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SUMMARY

Every day humans and machines are responsible for the creation of massive amounts

of data. Alongside the growth of these data banks, a new field of study, data science, has

emerged. The central role of data science is to infer knowledge on the data in the form

of models and estimates employing methods at the intersection of computer science, data

mining, mathematics, and statistics. In this thesis we provide statistical and model-based

data mining methods for pattern detection with applications to biomedical and healthcare

data sets. In particular, we examine applications in costly acute or chronic disease manage-

ment. Health data are extremely varied: at the macro-level, one can examine the healthcare

utilization of millions of patients in the insurance systems like Medicare and Medicaid,

while at the micro-level, a single snapshot from a medical imaging device may be used to

diagnose cancerous cells in the body. In all, statisticians can contribute methods that extract

structure from large, noisy data.

In Chapter II, we consider NMR experiments in which we seek to locate and de-mix

smooth, yet highly localized components in a noisy two-dimensional signal. By using

wavelet-based methods we are able to separate components from the noisy background, as

well as from other neighboring components. In Chapter III, we pilot methods for identi-

fying profiles of patient utilization of the healthcare system from large, highly-sensitive,

patient-level data. We combine model-based data mining methods with clustering analysis

in order to extract longitudinal utilization profiles. We transform these profiles into simple

visual displays that can inform policy decisions and quantify the potential cost savings of

interventions that improve adherence to recommended care guidelines. In Chapter IV, we

x



propose new methods integrating survival analysis models and clustering analysis to pro-

file patient-level utilization behaviors while controlling for variations in the population’s

demographic and healthcare characteristics and explaining variations in utilization due to

different state-based Medicaid programs, as well as access and urbanicity measures.
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CHAPTER I

INTRODUCTION

Every day humans and machines are responsible for the creation of massive amounts of

data. With every electronic transaction, social media interaction, business or healthcare

event, data are recorded and stored for use in future analysis at the rate of 2.5 quintillion

bytes per day (50). Alongside the growth of these data banks, a new field of study, data

science, has emerged. Data scientists are present in academia, government, and industry,

wherever entities recognize the potential value in extracting knowledge from often complex

and large data sets that may have previously been unused.

The central role of data science is to infer knowledge on the data in the form of models

and estimates employing methods at the intersection of computer science, data mining,

mathematics, and statistics (80). The National Research Council states that it is the role

of statisticians to justify the inferential leap from data to knowledge. However, traditional

statistical analysis will not suffice when studying data sets of extraordinary size and/or

complexity. It is the goal of this thesis to provide and inspire new methodologies that are

both computationally attractive and statistically sound, with a potential impact beyond the

applications we present.

In this thesis we focus on applications to biomedical and healthcare data sets. In par-

ticular, we examine applications in costly acute or chronic disease management. Health

data are extremely varied: at the macro-level, one can examine the healthcare utiliza-

tion of millions of patients in the insurance systems like Medicare and Medicaid, while

at the micro-level, a single snapshot from a medical imaging device may be used to diag-

nose cancerous cells in the body. In all, statisticians can contribute methods that extract

structure from large, noisy data. Traditionally, statisticians derive inference in the form of

1



cause-and-effect relationships (e.g. regression or network analysis), the drivers of varia-

tion in a phenomenon (e.g. principal component analysis), and grouping objects based on

some notion of similarity (cluster analysis). In this thesis we combine traditional statistical

inference with model-based data mining techniques including nonparametric regression,

stochastic modelling, and clustering analysis to perform meaningful analysis and provide

sound, principled methods for translating data into knowledge.

In Chapter II we present methods for identifying peaks (components) in nuclear mag-

netic resonance (NMR) data for biomolecular structure determination. In particular, we

use the continuous wavelet transform together with the theory of convolutions, to identify

smooth, yet highly-localized components in a noisy signal without the need for denois-

ing or the inverse wavelet transform. The methods in this chapter are applicable to any

experiment where the target features to be identified are assumed to have a smooth, sym-

metric shape. In our application of interest, the discovery of true components can lead to

the correct structure determination. Using NMR spectroscopy to correctly identify protein

structures from medical images can inform the use of proactive treatments of tumors and

cancers in the human body.

In Chapter III we present methods for deriving inferences on longitudinal patient health-

care utilization profiles from large, highly-sensitive medical claims data, and quantify the

cost-saving effects of interventions that bend patient-level utilization towards more effec-

tive practices. We pilot our methods using the CMS Medicaid Analytic Extract (MAX) data

for five years (2005-2009) from two states, Georgia and North Carolina. By considering

neighboring states with similar pediatric populations, we are able to determine the effects

of factors such as different managed care organizations or geography on healthcare utiliza-

tion and expenditure. We chose pediatric asthma as the health condition of interest because

it is a common chronic childhood condition, allowing for the investigation of potentially

costly patient-level utilization behaviors. Furthermore, by considering the Medicaid pop-

ulation, we can determine interventions to prevent costly and ineffective treatments for a

2



subpopulation most susceptible to disparate healthcare utilization.

In this chapter we assume that a patient’s utilization sequence follows a Markov renewal

process. We employ a single-linkage tree to search for the cluster division that produces

a maximal increase in the Bayesian Information Criterion (BIC) score at each step. We

utilize the expectation-maximization (EM) algorithm to simultaneously determine model

parameters, perform cluster membership, and infer provider networks. Additionally, we

analyze “what-if” scenarios for different case studies on the effects of potential changes

to healthcare utilization. We provide a case study where we bend the realized utilization

patterns to follow the recommended care guidelines for pediatric asthma and determine the

new expected cost per patient.

In Chapter IV, we introduce new models for integrating survival analysis and clustering

analysis to profile patient-based utilization behaviors. In this study we add patient histories

from four more states to the study sample in Chapter III, and integrate advanced statisti-

cal modelling, estimation, and cluster analysis procedures in order to address some of the

limitations of the study in Chapter III. In particular, we address the effects of censoring,

the multivariate counting process nature of the patient utilization histories, and incorporate

basic demographic, geographic, and health characteristics of the patients in the cluster-

ing algorithm. Survival analysis provides statistical methods that allow for the inclusion

of possibly censored interarrival times between events and the study of the effects of de-

mographic, geographic, and health-related covariates in the model. The outcomes of this

study are a population-level mixture model that identifies patient cluster membership, while

controlling for the effects of “fixed” variables such as age, race, and health status, for in-

stance, and estimates the effects of access measures, urbanicity, and state-based programs

on healthcare utilization.

3



CHAPTER II

THEORETICAL LIMITS OF COMPONENT IDENTIFICATION IN

A SEPARABLE NONLINEAR LEAST SQUARES PROBLEM

In this chapter we provide theoretical insights into component identification in a separable

nonlinear least squares problem in which the model is a linear combination of nonlinear

functions (called components in this chapter). Within this research, we assume that the

number of components is unknown. The objective of this chapter is to understand the

limits of component discovery under the assumed model. We focus on two aspects. One is

sensitivity analysis referring to the ability of separating regression components from noise.

The second is resolution analysis referring to the ability of de-mixing components that have

similar location parameters.We use a wavelet transformation that allows the researcher to

zoom in at different levels of detail in the observed data. We further apply these theoretical

insights to provide a road map on how to detect components in more realistic settings such

as a two-dimensional Nuclear Magnetic Resonance (NMR) experiment for protein structure

determination.

2.1 Introduction

The separable nonlinear least squares problem encompasses many variations from its gen-

eral form of a linear combination of nonlinear functions. In this chapter, we cast our

methodology within this framework but focus on a particular form of this regression model.

Specifically, the regression is a linear combination of location-scale, highly localized, non-

linear components, where the shape of the components is a unimodal symmetric function

specified up to the unknown location and scale parameters. With two components, the

4



model becomes

Yi = A1s (xi;ω1, τ1) + A2s (xi;ω2, τ2) + σεi, i = 1, . . . ,M

where A1 and A2 are the separable parameters, ω1 and ω2 are the location parameters, τ1

and τ2 are the scale coefficients, and s(x) is the shape function. The separable parameter

of each component plays the role of an amplitude. The location parameter represents the

center or the mode of the component and the scale parameter is a measure of the width of the

component. The values xi are assumed to be observed over a grid within a d-dimensional

space. The error terms εi’s are assumed independent and identically distributed. This model

can be extended to L ≥ 2 components all sharing the same shape function.

In most of the existing research on separable nonlinear regression, the number of com-

ponents is assumed known, an assumption that does not hold in many applications. More-

over, regardless of the estimation algorithm, variable projection or alternating two-step

approach, the estimation of such models relies on iterative algorithms requiring the input

of good initial estimates (38). To obtain initial estimates, the number of components needs

to be estimated accurately. The presence of a large number of false positives or falsely dis-

covered components could lead to an ill-conditioned estimation problem whereas a large

number of false negatives or undiscovered components could result in a incomplete under-

standing of the underlying science behind the data. False positive components may arise

due to high variance noise or other artifacts in the data. False negative components could

arise when the number of components is large, and the distance between the location pa-

rameters of some components (θ = ‖ω1 − ω2‖) is small such that some components will

mix partially or totally.

In this chapter, we provide theoretical and methodological insights in obtaining an es-

timate of the number of components along with initial estimates of the location parameters

without the need of estimating the width or separable parameters. Particularly, we focus

on two aspects, separating components from the noisy background and identifying com-

ponents that are mixed. Separating components from the noisy background is a widely

5



researched problem; methodological approaches and heuristic algorithms have been in-

troduced in numerous fields particularly in biomedical sciences, e.g., mass spectroscopy,

Nuclear Magnetic Resonance biomolecular structure determination and tumor-spread de-

scription using CT scan (40; 54; 101; 122), although often within the framework of detect-

ing features from a noisy image. The problem of identifying mixed components has been

recently introduced within the framework of a hypothesis testing problem using a penalized

regression test statistic (102).

The objective of this study is not to yet introduce other such methods, but to provide an

understanding of the theoretical limits to what can be detectable at given levels of sensitivity

(measured as the signal-to-noise ratio) and resolution (often measured by the separation

between components). Two questions that we address are:

• Sensitivity Limit: What is the amplitude level at which we can still detect a signal

component given the noise level specified by σ?

Figure 1 shows two examples of components, with large (left plot) and small (right plot)

amplitudes. The high amplitude component (often called peak) stands out clearly whereas

the low amplitude component can be confounded with a spike in the noise. A common

approach to identify low amplitude components or peaks is to compare its highest value to

some threshold that is a function of the error variance. However, this approach has limited

power as it only uses information about one observed value of the component disregarding

neighboring values. Moreover, a low amplitude component may simply be too similar to

the noise behavior that may not be distinguishable from noise spikes. However, if we could

transform the data in such a way we can differentiate between the behavior of noise and the

behavior of components, then we may be able to detect low amplitude components within

some measurable limits of “separation” of signal from the noise.

• Resolution Limit: What is the smallest distance between the location of two compo-

nents given the widths of the components specified by τ1 and τ2?

Figure 2 shows two examples of mixed components. These two examples are different
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Figure 1: Gaussian-shaped components with different amplitudes.

in that they show partial mixing, with two components mapping into two modes (left plot),

and total mixing, with two components forming one mode (right plot). The emphasis

of this study is on correctly discovering the location of the components in the wavelet

domain, as opposed to the modes in the signal domain. Once the distance between the

location of the components is smaller than the sum of their widths, the two components

will merge to become unimodal as opposed to bimodal as in the left plot. Although the

two components in the right plot are overlapped into one mode or local maximum, can we

apply a data transformation that allows separation of the two components into two distinct

modes? When do we reach the limits of “de-mixing” components?

A natural choice for data transformation that allows both separation of signal from the

noise and identification of mixed components is the wavelet transform. The majority of

existing research in wavelet transform analysis focuses on two areas: signal denoising and

feature detection (29; 30; 66; 116). In this chapter, our primary objective is in feature

detection. Wavelet transform analysis has been applied to detection of various features,

including edges, corners, or blobs, depending on the context of the data (66; 117). The

components in the assumed regression model are smooth, referred to as blobs in (60).

However, in our application of interest the widths of the components are assumed to be

sufficiently small, such that hundreds of components can coexist within the unit square.
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Figure 2: Two Gaussian-shaped components with equal scale parameter τ = .01 and dis-
tance θ = 0.025 (left) and θ = 0.02 (right).

We make use of two important properties of wavelet analysis. One is the ability to

‘zoom in’ at different levels of detail in the data using a multiresolution decomposition.

This property is particularly useful in separating components from the noise because the

noise behaves differently than the smooth, yet localized components at different ‘zooming’

resolutions. The second important property is that the wavelet coefficients are a measure

of the similarity of the wavelet and the signal to be analyzed. Thus, the choice of the

wavelet basis is critical in modulating the signal through the wavelet transform such that

detailed information (e.g. modality) will be clearly amplified and detailed features detected.

This property is particularly useful in de-mixing components that have similar location

parameters.

In Figure 3, we compare the application of one commonly used wavelet basis in signal

denoising, the discrete wavelet transform (DWT) with the Daubechies basis (4 vanishing

moments in this example), and our choice of wavelet basis, the continuous wavelet trans-

form (CWT) with the Mexican Hat basis. The orthogonal property of the DWT yields the

sparsest representation possible in the wavelet domain, which is desirable when threshold-

ing the wavelet coefficients for achieving locally adaptive denoising, but is not particularly

useful when trying to determine the location of multiple components. The sparse property
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Figure 3: Two Gaussian-shaped components with parameters τ = .01 and θ = .02. The
signal is plotted on top. The three finest scales of the CWT with Mexican Hat wavelet basis
is on the bottom of the display on the left and the DWT with the Daubechies wavelet basis
(4 vanishing moments) is on the bottom of the display on the right.

of the Daubechies DWT coefficients does not effectively locate the center of the compo-

nents since the sampling density of the wavelet coefficients is cut in half at each scale. On

the other hand, although the Mexican Hat CWT coefficients are not sparse, this particular

transform allows locating and separating components as we will illustrate further in this

chapter.

We derive both sensitivity and resolution limits for detecting components in the as-

sumed model using the Mexican Hat CWT. We further apply these theoretical insights to

provide a road map on how to detect features in more realistic settings, particularly, when

the number of components is large and when the signal-to-noise ratio is low enough such

that some components are not clearly distinguishable from the noisy background. We will

therefore develop an algorithm that takes information from all wavelet transform scales to

perform both feature detection and separation.

We will investigate our theoretical and methodological insights in a real case application

after building a case for our methods within a simulation study. More specifically, we are

interested in detecting “peaks” in a two-dimensional nuclear magnetic resonance (NMR)

data that was generated to aid in the process of biomolecule structure identification. The
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data generated from NMR experiments are generally modeled using a separable nonlinear

model as described in this introduction, where the shape function is an amplitude-F scaled

Cauchy probability density function called Lorentzian (48; 101).

This chapter is organized as follows. Section 2.2 introduces the framework for fea-

ture detection using the Mexican Hat Wavelet (MHW) transform. Section 2.3 provides

theoretical insights for the sensitivity and resolution limits of feature detection under the

assumption that the shape function of the components is Gaussian while discussing the ex-

tension of these results for other symmetric unimodal shape functions. Section 2.4 provides

an algorithm for feature detection while using these theoretical results along with a simu-

lation study for evaluating the performance of the algorithm. Our application is presented

in Section 2.5. Some technical details and additional simulation studies are deferred to the

Appendices.

2.2 Mexican Hat Wavelet Analysis for Feature Detection

In this section we discuss the choice of the MHW for the CWT drawing inspiration from

existing research. Upon arriving at our choice for the MHW, we begin with a basic in-

troduction of the wavelet transform and describe the behavior of the coefficients from an

intuitive standpoint.

2.2.1 Background

In this chapter we draw inspiration from many research sources on feature detection includ-

ing image processing, discrete wavelet theory and continuous wavelet theory for both sharp

and smooth signal features. In image processing, features can take many forms including

edges, corners, or blobs, depending on the context of the problem. The type of changes

that we are interested in here are blob-type features. In (60) the author uses a scale-space

representation to extract such features and introduces the convolution of the image with the

2nd derivative of the Gaussian function to determine amplitude and size of smooth image

structures. This convolution idea motivates our selection for the wavelet basis as we expand

10



in this section.

Mallat and Hwang formalized many concepts such as Lipschitz exponents and the ‘cone

of influence’ as well as their relation to the wavelet transform (66). We use many of these

ideas, however, because the primary application of their work was for edge detection we

must approach the problem differently. Specifically, in (66), the authors relied on a fi-

nite Lipschitz exponent, or singular signal, whereas the Lipschitz exponent of a Gaussian-

shaped component is unbounded (see Appendix A.1).

Finally, Nenadic and Burdick proposed the use of the CWT with biorthogonal wavelets

for ‘spike’ detection using a wavelet that approximately matches the signal shape while

restricting signal analysis to a set of scales and translations to identify the location of spikes

based on prior knowledge of the data (81). They state that the wavelet coefficients are, in

fact, a measure of similarity between the wavelet and the signal. Lindeberg states that the

values of the convolution will be maximized when the scale of the wavelet approximately

matches the width of the signal (62), see Figure 4 for a demonstration of this property.

Using these ideas on scale selection, we consider appropriate scales in order to capture

smooth components of varying widths.

With these facts we choose the MHW because of its analytic and statistical properties

and its similarity in shape to the Gaussian function as shown in Figure 5.

2.2.2 Preliminary Definitions

A wavelet, ψ, is a function that satisfies∫ ∞
0

|ψ̂(ω)|2

ω
dω =

∫ 0

−∞

|ψ̂(ω)|2

ω
dω <∞,

where ψ̂ denotes the Fourier transform of the wavelet function (42). If this condition is

satisfied we have that ∫ ∞
−∞

ψ(u)du = 0.

ψ is typically referred to as the mother wavelet. The wavelet function is well localized

in both the time and frequency domains, i.e. ψ ∈ L2(R) and integrates to 0. It is not
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Figure 4: The MHW transformation of three components of different widths. The wavelet
coefficients are normalized at each scale so that the maximum value of the coefficients is 1.
Notice the change in relative maximum of coefficients from the widest component to the
narrowest as the scales decrease.
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sufficient for the wavelet simply to integrate to zero, it must also be bounded in L2 space,

implying that it has finite ‘energy’. It is also a desirable property for the wavelet to have

small support, thus allowing for analysis of a small portion of the signal at a time.

In order to determine information at various scales of the signal by ‘zooming in’ on the

signal, we dilate the wavelet at scale s by:

ψs(x) =
1

s
ψ
(x
s

)
.

A translation of the wavelet is ψs,t(x) = ψs(x − t). From the scaling and translation

formulas we are able to determine a family of wavelet functions, ψs,t(x), for s, t ∈ R+.

The wavelet transform of a one dimensional signal, f , at scale s is the convolution of

the signal with the dilated wavelet function:

Wf(s, x) = f ? ψs(x) =

∫ ∞
−∞

f(u)ψs(x− u)du.

Since we can only observe the data in a discrete sample we are limited to a discrete set of

translations. Let t ∈ T , where T = {0, 1, · · · , N − 1}, where N = 2K is the number of

sampling points. Then the set of translations is limited to ψs(x− t). The wavelet transform

Wf(s, x) is the convolution of the signal and the wavelet in discrete time, therefore,

Wf(s, xi) = f ? ψs(xi) =
∑
t∈T

< f [t], ψs(xi − t) > .

When deriving the theoretical properties of the MHW, we assume that we have a continuous

signal. However, the results apply for a discrete sampling also.

The MHW is a member of the Hermitian family of continuous wavelets:

ψn(x) = cnHn(x)φ(x),

where cn is a normalization constant, Hn(x) is the nth order Hermite polynomial, and φ(x)

is the standard normal density. The wavelet is normalized so that ||ψ||2 = 1. The MHW is

defined as follows:

ψMHW (x)
def
= ψ(x) = −c2

d2

dx2
φ(x) = c2(1− x2)φ(x).
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Despite the fact that the wavelet has infinite support, the values of the MHW function decay

to 0 exponentially. As stated before, this is an important characteristic of wavelet transform

because it allows analysis of small sections of the signal at a time.

2.2.3 Preliminary Insights on the Wavelet Coefficients

For symmetrically-shaped components as assumed in our model, it is intuitive to only ana-

lyze the finest scales. This is due to the behavior of the components or blobs across multiple

resolution levels. Because the Lipschitz exponent is unbounded for Gaussian-shaped com-

ponents, we can expect that the wavelet coefficients should have maxima present across

all scales, while the coefficients corresponding to noise will be smoothed out at coarser

scales and will have multiple sporadic spikes appearing at fine scales. Furthermore, the

convolution of the MHW with a Gaussian component will have large amplitude positive

coefficients at the component center and will be followed with high amplitude negative

valleys.

2.3 Theoretical Results
2.3.1 Resolution Analysis

One-Dimensional Signal. By assuming that the data follow a model in which the regres-

sion function is a linear combination of Gaussian components, we are able to derive, up

to scale, the wavelet coefficients in a noise-free environment. In doing so, we provide a

theoretical basis for the resolution limits later in this section. We begin with the simplest

setting, that of a continuous one-dimensional, noise free model,

f(x) =
L∑
l=1

Als (x;ωl, τl) =
L∑
l=1

Al exp

{
−1

2

(
x− ωl
τl

)2
}
.

By assuming the components to be Gaussian-shaped, we derive the closed-form expression

of the wavelet coefficients using the proof of (13) on the convolution of Gaussian functions
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and properties of convolutions. The wavelet coefficients are proportional to (up to scale)

Wf(s, x) ∝ −
L∑
l=1

Alτl√
τ 2l + s−2

H2

(
x− ωl√
τ 2l + s−2

)
exp

−1

2

(
x− ωl√
τ 2l + s−2

)2
 .

Furthermore, using the explicit form of the wavelet coefficients, we are able to analytically

derive the theoretical limits for component separation. As shown in Figure 3, the MHW

transform can distinguish mixed components in the wavelet domain even when they are

unimodal in the signal domain. However, there is a limit to this de-mixing; the theoretical

limit for the distance between the mixed components depends on the widths of the com-

ponents and it is different across scales as provided in the next theorem. The proof relies

heavily on the roots of the Hermitian polynomials and it is provided in the Appendix A.1.

Theorem 2.3.1 Suppose we have two Gaussian components with width parameters τ1 and

τ2, satisfying τ1 ≤ τ2 without loss of generality, and amplitude parameters, A1 and A2.

Then for the components to be de-mixed at scale s the distance between them must satisfy

θ > min
{√

3(τ 21 + s−2), .742
√
τ 21 + s−2 + .742

√
τ 22 + s−2

}
.

While this theorem provides a necessary condition for de-mixing, it is not a sufficient con-

dition except in the following corollary.

Corollary 2.3.2 Suppose we have two Gaussian components with width parameters τ1 ≤

τ2 and equal amplitude parameters A1 = A2. Then the components can be de-mixed at

scale s if the distance between them satisfies

θ > min
{√

3(τ 21 + s−2), .742
√
τ 21 + s−2 + .742

√
τ 22 + s−2

}
.

Multivariate Extension. We can extend the previous results to a d-dimensional signal.

To simplify the derivation of the coefficients, we illustrate their close-form expression for

d = 2 while the limit bound for de-mixing are for any d ≥ 2. We first use the following

definitions of Mallat (67) for 2-dimensional wavelets:

ψ1(x, y) =
d2

dx2
φ(x, y), ψ2(x, y) =

d2

dy2
φ(x, y), and ψ3(x, y) =

d4

dx2dy2
φ(x, y).
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That is, we can take the derivative of the Gaussian function in either the vertical, horizontal,

or diagonal orientation resulting in three wavelet functions. In the general case of d ≥ 2

dimensions, there are 2d − 1 possible wavelet orientations. Then the dilated wavelet in any

orientation becomes

ψms (x, y) =

(
1

s

)2

ψm
(x
s
,
y

s

)
, m = 1, . . . , 2d − 1.

The wavelet function is now a function of the scale variable, s, and the two coordinate

values x and y, that is,

Wmf(s, x, y) = f ? ψms (x, y).

Then following similar arguments from the 1-dimensional wavelet transform, we have that

the wavelet coefficients for the horizontal orientation are, up to scale,

−
L∑
l=1

Alτl√
τ 2l,1 + s−2

H2

 x− ωl,1√
τ 2l,1 + s−2

×exp

−1

2

 x− ωl,1√
τ 2l,1 + s−2

2

+

 y − ωl,2√
τ 2l,2 + s−2

2 .

Similar formulations for the vertical and diagonal orientations of the wavelet transform can

be easily derived. As illustrated in Figure 6, by combining knowledge from the vertical

and horizontal orientations our algorithm can discern the existence of four true Gaussian

components. In the diagonal orientation, however, our algorithm, which tracks maxima

across wavelet scales, would select eight components, resulting in the false discovery of

four components. Therefore, to decrease the false discovery rate, we exclude information

from the diagonal orientation.

Using the closed-form expressions for the wavelet coefficients we can derive the reso-

lution limits for a d-dimensional signal.

Theorem 2.3.3 A necessary condition for de-mixing two d-dimensional Gaussian compo-

nents at scale s is that there must exist some d′ ∈ {1, . . . , d} such that

θd′ = |ω1,d′ − ω2,d′ | > min
{√

3(τ 2d′,1 + s−2), .742
√
τ 2d′,1 + s−2 + .742

√
τ 2d′,2 + s−2

}
.

Similar to the 1-dimensional case we have the following corollary:
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Figure 6: Wavelet transform of four Gaussian components in close proximity, comparison
across orientations.
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Corollary 2.3.4 If A1 = A2, then a sufficient condition for de-mixing two d-dimensional

Gaussian components is that there must exist some d′ ∈ {1, . . . , d}, such that

θd′ > min
{√

3(τ 2d′,1 + s−2), .742
√
τ 2d′,1 + s−2 + .742

√
τ 2d′,2 + s−2

}
.

2.3.2 Pitfalls of the Resolution Limits

As is often the case when moving from theoretical derivations to working with real data,

situations arise where the results may not fully line up with theoretical derivations. That

is, not all components within the theoretical limits of de-mixing are discoverable in the

wavelet domain. When are the resolution limits guaranteed to hold? If they do not, why?

The answers to these questions are twofold: interference between clusters of components

and the discrete time sampling density.

Interference Between Component Clusters. The resolution limits previously derived

apply strictly to two components in isolation from other components. To illustrate, consider

Figure 7. Here we plot four components that are pair-wise separable according to the

resolution limits previously described. However, we would only discover two instead of

four components in the wavelet domain.

Since the resolution limits rely on the derivative of the MHW function, we can deter-

mine when another cluster of components is in close enough proximity to interfere with the

resolution results. Following similar arguments from the previous section using the roots

of the Hermitian polynomials we have the following lemma providing only a necessary

condition.

Lemma 2.3.5 Suppose we have a set of 3 components s(x;ω1, τ1), s(x;ω2, τ2), and s(x;ω3, τ3),

with inter-component distances θ1 = |ω1 − ω2| and θ2 = |ω2 − ω3|, where θ1 satisfies the

resolution limits of Theorem 2.3.1 and θ2 > θ1, without loss of generality. Then the res-

olution limits from Theorem 2.3.1 hold for the pair of components 1 and 2 if θ2 satisfies

θ2 > 2.334
√
τ 22 + s−2 + 2.334

√
τ 23 + s−2.
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Figure 7: Four Gaussian components in close proximity. The individual components are
plotted with a dashed line, as well as their sum and wavelet transform.

Lemma 2.3.6 Suppose we have a set of 3 d-dimensional components s(x;ω1, τ1), s(x;ω2, τ2),

and s(x;ω3, τ3), with inter-component distances θ1 = |ω1−ω2| and θ2 = |ω2−ω3|, where θ1

satisfies the resolution limits of Theorem 2.3.1 and θ2 > θ1, without loss of generality. Then

the resolution limits from Theorem 2.3.3 hold for components 1 and 2 if ∀ d′ ∈ {1, . . . , d},

θ2,d′ > 2.334
√
τ 22,d′ + s−2 + 2.334

√
τ 23,d′ + s−2.

Discrete Sampling Limitations. As stated previously, all the results have been derived

under the assumption of a continuous signal. The results for a discrete signal still apply

in the sense that the wavelet coefficients will follow the closed-form expressions derived

in the previous section but at discrete sampled coordinates. However, the resolution limits

may not hold because the sampling density may not be fine enough. Therefore, we offer

the following lemma to address the issue of discrete sampling.

Lemma 2.3.7 The results from Theorem 1 and Corollary 1 hold for a discrete sample if

the distance and sampling density satisfy

θ > min
{√

3(τ 21 + 2−2K), .742
√
τ 21 + 2−2K + .742

√
τ 22 + 2−2K

}
,

where 2K is the sampling density.
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A minimum scale, s = 2K , is recommended otherwise the wavelet will be too fine

and only detect noise spikes due to the wavelet ‘fitting’ between sample points. Although

not particularly difficult to derive in most cases, we do not add Lemmas for the multi-

variate sampling density results because the necessary and sufficient conditions become

overwhelmingly intricate due to the large number of combinations of widths, orientations

and sampling densities to consider.

Proofs of the results in this section are available in Appendix A.1.

Effect of Noise on the Resolution Limits. When σ > 0, the wavelet transform of a

white noise process is itself white noise while the additivity of the wavelet transform is

preserved,

Wf(s, x) =
L∑
l=1

Wfl(s, x) +WN(0, σW ).

Furthermore, because the Gaussian function belongs to a family of smoothing functions

and the MHW is similarly shaped, it is reasonable to assume that the wavelet function will

smooth out the noise. Finally, by beginning our search for components at coarser scales

and working to finer scales, the number of noise peaks in the signal domain will be reduced

as described in the section on sensitivity results. Therefore, in all but the extreme cases the

resolution limits will hold.

2.3.3 Sensitivity Analysis

Mallat and Hwang show that when using a wavelet with the appropriate number of vanish-

ing moments, the wavelet coefficients of a singular function will decay exponentially at a

rate α:

|Wf(s, x)| ≤ Csα,

where C is a constant and α is the Lipschitz exponent (66). Since the Gaussian function

does not have a bounded Lipschitz exponent (see Appendix A.1), we expect a different

behavior when compared with the surrounding noise coefficients. According to the results

of Lindeberg (60), the wavelet coefficients will increase until s−1 ≈ τ in proportion to the
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coefficients related to their noise counterparts. We demonstrate this property in a simple

example in Figure 4. Furthermore, the Lipschitz exponent of a white noise process is

α = −1/2 − ε, for ε > 0. This implies that the number of maxima at scale s = 2k + 1

will be approximately double the number of maxima at s = 2k (66). Therefore, to detect

components we begin at coarser scales to avoid false positives and progress to finer scales

to ensure greater accuracy in locating components. However, how coarse of a scale should

we consider? How do we ensure that we are tracking the maxima of signal components

and not noise?

When performing the CWT we are not limited by the choice of scale as in the case

of the DWT. In theory, any choice of scale, s, is possible, but in practice we are limited

by the sampling density and the type of feature we are trying to detect. Assume that we

have N = 2K sampling points. Then an upper limit for the scale is s ≤ 2K , otherwise

the wavelet function may fit between sample points. (In keeping with the DWT, we choose

to limit the selection of scale to dyadic levels with intermediate half-levels on the log2

scale.) In selecting the appropriate scale, we refer to two results. Lindeberg has shown

that the wavelet coefficients, Wf(s, x), will be maximized when s−1 = τ , (60), and Ne-

nadic and Burdick propose choosing the set of scales to be uniformly distributed within the

known range of the signal width (81). Therefore, we consider the following set of scales:{
sk = 2K+k, k ∈ {−2,−1.5, . . . , 0}

}
, where 2K is the sampling density, while limiting

the scales in the NMR application using prior knowledge of a lower bound of the number

of components that need to be discovered. We also employ ideas from (61) by tracking

the maxima of the wavelet transform across scales. This mitigates the doubling effect of

the noise spikes and takes advantage of the multi-scale properties of smooth ‘blob’-like

components.

21



2.4 Component Identification Algorithm

In this section we describe an algorithm for component identification informed by the pre-

vious theoretical insights. To begin, consider the example in the left plots of Figure 3. Here

the components are completely mixed and are not separable at the coarser scales of the

wavelet transform. Transitioning from coarse to fine scales, the separation of the compo-

nents becomes evident. In order to determine an approximate location for the components

we trace the behavior of predominant features across scales in the wavelet transform. We

use dyadic scaling with an intermediate half-scale at each level. The coarsest scale consid-

ered is 2K−2 and the finest is 2K , where 2K is the sampling density.

For simplicity, we present the algorithm for 2-dimensional signals but the same algo-

rithm can be extended for general dimensionality d. The algorithm consists of three steps:

1. Initial thresholding at each individual scale and orientation.

2. Tracking maxima across scales beginning with the coarsest scale.

3. Combining candidate components across orientations.

We begin with a simple thresholding of the wavelet coefficients to reduce the computa-

tional effort in tracking the behavior of predominant features or components across scales.

The wavelet coefficients take positive values in the neighborhood of the mode of a compo-

nent and they are of larger scale than the coefficients corresponding to noise. Thus we use

a low enough positive threshold such that we do not miss components with low amplitude

but large enough such that we carve out smaller regions to reduce the computation effort.

For each scale sk and orientationm ∈ {1, 2} consider the wavelet coefficientsWmf(sk, xi, yj),

referred to simply as βi,j,k,m. If βi,j,k,m > 2.5σsk,m, then we consider the area neighboring

the coefficient to further search for features corresponding to components in the assumed

model. The parameter σ2
sk,m

is the variance of the errors at the sk scale and orientation m.

We estimate σsk,m at each scale and orientation by the median absolute difference (MAD)
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estimator,

σ̂sk,m =
med{|βi,j,k,m − βk,m|}

.6745
,

where βk,m is the average of the wavelet coefficients at scale sk and orientation m. This

estimator is robust to outliers (29; 47). Outliers arise due to large amplitude coefficients at

the mode and surrounding the mode of a component. The choice for the starting thresh-

old 2.5σsk,m is conservative in selecting candidate components at the scales we consider.

At the sampling densities we consider, with over 250,000 sample points, we are not con-

cerned with eliminating a large portion of the wavelet coefficients (99.38%, in the case of

normally distributed errors). In our simulation studies in examples with 500 components,

there are routinely about 1500 candidate components above the threshold at the finest scale.

However, by combining knowledge across scales, we greatly reduce the number of false

positives.

After performing this initial thresholding step, we start in a 6×6 neighborhood around

each candidate component at the coarsest scale. It is common to begin with the coarsest

scale in order to reduce the number of false positives (81). This mitigates the doubling ef-

fect of the noise spikes and takes advantage of the multi-scale properties of smooth ‘blob’-

like components (60). For each orientation, we keep only the candidate regions that present

a candidate component across the 5 finest scales and half-scales.

In order to combine information across orientations we first point out that the transform

in the horizontal orientation may capture features that the vertical orientation may not, and

vice versa. Therefore we take the union of identified components across the vertical and

horizontal orientations only.

We highlight that for estimating the number of components, our algorithm does not

require information on the width or amplitude of the components. By considering the three

finest dyadic scales we capture components with a large variety of widths as demonstrated

in the simulation trials. If the conditions of the resolution limits are met then the wavelet

transform will separate mixed components without the additional computational expense
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Figure 8: Plots of the mean and 2σ confidence intervals of the number of true and false
positives at SNR levels 3-25.

of estimating the component widths or transforming back into the signal domain.

2.4.1 Simulation Studies

In this section we perform three simulation studies in which we test the sensitivity of the

algorithm under varying signal-to-noise ratio (SNR) levels, we test the resolution limits

at low noise levels while varying the width parameters of the components, and finally we

combine these two settings. Throughout the simulation studies we set the sampling density

along each axis at 29 in order to mimic the NMR data in our application.

2.4.1.1 Sensitivity Simulation

We simulate from the assumed model with L = 500 components within the unit square and

29 sampling density. We set τ = .0025 and allow the SNR levels to vary from 3 to 25. We

assume that τ is unknown in the simulation trial but do not allow mixing in this case, so we

can solely examine the sensitivity limits. That is, all components are pairwise separable.

We plot in Figure 8 the mean and 95% confidence intervals of the power and coverage of

the algorithm, measured by the number of true and false positives detected. There is a very

apparent sharp increase in sensitivity once a SNR level of 4 is reached with the mean being

460 (about 92%) and tending towards 500 once the SNR reaches 5.
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Figure 9: Plots of the results of 100 simulations with L = 500 Gaussian components. In the
left plot, we fixed the SNR to 25, while in the right we allow the SNR vary by component
uniformly between 4 and 25.

2.4.1.2 Resolution Simulation

We simulate from the assumed model with L = 500 components within the unit square

and 29 sampling density. We set the SNR level to 25, and we allow τ to vary in the set

{.0015, .0025, .005, .006, .0075} with 100 components for each width value. We also allow

for mixing to occur and plot the number of true and false positives as well as the number of

‘undiscoverable’ components. We assume that the widths τ are unknown and reasonably

small, so that 500 components will fit within the unit square.

We plot the simulation results in Figure 9. Despite the variation in τ and the presence of

complete mixing, the simulation results show a 10% increase in the number of components

identifiable from the signal domain to the wavelet domain, with means of 384 and 424

components respectively.

2.4.1.3 Sensitivity and Resolution Simulation

In this setting we combine the simulation parameters of the previous two settings, where

the SNR levels vary uniformly by component between 4 and 25 and the widths vary in the

set {.0015, .0025, .005, .006, .0075} with 100 components for each width. We also allow

for mixing to occur. This is the ‘worst-case scenario’, where both τ and the amplitude are
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allowed to vary and remain unknown. Even in this more extreme case, we have a 12%

increase in the mean number of discovered components with means of 409 and 367 in the

wavelet and signal domains, respectively.

2.5 Case Study: Two-dimensional NMR Data

We consider the analysis of a 2-dimensional Nuclear Magnetic Resonance (NMR) data gen-

erated for a doubly-labelled sample of a 130-residue RNA binding protein, rho130, using

Heteronuclear Single Quantum Coherence (HSQC). The NMR signals were processed with

FELIX (Felix NMR, Inc) using apodization and linear prediction methods that are typical

for these types of experiments. After Fourier Transformation of the processed NMR sig-

nals, the 2D NMR data generated from this experiment follow a separable nonlinear model

where the model components are approximately Lorentzian-shaped (100). (Appendix A.2

discusses the extension of the properties of the MHW transform apply to the Lorentzian

shape also.) The data are observed over a two-dimensional 512 × 256 grid of points. The

primary sampling density of 29 = 512 was chosen by the experimenters and is adequate

to understand the protein of interest, while the sampling density along the secondary axis

is limited by the number of frequency combinations considered. These data have been

previously analyzed by Serban (101).

In the NMR application, it is important to identify most components, even when they

are totally mixed with other components, as they provide specific information about the

structure of the protein. In certain cases, the lack of a small number of essential components

can lead to a significant deviation in the predicted structure (44). Importantly, because the

identification of the regression components is one of the first steps in the overall approach

for structure determination using NMR, inaccuracy at this step will be perpetuated at further

steps (43).

Commonly, the number of components for such data is large. For the NMR data ana-

lyzed in this chapter and displayed in Figure 10, the biomolecule (rho130) is rather small
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Figure 10: Perspective plot of the NMR Fourier Transformed data.

with about 130 detectable components. The majority of components are located closely

in the center of the grid space and vary greatly in amplitude. The SNR level appears to

be quite high although it is possible that some components to be buried among the larger

amplitude ones.

Because we have prior knowledge of the components, specifically, that they are ex-

tremely thin, we only obtain the wavelet coefficients for the Mexican Hat CWT at the 3

finest scales and half-scales using the algorithm in Section 2.4. Because the NMR compo-

nents will be clustered around the center of the grid space, we can select the threshold level

at individual scales and orientations in order to limit false positives around the border of

the signal.

In order to assess the impact of the threshold level on the number of identified compo-

nents, we consider multiple threshold levels. We perform the thresholding at 15 different

levels uniformly distributed between 3 and 10 standard deviations and plot the number of

components against the threshold level in Figure 11. Due to prior knowledge that there

will exist approximately 130 detectable components, we consider threshold levels of 5σ

and 10σ initially. An experimenter could manipulate the threshold levels depending on the
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Figure 11: The number of components identified at various threshold levels in units of σ.
Because we know that the number of components is approximately 130 from biological
knowledge we consider higher threshold values in step (1) of our algorithm.

Table 1: Breakdown of Components Identified by Method

Method Component Numbers
Discoverable 130
Both Methods 128 (98.5%)
MICE Only 4

MHW Transform Only 2
Possible Mixtures 7

Noise Peaks (5σ Thr. Only) 7

purpose of the study: if a false negative is more costly than a false positive, then a lower

threshold may be considered, for example.

For the purposes of our study, we compare the set of identified components with those

identified by Serban (101), which discovered 132 components plus additional mixtures.

Based on our algorithm, we identify between 135 to 147 as we move from threshold levels

with 10 to 5 standard deviations. Table 1 provides the results based on this comparison at a

threshold level of 5σ.

We begin by estimating the number of theoretically separable components satisfying
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the requirements of θ from Theorem 2.3.3. Setting τ in the limit to 0, thus greatly under-

estimating the lower limits of discovery, we have two pairs of components fall under the

lower limit being unseparable in the wavelet transform. Setting τ equal to the width of the

sampling density, 2−K , we have six pairs under the lower limit.

The two sets of components provided by the algorithm in this chapter and by the com-

parison approach have 128 components in common. Following our theoretical results, all

of the identified components are within the resolution and sensitivity limits and thus “de-

tectable”. There are four cases not detected by the MHW transform algorithm, two of

which are below the resolution limits and thus are undetectable following our theoretical

insights. The two additional cases detected by the MHW algorithm are false positives.

Most importantly, the MHW transform has seven possible cases where the algorithm de-

mixes a pair of components following from our resolution limits. The question remains

then, whether the vertical and horizontal orientations are identifying the same component

in a slightly different location, or if it is a true mixture. In four of these cases it seems that

the algorithm is detecting a mixture because the distance between the components is more

than two sampling points.

2.6 Discussion

The primary emphasis of this study is on understanding when components in the assumed

separable nonlinear regression model are ‘detectable’ while providing a road map on how

to use these results to identify components. We distinguish between sensitivity and reso-

lution analysis, the former separating the components from noise (noise-component inter-

ference) and the latter separating components that have similar location parameters (inter-

component interference). We propose using a wavelet transformation using the Mexican

Hat wavelet function to perform the two analyses jointly.

Our theoretical results are rooted in the existing research from the fields of image pro-

cessing, discrete and continuous wavelet theory. Drawing from the ideas of (59; 60; 62), we
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are able to derive closed-form expressions for wavelet coefficients and determine behav-

ior of component features across wavelet scales. Additionally, we maintain a fundamental

principal of matching the shape of the wavelet function with that of the features that are

to be detected; a high similarity between the two results in large amplitude wavelet coeffi-

cients (81). Finally, we consider discrete wavelet transform methods to sketch an algorithm

for component identification that is grounded in our theoretical results.

The validity and applicability of our theoretical resolution and sensitivity limits have

been demonstrated in a series of simulation studies presented in Section 2.4.1. In these

simulations, we start with simple single-component settings in which we assess the cover-

age and power of our algorithm then move to more realistic multiple-component settings

in which a model with 500 components is generated. We find that in simpler settings the

rate of discovery is higher than 99.4% in the sensitivity analysis and in average of 95.8%

in the resolution analysis across varying signal-to-noise (SNR) ratios. This result confirms

the validity of our theoretical limits. In addition, the multiple-component simulations show

that the presence of other components reduce our ability to discover components when the

SNR is low. When the SNR is in the range of 15, the rate of false positives is around 1%

whereas when it decreases at 10, the rate of false positives is around 10%. This significant

increase in the false positive rate comes from two sources, the discrete sampling and the

interference between clusters of components.

One important limitation of the derivations in this chapter is that we assume the width

parameters to be known. The theoretical limits are functions of the widths. Thus, in order

to be able to evaluate the resolution and sensitivity limits, the widths need to be estimated

with some degree of accuracy. In the NMR applications, it is commonly assumed that the

components have similar widths and thus one could borrow information across well defined

and separated features to first estimate the common width parameter. In other applications,

prior information about the experiment could be used to obtain estimates for these param-

eters. Generally, in a setting without restrictions on these parameters it is theoretically
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infeasible to determine when the algorithm is separating a cluster of components or when

different orientations are simply estimating the location of the same component in a slightly

different location.
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CHAPTER III

UNCOVERING LONGITUDINAL HEALTHCARE UTILIZATION

FROM PATIENT-LEVEL MEDICAL CLAIMS DATA

In this chapter the objective is to study longitudinal claims data observed at the patient

level, with inference on the heterogeneity of healthcare utilization behaviors, and to quan-

tify cost-saving interventions in improving outcomes within large healthcare systems such

as Medicaid. The proposed approach is model-based, allowing for visualization of lon-

gitudinal utilization behaviors and manipulation of utilization profiles in order to evaluate

“what-if” scenarios using simple stochastic graphical networks. The approach is general,

providing a framework for the study of other chronic conditions wherever longitudinal

healthcare utilization data are available. Our methods are inspired by and applied to patient-

level Medicaid claims for asthma-diagnosed children diagnosed observed over a period of

five years, with a comparison of two neighboring states, Georgia and North Carolina.

3.1 Introduction

Healthcare can be thought of as a continual series of information-processing experiments:

from the initial collection of data (the patient’s history, physical exam, and diagnostic tests),

a hypothesis (diagnosis) is formed and then validated by further data collection (94). Data

in healthcare are generated at every patient’s encounter with the healthcare system, at every

implementation of medical processes, with every decision made by healthcare organiza-

tions, and with every policy implementation in the healthcare ecosystem, resulting in bil-

lions of data points every day. Every patient in any medical setting generates an invaluable

data point that can contribute to understanding what works, for who and where.

One health-related information technology that has provided substantive opportunities
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to study healthcare data across large populations and across many years is the medical

claims system. Information coded in claims data is standardized to a great extent (12),

hence making such data amenable to large scale studies. Developing methods to translate

medical claims data into meaningful data is the first crucial step in deriving knowledge use-

ful to make inferences about the healthcare system. Further development of adaptive and

scalable data mining and statistical methods provide the means for analyzing these data.

However, there are a series of challenges associated with mining data derived from med-

ical claims, including the derivation of knowledge for decision support while maintaining

computational efficiency and complying with privacy regulations.

Two common methodologies for mining healthcare data are network analysis and clus-

ter modeling. Network analysis investigates the structure of relationships between dif-

ferent entities, i.e. healthcare providers or patients, defined as nodes in the network, in

order to determine the extent of relationships between different nodes and groups of nodes

(52; 82; 103). It is often applied in healthcare analytics to produce visual summaries of

large healthcare datasets and to detect the strength of the connection between different

event types (19; 56; 104). However, most network studies only model the strength of the

connection between two event types without considering a rigorous treatment of the time

domain. Furthermore, most network analysis models seek to determine clusters of nodes

within a single network, not allowing for the heterogeneity in the population. Statistical

clustering analysis is commonly used to characterize heterogeneity or similarity among pa-

tients with respect to a set of predefined features (99; 109; 120), but it has not been applied

to model sequences of discrete healthcare events as proposed in this study. We propose a

method that combines the benefits of network analysis and model-based clustering for dis-

crete event sequences, assuming the discrete-event sequences follow a stochastic process.

Thus one contribution is a model-based data mining algorithm that has the ability to scale

to massive data while producing meaningful stochastic networks that can then be used in

decision support through visualization and evaluation of different “what-if” scenarios. The
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second contribution is the application of the modeling approach to derive inferences on

utilization behaviors from highly-sensitive, large patient-level claims data.

We pilot our methodology using Medicaid Analytic Extract (MAX) data acquired from

the Centers of Medicare and Medicaid Services (CMS) for five years (2005-2009). We con-

sider one specific chronic condition, pediatric asthma, and we compare utilization for two

states, Georgia (GA) and North Carolina (NC). While GA and NC have similar pediatric

populations, the two states deliver care under different coordinated-care Medicaid systems

(5; 51). This pilot study provides insight into the effects of such different state-based Med-

icaid systems. We chose pediatric asthma as the health condition of interest because it is

a common chronic childhood condition, with more than 9% of American children affected

by the disease (8). The MAX data consist of 1.8 and 2.4 millions claims for GA and NC,

respectively. We evaluated the computational complexity of our methodology and tested

its implementation for much larger number of claims, validating the applicability of our

methodological framework to larger states, such as California and New York, and to larger

healthcare benefits systems.

This chapter is organized as follows. Section 3.2 introduces the data science framework

with a focus on the information translational process, as applied to the MAX claims data.

Section 3.3 presents the model-based clustering procedures. We apply the methodology and

provide results and findings in Section 3.4. We conclude with overall policy implications

and discussions in Section 3.5. Difficult derivations and further data summaries beyond the

scope of this article are deferred to the Appendices.

3.2 From Information to Meaningful Data

The increasing availability of large amounts of data over the last two decades has resulted

in a new field of study, data science, dedicated to knowledge discovery from large data

sets. Data science goes beyond statistical data analysis (80; 119), particularly for massive,

complex data sets, where the priorities now shift from simply getting and analyzing data to
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making them manageable and understandable. Because the advancements in data science

have not kept pace with the size and complexity of the data available, there is a clear

emergence of methodologies to overcome what Tien & Goldschmidt-Clermont (108) call

the ‘data rich, information poor conundrum.’ Particularly in healthcare, the derivation of

knowledge is especially limited by the availability of information. When considering large

amounts of information, it is critical not only to decide the appropriate data to use but also

to determine how to use them. Knowledge discovery relies and builds entirely on this initial

translation step (80).

In this section, we expand on the derivation of the patient-level utilization sequences

from the CMS Medicaid Analytic Extract claims data, as an illustration of the translational

process of information into data. The data are made available as a set of large flat files,

with an extensive data dictionary including highly-specialized coded information. The flat

files of medical claims must be reshaped in order to analyze longitudinal utilization se-

quences, requiring extensive database structuring and use of data dictionaries together with

information from various other sources. Parsing through large, flat text files is extremely

computationally intensive, therefore we reconstruct the flat files into a relational database,

with keys and indices to accelerate the data extraction process. We use a combination of

SQL queries and scripting language to manipulate and analyze the extracted data.

Our emphasis is on a subset of patients, particularly the Medicaid-enrolled children ages

4-18 with an asthma-related primary diagnoses. We filtered the data based on the ICD-9

diagonosis codes provided with each claim (given in Appendix B.1) and their date of birth.

(The age group 0-3 is excluded from this study because of the difficulty and inaccuracy

of diagnosing asthma at this age.) Moreover, in order to capture longitudinal utilization

behaviors, we only consider those patients that are of the appropriate age to qualify for

Medicaid for at least four of the five years. Thus starting with a dataset including a total

of 316 and 457 millions of claims for Georgia and North Carolina, respectively, we derive

utilization and cost data from 1.8 and 2.4 millions of claims for this subset of patients.
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The MAX claims are structured into inpatient care (IP), long-term care (LT), other

care including outpatient services (OT), patient summary (PS) and prescription claim sum-

mary (RX) files. Included for each claim are data entries specifying the date of service,

the Medicaid Statistical Information System identification (MSIS ID) of each patient, the

International Classification of Diseases, Ninth Revision (ICD-9) codes for diagnosis or ser-

vices provided, and the type and place of services rendered. We use the IP and OT files to

determine the visits to a specific provider type, and the RX file to determine the medication

type and date of the prescription being filled. We abbreviate our derived provider types

as follows: clinic visits (CL), emergency room visits and outpatient hospitalizations (ER),

inpatient hospitalizations (HO), physician’s office visits (PO), nurse practitioner services

(NP), and filling of medication prescriptions (RX). These provider types are derived from

the place of service code and type of service code in the IP and OT files. We consider

long-term asthma controller medications, derived from the National Drug Code in the RX

files, as an event type in the sequential analysis due to its significance in treating asthma

symptoms.

In short, we are able to extract the utilization-specific data and transform claims records

into patient-level utilization sequences. We include a table in Appendix B.1 detailing the

roadmap between the entries in these files and our categorizations.

3.3 From Data to Knowledge: Uncovering Utilization Profiles

In this section we describe our methods for translating patient-level utilization sequences

into knowledge about underlying utilization behaviors via model-based data mining tech-

niques. We compare our method with other approaches and provide our contributions, then

present our modeling approach along with details on our choice of model estimation and

selection techniques as well as how we quantify cost-saving interventions.
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3.3.1 Model-based Data Mining

The goal of this study is to cluster patients using model-based methods according to their

healthcare utilization behaviors and to produce meaningful visualization of utilization pro-

files through stochastic network modelling. Patient-level utilization is observed in the form

of sequential data, referring to the observation of a discrete set of events over a period of

time. In sequential data, the events may be ordinal or categorical, and the time domain may

be discrete or continuous. Examples of such data can be found in pattern recognition of

text and speech (118), in process mining where business workflows must be inferred (10),

and in the area of genetics, where sequential clustering is a primary research interest (58).

The proposed methods for modeling sequential data are inspired by the large body of

existing research in network analysis, process mining and claims mining literature. While

network analysis is useful in determining the strength of connections between event types

and in producing meaningful visual outputs, it has not been applied to model longitudinal

sequences of events and it has not been considered jointly with clustering analysis to derive

distinct networks for heterogeneous groups of members or patients (19; 56; 104). Process

mining techniques are applied in business and healthcare settings to extract meaningful pat-

terns from data logs that document events making up the workflow (7; 10; 24; 35; 53; 57;

93). Typically, these methods only model the order of the sequence of events without con-

sideration of the interarrival time between events (35; 93). Finally, in the existing research

for modeling longitudinal claims data, stochastic models are primarily used to identify out-

lying utilization behaviors, particularly in fraud detection (63; 68; 84; 86; 106; 110; 123). In

contrast our objective is to inform policy decision making on major underlying utilization

profiles, not outlying individuals or providers, by simultaneously grouping probabilistically

similar patients and estimating the distribution parameters in order to produce useful model

summaries for visualization.

Our algorithm has the following novel features: adaptability due to the hierarchical tree-

based step, scalability due to our model assumptions, without the need for costly Markov
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chain Monte Carlo (MCMC) experiments to initialize the algorithm, and a rigorous treat-

ment of likelihood theory and model complexity. Model-based clustering approaches do

use an expectation-maximization (EM) algorithm for maximizing the posterior likelihood

of the cluster membership, but without the guarantee of producing consistent results with

each run (35; 93) that is possible with hierarchical methods. Others use hierarchical meth-

ods employing statistical measures of complexity, but may not necessarily maximize the

posterior likelihood (90; 91). Our approach combines important properties of hierarchical

methods and the EM algorithm to find a clustering outcome that maximizes the tradeoff be-

tween posterior likelihood and model complexity as measured by the Bayesian information

criterion (BIC) score. Additionally, by performing hierarchical clustering in a top-down

approach we are able to quickly identify the large underlying profiles of care. This is in

contrast to the computationally extensive bottoms-up approach of grouping together similar

patients or employing costly MCMC experiments to initialize the algorithm (95).

3.3.2 Clustering Analysis: The Model

In this section we describe how we use a Markov renewal process (MRP) framework to

model longitudinal utilization sequences. This model-based algorithm simultaneously es-

timates model parameters, groups patients into distinct profiless, and improves the BIC

score at each iteration. By using the MRP model we take advantage of properties of

stochastic processes to provide simple model estimation procedures with minimal com-

putational complexity. Particularly, Markov processes provide a manner for aggregating

large amounts of sensitive data so that it may be shared in the form of attractive visual

displays.

3.3.2.1 The MRP Model

We begin introducing our approach by presenting the model for one sequential realization

of the patient’s utilization of the healthcare system (85; 98). We extend this model to

multiple sequences corresponding to multiple patients in the next section.

38



Let ~X = (X1, . . . , XL) refer to the sequence of events and ~T = (T1, . . . , TL) to the set

of “arrival” times, times that an event occurs, where L is the length of the patient healthcare

utilization sequence. An example of a longitudinal utilization sequence could be: patient A

visits the emergency room for an asthma attack on January 1st, 2005, is given a prescription

for an inhaler which she fills one month later, and is referred to a primary care physician.

Subsequent visits to the same physician and refills of her asthma prescriptions occur at 3-

month intervals. The sequence (X1, T1), . . . , (X6, T6) is given by (ER, 0.00), (RX, 0.08),

(PO, 0.25), (PO, 0.50), (RX, 0.75), (PO, 1.00).

The MRP is the continuous-time analog of a discrete-time Markov chain (DTMC). The

primary assumption of any Markov process is that it is ‘memoryless’, i.e. future states are

only dependent on the current state of the system. Define τn = Tn − Tn−1. Then we have

that

Pr(τL+1 ≤ t,XL+1 = sj|X1, T1, . . . , XL, TL) = Pr(τL+1 ≤ t,XL+1 = sj|XL = si).

In an MRP, the concept of memoryless-ness arises twice. Not only are the events memory-

less, as in the DTMC, but so are the interarrival time distributions. While the memoryless

property may not be a reasonable assumption in the case of longitudinal healthcare utiliza-

tion our clustering algorithm profiles patients based on the complete patient history, so that

the clustering outputs are representative of underlying utilization behaviors from start to

finish.

3.3.2.2 Parameter Estimation

Consider again the sequence ~X, ~T . Let si, i ∈ {1, . . . , S} be all possible events in the

sequence (in our case CL, ER, HO, PO, NP, and RX), where S is the number of states. In

an MRP, the sequence ~X is itself a DTMC, with corresponding transition matrix P , where

Pij denotes the transition probability between si and sj , and
∑S

j=1 Pij = 1. The likelihood
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function for a single realization of a DTMC is given by

L(P | ~XL = ~sL) = Pr(X1 = si1 , . . . , XL = siL) =
L∏
l=2

Pil−1,il , (1)

with the derivation given in Appendix B.2. We estimate each Pij via maximum likelihood

estimation: for each state si and sj , P̂ij is the number of transitions from si to sj divided

by the total number of transitions out of si.

Now we define the distributions for the sequence of interarrival times, τl = Tl+1 − Tl.

We assume that for each pair i, j ∈ {1, . . . , S}, the distribution of the interarrival time

between states si and sj is given by Fij . We assume that Fij follows an exponential dis-

tribution with rate parameter λij . To estimate λij we use maximum likelihood estimation.

The likelihood function of the interarrival times is given by

L(Λ|~T ) =
L∏
l=2

λij exp{−λijτl}I(Xl = si, Xl+1 = sj),

and the MLE is the reciprocal of the average interarrival times between any pair of states si

and sj . We will use the matrix {Λ}ij to denote the inverse of the average interarrival times,

λij , between states si and sj .

The assumption of exponentially distributed interarrival times is restrictive, however

it is a reasonable approximation in that it has an appropriate time domain starting at 0

and with a long tail towards infinity. Additionally, the MLEs are easy to compute in our

model, an important aspect within a large-data analysis context. Furthermore, if it were

the case that the distribution of interarrival times is multi-modal, then it is within the realm

of our algorithm to separate such subsets of patients by forcing the interarrival times to be

unimodal.

Now we can define the likelihood function for a set of patient utilization sequences. For

patients r ∈ {1, . . . , R}, the likelihood function of P is:

L(P | ~X1, . . . , ~XR) = L(P | ~X~R) =
R∏
r=1

Lr∏
l=2

Pil−1r ,ilr
.
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Likewise, the likelihood function of Λ is:

L(Λ|~T1, . . . , ~TR) = L(Λ|~T~R) =
R∏
r=1

Lr∏
l=2

λij exp{−λijτlr}.

Therefore, the joint likelihood function of P and Λ is:

L(P,Λ| ~X~R,
~T~R) = L(P | ~X~R)× L(Λ|~T~R), (2)

with the derivation given in Appendix B.2. Together, the set of all possible transitions and

interarrival times out of state si form a probability distribution which we refer to as the

transition distribution out of si. Each transition distribution is a mixture of exponential

distributions.

Remark: There is no significance to the observational timeframe in our study, 2005

through 2009, other than these are the endpoints of our study. It is entirely possible that we

miss visits and referrals to providers before and after the time period of our study. Likewise,

the estimates for the first arrival time and the last arrival time are going to be extremely

biased. Therefore, we leave the first and last interarrival times out of the estimation and

calculation of the posterior distribution. We revise the likelihood function to be:

L(P | ~X~R)× L(Λ|~T~R)×
R∏
r=1

PLC,i1r ×
R∏
r=1

PiLr ,RC
,

where LC is the left censor (Jan. 1st, 2005) and RC is the right censor (Dec. 31st, 2009).

3.3.2.3 Determining Cluster Membership

In our algorithm we assign each patient to a profile based on the maximum posterior like-

lihood of the patient for each profile. Let ~Z~R be a latent variable vector (~Z1, ~Z2, . . . , ~ZR),

following a multinomial distribution and containing the latent profile membership of pa-

tient r, for r ∈ {1, . . . , R}. Together the vectors ( ~X~R,
~T~R,

~Z~R) form the complete data on

the patient population under our model assumptions. However, because ~Z~R is unknown,

we must infer the ~Zr from ~Xr and ~Tr, specifically the posterior (conditional) likelihood

P ( ~Xr, ~Tr|Zrk = 1), the probability that patient r belongs to profile k given ~Xr, ~Tr:

P (Zrk = 1| ~Xr, ~Tr) =
P ( ~Xr, ~Tr|Zrk=1)P (Zrk = 1)

P ( ~Xr, ~Tr)
∝ P ( ~Xr, ~Tr|Zrk = 1).

41



Here, P ( ~Xr, ~Tr) will be constant for all k and thus can be ignored. Likewise, without any

a priori knowledge of the system, we set P (Zr1 = 1) = P (Zr2 = 1) = · · · = P (ZrK =

1). Therefore, profile membership will be solely determined by the posterior likelihood

P ( ~X, ~T |Zrk = 1). That is, each observation is assumed to belong to the profile which

produces it with the greatest posterior likelihood.

3.3.2.4 Model Selection

We seek to find the optimal clustering of sequences, given by ~Z~R, such that the BIC score

is maximized. The BIC is an objective function that balances the tradeoff between maxi-

mizing the likelihood function while minimizing model size. For a model M ,

BIC(M) = `(M)− |M | · log(R)/2,

where `(M) is the log-likelihood of the model M , |M | is the model size and R is the

number of patients. Given the transition and interarrival parameters for the set of patients

in profile k, Pk and Λk, for k ∈ 1, . . . , K, `(M) is given by taking the log of the likelihood

function, (5),

`(M) =
K∑
k=1

R∑
r=1

`(Pk| ~Xr) + `(Λk|~Tr) +
R∑
r=1

PLC,ir1 +
R∑
r=1

PirLr ,RC
.

For modelM withK profiles, we will estimateKS(S+1)−1 parameters for the transition

matrices, Pk, k ∈ {1, . . . , K}, and KS2 in the interarrival matrices, Λk, k ∈ {1, . . . , K}.

A common approach for model estimation is to use the EM algorithm. However, such

an algorithm requires the user to pre-specify the number of profiles, K, regardless of the

number of true profiles. Additionally, each initialization may produce a different outcome,

implying that a global optimum is not necessarily reached with each clustering result. How-

ever, with a satisfactory initialization the output will produce a high likelihood without

complex calculation.

Other researchers favor a tree-based algorithm, where a distance metric is used to de-

termine splits in the set of observation (91). Ramoni, et al., use the BIC in conjunction
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with the KL distance to perform agglomerative hierarchical clustering. However, a top-

down approach is warranted in our case since we can choose a reasonable stopping point

in the algorithm where the smallest number of splits explain the predominant patterns in

the system. In contrast with the EM algorithm, the benefit of such a tree-based algorithm is

that the the number of clusters can be determined after the clustering analysis is performed.

However, it may not be guaranteed to maximize posterior likelihood of cluster member-

ship. Therefore, we propose a joint tree-based, EM optimization algorithm that maximizes

the BIC criterion.

3.3.2.5 The Algorithm

As K and R increase, it becomes computationally intractable to consider all possible par-

titions to find the maximum BIC score. Therefore, we present an algorithm that searches

for a nearly maximal BIC at each iteration. Our algorithm, as in (90; 91), is guided by the

Kullback-Leibler (KL) distance:

KL(Q1||Q1) =

∫
Q1(x)log (Q1(x)/Q2(x)) ∂x,

where Q1 and Q2 are the probability distributions under comparison. Specifically, we find

the KL distance between the transition distribution out of each of the si for each individual

sequence and the entire set of sequences in a given profile and then average across the si, i ∈

{1, . . . , S}. (We provide the derivation of the KL distance in Appendix B.2.) We then order

the average KL distances and find a nearly optimal partition in the observations to use as

the initialization of the EM algorithm to maximize the posterior likelihood function. An

overview of the algorithm is given below:

1. We begin with the null assumption, H0, that all patients in a set belong to one pro-

file. Find the population MLEs, Λ̄ij , and the transition matrix P̄ij under the null

hypothesis. Calculate the BIC0 value.

2. Calculate the average KL distances between individual sequences and the one profile
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(null hypothesis), Dave(P,Λ||P̄ , Λ̄).

3. For a sufficiently large, equally-spaced set of the ordered average KL distances, (say,

50), D(i), let W−
D(i)

be the set of patients with average KL distances from the null

distribution less than D(i), and W+
D(i)

be the set of patient with average KL distances

from the null distribution greater than D(i). For each partition, {W−
D(i)

,W+
D(i)
} , cal-

culate the BICA corresponding to the BIC value of the alternative hypothesis, HA,

that the set of sequences should be partitioned into two profiles. This step is a heuris-

tic search for the best initialization for the EM algorithm in the next.

4. Consider the partition {W ∗−
D(i)

,W ∗+
D(i)
}, such that the BIC score is maximized. Let

this partition be the initialization for the EM algorithm. Recalculate the BIC score,

call it BIC∗A after the iterations of the EM algorithm.

5. If BIC∗A > BIC0, then divide the sequences into distinct profiles. Repeat steps

(1)-(4) until no more divisions are made.

3.3.3 Deriving Simple Utilization Profile Visualizations

By employing stochastic models for clustering utilization sequences we can further derive

stochastic provider networks via the transition matrices, allowing visualization of the uti-

lization behaviors as networks across providers of different types. The primary inputs for

the stochastic provider networks are the transition matrices. Specifically, the six provider

types, CL, ER, HO, NP, PO, and RX, are the nodes in a directed graph. The directed edges

represent transition probabilities between two provider types, for example, the transition of

patients from the emergency room to a physician’s office visit. For a simplified representa-

tion, the networks only include nodes such that a total of 90% volume is represented. We

use different types of arcs for different levels of transition probabilities to better identify

nodes that are most visited within each profile.
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3.3.4 Assessing our Clustering Algorithm

We highlight five important properties of our clustering algorithm (4):

• Robustness: Defined as the ability to detect outliers. Our algorithm will place every

observation within one profile, but as more divisions are made, the outlying observa-

tions become evident in low-membership profiles.

• Minimum user-specified input: By combining the EM algorithm with a hierarchical

framework we do not need predefine parameters such as the number of profiles in the

algorithm.

• Scalability: We simulated 5 different settings of R patients (R = 100K, 300K,

500K, 1M , 1.5M) and determined the run time of a single iteration of the algorithm.

See Figure 12 for results on the runtime of the algorithm. In our study with over

100K patients in each state, the algorithm ran to completion through 8 iterations in

approximately 3 hours.

• Computational complexity: The primary computational steps involved in fitting a pa-

tient sequence to an MRP rely on simple counting and averaging, while the compu-

tation of posterior likelihood relies on multiplication. All of these steps have compu-

tational complexity of order O(n). The sorting step of the posterior likelihoods is the

most computationally expensive with order O(nlogn). Therefore, the computational

complexity of our algorithm is O(nlogn).

• Visualization feasibility: We translate the transition matrices into stochastic provider

networks to produce simple visualizations of the utilization behaviors with each pro-

file. The ability to quickly digest information on the similarities and differences

between the different stochastic provider networks is a major advantage over simply

providing the resulting estimated transition matrices as it can play an integral role
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Figure 12: The runtime in hours of a single iteration of our algorithm plotted against the
number of simulated patients.

in decision support systems. Moreover, we allow for different levels of visualiza-

tion granularity of potentially complex healthcare systems. That is, the clusters of

utilization behaviors can be split further into distinct profiles to reach a desirable bal-

ance between the number of profiles and intra-profile complexity. This is especially

important when there are potentially a large number of event types.

3.3.5 Interventions for Recommended Care Adherence

By manipulating the weights of the transition matrices, we can analyze the cost-savings of

an intervention using analytical derivations by linear algebra techniques on the transition

matrix. Details are provided in Appendix B.3.

One illustration of such an intervention is targeting reduced readmission rates to the

ER or hospitalizations. We quantify the cost-savings of an intervention that leads greater

adherence to recommended care guidelines, namely an increase in utilization of asthma

controller medications and follow-up from the ER or hospitalizations to a physician’s of-

fice. We assume that we cannot prevent a patient’s first visit to the ER or a hospitalization,

and that ER visits or hospitalizations that occur after a PO visit or prescription fill are due

to an emergency, and thus is not preventable. Therefore, we simply reduce the probability
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Figure 13: Network graphs of estimated utilization profiles of GA. Transition probabilities
are given on each edge along with the average interarrival times measured in months in
parentheses.

of readmission into ER and HO and re-allocate that probability into PO and RX. We also

leave transitions from ER or HO to CL and NP unchanged if this is the patient’s preferred

source of treatment.

3.4 Results

In this section we summarize the results of our pilot study on pediatric asthma patients

on Medicaid in GA and NC for the years 2005 through 2009. We begin with 1.8 and 2.4

million total claims in Georgia (GA) and North Carolina (NC) for patients with a primary

diagnosis of asthma which are translated into 754,597 and 1,224,579 visits for GA and NC,

respectively.

3.4.1 Graphical Representations

Figures 13 and 14 are visual representations of the estimated utilization profiles as proba-

bilistic network graphs. We only include high-traffic nodes in these graphs, such that 90%

47



Figure 14: Network graphs of estimated utilization profiles of NC. Transition probabilities
are given on each edge along with the average interarrival times measured in months in
parentheses.

of the overall volume of encounters is summarized. The nodes are labeled by the provider

types corresponding to the contributing states of the utilization sequences in each underly-

ing profile and edges are a visual representation of the the estimated transition probabilities

between nodes or states. We provide the complete set of interarrival times between the

different states in the tables in Appendix B.4. The legend describes our choice for visual-

ization of the transitions between providers based on the transition probabilities between

states. Across all networks, we include the LC (left censoring) and RC (right censoring)

nodes specifying the beginning (2005) and the end (2009) year of the study.

3.4.2 Utilization Networks for GA

The network graphs of the four utilization profiles we highlight from GA are displayed in

Figure 14. Our decision to highlight these four utilization profiles is described in Appendix

B.5.
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Profile 1: For patients in this profile, the initial probability of visiting PO is extremely

high (0.97) while the probability of having repeat visits to PO is low, with average interar-

rival time of 8.2 months. Likewise, the initial probability of a RX prescription is low but

the probability of repeat encounters is extremely high (0.96), with an average interarrival

time of 1.4 months. There are no directed edges between PO and RX indicating that this

profile consists of those patients who either visit PO or RX but not both, and would likely

be divided into separate profiles in later iterations of the algorithm.

Profile 2: Patients in this profile have a high expected number of RX encounters, equal

to 4.31, and PO visits, equal to 1.09, with a low expected number of HO, equal to 0.52.

There are many directed edges into RX with high probability (0.57 - PO → RX, 0.70 -

repeated RX encounters), with no directed edges between PO and HO. The interarrival

times into RX are also low (1.0 month for HO → RX, 1.1 months for PO → RX, 1.5

months for RX refills), and the interarrival time from HO to PO is 0.6 months. Although

HO is present in this profile, repeat admissions into HO are infrequent, with an average

interarrival time of 7.3 months.

Profile 3: The expected number of visits is 0.46 for CL visits, 0.5 for ER, 1.84 for PO

and 3.30 for RX prescriptions, with many directed edges into PO and RX. The high number

of RX prescriptions is due to many directed edges into RX from ER and PO as well as the

high probability of repeat encounters with relatively high interarrival times compared to

the other profiles of 4.2 months. PO likewise receives a high number of visits because of a

large number of directed edges, although with low probability, from the other three provider

types. Although ER is present in this profile, the readmission into the ER are infrequent,

with 8.5 months on average between visits.

Profile 4: The expected number of visits to ER, HO, and PO are higher than in the

previous profiles with 0.72, 1.13, 2.53, respectively, while RX still has a high number of

encounters, equal to 4.03. The interarrival times between consecutive RX encounters are

low on average at 2.2 months and interarrival times into ER and HO are overall high, with
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the lowest being HO→ HO at 4.0 months.

RX is present in all four profiles, with high expected number of encounters in Profiles 2-

4. The PO/RX relationship is highly prevalent, judging by the high transition probabilities

between the two.

3.4.3 Utilization Networks for NC

The network graphs of the four utilization profiles we highlight from NC are displayed in

Figure 14. Our decision to highlight these four utilization profiles is described in Appendix

B.5.

Profile 1: This profile consists of patients primarily on asthma-controlled medication,

where the expected number of RX (re)fills is equal to 9.34 over the study period. The

probability of RX refills is high at 0.89, while the interarrival time between consecutive

RX encounters is low (1.5 months). These patients rarely visit physician offices (less that

10% of the utilization in this profile and hence not present) and they almost never visit

ER or have hospitalization. This group of patients could be used as a baseline to compare

patients with other utilization profiles.

Profile 2: The expected number of RX encounters are lower in this profile (3.14) than

Profile 1, with more expected visits to PO, equal to 2.35. A strong connection between PO

and RX is clear, with a stronger directed edge going from PO to RX, implying RX prescrip-

tion fills after a physician office visit. The probability of RX refills is high, equal to 0.68,

with a low average interarrival time of 1.5 months. The average interarrival time between

PO visits is higher (6.3 months). Hence, patients in this profile tend to visit physician office

more often than those in Profile 1, with insignificant ER utilization or hospitalizations.

Profile 3: Patients in this profile have an overall lower number of visits to RX and PO

(equal to 2.51 and 0.97, respectively), while CL and HO add more visits, with an expected

number equal to 0.30 and 0.36, respectively. This profile has many similarities to Profile

3 of GA, with much higher average interarrival times between RX encounters equal to 5.3
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months, but also with high average interarrival times between HO readmissions equal to 5.8

months. Transitions from HO to PO and to RX have high interarrival times at 9.9 months

and 9.7 months, indicating non-adherence to follow-up treatment for controlling asthma.

Profile 4: This profile primarily consists of RX and PO visits, with expected numbers

equal to 7.52 and 4.16, respectively, while ER and HO add fewer, with expected numbers

equal to 0.99 and 1.16, respectively. There are strong connections between PO and RX,

and many directed edges with high probability into RX. Here the average interarrival times

between consecutive readmissions to the ER and HO are 4.0 and 2.8, respectively, while

the interarrival times between PO and RX encounters are lower, equal to 2.0 and 2.1, re-

spectively. All the interarrival times from ER and HO to PO and to RX are low ranging

between 2.2 months and 2.5 months. Hence, patients in this profile display higher variation

in their healthcare utilization for asthma than in the other three profiles.

3.4.4 Comparing Utilization in GA & NC

The network graphs for the two states show remarkable similarities between the longitudi-

nal utilization profiles across both states; particularly, Profile 1 of GA and Profile 2 of NC

are similar as well as Profiles 3 and 4 of both GA and NC. Other commonalities include the

apparent prominent relationship between PO visits and subsequent RX encounters, with

high probabilities, indicating well-managed asthma patients. In all but Profile 1 of GA and

NC there are directed edges between the two provider types, routinely with high probability

and low average interarrival times. Likewise, as shown in Figures 13 and 14, there are no

connections between PO or RX and HO or ER with transition probability greater than 0.33.

By examining the visits by provider type bar chart in Figure 15, we find that GA has more

uniformity and variation between the provider types across the four profiles. The major

differences between the two states lie in the high concentration of RX visits in NC (67%

versus 54% in GA), and the relatively high proportion of ER and HO visits in GA (13%

versus 8% in NC).
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Figure 15: A chart plotting the total number of visits to each provider type from all patients
per profile during the years 2005 - 2009.

3.4.5 Evaluating Interventions for Adherence to Recommended Care

The results for quantifying cost-saving interventions are given in Figure 16 and the table in

Appendix B.3. Noteworthy findings are that Profiles 4 of GA and NC, both of which are

extremely varied in terms of utilization of different provider types, have the most potential

for cost savings. Overall the potential for cost-saving interventions seems higher in GA

for Profiles 2 and 3. Notably, because the patients in Profile 1 of GA only have PO and

RX visits there are no cost-savings for these patients, highlighting the fact that cost-saving

interventions should be applied to those most at risk for variational healthcare utilization.

The overall potential cost-savings for a 25% increase in adherence to recommended care

guidelines results in a cost-savings of $2.24M in GA and $2.18M in NC.

3.5 Conclusion

In this chapter we introduce a data science framework for extracting, analysing and integrat-

ing large, highly-sensitive claims information for deriving simple graphical interpretations

of healthcare utilization. The objective is to characterize and visualize underlying profiles
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Figure 16: A chart plotting potential cost-savings at different levels of adherence improve-
ments to recommended care guidelines.

of patient-level utilization behaviors. Because the approach is model-based, it allows dis-

covery of underlying probabilistic relationships of patients’ transitions between different

provider types and can be used to analyze “what-if” interventional scenarios to examine

the effects of changes in the network of care and the associated expected cost-savings. Our

framework begins with manipulation and processing of large flat files of administratively

coded claims into meaningful data in the form of streamlined utilization sequences. The

patient-level utilization sequences are then the input for a scalable model-based clustering

analysis for discovering the underlying utilization profiles. Our methods are both rigorous

and general, with applicability beyond the case study in this chapter.

We pilot our study with Medicaid claims data across five years, 2005-2009. We extract

data for only a subset of patients, particularly, asthma-diagnosed children older than 3, and

we focus on two states, Georgia and North Carolina.

Our study emphasis is on healthcare utilization as it is at the core of critical aspects

of healthcare delivery, including healthcare access, expenditure and cost, prevention and

chronic disease management (98). We also focus on the Medicaid system as the test bed
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for our analysis because caring for the disadvantaged populations, particularly Medicaid

children, is one priority of the current health policies in the United States, with potential

impact on reducing health and healthcare disparities, and on containing the associated costs

(112). Medicaid constitutes the primary source of coverage for low-income children in the

United States.

An important aspect of the Medicaid benefits system is that its implementation and re-

imbursement structure vary by state. Due to these state-based differences in the implemen-

tation, the effectiveness of the program also varies greatly by state. Thus, by comparing

utilization of care across states one can reveal the impact of these variations on the care

ecosystem.

Particularly, we chose Georgia and North Carolina for this comparison because the

demographics of the pediatric populations are very similar (30-50% minority population

(111) and approximately $37,000 Per Capita Personal Income 2012 (17)), although they

have different care-coordinated systems. While North Carolina has a state-coordinated

Medicaid system, Georgia’s Medicaid patients are primarily managed by three Medicaid

Managed Care Organizations with a reasonably small percentage of children under the

fee-for-service care practice (51). According to the 2007 ranking of states based on the

Medicaid eligibility, scope of services, quality of care, and reimbursement obtained by the

Public Citizen Health Research Group (5), North Carolina is ranked in the second quartile

and Georgia is ranked in the third quartile.

With similar Medicaid populations but different care coordination systems and effec-

tiveness rankings, we find some striking similarities in the longitudinal (multi-year) utiliza-

tion behaviors for pediatric asthma care.

Both states have an underlying profile including patients primarily visiting a physician’s

office (Profile 1 in GA and Profile 2 in NC). Likewise Profile 2 in GA and Profile 1 in NC

have a high probability of filling a prescription for asthma-controlled medication (higher

for North Carolina than for Georgia) but a lower probability of PO visits (lower for North
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Carolina than for Georgia). The transition probabilities are low connecting ER/HO to PO

and vice versa, with stronger links between medication and physician offices, suggesting

that the more variational clusters also include a proportion of patients that primarily visit

physician office with sporadic (low probability) visits to the emergency department or with

hospitalizations. This indicates that the majority of patients utilizing the physician’s office

in the variational profiles adhere to a great extent to evidence-based practices for asthma

care.

A third noteworthy finding is the prevalence of clinic visits in Profile 3 for both states,

where clinics refer to federally-qualified and rural health clinics. This is not surprising

since Medicaid children rely heavily on care from clinics located in underserved areas. Im-

portantly, patients with clinic visits have a higher probability to follow up with a phyician’s

office visit rather than visit ER or have an hospitalization for both states.

Finally, in both GA and NC, patients belonging to Profile 4 are not only the most costly,

but are also those with the most potential for cost-savings. Cost-savings from interventions

targeting a higher follow-up from the ER or HO to PO or RX visits can lead to a 5%

reduction in GA and a 3% reduction in NC in cost for patients belonging to this profile

with just a 25% adherence improvement.

An important dissimilarity across the two states is the proportion of patients with regular

PO visits (physician’s office visits make up 59% of non-RX (re)fills in Georgia, while they

make up 64% of non-RX (re)fills in North Carolina). Profiles 1 & 2 in North Carolina

contain almost 50% of patients where those patients primarily utilize the physician’s office

along with RX encounters; in contrast, Profile 1 (21%) and approximately half of Profile 2

(roughly 16%) patients in Georgia utilize the physician’s office almost exclusively. Hence,

in aggregate, North Carolina has around 50% more of the patient population than Georgia

that visit physician’s offices to the exclusion of other provider types on a regular basis.

In both states, the average interarrival time of RX fills is very similar averaging 1.5

months in Profiles 1 and 2 of both states, 2.2 months in Profile 4, with Profiles 3 having
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the longest average interarrival times of 4.2 months in GA and 5.3 months in NC. When

comparing the graphical networks, we also find that physician’s office visits and medication

fills nodes are represented strongly for both North Carolina and Georgia across all four

profiles. On the other hand, emergency department or hospitalization nodes appear to serve

only as intermediary connections for both Georgia and North Carolina, with a stronger

presence in Georgia.

This study has several limitations. One shortcoming in using claims data to infer utiliza-

tion is that while we seek to make inference on an entire subpopulation, we capture realized

and not potential utilization of the system (28; 98). First, the MAX files only include claims

that have been reimbursed. Second, not all Medicaid-eligible children are enrolled or they

have intermittent enrollment. Moreover, there will be a percentage of Medicaid-enrolled

children who are undiagnosed due primarily to lack of healthcare access. Therefore, esti-

mates on the healthcare utilization are likely to be to be biased, particularly for the Medicaid

population, where certain subgroups have difficulty in maintaining Medicaid coverage or

are susceptible to particularly disparate utilization (28; 87). We provide further analysis of

the enrollment patterns of the Medicaid children in our study in Appendix B.6.

While our model and its estimation and selection methods are computationally attrac-

tive, they can be extended further for relaxing some of the underlying assumptions. First,

we do not include the mean times until the first event and the mean times between the last

event because they are biased estimates of complete lifetimes due to the censored nature of

our data. In doing so, we are unable to completely determine the consistency with which

patients visit providers. For instance, with unbiased estimates of the arrival to the first

event it would be clear if a patient waits a long time between groups of consecutive visits

or utilizes the system at a fairly homogeneous rate across the complete study time span.

Furthermore, in order to produce simple visualizations and minimize computational costs

we assume the interarrival times to be exponentially distributed, conditional on the visit
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type. More importantly, it is likely that covariates including age, condition severity, comor-

bidities, enrollment status and access play a role in the frequency of the visits. However,

this method does not capture the potential effects of these covariates on utilization.

Despite these shortcomings, our model allows for reduction of high-dimensional uti-

lization data into a one-dimensional vector containing cluster memberships, thus provid-

ing the means for policy-makers to easily simulate or visualize healthcare utilization and

further study explanatory variables that could explain the variations across patient-level

utilization profiles.

Even though this study has several limitations, it has some important implications for

health care providers and policy makers. Importantly, following the care practice recom-

mendations, if a child visits the emergency department for asthma care then he/she needs

to be referred back to primary care (79). In both Georgia and North Carolina, the transi-

tion from emergency department or from hospitalization to physician’s office varies across

utilization profiles, with very low probability of physician’s office follow-up visits for the

patients using emergency department and hospitalization regularly. Those follow-up visits

vary with the patient’s profile, indicating that different interventions should be considered

for each of the profile of patients. More importantly, in both states, patients who are vis-

iting emergency department regularly for asthma care are few, with long periods of time

between readmissions.

Asthma-controlled medication uptake is strongly connected with physician’s office vis-

its across three profiles, and in one profile where it is not, patients are regularly taking

medication with no significant severe outcomes recorded. From the strength of the links

between physician’s office and medication (re-)fills, and lack of connection of those two

event types to the emergency department, those patients who visit a physician’s office on

a regular basis while staying on asthma-controlled medication are unlikely to have emer-

gency department visits in both states. This finding provides evidence that asthma can

be controlled with regular physician’s office visits and medication, with the potential of
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eliminating costly emergency department visits.
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CHAPTER IV

MODELING HETEROGENEITY IN HEALTHCARE

UTILIZATION USING MASSIVE MEDICAL CLAIMS DATA

In this chapter we introduce a modeling approach for characterizing heterogeneity in health-

care utilization using massive medical claims data. We first translate the medical claims ob-

served for a large number of patients and across five years into patient-level discrete events

of care called utilization sequences. We model the utilization sequences using an expo-

nential proportional hazards mixture model to capture heterogeneous behaviors in patients’

healthcare utilization. The objective is to cluster patients according to their longitudinal

utilization behaviors and to determine the main drivers of variation in healthcare utiliza-

tion while controlling for the demographic, geographic, and health characteristics of the

patients. Due to the computational infeasibility of fitting a parametric proportional hazards

model for high-dimensional, large sample size data we use an iterative one-step procedure

to estimate the model parameters and impute the cluster membership. The approach is

used to draw inferences on utilization behaviors of children in the Medicaid system with

persistent asthma across six states. We conclude with policy implications for targeted in-

terventions to improve adherence to recommended care practices for pediatric asthma.

4.1 Introduction

Appropriate utilization of the healthcare system is a positive tenet in preempting severe

health outcomes and is the basis for more effective healthcare practices (20; 69; 87). A

well-managed health condition and adherence to recommended care practices typically

result in reduced use of the emergency room and hospitalizations, thus leading to better

health outcomes and less costly care for patients with chronic diseases (69). Characterizing
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utilization behaviors and studying the drivers of variations in healthcare utilization can

suggest targeted interventions for improving chronic disease management.

Understanding and managing healthcare utilization is now possible with the advent of

patient-detailed health records and claims data, available from healthcare providers, and

public or private insurers (18; 27; 64; 72). The largest insurer in the United States, the

Centers for Medicare and Medicaid Services (CMS), has provided a platform for acquiring

such data in a standardized format across all states. Typically, CMS claims data include not

only healthcare services information such as the type and place of care, services provided,

diagnosis and procedure codes but also patient-specific information such as demograph-

ics for more than 100 million patients. The claims data are presented in formats that are

amenable for administrative purposes rather than research, hence they require substantive

efforts of data manipulation and processing.

Particularly for the Medicaid program, the CMS claims data are only available as iden-

tifiable patient health information divided into multiple files depending on the healthcare

services provided, by year and by state. The patient identification is unique across all

files allowing researchers to trace patients longitudinally across their Medicaid-reimbursed

healthcare encounters. Thus, in order to characterize longitudinal healthcare utilization at

the patient level, the Medicaid claims data need to be mapped into longitudinal sequences

of care events and joined with patient characteristics requiring multiple sources of informa-

tion and database manipulations. After this initial translational process, statistical modeling

can be applied to make inference on the heterogeneity in healthcare utilization.

In this study, we seek to make inferences on healthcare utilization for Medicaid-enrolled

children diagnosed with persistent asthma across six states, including five southeast states,

Georgia, Louisiana, Mississippi, North Carolina and Tennessee with comparison to Min-

nesota. Medicaid-eligible patients typically belong to disadvantaged socioeconomic groups

and are, therefore, more likely to utilize the healthcare system disparately (89). We focus

on asthma as it is the most prevalent respiratory chronic condition for children (26). The
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study population includes more than 400,000 children with approximately 6 million asthma

events. The utilization sequences are complemented by patient characteristics including de-

mographics, enrollment characteristics, urbanization environment of their residence, spa-

tial access to primary care (37) and clinical risk group (CRG) derived using the 3M Core

Grouping Software (1) among others. Substantive computational challenges arise in de-

riving inferences from such high-dimensional, massive datasets within a restrictive data

environment in place for identifiable protected health information (PHI).

By studying the CMS claims data we are able to infer utilization patterns from a large,

standardized data source for a large number of children. Healthcare utilization has been the

primary topic of interest for many healthcare studies with most explaining the frequency of

utilization with respect to patient characteristics and other determinants of utilization for

various conditions, typically relying on statistical methods such as regression or general

linear models, see (6; 41; 49; 96; 97) among many others.

In Chapter III, we used model-based clustering approaches for characterizing hetero-

geneity in patient utilization where the underlying model is a Markov model with a finite

state space. While this model lends itself to computationally feasible inference and visual-

ization, it is limited in many ways. The first limitation is that it does not account for missing

data in utilization sequences. Utilization sequences derived from claims data are often sub-

ject to data censoring, referring to missed events when a patient may not be eligible for

Medicaid benefits or events occurring outside the study time period. The second limitation

is an insufficient treatment of the effects of different event types on the prevalence of visits

to a specific provider type. Each patient potentially visits multiple provider types repeatedly

over the time period of interest. Thus, we have a competing-risks, repeated-events frame-

work. A third limitation involves incorporating demographic and health-related covariates

into the model.

To address these limitations, we will combine techniques from survival analysis and
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statistical clustering analysis to measure the rate at which patients in the study popula-

tion receive treatment for asthma from various provider types. A central theme in survival

analysis is that of handling censored data. Cox’s proportional hazards model allows for

the inclusion of possibly censored survival times in the likelihood function while also in-

corporating knowledge on characteristics of the patient, modelled as a linear function of

covariates. In this study, we will fit a parametric proportional hazards model to find the

rate at which pediatric asthma patients visit different provider types given variables such as

access to care, their current overall health condition, demographic variables, differences in

state-based Medicaid programs, and history of healthcare utilization. We assume a mixture

of proportional hazard models to capture heterogeneity in utilization behaviors. Using this

model, we will derive three primary outputs from which we aim to determine the main

contributors to variations in healthcare utilization: the posterior probabilities that a pa-

tient belongs to a specific cluster of patients given a set of control variables and utilization

history, parameter estimates of the control variables that measure the effects of control co-

variates on the event hazard rates, and parameter estimates for the explanatory variables

that can be used to evaluate the impact of potential interventions on the rate of healthcare

visits.

This method was inspired by the complexity of the healthcare data set that we study

and has roots in the survival analysis literature, particularly an adaptation of the Cox model

to parametric counting process data (11) and models for heterogeneity in discrete choice

models and survival analysis (9; 14; 31; 39; 45; 46; 92; 114). Two areas that are closely

related to the proposed methodology are those of determining ‘long-term’ survivors in a

cohort (34; 55; 70; 107) as well as the use of the multivariate Weibull mixture model to

capture heterogeneity in duration data (15; 33; 65; 75; 76; 77; 78). We look to extend the

contributions of these authors by generalizing the proportional hazards cure model to allow

for different rates for multiple (more than two) subpopulations. Furthermore, while mixture
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modelling is prevalent in the literature, few authors incorporate explanatory and/or control-

ling factors, see (15; 65; 78). By bringing the computational feasibility of the estimation

algorithm to bear, we can analyze massive, high-dimensional datasets. This is a promising

contribution in light of the exponential growth of healthcare data (32) and demonstrates

the ability to apply these methods wherever high-dimensional counting process data are

available.

The remaining structure of this chapter is as follows: in Section 4.2 we further sum-

marize the target population and the covariates we include in this study, in Section 4.3 we

present the model and model estimation techniques, in Section 4.4 we present results from

our application to pediatric asthma patients in the Medicaid system, and we conclude with

a discussion in Section 4.5. We provide additional derivations and details on the results for

the motivating case study in the Appendices.

4.2 Data

We begin by translating the Medicaid Analytic Extract (MAX) claims data into patient uti-

lization data. Our study population consists of all Medicaid-enrolled children ages 4-18

with persistent asthma (115) from Georgia (GA), Louisiana (LA), Mississippi (MS), Min-

nesota (MN), North Carolina (NC), and Tennessee (TN) between 2005 and 2009. Children

age 0-3 are not included in the study due to inconsistency in asthma diagnosis at this age.

We only include children with persistent asthma, that is, children that have at least one

emergency room visit or hospitalization with a diagnosis of asthma, at least three outpatient

visits with a diagnosis of asthma, or a prescription fill for asthma controller medications.

In total we have 426,400 patients, approximately 4 million healthcare events, and approx-

imately 1.5 million patient-years in this study. For a table with summary statistics on the

data see Tables 8-10 in Appendix C.1.

In order to specify the provider type, we use a combination of Place of Service Code

and Type of Service Code from the MAX data files. We abbreviate the provider types in
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the following manner: clinic visits (CL), emergency room and outpatient hospitalizations

(ER), inpatient hospitalizations (HO), physician’s office visits (PO), and nurse practitioner

care in a physician’s office (NP). In addition, we model a claim where a patient visits the

pharmacy to fill a prescription for asthma controller medication (RX) as a unique event

type.

In addition to the provider types and timestamps of the visits, we also extract patient

demographic, zip code, and health-related information such as age, Medicaid eligibility

status and health condition or clinical risk group (CRG) derived using the 3M Core Group-

ing Software (version 2014.3.2 with the Clinical Risk Groups version 1.12) from the MAX

data. Using the zip code of the patient, we include additional variables such as the state

of residence, urbanization level of a patient’s residence zip code derived using the RUCA

categorization (74) and travel distance to pediatric primary care derived using optimization

models (37). We only consider access to primary care since it is the most prevalent non-

emergency care type for Medicaid-insured children diagnosed with asthma as we show in

Chapter III.

We divide the covariates into two groups: control and explanatory. The control vari-

ables are: age group (4-5, 6-14, 15-17), race (white, black, and other), overall health con-

dition of the patient (healthy: CRG 1, minor chronic: CRG 2-4, chronic: CRG 5-7, and

severe: CRG 8-9, determined by the 3M software), reason for Medicaid eligibility (dis-

abled, foster care and income-based) and the last event type to account for the patient’s

healthcare history. The explanatory variables include the state of residence of the patient,

urbanicity categorized as urban (RUCA 1-3), suburban (RUCA 4-6) and rural (RUCA 7-10)

and travel distance to pediatric primary care.

A summary of the observed vectors of data is given below. Throughout this chapter

bold typeface will be used for vectors and matrices.

• Hr(t) = {Hr1(t), . . . , Hr|S|(t)} the count of visits for each patient r to providers of

type s ∈ {1, . . . , |S|} over the time t with a maximum of five years. In our study,
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we consider |S| = 6 event types (CL, ER, HO, PO, NP, and RX). ~H contains all

counting processes for all patients.

• Dr and Er are column vectors of observed covariates corresponding to the control

and explanatory variables, respectively. ~D and ~E contain all covariates for all pa-

tients.

A Word on the Time Domain: In this chapter we are interested in the time-to-event

data and the effect of patient historical and demographic information on the times between

events of the same type. We will denote the standard time domain with t and the time

since the last event or re-enrollment time as τ . Changes from enrolled to unenrolled are

considered to be censored lifetimes. See Appendix C.2 for an example.

4.3 The Latent Variable Proportional Hazards Model

In this section we begin by motivating the use of survival analysis for this particular prob-

lem. We then introduce the mixture model formulation and demonstrate the use of the

expectation-maximization (EM) algorithm to estimate the mixture model parameters. Fi-

nally, we present a computationally efficient, iterative algorithm to estimate the propor-

tional hazard and utilization-choice model parameters, which applies to high-dimensional,

large sample size data.

4.3.1 The Proportional Hazards Model

Consider a counting process N(t) counting the number of events up to time t. Then Aalen

(2) and Andersen (3) show that N(t) has a random hazard process λ(t) defined as

λ(t) = lim
h→0

Pr(T < t+ h|T > t),

where T is a random variable for the time of the event. Let f(t) be the probability density

function for an event at time t and S(t) be the survival function up to time t. Then we can
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relate the three functions with the following formula:

f(t) = λ(t)S(t).

The Cox regression model (21) specifies the hazard rate given a set of time-varying

covariates x(t) via the equation

λ(t|x(t)) = λ0 exp{βᵀx(t)},

where λ0 is a fixed underlying baseline hazard function. This model is typically referred to

as the ‘proportional-hazards’ model due to the fact that the hazard rate of an event at time

t for different subpopulations are proportional to each other.

Our model of the hazard rate for an event of type s can be written as

λs(τ |Dr(τ)) = λrs(τ) = exp{βsᵀDr(τ)},

where βs = [β0s, β1s, . . . , βPs]. Thus, the baseline hazard function is λ0 = exp(β0).

Furthermore, the vector Dr may vary with time because it includes dummy variables for

the last event type as well as the health status of the patient which may change annually.

Therefore,

Ss(τ |Dr(τ)) = Srs(τ) = exp{−τ exp[βs
ᵀDr(τ)]},

and

fs(τ |Dr(τ)) = frs(τ) = λrs(τ)Srs(τ).

4.3.1.1 Choice of Baseline Hazard Function

Our choice of the exponential for the interarrival times distribution is due to the distribu-

tional characteristics and favorable analytic properties of the exponential survival model.

In the field of survival analysis there are two primary choices for the baseline hazard model:

a nonparametric baseline hazard function and a parametric baseline hazard function such

as the exponential, Weibull or log-logistic, for instance. We choose a parametric baseline
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because we must force the baseline hazard function to be unimodal, otherwise heteroge-

neous subpopulations may be incorrectly grouped together. The favorable properties of the

exponential proportional hazards model are discussed in Appendix C.2 and C.3.

4.3.2 The Latent Cluster Model

The problem we are trying to solve is that of clustering similar patients based on their

utilization patterns, estimating the coefficients corresponding to the control variables, and

determining the factors that explain the variations in longitudinal utilization behaviors. Let

Zr be a multinomial random variable denoting the latent cluster membership of patient r

taking values 0 and 1, where Zrk = 1 if patient r belongs to cluster k. Given that Zrk = 1

the probability that each patient contributes is

Pr(Hr|Dr, Zrk = 1) =

|S|∏
s=1

Lr∏
lr=1

frks(τlr)
δs(τlr ) × Srks(τlr)1−δs(τlr ), (3)

where τlr is the lth interarrival time between consecutive events, censoring, or re-enrollment

times for patient r, and δs(τ) is an indicator function taking value 1 if patient r visits

provider type s at time τ and 0 otherwise.

Following the cure model of (34; 55; 70; 107), we want to model the probability that

patient r belongs to cluster k given the explanatory variables Er. Let Zrk|Er be a multino-

mial random variable denoting the latent cluster membership of patient r with explanatory

variablesEr. We assume that the probability that Zrk|Er = 1 follows a multinomial logistic

regression model:

Pr(Zrk|Er = 1) = Pr(Zrk = 1|Er) = πrk =
exp{Erᵀbk}

1 +
∑K−1

κ=1 exp{Erᵀbκ}
, for k < K,

and πrK =
1

1 +
∑K−1

k=1 exp{Erᵀbk}
. (4)

Combining Equations 3 and 4, we can derive the likelihood function for~b and ~β as

L(~b, ~β) =
R∏
r=1

K∏
k=1

πrk Pr(Hr|Dr, Zrk = 1). (5)
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This model controls for the effects of the control covariates,Dr, and allows the cluster-

specific baseline hazard of an event to vary while explaining the causes of variations due to

the explanatory variables Er.

4.3.3 The EM Algorithm

Together [~Z, ~H , ~D, ~E] with ~Z = [Z1, . . . ,ZR] form the complete information on a pa-

tient’s utilization history. However, ~Z is unknown and must be inferred from [ ~H , ~D, ~E].

We will use the EM algorithm (25) to estimate the probability that patient r belongs to

cluster k, Pr(Zrk = 1), for all r, k.

Under the framework of complete information we can revise Equation 5 to get the

complete likelihood function:

LC(~b, ~β|~Z) =
R∏
r=1

K∏
k=1

πZrk
rk

|S|∏
s=1

Lr∏
lr=1

[
frks(τlr)

δs(τlr ) × Srks(τlr)1−δs(τlr )
]Zrk

= LC(~b|~Z)× LC(~β|~Z).

Due to the fact that the complete likelihood function can be split between a likelihood

for ~b and ~β we can divide the model estimation procedures into three parts: estimating

the probability that patient r belongs to cluster k (E-step), and estimating separately the

proportional hazards coefficients and the multinomial logistic coefficients (M-step).

4.3.3.1 The E-Step

In the E-step we find the expected values of the missing values ~Z with respect to the

distribution given the current estimates for the model parameters,~b(m) and ~β
(m)

:

Z
(m+1)
rk = E(Zrk|~b(m), ~β(m)) = P (Zrk = 1|~b(m), ~β(m))

=

∏
r π

(m)
rk

∏
s

∏
lr
f
(m)
rks (τlr)

δs(τlr ) × S(m)
rks (τlr)

1−δs(τlr )∑K
κ=1

∏
r π

(m)
rκ

∏
s

∏
lr
f
(m)
rκs (τlr)

δs(τlr ) × S(m)
rκs (τlr)

1−δs(τlr )
.

After performing the E-step we take the current estimates, ~Z(m+1), and use them to

calculate the next step estimates for the parameters in the proportional hazards and multi-

nomial logistic regression model.
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4.3.3.2 The M-Step

Assuming that the probability distribution of events follows an exponential distribution

we have that frks(τ) = λrks(τ) exp{−τλrks(τ)} and Srks(τ) = exp{−τλrks(τ)}, where

λrks(τ) = exp{βksᵀDr(τ)}. Then the total likelihood function for all patients, LC(~β),

can be written as

LC(~β|Zr) =
∏
r

∑
k

Zrk
∏
s

∏
lr

exp{δs(τlr)βksᵀDr(τlr)− τlr exp{βksᵀDr(τlr)}

= exp

{∑
r

∑
k

∑
s

∑
lr

Zrkδs(τlr)βks
ᵀDr(τlr)− τlr exp{βksᵀDr(τlr)

}
,

where the equality holds in the second line because for Zr only one entry is equal to one

and all others are zero. Now, set βksᵀ = [β0ks,βs
ᵀ], where βsᵀ = [β1s, . . . , βPs]. Recall

that βs are common across all clusters k ∈ {1, . . . , K}. Then the complete log likelihood

function can be written as:

`C(~β|~Z) =
∑
r,k,s,lr

[δs(τlr)Zrkβks
ᵀDr(τlr)− τlrZrk exp {βksᵀDr(τlr)}] .

Before moving onto the iterative procedure for estimating ~β and ~b we must perform

some derivations first on the complete likelihood function for ~b, following the arguments

of (23):

LC(~b|~Z) =
∏
r

∏
k

πZrk
rk =

∏
r

[(
K−1∏
k=1

πZrk
rk

)
× π1−

∑K−1
k=1 Zrk

rK

]

=
∏
r

[(
K−1∏
k=1

πZrk
rk

)
× πrK∑K−1

k=1 π
Zrk
rK

]
=
∏
r

(K−1∏
k=1

πrk
πrK

)Zrk

× πrK


=
∏
r

(K−1∏
k=1

exp{bkᵀEr}Zrk

)
×

(
1 +

K−1∑
k=1

exp{bkᵀEr}

)−1 .
Therefore the log likelihood function is

`C(~b|~Z) =
∑
r

[
K−1∑
k=1

(Zrkbk
ᵀEr)− log

(
1 +

K−1∑
k=1

exp{bkᵀEr}

)]
.
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4.3.3.3 An Iterative Solution to the Likelihood Equations

Now we employ the iterative procedure of (36; 71; 73; 121) to estimate the parameters ~b

and ~β. The main idea of the algorithm is to split the large, computationally extensive task

of estimating ~β and ~b into many single estimation steps. Therefore, in order to find the

next-step estimate for βps, p ∈ {1, . . . , P} given the current estimates ~β(m) and ~Z(m+1),

we take the derivative of `C(~β) with respect to a single βps:

`
(1)
C (βps) =

∂`C(~β|~Z(m+1))

∂βps

∣∣∣∣
~β=~β(m)

=
∑
r,k,lr

[
δs(τlr)Z

(m+1)
rk Drp(τlr)− τlrZ

(m+1)
rk Drp(τlr) exp

{
β

(m)
ks

ᵀ
Dr(τlr)

}]
=
∑
r,lr

[δs(τlr)Drp(τlr)]−
∑
r,k,lr

[
τlrZ

(m+1)
rk Drp(τlr) exp

{
β

(m)
ks

ᵀ
Dr(τlr)

}]
.

Likewise, the second derivative is:

`
(2)
C (βps) =

∂2`C(~β|~Z(m+1))

∂β2
ps

∣∣∣∣
~β=~β(m)

= −
∑
r,k,lr

[
τlrZ

(m+1)
rk D2

rp(τlr) exp
{
β

(m)
ks

ᵀ
Dr(τlr)

}]
.

Using Taylor’s expansion, we have that the one-step update for βps is

β(m+1)
ps = β(m)

ps +4′ps = β(m)
ps −

`
(1)
C (βps)

`
(2)
C (βps)

.

Following similar arguments for β0ks we have that

`
(1)
C (β0ks) =

∂`C(~β|~Z(m+1))

∂β0ks

∣∣∣∣
~β=~β(m)

=
∑
r,lr

[
δs(τlr)Z

(m+1)
rk − Z(m+1)

rk τlr exp
{
β

(m)
ks

ᵀ
Dr(τlr)

}]
,

`
(2)
C (β0ks) =

∂2`C(~β|~Z(m+1))

∂β2
0ks

∣∣∣∣
~β=~β(m)

= −
∑
r,lr

[
Z

(m+1)
rk τlr exp

{
β

(m)
ks

ᵀ
Dr(τlr)

}]
,

and

β
(m+1)
0ks = β

(m)
0ks +4′0ks = β

(m)
0ks −

`
(1)
C (β0ks)

`
(2)
C (β0ks)

.
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As in (36; 73; 121), we perform a complete sweep over all parameters in ~β multiple

times instead of performing multiple iterations of a single parameter and moving onto the

next.

Following the arguments of (23) one can show that the first and second derivatives of

Equation 6 with respect to a single bjk is

`
(1)
C (bjk) =

∂`C(~b|~Z(m+1))

∂bjk

∣∣∣∣
~b=~b(m)

=
R∑
r=1

(Z
(m+1)
rk − π(m)

rk )Erj,

and

`
(2)
C (bjk) =

∂2`C(~b|~Z(m+1))

∂b2jk

∣∣∣∣
~b=~b(m)

= −
R∑
r=1

π
(m)
rk (1− π(m)

rk )E2
rj.

The one-step update for bjk is

b
(m+1)
jk = b

(m)
jk +4′jk = b

(m)
jk −

`
(1)
C (bjk)

`
(2)
C (bjk)

.

As with the proportional hazards coefficients we perform multiple sweeps over all model

parameters instead of multiple iterations for a single parameter.

When performing these one-step estimation algorithms it is important that a single

step does not go too far. This can occur when the log-likelihood function is not locally

quadratic and can lead to ill-fitting results. Therefore, we employ the trust region algorithm

of (36; 121). Furthermore, we only perform a maximum of five sweeps for the proportional

hazards model coefficients in the M-Step, as the likelihood function will still sufficiently

increase. The pseudocode is provided in Algorithm 1.

4.4 Application

In this section we present the results of our study on uncovering utilization patterns among

the asthma diagnosed patients in the Medicaid system. We provide the estimated model

along with a practical interpretation and various visualizations of the results in Appendix

??. The model selected using the approach in this appendix presents five clusters of patients

according to their utilization behavior. Statistical significance of the covariate effects and

multinomial logistic parameters are investigated in Appendix C.3.
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Algorithm 1 M Step for PH and MN Coefficients

function M STEP( ~H , ~D, ~E, ~Z(m+1), ~β(m),~b(m))
40ks = 4ps = 4jk = 1,∀ k ∈ {1, . . . , K}, s ∈ {1, . . . , |S|}, ∀ p ∈

{1, . . . , P}, ∀ j ∈ {1, . . . , J}
for n = 1, 2, . . . 5 or until convergence do

for ∀ k,∀ p do
compute4′0ks,4′ps
4′′0ks = sign(4′0ks)×min(40ks,4′0ks),4′′ps = sign(4′ps)×min(4ps,4′ps)
β
(m+1)
0ks = β

(m)
0ks +4′′0ks, β

(m+1)
ps = β

(m)
ps +4′′ps

40ks = max(24′′0ks,40ks/2),4ps = max(24′′ps,4ps/2)
end for

end for
for n = 1, 2, . . . until convergence do

for j = 1, . . . , J do
for k = 1, . . . , K do

compute4′jk
4′′jk = sign(4′jk)×min(4jk,4′jk)
b
(m+1)
jk = b

(m)
jk +4′′jk

4jk = max(24′′jk,4jk/2)
end for

end for
end for

end function
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4.4.1 Proportional Hazards Model

4.4.1.1 Baseline Rates

We begin by presenting the baseline rate of events per year for each provider type. The

baseline group of patients represents the population of children who are white, chronically

ill, aged 4-5, have not visited a healthcare provider yet in our study and are not eligible for

Medicaid for reasons including blindness, disability or foster care. The baseline rates are

in Figure 17. The proportion of patients belonging to each cluster are 55.74% (Cluster 1),

16.10% (Cluster 2), 15.09% (Cluster 3), 10.32% (Cluster 4), and 2.75% (Cluster 5).

The baseline rate changes for each subpopulation within a cluster, and thus, should not

be interpreted solely on their absolute value but on their relative values across clusters also.

For instance, patients in Cluster 4 are more than twice as likely to fill a prescription than

patients in any other cluster. Likewise, patients in Cluster 5 are more than six times as likely

to visit a healthcare clinic than other patients. Because the effects of the control variables

are the same regardless of cluster membership, these statements will hold regardless of age,

demographics, or health status.

Cluster 1, with the greatest proportion of the population, has the least number of RX

visits per year, less than one third of the cluster with the next lowest RX rate. Patients in

Cluster 2 rely almost solely on RX visits, with low rates of visits to all other provider types.

Cluster 3 patients have the highest rate of PO visits but the second lowest number of RX

visits. Patients belonging to Cluster 4 have the greatest number of RX visits per year, but

also have the second highest rate of HO visits. Finally, Cluster 5, with the fewest patients,

has the greatest number of CL, ER and HO visits, with the third highest rate of PO visits

and second highest rate of RX visits.

4.4.1.2 Covariate Effects

Now we describe the effects of the control covariates on the baseline visitation rates. In

Figure 18 we provide the rate multipliers for the different covariate values. Thus, the rates
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Figure 17: Baseline rate of events per year for white, chronically ill patients, aged 4-5,
who are not eligible for Medicaid for blindness/disability or foster care, and without a prior
observed event.
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of visits for different subpopulations can be found by multiplying the baseline rate by the

rate multipliers from this chart. For instance, to find the rates for a black patient, age 16,

one would multiply the baseline rate from Figure 17 by the rate multipliers from the black

and age 15-17 covariates in Figure 18. It is important to remember that the effects of these

covariates are the same across all clusters. That is, a severely ill patient will have 6.79 times

more hospitalizations regardless of whether they belong to Cluster 1 or Cluster 5.

We find that the effects of health status or clinical risk group (healthy, minor or severely

ill) have the greatest practically significant effect on the baseline rate. While the clinical

risk group is an overall evaluation of the health condition, it can also reflect the severity of

asthma. For example, a patient categorized as healthy will have mild asthma. A severely ill

patient has a higher rate for all provider types but the rate of hospitalizations is 6.79 times

higher than a chronically ill patient. Patients with a minor chronic illness have little relative

change, while healthy patients have drastically less events of all types. Other findings

include higher utilization of the CL, ER, and HO and lower utilization of RX for patients

that are non-white, while patients who are eligible for Medicaid due to being blind or

disabled or in foster care have overall lower rates of visits. Finally, the effects of age seem

to have little practical difference for patients in age group 6-14, while patients age 15-17

have higher rates of visits to all provider types except CL and RX.

4.4.1.3 Provider Networks

Now we demonstrate how our model outputs can be used to visualize the provider tran-

sition networks for patients in different subpopulations and/or clusters. In this example,

we compare the effects of the patient’s clinical risk group on healthcare utilization for the

baseline group of patients. We chose this example for illustration purposes because of the

drastic multiplicative effects of health status on the baseline visit rates as shown in Figure

18. In Figure 19, we compare the network plots of healthy, chronically ill, and severely ill

patients, leaving out patients with a minor illness due to the small change from those that
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Figure 18: Baseline rate multipliers for each subpopulation
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are chronically ill. The derivation of the transition probabilities and the average interarrival

times for the baseline group across clusters can be found in Appendix C.3.

Clusters 2, 3, and 4 networks have strong connections from all nodes leading to RX

visits. However, as a patient’s health condition becomes more severe, utilization becomes

more variational, with a greater number of connections between different provider types

for the chronic and severe illness columns. Patients in Cluster 1 have high probability tran-

sitions into PO and RX provider types, with a higher probability of readmission into HO

for chronically and severely ill patients. Clusters 2 and 4 are similar for healthy and chron-

ically ill patients, except more transitions into HO in Cluster 2 and PO in Cluster 4. Cluster

3 healthy patients have similar networks as Cluster 2 and 4 healthy patients but with much

greater variation for patients with a chronic or severe illness. Patients in cluster 2 route into

RX regardless of overall health condition. Chronic and Severe patients in Clusters 1 and

3 have high probability transitions into PO from all nodes, while severe patients in Cluster

4 have some transitions from CL to PO. Cluster 5, with the smallest percentage of pa-

tients, consists of those who more frequently utilize ER and HO with significant transitions

into HO for both chronically ill and severely ill patients, while severely ill patients having

more than 50% chance of readmission into HO. Across all clusters, NP is insignificant and

primarily routes patients back to NP or into PO or RX visits.

4.4.2 Latent Variable Model

Now we provide visualizations for the effects of the explanatory variables on cluster mem-

bership. We provide the parameter outputs from the model chosen in Appendix C.4.

In Figure 20 we plot the proportion of patients from each state by urbanicity category

and by cluster. That is, for a given state and urbanicity level, the sum of the values in the

chart across clusters will be one. The black dashed lines indicate the overall proportion of

patients belonging to a given cluster regardless of state and urbanicity.

We can see that while the urbanicity level of the patient’s residence does affect cluster
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Figure 19: Provider networks inferred from the proportional hazards coefficients. The
following rules were used in setting the grayscale of the coefficients and nodes: < 0.2 →
not shown/white, [0.2, 0.5)→ gray, and ≥ 0.5→ black.
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membership, it is the patient’s residence state that is the main driver of variation in utiliza-

tion behaviors. Furthermore, it appears that within each state, urban and suburban patients

act similarly while rural patients behave differently. Clusters 1 and 3 have a higher propor-

tion of urban and suburban patients relative to rural patients while Clusters 2 and 4 have

the opposite. Cluster 5 appears to be evenly divided among the three urbanicity measures.

GA and MS seem to behave differently than the other states while LA and MN, and NC

and TN behave similarly. Recall that Cluster 1 patients rely on PO and RX visits, Clusters 2

and 4 rely almost solely on RX for healthy and chronically ill patients, Cluster 3 has a high

rate of PO visits and some RX visits, and Cluster 5 utilizes more ER and HO visits than

the others. From Figure 20, it becomes clear that GA patients are overall more variational,

relying less on RX visits than the overall average and more on other provider types, having

the greatest proportion of patients in Cluster 5. MS has the highest proportion of patients

belonging to clusters dominated by RX visits, namely Clusters 2 and 4, with MN, NC, and

TN patients also having relatively high proportions in those clusters. LA has the highest

proportion of patients belonging to Cluster 1 and the lowest belonging to Cluster 5.

The third explanatory variable in our study is a measure of travel distance to primary

care, which is the main source of care for asthma for the Medicaid-insured children. In-

terpreting the effects of travel distance on cluster membership is more difficult because the

variable is numerical instead of categorical. However, we provide an example of the effects

of increased travel time on cluster membership, assuming that the baseline probability of

belonging to Clusters 1-5 are equal (this is not always the case as state and urbanicity also

factor in greatly). In Figure 21, we demonstrate the change in probability for this hypothet-

ical example for patients in Clusters 1-5 with travel distances ranging from 0-25 miles.

This graph should be interpreted by the relative change in probability across clusters.

We find that higher travel distances increase the probability of membership in Clusters 1, 3,

and 5, with 5 being the greatest, while probabilities decrease for Clusters 2 and 4 as travel

distance increases. Incidentally, Clusters 1, 3, and 5 tend to be more variational when
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Figure 20: Proportions of patients belonging to each cluster stratified by state and urbanic-
ity

Figure 21: Plot of the change in probability for Clusters 1-5 with travel time ranging from
0-10.
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compared to Clusters 2 and 4, which primarily rely on RX utilization.

4.5 Discussion

In this chapter we introduce a model-based clustering analysis via a parametric propor-

tional hazards model that allows for derivation of model parameters, cluster membership

probabilities and visualizations. We also demonstrate the applicability of the methodology

to policy-making on healthcare utilization. Our algorithm for the model estimation is com-

putationally attractive, allowing for complete model estimation in 2-3 hours for a set of

more than 400,000 patients and 6 million interarrival times. By studying pediatric asthma

patients from six states, we are able to determine the drivers of inter-cluster variation while

controlling for the effects of controlling covariates such as age, race and ethnicity, and

overall health status.

The primary outputs from our model consists of the rate of visits by event type for

patients belonging to the baseline group; the effects of the control covariates on the baseline

rates in the form of rate multipliers indicating the variations of utilization that cannot be

impacted by interventions; and the effects of the last visit type on future utilization choice.

We show how these effects can be used to determine a one-step provider network. We finish

with visualizations of the effects of the explanatory variables on cluster membership.

The baseline rate per year shows that the majority of patients, those belonging to Cluster

1 (55%), utilize asthma controller medications the least but also have few emergency room

visits or hospitalizations. The provider networks across health conditions show that as the

patient’s condition worsens, patients tend to utilize the physician’s office more, indicating

that the majority of asthma patients are well-managed and require minimal, routine care to

control asthmatic conditions. Cluster 3 (15%) is similar to Cluster 1 just with more visits

to the physician’s office and prescription fills for asthma controller medication and rela-

tively few emergency room visits or hospitalizations, also indicating patients who require

minimal care. Higher travel distances increase the probability of membership within these
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two clusters. From Figure 20 we see that GA and LA have above average representation in

Cluster 1, with MS, NC, and TN having well below average. Cluster 3 has above average

representation of NC patients while LA, MS, and MN are well below average.

Cluster 2, with 16% of the population consists of those patients who rely heavily on

medication and little else, thus representing those patients with the least utilization of the

system of care, hence with a well controlled asthma. The effects of health status on the

provider networks are minimal with slightly more admission into hospitalizations for pa-

tients with a severe health condition. Despite the fact that lower travel distances increase

the probability of membership in this cluster, these patients rarely utilize the physician’s

office. GA has well below average representation in this cluster while MS has the greatest.

Cluster 4 (10%) patients are the highest utilizers of medication with relatively high rates

of visits physician office visits but also relatively low baseline rates of ER and HO visits,

hence another cluster of patients with well controlled asthma. This cluster has the least

variation when comparing across health status with the severely ill patients having high

transition rates to the physician’s office. NC and TN have above average representation in

this cluster. Lower travel distances increase membership probability in this cluster which

could explain the high baseline rate of visits to physician office. While NC has average

representation in Cluster 2, it has the highest proportion of patients in Cluster 4.

Finally, Cluster 5 (3%) consists of those patients who have the highest utilization of

the emergency department and hospitalizations, and are likely to be those patients with the

most severe asthmatic conditions requiring high-end care. Both chronically and severely ill

patients have higher rates of emergency department visits and hospitalizations as indicated

by the provider networks. GA has the most patients in this cluster and LA the least. These

patients also tend to have the highest travel times to a physician’s office.

Some important findings drawn from this study are:

• The most influential factor on the differences between children at the baseline or entry

point in the system is the overall health condition.
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• Older children are higher utilizers of the system, particularly of both emergency depart-

ments and hospitalizations. One explanation is that asthma in older children can interfere

with sleep, school, sports and social activities.

• Children in foster care are lower utilizers of the system with a lower rate of both emer-

gency departments and hospitalizations. This is expected because such visits require the

presence of a social worker and possibly a member of the foster care agency if one is in-

volved. This additional requirements may discourage utilization of emergency services.

• The black population has twice the rate of emergency department visits. Prior research

has not found a statistically significant association of the percentage of non-white popula-

tion to geographic access while controlling for income in Georgia (83).

• Patients who are categorized as severely ill using the clinical risk group classification

have the highest utilization across all provider types and of being prescribed medication.

This is not unexpected because other comorbidities could lead to more severe outcomes for

asthma. Moreover, these patients are most challenging to control because of the preexis-

tence of other conditions that could more severely affect a patient than asthma.

• The clustering of the patients reflects different utilization behaviors. While the majority

of the patients utilize the system disparately (Cluster 1), others have a high rate of medica-

tion uptake with little interaction with the system (Cluster 2), with some utilization of the

physician office (Cluster 3) or with high utilization of the physician’s office and high rate

of medication uptake (Cluster 4). There is also a small percentage of patients (3%) who

are higher utilizers of the system, not necessarily with a high medication uptake, that visit

the emergency department or hospital at a higher rate with a 0.2-0.5 probability of being

followed by a hospitalization for most subpopulations.

• The probability of follow-up visits once a patient visits the emergency department or has

a hospitalization is lower than 0.2 for most subpopulations that are not severely ill across

all clusters except for some subpopulations in Clusters 1 and 5. Additionally, except for

healthy patients, the probability of filling a prescription for an asthma controller medication
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after an emergency department visit or hospitalization is lower than 0.5 except for Clusters

2 and 4.

• Most of all visits to a healthcare provider, including a hospital, a clinic or physician, re-

sult in a medication prescription being filled, with a high probability of a refill.

• There are some variations across different urbanicity levels although the variations are

higher between states. GA, LA and MN have a larger percentage of patients who utilize

the system disparately (Cluster 1) while NC and TN have a higher percentage of patients

who are high utilizers of medication (Cluster 4).
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CHAPTER V

CONCLUSION

In this thesis we have provided adaptive and scalable model-based data mining and statis-

tics methods allowing for the extraction of useful knowledge from large, complex datasets.

We have included methods from nonparametric statistics, statistical clustering analysis and

stochastic process modelling, adapting the methods to the data set of interest. With an

exponential increasing rate of healthcare data acquisition, data scientists must continue

to adapt previous useful methodologies to make inference on data of increasing size and

complexity. By studying noisy nuclear magnetic resonance and extremely large, complex

Medicaid claims data in this thesis, we provide methods that could inspire advanced statis-

tical and model-based data mining methods across many types of applications, including

business and finance sectors, for instance. Additionally, our methods make use of model

assumptions that provide for computational ease and elegant simplicity in order that our

inferences are useful and timely for decision makers and practicioners.

In Chapter II our component identification methods provide researchers with potentially

more accurate methods for protein structure identification. We have contributed methods

that provide estimates for the location of components that are potentially obscured by noise

and interference from other components.

In Chapters III and IV we pilot structure identification methods for large-scale claims

data sets using model-based data mining. In particular, in Chapter III we studied the pedi-

atric asthma population with Medicaid coverage in Georgia and North Carolina. By using

a Markov renewal process model we are able to not only estimate underlying utilization

profiles but also produce useful visualizations to inform potential cost-saving interventions

that lead to increased adherence to recommended care guidelines. Additionally, we are able

85



to easily infer the potential cost-savings of such an intervention by manipulating model pa-

rameters. By studying neighboring states with different state-based Medicaid systems we

show that despite the fact that demographic and geographic characteristics are similar be-

tween the two states, Georgia asthma patients tend to have more disparate utilization and

higher admission rates into the emergency room or hospitalizations due to asthma with

more potential for cost-saving interventions.

In Chapter IV we provide methods that overcome some of the shortcoming of the study

in Chapter III, primarily, the inclusion of demographic, geographic, and health character-

istics and a statistically sound handling of missing data. We provide visual summaries of

the effects of controlling and explanatory covariates on healthcare utilization. In particular,

we demonstrate the effects of age, race, health status, Medicaid eligibility reason and pa-

tient history on future healthcare utilization, and provide explanation on future utilization

choices from state, urbanicity, and access measures. We conclude with policy implications

for targeted interventions to improve adherence to recommended care for pediatric asthma.
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APPENDIX A

CHAPTER II: SUPPLEMENTARY MATERIALS

A.1 Proofs
A.1.1 Derivation of the Wavelet Coefficients

One-Dimensional Signal Assume the simplest setting, that of a continuous one-dimensional,

noise free model,

f(x) =
L∑
l=1

Als (x;ωl, τl) =
L∑
l=1

Al exp

{
−1

2

(
x− ωl
τl

)2
}
.

By the fact that the wavelet function is defined to be ψs(x) = s2 d2

dx2
φs(x) and from the

results of Mallat and Hwang (66), we have for a single Gaussian component,

Wf(s, x) ∝ Alsωl,τl ?
d2

dx2
φs(x) = Al

d2

dx2
(sωl,τl ? φs)(x).

We are able to exchange the order of the derivative and the convolution in the previous

equality because the convolution is simply an integral. Bromiley shows that the convolution

of two Gaussian functions is itself a Gaussian function in (13). Therefore we have

Wf(s, x) ∝ −Alτl
d2

dx2
exp

−1

2

(
x− ωl√
τ 2l + s−2

)2
 .

The derivative property of Gaussian functions, dn

dxn
1
τ
φ
(
x
τ

)
= (−1)nHn

(
x
τ

)
1
τ
φ
(
x
τ

)
, gives

us the result:

Wf(s, x) ∝ − Alτl√
τ 2l + s−2

H2

(
x− ωl√
τ 2l + s−2

)
exp

−1

2

(
x− ωl√
τ 2l + s−2

)2
 (6)

where H2(x) is the 2nd Hermite polynomial (the negative in front is the traditional form of

the Mexican hat function).
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By the additivity of the wavelet transform we then have that the wavelet coefficients of

a sum of Gaussian components are

Wf(s, x) =
L∑
l=1

Wfl(s, x) ∝ −
L∑
l=1

Alτl√
τ 2l + s2

H2

(
x− ωl√
τ 2l + s2

)
exp

{
−1

2

(
x− ωl
τl

)2
}
.

(7)

Extension to d-Dimensions Now we extend the derivation results to d-dimensional

Gaussian components. We assume that the noise-free signal takes the form,

f(x) =
L∑
l=1

Als (x;ωl, τl) =
L∑
l=1

Al exp

−1

2

(
d∑

d′=1

xd′ − ωl,d′
τl,d′

)2
 .

We assume that all off-diagonal values for the width matrix τ are 0. With this as-

sumption, we can extend the results of Bromiley (13) to d-dimensions, so that the width

component for dimension d′ is
√
τ 2d′,l + s−2. Using this result and the interchangeability of

the convolution and derivative we can determine that the wavelet coefficients of the sum of

d-dimensional components in the horizontal orientation are, up to scale,

Wf(s, x) ∝ −
L∑
l=1

Al
d2

dx21
exp

−1

2

 d∑
d′=1

xd′ − ωl,d′√
τ 2d′,l + s−2

2 .

Again, using the Gaussian derivative result we have,

Wfl(s, x) ∝ −
L∑
l=1

AlH2

 x1 − ωl,1√
τ 21,l + s−2

 exp

−1

2

 d∑
d′=1

xd′ − ωl,d′√
τ 2d′,l + s−2

2 . (8)

Derivations for dimensions d′ ∈ {2, . . . , d} can be easily found.

A.1.2 Resolution Result

One-Dimensional Signal This proof relies heavily on the roots of the Hermite polynomials

and the Gaussian derivative result. Recall that dn

dxn
1
τ
φ
(
x
τ

)
= (−1)nHn

(
x
τ

)
1
τ
φ
(
x
τ

)
, and

from Equation (6) that the wavelet coefficients of a single Gaussian component are, up to a

shift in location and change in scale,

−CH2

(x
τ

)
exp

{
−1

2

(x
τ

)2}
,
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where C is a positive constant. Then for a pair of of components we have,

−C1H2

(
x

τ1

)
exp

{
−1

2

(
x

τ1

)2
}
− C2H2

(
x− θ
τ2

)
exp

{
−1

2

(
x− θ
τ2

)2
}
. (9)

Proofs of Theorem 1 and Corollary 1:

Suppose we have two Gaussian peaks, with location parameters ωl such that ω1 < ω2,

width parameters τl such that τ1 ≤ τ2 and amplitude A1 = A2. Let θ = |ω1−ω2|. We have

already derived a closed-form expression of the wavelet coefficients. Let’s begin by finding

the local maxima and minima of the wavelet transform of a single Gaussian component.

Taking the derivative of the wavelet coefficients, by the Gaussian derivative property, we

have
d

dx
Wf(s, x) = CH3

(x
τ

)
exp

{
−1

2

(x
τ

)2}
. (10)

Since C and exp(x) are both positive, we know that the roots of Equation (10) must be the

roots of the third Hermite polynomial, x3 − 3x, 0,±
√

3. Call this set of points ξ0.

Consider Figure 22. The minimums and maximums of the 3rd derivative can be found

at the roots of the 4th Hermite polynomial, x4− 6x2 + 3, ±
√

3± 6 ≈ ±.742,±2.334. Call

this set of points ξ1. Furthermore, we have the following property:

∀ x ∈ R,
∣∣∣∣ ddxWf(s, ξ1)

∣∣∣∣ ≥ ∣∣∣∣ ddxWf(s, x)

∣∣∣∣ , (11)

and we can determine the sign of the derivative function.

The derivative of the wavelet coefficients of a pair of Gaussian components is then, up

to a shift in location,

d

dx
Wf(s, x) ∝ H3

(
x

τ1

)
exp

{
−1

2

(
x

τ1

)2
}

+H3

(
x− θ
τ2

)
exp

{
−1

2

(
x− θ
τ2

)2
}
.

(12)

Since A1 = A2 and θ > 0, we are then guaranteed that Equation (12) will be non-

negative at ωl − .742τl, and non-positive at ωl + .742τl because of the property from Equa-

tion (11). This is because
∣∣ d
dx
Wf1(s, ω1 ± .742τ1)

∣∣ ≥ ∣∣ d
dx
Wf2(s, ω1 ± .742τ1)

∣∣, and vice
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Figure 22: Comparison of the Mexican hat function and the 3rd derivative of the Gaussian
function.

versa, and therefore the sign at ωl± .742τl will determine the sign of the sum of the deriva-

tives. Furthermore, the limit towards−∞ is negative while the limit towards∞ is positive.

Therefore, we should be able to find limits on θ such that the derivative goes from nega-

tive, to positive, to negative, back to positive, indicating that two local maxima exist in the

wavelet transform. Both functions in Equation (12) are continuous, ensuring that the sum

is continuous so no discontinuities in the wavelet transform or derivative exist.

Recalling that ω1 < ω2, τ1 ≤ τ2 and θ = |ω1 − ω2|, if θ > .742τ1 + .742τ2 then the

3rd derivative will be negative towards −∞, to positive at −.742τ1, to negative at .742τ1

to positive at θ − .742τ2, back to negative at θ + .742τ2, and finally to positive towards∞.

Therefore we will have two maxima around component locations and a minima in between,

thus de-mixing the two components.

Now suppose that τ2 >
√
3−.742
.742

τ1 ≈ 1.75τ1. (This limit will make sense shortly).

Recalling the roots, ξ0, we know that the values of Equation (9) will be negative from−∞,

positive at ωl − .742τl, negative at ωl + .742τl and back to positive towards ∞. Then if

θ >
√

3τ1, we are assured that between that the Equation (9) will go from positive for

x < ω1, to negative at x = ω + .742τ1, to positive for x ∈ (ω1 +
√

3τ1, ω2), and back
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to negative at ω2 + .742τ2. Therefore, we are insured to have two maxima in the wavelet

transform with a minima in between, thus de-mixing the pair of components.

We now have two conditions for de-mixing a pair of components, and we take the

minimum of each to derive a necessary and sufficient condition for component de-mixing.

If τ2 >
√
3−.742
.742

τ1 ≈ 1.75τ1 then we use the latter condition and vice versa. This concludes

the proof for Corollary 1. These results are not guaranteed to hold when the amplitudes,

A1 and A2 differ because we can no longer assume that | d
dx
Wfl(s, ξ1)| ≥ | ddxWfl(s, x)|

holds for l = 1, 2. Therefore, as stated in Theorem 1 we only have a necessary condition

for de-mixing a pair of components.

Recalling that the wavelet coefficients will have width
√
τ 2 + s−2 instead of τ due to

the convolution result we have now derived the limits of Theorem 1 and Corollary 1.

Multivariate Extension Extending the previous resolution results is straightforward

when comparing Equations (7) and (8). Recall the following results:

Theorem A.1.1 A necessary condition for de-mixing two d-dimensional Gaussian compo-

nents at scale s, is that there must exist some d′ ∈ {1, . . . , d} such that

θd′ = |ω1,d′ − ω2,d′ | > min
{√

3(τ 2d′,1 + s−2), .742
√
τ 2d′,1 + s−2 + .742

√
τ 2d′,2 + s−2

}
.

Corollary A.1.2 If A1 = A2, then a sufficient condition for de-mixing two d-dimensional

Gaussian components is that there must exist some d′ ∈ {1, . . . , d}, such that

θd′ > min
{√

3(τ 2d′,1 + s−2), .742
√
τ 2d′,1 + s−2 + .742

√
τ 2d′,2 + s−2

}
.

Because the structure of the wavelet coefficients are the same except for the exp(x)

portion of the equation we can rely on all of the same arguments. The roots and derivatives

of the Hermite polynomials will be the same as in the one-dimensional proof. Furthermore,

we only need to meet the minimum distance requirements for θ in a single dimension

d′ ∈ {1, . . . , d} and to apply the wavelet transform in that orientation for the results to

hold. Theorem 2 and Corollary 2 easily follow.
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A.1.3 Interference Results

Now we move onto the following interference results,

Lemma A.1.3 Suppose we have a set of 3 components s(x;ω1, τ1), s(x;ω2, τ2), and s(x;ω3, τ3),

with inter-component distances θ1 = |ω1−ω2| and θ2 = |ω2−ω3|, where θ1 << θ2 without

loss of generality. Then the resolution limits from Theorem 2.3.1 are assured to hold for the

pair of components 1 and 2 if θ2 satisfies θ2 > 2.334
√
τ 22 + s−2 + 2.334

√
τ 23 + s−2.

Lemma A.1.4 Suppose we have a set of 3 d-dimensional components s(x;ω1, τ1), s(x;ω2, τ2),

and s(x;ω3, τ3), with inter-component distances θ1 = |ω1− ω2| and θ2 = |ω2− ω3|, where

θ1 << θ2 without loss of generality. Then the resolution limits from Theorem 2.3.3 are

assured to hold for components 1 and 2 if ∀ d′ ∈ {1, . . . , d}, θ2,d′ > 2.334
√
τ 22,d′ + s−2 +

2.334
√
τ 23,d′ + s−2.

The proof of these follow from the fact that the derivative of the 3rd component will

take a negative value at ω3 − 2.334τ3. If A3 > A2, then the sum of the derivatives of

components 2 and 3 are guaranteed to take a negative value at x = ω3 − 2.334τ3, by the

property in Equation (15), and there will be a minimum between components 2 and 3. If

A3 < A2, then the resolution results will not be affected because the amplitude of the

interfering coefficient is too small to interfere with the wavelet coefficients of components

1 and 2.

A.1.4 Lipschitz Exponent of Gaussian

It is well known from Mallat and Hwang that a differentiable function, f(x) is Lipschitz

1, and that its primitive g(x) is Lipschitz 2 (66). We know that the Gaussian function

is infinitely continuously differentiable, specifically, dn

dxn
φ(x) = (−1)nHn(x)φ(x) for all

n > 0. Together with the result on the Lipschitz exponent of primitives it is easy to show

by induction on n that the Lipschitz exponent of a Gaussian function is unbounded.
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Figure 23: Two Lorentzian components with parameters τ = .01 and θ = .0125. The
signal is plotted on top and the three finest scales of the CWT are on the bottom.

A.2 Robustness of the Algorithm: Lorentzian-Shaped Components

In this section we illustrate that the properties of the MHW transform not only apply to

Gaussian-shaped components but to other smooth, symmetric components such as Lorentzian-

shaped components

a(x;x0, γ) =
γ

(x− x0)2 + γ2
,

where x0 is a location parameter and γ is the scale parameter. Define θ as before to be the

distance between two components. We show in Figure 23 the ability of the MHW to both

locate and separate two Lorentzian components.

At the coarsest scale it is clear that a component exists in the center of the domain

and in the finer scales, the MHW transform contains two maxima at the locations of the

two Lorentzian peaks. Also, notably, the MHW transform can discern Lorentzian-shaped

components at a much smaller θ than is possible with Gaussian-shaped components.
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APPENDIX B

CHAPTER III: SUPPLEMENTARY MATERIALS

B.1 Derivation of the Utilization Sequences

A utilization sequence for an asthma-diagnosed child is derived based on the following

set of information available in the Centers for Medicare and Medicaid (CMS) Medicaid

Analytical Extract (MAX) medical claims data:

• Primary and secondary asthma diagnosis ICD-9 codes: We extract only those claims

with the following asthma-related ICD-9 codes: 493.00, 493.01, 493.02, 493.10, 493.11,

493.12, 493.20, 493.21, 493.22, 493.81, 493.82, 493.90, 493.91, 493.92. These are the

only diagnosis codes corresponding to an asthma diagnosis available in the MAX files.

• Type of service and Place of Service codes: Both codes are available for each claim

from the IP and OT files of the MAX extract. They are used to derive a provider type for

each medical visit as shown in Table B.1.

• National Drug Code of Long-term asthma control medications: These medications

are taken regularly to control chronic symptoms and prevent asthma attacks and can be

Table 2: Provider Type Crosswalk

Type of Service Code Logic Place of Service Code Provider Type
12: Clinic OR 50: Federally qualified CL

health center;
71: State or local
public health clinic;
72: Rural health clinic

11: Outpatient hospital OR 23: Emergency room ER
01: Inpatient hospital AND Any HO
37: Nurse practicioner services AND 11: Office NP
08: Physicians AND 11: Office PO
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found in the RX file of the MAX extract. The medication types include: Inhaled Corticos-

teroids, Long-Acting Beta-Agonists (LABAs), Cromolyn and Tehophylline, Leukotriene

Modifiers and Immunomodulators. We consider the claim for asthma control medication

as an event type (RX) in the stochastic network analysis.

• Service begin date as the start time of the event: Multiple claims in a single day

are considered as one visit and the corresponding type of provider is defined by the care

provider based on the first claim for each date.

B.2 Markov Renewal Process: Proofs and Derivations
B.2.1 Likelihood Function Derivations

In this first subsection we provide derivations for the likelihood functions in Equations (1)

and (2) in Section 3.3.

Discrete Time Markov Chain Likelihood Derivation Consider a discrete time Markov

chain (DTMC) with a sequence of events denoted by ~XL = (X1, . . . , XL). The derivation

of the likelihood function in equation (2) from Section 3.3 is given below:

L(P | ~XL) = Pr( ~XL = ~sL) = Pr(XL = siL| ~XL−1 = ~sL−1)

×Pr(XL−1 = siL−1
| ~XL−2 = ~sL−2)× · · · × P (X2 = si2|X1 = si1)× P (X1 = si1)

= Pr(XL = siL|XL−1 = siL−1
)× Pr(XL−1 = siL−1

|XL−2 = siL−2
)

× · · · × Pr(X2 = si2|X1 = si1)× Pr(X1 = si1)

= PsiL−1
,siL
× · · · × Psi1 ,si2 × PLC,si1 =

L∏
l=1

Psil−1
,sil
× PLC,si1

Markov Renewal Process Likelihood Derivation: Assuming that a patient sequence of

events with timestamps follow a Markov renewal process, denoted by ( ~XL, ~TL), we provide
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the derivation of the likelihood function from equation (2) in Section 3.3:

L(P,Λ| ~XL, ~TL) = Pr( ~XL = ~sL, ~TL = ~τL)

= P (XL = siL , TL = τL| ~XL−1 = ~sL−1, ~TL−1 = ~τL−1)

× · · · × P (X2 = si2 , T2 = τ2|X1 = si1 , T1 = τ1)× P (X1 = si1 , T1 = τ1)

= Pr(XL = siL , TL = τL|XL−1 = siL−1
)

×Pr(XL−1 = siL−1
, TL−1 = τL−1|XL−2 = siL−2

)

× · · · × Pr(X2 = si2 , T2 = τ2|X1 = si1)× Pr(X1 = si1)

Next we make use of the following conditional probability rule:

Pr(Xl = sil , Tl = τl|Xl−1 = sil−1
)

= Pr(Tl = τl|Xl−1 = sil−1
, Xl = sil)× Pr(Xl = sil |Xl−1 = sil−1

).

Combining the two previous equations completes the derivation.

B.2.2 Derivation of the KL Distance

Step (2) of the algorithm in Section 3.3 requires the calculation of the KL distance between

the estimated one-step transition distributions of each patient sequence and the overall pop-

ulation. Let P̄ be the transition matrix corresponding to profile k, and P be the transition

matrix of observation r belonging to profile k. Likewise, let Λ̄ contain the MLEs for the ex-

ponentialy distributed interarrival times for profile k, and Λ contain the MLEs for observa-

tion r belonging to profile k. Let P̄i,j , Pi,j , Λ̄i,j , and Λi,j denote the transition probabilities

and expected interarrival times between states si and sj . We can now derive a closed-form

solution of the average KL distance between the transition distributions out of state si for

an individual and a population.

Consider a utilization sequence such that Xl = si at time t. We want to compare the

probability of transition at time T + τ to state sj of the patient to that of the all patients

within the profile, where T was the last arrival time. This distribution is a finite mixture of
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exponential distributions: given that the next event is state sj occuring with probability Pij ,

the interarrival time is given by Exp(λij). Using the P and Λ matrices we derive the KL

distance between the individual and cluster distributions:

d(P,Λ||P̄ , Λ̄) =
∑
j

∫ ∞
0

Pi,jλi,j exp{−λi,jτ} × log
(
Pi,jλi,j exp{−λi,jτ}
P̄i,jλ̄i,j exp{−λ̄i,jτ}

)
dτ

=
∑
j

Pi,j

∫ ∞
0

λi,j exp{−λi,jτ} ×
[

log
(
Pi,jλi,j
P̄i,jλ̄i,j

)
+ log

(
exp{λ̄i,jτ − λi,jτ}

)]
dτ

=
∑
j

Pi,jlog
(
Pi,j/P̄i,j

)
+ log

(
λi,j/λ̄i,j

)
+ λ̄i,j

∫ ∞
0

τλi,j exp{−λi,jτ}dτ

−λi,j
∫ ∞
0

τλi,j exp{−λi,jτ}dτ

=
∑
j

Pi,j
[
log
(
Pi,j/P̄i,j

)
+ log

(
λi,j/λ̄i,j

)
+ λ̄i,j/λi,j − 1

]
Finally, we want to average across all states si, i ∈ {1, . . . , S}, so we use the measure:

Dave(P,Λ||P̄ , Λ̄) =

∑S
i=1 d(P,Λ||P̄ , Λ̄)

S
.

B.3 Quantifying Cost-Saving Interventions

In this section we describe the methods for quantifying the cost-savings of interventions

that bend the adherence levels of patients to recommended care guidelines.

In Section 3.4 we provide a figure of the cost savings at various levels of improvement

of adherence to recommended care guidelines. Now we clarify our approach. We desire to

quantify the potential cost savings of a patient who after an ER or HO visit follows up with a

PO or RX visit. We assume that we cannot change the initial transition probability to an ER

or HO visit, and can only intervene afterwards to reduce readmission rates. Furthermore,

we assume that any transition into the ER or HO after previous visits to PO and RX are

likely to be due to emergencies and cannot be prevented. Under these assumptions, we can

manipulate the transition matrix Pk in the following manner:

1. Given a transition matrix Pk, find the total transition probability from ER or HO back

into ER or HO.
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Table 3: Expected Cost-Savings Per Patient

Adh. Improvement GA Prof. 1 GA Prof. 2 GA Prof. 3 GA Prof. 4
Current Cost $107.35 $592.74 $626.10 $1,054.77

25% $0 $5.03 $17.89 $52.91
50% $0 $9.57 $32.96 $96.17
75% $0 $13.72 $45.79 $132.16

100% $0 $17.53 $56.90 $162.63
NC Prof. 1 NC Prof. 2 NC Prof. 3 NC Prof. 4

Current Cost $1268.87 $699.91 $654.17 $2,479.66
25% $1.02 $1.83 $3.38 $64.39
50% $2.02 $3.54 $6.36 $117.23
75% $2.95 $5.12 $8.99 $161.43

100% $3.82 $6.58 $11.38 $198.84

2. Re-weight part (or all) of this transition probability into the PO or RX nodes, propor-

tional to the initial transition weights into PO or RX from ER or HO.

3. Re-calculate the expected number of visits to each state.

4. Multiply the expected number of visits to each state by the average cost per visit to

each state in order to get the new expected cost per patient over the five year timespan.

The potential cost savings for each profile at 25%, 50%, 75%, and 100% adherence

improvements to recommended care guidelines are given in Table B.3.

B.4 Interarrival Times

We provide the average interarrival times of the predominant transitions between the dif-

ferent provider types in Tables 4 and 5.

B.5 Model Selection

In this section we provide clustering trees for GA and NC, respectively in Figure 24. In

the clustering trees, we plot the divisions of patients into underlying utilization profiles,

represented as nodes, where each node is represented by a pie chart displaying the propor-

tion of the contributions of the non-RX visits. The size of the nodes are proportional to
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Table 4: Average interarrival times (in months): GA, Profiles 1-4 from top to bottom, left
to right

CL ER HO PO RX
CL – – – – –
ER – – – – –
HO – – – – –
PO – – – 8.2 5.0
RX – – – 1.7 1.4

CL ER HO PO RX
CL – – – – –
ER – – – – –
HO – – 7.3 0.6 1.0
PO – – 1.8 5.2 1.1
RX – – 0.7 0.4 1.5

CL ER HO PO RX
CL 1.4 – – 8.1 10.4
ER – 8.5 – 0.8 8.7
HO – – – – –
PO 1.4 9.2 – 2.3 2.1
RX 7.6 7.0 – 4.5 4.2

CL ER HO PO RX
CL – – – – –
ER – 4.8 5.1 6.3 2.3
HO – 5.6 4.0 7.6 5.0
PO – 5.1 9.1 3.9 5.3
RX – 2.8 5.0 0.8 2.2

Table 5: Average interarrival times (in months): NC, Profiles 1-4 from top to bottom, left
to right

CL ER HO PO RX
CL – – – – –
ER – – – – –
HO – – – – –
PO – – – – –
RX – – – – 1.5

CL ER HO PO RX
CL – – – – –
ER – – – – –
HO – – – – –
PO – – – 6.3 1.2
RX – – – 0.4 1.5

CL ER HO PO RX
CL 0.1 – – 8.1 8.2
ER – – – – –
HO – – 5.8 9.9 9.7
PO 7.8 – 10.6 5.7 7.1
RX 5.2 – 9.8 5.2 5.3

CL ER HO PO RX
CL – – – – –
ER – 4.0 1.9 2.2 2.4
HO – 5.6 2.8 2.5 2.4
PO – 4.0 3.9 2.0 2.2
RX – 2.7 2 1.0 2.1

99



Figure 24: The clustering trees for GA (left) and NC (right). Here the nodes are located
along y-axes according to the BIC score prior to the next splitting iteration. (Note: the
y-axes in the two graphs are not on the same scale.) The size of each node is determined
by the proportion of the population contained within the node. We do not include RX
encounters in these charts in order to compare the visits to different provider types. The
profiles we examine in our network graphs are labeled.

the percentage of the patient population contained in each node. The tree is laid out such

that the splits occur at the value of the BIC score prior to the split. We do not include all

splits in the tree graphs because divisions that occur further down in the trees tend to cap-

ture outlier profiles with low membership and are redundant in terms of the provider types

they contain. Such divisions will be useful if the emphasis is on the identification of outlier

behaviors; our objective in this study is to characterize underlying profiles.

The tree graphs for GA and NC have multiple notable characteristics in common. The

nodes on the right side of the tree are more variational and result in larger improvements

in the BIC score. The nodes on the left side are primarily composed of HO and PO visits

and are typically less variational in terms of utilization. In the second partition in Figure

24, the patients belonging to Profile 1 in GA solely utilize PO (23%), while Profile 2 is

almost evenly split between HO and PO visits (32%). On the right side of the tree, the

delineation between provider types per profile is unclear; however, the networks in Figure
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2 of the main text show that Profile 3 (23%) contains more CL visits than Profile 4 (22%),

which has more ER and HO visits.

The NC clustering tree splits patients into seemingly similar profiles. Profile 1 (29%)

almost solely consists of RX encounters with very little contribution from the other provider

types and Profile 2 (20%) is dominated by PO visits. Similarly to GA, the second division

on the right side does not separate patients into homogeneous clusters based on provider

types; however, from the networks in Figure 3 of the main text, Profile 3 (30%) contains

more CL visits, while Profile 4 (21%) is more evenly split between ER and HO visits.

While the division patterns are similar across both states, the pie charts corresponding

to the cluster nodes indicate a greater dependence on HO in GA than in NC, where a higher

rate of PO utilization occurs. Furthermore, referring to Figure 24, the clustering algorithm

has better results in NC as indicated by the faster decrease in BIC scores in earlier divisions,

indicating that NC may have more heterogeneous utilization patterns.

Figure 25 plots the (negative) BIC score and improvements with the addition of each

profile for GA and NC, respectively. The BIC improves up until there are 126 and 79

profiles for GA and NC, respectively. If one considered all possible profiles, the results

of the clustering analysis would be unintelligible simply because of the large number of

profiles and parameters. Therefore, we look for the point in the BIC curve where the

improvements with each profile division are small enough such that they no longer warrant

higher model complexity in terms of additional profiles. In this case, we would select the

first 30 profiles for GA and 25 for NC. As stated previously, further splits tend to isolate

outlying behaviors while not necessarily capture the underlying profile structures.

B.6 Enrollment Lapse Summary

In this section we summarize the enrollment patterns of Medicaid eligible children within

our study. To begin, we provide a summary of the enrollment behaviors and reasons for

enrollment in Tables 6 and 7.
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Figure 25: Plot of the negative BIC score and improvements with the number of profiles on
the x-axis for GA (left) and NC (right). Note that we use two different y-axes for the BIC
score and improvements.

Table 6: Months of Enrollment by Profile and Enrollment Reason (Blind/Disabled, Foster
Care, Other): GA

Pr. BD FC Oth Possible Enr. Mths Event Rate Mulitplier
1 95,820 47,274 937,282 1,653,120 1.53
2 144,645 57,473 1,227,858 2,298,288 1.61
3 119,792 40,198 1,023,210 1,670,796 1.41
4 139,816 42,735 1,048,028 1,624,152 1.32

As we state in Section 3.5, one of the shortcomings of modelling claims data as longitu-

dinal utilization sequences is the fact that claims data are incomplete. Using the maximum

likelihood estimator of the rate of events from a censored survival model where the inter-

arrival times between events are assumed to be exponentially distributed we provide an

event rate mulitplier (22). This multiplier suggests that if patients have the same utiliza-

tion behavior when unenrolled as they do when they are enrolled, then the frequency of

events will increase by the amount in the event rate multiplier. However due to the fact

that the majority of patients are enrolled for reasons other than being blind or disabled it is

highly unlikely that they have other types of insurance. We can, therefore, suggest that the

majority of patients will be visiting only the emergency room during times of unenrollment.
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Table 7: Months of Enrollment by Profile and Enrollment Reason (Blind/Disabled, Foster
Care, Other): NC

Pr. BD FC Oth Possible Enr. Months Event Rate Multiplier
1 154,400 57,318 1,460,626 2,430,396 1.45
2 101,160 31,022 973,837 1,609,896 1.46
3 171,866 44,560 1,627,954 2,429,628 1.32
4 147,076 26,608 1,126,189 1,692,372 1.30
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APPENDIX C

CHAPTER IV: SUPPLEMENTARY MATERIALS

C.1 Patient Data Summaries

This appendix contains basic patient summaries for each of the clusters in Tables 8, 9, and

10. Table 8 gives the number of events for each type and cluster. Table 9 gives the total

exposure (in years) across all patients in each cluster for each of the control covariates. We

present exposure here instead of patient counts because the primary survival model input

is exposure, not patient count. Table 10 gives the total number of patients in each cluster

stratified by state and urbanicity.

C.2 Sample Patient Data

In this appendix, we present an example of a virtual patient to demonstrate of how the

patient level data is transformed into the model inputs. Consider patient A who enters

the system 30 days into the measurement period, visits the emergency room on days 90,

125, and 270 and fills a prescription for an inhaler on days 155 and 300. Suppose that

the patient’s Medicaid enrollment lapses between days 100 and 115. Let the length of the

measurement period be 365 days. Table 11 provides a data summary for patient A. Table

12 demonstrates how the input table would be shaped for our estimation algorithm with

Table 8: Event Counts by Cluster

Event Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total
CL 32,759 7,003 14,970 10,158 39,359 104,249
ER 86,410 16,975 24,709 13,927 19,410 161,431
HO 95,398 23,884 23,695 19,344 29,154 191,475
NP 18,700 6,704 3,797 3,770 6,141 39,112
PO 290,212 38,676 297,999 126,677 30,940 784,504
RX 450,456 655,085 444,585 1,020,559 104,473 2,675,158
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Table 9: Exposure (in years) by Cluster and Control Variable

Var. Family Var. Value Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Exposure Total 930,365 253,665 220,521 143,076 37,538

Age Group 4-5 395,286 107,361 94,376 63,915 14,701
6-14 513,240 139,965 121,934 76,421 21,991

15-17 21,839 6,339 4,211 2,740 846
Race White 393,511 118,066 92,889 71,209 16,700

Black 433,568 107,513 101,917 53,516 15,710
Other 103,286 28,086 25,715 18,351 5,128

Health Healthy 492,493 119,387 103,052 55,877 14,287
Status Minor 162,819 45,748 30,631 23,521 3,913

Chronic 268,704 86,037 85,828 61,389 18,787
Severe 6,349 2,494 1,010 2,290 551

Medicaid Blind/Disabled 85,004 24,888 18,832 17,970 5,458
Eligibility Foster Care 21,263 6,390 5,054 4,855 1,067

Other 824,098 222,387 196,635 120,251 31,013

Table 10: Patient Counts by Cluster

Var. Family Var. Value Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Count Total 237,693 68,640 64,357 44,003 11,707
State GA 54,196 7,220 15,337 6,755 4,018

LA 60,892 15,911 9,013 5,500 874
MS 16,283 9,528 2,155 3,375 954
MN 1,404 5,396 1,606 1,826 808
NC 44,757 14,720 21,558 14,616 2,842
TN 46,162 16,314 14,689 11,930 2,210

Urbanicity Urban 173,644 45,331 48,435 31,142 8,730
Suburban 49,403 16,376 13,412 9,511 2,058

Rural 14,647 6,931 2,510 3,350 919
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Table 11: Sample Data Summary

Start Time Stop Time Event Type Health Status
30 90 ER Chronically Ill
90 100 0 Chronically Ill

115 125 ER Chronically Ill
125 155 RX Chronically Ill
155 270 ER Chronically Ill
270 300 RX Chronically Ill
300 365 0 Chronically Ill

Table 12: Sample Input for Estimation Algorithm

τ δER(τ) δPO(τ) δRX(τ) Dr,1(τ): Last Event Dr,2(τ): Health Status
60 1 0 0 0 0
10 0 0 0 ER 0
10 1 0 0 ER 0
30 0 0 1 ER 0

115 1 0 0 RX 0
30 0 0 1 ER 0
65 0 0 0 RX 0

last event type as a covariate in the study. This example demonstrates how our algorithm

handles censoring, multivariate survival data, and time varying covariates.

One property of the exponential baseline assumption is that we can simply subtract the

start time from the stop time due to the memoryless property of the exponential and use the

same interarrival time across all event types but with different event indicator values. This

allows for extreme computational efficiency that reduces to simple matrix algebra when

estimating the coefficients ~β. For other distributions, such as the Weibull or log-logistic,

we would not be able to simply subtract the start times from the stop times in order to get

the length of the time period until event or censoring, thus greatly increasing the complexity

of the algorithm. Furthermore, as shown in Appendix C.3, with the exponential distribution

we can derive simply the provider transition networks.
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C.3 Proportional Hazards and Multinomial Coefficients and Interpreta-
tions

In this appendix, we provide the parameters from the model and explain how we derive

the numerical outputs depicted in the figures in Section 4.4. Table 13 contains the raw

proportional hazards parameters from the algorithm. In order to get the baseline rates and

their multipliers from Sections 4.1.1 and 4.1.2, respectively, we simply take exp(β), where

β is the coefficient value.

In order to determine the provider networks from Section 4.4 we first must determine

the event rates for the different subpopulations. The subpopulation in Figure 3 of the main

text are white patients, aged 4-5, who are neither blind nor disabled or in foster care. The

middle column of networks pertains to chronically ill patients and the rate parameters are

λ0ks = exp(β0ks), where β0ks are the baseline proportional hazard coefficients for cluster

k and event s. Let βHealthy,s and βSevere,s be the coefficients for the healthy and severely ill

patients, respectively. Then the event rates for these two groups are exp(β0ks × βHealthy,s)

and exp(β0ks×βSevere,s). Furthermore, we can determine the rates for, say, a healthy patient

with a last visit of CL by calculating exp(β0ks × βHealthy,s × βCL,s). Now we employ the

following result on exponential random variables.

Let T1, . . . , T|S| be exponentially distributed random variables for the interarrival times

for events 1, . . . , |S| with parameters λ1, . . . , λ|S|. Then it can be easily shown that the

probability that Ts is the smallest of T1, . . . , T|S| is

λs
λ1 + · · ·+ λ|S|

.

These probabilites are the transition probabilities depicted in the provider networks.

The multinomial logistic regression model parameters are given in Table 14. Tables 15

through 19 contain the average interarrival times in years between events for the baseline

group for Clusters 1-5. This is equal to exp(−β0ksβs,Event).
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Table 13: Proportional Hazards Coefficients

Var. Family Var. Value CL ER HO NP PO RX
Baseline k = 1 -2.80 -2.69 -2.15 -4.61 -1.37 -0.92

k = 2 -4.31 -4.26 -2.76 -5.68 -3.58 0.44
k = 3 -1.18 -4.34 -4.09 -5.90 -1.20 0.13
k = 4 -2.55 -1.74 -1.54 -3.67 -0.06 1.46
k = 5 -1.39 -1.73 -1.20 -3.74 -1.89 0.41

Medicaid Blind/Disabled 0.22 -0.16 -0.10 -0.34 -0.31 0.05
Eligibility Foster Care -0.01 -0.72 -0.40 -0.29 -0.24 0.13

Health Healthy -1.18 -2.34 -2.24 -2.10 -2.11 -0.75
Condition Minor Ilness 0.22 -0.04 0.20 0.27 0.24 0.43

Severe Illness 1.56 1.39 1.92 1.01 1.38 0.70
Race/ Black 0.23 0.72 0.36 0.05 0.02 -0.07

Ethnicity Other 0.21 0.31 0.29 0.03 0.14 -0.15
Age Group 6-14 -0.44 -0.10 -0.05 -0.12 -0.15 -0.02

15-18 -0.09 0.44 0.42 0.22 0.20 -0.07
Previous CL 2.64 -0.37 1.29 0.07 0.42 0.49

Event ER 0.33 0.99 1.33 0.37 0.31 0.52
HO 0.23 0.12 0.01 -0.06 0.11 0.58
NP 0.00 -0.32 -0.36 3.23 0.15 0.76
PO 0.51 -0.27 -0.16 0.32 0.79 0.80
RX 0.36 -0.22 0.01 0.92 0.80 1.03

Table 14: Multinomial Logistic Regression Coefficients

Var. Family Var. Value k = 1 k = 2 k = 3 k = 4
Baseline -0.11 1.79 0.56 -0.79

State LA -0.99 -0.70 -1.35 -2.34
MS -0.90 -1.37 -2.05 -1.60
MN -1.04 -1.00 -2.01 -1.36
NC 0.10 -0.86 -0.34 -1.01
TN -0.22 -0.95 -0.83 -1.39

Urbanicity Suburban -0.12 -0.05 -0.10 -0.25
Rural -0.17 -0.27 -0.66 -0.18

Access Travel 0.16 0.55 0.55 0.57

Table 15: Average Interarrival Times (in years): Cluster 1

Previous Event CL ER HO NP PO RX
CL 1.71 8.28 6.83 31.57 1.24 1.46
ER 17.12 2.12 1.70 23.23 1.38 1.41
HO 18.96 5.04 1.64 35.83 1.71 1.33
NP 23.73 7.86 8.90 1.33 1.63 1.11
PO 14.30 7.51 7.30 24.56 0.86 1.07
RX 16.67 7.11 6.11 13.42 1.63 1.11
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Table 16: Average Interarrival Times (in years): Cluster 2

Previous Event CL ER HO NP PO RX
CL 2.05 11.28 6.98 31.60 3.15 0.33
ER 20.52 2.89 1.74 23.25 3.51 0.32
HO 22.72 6.86 1.68 35.86 4.33 0.30
NP 28.45 10.71 9.09 4.13 1.33 0.25
PO 17.14 10.23 7.46 24.47 2.19 0.24
RX 19.98 9.69 6.25 13.43 2.17 0.19

Table 17: Average Interarrival Times (in years): Cluster 3

Previous Event CL ER HO NP PO RX
CL 1.00 7.43 6.37 44.27 0.40 0.41
ER 10.00 1.91 1.59 32.58 0.45 0.40
HO 11.08 4.52 1.53 50.24 0.55 0.38
NP 13.88 7.06 8.30 1.86 0.53 0.32
PO 8.36 6.74 6.81 34.29 0.28 0.30
RX 9.75 6.38 5.70 18.81 0.28 0.24

Table 18: Average Interarrival Times (in years): Cluster 4

Previous Event CL ER HO NP PO RX
CL 0.91 8.26 5.12 36.75 0.69 0.14
ER 9.17 2.12 1.28 27.04 0.77 0.14
HO 10.16 5.03 1.23 0.95 41.70 0.13
NP 12.72 7.85 6.68 1.54 0.91 0.11
PO 7.66 7.50 5.48 28.47 0.48 0.10
RX 8.92 7.10 4.59 15.62 0.48 0.08

Table 19: Average Interarrival Times (in years): Cluster 5

Previous Event CL ER HO NP PO RX
CL 0.12 2.12 1.42 0.32 6.99 0.72
ER 1.23 0.54 0.35 5.14 0.80 0.31
HO 1.36 1.29 0.34 7.93 0.99 0.29
NP 1.70 2.01 1.85 0.29 0.95 0.25
PO 1.03 1.92 1.52 0.24 5.41 0.50
RX 1.20 1.82 1.27 0.19 2.97 0.50
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Figure 26: The resulting log-likelihood plotted from N = 10 different initializations for
K = 3, . . . , 9 clusters. We chose the model that resulted in the highest likelihood after
convergence, with K = 5 clusters denoted by N.

C.4 Proportional Hazards Mixture Model Selection

In this appendix, we describe the initialization of the algorithm in order to produce the

results in Section 4.4.1.3. We use a random initialization withK = 3, 4, . . . , 9 clusters. The

random initialization begins with a random (hard) clustering assignment for each patient

to a cluster k, k ∈ {1, . . . , K}. That is, Z(1)
r has only one entry with value one and all

others are zero. The vector~b begins with all values set to 0, such that πrk = 1/K for all k

and for all r. The EM algorithm then proceeds through the iterations to find the maximum

likelihood given this initialization. We repeat this with 10 different random initializations

for each value of K.

Figure 26 displays the resulting likelihood of each of the initializations. In this article

we present the model outputs from the initialization that produces the highest likelihood.
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C.5 Statistical Significance of Proportional Hazards and Multinomial
Coefficients

While the study in Chapter IV focuses on the practical significance of the effects of the

covariates on patient utilization we present a summary of the statistical significance of the

parameter estimates in this appendix. We calculate the estimates of the variance of the

parameters by first finding the estimate for the Fisher information. The Fisher information

is

I(θ) = −E
[
∂2

∂θ2
logf(X|θ)

∣∣∣∣θ] ,
where θ is a model parameter and X is a random variable. In our case, we do not know the

parameters ~β and ~b, and thus we must estimate the Fisher information. We have already

calculated the 2nd derivative of the log-likelihood function with respect to βps, β0ks, and

bjk in Section 3.3.3 from the main text. Then the estimates for the Fisher information are

Î(βps) = I(β̂ps) =
∑
r,k,lr

[
τlrẐrkD

2
rp(τlr) exp

{
β̂ks

ᵀ
Dr(τlr)

}]
,

Î(β0ks) = I(β̂0ks) =
∑
r,lr

[
Ẑrkτlr exp

{
β̂ks

ᵀ
Dr(τlr)

}]
, and

Î(bjk) = I (̂bjk) =
R∑
r=1

π̂rk(1− π̂rk)E2
rj.

We use Wald’s test statistic in order to calculate the p-value of the parameters,

θ̂ − 0

V̂ (θ)
,

where V̂ (θ) = 1/I(θ̂), and θ = {βps, bjk}. That is, we assume that the control and ex-

planatory covariates have no effect on the baseline rate of events or cluster membership,

respectively. There are only 6 combinations of event types and control covariates for which

the p-value is greater than 0.001: Race: Other, NP (p-value = 0.036); Minor Illness, ER

(p-value = 0.001); Prior Event: CL, NP (p-value = 0.099); Prior Event: HO, NP (p-value =

0.027), Prior Event: NP, CL (p-value = 0.921), and Foster Care, CL (p-value = 0.777). All

of the multinomial logistic regression parameter estimates are significant at a α = 0.001
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Table 20: 99% Confidence Intervals for Baseline Rates by Event and Cluster

Event k = 1 k = 2 k = 3 k = 4 k = 5
CL (0.041, 0.043) (0.034, 0.036) (0.070, 0.074) (0.076, 0.081) (0.572, 0.599)
ER (0.172, 0.177) (0.125, 0.132) (0.190, 0.199) (0.170, 0.180) (0.666, 0.701)
HO (0.159, 0.164) (0.154, 0.162) (0.169, 0.177) (0.210, 0.220) (0.759, 0.793)
NP (0.029, 0.031) (0.028, 0.031) (0.020, 0.022) (0.024, 0.027) (0.128, 0.141)
PO (0.523, 0.532) (0.204, 0.211) (1.611, 1.637) (0.935, 0.955) (0.890, 0.922)
RX (0.419, 0.424) (1.834, 1.853) (1.477, 1.494) (4.266, 4.307) (1.884, 1.923)

critical value. For the baseline rates, we provide 99% confidence intervals in Table 20.

From this table we can see that the following cluster pairs and event types have statistically

insignificant differences at the α = 0.01 confidence level: Clusters 1 and 2: HO and NP;

Clusters 1 and 4: ER. These findings suggest that the practical interpretations provided in

the main body of the paper are also statistically significant with few exceptions.

C.6 Additional Transition Networks

In this appendix, we provide the provider transition networks for the other covariate familes:

age group, race/ethnicity, and Medicaid eligibility categorization in Figures 27, 28, and 29,

respectively. In each case, we consider the baseline group for the other covariates.

The Age networks do not show that Age 6-14 patients show higher probability connec-

tions into HO, but less variation otherwise while and more reliance on RX while Age 15-17

shows greater variation in provider types with more transitions leading to CL, ER, HO, and

PO. The Race networks have the same pattern with greater variations for Black and Other

groups in Cluster 1, 3, and 5. Clusters 2 and 4 non-white patients utilize more HO and

PO, respectively. Finally, it appears that for the baseline group Blind/Disabled and Foster

Care patients have less variation than those in Other and have stronger transitions leading

to RX. These plots show that except for the Medicaid Eligibility variable the baseline group

is less variational than others indicating a possibility that white children, age 4-5 are better

managed in asthma care.
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Figure 27: Provider networks for Age subgroups induced from the proportional hazards
coefficients. The following rules were used in setting the grayscale of the coefficients and
nodes: < 0.2→ not shown/white, [0.2, 0.5)→ gray, and ≥ 0.5→ black.
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Figure 28: Provider networks for Race induced from the proportional hazards coefficients.
The following rules were used in setting the grayscale of the coefficients and nodes: <
0.2→ not shown/white, [0.2, 0.5)→ gray, and ≥ 0.5→ black.
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Figure 29: Provider networks for Medicaid Eligbility subgroups induced from the propor-
tional hazards coefficients. The following rules were used in setting the grayscale of the
coefficients and nodes: < 0.2→ not shown/white, [0.2, 0.5)→ gray, and ≥ 0.5→ black.
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