero local dual space.

Then Im[Λ] ⊆ Rk is an R-submodule such that AnnR(Rk/Im[Λ]) ⊆ m. If in addition Λ is

finite dimensional, then Im[Λ] is m-primary.

Proof. Let x ∈ AnnR(R
k/Im[Λ]). Since Λ is a local dual space, it contains an element of

the form 1ei for some i = 1, . . . , n. Then, since xei ∈ Im[Λ], we must have 1ei • xei =

x = 0 ∈ R/m. Hence x ∈ m.

Since Λ is finite dimensional, we have Λ ⊆ (W
(N)
κ(m))

k for some integer N . Then

mN+1Rk ⊆ Im[Dm[m
N+1Rk]] = Im[(Wκ(m)(N))k] ⊆ Im[Λ]

Thus Rk/Im[Λ] is annihilated by a power of m. Since m is maximal, every element not in

m is a nonzerodivisor on Rk/Im[Λ].

Lemma 1.9.6 (c.f. Lemma 1.3.6). Using the notation of Diagram 1.1, any nn-primary

submodule Vn ⊆ Skn satisfies Vn = ψ(ψ−1(Vn)), where ψ denotes the extension of ψ : Rm →

Sn to Rk
m → Skn .
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Proof. Let r1, . . . , rs be generators of the m-primary submodule ϕ−1(V ) ⊆ Rk. Since the

diagram (1.1) commutes, we have ϕ−1(V ) = ψ−1(Vm)∩Rk. Because ϕ−1(V ) is m-primary,

we have the same equality in Rk
m, i.e. ϕ−1(V )m = ψ−1(Vn). The elements r1, . . . , rs gener-

ate the vector space ϕ−1(V )m/mmϕ
−1(V )m, which is equal to ψ−1(Vn)/ψ

−1(mm)ψ
−1(Vn).

Therefore the images ψ(xi) generate the vector space Vn/nnVn. By Nakayama’s lemma,

the ψ(xi) generate Vn, so Vn is the extension of a module under the map ϕ, so it is equal to

its contraction-extension.

Proposition 1.9.7 (c.f. Proposition 1.4.2). Let U ⊆ Rk be an R-submodule, m ⊆ R a

maximal ideal. Then the m-closure of U is

Um ∩R =
∞⋂
d=1

(U +mdRk).

Proof. Let I = AnnR(R
k/U). If I ̸⊆ m, then both sides equal Rk, so we may assume

I ⊆ m. Let π : Rk ↠ Rk/U =: V be the natural surjection; note that V is also an S :=

R/I-module. Set n := m/I . As U+mdRk = π−1(ndV ) and Um∩R = π−1(ker(V → Vn)),

it suffices to show that ker(V → Vn) =
⋂∞
d=1 n

dV . Set W :=
⋂∞
d=1 n

dV . By Artin-Rees

we have W = nW , so by Nakayama, there exists a ∈ n such that (1 + a)W = 0, hence

W ⊆ ker(V → Vn). Conversely, consider the natural map ϕ : V →
∏∞

d=1 V/(n
dV ), which

has kerϕ = W . Since n is maximal in S, every element of S\n acts by multiplication as an

automorphism on V/ndV for all d ≥ 1. This implies that ϕ factors through the localization

V → Vn, hence ker(V → Vn) ⊆ kerϕ.

Theorem 1.9.8 (c.f. Theorems 1.3.12 and 1.4.5). Suppose m ⊆ R is a maximal ideal.

1. There is a bijective, inclusion reversing correspondence between m-primaryR-submodules

U ⊆ Rk and finite dimensional local dual spaces Λ ⊆ W k
κ(m).

2. There is a bijective, inclusion reversing correspondence between m-closedR-submodules

U ⊆ Rk and local dual spaces Λ ⊆ W k
κ(m).
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Both correspondences are given by U 7→ Dm[U ] and Λ 7→ Im[Λ]. The correspondence

turns sums into intersections, and intersections into sums (c.f. Corollary 1.4.7).

Since modules behave well under localizations, the theory extends to local dual spaces

over non-maximal primes exactly as it does for ideals. Recall that for a prime p and a

maximal set of independent variables t over p, we denote by (·)(t) the localization at the

multiplicatively closed set K[t1, . . . , td] \ {0}. We record this result for completeness

Theorem 1.9.9 (c.f. Theorem 1.5.7 and corollary 1.5.8). Suppose p ⊆ R is a prime ideal,

and let t be a maximal set of independent variables over p.

1. There is a bijective, inclusion reversing correspondence between p-primaryR-submodules

U ⊆ Rk and finite dimensional local dual spaces Λ ⊆ W k
κ(pt).

2. There is a bijective, inclusion reversing correspondence between p-closedR-submodules

U ⊆ Rk and local dual spaces Λ ⊆ W k
κ(p(t))

.

Both correspondences are given by U 7→ Dp(t) [U
(t)] and Λ 7→ Ip(t) [Λ] ∩ Rk. The corre-

spondence turns sums into intersections, and intersections into sums.

Let U ⊆ Rk be a p-primary R-submodule. The finite set D ⊆ W k
κ(p(t))

is a set of

Noetherian operators if their κ(p) span equals the local dual space Dκ(p(t))[U
(t)]. As was

the case for ideals, these determine the module via

U = {f ∈ Rk : D • f = 0 for all D ∈ D}.

One can also lift a set of Noetherian operators to W k
R to recover the classical definition by

Ehrenpreis and Palamodov.

A differential primary decomposition is a list of triples {(p, tp,Dp)}p∈Ass(U) such that

for each p ∈ Ass(U), the images of the finite number of operators in Dp span the excess
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dual space

Dp(tp) [U
(tp)]

Dp(tp) [(U : p∞)(tp)]

as a κ(p)-vector space. The R-module (U : p∞) is the submodule {f ∈ Rk : pNf ⊆

U, N ≫ 0}. Our definition is compatible with the one in [7, 11], therefore the minimal

size of a differential primary decomposition is

amult(U) =
∑

p∈Ass(U)

multU(p) =
∑

p∈Ass(U)

lengthRp

(
Up : p

∞
p

Up

)
.

Example 1.9.10. Let R = Q[x, y], and suppose U ⊆ R2 is the R-submodule generated by

the columns of the matrix

M =

0 x2 xy2

x 0 −2y2

 .
Then {(pi, ti,Di)}i=1,2 is a minimal differential primary decomposition of U , where

p1 = (x) p2 = (x, y)

t1 = {y} t2 = ∅

D1 =


1
0

 ,
2∂x

1


 D2 =


∂x
0

 ,
 0

∂y


 .

In particular, the vector of polynomials f = (f1, f2)
T ∈ R2 lies in U if and only if f

and 2∂f
∂x

+ g vanishes on the line x = 0 and ∂f
∂x

and ∂g
∂y

vanish at the origin.

△
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CHAPTER 2

FROM ALGEBRA TO ANALYSIS

The notion of Noetherian operators, which answered Gröbner’s question of representing

arbitrary ideal using differential conditions, was surprisingly answered by analysts in the

context of solving linear partial differential equations with constant coefficients. The con-

nection to analysis is less surprising once we consider a simple ordinary differential equa-

tion familiar from undergraduate calculus. Consider the homogeneous linear ordinary dif-

ferential equation

cmϕ
(m) + · · ·+ c2ϕ

′′ + c1ϕ
′ + c0ϕ = 0, (2.1)

where c1, . . . , cm ∈ C are constant coefficients, and ϕ : R → C is an unknown smooth

function. To solve the equation, we find roots of the characteristic polynomial

p(x) := cmx
m + · · ·+ c2x

2 + c1x+ c0 = 0.

Suppose λ1, . . . , λs are the roots of p(x), so we can write p(x) = (x−λ1)m1 · · · (x−λs)ms ,

where mi is the multiplicity of the root λi. Then the solutions to (2.1) is an m-dimensional

C-vector space spanned by the functions

{xseλix : 0 ≤ s < mi, 1 ≤ i ≤ s}.

Thus the solution set to the ODE corresponds exactly to a factorization of the polynomial

p(x), and therefore represents the scheme structure of the ideal (p(x)) ⊆ C[x]. Further-
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more, we note that the set

{(p, tp,Dp)}p∈Ass(I) = {((x− λi), ∅, {1, x, x2, . . . , xmi−1})}i=1,...,s

is a differential primary decomposition of the ideal I = (p(x)).

Similar results are true in much greater generality. In this section, we will see how

to view ideals and modules as systems of linear partial differential equations. We will

also discuss he duality between solutions to systems of PDE and polynomial modules,

summarizing fundamental results by Oberst [47, 49, 50]. Using Noetherian operators and

differential primary decompositions will allow us to describe the solution sets of these PDE

using a finite sum of certain integral solutions. The connecting glue between the algebra

and analysis is the celebrated Fundamental Theorem by Ehrenpreis and Palamodov [6, 16,

31, 51]. We will also improve upon the fundamental theorem by using differential primary

decompositions as opposed to full sets of Noetherian operators.

2.1 PDE, polynomials and modules

In line with our notation from Chapter 1, let R = K[x1, . . . , xn]. We will introduce a

new set of variables, z1, . . . , zn, and equate xi with the operator ∂
∂zi

. A partial differential

equation is a k-vector of polynomials in K[ ∂
∂z1
, . . . , ∂

∂zn
]. By replacing the symbol ∂α

∂zα
by

xα we can identify a PDE with a vector v ∈ Rk. The vector v corresponds to the differential

equation

k∑
i=1

vi • ui(z1, . . . , zn) = 0,

where u = (u1, . . . , uk) is an unknown k-tuple of functions. Here xα•u(z1, . . . , zn) = ∂αu
∂zα

.

A partial differential operator with constant coefficients is a ℓ × k matrix M with

polynomial entries, i.e. M ∈ Rℓ×k. The matrix M operates on k-tuples of functions
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u = (u1, . . . , uk) : Rn → Ck; the result M • u : Rn → Cℓ is an ℓ-tuple of functions given

by

(M • u)i =
∑
j

Mij • uj,

where the monomial xα corresponds to the operator ∂α

∂zα
.

A system of PDE can thus be written as M •u = 0. The system consists of ℓ equations,

each of which corresponds to a row of M , and the solution is a k-tuple of functions u.

We illustrate our setup with a few examples.

Example 2.1.1 (n = 3, k = 4, ℓ = 2). Let

M =

x1 x2 x3 0

0 x1 x2 x3

 .
A solution u = (u1, u2, u3, u4) is a (sufficiently differentiable) function R3 → C4 such that

the following ℓ = 2 equations are satisfied:

M • u = 0 ⇐⇒


∂u1
∂z1

+ ∂u2
∂z2

+ ∂u3
∂z3

= 0

∂u2
∂z1

+ ∂u3
∂z2

+ ∂u4
∂z3

= 0.

Without going into details quite yet, we can check that one possible family of solutions are

functions of the form

u(z1, z2, z3) = (u1, u2, u3, u4)
T =

[
0, ∂2ϕ

∂z23
, ∂2ϕ

∂z2∂z3
, ∂2ϕ

∂z22
− ∂2ϕ

∂z1∂z3

]T
,

where ϕ(z1, z2, z3) : R3 → C is twice differentiable. △
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Example 2.1.2. The gradient operator in three dimensions is

u(z1, z2, z3) 7→


∂u
∂z1

∂u
∂z2

∂u
∂z3

 ,

which corresponds to the differential operator grad :=
[
x1
x2
x3

]
. The curl operator in three

dimensions is 
u1(z1, z2, z3)

u2(z1, z2, z3)

u3(z1, z2, z3)

 7→

∂u3
∂z2
− ∂u2

∂z3

∂u1
∂z3
− ∂u3

∂z1

∂u2
∂z1
− ∂u1

∂z2

 ,

which corresponds to the differential operator curl :=
[

0 −x3 x2
x3 0 −x1
−x2 x1 0

]
. We know from

calculus that curl-free smooth functions are precisely gradients. In our notation, we have

curl •u = 0 if and only if u = grad •v for some smooth function v. Algebraically, this

corresponds to the fact that the matrix grad is the syzygy matrix of curl. △

The set of solutions u to the system of PDE M • u = 0 depends of course on which

function space F we seek solutions. In the control theory literature, the space F is often

called the space of signals [47]. Classical choices for F include the space of compactly

supported smooth functions C∞
0 , smooth functions C∞, distributions D′, or even formal

power series C[[z1, . . . , zn]]. We require the space F to be an R-module, i.e. closed under

differentiation, in which case an operator M ∈ Rℓ×k describes an R-module homomor-

phism Fk → F ℓ. We will revisit the different choices for F , their algebraic properties, and

the consequences on the solutions spaces in the upcoming sections.

Suppose u ∈ Fk is a solution to the system of PDE M • u = 0, and let U be the

R-submodule of Rk generated by the rows of M . Recall that every element of U ⊆ Rk

corresponds to a PDE. It is easy to see that u is also a solution to any PDE in the module
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U . Conversely, since R is Noetherian, any R-submodule U ⊆ Rk is finitely generated, so

there is a matrix M whose rows generate the module U . Therefore, each system of PDE

M • u = 0 corresponds to an R-submodule of U ⊆ Rk. Following standard notation, we

write U = imRM
T , i.e. the module generated by the rows of M .

Definition 2.1.3. Let F be an R-module, and U be an R-submodule of Rk. The solution

set of the PDE given by U is the R-module

SolF(U) := {u ∈ Fk : v • u = 0 for all v ∈ U}.

If M is a ℓ × k matrix with entries in R, we denote by SolF(M) the solution set of the

submodule of Rk generated by the rows of M . An R-module Λ ⊆ Fk is called a solution

space if there is a matrixM ⊆ Rℓ×k, or anR-submodule U ⊆ Rk, such that Λ = SolF(M),

or Λ = SolF(U).

In control theory, solution sets are often called systems or behaviors. As discussed

above, the solution space of a module is fully determined by its generators: ifU is generated

by the ℓ rows of the matrix M , we can write

SolF(U) = SolF(imRM
T ) = {u ∈ Fk : M • u = 0}.

We also have a dual object: we can ask which differential equations are satisfied by a

given space of solutions.

Definition 2.1.4. Let F be an R-module, and Λ ⊆ Fk be a solution space. The set of

differential operators annihilating Λ is

Diff(Λ) := {v ∈ Rk : v • u = 0 for all u ∈ Λ}.

The following result is a straightforward consequence of the definitions, c.f. the duality

between Dm[ ] and Im[ ] in Chapter 1.
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Proposition 2.1.5. The mappings U 7→ SolF(U) and Λ 7→ Diff(Λ) are inclusion reversing,

and we have

U ⊆ Diff(Sol(U)) Λ = Sol(Diff(Λ))

Sol(U) = Sol(Diff(Sol(U))) Diff(Λ) = Diff(Sol(Diff(Λ)))

The single inclusion above may be strict. For a concrete example, suppose n = 1,

k = 1, F = C∞
c , the set of compactly supported functions, and U = (x). The solution set

SolF(U) is the set of compactly supported smooth functions whose first derivative vanishes.

These are of course the constant functions, however only the zero function has compact

support among these. Hence SolF(U) = {0}, so U ⊊ Diff(SolF(U)) = Rk. In Section 2.3

we will describe a condition turning the only inclusion into an equality.

2.2 Distribution theory

In its most general form, the Ehrenpreis-Palamodov fundamental principle can be used

when the function space F is the space of distributions D′. We will give a brief outline

of the properties of the space of distributions and its R-module structure. A more detailed

account can be found in standard analysis textbook, such as [32].

Let D := C∞
c (Rn,C) denote the space of smooth functions Rn → C whose support is

compact. A distribution is a linear functional u : D → C such that, for every compact set

K ⊂ Rn, there exists positive real constants C, d such that

u(f) ≤ C
∑
|α|≤d

sup |∂αf | for all f ∈ C∞
c with supp(f) ⊆ K.

These are the linear functionals that are continuous in whenD is endowed with the topology

of sequential convergence. Therefore we call the set of distributions D′. It is a subspace of
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the vector space dual of D.

The space of distributions contains all smooth functions as a subspace, as we can asso-

ciate to any smooth function ϕ ∈ C∞(Rn,C) the distribution f 7→
∫
ϕ · f for any f ∈ D.

The space of distributions also contains several non-traditional, potentially discontinuous

”functions” such as Dirac delta functions and step functions.

As mentioned earlier, the space D′ is an R-module, which means that we can take

derivatives of distributions. If u ∈ D, we define for all i = 1, . . . , n, f ∈ D

(xi • u)(f) =
(
∂u

∂zi

)
(f) := −u

(
∂f

∂zi

)
= −u(xi • f).

The negative sign ensures compatibility with derivative of smooth functions, i.e. if ϕ ∈ C∞

corresponds to the distribution u : f 7→
∫
f · ϕ, then using integration by parts the function

xi • ϕ corresponds to the distribution xi • u.

Example 2.2.1. Let n = 1, and consider the step function

u(f) :=

∫ ∞

0

f(z) dz

for all compactly supported functions f . Its derivative is the Dirac delta function, supported

at the point 0, since

(x • u)(f) = −u(x • f) = −
∫ ∞

0

df

dx
dx = −(0− f(0)) = f(0).

△

2.3 Algebraic properties of function families

The matrix M ⊆ Rℓ×k describes a morphism of free R modules M : Rk → Rℓ. Since R

is Noetherian, the kernel kerRM ⊆ Rk is a finitely generated R-submodule, generated by

{s1, . . . , sk′} ⊆ Rk. Let S be the syzygy matrix of M , i.e. the k×k′ matrix whose columns
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are s1, . . . , sk′ . Thus S corresponds to an R-module morphism S : Rk′ → Rk such that the

sequence

Rk′ S−→ Rk M−→ Rℓ (2.2)

is exact, that is kerRM = imR S.

Let F be an R-module. Tensoring (2.2) by F , we obtain the complex

Fk′ S−→ Fk M−→ F ℓ, (2.3)

meaning that imF S ⊆ kerF M = Sol(M). Thus we can obtain a subset of the solutions

fully algebraically by doing a syzygy computation, a standard procedure for computer al-

gebra software. We call a matrix S such that imF S ⊆ SolF(M) a vector potential.

An flat R-module preserves exactness after tensoring. In other words, if F is flat the

sequence (2.3) becomes exact, implying that Sol(M) = imF S. Perhaps the most important

flat space of functions is the space of compactly supported smooth functions F = C∞
c , a

property shown by Malgrange in 1960 [40]. Therefore solving PDE systems over the space

of compactly supported smooth functions becomes trivial, as we only need a to perform a

syzygy computation. From an analytic point of view, the existence of compactly supported

solutions is of interest in the context of understanding the space of Young measures; see

e.g. [34].

Unfortunately many interesting function spaces are not flat. Take for example the set

of smooth functions F = C∞, or the set of distributions F = D′. If M = [x] is a 1 × 1

matrix, solving M • u = 0 means finding a function u(z) : R → C such that du
dz

= 0 (or

its distributional counterpart). Clearly the constant function u(z) = 1 is a solution, but

the syzygy matrix of M is the zero matrix. Instead, Oberst [47] showed that C∞ and D′

are injective cogenerators, which induces a strong duality between R-submodules U ⊆ Rk

and sets of solutions Sol(U).
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Definition 2.3.1. The R-module F is an injective cogenerator if the following holds: any

complex of R-modules

0→ N ′ → N → N ′′ → 0

is exact if and only if the dual

0← HomR(N
′,F)← HomR(N,F)← HomR(N

′′,F)← 0

is exact.

Suppose F is an injective cogenerator, and U ⊆ Rk is a submodule. We have the exact

sequence

0→ U → Rk → Rk/U → 0,

and applying HomR( ,F) yields the exact sequence

0→ HomR(R
k/U,F)→ Fk → HomR(U,F)→ 0.

To understand the map Fk = Hom(Rk,F) → Hom(U,F), let e1, . . . , ek be a free ba-

sis of Rk. A function u = (u1, . . . , uk) ∈ Fk corresponds to the homomorphism ϕ ∈

Hom(Rk,F) defined by ϕ(ei) = ui. The map then sends ϕ to the restriction ϕ|U . The

kernel of Fk → HomR(U,F) is thus precisely the set of functions that are annihilated by

U , that is SolF(U). By exactness, we get

HomR(R
k/U,F) ∼= SolF(U) and Fk/ SolF(U) ∼= HomR(U,F) (2.4)

Proposition 2.3.2. Let F be an injective cogenerator, and U ⊆ Rk and R-submodule.

Then U = Diff(Sol(U)).
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Proof. The diagram

Fk/ Sol(U) Hom(U,F)

Fk/ Sol(Diff(Sol(U))) Hom(Diff(Sol(U)),F)

∼=

∼=

ϕ

∼=

commutes, so ϕ, the map induced by the inclusion U ⊆ Diff(Sol(U)), must be a bijection.

Since F is an injective cogenerator, we must have U = Diff(Sol(U)).

Theorem 2.3.3. If F is an injective cogenerator, the maps

U 7→ SolF(U)

Λ 7→ Diff(Λ)

are an inclusion reversing bijection between R-submodules U ⊆ Rk and solution spaces

Λ.

Corollary 2.3.4. Let F be an injective cogenerator, U,U ′ ⊆ Rk be R-submodules, and

Λ,Λ′ ⊆ Fk be solution spaces. Then

SolF(U + U ′) = SolF(U) ∩ SolF(U
′) Diff(Λ + Λ′) = Diff(Λ) ∩Diff(Λ′)

SolF(U ∩ U ′) = SolF(U) + SolF(U
′) Diff(Λ ∩ Λ′) = Diff(Λ) + Diff(Λ′)

Proof. The following are immediate from the definitions

SolF(U + U ′) = SolF(U) ∩ SolF(U
′) Diff(Λ + Λ′) = Diff(Λ) ∩Diff(Λ′)
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We also have

Diff(Λ ∩ Λ′) =Diff(Sol(Diff(Λ)) ∩ Sol(Diff(Λ′)))

=Diff(Sol(Diff(Λ) + Diff(Λ′)))

=Diff(Λ) + Diff(Λ′),

since Diff(Λ) + Diff(Λ′) is an R-submodule of Rk.

For the last equation, consider the exact sequence

0→ Rk/(U ∩ U ′)
α−→ Rk/U ⊕Rk/U ′ β−→ Rk/(U + V )→ 0,

where α(x) = (x,−x), and β(x, y) = x+ y. Applying HomR( ,F), we have by (2.4)

0← Sol(U ∩ U ′)← Sol(U)⊕ Sol(U)← Sol(U) ∩ Sol(U ′)← 0.

Since the sequence

0← Sol(U) + Sol(U ′)← Sol(U)⊕ Sol(U)← Sol(U) ∩ Sol(U ′)← 0.

is also exact, we have Sol(U) + Sol(U ′) = Sol(U ∩ U ′).

Let U =
⋂s
i=1 Ui be a minimal, irredundant primary decomposition. The duality, now

between modules and solutions sets, translates the primary decomposition to a decomposi-

tion of the solution set as the sum of R-modules

SolF(U) =
s∑
i=1

SolF(Ui),

for any injective cogenerator F . Thus finding the solution set for an arbitrary submodule
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U ⊆ Rk is reduced to the same task for a primary submodule. This observation is key

in some of the earlier algorithmic work [12, 48]. We remark that the sets SolF(Ui) may

intersect nontrivially.

Remark 2.3.5. Primary decomposition of modules is built into Macaulay2 since version

1.17. If U is a submodule of Rk, e.g. obtained from U = image transpose M, where

M is the matrix corresponding to the PDE M • u = 0, a list of matrices {Mi}si=1 such that

Ui = imRM
T
i can be obtained by running the commands

primaryDecomposition comodule U /

(N -> image generators N + image relations N) /

mingens /

transpose

We have that u ∈ SolF(U) if and only if Mi • u = 0 for some i = 1, . . . , s. △

Example 2.3.6. Let R = C[x, y, z], and consider the PDE given by

M =



0 −xz2 xy2

−x2y2 x4 0

−xyz2 z2 x3y − y2

−x2z2 0 x4


The module U = imRM

⊤ has two associated primes, namely (0) and (x). The solution
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set decomposes into SolC∞(M) = SolC∞(M1) + SolC∞(M2), where

M1 =


0 −z2 y2

−z2 0 x2

−y2 x2 0

 M2 =



x2 0 0

0 x2 0

0 0 x2

0 −xz2 xy2

xyz2 −z2 y2


Using techniques described later in Section 2.7, we note that SolC∞(M1) = imC∞ S, where

S =


x2

y2

z2

 ,

and SolC∞ M2 consists of functions of the form


ϕ(b, c)

0

0

 and


aψ(b, c)

∂ψ
∂b
(b, c)

0

 ,

where x, y, z act as ∂
∂a
, ∂
∂b
, ∂
∂c

respectively, and ϕ, ψ are smooth functions R2 → C. Note

that C∞ can be replaced by D′, or indeed any injective cogenerator. △

2.4 Syzygies and vector potentials

We now focus on solutions that are represented by a vector potentials, that is solutions

u ∈ Sol(M) such that u = S • v for some k-tuple of functions v ∈ Fk. Our goal is to

compute the subspace of solutions to M that are derived from vector potentials.
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To this end, let S be the syzygy matrix of M , so that

Rk′ S−→ Rk M−→ Rℓ (2.5)

is an exact sequence. The columns of S are syzygies of M . The transpose of this se-

quence is

Rk′ ST

←− Rk MT

←−− Rℓ. (2.6)

This is a complex but it is generally not exact. Applying HomR( · ,F), we get the complex

Fk′ S−→ Fk M−→ F ℓ, (2.7)

and hence imF(S) ⊆ SolF(M). This means that S • ψ is a solution to our PDE M for any

ψ ∈ Fk. If the equality imF(S) = SolF(M) holds then we say that M admits a vector

potential.

We briefly recall some definitions. An element f in anR-module U is a torsion element

if rf = 0 for some r ∈ R\{0}. The torsion submodule of U is the module of torsion

elements. The module U is torsion if it is equal to its torsion submodule. The module U is

torsion-free if its torsion submodule is zero.

Theorem 2.4.1. Let F be an injective cogenerator. Suppose that the sequence (2.5) is

exact. Then the following are equivalent:

(1) The PDE M admits a vector potential, i.e. the sequence (2.7) is exact.

(2) The sequence (2.6) is exact.

(3) The module Rk/U = Rk/ imR(M
T ) is torsion-free.

(4) The module U = imR(M
T ) is (0)-primary.
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Proof. The equivalence of (1) and (2) holds because F is an injective cogenerator. The

proof for the equivalence between (2) and (3) can be found in [57, Prop. 2.1]. For the

equivalence between (3) and (4), let p be an associated prime of U . By definition p =

(U : f) for some f ∈ Rk. We may also express this as

p = {r ∈ R : rf = 0 in Rk/U}

Hence p contains nonzero elements if and only if f is torsion in Rk/U . We conclude that

Rk/U is torsion-free if and only if (0) is the only associated prime.

If the conditions in Theorem 2.4.1 are met then we have a parametrization of all solu-

tions:

SolF(M) = imF(B) =
{
B • ψ : ψ ∈ Fk′

}
. (2.8)

In general, SolF(M) is strictly contained in imF(B): not all solutions of M are in

the image of B. In that case, the operator can be split into two operators M0 and M1,

where M0 admits a vector potential and M1 does not, in the following strong sense: for

all B ∈ Rk×k′ , there exists ψ ∈ Fk′ such that B • ψ ̸∈ SolF(M1). This condition is

equivalent to (0) ̸∈ Ass(U1) for U1 = imR(M
T
1 ). It is also equivalent to Rk/U1 being a

torsion module.

We write U = U0 ∩ U1, where U0 is (0)-primary, and (0) ̸∈ Ass(U1). This is obtained

from a primary decomposition of U , where U1 is the intersection of all primary components

that are not (0)-primary. The solutions satisfy SolF(U) = SolF(U0) + SolF(U1). This is

known in control theory [57] as the controllable-uncontrollable decomposition, a concept

we will revisit in more detail in Chapter 5, namely in Section 5.2.

Theorem 2.4.2. The PDE U has compactly supported solutions if and only if (0)∈Ass(U).

Proof. This result is contained in [57, §3]. We offer a short proof. Suppose (0) ∈ Ass(U).

Then U is a submodule of a (0)-primary module U0 ⊆ Rk. Write U0 as the R-row span
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of a matrix M0 and let S1 be any column in its syzygy matrix S. Then for any compactly

supported distribution ψ, the solution S1 • ψ ∈ SolF(U) is also compactly supported.

For the converse, suppose (0) ̸∈ Ass(U). Let ϕ ∈ Fk\{0} be a compactly supported

solution. By Theorem 2.3.3, there exists f ∈ Rk\U such that fT • ϕ ̸= 0. Since Rk/U

is torsion, rf ∈ U for some nonzero r ∈ R. Thus r • fT • ϕ = 0. Taking Fourier

transforms, by the Paley-Wiener-Schwartz Theorem [32, Thm. 7.3.1], we get the equation

r(ξ) · f(ξ)T ϕ̂(ξ) = 0 of analytic functions. Since r(ξ) ̸= 0, we must have f(ξ)T ϕ̂(ξ) = 0,

a contradiction.

In conclusion, for any linear PDE U as above, the solution space SolF(U) decomposes

into a subspace SolF(U0) = imF(S) which contains all compactly supported solutions, and

another subspace SolF(U1), with no compactly supported solutions at all.

2.5 Exponential solutions

The key to the correspondence between Noetherian operators and solutions to PDEs lie

in the interplay between the “Fourier dual” variables x1, . . . , xn, which we identified with

∂z1 , . . . , ∂zn , and z1, . . . , zn, which we will identify correspondingly with ∂x1 , . . . , ∂xn . The

exponential function z 7→ exp(xT · z) will play a major role in this section, so we shall

assume throughout this F = D′ or C∞, which both are injective cogenerators containing

the exponential functions.

The following simple observation will drive much of the intuition.

Lemma 2.5.1. Let p, q be n-variate polynomials. Then

p(∂z) • (q(z) exp(xT · z)) = q(∂x) • (p(x) exp(xT · z))

Proof. The expression q(z) exp(xT · z) is equal to q(∂x) • exp(xt · z). Similarly, we can

rewrite p(x) exp(xT · z) = p(∂z) • exp(xT · z). Since ∂z and ∂x commute, the result

follows.
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Let p ⊆ R be a prime ideal. Recall that we can write elements D ∈ W k
κ(p) as polyno-

mials in ∂x-variables, with coefficients in κ(p)k, i.e.

D = D(x, ∂x) =
∑
α

aα
bα
∂αx ,

where aα ∈ (R/P )k is the image of the vector aα ∈ Rk, and bα ̸∈ p. If we let W ⊆ Cn

denote the variety where the bα vanish, the Zariski open set V (p) \W is non-empty.

Replacing the symbol ∂x by z, we can interpret D(x, z) as a k-tuple of rational func-

tions, whose value on (V (p) \W ) × Ck does not depend on the choice of representatives

aα. If we fix a point x0 ∈ V (p) \W , the function

u(z) := D(x0, z) exp(x
T
0 · z) (2.9)

is a function in Fk. Given an R-submodule U ⊆ Rk, we can now ask which functions

of the form (2.9) belong to Sol(U). The answer to this question reveals the connection

between Noetherian operators and solution sets.

Theorem 2.5.2. Let p ⊆ R be a prime ideal, and U ⊆ Rk be an R-submodule. Suppose

that t,y is a partition of the variables x1, . . . , xn such that t is a maximal set of independent

variables over p. Let N = {α ∈ Nn : αi = 0 if xi ∈ t} be the set of multi-indices indexing

monomials in the dependent variables only. Denote by B be the set of polynomials in the

variables zi for which i is such that xi ∈ y, whose coefficients are k-tuples of rational

functions, i.e. functions D(x, z) of the form

D(x, z) =
∑
α∈N

aα(x)

bα(x)
zα,

where aα(x) ∈ Rk, bα(x) ∈ R \ p. Then there is a one-to-one correspondence between
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elements of the local dual space Dp(t) [U
(t)] and the set

{D(x, z) ∈ B : D(x0, z) exp(x
T
0 · z) ∈ Sol(U) for all x0 ∈ V (p)}.

The correspondence sends D(x, ∂x) to D(x, z) and vice-versa.

Proof. Suppose D ∈ Dp(t) [U
(t)], so we have

D = D(x, ∂x) =
∑
α∈N

aα(x)

bα(x)
∂αx ,

Fix any x0 ∈ V (p) and consider the function D(x0, z) exp(x
T
0 · z). If u(x) ∈ U , by

applying Lemma 2.5.1

u(x) • (D(x0, z) exp(x
T
0 · z)) = u(∂z) • (D(x0, z) exp(x

T
0 · z))

=
[
D(x, ∂x) • (u(x) exp(xT • z))

]
x=x0

Note that since D(x, ∂x) ∈ Dp(t) [U
(t)], for any polynomial r ∈ R, the evaluation of

D(x, ∂x) • (u(x)r(x)) at any x0 ∈ V (p) is zero. That is, we have

[D(x, ∂x) • (u(x)r(x))]x=x0
= 0 for all univariate polynomials r ∈ R.

Since polynomials are dense in the space of entire functions [31, p.245], we have that

D(x0, z) exp(x
T
0 · z) is a solution to the PDE U for all x0 ∈ V (p).

For the converse, we can use the same argument in reverse. Let D = D(x, z) ∈ B

such that D(x0, z) exp(x
T
0 · z) is a solution. Then, if h(x) is any linear combination of

exponential functions x 7→ exp(xT · z), the evaluation of

D(x, ∂x) • (u(x)h(x))
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at any x = x0 ∈ V (p) is zero for all u ∈ U . Since linear combinations of exponential

functions x 7→ exp(xT · z) are dense in the space of entire functions, the same is true if

h(x) is a polynomial. If we substitute the symbol z by ∂x in D(x, z), and consider it as an

element of Wκ(p(t)), we have D • u = 0 for all u ∈ U , hence D ∈ Dp(t) [U
(t)].

Example 2.5.3. The prototypical example for Theorem 2.5.2 is familiar from undergrad-

uate differential calculus. Let I ⊆ Q[x] be the principal ideal generated by p(x) =

x3 − 3x2 + 4. This corresponds to the ODE v′′′(z) − 3v′′(z) + 4 = 0. The character-

istic polynomial of the ODE is p, and by factoring p(x) = (x − 2)2(x + 1) we obtain a

fundamental set of solutions e2z, ze2z, e−z. These solutions characterize the dual spaces

D(x−2)[I] = spanQ{1, ∂x} D(x+1)[I] = spanQ{1},

obtained by replacing the symbol z by ∂x. △

2.6 Modules and Varieties

Let U ⊆ Rk be an R-submodule generated by the rows of the ℓ×k matrix M , and suppose

U =
⋂s
i=1 Ui is a primary decomposition, whereUi is pi-primary. As we saw in Section 1.9,

the support of U is the variety

V (U) =
s⋃
i=1

V (pi).

If k = 1, so that U = I ⊆ R is an ideal, then the support V (U) coincides with the variety

V (I) attached as usual to an ideal I , namely the common zero set in Cn of all polynomials

in I .

The support is generally reducible, with ≤ s irreducible components. For instance,

the module M in Example 2.7.5 has six associated primes, and an explicit primary de-

composition was given in (2.14). However, the support V (U) has only four irreducible
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components in C4, namely one hyperplane, two 2-dimensional planes, and one nonlinear

surface (twisted cubic).

The relationship between modules and ideals mirrors the relationship between PDE

for vector-valued functions and related PDE for scalar-valued functions. To pursue this

a bit further, we now define two ideals that are naturally associated with a given module

M ⊆ Rk.

The first ideal is the annihilator of the quotient module Rk/U = cokerR(M
T ), which

is

I := AnnR(R
k/U) =

{
f ∈ R : fm ∈M for all m ∈ Rk

}
.

The second is the zeroth Fitting ideal of Rk/U , which is the ideal in R generated by the

k × k minors of the presentation matrix MT . It is independent of the choice of M , and we

write

J := Fitt0(R
k/U) =

(
k × k subdeterminants of M

)
.

We are interested in the affine varieties in Cn defined by these ideals. They are denoted by

V (I) and V (J) respectively. The following is a standard result in commutative algebra.

Proposition 2.6.1. The three varieties above are equal for every submodule U of Rk, that

is,

V (U) = V (I) = V (J) ⊆ Cn. (2.10)

Proof. This follows from [17, Proposition 20.7].

Remark 2.6.2. It can happen that rank(M) < k, for instance when k > l. In that case,

I = J = {0} and V (U) = Cn. Geometrically, the moduleU furnishes a coherent sheaf that

is supported on the entire space Cn. For instance, let k = n = 2, l = 1 and M = [ ∂1 −∂2 ].

The PDE asks for pairs (ψ1, ψ2) such that ∂ψ1/∂z1 = ∂ψ2/∂z2. We see that Sol(M)

consists of all pairs
(
∂α/∂z2 , ∂α/∂z1

)
, where α = α(z1, z2) runs over functions in two

variables. Indeed, the module U = imR(M
T ) is (0)-primary, so the solution set admits a
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vector potential given by
[
∂2
∂2

]
, the syzygy matrix of M . △

The following example shows that (2.10) is not true at the level of schemes.

Example 2.6.3 (n = k = 3, l = 5). Let R = C[∂1, ∂2, ∂3] and U the submodule of R3

generated by rows of

M =



∂1 0 0

0 ∂21 0

0 ∂2 0

0 0 ∂1

0 0 ∂3


We find I = ⟨∂21 , ∂1∂2⟩ ⊃ J = ⟨∂41 , ∂31∂3, ∂21∂2, ∂1∂2∂3⟩. The sets of associated primes are

Ass(I) =
{
⟨∂1⟩, ⟨∂1, ∂2⟩

}
with amult(I) = 2

⊂ Ass(U) =
{
⟨∂1⟩, ⟨∂1, ∂2⟩, ⟨∂1, ∂3⟩

}
with amult(U) = 4

⊂ Ass(J) =
{
⟨∂1⟩, ⟨∂1, ∂2⟩, ⟨∂1, ∂3⟩, ⟨∂1, ∂2, ∂3⟩

}
with amult(J) = 5

The support V (U) is a plane in 3-space, on which I and J define different scheme struc-

tures. Our module M defines a coherent sheaf on that plane that lives between these two

schemes. We consider the PDE in each of the three cases, and from this we derive the

solution sets. To begin with, functions in Sol(J) have the form

α(z2, z3) + z1β(z3) + z21γ(z3) + z1δ(z2) + c · z31 ,

for any functions α, β, γ, δ. The first two terms give functions in the subspace Sol(I).
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Elements in Sol(U) are vectors


ρ(z2, z3)

σ(z3) + z1τ(z3)

ω(z2)

 ,

for any functions ρ, σ, τ, ω. These represent all functions C3 → C3 that satisfy the five

PDE given by the matrix M . △

Remark 2.6.4. The quotientR/I embeds naturally into the direct sum of k copies ofRk/U ,

via 1 7→ ej . This implies Ass(I) ⊆ Ass(U). It would be worthwhile to understand how the

differential primary decompositions of I, J and U are related, and to study implications for

the solution spaces Sol(I), Sol(J) and Sol(U). What relationships hold between these? △

Lemma 2.6.5. Fix a ℓ× k matrix M with entries in R and its module U = imRM
T ⊆ Rk.

A point u ∈ Cn lies in V (U) if and only if there exist constants c1, . . . , ck ∈ C, not all zero,

such that 
c1
...

ck

 exp(u1z1 + · · ·+ unzn) ∈ Sol(U). (2.11)

More precisely, (2.11) holds if and only if M(u)(c1, . . . , ck)
T = 0.

Proof. Let mij(∂) denote the entries of the matrix M(∂). Then (2.11) holds if and only if

k∑
i=1

mij(∂z) • (ci exp(u1z1 + · · ·+ unzn)) = 0 for all j = 1, . . . , l.

This is equivalent to

k∑
i=1

cimij(u) exp(u1z1 + · · ·+ unzn) = 0 for all j = 1, . . . , l.
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This condition holds if and only if M(u)(c1, . . . , ck)
T is the zero vector in Cl. We conclude

that, for any given u ∈ Cn, the previous condition is satisfied for some c ∈ Ck\{0} if and

only if rank(M(u)) < k if and only if u ∈ V (U) = V (I). Here we use Proposition

2.6.1.

Here is an alternative way to interpret the characteristic variety of a system of PDE:

Proposition 2.6.6. The solution space Sol(U) contains a polynomial-exponential solution

q(z) · exp(uT · z) if and only if u ∈ V (U). Here q is some vector of k polynomials in n

unknowns.

Proof. One direction is clear from Lemma 2.6.5. Next, suppose q(z) exp(uT ·z) ∈ Sol(U).

The partial derivative of this function with respect to any unknown zi is also in Sol(U).

Hence

∂i • (q(z) exp(utz)) = (∂i • q(z)) exp(utz) + uiq(z) exp(u
tz) ∈ Sol(U) for i = 1, . . . , n.

Hence the exponential function (∂i • q(z)) exp(utz) is in Sol(U). Since the degree of

∂i • q(z) is less than that of q(z), we can find a sequence D = ∂i1∂i2 · · · ∂is such that D • q

is a nonzero constant vector and (D • q) exp(utz) ∈ Sol(U). Lemma 2.6.5 now implies

that u ∈ V (U).

The solution space Sol(U) to a submodule U ⊆ Rk is a vector space over C. It is

infinite-dimensional whenever V (U) is a variety of positive dimension. This follows from

Lemma 2.6.5 because there are infinitely many points u in V (U). However, if V (U) is

a finite subset of Cn, then Sol(U) is finite-dimensional. This is the content of the next

theorem.

Theorem 2.6.7. Consider a moduleU ⊆ Rk. Its solution space Sol(U) is finite-dimensional

over C if and only if V (U) has dimension 0. In this case, dimC Sol(U) = dimK(R
k/U) =

amult(U). There is a basis of Sol(U) given by vectors q(z) exp(uT · z), where u ∈ V (U)
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and q(z) runs over a finite set of polynomial vectors, whose cardinality is the length of U

along the maximal ideal ⟨x1 − u1, . . . , xn − un⟩. There exist polynomial solutions if and

only if m = ⟨x1, . . . , xn⟩ is an associated prime of U . The polynomial solutions are found

by solving the PDE given by the m-primary component of M .

Proof. This is the main result in Oberst’s article [46], proved in the setting of injective

cogenerators F . The same statement for F = C∞ appears in [6, Ch. 8, Theorem 7.1]. The

scalar case (k = 1) is found in [41, Theorem 3.27]. The proof given there uses solutions in

the power series ring, which is an injective cogenerator, and it generalizes to modules.

By a polynomial solution we mean a vector q(z) whose coordinates are polynomi-

als. The m-primary component in Theorem 2.6.7 is computed by a double saturation step.

When U = I is an ideal then this double saturation is I : (I : m∞), as seen in [41, Theorem

3.27]. For submodules U of Rk with k ≥ 2, we would compute U : Ann(Rk/(U : m∞)).

The inner colon (U : m∞) is the intersection of all primary components of U whose variety

Vi does not contain the origin 0. It is computed as (U : f) = {m ∈ Rk : fm ∈ U}, where

f is a random homogeneous polynomial of large degree. The outer colon is the module

(U : g), where g is a general polynomial in the ideal Ann(Rk/(U : f)). See also [7,

Proposition 2.2].

It is an interesting problem to identify polynomial solutions when V (U) is no longer fi-

nite, and to decide whether these are dense in the infinite-dimensional space of all solutions.

Here “dense” refers to the topology on F used by Lomadze in [38]. The following result

gives an algebraic characterization of the closure in Sol(U) of the subspace of polynomial

solutions.

Proposition 2.6.8. Let m = (x1, . . . , xn) be the maximal ideal corresponding to the ori-

gin. The polynomial solutions are dense in Sol(U) if and only if the origin 0 lies in every

associated variety V (p), p ∈ Ass(U), of the module U , i.e. if and only if U is m-closed. If

this fails then the topological closure of the space of polynomial solutions q(z) to U is the
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solution space of the m-closure of U .

Proof. This proposition is our reinterpretation of Lomadze’s result in [38, Theorem 3.1].

The result gives rise to algebraic algorithms for answering analytic questions about a

system of PDE. The property in the first sentence can be decided by running the primary

decomposition algorithm in [7]. For the second sentence, we need to compute a double

saturation as above. This can be carried out in Macaulay2 as well.

2.7 The Ehrenpreis-Palamodov fundamental principle

We saw in Theorem 2.5.2 that local dual spaces correspond precisely to exponential so-

lutions of a system of PDE when F = D′ or C∞. The celebrated Ehrenpreis-Palamodov

fundamental principle asserts that in fact any solution v ∈ SolF(U) is a superposition of

these exponential solutions.

The fundamental principle appears in different forms in the books by Björk [6, The-

orem 8.1.3], Ehrenpreis [16], Hörmander [31, Section 7.7] and Palamodov [51]. Other

references with different emphases include [5, 37, 49, 66]. For a perspective from commu-

tative algebra see [10, 11].

Theorem 2.7.1 (Ehrenpreis-Palamodov fundamental principle). LetU ⊆ Rk be a p-primary

module, t a maximal set of independent variables over p, and let B = {B1, . . . , Bs} ∈ WR

be a set of operators, involving no ∂t-variables, such that

U = {f ∈ Rk : Bi • f ∈ p for all i = 1, . . . , s}.

If we writeBi = Bi(x, ∂x) as a polynomial in 2n variables, then all distributional solutions
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u ∈ SolD′(U) to the PDE described by U are of the form

u(z1, . . . , zn) =
s∑
i=1

∫
V (p)

Bi(x, z) exp(x · z) dµi(x)

for a suitable set of measures µ1, . . . , µs.

We remark that the statement in its original form interprets the variables xi as −i ∂
∂zi

, as

is standard in Fourier analysis, in which case the representation takes the form

u(z1, . . . , zn) =
s∑
i=1

∫
V (p)

Bi(x, z) exp(ix · z) dµi(x).

We recover the statement in Theorem 2.7.1 by doing a change of variables ϕ : xi 7→ ixi,

and absorbing the extra i into the measure, noting that if

U = {f ∈ Rk : Bi(x, ∂x) • f ∈ p for all i = 1, . . . , s},

then

ϕ(U) = {f ∈ Rk : Bi(ix, ∂x) • f ∈ ϕ(p) for all i = 1, . . . , s}.

As was discussed in the end of Section 1.6, the image in Wκ(p(t)) of the set B ⊆ WR in

Theorem 2.7.1 is in fact a set of Noetherian operators. We will argue that the conclusion of

the Ehrenpreis-Palamodov fundamental principle holds for our definition of Noetherian op-

erators as well. Suppose D = {D1, . . . , Ds} ⊆ Wκ(p(t)) is a set of Noetherian operators for

the p-primary module U . As in Section 2.5, we can interpret Di(x, z) as a 2n variate vector

of functions, each of whose entries is a polynomial in variables z with rational function

coefficients in variables x, whose denominator does not vanish identically on V (p). Thus

we view Di(x, z) as a 2n-variate vector of rational functions whose value is well defined

on a Zariski open subset of V (p)× Cn.
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Corollary 2.7.2. Let U ⊆ R be a p-primary ideal, t a maximal set of independent variables

over p, and let D = {D1, . . . , Ds} ⊆ Wκ(p(t)) be a set of Noetherian operators. Then all

distributional solutions u ∈ SolD′(U) to the PDE described by U are of the form

u(z1, . . . , zn) =
s∑
i=1

∫
V (p)

Di(x, z) exp(x · z) dµi(x)

for a suitable set of measures µ1, . . . , µs.

Proof. We can clear all denominators by multiplying Di by some polynomial gi ̸∈ p, thus

we can write giDi as the image of an operator with coefficients in (R/p)k. Taking a repre-

sentative for each coefficient, we get operators Bi ∈ (WR)
k, whose images in (Wκ(p(t)))

k

are precisely the giDi, so the operators Bi satisfy the condition of Theorem 2.7.1. Fur-

thermore, over V (p) × Cn, the functions Bi(x, z) and gi(x)Di(x, z) evaluate to the same

complex value. Hence for each solution u we have

u(z) =
s∑
i=1

∫
V (p)

Bi(x, z) exp(x · z) dµ′
i(x)

=
s∑
i=1

∫
V (p)

gi(x)Di(x, z) exp(x · z) dµ′
i(x)

for some measures µ′
i. The claim then follows when we define µi to be the measure sup-

ported on V (p) such that dµi(x) = g(x)dµ′
i(x).

Another improvement we can make on the classical Ehrenpreis-Palamodov fundamen-

tal principle is by using a differential primary decomposition instead of a full set of Noethe-

rian operators for every primary component. The classical method for dealing with non-

primary ideals was to first take a primary decomposition, and then apply Theorem 2.7.1 for

each primary component. This in general yields an integral representation of each solution

u with redundant summands. The following simple example demonstrates the problem.
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Example 2.7.3. Let U be the R-module generated my the rows of

M =

 x21 x1x2

x1x2 x22

 .
A primary decomposition gives U = U0 ∩ U1, which are generated by the rows of the

matrices

M0 =

[
x1 x2

]
and M1 =

x21 x1x2 x22 0 0 0

0 0 0 x21 x1x2 x22


T

.

The module U0 is (0)-primary, with a single Noetherian operator D1 = [−x2, x1]T , so the

solution set Sol(U0) consists of functions of the form

u0(z1, z2) =

∫
C

−x2
x1

 exp(z1x1 + z2x2) dµ(x1, x2) =

−∂z2 • ϕ(z1, z2)
∂z1 • ϕ(z1, z2)

 ,
where ϕ(z1, z2) :=

∫
C exp(z1x1 + z2x2) dµ(x1, x2) for a suitable measure µ.

The module U1 is (x1, x2) primary, so the measures involved in the solution set of U1

will be point measures supported at the origin. The six operators

1
0

 ,
∂1
0

 ,
∂2
0

 ,
0
1

 ,
 0

∂1

 ,
 0

∂2


form a set of Noetherian operators, and the Ehrenpreis-Palamodov fundamental principle
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yields the following solutions for U1:

u1(z1, z2) =

∫
{(0,0)}

1
0

 exp(x1z1 + x2z2) dµ1(x1, x2) + · · ·

· · ·+
∫
{(0,0)}

 0

z2

 exp(x1z1 + x2z2) dµ6(x1, x2).

Since each measure is a point measure, we can rewrite v as a vector of polynomials

v(z1, z2) =

c1 + c2z1 + c3z2

c4 + c5z1 + c6z2

 ,
for some c1, . . . , c6 ∈ C. Hence we conclude that the solutions to the PDE U are of the

form

u(z1, z2) = u0(z1, z2) + u1(z1, z2) =

c1 + c2z1 + c3z2

c4 + c5z1 + c6z2

+

−∂z2 • ϕ(z1, z2)
∂z1 • ϕ(z1, z2)

 .
Note however that some of the terms in the polynomial vector u1 can be absorbed into

the vector u0, since

c1 + c2z1 + c3z2

c4 + c5z1 + c6z2

 =

(c2 + c6)z1

0

+

−∂z2 • ψ(z1, z2)
∂z1 • ψ(z1, z2)

 ,
where ψ(z1, z2) = −c1z2 − (c3/2)z

2
2 + c4z1 + (c5/2)z

2
1 + c6z1z2. Thus we get the shorter

representation of solutions in Sol(U) using only two of the original seven Noetherian oper-

ators

u(z1, z2) =

cz1
0

+

−∂z2 • ϕ(z1, z2)
∂z1 • ϕ(z1, z2)

 ,
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for any c ∈ C, ϕ ∈ D′. △

The following theorem shows that the non-redundant summands in the integral rep-

resentation are precisely the ones that generate the excess dual spaces. In other words, a

differential primary decomposition yields a minimal integral representation for the solution

set of a PDE, which contains amult(U) summands.

Theorem 2.7.4. Let U ⊆ Rk be an R-submodule, and let {(p, tp,Dp)}p∈Ass(U) be a dif-

ferential primary decomposition. Let Dp = {Dp,1, . . . , Dp,sp}. Then all distributional

solutions u ∈ Sol(U) to the PDE described by U are of the form

u(z1, . . . , zn) =
∑

p∈Ass(I)

sp∑
i=1

∫
V (p)

Dp,i(x, z) exp(x · z) dµp,i(x), (2.12)

for a suitable set of measures {µp,i}i=1,...,sp;p∈Ass(U).

Proof. For each p ∈ Ass(U), let Λ be the local dual space generated by Dp. There is

a κ(p)-basis of Λ of the form Ep = Dp ∪ {E1, . . . , Erp}; note that rp > 0 if and only

if p is an embedded prime. Suppose Qp is the corresponding p-primary module, so by

Theorem 1.7.10 U =
⋂
Qp is a primary decomposition, and the set Ep is a set of Noetherian

operators for Qp. Hence by Ehrenpreis-Palamodov we have a representation

v(z) =
∑

p∈Ass(U)

sp∑
i=1

∫
V (p)

Dp,i(x, z) exp(x
T · z) dµp,i(x)

+
∑

p∈Ass(U)

rp∑
i=1

∫
V (p)

Ep,i(x, z) exp(x
T · z) dνp,i(x)

We will show that with a suitable choice of measures, the summands involving Ep,i can be

written as integrals involving Dp,i. More precisely, for p ∈ Ass(U), we claim that there are
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measures {ηq,i}i=1,...,sq;q⊆p such that

w(z) :=

∫
V (p)

Ep,i(x, z) exp(x
T · z) dνp,i(x)

=
∑
q⊆p

∑
j=sq

∫
V (q)

Dq,j(x, z) exp(x
T · z) dηq,j(x).

If p is a minimal prime, nothing needs to be shown. Fix some non minimal p ∈ Ass(U),

and suppose then by induction that the claim is true for all q ⊊ p.

From the definition of a differential primary decomposition, we can write

Ep,i =

sp∑
j=1

cjDj,p + E ′,

where cj ∈ κ(p) and E ′ ∈ Dp(t) [(U : p∞)(t)]. Thus we have

w(z) =

sp∑
j=1

∫
V (p)

Dp,j(x, z) exp(x
T · z) · cj(x) dνp,i

+

∫
V (p)

E ′(x, z) exp(xT · z) dνp,i

Note however that by Theorem 2.5.2, the last term is a solution to the PDE corresponding

to U : p∞. Therefore by Ehrenpreis-Palamodov it has a representation as a sum of integrals

involving Dq,i and Eq,i for all q ⊊ p. However by the induction assumption, we don’t need

summands involving Eq,i, so we can write

w(z) =

sp∑
j=1

∫
V (p)

Dp,j(x, z) exp(x
T · z) · cj(x) dνp,i

+
∑
q⊊p

sq∑
j=1

∫
V (q)

Dq,j(x, z) exp(x
T · z) dηq,j,

hence the claim.
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Example 2.7.5 (n = 4, k = 2, l = 3). Let U ⊂ R2 be the module generated by the rows of

M =


∂1∂3 ∂21

∂1∂2 ∂22

∂21∂2 ∂21∂4

 (2.13)

Computing Sol(M) means solving ∂2ψ1

∂z1∂z3
+ ∂2ψ2

∂z21
= ∂2ψ1

∂z1∂z2
+ ∂2ψ2

∂z22
= ∂3ψ1

∂z21∂z2
+ ∂3ψ2

∂z21∂z4
= 0.

Two solutions are ψ(z) =
(
ϕ(z2, z3, z4), 0

)
and ψ(z) = exp(s2tz1 + st2z2 + s3z3 + t3z4) ·(

t,−s
)
.

We apply Theorem 2.7.4 to derive the general solution to (2.13). The module M has

six associated primes, namely p1 = (∂1), p2 = (∂2, ∂4), p3 = (∂2, ∂3), p4 = (∂1, ∂3),

p5 = (∂1, ∂2), and p6 = (∂21 −∂2∂3, ∂1∂2−∂3∂4, ∂22 −∂1∂4). Four of them are minimal and

two are embedded. If we letmi = multI(pi), we find thatm1 = m2 = m3 = m4 = m6 = 1

and m5 = 4. A minimal primary decomposition

M = M1 ∩ M2 ∩ M3 ∩ M4 ∩ M5 ∩ M6 (2.14)

is given by the following primary submodules of R4, each of which contains M :

M1 = imR

∂1 0

0 1

 , M2 = imR

∂2 ∂4 0 0 ∂3

0 0 ∂2 ∂4 ∂1

 , M3 = imR

∂2 ∂3 0

0 0 1

 ,

M4 = imR

∂5
3 ∂1 0 0

0 ∂2 ∂1 ∂3

 , M5 = imR

∂1 ∂5
2 0 0

0 0 ∂2
1 ∂2

2

 , M6 = imR

∂1 ∂2 ∂3

∂2 ∂4 ∂1

 .

The number of differential operators Di,j(x, ∂x) needed in a minimal differential primary

decomposition is
∑6

i=1mi = 9. We choose them to be

B1,1=

1
0

 , B2,1=

 x1

−x3

 , B3,1=

1
0

 , B4,1 =

x2z1
−1

 ,
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B5,i =

 0

z1z2

,
 0

z1

,
 0

z2

,
0
1

 , B6,1 =

 x4

−x2

 .
These nine vectors describe all solutions to our PDE. For instance, B3,1 gives the solu-

tions

α(z1, z4)
0

, and B5,1 gives the solutions

 0

z1z2β(z3, z4)

, where α, β are bivariate

functions. Furthermore B1,1 and B6,1 encode the two families of solutions mentioned after

(2.13).

For the latter, we note that V (p6) is the surface in C4 with parametric representation

(x1, x2, x3, x4) = (s2t, st2, s3, t3) for s, t ∈ C. This surface is the cone over the twisted

cubic curve, in the same notation as in [10, Section 1]. The kernel under the integral in

(2.12) equals

 x4

−x2

 exp
(
x1z1 + x2z2 + x3z3 + x4z4

)
= t2

 t

−s

 exp
(
s2tz1 + st2z2 + s3z3 + t3z4

)
.

This is a solution to M6, and hence to M , for any values of s and t. Integrating the left

hand side over x ∈ V (p6) amounts to integrating the right hand side over (s, t) ∈ C2.

Any such integral is also a solution. Ehrenpreis–Palamodov tells us that these are all the

solutions. △
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CHAPTER 3

ALGORITHMS AND COMPUTATIONS

A fundamental problem in computer algebra is primary decomposition. Most currently

implemented algorithms in computer algebra systems [15, 19, 22, 58] perform primary

decomposition of submodules U ⊆ Rk by producing a set of generators for each primary

component.

In applications, one often does not have access to an exact representation of a problem,

but rather some approximation with possible errors introduced by measurements or finite-

precision arithmetic. The last decade of developments in numerical algebraic geometry

[61, 62] provides tools for the numerical treatment of such polynomial models. In that

paradigm, a prime ideal p ⊂ C[x] is represented by a witness set, i.e. a set of deg(p)

points approximately on V (p) ∩ L, where L is a generic affine-linear space of dimension

c = codim(p). Similarly, radical ideals are collections of witness sets corresponding to

irreducible components. Dealing with general, non-prime ideals and modules is much

more subtle, since these have embedded primes that cannot be detected by witness sets.

One idea, pioneered by Leykin [36], is to consider deflations of ideals. Deflation has the

effect of exposing embedded and non-reduced components as isolated components, which

can subsequently be represented using witness sets. One drawback is that the deflated ideal

lies in a polynomial ring with many new variables.

Representing an ideal via Noetherian operators is particularly well suited to the frame-

work of numerical algebraic geometry. Suppose I ⊆ R is an unmixed ideal, i.e. an ideal

with no embedded primes. A numerical irreducible decomposition [60] can be used to

obtain witness sets for each irreducible component. We thus have a numerical represen-

tation of each associated prime, which together with a set of Noetherian operators—or a

numerical representation thereof—provides an ideal membership test.
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In this chapter, we present algorithms to compute Noetherian operators and differential

primary decomposition. As was established in Chapter 1, the data of a differential pri-

mary decomposition fully determines an R-submodule U ⊆ Rk and can be used to create

a primary decomposition. Thus we represent a primary decomposition not by exhibiting

module generators, but by simply returning a differential primary decomposition. Further-

more, a differential primary decomposition also describes all solution to the system of PDE

represented by U , so our algorithms can also be thought of as PDE solvers.

The algorithms presented here are based on methods for ideals given in [8, 9, 10], and

for modules in [7]. The first algorithm for computing Noetherian operators was developed

by Oberst [48], and a subsequent developments by Damiano, Sabadini and Struppa [12]

resulted in a Gröbner basis based implementation in the computer algebra system CoCoA

[1], an implementation that has since become inaccessible. On drawback of the algorithm

from Damiano et al. is that it has the restrictive assumption that the characteristic variety

corresponds to the origin, which may not always be the case if the base field is not alge-

braically closed. Furthermore, as these early algorithms rely on the module being primary,

using them in practice requires a primary decomposition as a pre-processing step. The out-

put would then be a set of Noetherian operators for each primary component, which may

not be a minimal representation of a module using differential operators.

This chapter will consist of two sections. In Section 3.1 we present a universally appli-

cable, symbolic algorithm outputting a minimal differential primary decomposition for any

R-submodule U ⊆ Rk.

Our second suite of algorithms is built with numerical computation in mind. Because

of this, since numerical irreducible decompositions only sees the radical of an ideal, the

second method is restricted to primary ideals I , or primary components Q ⊇ I corre-

sponding to isolated primes of I . We will describe a symbolic algorithm for computing

Noetherian operators which can be turned into a numerical one by evaluating all polyno-

mials at a generic point in V (I). The output of the numerical algorithm will then be a set
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of “evaluated Noetherian operators”, which by Theorem 2.5.2 correspond to instances of

exponential solutions to the system of PDE. The numerical information obtained from the

point evaluations of Noetherian operators can then be used as an ansatz to speed up the

symbolic algorithm, thus yielding a “hybrid” algorithm.

All algorithms in this section, as well as other tools to compute dual spaces both numeri-

cally and symbolically, are implemented in the Macaulay2 package NoetherianOperators

[8, 35], distributed with the main Macaulay2 distribution as of version 1.19.

3.1 A general purpose algorithm

We present the algorithm for computing a differential primary decomposition developed in

[7, 10]. The interpretation via solution sets of PDE is from [2]. There are no restrictions

on the input and the output is minimal. The input is a submodule U of Rk, where R =

K[x1, . . . , xn]. The output is a differential primary decomposition {(p, tp,Dp)}p∈Ass(U) of

size amult(U) as in Theorem 1.7.14. A first step is to find Ass(U) = {p1, . . . , ps}. For

each associated prime pi, the elements D(x, ∂x) in the finite set Dp ⊂ (Wκ(p(tp)))
k are

rewritten as rational functions D(x, z), using the identification of Theorem 2.5.2. Only the

codim(pi) many variables zi with xi ̸∈ tp appear in these rational functions.

Our implementation of the algorithm is contained in the package NoetherianOperators

in Macaulay2. The routine can be called using the command solvePDE, or alterna-

tively via the command differentialPrimaryDecomposition. The user begins

by fixing a polynomial ring R = K[x1, . . . , xn]. Here K is usually the rational numbers QQ.

Fairly arbitrary variable names xi are allowed. The argument of solvePDE is an ideal

in R or a submodule of Rk. The output is a list of pairs
{
(pi, {Di1, . . . , Di,mi

})
}

for

i = 1, . . . , s, where pi is a prime ideal given by generators in R, and each Dij is a vector

over a newly created polynomial ring K[x1, . . . , xn, ∂x1 , . . . , ∂xn ]. The set of independent

variables tpi for each i is implicit, but can be recovered in Macaulay2 using the command

firstindependentSetspi. In Macaulay2, the variables ∂xi are represented by the sym-
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bol dxi. To be precise, each new variable is created from an old variable by prepending the

character d. Substituting the symbol dxi by a new variable zi in eachDij produces the mul-

tipliers Dij(x, z) used in the Ehrenpreis-Palamodov fundamental theorem, Theorem 2.7.4.

Thus the output can be thought of as the set of solutions to the associated PDE.

EachDij in the output of solvePDE encodes an exponential solutionDij(x, z)exp(x
T ·

z) to U . Here x are the old variables chosen by the user, and x denotes points in the

irreducible variety V (pi) ⊆ Cn. The solution is a function in the new unknowns z =

(dx1, . . . , dxn). For instance, if n = 3 and the input is in the ring QQ[u, v, w] then the output

lives in the ring QQ[u, v, w, du, dv, dw]. Each solution to the PDE is a function ψ(du, dv, dw)

and these functions are parametrized by a variety V (pi) in a 3-space whose coordinates are

(u, v, w).

We now demonstrate how this works for three examples.

Example 3.1.1. Consider the ODE u′′′ + 3u′′ − 9u′ + 5u = 0, where u = u(z) is some

unknown function. This translates to the differential operator p(x) = x3 + 3x2 − 9x+ 5 =

(x − 1)2(x + 5). The ideal I = (p) has two primary components, one of which has

multiplicity 2 and the other has multiplicity 1. We solve the PDE as follows:

R = QQ[x];

I = ideal( xˆ3 + 3*xˆ2 - 9*x + 5 );

solvePDE(I)

{{ideal(x - 1), {| 1 |, | dx |}}, {ideal(x + 5), {| 1 |}}}

The first three lines are the input. The last line is the output created by solvePDE. This

list of s = 2 pairs encodes the general solution u(z), which we can write as

u(z) =

∫
x=1

exz dµ1(x) +

∫
x=1

zexz dµ2(x) +

∫
x=−5

exz dµ3(x)

=c1e
z + c2ze

z + c3e
−5z,
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for some constants c1, c2, c3 ∈ C. △

Example 3.1.2. Consider the one-dimensional wave equation ϕtt(z, t) = c2ϕzz(z, t). If we

identify ∂z ↔ u and ∂t ↔ v, we encode the PDE as the ideal I = (v2 − c2u2) ⊆ C[u, v].

For c = 3, we solve the wave equation as follows:

R = QQ[u,v]; c = 3; I = ideal(vˆ2-cˆ2*uˆ2); solvePDE(I)

{{ideal(3u - v), {| 1 |}}, {ideal(3u + v), {| 1 |}}}

Applying Theorem 2.7.4, we get the wave

ϕ(z, t) = ϕ1(3t+ z) + ϕ2(3t− z),

as a general solution, where ϕ1, ϕ2 are univariate smooth functions or distributions. More

general waves will be revisited in Chapter 4. △

Example 3.1.3. Consider the linear PDE

αxx + βxy = αyz + βzz = αxxz + βxyw = 0.

We wish to find the unknown function pair (α, β) : R4 → C2. The PDE can be encoded as

the (ℓ× k) = (3× 2) matrix


∂2x ∂x∂y

∂x∂y ∂2z

∂2x∂z ∂x∂y∂w

 , (3.1)

whose entries are in the polynomial ring R = C[∂x, ∂y, ∂z, ∂w]. The corresponding module

U ⊆ R2 is generated by the three rows of the matrix. We solve the PDE by defining our

module U , and running solvePDE. Here the variable names x1, x2, x3, x4 will represent

∂x, . . . , ∂z.
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R = QQ[x1,x2,x3,x4];

U = image matrix {{x1ˆ2,x2*x3,x1ˆ2*x3},{x1*x2,x3ˆ2,x1*x2*x4}};

solvePDE(U)

Note that in Macaulay2, the command image constructs the module given by the columns

of a matrix, so we need to transpose our matrix in (3.1). The output is a list of six pairs of

associated primes along with generators of their excess dual spaces. Interpreting the out-

put through the fundamental principle, we obtain a general solution with nine summands,

labelled a, b, . . . , h and (α̃, β̃):

α = az(y,z,w)− by(x,y) + c(y,w) + xd(y,w) + xg(z,w)− xyhz(z,w) + α̃(x, y, z, w),

β = −ay(y, z, w) + bx(x, y) + e(x,w) + zf(x,w) + xh(z, w) + β̃(x, y, z, w).

(3.2)

Here, a is any function in three variables, b, c, d, e, f, g, h are functions in two variables,

and ψ̃ = (α̃, β̃) is any function R4 → C2 that satisfies the following four linear PDE of

first order:

α̃x + β̃y = α̃y + β̃z = α̃z − α̃w = β̃z − β̃w = 0. (3.3)

We note that all solutions to (3.3) also belong to Sol(U), and they admit the integral repre-

sentation

α̃ =

∫
t(exp(s2x+sty+t2(z+w)))dµ(s, t) , β̃ = −

∫
s(exp(s2x+sty+t2(z+w)))dµ(s, t),

where µ is a suitably chosen measure on C2. △

The method in solvePDE is described in Algorithm 1 below. A key ingredient is a

translation map. We now explain this in the simplest case, when the module is supported in

one point. Suppose V (U) = {u} for some u ∈ Kn. We set mu = ⟨x1 − u1, . . . , xn − un⟩.

Noetherian operators for such modules can always be chosen with constant coefficients in
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the base field, since κ(mu) = K. Let

γu : R→ R , xi 7→ xi + ui for i = 1, . . . , n. (3.4)

The following two results are straightforward. We will later use them when U is any pri-

mary module, u is the generic point of V (U), and F = K(u) is the associated field exten-

sion of K.

Proposition 3.1.4. A constant coefficient operator D(∂x) is a Noetherian operator for the

mu-primary module U if and only if D(∂x) is a Noetherian operator for the m0-primary

module Û := γu(U). Dually, D(z) exp(utz) is in Sol(U) if and only if the polynomial

D(z) is in Sol(Û).

This observation reduces the computation of solutions for a primary module to finding

the polynomial solutions of the translated module. Next, we bound the degrees of these

polynomials.

Proposition 3.1.5. Let Û ⊆ Rk be an m0-primary module. There exists an integer r such

that mr+1
0 Rk ⊆ Û . The space Sol(Û) consists of k-tuples of polynomials of degree ≤ r.

Propositions 3.1.4 and 3.1.5 furnish a method for computing solutions of an mu-primary

module U . We start by translating U so that it becomes the m0-primary module Û . The

integer r provides an ansatz
∑k

j=1

∑
|α|≤r cα,j z

αej for the polynomial solutions, where

e1, . . . , ek are the standard basis vectors. The coefficients cα,j are computed by linear alge-

bra over the ground field K. Here are the steps:

1. Let r be the smallest integer such that mr+1
0 Rk ⊆ Û .

2. Let M(Û) be the matrix whose entries are the polynomials m̂i • (zαej) ∈ R. The row

labels are the generators m̂1, . . . , m̂l of Û , and the column labels are the zαej .
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3. Let kerK(M(Û)) denote the K-linear subspace of the R-module kerR(M(Û)) con-

sisting of vectors (vα,j) with all entries in K. Every such vector gives a solution

k∑
j=1

∑
|α|≤r

vα,j z
α exp(utz) ej ∈ Sol(U). (3.5)

Example 3.1.6. [n = k = r = 2, ℓ = 3] The following module is m0-primary of

multiplicity three:

U = imageR

 ∂31 ∂2 − c1∂21 − c2∂1 c3∂
2
1 + c4∂1 + c5

0 0 1

 . (3.6)

Here c1, c2, c3, c4, c5 are arbitrary constants in K. The matrix M(U) has three rows, one for

each generator ofU , and it has 12 columns, indexed by e1, z1e1, . . . , z22e1, e2, z1e2, . . . , z
2
2e2.

The space kerK(M(U)) is 3-dimensional. A basis furnishes the three polynomial solutions

−1
c5,

 ,

 −(z1 + c2z2)

c5z1 + c2c5z2 + c4

 ,

 −((z1 + c2z2)
2 + 2c1z2)

c5(z1+c2z2)
2 + 2c4z1 + 2(c1c5+c2c4)z2 + 2c3

 .
(3.7)

△

We now turn to Algorithm 1. The input is a polynomial module U ⊆ Rk, and the output

is a differential primary decomposition, representing all solutions to the PDE U by Theo-

rem 2.7.4. The method was introduced in [7, Algorithm 4.6]; we explain it here in the con-

text of solving PDE. It is implemented in Macaulay2 under the command solvePDE.

In our discussion, the line numbers refer to the corresponding lines of pseudocode in Algo-

rithm 1.

Line 1 We begin by finding all associated primes of U . By [19, Theorem 1.1], the associ-

ated primes of codimension i coincide with the minimal primes of AnnExtiR(U,R).

This reduces the problem of finding associated primes of a module to the more fa-
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Algorithm 1 SolvePDE
Input: An arbitrary submodule U of Rk

Output: List of associated primes with corresponding Noetherian multipliers.
1: for each associated prime ideal p of U do
2: W ← URk

p ∩Rk

3: V ← (W : p∞)
4: r ← the smallest number such that V ∩ pr+1Rk is a subset of W
5: tp ← a maximal set of independent variables modulo p
6: F← Frac(R/p) = κ(p)
7: T ← F[yi : xi ̸∈ tp]
8: γ ← the map defined in (3.8)
9: m← the irrelevant ideal in T

10: Ŵ ← γ(W ) +mr+1T k

11: V̂ ← γ(V ) +mr+1T k

12: N ← a F-vector space basis of the space of k-tuples of polynomials of degree ≤ r
13: M(Ŵ ) ← the matrix given by the •-product of generators of Ŵ with elements of

N
14: M(V̂ )← the matrix given by the •-product of generators of V̂ with elements of N
15: K ← kerF(M(Ŵ ))/ kerF(M(V̂ ))
16: A ← a F-vector space basis of K
17: Dp ← lifts of the vectors in A to vectors in kerF(M(Ŵ ))
18: return the pair (p,Dp)
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miliar problem of finding minimal primes of a polynomial ideal. This method is

implemented and distributed with Macaulay2 starting from version 1.17 via the

command associatedPrimes Rˆk/U. See [7, Section 2].

The remaining steps are repeated for each p ∈ Ass(U). For a fixed associated prime p,

our goal is to identify the contribution to Sol(U) of the p-primary component of U .

Lines 2–3 To achieve this goal, we study solutions for two different R-submodules of Rk.

The first one, denoted W , is the intersection of all pi-primary components of U ,

where pi are the associated primes contained in p. Thus W = URk
p ∩ Rk, which is

the extension-contraction module of U under localization at p, i.e. the pi-closure of

U . It is computed as W = (U : f∞), where f ∈ R is contained in every associated

prime pj not contained in p.

The second module, denoted V , is the intersection of all pi-primary components of

U , where pi is strictly contained in p. Hence V = (W : p∞) is the saturation of

W at p. We have W = V ∩ Q, where Q is a p-primary component of U . Thus the

difference between the solution spaces Sol(W ) and Sol(V ) is caused by the primary

module Q, and this is captured by the excess dual space.

When p is a minimal prime, W is the unique p-primary component of U , and V =

Rk.

Line 4 The integer r bounds the degree of the dual space elements associated to W but not

to V . This means that if the function ϕ(z) = D(x, z) exp(xT ·z) lies in Sol(W )\ Sol(V )

for all x ∈ V (p), then the z-degree of the polynomial D(x, z) is at most r. This will

lead to an ansatz for the exponential solutions responsible for the difference between

Sol(W ) and Sol(V ).

Lines 5–8 The modules W and V are reduced to simpler modules Ŵ and V̂ with similar

properties. Namely, Ŵ and V̂ are primary and their characteristic varieties are the
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origin. This reduction involves two new ingredients: a new polynomial ring T in

fewer variables over the field F = κ(p), a finite extension of K, and a ring map

γ : R→ T .

Fix a maximal set tp = {xi1 , . . . , xin−c} with p∩K[xi1 , . . . , xin−c ] = {0}. We define

T := F[yi : xi /∈ tp]. This is a polynomial ring in n − |tp| = c new variables yi,

corresponding to the xi not in the set tp of independent variables. Writing ui for the

image of xi in F, the ring map γ is defined as follows:

γ : R→ T, xi 7→


yi + ui, if xi /∈ S,

ui, if xi ∈ S.
(3.8)

By abuse of notation, we denote by γ the extension of (3.8) to a map Rk → T k.

Lines 9–11 Let m := ⟨yi : xi ̸∈ tp⟩ be the irrelevant ideal of T . We define the T -

submodules

Ŵ := γ(W ) +mr+1T k and V̂ := γ(W ) +mr+1T k of T k.

These modules are m-primary: their solutions are finite-dimensional F-vector spaces

consisting of polynomials of degree ≤ r. The polynomials in Sol(Ŵ )\ Sol(V̂ ) cap-

ture the difference between Ŵ and V̂ , and also the difference betweenW and V after

lifting.

Lines 12–14 We construct matrices M(Ŵ ) and M(V̂ ) with entries in F[zi : xi ̸∈ tp]. As

in (3.5), their kernels over K correspond to polynomial solutions of Ŵ and V̂ . The

set N = {zαej : |α| ≤ r, j = 1, . . . , k} is a F-basis for elements of degree ≤ r in

F[zi : xi ̸∈ tp]
k. The yi-variables act on the zi variables as partial derivatives, i.e.

yi =
∂
∂zi

. We define the matrix M(Ŵ ) as follows. Let Ŵ1, . . . , Ŵℓ be generators of

Ŵ . The rows of M(Ŵ ) are indexed by these generators, the columns are indexed
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by N , and the entries are the polynomials Ŵi • zαej . In the same way we construct

M(V̂ ).

Lines 15–16 Let kerF(M(Ŵ )) be the space of vectors in the kernel of M(Ŵ ) whose entries

are in F. The F-vector space kerF(M(Ŵ )) parametrizes the polynomial solutions

k∑
j=1

∑
|α|≤r

vα,j z
αej ∈ Sol(Ŵ ).

The same holds for V̂ . The quotient space K := kerF(M(Ŵ ))/ kerF(M(V̂ )) char-

acterizes excess solutions in Sol(Ŵ ) relative to Sol(V̂ ). Under the duality in Theo-

rem 2.5.2, the space K is precisely the excess dual space. Write A for a F-basis of

K.

Lines 17–18 We interpret A as a set of differential operators for U as follows. For each

element v̄ ∈ A, we choose a representative v ∈ kerF(M(Ŵ )). The entries of v are in

F = κ(p). The differential operator in W k
κ(p(tp))

corresponding to v is the following

vector

D(x, ∂x) =
k∑
j=1

∑
|α|≤r

uα,j(x) ∂
α
xej.

Applying the above procedure to each each v̄ ∈ A yields a set Dp of differential

operators which spans the excess dual space. By Theorem 2.7.4, these operators

describe the contribution of a p-primary component of U to Sol(U).

The output of Algorithm 1 is a list of pairs (p,Dp), where p ranges over Ass(U) and

Dp = {D1, . . . , Dm} is a subset of Wκ(p). The cardinality m is the multiplicity of U along

p. The output describes the solutions to the PDE given by U . Consider the functions

ϕp(z1, . . . , zn) =
m∑
i=1

∫
V (p)

Di(x, z) exp(x1 z1 + · · · + xnzn) dµi(x).
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Then the space of solutions to U consists of all functions

∑
p∈Ass(U)

ϕp(z1, . . . , zn).

The output also describes a differential primary decomposition. Indeed, the command

differentialPrimaryDecomposition described in [7] is identical to our com-

mand solvePDE. All examples in [7, Section 6] can be interpreted as solving PDE.

3.2 Primary ideals via Macaulay matrices

3.2.1 Symbolic version

In this subsection, we present algorithms to symbolically compute bases for local dual

spaces. The method is an adaptation of the classical theory of Macaulay inverse systems

involving Macaulay matrices. The method outlined below will only work for finite dimen-

sional local dual spaces, i.e. for ideals I that are either p-primary, or for which p is an

isolated prime. This is because if p is a minimal prime of I , then the local dual space of I

is equal to the local dual space of Ip ∩R, which is just the p-primary component of I .

We will assume that I ⊆ K[x1, . . . , xn] is a p-primary ideal, where p is a zero-dimensional

prime; if not, substitute I, p by I(t) and p(t) as in Section 1.5. We define the degree d trun-

cated local dual spaces as

D
(d)
p [I] := {D ∈ Dp[I] | deg(D) ≤ d} = Dp[I] ∩W (d)

κ(p) = Dp[I + pd+1],

where the last equality follows from Lemma 1.3.1.

Fix a degree d, and let C := {∂β | |β| ≤ d} ⊆ Wκ(p), the set of all ∂-monomials

of degree at most d. Pick a generating set {f1, . . . , fr} for I , and let F := {xαfi | i =

1, . . . , r, |α| < d}. For a fixed total ordering ≺ on ∂-monomials, we define the degree d

Macaulay matrix M of dimension |F | × |C|, where the rows are indexed by F , and the
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columns are indexed by C and ordered according to≺. The entry corresponding to the row

xαfi and column ∂β of the Macaulay matrix is the value

Mα,i;β = ∂β • (xαfi) ∈ κ(p).

Any D =
∑

|β|≤d vβ∂
β ∈ Wκ(p) is specified by its coefficient (column) vector v = (vβ)β .

Every entry of Mv is of the form D • g for some g ∈ I , so every element in the truncated

local dual space D(d)
p [I] corresponds to a vector in the kernel of the Macaulay matrix.

Proposition 3.2.1. With notation as above, let {v(k)}k be a basis of the kernel of the degree

d Macaulay matrix, and let Dk :=
∑

β v
(k)
β ∂β . Then {Dk}k is a basis for the truncated

local dual space D(d)
p [I], i.e. a set of Noetherian operators for I + pd+1.

Proof. Let D ∈ D
(d)
p [I]. We can write D =

∑
|β|≤d vβ∂

β for some vector v = (vβ)β .

Clearly v ∈ kerM , so v =
∑

k ckv
(k), which implies D =

∑
k ckDk.

Conversely, we must show that Dk is in D
(d)
P [I] for each k. As in Section 1.3, let

S = κ(p) ⊗K R, and n ⊆ S be a maximal ideal corresponding to a rational point p =

(p1, . . . , pn) ∈ κ(p)n such that n ∩ R = p. We use Lemma 1.3.4 and Theorem 1.3.5 to

relate Dp[I] and Dn[IS]. The set

{xαfi | |α| < d, i = 1, . . . , r} ∪ {(x− p)βfi | |β| ≥ d, i = 1, . . . , r}

spans IS as a κ(p)-vector space. By construction, Dk • (xαfi) = 0 for all |α| < d.

Note that each fi vanishes at p, so fi ∈ n. For each j, the term xj − pj is also in n. If

|β| ≥ d then (x− p)βfi ∈ nd+1. Since the ∂-degree of Dk is at most d, Dk ∈ Dn[n
d+1], so

Dk • ((x− p)βfi) = 0. Therefore Dk ∈ Dn[IS], so Dk ∈ Dp[I].

It is clear that D(1)
p [I] ⊆ D

(2)
p [I] ⊆ · · · , and since the local dual space is finite dimen-

sional, this chain will stabilize to Dp[I] after a finite number of steps, namely at the step

when pd+1 ⊆ I . Furthermore, as the D(d)
p [I] are right R-modules, the chain stabilizes as
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soon as the dimension stops increasing, that is when dimκ(P )D
(d)
P [I] = dimκ(P )D

(d+1)
P [I].

Thus we get a termination criterion which doesn’t require a priori computation of the power

d such that pd ⊆ I .

The procedure above is summarized in Algorithm 2, which computes Noetherian opera-

tors for the p-primary component of I via kernels of successively larger Macaulay matrices.

Each kernel element is represented by a vector with entries in κ(p), which can be converted

to an operator in Wκ(p). The algorithm computes the local dual space, and then constructs

Noetherian operators from a basis thereof, so the output Noetherian operators will depend

on a choice of basis of the local dual space. In our Macaulay2 implementation, we always

choose a basis in reduced column echelon form.

Algorithm 2 Compute Noetherian operators symbolically in dimension zero

Require: I = (f1, . . . , fr) a zero-dimensional ideal, p a minimal prime of I ,≺ an ordering
on monomials ∂β

Ensure: A set of Noetherian operators for the p-primary component of I
1: procedure NOETHERIANOPERATORSZERO(I, p)
2: K ← ∅
3: d← 0 ▷ d corresponds to the degree bound
4: repeat
5: d← d+ 1
6: F ← vector with entries xαfi, where |α| < d, i = 1, 2, . . . , r
7: C ← vector with entries ∂β = ∂β1x1 · · · ∂

βn
xn , where |β| ≤ d, in the order ≺

8: M ← the Macaulay matrix with entries ∂β • (xαfi) (rows indexed by F ,
columns by C)

9: Kd ← kerM
10: until dimKd = dimKd−1 ▷ Stop when the dimension of the kernel stabilizes
11: K ← COLREDUCE(Kd) ▷ Rewrites the generators of Kd in a reduced column

echelon form
12: return CTK, a row vector of Noetherian operators in Wκ(p)

For the general case, if I is positive-dimensional, we reduce to the zero dimensional

case by choosing a maximal set of t of independent variables over p, yielding Algorithm 3.

Remark 3.2.2. Algorithm 2 describes how to find dual spaces (and therefore Noetherian

operators) using Macaulay matrices. This is not the only dual space algorithm. We present

it here because it is the most general and simplest to describe. The algorithm of [43]
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Algorithm 3 Compute Noetherian operators symbolically in positive dimension

Require: I ⊆ K[t,y] an ideal, where t,y are independent and dependent variables for I
respectively, p a minimal prime of I , ≺ an ordering on monomials ∂βy

Ensure: A set of Noetherian operators for the p-primary component of I
1: procedure NOETHERIANOPERATORS(I, p)
2: return NOETHERIANOPERATORSZERO(I(t), p(t)).

instead uses antidifferentiation to find dual space basis elements of each degree from the

previous degree elements, and it has better run time when the dimension of the dual space

in each degree is low. That paper focuses on the case when the coefficient field is C but

the algorithm can be applied any time the prime p is a rational point. We do not know of a

way to generalize it to nonrational points. In our code in the NoetherianOperators

package, the default strategy is antidifferentiation when the point is rational and Macaulay

matrices when it is not. △

Example 3.2.3. Consider the 1-dimensional primary ideal Q = ((x21 − x3)2, x2 − x3(x21 −

x3)) ⊆ R = Q[x1, x2, x3]. Its radical is p = (x21 − x3, x2), and we may choose x1, x2 as

the dependent variables and x3 as the independent variable. Thus in R(t) = Q(x3)[x1, x2],

Q(t) is a zero-dimensional primary ideal whose radical is p(t). In degree 1, the Macaulay

matrix has a 2-dimensional kernel. In degree 2, the Macaulay matrix is

M =

1 ∂x1 ∂x2 ∂2x1 ∂x1∂x2 ∂2x2



(x21−x3)2 0 0 0 8 x3 0 0

(x2−x3(x21−x3)) 0 −2x3x1 1 −2x3 0 0

x1(x21−x3)2 0 0 0 8x3x1 0 0

x1(x2−x3(x21−x3)) 0 −2x23 x1 −6x3x1 1 0

x2(x21−x3)2 0 0 0 0 0 0

x2(x2−x3(x21−x3)) 0 0 0 0 −2x3x1 2

91



with entries in κ(p(t)) = κ(p). Performing linear algebra in the field κ(p), we see that the

kernel of M is generated by (1, 0, 0, 0, 0, 0)T and (0, 1, 2x1x3, 0, 0, 0)
T . Since the dimen-

sion of the kernel did not increase, we terminate the loop in Algorithm 2 and conclude that

{1, ∂x1 + 2x1x3∂x2} is a set of Noetherian operators for Q.

Contrary to the algorithm in [10], our algorithm does not go through the punctual

Hilbert scheme. To make this clear, we perform a parallel computation following [10,

Algorithm 3.8]. Write F := κ(P ). The point in the punctual Hilbert scheme corresponding

to Q is the ideal

I = ⟨y1, y2⟩2 + γ(Q) · F[y1, y2],

where γ is the inclusion map

γ : R ↪→ F[y1, y2],

x1 7→ y1 + x1

x2 7→ y2 + x2

x3 7→ x3

Here I = (y1 − 1/(2x1x3)y2, y
2
2). A basis for I⊥ can be computed using e.g. the classical

Macaulay matrix method. The degree 2 Macaulay matrix is

1 ∂x1 ∂x2 ∂2x1 ∂x1∂x2 ∂2x2



(y1−1/(2x1x3)y2) 0 1 −1
2x1x3

0 0 0

y22 0 0 0 0 0 2

y1(y1−1/(2x1x3)y2) 0 0 0 2 −1
2x1x3

0

y1y22 0 0 0 0 0 0

y2(y1−1/(2x1x3)y2) 0 0 0 0 1 −1
x1x3

y2y22 0 0 0 0 0 0

with entries in F, and, as expected, its kernel corresponds to the Noetherian operators
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{1, ∂x1 + 2x1x3∂x2}. △

Example 3.2.4. We compute a primary decomposition using our symbolic algorithm. Con-

sider the rational normal scroll S(2, 2) ⊆ P5 given by the prime ideal

p := I

 2× 2 minors of

x0 x1 x3 x4

x1 x2 x4 x5


 ⊆ K[x0, . . . , x5]

which has codimension 3 and degree 4. We can take x1, x3, x4 as the dependent variables,

and x0, x2, x5 as independent variables.

Consider the ideal I generated by the following three polynomials:

f1 := x41 − 2x0x
2
1x2 + x20x

2
2 + x1x2x3x4 − x0x2x24 − x21x3x5 + x0x1x4x5

f2 := x41 − 2x0x
2
1x2 + x20x

2
2 + x1x2x3x4 − x21x24 − x0x2x3x5 + x0x1x4x5

f3 := x22x3x4 − x1x2x24 + x44 − x1x2x3x5 + x21x4x5 − 2x3x
2
4x5 + x23x

2
5

This ideal was constructed to be a complete intersection defined by suitable linear combi-

nations of generators of p2. Our goal is to compute a primary decomposition of I . Us-

ing Macaulay2 v1.15 on an Intel® Core™ i7-1065G7 CPU @ 1.30GHz, the command

primaryDecomposition I did not terminate within 9 hours. On the other hand,

minimalPrimes I quickly returns the primes

p1 = (x5, x4, x
2
1 − x0x2),

p2 = (x4, x3, x
2
1 − x0x2),

p3 = (x2, x1, x
2
4 − x3x5),

p4 = (x1, x0, x
2
2x3x4 + x44 − 2x3x

2
4x5 + x23x

2
5),

p5 = (x24 − x3x5, x2x4 − x1x5, x1x4 − x0x5, x2x3 − x0x5, x1x3 − x0x4, x21 − x0x2)

Note that p5 = p is the prime ideal of the original rational normal scroll. The primes pi
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have dimension 3 and degrees (2, 2, 2, 4, 4) respectively. We then run Algorithm 3 for the

ideal I and each minimal prime pi. Noetherian operators for the p1-primary component of

I are

D1,1 = 1

D1,2 = x1∂x4 + x2∂x5

D1,3 = ∂x1

D1,4 = x1x
2
3∂

2
x1

+ 4x20x2∂
2
x4

+ 8x0x1x2∂x4∂x5 + 4x0x
2
2∂

2
x5
− 8x0x3∂x4

For the p2-primary component, we get Noetherian operators

D2,1 = 1

D2,2 = x1∂x3 + x2∂x4

D2,3 = ∂x1

D2,4 = x1x
2
5∂

2
x1

+ 4x0x
2
2∂

2
x3

+ 8x1x
2
2∂x3∂x4 + 4x32∂

2
x4

+ 8x1x5∂x3
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For the p3-primary component, we get Noetherian operators

D3,1 = 1

D3,2 = ∂x4

D3,3 = x4∂x1 + x5∂x2

D3,4 = x23x5∂
2
x1

+ 2x3x4x5∂x1∂x2 + x3x
2
5∂

2
x2
− 2x0x4∂x1

D3,5 = x23x4x5∂
3
x1

+ 3x23x
2
5∂

2
x1
∂x2 + 3x3x4x

2
5∂x1∂

2
x2

+ x3x
3
5∂

3
x2

− 6x0x3x5∂
2
x1
− 6x0x4x5∂x1∂x2 + 6x3x4∂x1

D3,6 = −27x33x4x5∂4x1 − 108x33x
2
5∂

3
x1
∂x2 − 162x23x4x

2
5∂

2
x1
∂2x2 − 108x23x

3
5∂x1∂

3
x2
− 27x3x4x

3
5∂

4
x2

+ 324x0x
2
3x5∂

3
x1

+ 648x0x3x4x5∂
2
x1
∂x2 + 324x0x3x

2
5∂x1∂

2
x2

+ (−324x20x4 − 648x23x4)∂
2
x1

− 648x23x5∂x1∂x2 + 81x20x5∂
2
x4

+ 1944x0x3∂x1

For the p4-primary component, we get Noetherian operators

D4,1 = 1
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Let Q denote the p-primary component. We get Noetherian operators

D5,1 = 1,

D5,2 = ∂x4 ,

D5,3 = ∂x3 ,

D5,4 = ∂x1 ,

D5,5 = 2x0x5∂x1∂x3 + x0x2∂
2
x3 + x2x4∂x1∂x4 ,

D5,6 = x42x
2
5∂

2
x1 + (−8x52x4 + 4x32x4x

2
5 + 32x0x

2
2x

3
5 − 8x0x

5
5)∂x1∂x3

+ (−4x52x5 + 16x32x4x
2
5 + 2x32x

3
5 − 4x2x4x

4
5)∂x1∂x4 + (4x42x

2
5 − x22x

4
5)∂

2
x4 ,

D5,7 = −x42x4x5∂2
x1 + (8x0x

4
2x5 − 32x0x

2
2x4x

2
5 − 4x0x

2
2x

3
5 + 8x0x4x

4
5)∂x1∂x3

+ (4x52x4 − 2x32x4x
2
5 − 16x0x

2
2x

3
5 + 4x0x

5
5)∂x1∂x4 + (8x0x

3
2x

2
5 − 2x0x2x

4
5)∂x3∂x4 ,

D5,8 = (−8x112 x4x
3
5 − 8x0x

8
2x

6
5 + 6x0x

6
2x

8
5 − x0x

4
2x

10
5 )∂3

x1

+ (96x0x
11
2 x35 + 96x0x

9
2x4x

4
5 − 48x0x

9
2x

5
5 − 120x0x

7
2x4x

6
5 + 48x0x

5
2x4x

8
5 − 6x0x

3
2x4x

10
5 )∂2

x1∂x3

+ (384x0x
10
2 x4x

3
5 − 96x0x

8
2x4x

5
5 + 384x20x

7
2x

6
5 − 384x20x

5
2x

8
5 + 120x20x

3
2x

10
5 − 12x20x2x

12
5 )∂x1∂

2
x3

+ · · ·

From this we deduce that the multiplicity of Q over p is 8. Note that this is consistent

with the fact that 2(4) + 2(4) + 2(6) + 4(1) + 4(8) = deg I = 43. Furthermore, as the

set of Noetherian operators of Q contains the set of Noetherian operators of p2, namely

{1, ∂x1 , ∂x3 , ∂x4}, we see that Q is strictly contained in p2. We can also see that the p2-

primary component is radical. △
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3.2.2 A numerical algorithm

Let I ⊆ K[t,y] be a primary ideal of dimension d, where t is a maximal set of independent

variables over p =
√
I . Let {D1, . . . , Dm} be a set of Noetherian operators for I and write

Di :=
∑
α

cα,i(t,y)∂
α
y , cα,i ∈ κ(p)

Fix a generic point (t0,y0) ∈ V(I) on the variety of I . We denote by Di(t0,y0) the

specialized Noetherian operator

Di(t0,y0) =
∑
α

cα,i(t0,y0)∂
α
y ∈ Wκ(p(t)).

Recall that by Theorem 2.5.2 a specialized Noetherian operator corresponds to an ex-

ponential solution by substituting variables z in place of the ∂y to obtain the function

ui(z) = Di(t0,y0, z) exp((t0,y0)
T · z)

Theorem 3.2.5. Assume that K is algebraically closed. Let {D1, . . . , Dm} be a set of

Noetherian operators of a primary ideal I , and let (t0,y0) ∈ V(I). If t0 is general, then

spanK{D1(t0,x0), . . . , Dm(t0,x0)} = Dm[I + (t− t0)],

where m is the maximal ideal corresponding to the point (t0,y0).

A proof can be found in [9, Theorem 4.1]. We explain the intuition behind the theorem.

Since t is a set of independent variables, the ideal I + (t − t0) is zero-dimensional, i.e. a

union of points, one of which is the point (t0,y0). Thus the local dual space of I + (t −

t0) at the point (t0,y0) is finite dimensional, and consists of differential operators with

coefficients in the ground field K. On the other hand, starting with a set of Noetherian

operators for I , and evaluating their coefficients at (t0,y0) also yields a set of differential
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operators with coefficients in the ground field. Theorem 3.2.5 says that these two sets of

differential operators span the same K-vector space.

Theorem 3.2.5 acts as a shortcut for the computation of evaluated Noetherian opera-

tors. To compute evaluations of Noetherian operators, we adapt Algorithm 2 to the ideal

I + (t − t0). This results in Algorithm 4, in which the only difference with Algorithm 2

is that the Macaulay matrix is evaluated at the point (t0,y0). The column reduction in

step 11 is used to construct a basis consistent with the one computed in the symbolic algo-

rithm. More precisely, for a fixed ordering ≺, the numerical matrix K(p) in Algorithm 4

is precisely the symbolic matrix K in Algorithm 2 evaluated at the point p. Thus if the

output of NOETHERIANOPERATORS(I, p) is {D1(t,y), . . . , Dm(t,y)}, then the output of

NOETHERIANOPERATORSATPOINT(I, (t0,y0)) would be {D1(t0,y0), . . . , Dm(t0,y0)}.

In general, Algorithm 4 will be faster than Algorithm 3, as computations in the former are

done in the base field K rather than in κ(p), which is an extension of the rational function

field in t.

Algorithm 4 Compute specializations of Noetherian operators at a point

Require: I ⊆ K[t,y] an ideal, where t,y are independent and dependent variables for I
respectively, p a minimal prime of I , ≺ an ordering on monomials ∂γy, and p ∈ V(p) a
generic point.

Ensure: A set of Noetherian operators for the p-primary component of I , specialized at p
1: procedure NOETHERIANOPERATORSATPOINT(I, p)
2: K ← ∅
3: d← 0 ▷ d corresponds to the degree bound
4: repeat
5: d← d+ 1
6: F ← vector with entries yαtβfi, where |α + β| < d, i = 1, 2, . . . , r
7: C ← vector with entries ∂γy, where |γ| ≤ d, in the order given by ≺
8: M ← the Macaulay matrix with entries (∂γy • (yαtβfi))(p) (rows indexed by
F , columns by C)

9: Kd ← kerM
10: until dimKd = dimKd−1 ▷ Stop when the dimension of the kernel stabilizes
11: K(p)← COLREDUCE(Kd) ▷ Rewrites generators of Kd in reduced column

echelon form
12: return CTK(p)
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Algorithm 4 is implemented in the package NoetherianOperators [35] under the

command specializedNoetherianOperators(I, pt). The input I is an ideal

and pt is a point, and the output is a list of evaluated Noetherian operators for the primary

component on which the point pt lies approximately.

A set of evaluated Noetherian operators also translates to a probabilistic, numerical

algorithm for testing ideal membership. Suppose I is an unmixed ideal, and that for each

p ∈ Ass(p) we have a generic point pp = (tp,yp), and a setDp(pp) of evaluated Noetherian

operators for each p-primary component at the points pp. Then a polynomial f ∈ R belongs

to the ideal I with high probability if D(tp,yp)•f = 0 for all D ∈ Dp(pp) and p ∈ Ass(I).

This is becauseD(tp,yp)•f is equal to the evaluation of the rational functionD•f ∈ κ(p)

at the point pp.

Example 3.2.6. Let I = (x2, y2 − tx) be an ideal in C[t, x, y]. Here t is an independent

variable, and x, y are dependent. We sample four points (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0)

on the variety V(I). Running Algorithm 4 gives four differential operators with constant

coefficients for each point, shown in Table 3.1.

Table 3.1: Specialized Noetherian operators at different points

(t, x, y) Operator 1 Operator 2 Operator 3 Operator 4

(1, 0, 0) 1 ∂y
1
2
∂2y + ∂x

1
6
∂3y + ∂x∂y

(2, 0, 0) 1 ∂y
1
2
∂2y +

1
2
∂x

1
6
∂3y +

1
2
∂x∂y

(3, 0, 0) 1 ∂y
1
2
∂2y +

1
3
∂x

1
6
∂3y +

1
3
∂x∂y

(4, 0, 0) 1 ∂y
1
2
∂2y +

1
4
∂x

1
6
∂3y +

1
4
∂x∂y

Note that these computations also work when using floating point approximations. Af-

ter loading the package NoetherianOperators, we can use the following Macaulay2

snippet to compute numerically compute the first row of Table 3.1. The last line is the out-

put.

R = CC[x,y,t]; I = ideal(xˆ2, yˆ2 - t*x);

pt = matrix{{1.0, 0, 0}}
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specializedNoetherianOperators(I, pt)

{| 1 |, | dy |, | .5dyˆ2+.5dx |, | .166667dyˆ3+.5dxdy |}

Running Algorithm 3, the symbolic version of Algorithm 4, on I , we obtain a set of

four Noetherian operators

1, ∂y,
1

2
∂2y +

1

t
∂y,

1

6
∂3y +

1

t
∂x∂y. (3.9)

As predicted by Theorem 3.2.5, the specialized Noetherian operators are simply the Noethe-

rian operators evaluated at the corresponding points.

We can check that the polynomial xy2 ∈ I numerically. Suppose we are given the point

(1, 0, 0) and the corresponding evaluated Noetherian operators. Then we check

f1(t, x, y) = 1 • xy2 = xy2 =⇒ f1(1, 0, 0) = 0

f2(t, x, y) = ∂y • xy2 = 2xy =⇒ f2(1, 0, 0) = 0

f3(t, x, y) =

(
1

2
∂2y + ∂x

)
• xy2 = 2x+ y2 =⇒ f3(1, 0, 0) = 0

f4(t, x, y) =

(
1

6
∂3y + ∂x∂y

)
• xy2 = 2y =⇒ f4(1, 0, 0) = 0.

Similarly, we observe that the polynomial xy ̸∈ I , since

(
1

6
∂3y + ∂x∂y

)
• xy = 1 ̸= 0.

△

3.2.3 A hybrid approach

One of the bottlenecks in the performance of Algorithm 3 is working with a large Macaulay

matrix over the field κ(p). On the other hand, Algorithm 4 performs the same computations

over C, which is much faster. In particular, Algorithm 4 computes an evaluated set of
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Noetherian operators, which reveals the monomial support in ∂y of a valid set of Noetherian

operators. This information can then be used to reduce the size of the Macaulay matrix and

symbolically produce a set of Noetherian operators in a single iteration. This approach

often takes a fraction of the time taken by Algorithm 3.

Let I = (f1, . . . , fr) ⊆ K[t,y] be unmixed, p a minimal associated prime of I , and p ∈

V(p) ⊆ Kn be a generic rational point on the variety of p. Let D′ = {D1(p), . . . , Dm(p)}

be the output of Algorithm 4, i.e. a reduced set of specialized Noetherian operators. Let

Di(p) =
∑

β∈B ci,β(p)∂
β
y , where B ⊂ Nn is finite and let di = degDi be the ∂y-degree of

the operator. Here ci,β(p) is the evaluation of some element ci,β(y, t) ∈ κ(p), where the

vector (cβ(y, t))|β|≤d is in the kernel of the degree d Macaulay matrix Md.

Let M be the submatrix of Md obtained by keeping only columns corresponding to ∂βy

with β ∈ B. The vector (cβ(y, t))β∈B is in the kernel of M , and because the operators are

reduced, the kernel is one-dimensional. Thus in order to find a symbolic representation of

the operator Di(y, t), it suffices to find the kernel of the matrix M over κ(p).

One can further optimize the procedure by starting with fewer rows than necessary,

and adding rows until the kernel becomes one-dimensional. Since rows are indexed by

yαfj for all |α| < di and j = 1, 2, . . . , r, one could for example run the algorithm for

|α| < 0, 1, . . . , di until the dimension of the kernel is 1. This method, described in pseu-

docode in Algorithm 5, is implemented in the package NoetherianOperators under

the command hybridNoetherianOperators.

Example 3.2.7. Consider the primary ideal I = (x2, y2 − xt) ⊆ C[t, x, y] from Exam-

ple 3.2.6. Let p = (1, 0, 0). Algorithm 4 reveals that the reduced set of Noetherian oper-

ators specialized at p are {1, ∂y, 12∂
2
y + ∂x,

1
6
∂3y + ∂x∂y}. To find the unevaluated operator

corresponding to 1
6
∂3y + ∂x∂y for example, it suffices to find the kernel of the following
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Algorithm 5 Hybrid computation of Noetherian operators

Require: I = (f1, . . . , fr) an unmixed ideal, p a minimal prime of I , a generic point
p ∈ V(p)

Ensure: A set of Noetherian operators for the p-primary component of I
1: procedure HYBRIDNOETHERIANOPERATORS(I, p, p)
2: N ′ ← NOETHERIANOPERATORSATPOINT(I, p)
3: N ← ∅
4: for all D′ ∈ N ′ do
5: C ← vector with entries ∂βx = ∂β1x1 · · · ∂

βn
xn for each ∂βx appearing in D′.

6: d← 0
7: repeat
8: d← d+ 1
9: R← vector with entries xαfi, where |α| < d, i = 1, 2, . . . , r

10: M ← the matrix with entries ∂βx • (xαfi) (rows indexed by F , columns by
C)

11: K ← kerM
12: until dimK = 1
13: D ← CTK
14: N ← N ∪ {D}
15: return lift of N in WR

submatrix of the Macaulay matrix

∂x∂y ∂3y



x2 0 0

y2−xt 0 0

x(x2) 0 0

x(y2−xt) 0 0

y(x2) 0 0

y(y2−xt) −t 6

over κ(
√
I). The kernel is 1-dimensional and generated by (1, t/6), so we conclude that

1
6
∂3y+∂x∂y is the Noetherian operator t

6
∂3y+∂x∂y evaluated at the point (0, 0, 1). We repeat

the procedure with all other operators to obtain the complete set of Noetherian operators

{1, ∂y, t2∂
2
y + ∂x,

t
6
∂3y + ∂x∂y}.
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If we had used Algorithm 3 we would have had to compute the kernel of the degree 4

Macaulay matrix, which has size (40× 15). △

Example 3.2.8. Consider the Noetherian operators D5,1, . . . , D5,8 for the P -primary com-

ponent in Example 3.2.4. The largest Noetherian operator has degree 3, which means that

we have to compute the kernel of the degree 4 Macaulay matrix, which has dimensions

(252 × 35). Over the field κ(p) this takes about 2 minutes. In contrast, computing the

kernel of the evaluated Macaulay matrix over C takes about 0.4 seconds.

Following Algorithm 5, we note that the largest matrix we need to deal with has di-

mensions (12 × 13), which allows us to obtain, symbolic Noetherian operators in about 1

second. △

Remark 3.2.9. Another way of obtaining symbolic Noetherian operators from numerical

data is to reconstruct them from point evaluations, as described in [9]. Since each coef-

ficient can be represented by a rational function, we can run an interpolation routine on

each coefficient. This yields a valid set of Noetherian operators given enough point evalu-

ations. This is implemented in the command numericalNoetherianOperators in

the NoetherianOperators package. △
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CHAPTER 4

WAVES

Waves are special solutions to the PDE system, in the spirit of the wave equation in Ex-

ample 3.1.2. We develop geometric theory and algebraic algorithms for finding them. Our

point of departure is the simple wave

ϕξ,u(z) = exp(iξT · z) · u. (4.1)

Here ξ ∈ Rn, u ∈ Ck and i =
√
−1. The exponential function is applied to the dot

product of z = (z1, . . . , zn) with the purely imaginary vector iξ, resulting in trigonometric

functions. The real vector ξ is the frequency, while the complex vector u is the amplitude.

If the matrix M ∈ Rℓ×k describes a PDE, its simple wave solutions are characterized by a

system of ℓ polynomial equations in their n+ k coordinates:

ϕξ,u ∈ Sol(M) = 0 if and only if M(ξ) · u = 0. (4.2)

Our standing assumption is that all entries of the matrix M are homogeneous polyno-

mials in x1, . . . , xn of the same degree d. Recall that xi acts as ∂zi = ∂
∂zi

on distribu-

tions ϕ ∈ D′(Rn,C). Since M has homogeneous entries, this implies that M is elliptic—

therefore smoothing—if and only if there are no nontrivial wave solutions. Therefore, the

existence of wave solutions has a major impact on the analytical properties of the operator,

c.f. [56, Chapter 2.1].

More general wave solutions are obtained from superpositions of simple waves and

taking limits. In the superpositions we allow here, the amplitude u is fixed, whereas the

frequency ξ runs over linear subspaces of Rn all of whose points satisfy (4.2). Taking

limits of such superpositions leads to waves that are distributions with small support. This
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construction will be explained in detail in Section 4.1.

In Section 4.2 we turn to algebraic geometry, and we introduce projective varieties that

parametrize wave solutions. These generalize the determinantal varieties of matrices of lin-

ear forms. In Section 4.3 we examine the analytic meaning of wave varieties and obstruc-

tion varieties, and discuss the analytic implications of working algebraically in complex

projective spaces. In Section 4.4 we introduce varieties of wave pairs. These generalize

Fano varieties [30, Example 6.19] inside Grassmannians. We present methods for com-

puting wave pairs and wave varieties, and we illustrate these on several examples. In the

context of a given PDE M , these scenarios give interesting distributional solutions to M

with low-dimensional support.

The material in this chapter, based on the paper [28], arose from a desire to understand

the hierarchy of wave cones in [3]. These are subsets of Ck which play an important role

in the regularity theory of PDE. Our presentation connects this thread of analysis with

nonlinear algebra via Noetherian operators and differential primary decompositions.

We close the introduction with a well-known equation from the theory of elasticity [21,

45].

Example 4.0.1 (Saint-Venant’s tensor). Set d = 2, k =
(
n+1
2

)
, ℓ = k2, and identify Ck

with the space of symmetric n × n matrices. We consider matrix-valued distributions

ϕ : Rn → Ck. The Saint-Venant operator M characterizes the kernel of the 2-dimensional

X-ray transform:

M • ϕ =
(
∂i∂jϕab + ∂a∂bϕij − ∂i∂aϕjb − ∂j∂bϕia

)
i,j,a,b=1,...,n

. (4.3)

In our notation, M is an ℓ× k matrix whose nonzero entries are quadratic monomials ∂i∂j .

By removing redundant rows, using [21], the number of rows of M can be reduced to
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ℓ = 1
6

(
n2

2

)
. The PDE M has a vector potential S given by the symmetric gradient:

B • ψ =
(
∂iψj + ∂jψi

)
i,j=1,...,n

.

The wave pair variety Pn−1
A of Section 4.4 lives in the space Pn−1 × Pk−1, and it coincides

with the incidence variety IA in (4.13). It is defined by the 3 × 3 minors of the (n + 1) ×

(n+ 1)-matrix 

0 y1 y2 · · · yn

y1 z11 z12 · · · z1n

y2 z12 z22 · · · z2n
...

...
... . . . ...

yn z1n z2n · · · znn


. (4.4)

The wave variety WA ⊂ Pk−1 of Section 4.2 is given by the 3 × 3 minors of the n × n

matrix (zij). This example is a variant of the curl operator in Proposition 4.4.6, with (4.4)

playing the role of (4.23). It underscores the relevance of nonlinear algebra [41] for the

physical sciences. △

4.1 Spaces and Waves

The notion of waves arises from superpositions of the simple waves (4.1),

ϕ(x) =

p∑
j=1

λjϕξj ,u(x). (4.5)

Here the amplitude u ∈ Ck is fixed but the frequencies ξ1, . . . , ξp vary in Rn. The coeffi-

cients λ1, . . . , λp are complex numbers. If each summand in (4.5) satisfies the PDE M then

so does ϕ(x).

Waves are thus simply linear combinations of exponential functions, which play a spe-

cial role. We introduce the Schwartz space S = S(Rn,Ck) whose elements are smooth
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functions f such that ||xβ∂αf ||∞ is finite for all α, β ∈ Nn. This space includes the simple

waves (4.1), since the coordinates of ξ are real. However, many nice functions, such as

polynomials, are not in S.

Most relevant for us is that D = C∞
c (Rn,Ck) is a subspace of S = S(Rn,Ck). The

key feature of the Schwartz space is the endomorphism known as the Fourier transform

ˆ : S → S. By applying ˆ twice, we see that every function in S admits an integral

representation

f(x) =

∫
Rn

exp( 2πi ξ · x) f̂(ξ) dξ. (4.6)

The dual to the Schwarz space consists of the tempered distributions. We have inclusions

D ↪→ S ↪→ S ′ ↪→ D′. (4.7)

All of these spaces are R-modules because the linear map ∂α : D → D is continuous, so

we get a dual (∂α)∗ : D′ → D′ which restricts to S ′ and S.

The integral representation (4.6) of Schwartz functions by the Fourier transform implies

that every distribution δ ∈ D′ can be approximated by a sequence of waves ϕ(1), ϕ(2), . . . of

the form (4.5).

Lemma 4.1.1. The linear span of the exponential functions x 7→ exp(iξ ·x) is dense in D′.

Our aim is to create interesting distributions by taking limits of waves (4.5) in D′. To

this end, suppose that ξ1, . . . , ξp span a linear subspace π of Rn such thatM•ϕξ,u = 0 for all

ξ ∈ π. We then consider the closure inD′ of the space of all waves (4.5) whose frequencies

ξj are in π. Each element in that closure satisfies the PDE M , and the closure contains

distributional solutions with small support. This motivates the following definitions. As

before, M ∈ Rℓ×k is a matrix whose entries are homogeneous of degree d. A wave pair for

M is a pair (u, π), where u ∈ Ck and π is a linear subspace of Rn, such that M(ξ)u = 0

for all ξ ∈ π. If (u, π) is a wave pair then any superposition (4.5) with ξ1, . . . , ξp ∈ π is a

classical wave solution of M . A wave solution to M is any distribution in the closure in D′
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of the classical wave solutions.

Proposition 4.1.2. Consider any wave pair (u, π) for the operatorM and set r = codim(π).

The associated wave solutions are precisely the distributions of the form

ϕ(z) = δ
(
L1(z), . . . , Ln−r(z)

)
· u, (4.8)

where L1, . . . , Ln−r are linear form satisfying π⊥ = {z ∈ Rn : L1(z) = · · · = Ln−r(z) =

0} and δ is any distribution in D′(Rn−r,C). Thus, equation (4.8) characterizes wave pairs

as follows: if ϕ(z) is a solution to the PDE M for all δ ∈ D′(Rn−r,C) then (u, π) is a

wave pair.

Remark 4.1.3. The notation δ(L·) := δ(L1(z), . . . , Ln−r(z)) refers to an extension from

smooth functions to distributions. Following [32, Chapter 6], one can define it as follows.

Given a real matrix L ∈ R(n−r)×r, fix an orthonormal basis v1, . . . , vr for ker(L) and

let L′ ∈ Rr×n be the matrix with the vi as rows. The matrix H =

L
L′

 defines an

endomorphism Rn → Rn, z 7→ (y′, y′′), where y′ ∈ Rn−r, y′′ ∈ Rr. Its inverse is H−1 =[
LT (LLT )−1 L′T

]
. If δ : Rn−r → C is smooth, then, by a change of variables, for any

test function f ∈ D(Rn,C),

δ(L·)(f) =
∫
Rn δ(L(x))f(x) dx =

∫
Rn δ(y

′)f(H−1y)| det(H−1)| dy

= 1√
det(LLT )

∫
Rn δ(y

′)f(H−1y) dy = 1√
det(LLT )

∫
Rn−r δ(y

′)
∫
Rr f(H

−1y) dy′′ dy′.

We write this as δ(L·)(f) = δ(1(F )), with the constant function 1 : Rr → C and

F (y) = 1√
det(LLT )

f(H−1y). There exists a unique distribution δ⊗1 such that (δ⊗1)(F ) =

δ(1(F )) = 1(δ(F )) for all F ∈ D(Rn,C). Now define δ(L·)(f) := (δ ⊗ 1)(F ) for arbi-

trary distributions δ. △

Proof of Proposition 4.1.2. Write z = (z1, . . . , zn) and y = (y1, . . . , yn−r) for the coordi-

nates of Rn and Rn−r, and letL denote the (n−r)×nmatrix of coefficients ofL1, . . . , Ln−r.
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For η ∈ Rn−r, consider the wave function z 7→ δη(Lz) · u associated with the exponential

function δη(y) = exp(iη · y). Applying the differential operator M to that wave function

yields

M • (δη(Lz) · u) = M • (exp(iηLz) · u) = id exp(iηLz) ·M(ηL)u. (4.9)

This vector of length ℓ is zero for all η ∈ Rn−r if and only if (u, π) is a wave pair. Since

the space spanned by the exponential functions δη for η ∈ Rn−r is dense in the space of all

distributions, by Lemma 4.1.1, the first assertion follows.

The second statement follows from the fact thatM •(δη(Lz)·u) = 0 for all η if and only

if (u, π) is a wave pair, together with the simple observation that δη ∈ D′(Rn−r,C).

We seek wave pairs (u, π) where r is as small as possible. Indeed, if r is small then

we can build distributional solutions with small support. What follows is the standard

construction.

Remark 4.1.4. Let δ be the Dirac delta distribution at the origin in Rn−r. The distribution ϕ

in (4.8) is supported on the r-dimensional subspace π⊥ of Rn. If (u, π) is a wave pair then ϕ

satisfies the PDE M . Such M -free measures are important in the calculus of variations [3,

14]. △

Example 4.1.5. Fix the matrix M in Example 2.1.1. For all ξ ∈ C3\{0}, the linear space

kerM(ξ) has dimension 2. It consists of all vectors u ∈ C4 such that

ξ1 ξ2 ξ3 0

0 ξ1 ξ2 ξ3




u1

u2

u3

u4


=

u1 u2 u3

u2 u3 u4



ξ1

ξ2

ξ3

 =

0
0

 . (4.10)

This equation characterizes simple waves ϕξ,u that satisfy M . With r = 2 in (4.8) we can
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take

L1(z) = (u23 − u2u4)z1 + (u1u4 − u2u3)z2 + (u22 − u1u3)z3 for any u ∈ R4.

(4.11)

In other words, for any choice of u ∈ C4, the distribution ϕ(z) = δ(L1(z)) · u satisfies

M • ϕ = 0.

To obtain waves with r = 1, u must be chosen such that the three coefficients in (4.11)

vanish. This means that u lies in the cone over the twisted cubic curve:

(u1, u2, u3, u4) = (s3, s2t, st2, t3). (4.12)

This is the wave variety W1
M ⊂ P3 in Example 4.2.3. We obtain wave pairs (u, π) with

codim(π) = 2, and thus solutions supported on a plane in R4, by taking the two linear

forms

L1(z) = tz1 − sz2 and L2(z) = tz2 − sz3.

Indeed, ϕ(z) = δ
(
L1(z), L2(z)

)
· u is a wave solution of M , for any δ ∈ D′(R2,C). △

4.2 Varieties

In this section we introduce several algebraic varieties that are naturally associated with

M and its system of PDE. As is customary in algebraic geometry, we work in complex

projective spaces rather than in real affine spaces. Every subvariety of Pk−1 corresponds

to a cone in Ck, which is a complex variety defined by homogeneous equations, and by

restricting to Rk one obtains a real cone. Among such cones are the wave cones from [3]

which motivated our study. We shall return to the analytic perspective in the next section.

In what follows, however, we stick to algebra. This means working in the projective spaces

Pk−1 and Pn−1 over the complex numbers C.

As always, we let R = C[x1, . . . , xn], or R = C[∂1, . . . , ∂n], where ∂i = ∂
∂zi

. For any
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point y ∈ Pn−1 we write M(y) for the complex ℓ × k matrix that is obtained from M by

replacing each ∂i with the coordinate yi. The matrix M(y) is well-defined up to scale. We

view it as a point in the projective space Pℓk−1. We write w for points in Pk−1, and we set

IM =
{
(y, w) ∈ Pn−1 × Pk−1 : M(y) · w = 0

}
. (4.13)

This is our algebro-geometric representation of the relation between frequencies and am-

plitudes seen in (4.2). The projection of the incidence variety IM onto the first factor equals

SM = { y ∈ Pn−1 : rank(M(y)) ≤ k − 1 }. (4.14)

This projective variety is the support of our PDE M . The variety V (imRM
T ) is the affine

cone over SM . The role of the support for simple waves was highlighted in Lemma 2.6.5.

A natural set of polynomials that define SM set-theoretically is the k × k minors of M .

However, these minors usually do not suffice to generate the radical ideal of SM . There

are two interesting extreme cases, namely SM = Pn−1 and SM = ∅. The former identifies

PDE with compactly supported solutions (c.f. Theorem 2.4.2), while the latter identifies

PDE whose only solutions are polynomials (c.f. Proposition 2.6.8).

We next consider the projection of the incidence variety IM onto the second factor

Pk−1. The resulting projective variety is called the wave variety of M , and we write it as

follows:

WM :=
⋃

y∈Pn−1

kerM(y).

The kernel in this definition is a linear subspace of Pk−1, so WM is a projective variety

in Pk−1. This is the algebraic variant of the wave cone considered in analysis; see [14,

Theorem 1.1] and surrounding references. We shall return to this in Section 4.3 where it is

denotedWM,R.
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Example 4.2.1 (n = k = ℓ = 3, d = 2). Consider the second order PDE given by the

matrix

M =


∂21 ∂22 ∂23

−∂22 ∂23 ∂21

−∂23 −∂21 ∂22

.
Its support SM is the smooth sextic curve in P2 defined by det(M(y)) = y61 + y62 + y63 +

y21y
2
2y

2
3 . The wave varietyWM is the smooth cubic curve in P2 defined by z31 − z32 + z33 −

z1z2z3. These two plane curves are linked by their incidence curve IM ⊂ P2 × P2. If the

entries of M are replaced by random quadrics in ∂1, ∂2, ∂3, thenWM is a singular curve of

degree 12 in P2. △

The article [3] extended the results in [14] by introducing two refined notions of wave cones.

We now recast these as algebraic varieties. For r ∈ {0, . . . , n− 1}, the level r wave variety

is

Wr
M :=

⋃
π∈Gr(n−r,n)

⋂
y∈π

kerM(y). (4.15)

The union is over the Grassmannian Gr(n − r, n) of linear subspaces π of codimension r

in Pn−1. For basics on Grassmannians and their projective embeddings see [41, Chapter 5].

For r = n− 1, the inner intersection in (4.15) goes away, the outer union is over y ∈ Pn−1,

and we obtain the wave variety WM . At the other end of the spectrum, the level 0 wave

varietyW0
M =

⋂
y∈Pn−1 kerM(y) is often empty. For the in-between levels r, we obtain a

hierarchy

W0
M ⊆ W1

M ⊆ · · · ⊆ Wn−1
M = WM ⊆ Pk−1. (4.16)

We now define a second hierarchy in Pk−1 by switching the intersections and the union.

Namely, for any integer r ∈ {1, . . . , n}, we define the level r obstruction variety to be

OrM :=
⋂

σ∈Gr(r,n)

⋃
y∈σ

kerM(y). (4.17)
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This intersection is over the Grassmannian of (r − 1)-dimensional subspaces in Pn−1. The

smallest and the largest obstruction variety coincides with the corresponding wave variety.

Lemma 4.2.2. We have the inclusionsWr
M ⊆ Or+1

M for all r, withW0
M = O1

M andWn−1
M =

OnM .

Proof. Fix w ∈ Wr
M and a codimension r subspace π of Pn−1 such that M(y)w = 0 for all

y ∈ π. Consider any r-dimensional subspace σ of Pn−1. Pick a point y′ in the intersection

π ∩ σ. Since M(y′)w = 0, we have w ∈
⋃
y∈σ kerM(y), and hence w ∈ Or+1

M . Equality

holds for r = 0 because W0
M =

⋂
y∈Pn−1 kerM(y) = O1

M , and for r = n − 1 because

Wn−1
M =

⋃
y∈Pn−1 kerM(y) = OnM .

In analogy to the wave varieties in (4.16), there is also a hierarchy of obstruction vari-

eties:

W0
M = O1

M ⊆ O2
M ⊆ · · · ⊆ OnM = WM ⊆ Pk−1. (4.18)

Example 4.2.3 (n = 3, k = 4, r = 2). Fix the matrix M in Example 2.1.1 and 4.1.5. For

every w ∈ P3, there exists y ∈ P2 with M(y)w = 0, and hence W2
M = O3

M = P3. But,

for every w, there also exists y ∈ P2 with M(y)w ̸= 0, and henceW0
M = O1

M = ∅. The

variety in the middle of (4.16) and (4.18) satisfies W1
M = O2

M ⊂ P3. This is the twisted

cubic curve w = (s3, s2t, st2, t3). Indeed, the matrix
(
w1 w2 w3

w2 w3 w4

)
has rank 1, with kernel

π = {y ∈ P2 : s2y1 + sty2 + t2y3 = 0} ∈ Gr(2, 3). Every other line σ ∈ Gr(2, 3) in the

projective plane P2 intersects the line π. △

We next recall a basic construction from algebraic geometry; see [30, Example 6.19].

Fix a projective variety X ⊂ Pn−1. The Fano variety Fanor(X) is the subvariety of the

Grassmannian Gr(n− r, n) whose points are the linear spaces π of codimension r in Pn−1

that lie inX . We use Fano varieties to argue that the inclusion in Lemma 4.2.2 can be strict.

Example 4.2.4 (k = ℓ = 1, n ≥ 3). A subvariety of P0 is either empty or a point. Let

M = [a] where a is irreducible of degree d. Then Fano1(X) = ∅. Our varieties in (4.15)
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and (4.17) are

Wr
M =


∅ if Fanor(X) = ∅,

P0 if Fanor(X) ̸= ∅,
and Or+1

M =


∅ if r = 0,

P0 if r ≥ 1.

If d ≥ 2 then Fano1(X) = ∅, so W1
M is strictly contained in O2

M . Equality holds for

d = 1. △

Returning to arbitrary k and ℓ, we now show that equality always holds for first order

PDE. The main point for d = 1 is this: we can write the product M(y)w as C(w)y where

C(w) is an ℓ×n-matrix whose entries are linear forms in w1, . . . , wk. We did this in (4.10).

Proposition 4.2.5. If d = 1 thenWr
M = Or+1

M =
{
w ∈ Pk−1 : rank(C(w)) ≤ r

}
for all

r.

Proof. Fix w ∈ Pk−1. The condition w ∈ Wr
M says that the kernel of the matrix C(w) con-

tains a subspace π of codimension r. The condition w ∈ Or+1
M says that the kernel of

C(w) meets every r-dimensional subspace σ of Pn−1. Both conditions are equivalent to

rank(C(w)) ≤ r.

Thus, the wave varieties of first order PDE are easy to write down: they are the de-

terminantal varieties of the auxiliary matrix C(z). For d ≥ 2, elimination methods from

nonlinear algebra (e.g. Gröbner bases) are needed to compute the defining equations of

these varieties.

Proposition 4.2.6. The wave varieties Wr
M and the obstruction variety OrM are indeed

varieties in the projective space Pk−1, i.e. they are zero sets of homogeneous polynomials

in k variables.

Proof. The following incidence variety is closed in its ambient product space:

IrM =
{
(y, w, π) ∈ Pn−1 × Pk−1 ×Gr(n− r, n) : M(y)w = 0 and y ∈ π

}
. (4.19)
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The sets we defined in (4.15) and (4.17) are derived from this variety by quantifier elimi-

nation:

Wr
M =

{
w : ∃π ∀ y (y, w, π) ∈ IrM

}
and OrM =

{
w : ∀π ∃ y (y, w, π) ∈ IrM

}
.

These two sets are closed in Pk−1 because all their defining equations are homogeneous in

each group of variables. For the existential quantifier this follows from the Main Theorem

of Elimination Theory [41, Theorem 4.22]. For the universal quantifier once checks it

directly.

We compute ideals for Wr
M and OrM as follows. The equations M(y)w = 0 are bi-

homogeneous of degree (d, 1). The condition y ∈ π translates into bilinear equations in

(y, p), where p is the vector of Plücker coordinates of π. We view these as equations in

y with coefficients in (w, p), and we form the ideal of all coefficient polynomials. The

zero set of this ideal is the subvariety
⋂
y∈π kerM(y), which lies in Gr(r, n) × Pk−1. We

now project that variety onto the second factor to obtainWr
M . This amounts to saturating

and then eliminating the Plücker coordinates p. What arises is an ideal in the unknowns w

whose zero set isWr
M .

To get the ideal of OrM , we modify the argument as follows. Again, we consider

a fixed but unknown Plücker vector p and we consider the equations for y ∈ π along

with M(y)w = 0. From these equations we eliminate y to obtain polynomials in (p, w)

whose zero set is
⋃
y∈π kerM(y). We now vary p and we view this as a subvariety of

Gr(r, n)× Pk−1. We consider the defining equations of this subvariety, and we write them

as polynomials in p whose coefficients are polynomials in w. The collection of all such co-

efficient polynomials defines a subvariety of Pk−1. By construction, that subvariety equals

the desired set OrM .
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4.3 Back to Analysis

We now return to the setting of waves ϕ : Rn → Ck that was introduced in Section 4.1.

The projective varietiesWr
M and OrM in Pk−1 are to be viewed as affine cones in Ck. We

write

Wr
M,R :=

⋃
π∈GrR(n−r,n)

⋂
y∈π\{0}

kerM(y),

OrM,R :=
⋂

σ∈GrR(r,n)

⋃
y∈σ\{0}

kerM(y),

where GrR(r, n) is the Grassmannian of r-dimensional subspaces in Rn. In these defini-

tions, the kernel of M(y) is over the complex numbers, but π and σ are required to be

real. HenceWr
M,R and OrM,R are subsets in Ck, closely related to the projective varieties in

(4.15) and (4.17).

Readers of [3] will note that we changed notation and nomenclature. The ℓ-wave cone

ΛℓM from [3, Definition 1.2] is the obstruction coneOrM,R here, while the coneN ℓ
M defined

later in [3, eqn (1.8)] is our wave cone Wr
M,R. The coming results will motivate these

choices.

Proposition 4.1.2 shows why Wr
M,R serves as the rth wave cone. The distribution in

(4.8) has the form Rn → Ck : z 7→ δ(Lz) ·u where L is the (n− r)×n matrix whose rows

are the coefficients of L1, . . . , Ln−r. Recall Remark 4.1.3 for the definition of δ(Lz) as a

distribution.

Proposition 4.3.1. A vector u ∈ Ck lies in the wave cone Wr
M,R if and only if there is

a matrix L ∈ R(n−r)×n such that z 7→ δ(Lz) · u is a solution to M for all distributions

δ ∈ D′(Rn−r,C).

Proof. By definition, a complex vector u lies in the wave cone Wr
M,R if and only if there

exists a real subspace π ∈ GrR(n− r, n) such that M(ξ)u = 0 for all ξ ∈ π ⊆ Rn. This is
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equivalent to saying that (u, π) is a wave pair for M . If we identify π with the rowspace of

L, then the result follows from Proposition 4.1.2.

We next present an analogous statement for the obstruction cones OrM,R.

Proposition 4.3.2. A vector u ∈ Ck lies in OrM,R if and only if, for all S ∈ Rr×n of rank r,

the PDE M has a wave solution z 7→ δ(Sz) · u where δ is nonconstant and bounded.

Proof. Suppose u ∈ OrM,R and let σ ∈ GrR(r, n) be the real rowspan of the real matrix

S. Fix a nonzero vector ξ ∈ σ such that M(ξ)u = 0, and let η ∈ Rr such that ξ = ηS.

The exponential function δη(t) = exp(iηT · t) is nonconstant and bounded. Moreover, the

function δη(Sz) ·u is a wave solution to the PDEM , by the same calculation as in the proof

of Proposition 4.3.1. This proves the only-if direction.

For the if-direction, let u /∈ OrM,R. There exists σ ∈ GrR(r, n) such that M(ξ) · u ̸= 0

for all ξ ∈ σ\{0}. Let S be as before the real matrix with rowspan σ. Now suppose

δ(Sz) · u is a bounded solution of M . By the proof of Proposition 4.1.2, this implies that

δ(y) is a bounded solution of the operator α(∂y) =M(∂yS) · u. This operator is elliptic by

our assumption. By classical theory (c.f. [56, Theorem 2-7]), every solution to α • v = f

with f ∈ C∞ is in C∞. Therefore a Liouville theorem holds: one can use the Closed Graph

Theorem to deduce that there is a constant C > 0 such that for any solution of α • v = 0 in

the unit ball B1 one has

∥Dv∥L∞(B1/2) ≤ C∥v∥L∞(B1) .

Since the operator α is of homogeneous degree d, we can use scaling to obtain

∥Dv∥L∞(BR) ≤
C

R
∥v∥L∞(B2R).

Hence, every bounded solution on Rn−r is constant (c.f. [56, Chapter 2]). So, δ is constant.

We used the term “obstruction” for the varietyOrM and the coneOrM,R not because their
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elements are obstructions. Rather, our choice of name refers to role played by the cone

OrM,R in the paper [3] which motivated us. Since OrM,R contains the wave coneWr−1
M,R, the

latter is empty if the former is empty. Thus, the cone OrM,R being empty is an obstruction

to the existence of wave solutions. That obstruction is a key for the “dimensional estimates”

in [3, 53].

In this chapter we often transition between real numbers and complex numbers. This

occurs at multiple mathematical levels, including trigonometry and projective geometry.

The complex numbers represent waves in Section 4.1 and they serve as an algebraically

closed field in Section 4.2. However, the argument z of our solutions ϕ(z) are real vectors.

The spaces (4.7) belong to the field real analysis, as does the study of M -free Radon mea-

sures in [3, 14, 33]. Recall that a Radon measure is a distribution that admits an integral

representation, and one is interested in rectifiability of such measures that satisfy the PDE

constraint given by M .

This raises the question of how complex analysis fits in. From a purely algebraic point

of view, we can certainly consider solutions in the space of holomorphic functions ϕ :

Cn → Ck. All our formal results extend gracefully to that setting. For instance, we can

certainly take δ in (4.8) to be a holomorphic function on Cn−r to get a holomorphic solution

ϕ to our PDE. However, from an analytic point of view, there are no meaningful waves in

complex analysis. The following example is meant to illustrate the importance of reality

for making waves.

Example 4.3.3 (n = 2, k = ℓ = 1, d = 1, 2). We consider PDE for scalar-valued functions

in two variables. The transport equationM = ∂1+∂2 has the solutions δ(z1−z2). These are

waves and δ can be any distribution. The Cauchy-Riemann equation M ′ = ∂1 + i∂2 looks

very similar, and we can write its solutions formally as δ(z1 + iz2). But, these solutions do

not come from the wave coneWr
M,R, since here π = V (x1 + ix2) is not real, and these do

not give waves. If we allow solutions of the form δ(z1 + iz2), we must add in the condition

that δ be complex differentiable, therefore smooth. This violates Proposition 4.1.2, which
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says that δ can be chosen to be any distribution.

Passing to second order equations, one might compare ∂21 − ∂22 and ∂21 + ∂22 . These

two PDE look indistinguishable to the eyes of algebraist, while an analyst will see a hyper-

bolic PDE and an elliptic PDE. These two classes have vastly different properties for their

solutions. In particular, the latter can only admit smooth solutions. △

The affine conesWr
M,R andOrM,R can be quite different from the complex varietiesWr

M

and OrM . In general we haveWr
M ⊇ Wr

M,R. Indeed, if w ∈ Wr
M , there is a linear subspace

π ∈ Gr(n− r, n) such that M(y)w = 0 for all y ∈ π. For w ∈ Ck to lie inWr
M,R, we must

impose the additional condition that the dimension of π ∩Rn is also n− r. The inclusions

for the obstruction cones are reversed: OrM ⊆ OrM,R. The point w ∈ Ck lies in OrM if and

only if for all σ ∈ Gr(r, n) there exists y ∈ σ \ {0} such that M(y)w = 0. This condition

is relaxed in OrM,R, where it suffices to consider those σ whose real part σ ∩ Rn also has

dimension r.

4.4 Computing Wave Pairs

Our aim is to find wave solutions of a PDE, given by an ℓ × k matrix M whose entries

are homogeneous polynomials of degree d in R. Each wave (4.8) arises from a wave pair

(z, π), which serves as a blueprint for creating solutions to the PDE. Our approach allows

complete freedom in making waves with desirable analytic properties, by choosing the

distribution δ in Proposition 4.3.1. Inspired by Proposition 4.1.2, we define the wave pair

variety

PrM =
{
(w, π) ∈ Pk−1 ×Gr(n− r, n) : M(y)w = 0 for all y ∈ π

}
.

This is a smaller version of the incidence variety IrA we saw in (4.19). The wave variety

Wr
M introduced in (4.15) is the projection of the wave pair variety PrM onto the first factor

Pk−1. For r = n − 1 the wave pair variety coindices with the incidence variety in (4.13).
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In symbols,

Pn−1
M = IM . (4.20)

It is instructive to start with the case k = 1. Here PrM lives in P0×Gr(n− r, n), which

we identify with Gr(n − r, n). Consider the subvariety SM of Pn−1 that is defined by the

ℓ entries of the ℓ × 1 matrix M . This is the support of our PDE, as seen in (4.14). The

condition M(y)w = 0 for w ∈ P0 simply means that y ∈ SM . From this we conclude the

following fact.

Corollary 4.4.1. If k = 1 then PrM = Fanor(SM) is the Fano variety of the support SM .

The points of PrM are the linear spaces of codimension r in Pn−1 that are contained in SM .

The software Macaulay2 has a built-in command Fano for computing the ideal of

the Fano variety Fanor(SM) from the entries of M . Our results in this section extend this

method. We shall describe an algorithm for computing PrM and all the varieties introduced

in Section 4.2.

Each of our varieties lies in a projective space or product of projective spaces. What

we seek is its saturated ideal. To explain what this means, consider the variety IM in

Pn−1×Pk−1. Its description in (4.13) is easy. The ℓ coordinates of M(y)w are polynomials

of bidegree (d, 1) in

C[y, w] = C[y1, . . . , yn, w1, . . . , wk].

However, these ℓ polynomials do not suffice. The saturated ideal of the variety IM equals

( (
⟨M(y)w ⟩ : ⟨y1, . . . , yn⟩∞

)
: ⟨w1, . . . , wk⟩∞

)
. (4.21)

Saturation is a built-in command in Macaulay2 [24], but its execution often takes a long

time. This crucial step removes extraneous contributions by the irrelevant ideals of Pn−1

and Pk−1.

Example 4.4.2 (k = ℓ = n = d = 2). Suppose M is a 2 × 2 matrix whose entries are
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general quadrics in C[y1, y2]. The variety IM consists four points in P1×P1. Its ideal (4.21)

is generated by six polynomials of bidegrees (0, 4),(1, 2),(1, 2),(2, 1),(2, 1),(4, 0). The first

and last equation are binary quartics that define the projections SM andWM into P1. These

data encode the general solution to the PDE M . For a concrete example, consider

M =

∂21 + 4∂22 17∂1∂2

2∂1∂2 4∂21 + ∂22

 .
Here the general solution ϕ : R2 → C2 is given by the following superposition of waves

ϕ(z1, z2) =

−17
4

α(2z1 + z2) +

17
4

 β(−2z1 + z2) +

−2
1

 γ(z1 + 2z2) +

2
1

 δ(z1 − 2z2),

where α, β, γ, δ ∈ D′. This can be also found using a differential primary decomposition:

the associated primes are (x1−2x2), (x1+2x+2), (2x1−x2), (2x1+x2), and the generators

of their respective excess dual spaces are [ −17
4 ], [ 174 ], [

−2
1 ], [ 21 ]. △

The points π in the Grassmannian Gr(n − r, n) will be represented as in [41, Section

5.1]. We write π as the rowspace of an (n−r)×nmatrix S = (sij), that is, π = {vS : v ∈

Cn−r}. For a subset I of cardinality n− r in {1, . . . , n}, the corresponding subdeterminant

of S is denoted pI . Then p = (pI) ∈ C(
n
r) is the vector of Plücker coordinates of π.

The resulting embedding of Gr(n− r, n) into P(
n
r)−1 is defined by the ideal G of quadratic

Plücker relations [41, Section 5.2]. Subvarieties of Gr(n−r, n) are represented by saturated

ideals in C[p]/G. In the special case r = n− 1, we identify the Plücker coordinates p with

y = (y1, . . . , yn).

The wave pair varietyPrM lives in Pk−1×P(
n
r)−1. We shall compute its saturated ideal in

the polynomial ring C[w, p]/G. A pair (w, π) lies in PrM if and only if M(vS)w = 0 for all

v ∈ Cn−r. To express this in Plücker coordinates, we proceed as follows. Write the ℓ entries

of M(vS)w as linear combinations of the monomials vα, α ∈ Nn−r, with coefficients in
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C[w, S]. Let J be the ideal generated by these coefficients, and consider the ring map

ψ : C[w, p]/G→ C[w, S]/J which fixes each wi and maps pI to the corresponding minor

of S.

Algorithm 6 The ideal of the wave pair variety in Plücker coordinates.

Require: A matrix M ∈ C[x1, . . . , xn]ℓ×kd and an integer r ∈ {0, 1, . . . , n− 1}
Ensure: The saturated ideal in C[w, p]/G that defines PrM as a subvariety of Pk−1×P(

n
r)−1

S ← (sij), an (n− r)× n matrix whose entries are variables
J ← the ideal in C[w, S] generated by the coefficients of the monomials vα in M(vS)w
G← the ideal of quadratic Plücker relations in C[p], as described in [41, Section 5.1]
T ← C[w, p]/G, the coordinate ring of the ambient space Pk−1 ×Gr(n− r, n)
ψ ← the map from T to C[w, S]/J that sends pI 7→ det(SI) and wi 7→ wi
Compute I = kerψ and write its generators in the polynomial ring C[w, p]
return the ideal saturation ((I : ⟨w⟩∞) : ⟨p⟩∞), as in (4.21).

To compute the ideal of the wave variety Wr
M , one can now eliminate the Plücker

variables from the output of Algorithm 6. This corresponds to projecting onto the first

factor of PrM .

We implemented Algorithm 6 in Macaulay2. For the code and its documentation see

https://mathrepo.mis.mpg.de/makingWaves.

Our command wavePairs(M,r) returns generators of the saturated ideal of PrM in

Q[w, p]/G, whereG is the Plücker ideal, given by the built-in command Grassmannian(n-r-1,

n-1). Since Algorithm 6 generalizes the computation of Fano varieties, running it can be

slow. A common method for speeding this up is to restrict to an affine patch of the Grass-

mannian. The optional argument Patch => ... implements this. If Patch is set to

true, then the leftmost (n − r) × (n − r) submatrix of S is the identity, as in [41, eqn

(5.2)]. The user can also select other charts by specifying a list of indices.

We now come to the special case of first-order PDE (d = 1). These are ubiquitous in

applications, and computing the corresponding wave pair varieties is easier. Here we use

the ℓ×n-matrix C(w) given by M(y)w = C(w)y. TheWr
M are the determinantal varieties
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of C(w).

Corollary 4.4.3. Let d = 1, with notation as in Proposition 4.2.5. The wave pair variety

equals

PrM =
{
(w, π) ∈ Pk−1 ×Gr(n− r, n) : π ⊆ kernel(C(w))

}
.

If π is given as the row space of an (n − r) × n matrix S then π ⊆ kernel(C(w))

means that C(w) · ST is the zero matrix of format ℓ × (n − r). Thus, PrM is a vector

bundle over the wave varietyWr
M . We shall explore these determinantal varieties for some

scenarios of geometric origin. These specify PDE which admit interesting wave solutions

x 7→ δ(Lx) · u.

Example 4.4.4 (Cubic Surfaces). Every smooth cubic surface in P3 is the determinant of a

3 × 3 matrix of linear forms. The surface contains 27 lines, but that number can drop for

special cubics. We here present an example with nine lines, namely Cayley’s cubic surface:

M =


∂1 ∂2 ∂3

∂2 ∂1 ∂4

∂3 ∂4 ∂1

 , C =


w1 w2 w3 0

w2 w1 0 w3

w3 0 w1 w2

 (n = 4, k = ℓ = 3).

The only nontrivial wave variety consists of the six points in P2 where C(w) has rank 2:

W2
M = O3

M =
{
(1 : 1 : 0), (1 : −1 : 0), (1 : 0 : 1), (1 : 0 : −1), (0 : 1 : 1), (0 : 1 : −1)

}
.

(4.22)

The cubic surface SM = { y ∈ P3 : det(M(y)) = 0 } has four singular points. It is

shown in [41, Figure 1.1].

The wave pair variety P2
M lives in P2 × P5. Its ideal is the output computed by Algo-
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rithm 6:

⟨w1, w2−w3, p14, p23, p24+p34, p13−p34, p12+p34⟩ ∩ ⟨w1, w2+w3, p14, p23, p24−p34, p13+p34, p12+p34⟩ ∩

⟨w2, w1−w3, p13, p24, p14+p34, p23−p34, p12−p34⟩ ∩ ⟨w2, w1+w3, p13, p24, p14−p34, p23+p34, p12−p34⟩ ∩

⟨w3, w1−w2, p12, p34, p14+p24, p23+p24, p13−p24⟩ ∩ ⟨w3, w1+w2, p12, p34, p14−p24, p23−p24, p13−p24⟩.

Its projection to P2 isW2
M , while that to P5 yields six of the nine points in Fano2(SM). △

We conclude by explicitly computing the wave pair varieties of certain operators that

are prominent in the calculus of variations. Such operators are built from div, curl, and

grad. We refer to [57, Example 2.1] for a warm-up from the perspective of control theory.

Determinantal varieties are given by imposing rank constraints on matrices [30, Lec-

ture 9]. The following construction realizes such varieties as wave cones of certain natural

PDEs.

Example 4.4.5 (Generic Determinantal Varieties). Let div = (∂1, ∂2, . . . , ∂n), fix p ≥ 2,

and set k = pn, ℓ = p. By taking the p-fold direct sum of div, we obtain the first order PDE

M =


div 0 · · · 0

0 div · · · 0

...
. . .

...

0 0 · · · div


for distributions ϕ : Rn → Cp×n with coordinates ϕij , where i = 1, . . . , p and j = 1, . . . , n.

The matrix C(w) defined by the bilinear equation M(y)w = C(w)y has format p × n.

Its entries are distinct variables wij . The wave variety Wr
M ⊂ Ppn−1 is the determinantal

variety of all p×nmatricesw of rank≤ r. The wave pair varietyPrM ⊂ Ppn−1×Gr(n−r, n)

consists of pairs (w, π) where π is in the kernel of w. This is a resolution of singularities

for the determinantal varietyWr
M . We refer to Examples 12.1 and 16.18 in Harris’ textbook

[30]. △

We next come to the curl operator, with its action on matrices as in [33, Example

124



1.16 (c)]. Fix any integer n ≥ 2. We write curl for the
(
n
2

)
× n matrix whose rows

are vectors ∂iej − ∂jei. We take M to be the p-fold direct sum of curl. This matrix has

ℓ = p
(
n
2

)
rows and k = pn columns. The following holds for this matrix M .

Proposition 4.4.6. Let M be the curl operator for distributions ϕ : Rn → Cp×n. The ideal

of its wave pair variety Pn−1
M ⊆ Ppn−1 × Pn−1 is generated by the 2 × 2 minors of the

(p+1)× n matrix 

y1 y2 · · · yn

w11 w12 · · · w1n

w21 w22 · · · w2n

...
... . . . ...

wp1 wp2 · · · wpn


. (4.23)

The wave varietyWM is similarly defined by the 2×2 minors of the p×n matrix (wij). All

other wave pair varieties PrM and wave varietiesWr
M , indexed by r ≤ n− 2, are empty.

Proof. The ideal of the incidence variety IM = Pn−1
M is computed by the saturation (4.21)

from

⟨M(y)w ⟩ =
〈
yiwkj − yjwki : k = 1, . . . , p and 1 ≤ i < j ≤ n

〉
.

This step removes contributions from the irrelevant maximal ideal. Every 2 × 2 minor of

(4.23) lies in this saturated ideal. Therefore, that ideal equals the prime ideal generated by

all the 2× 2 minors of (4.23). For r ≤ n− 2, we note that M(y)w = C(w)y hands us the

matrix

C(w) = −



curl(w11, . . . , w1n)

curl(w21, . . . , w2n)

· · · · · ·

curl(wp1, . . . , wpn)


.

One checks that this p
(
n
2

)
× n matrix cannot have rank ≤ n − 2 unless wij = 0 for all

i, j.
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CHAPTER 5

CONSTANT RANK OPERATORS

Another angle from which we would like to investigate linear systems of PDE comes from

the analysis of continuum mechanics problems, where one often studies a nonlinear relation

without derivatives, coupled with a linear PDE [65]; this is the so called theory of compen-

sated compactness [20, 27, 44, 64]. In the framework of compensated compactness, the

class of linear PDEs that was studied most is that of (real) constant rank operators, as it

gives rise to good integral estimates. We say that an operator M ∈ Rℓ×k has K-constant

rank, K ∈ {R,C}, if rankM(x) is constant for all 0 ̸= x ∈ Kn, also see Definition 5.1.3.

In a sense, the class of real constant rank operators is the largest class where we can hope

for standard harmonic analysis estimates [26]. However, the existing study of this point-

wise condition on the evaluations M(x) falls well under the limitations of linear algebra

[20, 52, 54].

Thus, one of the main questions we address in this chapter is how to link the nonlin-

ear algebra concepts described in Chapters 1 and 2 to a condition that was, so far, viewed

only through a linear lens. One somewhat surprising fact is that there exists real or com-

plex constant rank operators that do not admit a vector potential in C∞(Rn); such opera-

tors are as simple as the Laplacian x21 + x22 or the gradient operator. On the other hand,

any real constant rank operator admits a vector potential in the space C∞
# (Q) = {f ∈

C∞(Rn) : f is Q-periodic,
∫
Q
f = 0} of periodic functions of zero average on the cube

Q = (0, 1)n [54]. Interestingly, the vector potential constructed in [54] is not necessar-

ily given by the syzygy matrix S, but can be replaced by it, see Corollary 5.3.11 and the

discussion thereafter.

Another idea used in analysis [20, 44, 54] formally gives a decomposition that looks

very similar to the controllable-uncontrollable decomposition (5.2) below: If M has real
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constant rank and we are looking for Lp(Ω) solutions to Mv = 0 in a bounded domain Ω,

we can write

v = Su+ error (5.1)

where u ∈ C∞
c (Ω) and the error is negligible in Lp. This is very similar, but fundamen-

tally different to the more algebraic controllable-uncontrollable decomposition

SolC∞ M = imC∞ S + SolC∞ Mu, (5.2)

where Mu is an operator with trivial syzygy matrix, and S is the syzygy matrix of M .

Although the similarity between (5.1) and (5.2) is striking, not much has been done to

explore possible connections. In Theorem 5.0.1, we make a first step in this direction, by

proving that the constant rank condition of M implies the ellipticity of Mu.

Theorem 5.0.1. LetM have real (resp. complex) constant rank. ThenM has a controllable-

uncontrollable decomposition as in (5.2) with real (resp. complex) elliptic Mu.

The converse is not true, as can be seen from Examples 5.3.3 and 5.3.4. Details on the

decomposition (5.2) can be found in Section 5.2; the relevant definitions are in Section 5.1.

This result bridges the gap between (5.1) and (5.2) in the following sense: if the relation

in (5.2) would extend, say by approximation, to locally integrable vector fields v, we would

have that

v = Su+ f, where Muf = 0.

By ellipticity of Mu, f is real analytic, so all the roughness of v is carried by the potential

part, Su. This is also the phenomenon we encounter in (5.1).

Our approach to prove Theorem 5.0.1 consists of linking the controllable-uncontrollable

decomposition (5.2) to properties of point evaluations of M . The following is the main

novelty in this direction:
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Theorem 5.0.2. LetM be a polynomial matrix with complex coefficients that has a controllable-

uncontrollable decomposition as in (5.2). Then

kerCMu(ξ) = {0} for all ξ ∈ Cn such that rankCM(ξ) = rankRM.

We prove this result using tools from commutative algebra in Section 5.3, see Theo-

rem 5.3.1. Using the same tools, we can also derive the complex version that improves the

real result proved recently in [52] using linear algebra techniques:

Theorem 5.0.3. LetM be a polynomial matrix with complex coefficients and syzygy matrix

S. Then

kerCM(ξ) = imCS(ξ) for all ξ ∈ Cn such that rankCM(ξ) = rankRM.

If rankCM(ξ) < rankRM , we have kerCM(ξ) ⊋ imC S(ξ).

As a simple consequence, we note that if M has complex constant rank, then the point-

wise exact relation kerCM(ξ) = imCS(ξ) holds for all nonzero ξ ∈ Cn. More generally

Theorem 5.0.3 tells us precisely for which points the exact relation

SolC∞
c
M = imC∞

c
S

translates to an exact relation for the evaluations of M and S. Theorem 5.0.3 also implies

the main results in [52, 54].

Another notable consequence of Theorem 5.0.3 is the characterization of the uncontrol-

lable operators, Mu from (5.2), which are characterized by the fact that they have trivial

syzygy matrix, kerRMu = {0}. This is in turn equivalent with kerCMu(ξ) = {0} for ξ

outside a proper real/complex variety, see also Corollary 5.2.4.

The material in this chapter is based on the paper [29].
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5.1 Preliminaries

Suppose R = K[x1, . . . , xn] = K[∂1, . . . , ∂n], where xi is identified with ∂i = ∂
∂zi

, and let

M ∈ Rℓ×k be a differential operator describing the PDE M • v = 0. In some of the more

analytically oriented results and definitions in this chapter, we will make the following

homogeneity assumption:

Assumption 5.1.1 (Homogeneity). We say that M is (row-)homogeneous if for each i =

1, . . . , k there exist integers di such that Mij is homogeneous of degree di for each j =

1, . . . , ℓ.

Our general goal is to convert algebraic properties of the polynomial matrix M into

analytic properties of the system of PDEs M • v = 0. To this end, we will only focus on

homogeneous systems, i.e. for the remainder of this subsection, operators M are assumed

to satisfy Assumption 5.1.1.

The following ellipticity conditions are well understood analytically:

Definition 5.1.2. Let F ∈ {R,C}. We say that M is K-elliptic if kerCM(ξ) = {0} for all

ξ ∈ Kn \ {0}.

It is a classical result, see e.g., [32], that R-ellipticity of M is equivalent to analyticity

of all distributional solutions of M • v = 0. C-ellipticity is also well understood [2, 23, 47,

59] and is equivalent to the fact that all solutions of M • v = 0 are not only analytic, but

actually polynomials, c.f. Theorem 2.6.7. We will revisit aspects of these results later, in

Section 5.3.

Another important property is that of constant rank, which is particularly relevant in the

study of compensated compactness [20, 27, 44].

Definition 5.1.3. An operator M is said to be of K-constant rank if there exists an integer

r such that rankCM(ξ) = r for all ξ ∈ Kn \ {0}.

For M to be F-elliptic it is necessary that k ≤ ℓ. If M is F-elliptic then M has F-

constant rank k.
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The class of R-constant rank operators is, roughly speaking, the largest class where

standard harmonic analysis results hold, see [20, 26]. The C-constant rank condition is not

as widely used in the analysis literature, but it is algebraically more natural to handle than

the R-constant rank condition, as C is algebraically closed.

We will conclude this subsection with a few examples that illustrate the differences

between these conditions. Part of the aim of this chapter will be to compare these pointwise

conditions on the evaluations, that come from the “analysis with estimates” of the linear

PDE systems, with natural conditions that come from the algebraic geometry angle; for

instance, the notions of controllability and uncontrollability, to be defined in Section 5.2

will play a crucial role.

Example 5.1.4. The operators

M1 =

x1 0

0 x2

 , M2 = x21 − x22

do not have R-constant rank. Additional examples can be found in Examples 5.3.3 and

5.3.4. △

Example 5.1.5. The operators

M3 = x21 + x22, M4 =


x21 + x22 0 −x21 − x23

0 −x22 − x23 x21 + x23

−x21 − x22 x22 + x23 0


have R-constant rank but fail to have C-constant rank. In fact, M3 is R-elliptic but not

C-elliptic. △
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Example 5.1.6. The operator

M5 =


0 x3 −x2

−x3 0 x1

x2 −x1 0


is of C-constant rank but not R-elliptic. △

Example 5.1.7. The operators

M6 =

x1
x2

 , M7 =

x21 + x22

x21 − x22

 , M8 =


x1 0

0 x2

x2 x1


are C-elliptic. △

5.2 Controllable–Uncontrollable Decomposition

As we saw in Theorem 2.4.1 and the discussion thereafter, the syzygy matrix S describes

all smooth solutions to the PDE M • v = 0 if and only if the corresponding quotient

moduleRk/ imRM
⊤ is torsion-free, since the space of smooth functionsC∞ is an injective

cogenerator.

Let F be an injective cogenerator. In control theory, a system SolF M satisfying the

conditions of Theorem 2.4.1, e.g. that Rk/ imRM
T is torsion-free, is said to be control-

lable. At the opposite end of the spectrum, the system SolF A is said to be uncontrollable

when the quotient module is torsion [57]. We record this result in the following simple

proposition.

Proposition 5.2.1. Let U ⊆ Rk be an R-submodule. The following are equivalent

1. The system SolF(U) is uncontrollable.
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2. The module Rk/U is torsion.

3. The ideal (0) is not an associated prime of U .

We remark that “uncontrollable” is not the same as “not controllable”, since an R-

module M can have a set of torsion elements that is a nontrivial, strict subset of M . By

exploiting the primary decomposition, we can decompose any solution space into two sub-

spaces, one of which is controllable and the other one uncontrollable.

Proposition 5.2.2 (Controllable-uncontrollable decomposition). Let F = C∞ or D′ (or

any injective cogenerator), and M ∈ Rℓ×k. There exist polynomial matrices Mc,Mu, S

such that we have a decomposition

SolF M = imFS + SolF Mu,

where

1. SolF Mc = imF S,

2. imMc is either (0)-primary or trivial,

3. the prime (0) is not an associated prime of imM⊤
u ,

4. imRM
⊤ = imRM

⊤
c ∩ imRM

⊤
u as R-modules,

5. kerRMu = 0, i.e. imRMu is a free R-module,

6. Ass(imM⊤) = Ass(imM⊤
c ) ∪ Ass(imM⊤

u ), and the union is disjoint.

In particular, the system SolF Mc is controllable, and SolF Mu is uncontrollable.

Proof. Our point of departure is the primary decomposition. We write

imM⊤ = Uc ∩ Uu,
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where Uc ⊆ Rk is the (0)-primary component, and Uu ⊆ Rk is the intersection of all other

primary components. If there are no (0)-primary components (or if imM⊤ is (0)-primary),

then Uc (or Uu) is equal toRk. LetM⊤
c ,M

⊤
u be polynomial matrices such that Uc = imM⊤

c

and Uu = imM⊤
u . Since F is an injective cogenerator, we have the decomposition

SolF M = SolF Mc + SolF Mu.

If we choose S to be the syzygy matrix of Mc, we obtain the required decomposition.

Properties 1, 2, 3, 4, 6 follow by construction.

It follows from 2. and Theorem 2.4.1 that SolF Mc is controllable, and from 3. and

Proposition 5.2.1 that SolF Mu is uncontrollable.

For property 5. suppose that SolRMu = imR Su for some nonzero matrix Su. Then for

any nonzero compactly supported w the function Suw is a nonzero compactly supported

solution in SolF Mu. This is a contradiction, as it follows from the Paley-Wiener Theo-

rem that uncontrollable systems don’t contain compactly supported solutions, c.f. Theo-

rem 2.4.2.

We remark that in the construction above, we chose S to be the syzygy matrix of Ac,

but in fact it coincides with the syzygy matrix of A itself.

Theorem 5.2.3. For M and Mc as in Proposition 5.2.2

kerRM = kerRMc.

Proof. Let (·)(0) denote the localization at the prime (0), and recall thatR(0) = F(x1, . . . , xn)

is the field of rational functions. As a first step we show that
(
imRM

⊤
u

)
(0)

= Rk
(0), where

Mu denotes the uncontrollable part in a decomposition as in Proposition 5.2.2. For any

v ∈ Rk the ideal (imRM
⊤
u : v) is nonzero, as (0) is not an associated prime. Hence

there is a nonzero r ∈ R such that rv ∈ imRM
⊤
u . When we localize at (0) the element
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r becomes invertible, so v = r−1rv ∈ imRM
⊤
u . It follows that

(
imRM

⊤
u

)
(0)

= Rk
(0). As

imRM
⊤ = imRM

⊤
c ∩ imRM

⊤
u we have

(
imRM

⊤)
(0)

=
(
imRM

⊤
c

)
(0)

. In the special case

when M in uncontrollable we get
(
imRM

⊤)
(0)

= Rk
(0).

Since imRM
⊤ ⊆ imRM

⊤
c , there is a polynomial matrix B such that M⊤ = M⊤

c B.

Suppose u ∈ kerRMc, then Mu = B⊤Mcu = 0, so u ∈ kerRM .

For the converse, since
(
imRM

⊤
c

)
(0)
⊆

(
imRM

⊤)
(0)

, there is some matrix C with

entries in R(0) such that M⊤
c = M⊤C. Clearing denominators, we have gM⊤

c = M⊤C ′

for some 0 ̸= g ∈ R and a matrix C ′ with entries in R. If u ∈ kerRM , then g(Mcu) =

C ′⊤M⊤u = 0, and since g ̸= 0, we must have Mcu = 0. Hence kerRMc = kerRM .

While the controllable part is well understood as the image of the vector potential S, the

uncontrollable part is less explored. Our Theorem 5.0.3 gives the following characterization

of uncontrollable operators:

Corollary 5.2.4. Let M ∈ Rℓ×k be a polynomial matrix and S its syzygy matrix. Let F be

an injective cogenerator, for instance C∞(Rn) or D′(Rn). The following are equivalent:

1. kerF M is uncontrollable, i.e. Rk/ imM⊤ is torsion,

2. kerRM = {0}, i.e. S = 0,

3. kerCM(ξ) = {0} for all ξ ∈ Rn, except on a proper real variety,

4. kerCM(ξ) = {0} for all ξ ∈ Cn, except on a proper complex variety.

The proper variety in each case is {ξ ∈ Fn : rankM(ξ) is not maximal}, K ∈ {R,C}.

Proof. Suppose kerRM = imR S ̸= {0}. If u is any compactly supported function, then

v = S • u is a compactly supported solution to M • v = 0, so in particular kerF M is not

uncontrollable. If kerRM = {0}, we can apply the Controllable-Uncontrollable decompo-

sition to get SolF(M) = 0 + SolF(Mu), so in particular SolF(M) is uncontrollable. This

proves the equivalence between 1. and 2.
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The equivalence of statements 2., 3., and 4. follow from Theorem 5.0.3 and the fact that

Rn is not a subvariety of Cn.

Therefore, the triviality of the syzygy module characterizes uncontrollability. In con-

trast, there is no condition on the syzygy matrix alone that can characterize controllability.

This follows from Theorem 5.2.3, by taking an operator M that is not controllable and

noticing that imR S is then the kernel of both the operator Mc that is controllable and of

M , which is not. We summarize the various alternative definitions of controllability and

uncontrollability in Table 5.1.

controllable uncontrollable

Torsion elements Rk/ imM⊤ is torsion-free Rk/ imM⊤ is torsion

Associated primes imM⊤ is (0)-primary (0) /∈ Ass(imM⊤)

Solution sets SolC∞ M = imC∞ S SolC∞
c
M = {0}

Syzygy matrix no condition S = 0

Table 5.1: A summary of the equivalent definitions of controllable and uncontrollable
operators.

In the setting of Corollary 5.2.4, the nature of the solutions of the PDE M • v = 0 can

be very different, depending on the structure of the set of points where kerCM(ξ) ̸= {0}.

Example 5.2.5. Consider the examplesM2,M3,M7 from Examples 5.1.4, 5.1.5, and 5.1.7.

All three operators are uncontrollable with

kerRMi = {0}, SolC∞
c
Mi = {0}, SolC∞ Mi ̸= {0}.

In each example we investigate the latter set. We also look at the varieties XR, resp. XC

where conditions 3., resp. 4. of Corollary 5.2.4 fail.

If M = M2 = ∂21 − ∂22 , then any function v(z1, z2) = f(z1 ± z2) for f ∈ C∞(R) is a

solution. The operator is not R-elliptic. The varieties XR, XC are both pairs of lines.

If M = M3 = ∂21 + ∂22 , the solutions are of the form v(z1, z2) = g(z1 ± iz2), where
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g ∈ C∞(C). The increase in regularity is substantial, particularly since, in this case, the

solutions are real analytic. The operator is R-elliptic, but not C-elliptic. The variety XC is

again a pair of lines, but now XR is the origin.

IfM =M7 = (M2,M3)
⊤, we have that the solutions are v(z1, z2) = az1z2+bz1+cz2+

d, which are polynomials. This is yet another increase in regularity from being analytic.

The operator is C-elliptic. Here both XC and XR are the origin. △

In practice, many R-constant rank operators happen to be also C-constant rank, so the

ellipticity of Mu follows from the complex part of Theorem 5.0.1. If M is controllable,

then the conclusion of Theorem 5.0.1 is also trivial, as one can choose Mu = 1. We present

a concrete example where the real part of Theorem 5.0.1 applies nontrivially.

Example 5.2.6. Let

M =

[
x(x2 + y2) y(x2 + y2)

]
.

The operator drops rank when x2 + y2 = 0, hence it has R-constant rank, but not C-

constant rank. It is not R-elliptic either, nor is it controllable, as we have Ass(imM⊤) =

{(0), (x2 + y2)}. The controllable part is given by the operator Mc =

[
x y

]
, so that

S =

[
y −x

]⊤
. The uncontrollable part corresponds to the operator

Mu =

x(x2 + y2) −y(x2 + y2)

y(x2 + y2) x(x2 + y2)

 ,
whose determinant is (x2 + y2)3, so Mu is indeed R-elliptic. △

By replacing the Laplacian x2+y2 with the wave operator x2−y2 in the example above,

we obtain an example in which Mu is not elliptic:

Example 5.2.7. Let

M =

[
x(x2 − y2) y(x2 − y2)

]
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Its rank drops whenever x = ±y, so it does not have R-constant rank. The uncontrollable

part is described by the operator

Mu =

x(x2 − y2) y(x2 − y2)

y(x2 − y2) x(x2 − y2),


whose solutions take the form

v(a, b) =

f1(a+ b)− af3(a+ b) + f4(a− b) + af6(a− b)

f2(a+ b) + af3(a+ b) + f5(a− b) + af6(a− b)

 ,
where f1, . . . , f6 ∈ D′(R). △

5.3 Generic Rank and Associated Primes

As rank and ellipticity conditions require homogeneity by definition, Assumption 5.1.1 is

implicit whenever K-ellipticity/constant rank is mentioned. Let Mu denote the uncontrol-

lable component of a decomposition of a given operatorM ∈ Rℓ×k, as in Proposition 5.2.2.

Moreover, we let U denote the module imM⊤.

The aim of this section is to prove Theorem 5.3.1 which contains the main Theo-

rems 5.0.1 and 5.0.2.

Theorem 5.3.1. If M(ξ) has maximal rank for a point ξ ∈ Cn, then kerCMu(ξ) = {0}. In

particular, if M has F-constant rank, then Mu is F-elliptic, for F ∈ {R,C}.

Here we clarify that the rank of an evaluation M(ξ) is maximal if rankCM(ξ) equals

the generic rank, i.e. the maximal value of the map ξ 7→ rankCM(ξ). We note that the first

part of the result, concerning the point evaluations M(ξ) and Mu(ξ), also holds without

any homogeneity restrictions on M .

One important observation when it comes to real constant rank is that if M has R-

constant rank then this rank is equal to the rank of M at a generic complex point, i.e. the
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maximal rank of M . Indeed, if the rank of M were to drop for all of Rn, it would also have

to drop for all points in the (complex) Zariski closure of Rn, namely all of Cn.

The key to proving Theorem 5.3.1 is the following result, which we prove later in this

section.

Theorem 5.3.2. Let p be a nonzero associated prime of U = Rk/ imMT . Then

{ξ ∈ Cn : rankM(ξ) is maximal} ∩ V (p) = ∅.

In particular, if M has R-constant rank then the variety V (p) contains no real nonzero

points. If M has C-constant rank, then Ass(U) ⊆ {(0), (x1, . . . , xn)}.

The converse implications of the two theorems are not true, as can be seen from the

Euler equations as expressed in [13], presented below in two space dimensions.

Example 5.3.3. Let

M =


x1 0 x2 x3 x2

0 x1 −x3 x2 x3

x2 x3 0 0 0


This is a controllable operator, and we can simply take Mu to be multiplication by 1 which

is trivially C-elliptic. The generic rank of M is 3, but it drops to 2 when x2 = x3 = 0, so

M does not have R-constant rank. Moreover the only associated prime of the module U is

(0).

For an example where the uncontrollable part is elliptic and nontrivial, consider the

9 × 5 matrix N obtained from M by multiplying each row by x1, x2, and x3. Then N has

the same rank as M in every point, and the associated primes are (0) and (x1, x2, x3). The

uncontrollable part Nu is given by a C-elliptic 24× 5 matrix with entries of degree two. Its

set of solutions in C∞ must therefore contain affine functions. △

Clearly any polynomial matrix M has constant rank if and only if M⊤ does. If we

consider M⊤ instead of M in Example 5.3.3 we get the ideal (x2, x3) as an associated
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prime, which describes exactly the points where the rank of M⊤ (and hence also M ) drops.

One might be tempted to believe that if the rank of a matrix M drops from the generic rank

at a point ξ, then ξ is in the variety of an associated prime of the module defined by M or

M⊤. However this is not the case, as we see in the next example.

Example 5.3.4. The operator

M =



x3 x3 0 x3(x3 − x4) x4(x4 − x2 − x3) + x2x3

x1 0 x4(x2 + x3 − x4)− x2x3 0 0

0 x2 0 x4(x3 − x4) 0

0 0 x2x3 x1x3 x1x2


does not have constant rank, but both R4/ imRM and R5/ imRM

⊤ are (0)-primary. △

Recall that the characteristic variety V (U) is given by

V (U) = V (AnnRR
k/U) = V (p1) ∪ · · · ∪ V (ps)

where Ass(U) = {p1, . . . , ps}. Alternatively, the characteristic variety is the vanishing set

of the k×k minors ofM . Hence ξ ∈ V (U) if and only ifM(ξ) has non-trivial kernel. In this

way we get a characterization of C-elliptic and R-elliptic operators as stated in Proposition

5.3.5 below. This may be compared with the description of C-elliptic operators given in

[23, Proposition 3.2].

Proposition 5.3.5. Let Ass(U) = {p1, . . . , ps}. Then

V (p1) ∪ · · · ∪ V (ps) = {ξ ∈ Cn : M(ξ) has a nontrivial kernel}.

In particular, the following are equivalent:

1. M is R-elliptic,
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2. the varieties V (pi) contains no real nonzero points.

3. SolD′ M consists only of real analytic functions.

Moreover, the following are also equivalent:

1. M is C-elliptic,

2. U is either trivial or (x1, . . . , xn)-primary,

3. SolD′ M consists only of polynomials.

That R-ellipticity of M is equivalent to analyticity of all solutions of Mv = 0 is well

known [32].

Proof. The first statement is deduced in the paragraph before the proposition. It follows

directly thatM is C or R-elliptic if and only if the characteristic variety contains no nonzero

complex or real points respectively. In the complex case this means that the only possible

associated prime is the maximal ideal (x1, . . . , xn), as this is the only prime ideal whose

variety is the origin.

The remaining equivalence is shown using the Ehrenpreis-Palamodov fundamental prin-

ciple. If U is (x1, . . . , xn)-primary, all solutions to M • v = 0 are of the form

v(z) =
∑
i

∫
Di(x, z) exp(⟨xT · z⟩) dµi(x),

where the µi are measures supported at the origin, and Di(x, z) are polynomials in z with

rational function coefficients in x. Therefore we must have v(z) =
∑

i ciBi(0, z) for some

constants ci. This is clearly a polynomial in z. Conversely, if the characteristic variety

contains a nonzero point ξ ∈ Cn, then there is a nonpolynomial solution, namely v(z) =

u exp(ξT · z) for some constant vector u ∈ Ck.

Recall from Proposition 5.2.2 that Ass(Rk/ imM⊤
u ) = Ass(U)\{(0)}. In combination

with Proposition 5.3.5 we obtain the following.
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Corollary 5.3.6. Let p1, . . . , pr be the nonzero associated primes of U . Then

V (p1) ∪ · · · ∪ V (pr) = {ξ ∈ Cn : kerCMu(ξ) ̸= {0}}.

In particular Mu is R-elliptic if and only if the varieties V (pi), i = 1, . . . , r, contain no

real nonzero points, and Mu is C-elliptic if and only if Ass(U) ⊂ {(0), (x1, . . . , xn)}.

Proof of Theorem 5.3.1. By Theorem 5.3.2 and Corollary 5.3.6 we have

{ξ ∈ Cn : rankM(ξ) is maximal} ∩ {ξ ∈ Cn : kerCMu(ξ) ̸= {0}} = ∅.

In preparation for the proof of Theorem 5.3.2, we introduce some notation and results

from [17]. From this point until the end of the section, no homogeneity assumption is

needed. In commutative algebra, Fitting ideals are important invariants of finitely generated

modules.

Definition 5.3.7. Let ϕ : Rℓ → Rk be a map of free modules, described by a k × ℓ matrix

with entries in R. The ideal Ij(ϕ) is defined as the ideal generated by the j × j minors

(i.e. determinants of submatrices) of the matrix representing ϕ. The rank of ϕ, denoted

rankR ϕ is the largest integer such that Ij(ϕ) ̸= (0). IfRℓ ϕ−→ Rk → V → 0 is a presentation

of some R-module V , then the rth Fitting ideal is the ideal

Fittr(V ) := Ik−r(ϕ)

We denote by I(V ), or I(ϕ), the first nonzero Fitting ideal; note that I(V ) = Irankϕ(ϕ).

The ideal Ij(ϕ) of j × j minors is independent of the choice of matrix representing ϕ.

This fundamental fact is sometimes referred to as Fitting’s Lemma.
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Given a matrix M ∈ Rℓ×k we can write down a presentation Rℓ M⊤
−−→ Rk → Rk/U →

0, where U = imM⊤. Here the rth Fitting ideal is the ideal generated by the minors

of size k − r of M . Furthermore, rankRM⊤ coincides with the rank of the evaluated

matrix M(ξ) for a generic point ξ ∈ Cn. Thus it is easy to see that if M is a C-constant

rank operator, then its Fitting ideals can only be either (0) or (x1, . . . , xn). This gives us

a fully algebraic characterization of PDE given by matrices M of C-constant rank: they

correspond to modules Rk/U where I(Rk/U) = (x1, . . . , xn).

We begin by recalling some standard results about exact sequences in commutative

algebra.

Lemma 5.3.8 ([17, Cor. 20.12]). Suppose

0→ Rkm ϕm−−→ Rkm−1
ϕm−1−−−→ · · · ϕ2−→ Rk1 ϕ1−→ Rk0

is an exact sequence of free R-modules. Then

√
I(ϕk) ⊆

√
I(ϕk+1) for all k ≥ 1.

Lemma 5.3.9 ([17, Cor. 20.14]). Let V be an R-module with finite free resolution

0→ Rkm ϕm−−→ · · · → Rk1 ϕ1−→ Rk0 → V → 0. (5.3)

If p is a prime of R and d = depth(p), then p ∈ AssM if and only if p ⊇ I(ϕd).

In our setting depth(p) is defined as the maximal length of a regular sequence inside

p. The only prime ideal of depth zero is the ideal (0), so all associated primes of V are

detected by Lemma 5.3.9.

Since a morphism of R-modules ϕ : Rℓ → Rk can be represented by a k × ℓ matrix

of polynomials, one can also study the linear map ϕ(ξ) : Cℓ → Ck corresponding to the

evaluation of the entries of ϕ for any point ξ ∈ Cn. In general, while evaluations of exact
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sequences of R-modules are not necessarily exact, the set of points where the evaluated

sequence fails to be exact is a proper (complex) algebraic variety. This means that a syzygy

matrix S of M has the property that imC S(ξ) = kerCM(ξ) for almost every ξ ∈ Cn. It is

also clear that this holds over R. For a rigorous proof, see [18, Cor. 3.4].

Now we are ready to prove Theorem 5.3.2.

Proof of Theorem 5.3.2. Let X ⊂ Cn be the set of points where the rank of M is maximal.

Suppose p is a nonzero associated prime of U , and let d = depth(p). Consider a minimal

free resolution of M , i.e. a free resolution which is also exact. With the notation in (5.3),

the map ϕ1 is given by the matrix M⊤. By Lemma 5.3.9 we have p ⊇ I(ϕd), which

implies p ⊇
√
I(ϕd). It then follows from Lemma 5.3.8 that p ⊇

√
I(ϕ1), or equivalently

V (p) ⊆ V (I(ϕ1)). But V (I(ϕ1)) are precisely the points ξ where rankFM(ξ) < rankRM .

Hence X ∩ V (p) = ∅.

Since the converse of Theorem 5.3.1 fails, it would also be interesting to characterize

when an uncontrollable operator is C-elliptic more precisely.

To further improve our understanding of C-constant rank operators, we will give the

complex version and sharpen the real result proved in [52]:

Theorem 5.3.10. Let M ∈ Rℓ×k be a polynomial matrix with syzygy matrix S. Then

kerCM(ξ) = imCS(ξ) for all ξ where rankM(ξ) is maximal.

In the set where the rank is not maximal, we have kerCM(ξ) ⊋ imC S(ξ).

Proof. Take a free resolution of V = Rℓ/ imRM as in eq. (5.3). The maps ϕ1, ϕ2 corre-

spond to M,S respectively, and the equality k = rankM(ξ) + rankS(ξ) is true almost

everywhere.

In particular, the maximal ranks ofM and S sum to k, so kerM(ξ) = imS(ξ) whenever

the ranks ofM and S are maximal. By Lemma 5.3.8, the variety where the rank ofM drops
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contains the variety where the rank of S drops, hence the rank of S is maximal whenever

the rank of M is.

Corollary 5.3.11. Let F ∈ {C,R}. If M has F-constant rank, then the syzygy matrix S

has the property

kerCM(ξ) = imC S(ξ) for all ξ ∈ Fn \ {0}.

We conclude the section by an example illustrating Theorem 5.3.10.

Example 5.3.12. Let M be the matrix from Example 5.3.3. A computation in Macaulay2

gives the syzygy matrix

S =



x2x3 0 x23

−x22 0 −x2x3

−x1x3 −x22 + x23 −x1x2

x1x2 −2x2x3 −x1x3

−x1x3 x22 + x23 x1x2


The generic rank of M is 3 and is attained for example at the point ξ = (0, 1, 0). A

simple computation shows that kerCM(ξ) is spanned by the two vectors (0 1 0 0 0)⊤ and

(0 0 − 1 0 1)⊤, which also span imC S(ξ). If we instead take the point η = (1, 0, 0)

then rank M(η) drops to 2. In this case kerCM(η) is a three dimensional space while

imC S(η) = {0}. △
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

One of the raisons d’être of this dissertation is to advocate the interplay between concepts

in analysis and non-linear algebra. Furthermore, keeping analysis concepts in mind can

help build algebraic intuition. For example, while the proof of Theorem 5.2.3 is purely

algebraic, the intuition came from analysis: since all compactly supported solutions of a

system of PDE must come from the controllable part, which is characterized by a vector

potential corresponding to a syzygy matrix, the syzygies of the module U and its (0)-

primary component should match.

Using tools discussed in this work can allow the encoding of certain algebraic and

geometric objects as solutions to PDE.

Example 6.0.1 (n = 2, k = 3, l = 6). Given a 6×3 matrixAwith random complex entries,

we set

M = diag(x1, x
2
1, x

3
1, x2, x

2
2, x

3
2) · A

Let U = imRM
T . Then U is torus-fixed and m-primary, where m = ⟨∂1, ∂2⟩, and

amult(U) = 10. A basis of Sol(U) is given by ten polynomial solutions, namely the stan-

dard basis vectors e1, e2, e3, four vectors that are multiples of z1, z1, z2, z2, and three vectors

that are multiples z21 , z1z2, z
2
2 . The reader is invited to verify this with Macaulay2. Here

is the input for one concrete instance:

R = QQ[x1,x2]

U = image matrix {{7*x1,5*x1ˆ2,8*x1ˆ3,5*x2,9*x2ˆ2,5*x2ˆ3},

{8*x1,9*x1ˆ2,8*x1ˆ3,4*x2,2*x2ˆ2,4*x2ˆ3},

{3*x1,2*x1ˆ2,6*x1ˆ3,4*x2,4*x2ˆ2,7*x2ˆ3}}
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solvePDE(U)

By varying the matrix A, and by extracting the vector multipliers of 1, z1 and z21 , we obtain

any complete flag of subspaces in C3. The vector multipliers of 1, z2, and z22 give us another

complete flag of subspaces in C3, and the multiplier of z1z2 gives us the intersection line

of the planes corresponding to the multipliers of z1 and z2. This is illustrated in Figure 6.1.

Thus flag varieties, with possible additional structure, appear naturally in such families.

dim coefficient

3 1

2 z1 z2

1 z21 z1z2 z22

0 {0}

Figure 6.1: The coefficient vectors of the solutions to the PDE in Example 6.0.1 correspond
to the above linear spaces with the given inclusions. We obtain two complete flags in C3,
along with one interaction between the two.

△

While our methods are limited to submodules of free modules of polynomial rings,

this is not particularly restrictive, as this is the setting ubiquitous in computer algebra

systems. Representing polynomial modules using Noetherian operators or a differential

primary decomposition can have some advantages over representing them using genera-

tors. The data required is a set of differential operators and a prime ideal, which can be

represented e.g. numerically using witness sets. The dual representation also makes some
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operations trivial: for example a differential primary decomposition for the intersection of

two modules, both given as a differential primary decomposition, is simply the union of

the two differential primary decompositions. This is in contrast to the computation of an

intersection of modules given by generators, which requires non-trivial Gröbner basis com-

putation. On the other hand, computing a sum of modules given by generators is trivial,

while computing the sum of modules given by differential primary decomposition is less

so.

The results presented in this dissertation suggest many directions for future study and

research. We present a few examples.

6.1 Linear PDE with polynomial coefficients

We discuss an application to PDE with non-constant coefficients, here taken to be polyno-

mials. Our setting is the Weyl algebra D = C⟨z1, . . . , zn, ∂1, . . . , ∂n⟩. A linear system of

PDE with polynomial coefficients is aD-module. For instance, consider aD-ideal I , that is,

a left ideal in the Weyl algebra D. The solution space of I is typically infinite-dimensional.

We propose constructing solutions to I with the method of Gröbner deformations [55,

Chapter 2]. Let w ∈ Rn be a general weight vector, and consider the initial D-ideal

in(−w,w)(I). This is also a D-ideal, and it plays the role of Gröbner bases in solving poly-

nomial equations. We know from [55, Theorem 2.3.3] that in(−w,w)(I) is fixed under the

natural action of the n-dimensional algebraic torus (C∗)n on the Weyl algebra D. This

action is given in [55, equation (2.14)]. It gives rise to a Lie algebra action generated by

the n Euler operators

θi = zi∂i for i = 1, 2, . . . , n.

These Euler operators commute pairwise, and they generate a (commutative) polynomial

subring C[θ] = C[θ1, . . . , θn] of the Weyl algebra D. If J is any torus-fixed D-ideal then

it is generated by operators of the form zap(θ)∂b where a, b ∈ Nn. We define the falling
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factorial

[θb] :=
n∏
i=1

bi−1∏
j=0

(θi − j).

The distraction J̃ is the ideal in C[θ] generated by all polynomials [θb]p(θ−b) = zbp(θ)∂b,

where zap(θ)∂b runs over a generating set of J . The space of classical solutions to J

is equal to that of J̃ . This was exploited in [55, Theorem 2.3.11] under the assumption

that J is holonomic, which means that J̃ is zero-dimensional in C[θ]. We here drop that

assumption.

Given any D-ideal I , we compute its initial D-ideal J = in(−w,w)(I) for w ∈ Rn

generic. Solutions to I degenerate to solutions of J under the Gröbner degeneration given

by w. We can often reverse that construction: given solutions to J , we lift them to solutions

of I . Now, to construct all solutions of J we study the Frobenius ideal F = J̃ . This is an

ideal in C[θ].

We now describe all solutions to a given ideal F in C[θ]. This was done in [55, Theo-

rem 2.3.11] for zero-dimensional F . Ehrenpreis–Palamodov allows us to solve the general

case. Here is our algorithm. We replace each operator θi = zi∂i by the corresponding

∂i. We then apply solvePDE to get the general solution to the linear PDE with constant

coefficients. In that general solution, we now replace each coordinate zi by its logarithm

log(zi). In particular, each occurrence of exp(u1z1 + · · · + unzn) is replaced by a for-

mal monomial zu11 · · · zunn . The resulting expression represents the general solution to the

Frobenius ideal F .

Example 6.1.1. As a warm-up, we note that a function in one variable z2 is annihilated by

the squared Euler operator θ22 = z2∂2z2∂2 if and only if it is a C-linear combination of 1

and log(z2). Consider the Frobenius ideal given by Palamodov’s system [10, Example 11]:

F = ⟨ θ22 , θ23 , θ2 − θ1θ3 ⟩.

To find all solutions to F , we consider the corresponding ideal ⟨ ∂22 , ∂23 , ∂2 − ∂1∂3 ⟩ in
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C[∂1, ∂2, ∂3]. By solvePDE, the general solution to that constant coefficient system equals

α(z1) + z2 · β′(z1) + z3 · β(z1),

where α and β are functions in one variable. We now replace zi by log(zi) and we ab-

breviate A(z1) = α(log(z1)) and B(z1) = β(log(z1)). Thus A and B are again arbitrary

functions in one variable. We conclude that the general solution to the given Frobenius

ideal F equals

ϕ(z1, z2, z3) = A(z1) + z1 · log(z2) ·B′(z1) + log(z3) ·B(z1).

This method can also be applied for k ≥ 2, enabling us to study solutions for any D-

module. △

6.2 Socle Solutions

The solution space Sol(M) to a system M of linear PDE is a complex vector space, typ-

ically infinite-dimensional. The fundamental principle in Theorem 2.7.4 decomposes that

space into finitely many natural pieces, one for each of the integrals in (2.12). Each piece

is labelled by a rational function Dij(x, z) in 2n variables, and it is parametrized by mea-

sures µij on the irreducible variety Vi = V (pi). This corresponds precisely to a differential

primary decomposition, where the Dij span the excess dual space as a κ(pi)-vector space.

This approach does not take full advantage of the fact that Sol(M), local dual spaces,

and excess dual spaces are R-modules. Indeed, if ψ(z) is any solution to M then so is

(∂i • ψ)(z). Therefore, our aim is to consider only R-module generators of dual spaces. In

terms of solutions, we consider the quotient

Sol(M)/⟨∂1, . . . , ∂n⟩Sol(M) (6.1)
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capturing of all solutions that cannot be obtained as derivatives of others. This quotient

space is still infinite-dimensional over C, but it often has a much smaller description than

Sol(M). A solution to M is called a socle solution if it is nonzero in (6.1). We pose the

problem of modifying solvePDE so that the output is a minimal subset of differential

operators which represent all the socle solutions. This would result in a modified “differen-

tial primary decomposition” {(p, tp,Dp)}p∈Ass(M) such that the images of Dp generate the

excess dual space as an R-module, as opposed to a κ(p)-vector space.

It is instructive to revisit the general solutions to PDE we presented in this dissertation,

and to highlight the socle solutions for each of them. For instance, in Example 3.2.6 we

have amult(I) = 4 but only the last one of the four Noetherian operators in eq. (3.9) gives

a socle solution. The first three can be obtained from the last one via the right R-action and

linear combinations.

6.3 Numerical Algebraic Geometry

We advocate the systematic development of numerical methods for linear PDE with con-

stant coefficients. First steps towards the numerical encoding of affine schemes were taken

in Section 3.2.2 for ideals I with no embedded primes. The key observation is that the co-

efficients of the Noetherian operators for the p-primary component of I can be evaluated at

a point u ∈ V (p) using only linear algebra over C. This linear algebra step can be carried

out purely numerically.

The next step would naturally be to represent a differential primary decomposition nu-

merically. Along the way, one would extend the current repertoire of numerical algebraic

geometry to modules and their coherent sheaves.

Inspired by this, we propose a numerical representation of an arbitrary module U ⊆ Rk.

Let {(p, tp,Dp)}p∈Ass(U) be a differential primary decomposition as in Definition 1.7.4. As-

suming the ability to sample generic points up ∈ V (p), we encode the setsDp by their point

evaluations Dp(up) = {D(up, ∂x) : A(x, ∂x) ∈ Dp}. Each evaluated operator D(up, ∂x)
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gives an exponential solutionD(up, z) exp(u
T
p · z) to the PDE given byU via the correspon-

dence in Theorem 2.5.2. We obtain a numerical module membership test: a polynomial

vector f ∈ Rk belongs to U with high probability if D(up, ∂x) • f vanishes at the point up

for all D ∈ Di(up) and p ∈ Ass(U). The exponential functions z 7→ D(up, z) exp(u
t
p z),

which depend on numerical parameters up, serve as an encoding of the infinite-dimensional

C-vector space Sol(U).

Another potential research direction is the further development of hybrid algorithms,

where numerical information is used to speed up symbolic computations. Assuming the

numerical approximations to be accurate enough, the output of a hybrid algorithm is exact.

In the case of Algorithm 5, numerical methods are used to find particular instances of

exponential solutions in Sol(U), which can then be exploited to provide a better ansatz for

the symbolic solutions. It is reasonable to expect that such a hybrid paradigm would extend

the command solvePDE, in the full generality seen in Algorithm 1.
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Technology (Encyclopedia of Mathematics and its Applications). Cambridge Univer-
sity Press, 2005.

[43] B. Mourrain, “Isolated points, duality and residues,” J. Pure Appl. Algebra, vol. 117/118,
pp. 469–493, 1997, Algorithms for algebra (Eindhoven, 1996).
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