
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (T-ASE), VOL. ?, NO. ?, MONTH 2014 1

Low-Dimensional Learning for Complex Robots
Rowland O’Flaherty, Student Member, IEEE, and Magnus Egerstedt, Fellow, IEEE

Abstract—This paper presents an algorithm for learning the
switching policy and the boundaries conditions between primitive
controllers that maximize the translational movements of a
complex locomoting system. The algorithm learns an optimal
action for each boundary condition instead of one for each
discretized state-action pair of the system, as is typically done
in machine learning. The system is model as a hybrid system
because it contains both discrete and continuous dynamics. With
this hybridification of the system and with this abstraction of
learning boundary-action pairs, the “curse of dimensionality”
is mitigated. The effectiveness of this learning algorithm is
demonstrated on both a simulated system and on a physical
robotic system. In both cases, the algorithm is able to learn the
hybrid control strategy that maximizes the forward translational
movement of the system without the need for human involvement.

Note to Practitioners: Abstract—As technological innovation
in the field of robotics continues to advance forward at a steady
beat, so does the complexity of the robotic systems that are the
product of this innovation. Utilizing these robotic systems for
a number of automated tasks in diverse situations requires an
increased level of deep understanding of the inner workings of the
system, which is a burden to the human operator and program-
mer. To attenuate this burden, the task of programming itself
must move towards being automated. This type of automation is
the motivation for work presented here. This paper outlines an
algorithm for which a complex robotic system can learn the task
of locomoting all on its own. The practical application of this
is that more complex robotic systems can be incorporated into
industry with less effort. This is accomplished with an innovative
approach on what the robot needs to learn to achieve its goal.
This paper focuses on robot locomotion but future work will
focus on high degree of freedom stationary robotic arms that are
increasingly seen on factory floors.

Primary and Secondary Keywords Index Terms—Primary
Topics: Learning Control, Hybrid Systems, Robot Motion, Rein-
forcement Learning, Decision Boundaries

I. INTRODUCTION

WHEN the control design task is prohibitive due to
the complexities of the specifications and the systems

themselves, machine learning provides a possible way forward.
In fact, learning as a means to produce control strategies
has been used on a number of complex systems, such as
helicopters [1], humanoid robots [2] [3], robotic arms [4],
biological systems [5], and wind turbines [6]. Despite the
success associated with these particular applications, a hurdle
that almost all learning algorithms face is the “curse of
dimensionality”; coined by Richard Bellman in the 1950s. This
is the exponential increase of information that must be learned

R. O’Flaherty (rowland.oflaherty@gatech.edu) and M.
Egerstedt (magnus.egerstedt@ece.gatech.edu) are with the
Department of Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA 30332, USA. This work was sponsored by the US
National Science Foundation through Grant Number 1329683

as the number of possible states and actions in the system
increases.

In this paper, we present a model-free learning algorithm
that overcomes this complexity issue by a particular choice
of discretization. The algorithm uses boundary conditions
coupled with sets of primitive control laws to create motions
for the locomotion of complex robotic systems. In particular,
the presented algorithm learns actions based on boundary
states instead of the actual system states, which greatly reduces
the amount of learning that must take place.

To illustrate how this learning algorithm may be used,
imagine a situation where a roboticist would like to build a
robotic caterpillar, without having to (or even knowing how
to) explicitly design the control actions to move the robot
forward or backwards. Instead, the roboticist simply “loads”
the presented learning algorithm together with a library of
primitive feedback controllers onto the robotic caterpillar and
sets on its way. On its own, the robotic caterpillar learns to
move forward and backwards.

This paper uses reinforcement learning, which is a category
of machine learning, where an agent learns online how to
make a sequence of decisions to maximize some cumulative
long term expected reward; typically by interacting with the
environment, for example [7]. The scalability of reinforcement
learning to high-dimensional continuous state-action systems
can be problematic, as observed in [8]. This scalability prob-
lem derives from the fact that, in general, reinforcement
learning is attempting to learn the best action to take for
each state of the system (a state-action pair) based on a given
reward function. In order to facilitate such a formulation, the
state-space and action-space must be discretized, partitioned,
or parameterized in some way. Unfortunately, the number of
possible state-action pairs grows exponentially with the growth
of both the state-space and the action-space dimensions.
Reinforcement learning quickly becomes infeasible because
its complexity scales linearly in the number of actions and
quadratically with the number of states [9].

Previous work has been done to try to mitigate this prob-
lem. For example, Kuo et al. [10] discuss different sampling
techniques that can be used for numerical integration in high
dimensional spaces. In our work, we are not attempting to do
numerical integration but face the same problem of feasibly
preforming some task in a high dimensional space. Most
techniques in dealing with this problem of high dimensionality
are tackled by sampling the space in an intelligent fashion.
Zoppoli et al. do this with neural approximators [11]. Other
techniques use clustering [12] or function approximation [13].
We cope with the problem in a similar fashion as is done
in previous work; and that is by sampling the space in an
intelligent way. Our technique differs in that it hones in on
the most important states of the state space and only worries

about those while ignoring the rest. These important states are
the switching boundaries of the hybrid system.

In fact, our method to ameliorate this scalability problem is
inspired by nature. It has been shown that animals and insects
use a small set of motor primitives to construct and control
movements [14]–[17]. Moreover, the transitions between mo-
tor primitives do not occur everywhere in the state space and
we interpret this in terms of boundaries on which transitions
may take place. This suggests that the action-space can be
reduced to a finite space where the dimension is equal to the
cardinality of the primitive control set. In addition, the state-
space used for reinforcement learning can also be reduced
to a finite set of boundaries. Therefore, the reinforcement
learning algorithm will only need to learn boundary-controller
pairs instead of state-action pairs. The real strength with this
approach is that for highly complex systems—particularly
those where it is infeasible to formulate an accurate model
of the system dynamics due to imprecise manufacturing,
unknown material properties, or complex physical interactions
(e.g friction and fluid dynamics)—control for locomotion may
still be learned in a computationally feasible manner.

The use of reinforcement learning with the reduced number
of boundary-controller pairs presented in this paper closely
relates to Iterative Learning Control (ILC). ILC refines the
input signal over repeated task iterations so that the output
approaches the desired output for all points in the trajectory
[18]. ILC in combination with adaptive switching of feedback
gains has been used for control of robot manipulators with
repetitive tasks [19]–[21]. Our algorithm differs in that it is not
switching between different controller gains but completely
different controllers. In addition, our algorithm may switch
between controllers several times per cycle of the states instead
of switching once per cycle or task execution.

The main contributions of this paper are (i) the introduction
of a hybrid system methodology and reinforcement learning
algorithm to learn control actions based on boundary condi-
tions to mitigate the “curse of dimensionality”, and (ii) the
demonstration of the algorithm on both a simulated system
and on a real robot shown in Fig. 1.

The paper is organized as follows: In Section II, we describe
the properties of a hybrid learning systems used for learning.
In Section III, we present the learning algorithm. The results
for an example simulated system and for the physical robotic
system are shown in Section IV. Finally, in Section V we
summarize the paper in a brief conclusion.

II. SYSTEM OVERVIEW

This paper introduces a learning algorithm for the locomo-
tion of complex robotic systems. The form of the system that
our learning algorithm is applicable to is outlined in detail
below, but in general it is a continuous time system with
the objective of moving in some direction. The algorithm
described in this paper learns the appropriate sequence of
control laws and the switching protocol that produces a motion
that moves the system the “best”, relative to a cost function.
The switching between the control actions occurs at discrete
time instants when the state of the system reaches the learned
boundary conditions.

Fig. 1. Physical robotic system used to test the learning algorithm.

In our learning algorithm, the switching between primitive
controllers creates a dynamical system that has both continu-
ous time and discrete time dynamics, thus making it a hybrid
system. This notion of a hybrid system differs from other uses
of hybrid systems, for example [22]. Before we describe this
hybrid system, let us begin with the dynamics and constraints
of the system.

A. System Dynamics

The system dynamics under consideration in this paper can
be written as

ẋ = f(x, u) =

{
ẋI = fI(xI , u)
ẋE = fE(xE , xI),

(1)

where the system state, x ∈ Rn, is composed of two parts:
an internal state xI ∈ RnI and an external state xE ∈ RnE .
Thus, x := [xI , xE]T and n = nI +nE . The internal state, xI ,
describes the configuration of the system in reference to itself
(e.g. actuator positions, joint angles, component velocities,
etc.). The external state, xE , describes the configuration of
the system in reference to the outside world (e.g. location and
velocity of the system in some global reference frame). An
alternate way of describing these states is that the internal
state needs proprioceptive sensors to measure its value while
the external state needs exteroceptive sensors to measure its
value.

For the purpose of this paper, we assume that the internal
state is rectangularly bounded.1 Let these bounds be described
by xImin ∈ RnI and xImax ∈ RnI , where

xImin(j) ≤ xI(j) ≤ xImax(j), ∀j ∈ {1, . . . , nI}.

In other words, each element in xImin is less than the
corresponding element in xImax. The external state is allowed
to be unbounded. The input to the system is given by u ∈ Rm.
For this class of systems, the input affects the internal state
through fI(xI , u) while it only indirectly affects the external
state through the coupling with xI .

B. Primitive Controllers and Decision Conditions

We assume that the primitive controllers have been designed
such that they will always move the internal state of the system

1This bound can be generalized to any polytopic boundary.

2

until the state encounters a boundary2. In other words, the
closed-loop system does not have any equilibrium points in the
internal state space. If we let ξ index the controller selection,
the primitive controllers are defined as κξ(xI) : RnI → Rm,
which determine the input, u = κξ(xI). We let the set of all
primitive controllers be given by E := {1, . . . , k} (with ξ ∈ E),
where k is the number of different primitive controllers. Let
us define the system dynamics while a particular controller is
being applied as fξ(x) := f(x, κξ). Since, κξ(xI) can be any
nonlinear function both the internal state and the external state
can be controlled in arbitrary ways with the controller κξ(xI).

Decisions are made on what control law to use when the
internal state of the system intersects a decision boundary.
This is done to greatly reduce the number of state-action pairs
that are used to decide when a new primitive controller needs
to be applied. These decision boundaries are represented by
nI − 1 dimensional hyperplanes in RnI . Each hyperplane pi
is parameterized by two variables oi ∈ RnI and di ∈ RnI ,
where oi and di describe the origin and unit normal direction,
respectively, of the ith hyperplane. Therefore, the hyperplanes
are defined as pi := {xI | (xI − oi)Tdi = 0}. The set of all
hyperplanes is P = {p1, . . . , pη}, where η is the total number
of hyperplanes. The boundary that was last intersected by xI
is encoded with the boundary state variable β ∈ B, where
B := {0, 1, . . . , η}. Initially, when the internal state has not
yet intersected a boundary β = 0.

In order to ensure that the system can indeed learn how to
locomote, we need to impose some constraints on the set of
controllers and boundaries. In particular, we need to be able to
guarantee that a control law is always applicable. This means
the system can always move away from a boundary once the
boundary has been encountered. Also, we want to ensure the
system will always eventually encounter a boundary.

To establish this guarantee, we first assume that the hyper-
planes intersect to form a convex polytope. To describe this
constraint more formally, let

D̄ :=
{
xI

∣∣∣ (xI − oi)Tdi < 0 ∀i ∈ {1, . . . , η}
}
. (2)

The set D̄ is the set of all points inside the polytope formed by
the intersection of the hyperplanes in P . Thus, the constraint is
that D̄ must be convex. This constraint also gives a minimum
to the number of hyperplanes needed, i.e., ηmin = nI + 1.

The set of primitive controllers move the internal state of
the system around in the polytope defined by D̄. A valid set of
primitive controllers is a set such that, for each point along a
given hyperplane, there is at least one primitive control action
that moves the state away from that hyperplane and back into
the convex polytope defined by D̄ for all hyperplanes in P .
Thus, we assume that the boundary conditions and control
laws have been designed such that

∀i ∈ {1, . . . , η}, ∃j ∈ E s.t. dT
i fj(x) < 0 ∀x ∈ pi. (3)

We also impose a non-transversality condition on the prim-
itive controllers and the decision boundaries. This condition

2The assumption is valid because this equates to the motion of low level
motor controllers that are usually built into the hardware of a robotic system,
which have limited operating range.

restricts the internal state to not move along the decision
boundaries. Two important effects are caused by this condition.
The first is that the internal state can not return to the same
boundary without first encountering another boundary and the
second is that the internal state can not stay in the interior of
D̄ forever.

Verification of these effects can be seen by looking at
the trajectories of the primitive controllers when initialized
at different points along the boundaries. By continuity, these
trajectories can never cross each other and, therefore, if a
controller brings a state back to the same boundary then there
must be a stationary, singular point on that boundary. This
would violate the non-transversality condition in (3), thus the
primitive controllers will never bring the internal state back
to a boundary that it has just encountered. The second effect
is verified by a similar reasoning as the first. For the internal
state to stay in the interior of the boundaries forever with
the same primitive controller there must be a point along
its trajectory that is tangential to the hyperplanes that make
up the boundaries. Again, this violates the non-transversality
condition in (3); and as result, the internal state will always
eventually encounter a decision boundary.

In addition, in order to keep the notation simple it is
assumed that the internal state will not encounter more than
one decision boundary at a time. This assumption is reasonable
because, for all but contrived systems, it is improbable for the
internal state to intersect more than one hyperplane due to the
non-transversality condition, which prevents the potentially,
non-pathological sliding along a boundary from happening.

C. Hybrid System Formulation

Following the definition and notation in [23], our hybrid
system is composed of four parts: (i) the flow map, which
describes the continuous time evolution of the system; (ii) the
flow set, which determines when the flow map takes place; (iii)
the jump map, which describes the discrete time updates to the
system; and (iv) the jump set, which determines when the jump
map takes place. The interpretation is that the system flows
during the continuous time evolution and jumps at the discrete
time updates. With this we combine all the system information
into a generalized state variable q := [x, β, ξ]T ∈ Q, where
Q = Rn × B × E .

The flow set is defined with the bounds on xI ,

C = {q ∈ Q | xImini ≤ qi ≤ xImaxi, i ∈ {1, . . . , nI}} .
(4)

The jump set is thought as the complement to D̄,

D :=
{
q ∈ Q

∣∣∣ [InI×nI 0nI×(nE+2)]q /∈ D̄
}
. (5)

In words, (5) states that the jump set is the set of q’s where the
first nI components of q are not elements of D̄. An illustration
of an example internal state-space with boundaries, flow set,
and jump set can be seen in Fig. 2.

Before defining the flow map and jump map for the system
two other functions must first be introduced. The first is the
boundary map, b(xI) : RnI → B, which maps the internal
state to a boundary state. The second is the controller selector

3

p3

C

D

p1

p2

κ1

xI

κ2
κ3

κ4

d1

o1

o3

d2

d3

xImin1

xImin2

xImax2

xImax1

o2

Fig. 2. Illustration of the internal state xI ∈ R2 being controlled into a
limit cycle with controllers κ1, . . . , κ4 and with the location of the decision
boundaries defined by the parameters oi and di. The flow set C is the interior
of the green box and the jump set D is the exterior of the red triangle. The
interior of the red triangle must be convex.

map, e(β) : B → E , which selects which controller to use
given a boundary state. The controller selector map for a given
boundary must satisfy the condition in (3).

With the above functions the flow map and jump map of
the hybrid system can be written as

fH(q, u) =
[
f(x, u), 0, 0

]T
(6)

gH(q) =
[
x, b(xI), e(b(xI))

]T
(7)

respectively. Thus, fH(q, u) : C×Rm → Q and gH(q) : D →
Q. Finally, the hybrid system is defined as

H :

{
q̇ = fH(q, u) q ∈ C
q+ ∈ gH(q) q ∈ D

. (8)

D. Reward Function

Learning only makes sense if there is something to learn.
To this end, we need to associate a reward function and value
function to the system, which is usually determined trivially
by what is desirable (e.g. if forward progress is desirable then
distance forward is the reward). We let the reward function
be R(xE , u) : RnE × Rm → R and the corresponding value
function becomes

V (xE , u) =

∫ t0+tπ

t0

R(xE , u)dt, (9)

where t0 is the initial time and tπ is length of time that is
being optimized over.

Given the above definitions, the objective is to maximize
the value function, V (xE , u), without explicit knowledge of
the system dynamics, f(x, u), and the controllers, κi(xI , τ),
by learning the controller selector map, e(β), and the set
of boundaries, P . Two things to note are (i) the primitive
controllers depend on xI and not on xE and (ii) that the reward
and value functions depend on xE and not xI , which is why
we refer to this as a locomoting problem.

To relate the above framework to the example given about
the robotic caterpillar in Section I, the external state is the

position of the caterpillar and the value function is how far
forward it has moved. The internal states are the state of its
body configurations. These internal states are bounded by how
far the body can move back and forth, which defines the flow
set. The primitive controllers could be to oscillate the body at
different points or with different frequencies. Setting different
decision boundaries with different jump maps will cause the
body to move fast or slow and in or out of unison with other
parts of the body. The goal is to find the setting that makes
the robotic caterpillar move forward the “best” (as defined by
the value function) by deciding when the given controllers are
implemented.

III. LEARNING ALGORITHM

Learning the controller actions and the decision boundaries
are the main focus of this section and we primarily use
reinforcement learning to this end. This type of learning is
often done as an online process, which adds the additional
caveat that the agent must decide when it has sufficiently
learned the environment and start utilizing its knowledge. This
is known as “exploratation vs. exploitation” [24].

Reinforcement learning is usually modeled as a Markov
Decision Process (MDP) [7] with four components: S, A, P ,
and R. S is the set of states for the agent and the environment.
A is the set of actions or decisions that agent can take. P is
a function that defines the probabilities of transitioning from
the current state to the next state given a certain action. R is
the function that determines the reward that is received after
choosing a action from a given state.

With reinforcement learning the agent is attempting to learn
an optimal policy, π, for the MDP, which is a description of
how the agent chooses the actions to perform given a certain
state. To do this the agents often learns the value function,
which in turn will produce a policy. The value function,
V , gives the maximum reward that can be earned from a
given state. A variant of the value function is the value-action
function, Q, which gives the maximum reward that can be
earned from a given state after performing a given action.

For the system framework presented in Section II the learn-
ing algorithm components are S = B, A = E , R = R(xE , u),
and P is not explicitly used.

A. Learning Controller Actions

A type of reinforcement learning known as Q-learning
was one of the most important breakthroughs in the field of
reinforcement learning [7]. Q-learning is an iterative update
algorithm for the value-action function, Q; hence the name.
The value-action function is a variant of the value function,
which gives the maximum reward that can be earned from a
given state after performing a given action. A model that maps
from actions to states is not needed for either the learning
or the action selection in Q-learning. For this reason, Q-
learning is called a model-free method. This learning algorithm
is guaranteed to converge to the optimal, Q∗, if all state-
action pairs continue to be updated. Q-learning is used to learn
controller actions given decision boundaries for the hybrid
system defined in (8).

4

Algorithm 1 Learning To Locomote Algorithm
x← 0 {Initialize state to all zeros}
Q← 0 {Initialize Q to all zeros}
while xI is not a stable limit cycle do

if variance on Q(β, ξ) > vth then
ξ ← rand(E) {Pick random action to use}

else
ξ ← argmax(Q(β, :)) {Pick maximizing action}

end if
x ← simulate(x) {Simulate the system forward until
boundary is encountered}
β ← b(x) {Update the boundary state}
Q← update(Q, q) {Update Q with (10)}
pi ← c ∂R∂pi {Update boundary locations}

end while
for each β ∈ B do
e(β)← argmax(Q(β, :))

end for

Q-learning is a simple algorithm. The update is as follows:

Q(st, at)← Q(st, at)+

α
(
Rt + γmax

a
Q(st+1, at+1)−Q(st, at)

)
, (10)

where st is the boundary state (β) and at is the primitive
controller (ξ) at time t. In (10), α is known as the learning
rate and γ is known as the discount factor. Fundamentally,
equation (10) states that the update Q for state s and action
a will be the old Q for that pair plus a scaled sum of the
instantaneous reward and the discounted maximum value that
is currently known for the next state. A smaller α means old
information will be trusted more than new information. And
a smaller γ means instantaneous rewards are more important
than future rewards. From (10) a policy, π, is generated from
Q in a “greedy” manner. In other words, the action that is
selected for a given state is the one that maximizes the Q
value for that state.

B. Learning Decision Boundaries

A different approach is used to find the optimal decision
boundary locations. A gradient ascent algorithm is used to
iteratively move the boundaries to the optimal locations. The
boundaries are moved proportional to the positive of the
gradient of the value function with respect to the boundary
locations, ∂V

∂pi
. This proportion (or step size) is set by the

parameter c.
To estimate the gradient, each time the internal state xI

reaches one of the boundaries in P the position of that
boundary is randomly changed by some small amount, ∆p.
The change in the reward function, ∆R, is calculated over this
change in the boundary position. The ratio of ∆R to ∆p is
used as an approximation for the gradient ∂V∂pi . The boundaries
are moved by the amount equal to c∆R

∆p . This results in the
boundaries moving in a “greedy” direction; in other words, a
direction that maximizes the short term reward not necessarily
the long term value.

The orientation of the boundaries, di, are currently chosen
in one of two ways. They are either chosen to be aligned with
the axes of the state space or chosen randomly but with the
constraint that the interior of the boundaries form a convex
polytope.

The number of decision boundaries, η, can be no lower than
ηmin = ni+1, but there is no upper limit on η. As η increases
a larger number of decisions are made for each cycle of the
interior state, thus the better the results, as is shown in the
results in IV-A. The improved results come at cost in conver-
gence times, which scale as O(|B|

∑
β∈B|E(β)|) = O(η2k)

[9].

C. Exploration vs. Exploitation

Deciding when the agents have learned sufficient infor-
mation and deciding when to begin executing the learned
policy is a current area of research in reinforcement learning.
Exploration strategies are usually grouped into two categories:
undirected and directed [25]. Undirected techniques use no
knowledge of the learning process and ensure exploration by
merging randomness into the action selection. Directed tech-
niques utilize knowledge of the learning process to preform
exploration in more directed manner.

For the research outlined in this paper the directed tech-
niques are utilized to determine when the transition from ex-
ploration and exploitation takes place. This is done by knowing
that the learning process is Q-learning, which guarantees that
the Q values will converge to the optimal value if the state-
action pairs continue to be updated. Thus, the variance in the
Q values will converge to zero. The variance in the Q values is
used to determine when the learning algorithm should explore
or exploit.

Exploitation takes place when the maximum variance in the
last σ2

n updates of Q for a particular state, s, is below a thresh-
old of σ2

th. Otherwise exploration is performed. This variance
for a state is denoted as σ2(s). During exploration actions
are picked randomly with a distribution that is proportional to
σ2(s). If a state-action pair in Q has not been updated more
that σ2

n times the variance is set to a large number, σ2
inf . This

method assures that exploitation will not take place until each
state-action pair has been attempted σ2

n times and that the
variance on the estimated Q values for each state-action pair
is below σ2

th.

IV. EXAMPLES

The efficacy of the learning algorithm from Section III is
demonstrate on three systems in this section. Two system are
simulated systems and one is a real robotic system.

A. Example Simulated System

We demonstrate the ability of our learning algorithm on the
nonholonomic integrator [26] known as “Brockett’s system”
[27]. Brockett’s system is an ideal example system to test
and demonstrate the learning algorithm outlined in Section
III because it is one of the simplest systems that fits the
model defined in Section II. In addition, due to the so-called

5

1

0

1
Internal States

x I1
 &

 x
I2

xI1
xI2

1
0
1

R
(x

E,u
)

0
100
200

x E

External State and Reward Value

xE
R(xE,u)

0
20
40

Control State and Boundary State

0
2
4

0 100 200 300 400 500
10 4

10 3

10 2

Time

Max Variance in Q Values

m
ax

(
2 (s

))

max(2(s))

2
th

Fig. 3. These plots show the results of running the learning algorithm on Brockett’s system. Top: plot of the internal state components, xI1 (dark blue
line) and xI2 (light green line), verses time. The internal state constraints are also shown (black dashed lines). Second: plot of the external state and reward,
xE (dark orange line) and R(xE , u) (light blue line), respectively, verses time. Third: plot of the control state and boundary state, ξ (dark pink line) and β
(light yellow line), respectively, verses time. Bottom: plot of the maximum variance in the Q values for a given state, max(σ2(s)) (dark purple line), verses
time. The variance threshold for deciding between exploration and exploitation is also shown (solid black line). In all the plots it is shown when the learning
algorithm is exploring or exploiting with the dark red and light green marks, respectively.

topological obstruction there is no continuous control law to
stabilize Brockett’s system [27]. The dynamics of Brockett’s
system are

f(x) = [u1, u2, xI1u2 − xI2u1]
T
, (11)

where u ∈ R2, xI ∈ R2, and xE ∈ R. Brockett’s system is a
surprisingly rich system given its innocuous appearance.

For this system, we define the primitive controllers such
that they move the internal state, xI , with unit magnitude.
The direction for each controller is random and is drawn
from eight uniform random distributions. The domain of these
distributions are each equal to one-eighth partitions of the
unit circle, which guarantees that the condition in (3) is
satisfied. We use 32 controllers and set the bounds on xI as
xImin = [−1,−1]T and xImax = [1, 1]T.

Lastly, we select four boundaries (η = 4) for the learning
algorithm. The directions of the boundaries are fixed to d1 =
0, d2 = π/2, d3 = π and d4 = 3π/2. The origin’s of the
boundaries, oi, are chosen randomly such the constraint that
D̄ is convex is satisfied.

From (11) it is seen that for this example system m = 2,

nI = 2, nE = 1, n = 3, η = 4, and Q is a 4×32 matrix. The
reward function is defined as R(xE , u) = dxE

dt . The parameters
used for the learning algorithm were found empirically and
are as follows: α = 0.75, γ = 0.25, c = 0.1, σ2

n = 3, σ2
th =

0.0252, and σ2
inf = 102. To simulate the system the algorithm

shown in Algorithm 1 is executed in Matlab.
Using this learning algorithm we were able to learn the

optimal control sequence and boundary locations given the
setup described above. Results of the learning algorithm are
shown in Fig. 3 and explained further in Section IV-B. It is
known that the optimal continuous controller for Brockett’s
system is sinusoidal of the form[

u1(t)
u2(t)

]
=

[
cos(λt) − sin(λt)
sin(λt) cos(λt)

] [
u1(0)
u2(0)

]
, (12)

where λ and u(0) can be solved for given initial and desired
final states of the system [27]. We compared the external state
value after running both the optimal control law in (12) and the
control law learned with our learning algorithm. The results
after running 100 trials for two different cases are shown in
Table I.

6

TABLE I
EXTERNAL STATE WITH DIFFERENT PARAMETERS USING 100 TRIALS OF

OUR LEARNING COMPARED AGAINST THE OPTIMAL STATE VALUE.

η k avg. # iterations avg. % of optimal
4 32 420 90.3%(±3.8%)
8 64 3377 96.1%(±2.7%)

B. Explanation of Results For Simulated System

The results of an experiment using the learning algorithm
(described in Section III) on the Brockett’s system (described
in Section IV-A) are shown in Fig. 3. The top plot shows the
internal state components, xI1 (dark blue line) and xI2 (light
green line), as well as the state constraints (black dashed lines).
The second plot shows the external state xE (dark orange
line) and the value of the reward function (light blue line).
The third plot shows the controller state ξ (dark pink line)
and boundary state β (light yellow line). And the bottom plot
shows the maximum variance in the Q values, max(σ2(s))
(dark purple line), as well as the threshold value for when
exploitation takes place, σ2

th (black line). The times when the
learning algorithm is exploring (dark red marks) and exploiting
(light green marks) are shown in each of the four plots. The
boundary locations are implicitly shown in the top plot by the
envelope of the internal states.

In this experiment the states are all initialized to zero. It can
be seen that during the first portion of this experiment (time
0 to 220) the learning algorithm is only exploring. During
exploration the control state is random and the boundaries
locations are moving but not in a consistent direction. In
addition, the external state and reward value have an average
output of zero. The first time exploitation takes place is
when the time approximately equals 220, which can be seen
in the bottom plot because max(σ2(s)) falls below σ2

th.
Exploration and exploitation trade off for the middle portion
of the experiment (time 220 to 420). In the last portion of the
experiment only exploitation takes place (time 420 to 600).
The control state and boundary state settle into a repeating
pattern and the value of xE quickly increases. Note that even
after the time when only exploitation is taking place (approx.
time of 420) the boundaries are still moving. The boundaries
are moving towards positions that give maximum reward. The
boundaries settle at the limits of xI and the average reward
value stops increasing.

C. Simulated High Dimensional System

Another simulated system was constructed to demonstrate
the learning algorithm’s capabilities on a system of high
dimension. The dynamics of this system were created to
resemble that of an N -jointed serpent swimming through water
(see Fig. 4). The serpent is constrained to move in the xy-
plane. Its “head” is at the position (x, y) and it is always
oriented along the x-axis. The serpent has N movable body
parts or links. The ith link is of length li and begins with a 1-
dimensional rotational joint with angle θi and angular velocity
θ̇i. It has a mass, mi, at the center of the link, and a fin with
an associated constant ci. Rotating the joint causes a force,

Fig. 4. An illustration of the N -link high dimensional simulate serpent
system.

fi, to be applied to the mass that is proportional to ci and the
square of the angular velocity of joint, θ̇2

i . The direction of the
force fi is the negative of the direction of the linear velocity
of the mass mi. The acceleration of the serpent is equal to
the sum of the forces divided by the sum of the masses. The
serpent has direct control of the angular velocity of each of
its N joints. Thus, the input, u, to the system is an element
of RN .

The goal of the serpent is to learn to move its joints in
such a way that it moves as quickly as possible in the x-
direction with no concern for its movement in the y-direction.
The serpent has set of k primitive controllers to use that it
innately knows and can use accomplish this goal.

Since the serpent resembles a serial link robotic manipulator
the kinematics of serpent are solved in a similar fashion to that
of an N -link robotic manipulator [28]. In other words, given
the serpent’s current joint angles and angular velocities the
positions, p, and velocities, ṗ, of the masses of all the links
can be computed. To compute the positions and velocities of
the masses given the current state of the serpent let us define
the forward kinematics function FK(x, ẋ, y, ẏ, θ, u) = [p, ṗ].

Given the forward kinematics the dynamics of the serpent
can be written as

ẍ =

∑N
i=1−ciṗ2

xi∑N
i=1mi

, ÿ =

∑N
i=1−ciṗ2

yi∑N
i=1mi

, (13)

where ṗxi and ṗyi are the speed of mi in the x-direction and
y-direction, respectively. From this the internal state is defined
as xI = θ, the external state is defined as xE = [x, y]T (with
some abuse of notation for x).

The boundaries for the learning algorithm have fixed ori-
entations such that they form a “hyper rectangular prism” in
the internal state space. This means there are 2N boundaries.
The k primitive controllers for the serpent are chosen ran-
domly from elements in RN , with the constraint that there is
always at least one controller with a positive sign and another
controller with a negative sign for each of the N elements.
This guarantees that the non-transversality condition in (3) is
satisfied. It also means k ≥ 2N .

Relating the serpent dynamics of (13) to the hybrid system
of (8) we have m = N , nI = N , nE = 2, n = 2N + 2, η =
2N , and k ≥ η. The bounds on xI as xImin = [−π, ...,−π]T

and xImax = [π, ..., π]T and reward function is defined as
R(xE , u) = ẋ.

Lastly, the authors are well aware that the dynamics as
they are written in (13) are not an accurate representation

7

Fig. 5. Forward movement verse update number of a 15-link serpent
simulated system learning to move forward. After 8×104 updates the system
has entered a stable limit cycle and moves forward at the maximum rate.

of the actual dynamics for a N -link swimming serpent. The
contribution of this section is not to present high fidelity
serpent dynamics but to demonstrate the capabilities of the
learning algorithm on a high dimensional system.

The learning algorithm was applied to a 15-link serpent
system with 315 primitive controllers. It would be infeasible
to discretize the internal state space of this system and learn
state-action pairs for each possible combination. Even just
discretizing each internal state dimension into 2 parts would
create over 1 million state-action pairs to test and learn. With
our learning algorithm using 30 boundaries for this system
creates 9450 boundary-action pairs to test and learn. The
results in Fig. 5 show that the system reaches a steady limit
cycle with the external state increasing at a steady maximum
rate after approximately 8× 104 updates.

D. Physical Robotic System

In addition to running our learning algorithm on a simulated
system, we tested the algorithm on a physical robotic system.
A photograph of this robot is shown in Fig. 1. The fabrication
of this robot was for the sole purpose of testing the learning
algorithm. This robot consists of a body and two movable
appendages. Each appendage has only one rotational degree
of freedom. The body of the robot holds an Arduino microcon-
troller, two servos, ultrasonic distance sensor, XBee wireless
transmitter, and two 9V batteries. To maintain a low cost and
rapid construction time the entire structure of the robot is made
out of cardboard, which is held together with hot glue and
two small cabinet hinges. The learning algorithm does not run
directly on the hardware of the robot but runs on a separate
computer and communicates with the robot over a wireless
link. The computer sends actuation commands wirelessly to
the robot and the robot sends servo positions and distance
readings back to the computer.

This robot is limited to moving along a straight line and
the objective of the robot is to move as far along that line as
possible. It is impossible for the appendages of the robot to
lose contact with the ground, thus for the robot to move it
must “scoot”. Locomotion is only possible with differences in
frictional forces from the two appendages and the ground. This
complexity makes conceptualizing the necessary sequence of
movements for forward progress difficult and not intuitive.

Instead of attempting to design the sequence of actuations
for the robot, it learns them with our learning algorithm. The
internal state, xI , are the positions of its two appendages and

Fig. 6. (Top) The first plot shows the physical robot learning to move forward.
The forward progress is shown (dark blue line with plus sign markers) as well
as when the robot is exploring (dark red line) and exploiting (light green line).
(Bottom) The second plot shows the robots movements after learning how to
move both forward (blue line with plus sign marks) and backwards (purple
line with circle marks).

the external state, xE , is the distance from the origin. The
primitive controllers are all possible combinations of moving
the appendages up, down, and not at all. However, the case
when both are not moving is not included as a primitive
controller. This makes eight possibilities, therefore k = 8. The
boundaries are the same as in the simulated example (Section
IV-A), thus η = 4.

Using the learning algorithm presented in Section III, the
robot is able to learn the necessary movements to move
forward and backward. After running the learning algorithm
several times, we observe that the robot learns to move forward
by positioning the forward appendage at a large angle relative
to the ground and proceeding to move the back appendage
back-and-forth. This causes the robot to scoot forward at
approximately 1 cm/s. To move backward, the robot lays its
front appendage down flat and uses the back appendage to
pull itself backward. It moves backwards at roughly 0.25 cm/s.
Plots of the robot’s movements are shown in Fig. 6 3.

V. CONCLUSION

This paper has introduced a new algorithm to learn how
to maximize an objective function of a complex locomoting
system by learning to switch between primitive controllers.
The system is described as hybrid system because it contains
both continuous time and discrete time dynamics due to the
switching between primitive controller actions. The hybrid
system formulation allows for a concise representation of the
system and the switch boundaries. The primitive controllers
act directly on what is referred to as the internal state and the
objective function is based only on what is referred to as the

3A movie of the robot learning can be viewed at
http://gritslab.gatech.edu/home/2012/11/learning-to-locomote/.

8

external state. The switching boundaries and primitive con-
trollers are used as state-action pairs for Q-learning algorithm
to learn which controller to apply at each boundary encoun-
tered by the internal state. The locations of the boundaries are
adjusted using a gradient ascent algorithm. The capacity of
this learning algorithm is demonstrated on both a simulated
system with a known analytical solution, a simulated system
of high dimension, and on a real robot complex dynamics
due to fictional forces. By learning boundary-action pairs this
algorithm mitigates the “curse of dimensionality”.

Future work will include an in-depth study of the primitive
controllers. Particularly, if there are characteristics of the
controllers that will produce better results; measured in terms
of convergence rates. In addition, how to improve on the
greedy gradient ascent of boundary locations and the arbitrary
picking of boundary orientations. Lastly, future work will
include applying the algorithm to a larger variety of robotic
system that have applications to the real world, particularly
manufacturing.

REFERENCES

[1] J. A. Bagnell and J. Schneider, “Autonomous helicopter control us-
ing reinforcement learning policy search methods,” in Proceedings of
IEEE International Conference on Robotics and Automation (ICRA),
pp. 1615–1620, 2001.

[2] N. Kohl and P. Stone, “Policy gradient reinforcement learning for
fast quadrupedal locomotion,” in Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), pp. 2619–2624, 2004.

[3] T. Hester, M. Quinlan, and P. Stone, “Generalized model learning
for reinforcement learning on a humanoid robot,” in Proceedings of
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2369–2374, IEEE, 2010.

[4] F. Stulp, E. Theodorou, M. Kalakrishnan, P. Pastor, L. Righetti, and
S. Schaal, “Learning motion primitive goals for robust manipulation,” in
Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 325–331, IEEE, 2011.

[5] S. Sastry, “Learning Controllers for Complex Behavioral Systems,” tech.
rep., University of California at Berkeley, 1996.

[6] J. Z. Kolter, Z. Jackowski, and R. Tedrake, “Design, analysis and
learning control of a fully actuated micro wind turbine,” in Proceedings
of the 2012 American Control Conference (ACC), June 2012.

[7] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Adaptive Computation and Machine Learning, The MIT Press, the mit
press ed., Mar. 1998.

[8] E. Theodorou, J. Buchli, and S. Schaal, “A Generalized Path Integral
Control Approach to Reinforcement Learning,” The Journal of Machine
Learning Research, vol. 11, pp. 3137–3181, Mar. 2010.

[9] S. Koenig and R. G. Simmons, “Complexity Analysis of Real-Time Re-
inforcement Learning,” in Conference on Artificial Intelligence, pp. 99–
105, 1993.

[10] F. Kuo and I. Sloan, “Lifting the curse of dimensionality,” Notices of
the AMS, vol. 52, no. 11, pp. 1320–1328, 2005.

[11] R. Zoppoli, M. Sanguineti, and T. Parisini, “Can we cope with the curse
of dimensionality in optimal control by using neural approximators?,”
in Proceedings of the 40th IEEE Conference on Decision and Control,
pp. 3540–3545, IEEE, 2001.

[12] A. Hinneburg and D. Keim, “Optimal grid-clustering: Towards breaking
the curse of dimensionality in high-dimensional clustering,” in Proceed-
ings of 25th International Conference on Very Large Data Bases, VLDB,
pp. 506–517, 1999.

[13] W. McEneaney, “Curse-of-dimensionality free method for Bellman
PDEs with Hamiltonian written as maximum of quadratic forms,” in
Proceedings of the 44th IEEE Conference on Decision and Control,
and the European Control Conference (CDC-ECC)., pp. 42–47, IEEE,
2005.

[14] F. Mussa-Ivaldi, S. Giszter, and E. Bizzi, “Linear combinations of
primitives in vertebrate motor control,” Proceedings of the National
Academy of Sciences, vol. 91, no. 16, p. 7534, 1994.

[15] R. Beer, R. Quinn, H. Chiel, and R. Ritzmann, “Biologically inspired
approaches to robotics: What can we learn from insects?,” Communica-
tions of the ACM, vol. 40, no. 3, pp. 30–38, 1997.

[16] K. Thoroughman and R. Shadmehr, “Learning of action through adaptive
combination of motor primitives,” Nature, vol. 407, no. 6805, p. 742,
2000.

[17] J. Kober and J. Peters, “Imitation and Reinforcement Learning,” Robotics
& Automation Magazine, IEEE, vol. 17, no. 2, pp. 55–62, 2010.

[18] K. L. Moore, Y. Q. Chen, and H.-S. Ahn, “Iterative Learning Control:
A Tutorial and Big Picture View,” in Decision and Control, 2006 45th
IEEE Conference on, pp. 2352–2357, 2006.

[19] P. R. Ouyang, W. J. Zhang, and M. M. Gupta, “An adaptive switching
learning control method for trajectory tracking of robot manipulators,”
Mechatronics, vol. 16, no. 1, pp. 51–61, 2006.

[20] S. Islam and P. X. Liu, “Adaptive iterative learning control for robot
manipulators without using velocity signals,” in Advanced Intelligent
Mechatronics (AIM), 2010 IEEE/ASME International Conference on,
pp. 1293–1298, IEEE, July 2010.

[21] P. R. Ouyang and P.-i. Pipatpaibul, “Iterative Learning Control: A
Comparison Study,” ASME 2010 International Mechanical Engineering
Congress and Exposition, pp. 939–945, Nov. 2010.

[22] W. J. Zhang, P. R. Ouyang, and Z. H. Sun, “A novel hybridization design
principle for intelligent mechatronics systems,” in 5th International
Conference on Advanced Mechatronics, (Osaka, Japan), 2010.

[23] R. Goebel, R. Sanfelice, and A. Teel, “Hybrid dynamical systems,” IEEE
Control Systems Magazine, vol. 29, pp. 28–93, Apr. 2009.

[24] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement learning: A
survey,” CoRR, vol. cs.AI/9605103, 1996.

[25] S. Thrun, “Efficient Exploration in Reinforcement Learning,” tech. rep.,
School of Computer Science Carnegie Mellon University, Pittsburgh,
Pennsylvania, Jan. 1992.

[26] R. W. Brockett, “Asymptotic Stability and Feedback Stabilization,”
Differential Geometric Control Theory, pp. 181–191, 1983.

[27] S. Sastry, Nonlinear systems. analysis, stability, and control, Springer
Verlag, June 1999.

[28] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and
control. John Wiley & Sons, Inc., 2006.

Rowland O’Flaherty is a robotics Ph.D. candidate
at Georgia Institute of Technology. His research
focuses on the intersection of control theory and
machine learning with applications to robotics. He
received a BS and MS degree in Electrical Engi-
neering in 2007 and 2008, respectively, from the
University of California, Santa Barbara.

Magnus Egerstedt is the Schlumberger Professor
in the School of Electrical and Computer Engineer-
ing at the Georgia Institute of Technology, where
he serves as Associate Chair for Research. He
conducts research in the areas of control theory
and robotics, with particular focus on control and
coordination of complex networks, such as multi-
robot systems, mobile sensor networks, and cyber-
physical systems. Magnus Egerstedt is the director
of the Georgia Robotics and Intelligent Systems
Laboratory (GRITS Lab), a Fellow of the IEEE, and

a recipient of the ECE/GT Outstanding Junior Faculty Member Award, and the
U.S. National Science Foundation CAREER Award. He serves as the Deputy
Editor-in-Chief for the IEEE Transactions on Network Control Systems.

9

