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LIST OF FIGURES 

Figure 1.1 A diagram of a chain of lymphangions in a lymphatic vessel. Each 

lymphangion is a section of lymphatic vessel that contains a bi-leaflet 

lymphatic valve. Lymphatic vessels produce a net lymph flow (here 

shown left to right) through periodic contractions combined with 

unidirectional lymphatic valves that open and close due to fluctuating 

pressure throughout the contraction cycle. 

2 

Figure 2.1 Schematic of LBM lattice in D3Q19 model. Arrows represent 

different discrete velocities 𝒄𝑖. 

13 

Figure 2.2 a) A single cell of a two-dimensional triangular LSM lattice. The 

dashed hexagon notes the boundary of a unit cell surrounding node 𝑖. 
Nodes with masses are represented in circles while solid lines indicate 

spring connections between neighboring nodes. For each pair of node-

to-node connection like 𝑖𝑗 pair, a stretching spring of stiffness 𝑘𝑠 is 

applied while a colinear triple like 𝑘𝑖𝑗 creates a set for bending spring 

with stiffness 𝑘𝑏. b) A segment of three-dimensional triangular prism 

lattice. A node 𝑖 connects to 20 neighboring nodes but is shown to be 

connected to only a fragment of the entire connection due to only one-

sixth of the entire network shown. Same rule for creating stretching 

pair and bending triple applies as in the two-dimensional cases. 

However, the stretching spring constants differ depending on whether 

the node pair connects two nodes on the same triangular layer (𝑘1), 

two nodes on different triangular layer but vertically above or below 

(𝑘2), or two nodes on different layers with diagonal connection (𝑘3). 

17 

Figure 3.1 a) Simplified geometric model of a lymphangion consisting of a 

cylindrical vessel and valve. Note that the semicircular cutout can 

look elliptical when viewed from an angle. b) Shape and dimensions 

of the valve leaflet from Fig 3.1a. The red line marks the locations at 

which the valve leaflets are attached to the vessel walls, and the blue 

circle marks the region removed from the geometry to give it a 

crescent shape. c) Image of a lymphatic vessel segment containing a 

valve, given as a comparison to our simplified model. 

24 

Figure 3.2 Images of lymphatic vessels with valves, excised from various vessel 

locations and species, given in order of increasing aspect ratio. a) rat 

thoracic duct: 𝑑 ≈ 550μm , 𝐿 ≈ 640μm  and 𝐴𝑅 ≈ 1.15 , b) sheep 

popliteal lymphatic vessel: 𝑑 ≈ 650μm , 𝐿 ≈ 810μm  and 𝐴𝑅 ≈
1.25, c) rat cervical lymphatic vessel: 𝑑 ≈ 440μm, 𝐿 ≈ 660μm and 

𝐴𝑅 ≈ 1.5, and d) rat mesenteric lymphatic vessel: 𝑑 ≈ 110μm, 𝐿 ≈
295μm and 𝐴𝑅 ≈ 2.7. e) Two rat tail lymphangions (valves noted in 

red) in series with 𝑑 ≈ 220μm, 𝐿 ≈ 660μm, and 𝐴𝑅 ≈ 3. The upper 

31 



 ix 

image shows the closure of the central valve with other valves open, 

while the lower image shows the same lymphangions but with the 

central valve now open and the other two valves closed. This shows 

how lymphangions in a chain work together to create a unidirectional 

flow. 

Figure 3.3 Plot of normalized valve resistance and conductance of lymphatic 

valves to forward and backward flow, respectively, for various aspect 

ratios 𝐴𝑅 for a fixed vessel size and normalized stiffness values of 

𝐾𝑏,𝑟 = 0.25  and 𝐾𝑏,𝑟 = 0.7 . a) Normalized resistance to forward 

flow. The markings a-e and dotted vertical lines correspond to the 

aspect ratios of the valves shown in Figure 3.2a-e, respectively. Also 

note that 𝐾𝑠,𝑟  is varied between 𝐾𝑠,𝑟 = 0.07  and 0.23  for selected 

values of 𝐴𝑅 at 𝐾𝑏,𝑟 = 0.7. b) Normalized conductance to back flow. 

Labels for d and e are not shown as the solution converges to zero for 

𝐴𝑅 > 1.5. The same 𝐾𝑠,𝑟 variation is studied for selected values of 

𝐴𝑅 at 𝐾𝑏,𝑟 = 0.7 as was used in a). 

32 

Figure 3.4 a) Normalized valve resistance to forward flow for 𝐴𝑅 = 1.7 and 

𝐴𝑅 = 3.4, plotted against normalized bending stiffness. As in Figure 

3.3, a segment of various 𝐾𝑏,𝑟  at 𝐴𝑅 = 1.7  was varied in 𝐾𝑠,𝑟 . b) 

Normalized valve conductance to backflow against normalized 

bending stiffness for the same aspect ratios as in a). The asymptotic 

dashed lines indicate the limit of normalized conductance in the limit 

of a completely rigid valve. Note the normalized conductance’s 

convergence to its limiting value at high stiffness. 

36 

Figure 3.5 a-c) Valve positions, normalized velocity magnitude contour plot and 

vector field on the x-z plane at the center y-coordinate of the model, 

as shown in Figure 3.1. The plots show various stages of the lymphatic 

valve opening and closing cycle induced by a dynamically changing 

pressure gradient that follows a trapezoidal waveform. Note that the 

red line outlines where the leaflets are attached to the vessel wall. a) 

The pressure gradient forces fluid flow in the forward direction, 

opening the valve. b) The pressure gradient has recently been reversed 

and the valve is just beginning to close, but backflow is still allowed. 

c) The pressure gradient has been reversed for sufficiently long that 

the valve has closed to stop backflow. d-f) Corresponds to a)-c), 

respectively, but looking at the x-y plane at the center z-coordinate of 

the model. Note that leaflet edges are outline with the red line. 

39 

Figure 3.6 Waveform of the normalized average axial velocity (the solid blue 

line) and the normalized pressure drop, and correspondingly gradient, 

(the dashed red line) over a cycle of oscillating pressure drop, with the 

valve ( 𝐴𝑅 = 2.8 , 𝐾𝑏,𝑟 = 0.25 , 𝐾𝑠,𝑟 = 0.1 ) positions from Figure 

3.5a-c denoted with the corresponding letter and with vertical dashed 

41 
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lines. Positive pressure drop indicates pressure driving fluid from left 

to right, and vice-versa. Time is normalized by the cycle period 𝜏𝑟. 

Figure 3.7 Valve gap distance plotted against the normalized pressure drop for a 

single trapezoidal pressure drop cycle, where the waveform profile is 

given in a subplot on the top left corner. Gap distance response was 

plotted for 𝐾𝑏,𝑟 = 0.25  and 𝐾𝑏,𝑟 = 0.7  with 𝐴𝑅 = 2.8 , 𝐾𝑠,𝑟 = 0.1 . 

The normalized gap distance difference at zero normalized pressure 

drop between increasing and decreasing pressure drop segment of the 

trapezoidal waveform is noted as  (𝛿𝑔𝑎𝑝/𝑑)
0

. As a reference, 

normalized gap distance at the unstressed state  (𝛿𝑔𝑎𝑝/𝑑)
𝑢𝑛𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑

 is 

shown by the horizontal dotted line. 

42 

Figure 3.8 Normalized volume pumped during a single pumping cycle induced 

by a pressure gradient varied in a trapezoidal waveform through 

valves of varied aspect ratio with 𝐾𝑏,𝑟 = 0.25 and 𝐾𝑏,𝑟 = 0.7 with 

𝐾𝑠,𝑟 = 0.1 for all cases. The markings a-e and dotted vertical lines 

correspond to the aspect ratios of the valves shown in Figure 3.2a-e, 

respectively. 

45 

Figure 3.9 Flow resistance model of the lymphatic valve constructed from series 

of steady state-cases of varying parameters. Note that all axes are 

normalized based on the criteria mentioned in above sections. a) 

Comparison between flow resistance model our model with the 

sigmoidal model, noted in dashed lines, under two different bending 

stiffness. Other parameters for both 𝐾𝑏,𝑟  are set as 𝐴𝑅 = 2.7  and 

𝐾𝑠,𝑟 = 0.28 . The sigmoidal model parameters were adjusted to 

resemble the simulated data as close as possible. b) 3D surface plot of 

valve flow resistance as a function of aspect ratio and applied pressure 

difference, represented as 𝐴𝑅 and ∆𝑃𝑎𝑝𝑝 ∆𝑃𝑎𝑝𝑝,𝑚𝑎𝑥⁄ , respectively. 

47 

Figure 4.1 a) Axial component of flow velocity 𝑈𝑥  in a valve-less peristaltic 

vessel without an imposed pressure gradient yielding a flow rate 𝑄 =
0.15 . b) Axial velocity 𝑈𝑥  in a vessel with an adverse pressure 

gradient Δ𝑃 = 140  yielding a flow rate 𝑄 = −0.22 . c) Centerline 

axial velocity 𝑈𝑥(0) in the moving reference frame 𝑋 − 𝑇. In these 

simulations, the contraction ratio is 𝜙 = 0.2 , and the peristaltic 

Reynolds number is 𝑅𝑒 = 0.2. Note that 𝑋 = 𝑥 𝜆⁄ , 𝑇 = 𝑡 𝜏⁄ , Δ𝑃 =
Δ𝑝𝜆 𝑟0

2𝜌/𝜇2  𝑄 = 𝑞 𝜋𝑟0
2𝑐⁄ , 𝜙 = 𝑎 𝑟0⁄ , and 𝑅𝑒 = 𝜌𝑐𝑟0

2/𝜇𝜆 , where 

Δ𝑝𝜆 is the pressure difference across a contraction wavelength, 𝑞 is 

the vessel flow rate, 𝑟0 is the mean radius of the vessel, 𝑥 is the axial 

coordinate, 𝜌 and 𝜇 are the fluid density and dynamic viscosity, and 𝑡 

is time. Furthermore, 𝜆, 𝜏, 𝑐, and 𝑎 are the wavelength, period, speed, 

and amplitude of vessel contraction. 
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 xi 

Figure 4.2 a) Model of a periodic contracting vessel fitted with two valves. b) 

Shape and dimensions of the valve leaflet. The edge on the right side 

of the leaflet is free, whereas the remaining part of the edge is attached 

to the vessel wall. The aspect ratio of the valve is defined as 

𝑙 𝑑 = 1.75⁄ . c) Image of a lymphatic vessel segment with a valve. d) 

Typical valve profiles during different stages of valve operation. i: 

initial valve configuration, ii: valve opening, and iii: valve closure. 

52 

Figure 4.3 Axial flow velocity 𝑢𝑥 in a) expanding and b) contracting vessels for 

different values of radial wall velocity α. Axial velocity is normalized 

by the mean axial velocity of the vessel 𝑢𝑚 , whereas the radial 

coordinate 𝑟  is normalized by the vessel radius 𝑟𝑝𝑖𝑝𝑒 . The lines 

represent the simulated results, whereas the symbols represent the 

analytical solution [114]. 

58 

Figure 4.4 a) Flow rate 𝑄  and b) vessel work 𝑊  as a function of peristaltic 

Reynolds number 𝑅𝑒 for different contraction amplitude 𝜙 without 

valves. The solid and dotted lines show the analytical and numerical 

solutions, respectively. The empty and filled symbols represent data 

for Δ𝑃 = 0 and Δ𝑃 = 140, respectively. 

58 

Figure 4.5 a) Axial flow velocity 𝑈𝑥  at different instances of the contraction 

cycle in a valved vessel with no adverse pressure gradient. b) Axial 

flow velocity 𝑈𝑥 in a valved vessel with Δ𝑃 = 140. Note that due to 

the valves, flow profile is not axisymmetric. Flow profiles are shown 

at the symmetry plane perpendicular to the valve opening. The 

simulation parameters are 𝜙 = 0.2 , 𝑅𝑒 = 0.2 , 𝐾𝑏 = 88 , and 𝐾𝑠 =
115. 

60 

Figure 4.6 a) Axial flow velocity difference ∆𝑈𝑥  at different instances of the 

contraction cycle in a valved vessel with no adverse pressure gradient. 

b) Axial flow velocity difference ∆𝑈𝑥 in a valved vessel with Δ𝑃 =
140. Flow profiles are shown at the symmetry plane perpendicular to 

the valve opening. The simulation parameters are 𝜙 = 0.2, 𝑅𝑒 = 0.2, 

𝐾𝑏 = 88 , and 𝐾𝑠 = 115 . The flow velocity difference ∆𝑈𝑥  is 

calculated as the difference between flow velocities in vessels with 

and without valves. 

61 

Figure 4.7 a) Centerline axial flow velocity 𝑈𝑥(0) in the stationary reference 

frame in a vessel with no adverse pressure gradient with 𝑅𝑒 = 0.2. 
The maximum valve opening is 𝐴𝑚𝑎𝑥 = 0.44. b) Same as a) but in the 

moving reference frame, the solid black line indicates the average 

centerline velocity for the valve-less vessel. c) Centerline axial flow 

velocity 𝑈𝑥(0) in a stationary reference frame in a vessel with 𝑅𝑒 =
0.6. The maximum opening is 𝐴𝑚𝑎𝑥 = 0.68. d) Same as c) but in the 

moving reference frame, the solid black line indicates the average 

centerline velocity for the valve-less vessel. The horizontal solid lines 
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 xii 

indicate the maximum and minimum centerline velocities in a vessel 

without valves. The dashed vertical lines indicate the boundaries of 

valve position. The blue and red lines show the velocities when the 

valves are, respectively, open (𝐴 ≥ 0.05) and closed (𝐴 < 0.05). The 

simulation parameters are Δ𝑃 = 0 , 𝜙 = 0.2 , 𝐾𝑏 = 88 , and 𝐾𝑠 =
115. 

Figure 4.8 a) Centerline axial flow velocity 𝑈𝑥(0) in the stationary reference 

frame in a vessel with 𝑅𝑒 = 0.2 with an adverse pressure gradient. 

The maximum valve opening is 𝐴𝑚𝑎𝑥 = 0.3. b) Same as a) but in the 

moving reference frame, the solid black line indicates the average 

centerline velocity for the valve-less vessel. c) Centerline axial flow 

velocity 𝑈𝑥(0) in a stationary reference frame in a vessel with 𝑅𝑒 =
0.6. The maximum opening is 𝐴𝑚𝑎𝑥 = 0.61. d) Same as c) but in the 

moving reference frame, the solid black line indicates the average 

centerline velocity for the valve-less vessel. The horizontal solid lines 

indicate the maximum and minimum centerline velocities in vessels 

without valves. The dashed vertical lines indicate the boundaries of 

valve position. The blue and red lines show the velocities when the 

valves are, respectively, open (𝐴 ≥ 0.05) and closed (𝐴 < 0.05). The 

simulation parameters are Δ𝑃 = 140, 𝜙 = 0.2, 𝐾𝑏 = 88, and 𝐾𝑠 =
115. 

66 

Figure 4.9 a) Flow rate, b) vessel work, c) pumping efficiency, d) pumping 

economy, e)  maximum valve opening area 𝐴𝑚𝑎𝑥, and f) valve closure 

time 𝑇𝑐 as a function of peristaltic Reynolds number for vessels with 

𝐾𝑏 = 88, and 𝐾𝑠 = 115. The empty and filled symbols represent data 

Δ𝑃 = 0  and Δ𝑃 = 140 , respectively. The dashed lines represent 

results from valve-less vessels. The valve is considered closed when 

𝐴 < 0.05. 

69 

Figure 4.10 a) Flow rate, b) vessel work, c) pumping efficiency, d) pumping 

economy, e) maximum valve opening area 𝐴𝑚𝑎𝑥, and f) valve closure 

time 𝑇𝑐  as a function of adverse pressure difference Δ𝑃 for vessels 

with 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115. The dashed lines represent 

results from valve-less cases. The valve is considered closed when 

𝐴 < 0.05. 

71 

Figure 4.11 a) Deformation of valves with 𝐾𝑏 = 11, b) with 𝐾𝑏 = 88, c) with 

𝐾𝑏 = 263 at different instances of the vessel contraction cycle. The 

dots represent leaflet position at the centerline. The simulation 

parameters are Δ𝑃 = 140, 𝜙 = 0.2, 𝑅𝑒 = 0.4, and 𝐾𝑠 = 115. 

74 

Figure 4.12 a) Time evolution of flow rate in vessels with Δ𝑃 = 0 . b) Time 

evolution of valve opening area 𝐴 in vessels with Δ𝑃 = 0. c) and d) 

are the same as a) and b) but with Δ𝑃 = 140 . The flow rate is 

averaged over contraction wavelength. The horizontal dashed line 
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 xiii 

represents flow rate in the valve-less vessel while the dotted lines in 

b) and d) represent normalized vessel radius near the valve (𝑟 𝑟0⁄ ). 

Dashed lines in a) and c) indicate when 𝑟 𝑟0⁄ > 1 while solid lines 

indicate 𝑟 𝑟0⁄ < 1. Horizontal dash-dot lines in a) and c) denote 𝑄𝑠 =
0. The simulation parameters are 𝜙 = 0.2, 𝑅𝑒 = 0.4, and 𝐾𝑠 = 115. 

Figure 4.13 a) Flow rate, b) vessel work, c) pumping efficiency, d) pumping 

economy, e)  maximum valve opening area 𝐴𝑚𝑎𝑥, and f) valve closure 

time 𝑇𝑐 as a function of valve bending stiffness 𝐾𝑏 for vessels with 

Δ𝑃 = 140  and 𝑅𝑒 = 0.4 . The dashed lines represent results from 

valve-less cases. The valve is considered closed when 𝐴 < 0.05. 

78 

Figure 4.14 Optimal normalized bending stiffness yielding the maximum 

efficiency, economy, and flow rate under different adverse pressure 

gradients. The simulation parameters are 𝜙 = 0.2 , 𝑅𝑒 = 0.4 , and 

𝐾𝑠 = 115. 

79 

Figure 4.15 Contraction amplitude as a function of normalized pressure 

difference. Experimentally reported values [14] are shown by the 

triangles while the fit is shown by the solid line. 

80 

Figure 4.16 a) Flow rate, b) vessel work, and c) pumping efficiency as a function 

of the pressure gradient for vessels with and without pressure-

dependent contraction amplitude. The valve elasticity is 𝐾𝑏 = 88, and 

𝐾𝑠 = 115. Without adverse pressure gradient both the vessels exhibit 

an identical contraction amplitude of 𝜙 = 0.44. 

80 

Figure 5.1 Model of a periodic contracting vessel fitted with two valves with 

relevant valve spacing parameters defined. Note that for this chapter, 

the number of valves within the model 𝑛𝑣𝑎𝑙𝑣𝑒𝑠 can vary, as well as the 

total domain length 𝑙. Coordinate 𝑅 denotes radial coordinate while 𝑋 

denote axial coordinate. Even though the simulations are conducted 

in a Cartesian coordinate system, radial coordinate is implemented for 

contraction since radial contraction is applied on the vessel. 

83 

Figure 5.2 Model of a periodic contracting vessel fitted with two valves with 

nonuniform valve spacing. Coordinate 𝑅  denotes radial coordinate 

while 𝑋  denote axial coordinate. To gauge the degree of 

nonuniformity, a ratio between smaller and larger inter-valve spacing 

𝛿 is defined. 

84 

Figure 5.3 Axial flow velocity 𝑈𝑥  for 𝐿𝑖𝑛 = 0.67 , 𝛬 = 7.5 , Δ𝑃 = 140 , 𝜙 =
0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases of 

the contraction cycle 𝑇. Note the asynchronous valve deformation due 

to mismatch between the valve placement and vessel contraction 

wavelength. 

87 
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Figure 5.4 Axial flow velocity difference Δ𝑈𝑥  for 𝐿𝑖𝑛 = 0.67, 𝛬 = 7.5, Δ𝑃 =
140 , 𝜙 = 0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115  under different 

phases of the contraction cycle 𝑇 . Note the asynchronous valve 

deformation due to mismatch between the valve placement and vessel 

contraction wavelength. 

89 

Figure 5.5 a) Centerline axial velocity 𝑈𝑥(0)  for 𝐿𝑖𝑛 = 0.67 , 𝛬 = 7.5 , Δ𝑃 =
140 , 𝜙 = 0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115  under different 

phases of the contraction cycle 𝑇. b) Centerline axial velocity 𝑈𝑥(0) 

for 𝐿𝑖𝑛 = 1.0 , 𝛬 = 7.5 , Δ𝑃 = 140 , 𝜙 = 0.25, 𝑅𝑒 = 0.4 , 𝐾𝑏 = 88 , 

and 𝐾𝑠 = 115 under different phases of the contraction cycle 𝑇. Note 

the centerline velocities are plotted under a moving frame of reference 

𝑋 − 𝑇  while black dashed lines show centerline velocity for cases 

without valves. 
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Figure 5.6 a) Time-averaged normalized flow rate gain under forward flow 

𝛥𝑄𝑓𝑜𝑟  for 𝛬 = 7.5, Δ𝑃 = 140 , 𝜙 = 0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88 , and 

𝐾𝑠 = 115 under different 𝐿𝑖𝑛. Note the dashes with matching colors 

represent spatially averaged values for respective time-averaged flow 

rate gains. b) Time-averaged normalized flow rate gain under 

backward flow Δ𝑄𝑏𝑎𝑐𝑘 for 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 = 0.25, 𝑅𝑒 = 0.4, 

𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different 𝐿𝑖𝑛 . Note the dashes with 

matching colors represent spatially averaged values for respective 

time-averaged flow rate gains while the mean axial positions of every 

valve for a given case are marked with crosses. 
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Figure 5.7 a) Flow rate, b) vessel work, and c) pumping efficiency as a function 

of normalized valve spacing 𝐿𝑖𝑛 for vessels with 𝛬 = 7.5, 𝑅𝑒 = 0.4, 

𝜙 = 0.25, and 𝐾𝑠 = 115. Unless stated otherwise, the valve aspect 

ratio 𝐴𝑅 is kept at 𝐴𝑅 = 1.75. 
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Figure 5.8 a) Flow rate, b) vessel work, and c) pumping efficiency as a function 

of normalized valve spacing 𝐿𝑖𝑛  under different 𝛬 for vessels with 

𝑑𝑃𝑥 = 9, 𝑅𝑒 = 0.4, 𝜙 = 0.25, 𝐾𝑏 = 88, 𝐾𝑠 = 115, and 𝐴𝑅 = 1.75. 

99 

Figure 5.9 Axial flow velocity 𝑈𝑥  for 𝛿 = 0.4, 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 = 0.25, 

𝑅𝑒 = 0.4 , 𝐾𝑏 = 88 , and 𝐾𝑠 = 115  under different phases of the 

contraction cycle 𝑇. Note the asynchronous valve deformation due to 

mismatch between the valve placement and vessel contraction 

wavelength. Note that due to the model’s periodic boundary 

condition, a combined length between a distance from the right valve 

to the flow outlet on the right and a distance from flow inlet on the 

left to the left valve can be also considered an inter-valve spacing from 

the right valve to the left valve. 
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Figure 5.10 Axial flow velocity difference Δ𝑈𝑥 for 𝛿 = 0.4, 𝛬 = 7.5, Δ𝑃 = 140, 

𝜙 = 0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases 
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of the contraction cycle 𝑇. Note the asynchronous valve deformation 

due to mismatch between the valve placement and vessel contraction 

wavelength. 

Figure 5.11 a) Centerline axial velocity 𝑈𝑥(0) for 𝛿 = 0.4, 𝛬 = 7.5, Δ𝑃 = 140, 

𝜙 = 0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases 

of the contraction cycle 𝑇. b) Centerline axial velocity 𝑈𝑥(0) for 𝛿 =
1.0, 𝛬 = 7.5, Δ𝑃 = 140 , 𝜙 = 0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88 , and 𝐾𝑠 =
115  under different phases of the contraction cycle 𝑇 . Note the 

centerline velocities are plotted under a moving frame of reference 

𝑋 − 𝑇  while black dashed lines show centerline velocity for cases 

without valves. 
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Figure 5.12 a) Time-averaged normalized flow rate gain under forward flow 

Δ𝑄𝑓𝑜𝑟  for 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 = 0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 

𝐾𝑠 = 115 under different 𝛿. Note the dashes with matching colors 

represent spatially averaged values for respective time-averaged flow 

rate gains. b) Time-averaged normalized flow rate gain under 

backward flow Δ𝑄𝑏𝑎𝑐𝑘 for 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 = 0.25, 𝑅𝑒 = 0.4, 

𝐾𝑏 = 88 , and 𝐾𝑠 = 115  under different 𝛿 . Note the dashes with 

matching colors represent spatially averaged values for respective 

time-averaged flow rate gains while the mean axial positions of every 

valve for a given case are marked with crosses. Finally, the alternating 

valve spacing is repeated twice throughout the domain, thus placing 

four valves with two smaller and two longer inter-valve spacings in 

the model. 
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Figure 5.13 a) Flow rate, b) vessel work, and c) pumping efficiency as a function 

of valve nonuniformity 𝛿  for vessels with 𝛬 = 7.5, 𝑅𝑒 = 0.4, 𝜙 =
0.25, 𝐾𝑏 = 88, and 𝐾𝑠 = 115. 
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Figure 6.1 Geometry of filarial worm under its initial, undeformed state and 

during thrashing. a) Undeformed geometry of a filarial worm model 

showing its length 𝑙𝑤𝑜𝑟𝑚. b) Sides of a filarial worm highlighted in 

pink. Note that there are six sides in a worm model due to its 

hexagonal cross section. c) Undeformed geometry of a filarial worm 

model showing its span 𝑑𝑤𝑜𝑟𝑚 . d) Filarial worm during thrashing. 

The thrashing occurs by ipsilateral contraction and expansion of the 

two opposite sides of the worm. The red line in the figure highlights 

applied contraction by changing the equilibrium length of each LSM 

bond uniformly while the expansion with same strength occurs on the 

opposite side by expanding the LSM bond’s equilibrium length. Note 

that contraction and expansion do not need to occur through the entire 

length of the worm’s side. 
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Figure 6.2 Filarial worm, valve, and vessel profile noted in green, magenta, and 

blue, respectively, under different time. The simulation parameters 
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are 𝑅𝑒𝑟 = 1.2, 𝑊𝑜 = 0.4, 𝐾𝑠,𝑟 = 0.04, 𝐾𝑠,𝑟,𝑤𝑜𝑟𝑚 = 1.6, 𝐾𝑏,𝑟 = 0.1, 

𝐾𝑏,𝑟,𝑤𝑜𝑟𝑚 = 0.1, 𝑆𝑚𝑒𝑎𝑛 = 0.4, and 𝑊𝑜𝑤𝑜𝑟𝑚 = 0.5. 

Figure 6.3 Filarial worm, valve, and vessel profile noted in green, magenta, and 

blue, respectively, under different time. The simulation parameters 

are 𝑅𝑒𝑟 = 1.2, 𝑊𝑜 = 0.4, 𝐾𝑠,𝑟 = 0.04, 𝐾𝑠,𝑟,𝑤𝑜𝑟𝑚 = 1.6, 𝐾𝑏,𝑟 = 0.1, 

𝐾𝑏,𝑟,𝑤𝑜𝑟𝑚 = 0.1, 𝑆𝑚𝑒𝑎𝑛 = 0.6, and 𝑊𝑜𝑤𝑜𝑟𝑚 = 0.5. 
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Figure 6.4 Filarial worm’s normalized axial position of centroid over time under 

two different thrashing strengths. Note the horizontal dashes indicate 

the limits of axial position of the lymphatic valve. 
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Figure 6.5 Period-averaged axial displacement of filarial worm’s normalized 

centroid over time. Note that dashed lines indicate period-averaged 

displacement of minimum axial position of the worm while dotted 

lines indicate the period-averaged displacement of maximum axial 

position. If a centroid of the filarial worm is within the axial limits of 

the valve, the corresponding ranges in time are highlighted in circles. 
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Figure 6.6 a) Period-averaged normalized axial velocity of filarial worm over 

time under different thrashing strengths. If a centroid of the filarial 

worm is within the axial limits of the valve, the corresponding ranges 

in time are highlighted in circles. b) Period-averaged normalized 

mean axial fluid velocity over time under different thrashing 

strengths. If a centroid of the filarial worm is within the axial limits of 

the valve, the corresponding ranges in time are highlighted in circles. 
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SUMMARY 

The lymphatic system transports macromolecules and fluids throughout 

the body via contractions of lymphatic vessels. This flow from vessel 

contractions is regulated by unidirectional lymphatic valves, which allow 

lymphatic pumping against adverse pressure gradient. Despite the importance of 

the lymphatic system, understanding of lymphatic operation, especially the role 

of lymphatic valves, is still limited. By using a fully coupled three-dimensional 

fluid-structure interaction model created using lattice Boltzmann method and 

lattice spring model, we computationally investigate the role of lymphatic valve 

and vessel properties on lymphatic pumping. First, the effect of lymphatic valve 

properties such as valve aspect ratio and bending stiffness on pumping 

performance is investigated with a rigid lymphatic vessel. This study found that 

shorter and more flexible valves generally reduce flow resistance but valves that 

are too short cannot block backflow properly. Then, the effect of lymphatic valve 

and vessel properties on pumping performance under vessel contraction is 

studied. This study showed that lymphatic valve and vessel properties have 

complex relationship with lymphatic pumping, and all parameters investigated 

have optimal conditions with maximum pumping efficiencies. Finally, a model 

of lymphatic filarial worm is created and introduced to the model of lymphatic 

valve and vessel to investigate the worm’s behavior when navigating through the 
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lymphatic system. Overall, this work highlights many important parameters of 

lymphatic valve and vessel that affect lymphatic operation and provides insights 

into conditions that may cause lymphatic disorders. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

The lymphatic system plays a critical role in maintaining homeostasis of the body 

by transporting interstitial fluid, fatty acid, and immune cells. These macromolecules and 

fluids are collected from initial lymphatics to eventually join the circulatory system and 

maintain fluid balance and waste disposal in tissues. Fatty acid absorbed from digestive 

tracts is also transported via the lymphatic system, while immune cells and antigens 

transported via the collecting lymphatics play an extremely valuable role in providing 

proper immune responses [1, 2]. Despite many functions of the lymphatic system, the entire 

system operates without any centralized pump under adverse pressure gradients produced 

by factors such as gravity. Rather, the lymphatic pumping is achieved by a combination of 

extrinsic pumping, defined as skeletal muscular movement of nearby tissues [3-7] and 

intrinsic pumping from a series of contracting lymphatic vessels and valves dispersed 

throughout the entire collecting lymphatic [8-10]. Specifically, intrinsic lymphatic pump is 

made of chains of lymphangions, which is a section of lymphatic vessel surrounded by two 

lymphatic valves. Within these lymphangions, lymphatic valves reduce backflow and 

promote unidirectional flow under a considerable adverse pressure gradient. Figure 1.1 

shows a schematic of a lymphatic vessel composed of lymphangions and valves. 

Consequentially, dysfunctions of these valves can result in serious medical disorders like 

lymphedema, where excess interstitial fluid is pooled in parts of the body like the 

extremities [11].  
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Figure 1.1 A diagram of a chain of lymphangions in a lymphatic vessel. Each lymphangion 

is a section of lymphatic vessel that contains a bi-leaflet lymphatic valve. Lymphatic 

vessels produce a net lymph flow (here shown left to right) through periodic contractions 

combined with unidirectional lymphatic valves that open and close due to fluctuating 

pressure throughout the contraction cycle.  

Currently, ways to treat conditions like lymphedema are limited. Methods such as 

compression garments only address the symptoms without addressing the underlying 

causes. Although a general identification of causes of lymphedema is made between 

hereditary (known as primary lymphedema) and acquired (known as secondary 

lymphedema), the method and extent that various causes lead to manifestation of symptoms 

are largely unknown [12]. For example, genetic valve defects in primary lymphedema have 

been identified as a major source of the disorder [13-18], but the mechanism and 

importance of valve dysfunction to the actual disorder are still unknown. Different features 

of the valves like their heterogeneity in length are even less studied, leaving the effect of 

different lymphatic valve features to valve dysfunction and overall lymphatic pumping 

unknown. 

Lymphatic pumping also presents a unique flow environment. Due to its typical 

geometric scales like its vessel diameters [19-21], the Reynolds number of lymphatic 

system falls solidly within a laminar regime with typical values around 𝑅𝑒 = 1 and is 
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reported to not exceed over 𝑅𝑒 = 16 [22, 23]. However, lymphatic flow is created through 

a combination of external contraction and internal contraction of lymphatic muscles. This 

contractile nature of flow creation leads to a flow environment where flow pulsation, vessel 

contraction-based flow, and lymphatic valves’ flow disruption all affect lymphatic 

pumping. Although the pulsatile nature of lymphatic pumping is known to be quasi-static 

due to its Womersley number less than 1 [22], combination of peristaltic pumping from 

vessel contraction and flexible one-way lymphatic valve still brings in additional 

complexity to lymphatic pumping. Consequentially, effect of parameters that govern flow 

pulsation, peristaltic pumping, and valve mechanics such as Womersley number, lymphatic 

vessel contraction amplitude, and valve bending stiffness all play important roles in 

lymphatic pumping. 

To address this limitation in understanding the lymphatic system, computational 

studies have been providing valuable insights into the workings of the lymphatic system. 

Lumped parameter models have captured lymphatic behavior in chains of lymphangions 

and expanded our understanding of the lymphatic system, but the model could not capture 

detailed response of lymphatic components like lymphatic valves under varied factors such 

as the valve length or valve mechanical properties [24-32]. Multi-dimensional models have 

been providing valuable information on lymphatic components’ roles and effect on the 

overall pumping behavior, but these models did not simultaneously couple the fluid and 

the solid components of the collecting lymphatics [19, 21, 33, 34], unable to capture how 

different lymphatic components work dynamically. Thus, our work aims to create a fully 

coupled fluid-structure interaction model of the collecting lymphatic in a three-dimensional 

environment that more accurately captures dynamic response of lymphatic components, 



 4 

enhancing our current understanding of the lymphatic system in addition to the 

aforementioned findings. 

1.2 Survey of Prior Studies 

1.2.1 Lumped parameter studies (zeroth-order models) 

Lumped parameter model is a time-dependent model that describes the lymphatic 

system using ordinary differential equations. The model is spatially independent and 

incorporates multiple empirical fits based on experimental studies of lymphatic 

components. The biggest advantage of the lumped parameter model is its relatively low 

computational cost.  Because lumped parameter model treats a relevant subdivision such 

as a section of lymphatic vessel across a single lymphangion or a lymphatic valve as one 

lumped node, relevant metrics like the average pressure across a lymphangion or average 

diameter of the vessel segment can be calculated with very low cost compared to multi-

dimensional models. This is especially useful for structures like the lymphatic system 

where there are series or networks of alternatingly repeating lymphatic components of 

lymphatic vessels and valves.  

However, these advantages of the lumped parameter model also present the model’s 

limitation. Because each component is represented as a single node, the lumped parameter 

model does not account for variation of detailed features of individual node unless 

described by an empirical model. A good example of this limitation is the variation of 

geometric or mechanical properties of the lymphatic valve. Furthermore, because the 

model relies greatly on empirical fits, inaccuracies or limitation of experimental data 

directly relates to the accuracies of the model. Again, a good example is the flow resistance 
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model of the lymphatic valve [26, 30, 31] since the sigmoidal flow resistance model of the 

lymphatic valve does not account for variation of valve properties with arbitrary parameter 

selections. 

Even so, lumped parameter models yielded many crucial findings about the 

lymphatic system. Considering the limited representation of lymphatic valves through 

lumped parameter models, many studies focus primarily on lymphatic vessel contraction 

parameters. For example, work by Baish, et al [24] showed how calcium ion transport and 

nitric oxide production create two oscillators that complement each other in lymphatic 

muscle contraction and eventual lymphatic vessel contraction. Work by Jamalian, et al [30] 

explored lymphatic chains when connected via branched networks and found optimal 

pumping conditions such as lymphangion lengths under different adverse pressure 

gradients. Finally, work by Razavi, et al [31] presented a combination of lumped parameter 

modeling and in vivo measurements to approximate lymphatic muscle contraction. The 

work gathered pumping pressure profile through in vivo measurements and incorporated it 

into lumped parameter model to understand mechanism behind measured pressure profile 

and determined relevant parameters affecting the observed in vivo data.  

Despite the limited representation of the lymphatic valve, lumped parameter model 

also revealed many important features of lymphatic valves. This was explored in works by 

Bertram, et al [26-28] and Jamalian, et al[29], where features such as valves’ bias to stay 

open and valves’ hysteresis under changing flow condition were represented and 

incorporated into the lumped parameter model. The studies revealed valves can 

significantly affect flow under different vessel contraction conditions.   
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1.2.2 Multi-dimensional models 

Because of the above-mentioned limitations that lumped parameter model 

possesses, there have been many multi-dimensional studies of the lymphatic system. These 

models typically reduced its domain size while incorporating a more detailed 

representation of the lymphatic system. The models range from one-dimensional to three 

dimensional models, while many models implement simultaneously coupled fluid-

structure interaction except in a three-dimensional domain.  

For one-dimensional model, MacDonald [19] created a model that closely 

resembles the lumped parameter model. Although the vessel section inside a lymphangion 

was divided into several computational cells along its length, lymphatic valves were still 

represented as a single computational cell. This model represents an intermediary between 

lumped parameter and multi-dimensional model where computational cost is reduced while 

having a greater resolution of the lymphangion behavior, especially of the vessel wall. By 

incorporating measured mechanical properties of various lymphangion components into 

the model, this model reproduced lymphatic pumping behavior with greater details. 

Furthermore, results from the model suggested that flow inside the experimentally 

measured bovine lymphatic can be computationally reproduced with a simple and fast 

traveling contraction pulses.  

Two and three-dimensional models further reduced its scope while focusing more 

on additional details of the lymphatic system. For example, two-dimensional model by 

Kunert [33] incorporates not only fluid-structure interaction model, but also a chemical 

response of the lymphatic vessel based on production and concentration of Ca2+ and NO. 
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This work found a feedback loop between concentrations of Ca2+ and NO which creates a 

stable chemical mechanism of lymphatic vessel contraction under different flow 

environments. Although this model incorporates higher geometric resolution, simultaneous 

fluid-structure interaction, and reaction-diffusion-advection models for the two chemical 

species, the two-dimensional nature of the model could not capture the full geometric 

profile of the valves.  

Three-dimensional models can address this geometric limitation by more 

accurately modeling the lymphatic valves and vessels. Wilson [21] utilized a very detailed 

model of the lymphatic valve and vessel via geometric acquisition through confocal 

imaging, which allowed an inclusion of features such as vessel expansion around the 

lymphatic valve (sinus) and crescent-shaped depression of the bicuspid valve leaflets. This 

study revealed a reduction in viscous loss by the sinus, reducing net pumping loss when 

compared to a straight tube representation of lymphatic vessel. However, this model 

assumed solid response based on steady flow assumption, which created a degree of 

decoupling between fluid and solid solvers. Other models like the work by Rahbar [34] ran 

a computational fluid dynamics model instead of fluid-structure interaction, where 

unsteady flow was simulated inside a valve-less section of a lymphatic vessel with 

prescribed wall motion. Even so, this work validated the quasi-static assumption of 

lymphatic flow observed [22] despite a range of different wall expansions and contractions 

the lymphatic vessels generate. 
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1.2.3 Lymphatic filariasis 

Of many causes of lymphatic dysfunction, lymphatic filariasis is caused by parasitic 

filarial worms that specifically reside within human lymphatic system during a part of their 

larval stages and adult life [35]. The rest of worms’ lifecycle takes place inside mosquitoes, 

where they act as hosts for worms’ early larval stages and vectors for human transmission 

through mosquito bites [36]. The worms’ residence within the lymphatic system until their 

deaths cause adult filarial worms and their dead bodies to become a source of obstruction 

for proper lymphatic pumping. Extensive and untreated damages done by the adult and 

dead worms can thus cause an onset of lymphedema and sometimes even more serious 

conditions such as hydrocele or limb elephantiasis [35].  

Lymphatic filariasis is a serious health concern worldwide, especially in tropical 

regions [36, 37], but is considered a neglected tropical disease [37]. Even worse, studies 

on mechanism and process of initial lymphatic infection during its transmission from 

mosquito bites and consequential navigation to and around the lymphatic system are very 

limited [35, 38-42]. Due to this limited understanding of filarial worms’ infection and 

navigation in their infective larval stages, filarial worm model for this work will be based 

on locomotion model of its well-studied nematode cousin C. elegans [43-46] with some 

available physiological and in-vitro behavioral data used for more accurate modeling and 

validation [39, 47, 48].  
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1.3 Thesis objectives 

This work aims to investigate three aspects of the collecting lymphatics that could 

not be easily studied with existing experimental methods. First, a computational model for 

lymphatic valve will be developed, and valve mechanics will be studied. Experimental 

studies have suggested that lymphatic valves can display complex time-dependent response 

and exist under varied geometry and mechanical properties, but experimental data of valve 

properties have been little to nonexistent, while existing computational models could not 

fully replicate many valve behaviors such as time-dependent valve response [8, 49]. For 

this objective, we will simplify the actively contracting lymphatic vessel with a 

unidirectional valve by considering a rigid vessel with applied pressure gradient to simulate 

flow in order to focus our analysis to only lymphatic valve’s effect on lymph flow. Valve 

effect to lymph flow under varied valve properties will be investigated along with valve’s 

response under time-dependent flow condition. Then, lymphatic valve’s performance 

under different valve properties will be optimized to show an existence of optimal valve 

parameters while experimental works will be compared with numerical results to gauge the 

confidence of the computational model. This understanding of lymphatic valve mechanics 

can be incorporated into existing models like the lumped parameter method where a table 

of simulated results can be created to represent the effect of lymphatic valve more 

accurately. 

Because the first objective necessarily assumes a rigid lymphatic vessel wall, the 

next objective will develop a lymphatic model with contracting vessel and study the effect 

of lymphatic valve and contracting vessel. With a greater understanding of valve mechanics 

from the first objective, lymphatic valve’s role in lymphatic pumping will be more clearly 
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distinguished. By assuming a simplified, sinusoidal vessel motion, the role of lymphatic 

valve can be more clearly analyzed through a comparison with its valve-less counterpart 

[50, 51]. Along with valve parameters, lymphatic vessel parameters will also be varied for 

this objective. The lymphatic pumping performance will be analyzed through flow 

efficiency and time-averaged flow rates under varied valve and vessel parameters. The 

objective will gauge the range that lymphatic valves are needed for better pumping while 

possibly expending additional energy, which will be represented via the pumping 

efficiency. Furthermore, this analysis will be compared with experimentally reported 

operating range of the collecting lymphatics, providing a greater insight into the reason 

behind certain lymphatic geometry and properties. Finally, because this objective will 

compare the pumping performance of the lymphatic vessel without a valve, we can see the 

extent of adverse pressure gradient and flow capacity that lymphatic system with valve 

dysfunction can handle, providing a greater understanding to the extent that valve 

dysfunction can contribute to the manifestation of lymphatic disorders like lymphedema. 

The final objective will develop a model for a filarial worm, integrate the model to 

the existing lymphatic model, and examine the effects of a filarial worm on the lymphatic 

system. After a physiologically relevant filarial thrashing model is developed, different test 

cases will compare the worm’s thrashing to experimental studies that analyzed the worm’s 

behavior in-vitro and in microfluidic channels, thus validating the worm’s simulated 

motion [39, 52]. Then, the filarial worm will be integrated into the lymphatic model with 

a rigid lymphatic wall with applied pressure gradient. Filarial worm parameters will be 

varied to observe the worm’s behavior and speed in navigating past the valve. This 
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objective can provide a valuable insight into how filarial worm navigates the lymphatic 

system since in-vivo and computational study with filarial worm are very limited. 
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CHAPTER 2. METHODOLOGY 

To address the limitations presented by the existing models, we utilized a fully 

coupled time-dependent model in a three-dimensional environment. To achieve this, lattice 

Boltzmann method (LBM) and lattice spring model (LSM) were used for fluid and solid 

components, respectively. Then, the fluid and solid components are coupled via an 

exchange of momentum from solid component to the fluid nodes using an interpolated 

bounce-back, while corresponding forces are applied to nearby solid nodes to conserve the 

momentum during the fluid-solid interaction [53, 54]. 

2.1 Lattice Boltzmann model 

Lattice Boltzmann method (LBM) is a widely used, efficient solver for 

incompressible viscous flows [55, 56]. LBM is especially effective in simulating flows 

with complex geometries and can be easily integrated to parallel high-performance 

computing, making an essential fluid solver for fluid-structure interaction problems [57-

60]. LBM represents Navier-Stokes equation at mesoscale level by solving discrete 

Boltzmann equation.  

LBM solves a velocity distribution function of fluid “particles” 𝑓𝑖(𝒓, 𝑡) in a fixed 

spatial lattice, where 𝑖 is the velocity direction, 𝒓 is the lattice node and 𝑡 is time. For each 

time step, these fluid “particles” can move from one node to another at a discrete velocity 

𝒄𝑖. The velocity direction 𝑖 and discrete velocity 𝒄𝑖 depend on the dimension and lattice 

structure of the simulated model. For this work, we use D3Q19 method, which indicates 
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that the lattice structure is three-dimensional with 19  unique directions that fluid 

“particles” can move. The schematic of D3Q19 lattice with each 𝒄𝑖 is shown in Figure 2.1. 

 

Figure 2.1 Schematic of LBM lattice in D3Q19 model. Arrows represent different 

discrete velocities 𝒄𝑖. 

Based on the labeling of velocity directions in Figure 2.1, each discrete velocity 

vector in D3Q19 can be written as: 

 

𝒄𝑖 = {

(0,0,0),
(±1,0,0), (0, ±1,0), (0,0, ±1),
(±1, ±1,0), (±1,0, ±1), (0, ±1, ±1),

  
𝑖 = 0
𝑖 = 1,2, … ,5,6
𝑖 = 7,8, … ,17,18

 (1) 

LBM calculates hydrodynamics quantities like fluid density 𝜌, fluid momentum 

density 𝒋, and momentum flux 𝚷 as moments of velocity distribution functions as follows: 
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 𝜌 = ∑ 𝑓𝑖

𝑖

 (2) 

 𝒋 = 𝜌𝒖 = ∑ 𝑓𝑖𝒄𝑖

𝑖

 (3) 

 𝚷 = 𝜌𝑰 + 𝜌𝒖𝒖 = ∑ 𝑓𝑖𝒄𝑖𝒄𝑖

𝑖

 (4) 

Note that 𝒖 represents macroscale velocity of fluid “particles”. The distribution function is 

integrated over time through discrete time steps via streaming and collisions steps, 

governed by the discretized Boltzmann equation [56]. The streaming equation is given as  

 𝑓𝑖(𝒓 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝒓, 𝑡) + Ω𝑖(𝒓, 𝑡) (5) 

Note that Δ𝑡 is the LBM time step, and Ω𝑖(𝒓, 𝑡) is the collision operator. The summation 

of old fluid “particles” with a collision operator indicates the collision step of LBM where 

old fluid “particles” change due to collision at a given node.  

This work uses a collision operator with two relaxation times based on work by 

Ladd and Verberg [55]. When compared against a collision operator with a single 

relaxation time, this collision operator brings greater numerical stability and flexibility of 

LBM operation at a larger range of Reynolds numbers. The post-collision distribution 

function can be written as  

 
𝑓𝑖(𝒓, 𝑡) + Ω𝑖(𝒓, 𝑡) = 𝑎𝒄𝑖 [𝜌 +

𝒋 ∙ 𝒄𝑖

𝑐𝑠
2

+
(𝜌𝒖𝒖 + 𝚷𝑛𝑒𝑞

∗ ): (𝒄𝑖𝒄𝑖 − 𝑐𝑠
2𝐈)

2𝑐𝑠
4

] (6) 
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Note that 𝑐𝑠 = Δ𝑥/√3Δ𝑡 is the speed of sound where Δ𝑥 is the lattice spacing between 

neighboring lattice nodes. The coefficient 𝑎𝒄𝑖 is a weight term for a given velocity direction 

𝒄𝑖 and is defined as  

 

𝑎𝒄𝒊 = {

1/3,
1/18,
1/36,

 

|𝒄𝑖| = 0
|𝒄𝑖| = 1

|𝒄𝑖| = √2

 (7) 

The tensor 𝚷𝑛𝑒𝑞
∗  is the nonequilibrium momentum flux. In particular, 𝚷𝑛𝑒𝑞

∗  can be further 

defined as  

 
𝚷𝑛𝑒𝑞

∗ = (1 + 𝜆)�̅�𝑛𝑒𝑞 +
1

3
(1 + 𝜆𝜈)(𝚷𝑛𝑒𝑞: 𝐈)𝐈 (8) 

Note that 𝚷𝑛𝑒𝑞 = 𝚷 − 𝚷𝑒𝑞 and �̅�𝑛𝑒𝑞 is the traceless component of 𝚷𝑛𝑒𝑞. The tensor 𝚷𝑒𝑞 

is the equilibrium momentum flux and is computed as  

 𝚷𝑒𝑞 = 𝜌𝑐𝑠
2𝐈 + 𝜌𝒖𝒖 (9) 

Finally, 𝜆 and 𝜆𝜈 are two relaxation parameters for the collision operator and are related to 

shear and bulk viscosities 𝜇 and 𝜇𝜈, respectively, as 

 
𝜇 = −𝜌𝑐𝑠

2Δ𝑡 (
1

𝜆
+

1

2
) (10) 

  
𝜇𝜈 = −𝜌𝑐𝑠

2Δ𝑡 (
2

3𝜆𝜈
+

1

3
) (11) 
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Although two distinct relaxation parameters are defined, 𝜆𝜈  is set at −1  usually. 

Furthermore, LBM is weakly compressible and the Mach number defined 𝑀𝑎 = 𝑢/𝑐𝑠 

needs to be kept below 0.15 to maintain the incompressibility condition. Also, note that 

Δ𝑥 and Δ𝑡 are both typically set to 1 for this work.  

Forcing term is added to the collision operator to allow force density 𝒈 to be applied 

throughout the model [61]. This is an equivalent operation to applying a unidirectional and 

constant pressure gradient throughout the model. The forcing term 𝑔𝑖(𝒓, 𝑡) is added as  

 𝑓𝑖(𝒓 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖
∗(𝒓, 𝑡) + 𝑔𝑖(𝒓, 𝑡) (12) 

 
𝑔𝑖(𝒓, 𝑡) = (1 +

𝜆

2
) 𝑎𝒄𝑖 [

𝒈 ∙ 𝒄𝑖

𝑐𝑠
2

+
(𝒈𝒖 + 𝒖𝒈): (𝒄𝑖𝒄𝑖 − 𝑐𝑠

2𝐈)

2𝑐𝑠
4

] Δ𝑡 (13) 

Note that 𝑓𝑖
∗(𝒓, 𝑡) is the post-collision distribution function without forcing term applied. 

Furthermore, with forcing term applied, a more accurate momentum and fluid velocity 𝒋′ 

and 𝒖′, respectively, are calculated as  

 
𝒋′ = 𝜌𝒖′ = ∑ 𝑓𝑖𝒄𝑖 +

𝒈Δ𝑡

2
𝑖

 (14) 

2.2 Lattice spring model 

For solid mechanics of the model, the lattice spring model (LSM) is employed [62, 

63]. This model discretizes elastic solid surfaces via a network of masses connected by 

stretching and bending springs. Although LSM is a simpler implementation of other solid 
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mechanics solver like the finite element methods (FEM), LSM is shown to be equivalent 

to FEM in certain cases [64].   

The LSM lattice can be arranged in different ways. However, different lattices may 

yield different elastic properties, and equilateral triangular and square lattices were 

demonstrated to behave like an isotropic elastic solid [65]. For this work, the spring 

network is arranged in equilateral triangular lattices. A typical triangular lattice is shown 

below at Figure 2.2.  

 

Figure 2.2 a) A single cell of a two-dimensional triangular LSM lattice. The dashed 

hexagon notes the boundary of a unit cell surrounding node 𝑖. Nodes with masses are 

represented in circles while solid lines indicate spring connections between neighboring 

nodes. For each pair of node-to-node connection like 𝑖𝑗 pair, a stretching spring of stiffness 

𝑘𝑠 is applied while a colinear triple like 𝑘𝑖𝑗 creates a set for bending spring with stiffness 

𝑘𝑏. b) A segment of three-dimensional triangular prism lattice. A node 𝑖 connects to 20 

neighboring nodes but is shown to be connected to only a fragment of the entire connection 

due to only one-sixth of the entire network shown. Same rule for creating stretching pair 

and bending triple applies as in the two-dimensional cases. However, the stretching spring 

constants differ depending on whether the node pair connects two nodes on the same 

triangular layer (𝑘1), two nodes on different triangular layer but vertically above or below 

(𝑘2), or two nodes on different layers with diagonal connection (𝑘3). 
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For this study, a two-dimensional triangular lattice plates are used to represent thin 

elastic bodies like flexible lymphatic valves or boundaries of lymphatic vessels. Three-

dimensional triangular lattice is only used for creation of filarial worm model. Three-

dimensional triangular lattice is represented as stacks of two-dimensional lattice with each 

layer consisting of equilateral triangular lattice like in the two-dimensional case [66]. 

For stretching springs, the relationship between stretching force 𝑭𝑠,𝑖𝑗 , internode 

distance between node 𝑖 and 𝑗, and stretching stiffness can be described as 

 𝑭𝑠,𝑖𝑗 = −𝑘𝑠(𝑙𝑖𝑗 − 𝑙0)�̂�𝑖𝑗 (15) 

Note that 𝑙𝑖𝑗 denotes the distance between nodes 𝑖 and 𝑗, 𝑙0 denotes equilibrium length of 

the spring, and �̂�𝑖𝑗 is the unit vector in from 𝑖 to 𝑗. For two-dimensional triangular lattice, 

the Young’s modulus 𝑒 is defined as 𝑒 = 2𝑘𝑠 √3ℎ⁄ , where ℎ is the thickness of the elastic 

sheet [63, 67] like the lymphatic valve. Poisson ratio for two-dimensional lattice is set at 

𝜈𝑝 = 1 3⁄ . Note that because typical biological tissues have Poisson ratio close to 0.5, this 

could create a possible limitation and inaccuracy of the model.  

For the three-dimensional lattice, three distinct in-plane stiffness are defined based 

on the relative location of nodes to each other [66].  

 

𝑘𝑠,3𝐷 = {

𝑘1 = 2𝑘𝑐

𝑘2 = 𝑘𝑐

𝑘3 = 2𝑘𝑐/3
 (16) 

As see in Figure 2.2, stiffness of a pair of nodes on the same layer has the highest stiffness 

while a diagonally connected nodes between different layers have the lowest value. Note 
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that three distinct stiffness are related through a common stiffness factor 𝑘𝑐 , which is 

related to the Young’s modulus as 𝑒3𝐷 = 5𝑘𝑐/√3𝑎0,3𝐷, where 𝑎0,3𝐷 is the lattice spacing. 

Finally, the Poisson ratio for three-dimensional lattice is set at 𝜈𝑝,3𝐷 = 1/4. 

Bending springs are also added for the spring network since studies of heart valves 

suggested that bending stiffness could play a major role in valve susceptibility to 

deformation [68-70]. Like the in-plane spring, bending springs are modeled with a series 

of bending springs with each spring made up of three collinear LSM nodes in undeformed 

states. This method of defining bending triple applies the same in both two-dimensional 

and three-dimensional lattices. Bending spring stiffness 𝑘𝑏 determines the degree of out-

of-plane bending resistance for the triple nodes and is related to bending energy 𝑈𝑏 as  

 𝑈𝑏 = 𝑘𝑏(𝑐𝑜𝑠𝜃𝑘𝑖𝑗 − 𝑐𝑜𝑠𝜃0) (17) 

Note that 𝜃𝑘𝑖𝑗 represents an angle that 𝑘𝑖𝑗 triple from Figure 2.2a makes while 𝜃0 is the 

angle of the triple under undeformed state, typically set at 𝜃0 = 𝜋. Bending forces 𝑭𝑏 on 

each of the triple nodes are distributed as  

 
𝑭𝑏,𝑘 = −

𝑘𝑏

𝑙𝑖𝑗𝑙𝑖𝑘
(𝒓𝑖𝑗 −

𝑐𝑜𝑠𝜃𝑘𝑖𝑗

𝑟𝑖𝑘
2 𝒓𝑖𝑘) (18) 

 
𝑭𝑏,𝑗 = −

𝑘𝑏

𝑙𝑖𝑗𝑙𝑖𝑘
(𝒓𝑖𝑘 −

𝑐𝑜𝑠𝜃𝑘𝑖𝑗

𝑟𝑖𝑗
2 𝒓𝑖𝑗) (19) 

 𝑭𝑏,𝑖 = −(𝑭𝑏,𝑗 + 𝑭𝑏,𝑘) (20) 
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Note that vector between two nodes is noted in 𝒓. For example, 𝒓𝑖𝑗 notes a vector from 

node 𝑖 to 𝑗. For a two-dimensional triangular lattice, plate bending rigidity 𝑑𝑏 is related to 

bending stiffness as 𝑑𝑏 = 3√3𝑘𝑏 4⁄ , where 𝑑𝑏 = 𝑒ℎ3 12(1 − 𝑣𝑝
2)⁄  [62, 66].  

2.2.1 Solid body dynamics 

The dynamics of solid domain is calculated through time-integration of Newton’s 

equation of motion. 

 
𝑭𝑖 = 𝑀𝑖

𝑑2𝒓𝑖

𝑑𝑡2
 (21) 

Here, 𝑭𝑖 is the total force applied a given node position 𝑖, 𝑀𝑖 is the mass of node 𝑖, and 𝒓𝑖 

is the position vector of node 𝑖. Note that total force is calculated as a sum of spring forces, 

consisting of stretching (in-plane) and bending forces, interfacial forces between fluid and 

solid nodes, and any external forces prescribed. Overall, 𝑭𝑖 can be described as  

 𝑭𝑖 = 𝑭𝑠,𝑖 + 𝑭𝑏,𝑖 + 𝑭𝑖𝑛𝑡,𝑖 + 𝑭𝑒,𝑖 (22) 

Note that 𝑭𝑖𝑛𝑡,𝑖 is the interfacial force applied to node 𝑖 while any prescribed force onto 

node 𝑖 is written as 𝑭𝑒,𝑖.  

Once the total force is found, the equation of motion is integrated through Verlet 

algorithm [71]. To integrate from 𝑡 to 𝑡 + ∆𝑡, solid node acceleration 𝒂𝑖(𝑡) and velocity at 

half step 𝒗𝑖(𝑡 +
∆𝑡

2
) are first calculated as follows: 
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 𝒂𝑖(𝑡)  = 𝑭𝑖(𝒓𝑖(𝑡), 𝑡)/𝑀𝑖 (23) 

  
𝒗𝑖 (𝑡 +

∆𝑡

2
) = 𝒗𝑖(𝑡) + 𝒂𝑖(𝑡)

∆𝑡

2
  (24) 

Then, a new position at 𝑡 + ∆𝑡 is computed using the velocity at half step: 

 
𝒓𝑖(𝑡 + ∆𝑡) = 𝒓𝑖(𝑡) + 𝒗𝑖 (𝑡 +

∆𝑡

2
) ∆𝑡 (25) 

Finally, acceleration and velocity at new time step are calculated: 

 𝒂𝑖(𝑡 + ∆𝑡) = 𝑭𝑖(𝒓𝑖(𝑡 + ∆𝑡), 𝑡)/𝑀𝑖 (26) 

 
𝒗𝑖(𝑡 + ∆𝑡) = 𝒗𝑖 (𝑡 +

∆𝑡

2
) + 𝒂𝑖(𝑡 + ∆𝑡)

∆𝑡

2
  (27) 

2.3 Fluid-structure coupling 

LBM and LSM models are coupled through the use of two-way coupling at the 

fluid-solid boundary. Momentum is imparted from solid surfaces onto the fluid through 

use of an interpolated bounce-back boundary method on a no-slip and no penetration 

surface, and momentum is conserved by the application of corresponding forces onto the 

solid nodes [53, 54]. This method of coupling has been successfully and extensively 

validated in several previous studies [72-77]. 

When imparting momentum from LSM surfaces to LBM nodes, interpolated 

bounce-back rule is necessary as solid surfaces will be unlikely to be positioned exactly 

halfway between two neighboring LBM nodes. The method first defines a wall distance 
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𝑞𝑖𝑛𝑡, which is the distance between a given LBM node and an LSM surface in the direction 

of 𝒄𝑖 . Then, a bounce-back method depending on the value of 𝑞𝑖𝑛𝑡  is implemented as 

shown below  

 𝑓𝑖′(𝒓, 𝑡 + Δ𝑡) = 2𝑞𝑖𝑛𝑡𝑓𝑖
∗(𝒓, 𝑡) + (1 − 2𝑞𝑖𝑛𝑡)𝑓𝑖

∗(𝒓 − 𝒄𝑖 , 𝑡),    𝑞𝑖𝑛𝑡 < 1/2 (28) 

 
𝑓𝑖′(𝒓, 𝑡 + Δ𝑡) =

1

2𝑞𝑖𝑛𝑡
𝑓𝑖

∗(𝒓, 𝑡) +
2𝑞𝑖𝑛𝑡 − 1

2𝑞𝑖𝑛𝑡
𝑓

𝑖′
∗(𝒓, 𝑡),    𝑞𝑖𝑛𝑡 ≥ 1/2 (29) 

Note that 𝑓𝑖
∗ denotes distribution function after collision while 𝑓𝑖′ indicates a distribution 

function in the opposite direction to the given velocity distribution direction of 𝑖 . To 

account for a moving LSM surface of velocity 𝒖𝑏, additional term of − 2𝑎𝒄𝑖𝜌𝒄𝑖 ∙ 𝒖𝑏 𝑐𝑠
2⁄  is 

added to 𝑓𝑖′(𝒓, 𝑡 + Δ𝑡). 

Once the momentum exchange is complete on LBM side, the difference in 

momentum exchanged on the fluid domain is applied onto the solid domain as solid-fluid 

interfacial force 𝑭𝑖𝑛𝑡. This force is defined as  

 
𝑭𝑖𝑛𝑡(𝒓𝑏, 𝑡 +

1

2
∆𝑡) =

∆𝑥3

∆𝑡
[𝑓𝑖

∗(𝒓, 𝑡) + 𝑓𝑖′
∗(𝒓, 𝑡 + ∆𝑡)]𝒄𝑖 (30) 

Note that 𝒓𝑏 is the intersection point on LSM surface where LBM propagation from a given 

LBM node in the direction of 𝒄𝑖 intersects. Once the total interfacial force is calculated, it 

is distributed to nearby LSM nodes that make up the surface based on its distance from the 

point of intersection. Overall, this method of solid-fluid coupling conserves momentum of 

the entire model since the exact amount of momentum changed in fluid domain are applied 

as interfacial forces onto the solid domain.   
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CHAPTER 3. LYMPHATIC VALVE IN A RIGID VESSEL 

3.1 Introduction 

In this chapter, we model the lymphatic vessel wall as rigid and introduce a uniaxial 

pressure gradient that varies with a prescribed pressure waveform to mimic the flow 

generated by a contracting lymphatic vessel. These simplifying assumptions allow us to 

isolate the effects of valve morphology on its function. The effect of vessel contractility 

and more complicated dynamic pressure variations, both of which may also play important 

roles in valve efficacy, will be explored in later chapters. 

FSI studies of cardiac valve behavior have been used to significantly increase 

understanding of cardiac valves [78-80] compared to more simplified approaches. Similar 

gains in knowledge of lymphatic valve behavior are anticipated when compared to 

simplified approaches. Ultimately, the findings are to complement results from lumped 

parameter lymphatic studies to increase our understanding of lymphatic system behavior, 

and to provide insights into how valve defects can lead to lymphatic dysfunctions. 

3.1.1 Rigid wall model 

In this chapter, we model the lymphatic vessel as a stationary fluid-filled cylinder 

and, based on Davis, Rahbar [8], assume the valve leaflets in their unstressed state as the 

section of a plane interior to the intersection of the plane with the cylindrical vessel (Figure 

3.1a-b). The free leaflet tip is given a crescent shape through removal of a circular section 

of diameter 𝑑 from the end of the valve, reflecting the geometry typical for lymphatic valve 
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leaflets found physiologically (Figure 3.1c). The valve leaflet is fixed at its perimeter to 

the vessel wall, whereas the interior and the tip are allowed to move freely. 

 

Figure 3.1 a) Simplified geometric model of a lymphangion consisting of a cylindrical 

vessel and valve. Note that the semicircular cutout can look elliptical when viewed from 

an angle. b) Shape and dimensions of the valve leaflet from Fig 3.1a. The red line marks 

the locations at which the valve leaflets are attached to the vessel walls, and the blue circle 

marks the region removed from the geometry to give it a crescent shape. c) Image of a 

lymphatic vessel segment containing a valve, given as a comparison to our simplified 

model. 

The fluid domain is subjected to periodic boundary conditions in the axial flow 

direction, simulating an infinitely long repeating series of lymphangions. The periodic 

boundary conditions are implemented for the distribution functions exiting the domain by 

reintroducing these functions on the opposite side of the domain. A body force is used to 

impose a pressure gradient in the flow leading to a pressure drop Δ𝑃𝑎𝑝𝑝(𝑡) across the length 

of the channel. 
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Leaflet contact during valve closure was achieved by creating a no-penetration 

boundary at the center plane between the two leaflets, thus avoiding possible numerical 

instability caused by contacts between solid nodes while allowing satisfactory valve 

closure to prevent backflow. 

3.1.2 Relevant operating conditions of lymphatic system 

Understanding lymphatic biomechanics is a challenging task. Experimental studies 

on the lymphatics are scarce, in large part due to the difficulty of locating and handling 

lymphatic vessels. Lymphatic vessels are not as easily identifiable since they are clear (i.e. 

not filled with blood). Additionally, lymphatic vessels are quite fragile. For example, 

collecting lymphatics in the rat range in diameter from 80~800 μm, with a wall thickness 

of 10~40 μm . While measurements of lymphatic wall mechanics and muscle force 

generation have been occasionally reported in the literature [81-83], measurements of 

lymphatic valve opening and closing properties are very rare [8], and no measurements 

exist of lymphatic valve mechanical properties.  

Despite the scarcity, some of the reported physiological values of relevant operating 

parameters are provided in Table 3.1 as a reference. Note that Cauchy number represents 

a ratio between dynamic pressure force from fluid and elastic force [84-88]. Unlike the 

typical Cauchy number which calculates contribution of stretching force, we define a 

modified Cauchy number that compares the pressure force against elastic force from 

bending. The modified Cauchy number is defined as 𝐶𝑎 = (𝜌𝑑3𝑈𝑐
2)/𝑑𝑏 = (𝑑𝜇2𝑅𝑒𝑟

2)/

(𝜌𝑑𝑏) = (12𝑑𝜇2(1 − 𝜐𝑝
2)𝑅𝑒𝑟

2)/(𝜌𝑒ℎ3), where vessel diameter 𝑑 is used as characteristic 

length, and characteristic velocity 𝑈𝑐 is replaced with and adjusted with Reynolds number 
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in a rigid vessel 𝑅𝑒𝑟 . Finally, 𝜌  and 𝜇  represent fluid density and dynamic viscosity, 

respectively. 

Table 3.1 Table of referenced operating conditions 

Operating Conditions Typical Experimental Values Reference 

Valve length (μm) 230~2800 (est. ) [20, 21] 

Vessel diameter (μm) 100~2800 [19-21] 

Valve thickness (μm) 0.5~6 [89] 

Pressure drop (Pa) 0~200 [8] 

Young’s modulus (kPa) 1.25~7.5 [19] 

Reynolds number < 16 [22, 23]  

Womersley number < 1.4 [22, 23] 

Cauchy number < 4800 [19, 84] 

Note:  

Measured lymphatic valve diameter and length from Figure 3.2 were not specifically noted 

since the values are within the ranges for respective parameters.  

[8] and [21] used rat mesenteric lymphatic vessels.  

[20] used lymphatic vessels from human legs.  

[19] used bovine mesentery lymphatic vessels. 

[89] used adult rabbit lung’s lymphatic vessels. 

Cauchy number is calculated from average 𝑑  from Figure 3.2 and average Young’s 

modulus and valve thickness from Table 3.1. 𝜐𝑝 is set at 0.5 for biological materials. 

3.1.3 Nondimensional number and simulation parameters 

Note that in lattice-Boltzmann simulations, physical parameter values are derived 

from relationships between lattice-Boltzmann simulation parameters and are not explicitly 

specified in the model. Thus, to compare our simulation results with relevant experimental 

systems, we match dimensionless parameters characterizing the system including the 

aspect ratio, Reynolds number, Womersley number, 𝐾𝑏,𝑟 , and 𝐾𝑠,𝑟 . Dimensionless 
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parameters corresponding to the physiological ranges of physical parameters as listed in 

Table 3.1 were used in our simulations. 

We first consider the aspect ratio 𝐴𝑅 = 𝑙 𝑑⁄  of the lymphatic valves, where l is the 

length of the valve, and 𝑑 is the vessel diameter at the base of the valve, or the valve width, 

as shown in Figure 3.1b. We also consider a dimensionless bending stiffness parameter 

𝐾𝑏,𝑟 = 160𝑘𝑏/√3𝜋𝑑3∆𝑃𝑎𝑝𝑝 , which represents the balance between elastic forces and 

pressure forces on the valve. The normalized in-plane stiffness is given by 𝐾𝑠,𝑟 =

𝑘𝑠 𝛥𝑃𝑎𝑝𝑝𝑑⁄ = √3𝑒ℎ 2Δ𝑃𝑎𝑝𝑝𝑑⁄ , where 𝑒  is Young’s modulus, and ℎ  is valve thickness. 

Unless specified otherwise, we set 𝐾𝑠,𝑟 = 0.1 for the simulations. The value of 𝐾𝑠,𝑟  is 

chosen by using the averages of physiological parameter values from Table 3.1.  

The lymphatic system operates at a low Reynolds number, 𝑅𝑒𝑟 = 𝜌𝑈𝑑 𝜇⁄ , where 

the flow is dominated by the fluid viscosity. Here, 𝜇 and 𝜌 are the dynamic viscosity and 

density of the fluid, respectively. In our simulation, the largest values of the Reynolds 

number calculated based on the fastest flow velocity 𝑈𝑚𝑎𝑥 does not exceed 𝑚𝑎𝑥 (𝑅𝑒𝑟) ≈

0.7. While low values of 𝑅𝑒𝑟 are typical for the lymphatic experimental studies [22], wide 

variation of lymphatic valve and vessel properties such as the vessel diameter [19-21] make 

it possible for lymphatic flows to have a Reynolds number greater than unity [23]. In such 

a case, inertial effect could play a more significant role than in our simulations. In our 

dynamic simulations, we use the Womersley number 𝑊𝑜 = 𝑑 2⁄ √𝜔𝜌 𝜇⁄ = 0.11, where 

𝜔 is the angular frequency of the applied dynamic pressure difference. The relatively low 

𝑊𝑜 corresponds to flow conditions characteristic to the lymphatic system [22, 23]. Note 

that our computational model explicitly accounts for inertial effects on both fluid and solid 
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mechanics. Finally, Cauchy number for the model is calculated based on 𝐶𝑎 =

(𝑑𝜇2𝑅𝑒𝑟
2)/(𝜌𝑑𝑏). For 𝑅𝑒𝑟, the average flow velocity for a valve-less, rigid vessel under 

Δ𝑃𝑎𝑝𝑝 is used, which gives 𝑅𝑒𝑟 = 0.2 and 𝐶𝑎 < 0.2. The large variation of 𝐶𝑎 from Table 

3.1 can be explained from the difference in 𝑅𝑒𝑟, which has a quadratic relationship with 

𝐶𝑎. In fact, once the numerical operating range of 𝑅𝑒𝑟 = 0.2 is applied to recalculate 𝐶𝑎 

in Table 3.1, the recalculated 𝐶𝑎 is around 0.8, which is within an order of magnitude from 

the numerical counterpart.  

To characterize the resistance of lymphatic valves to forward fluid flow, we 

introduce the flow resistance 𝑅𝑟  using an analogy to Ohm’s law, Δ𝑃𝑎𝑝𝑝 = 𝑄𝑠𝑡𝑒𝑎𝑑𝑦𝑅𝑟 . 

Here, Δ𝑃𝑎𝑝𝑝  is the imposed pressure drop across the vessel length and 𝑄𝑠𝑡𝑒𝑎𝑑𝑦  is the 

calculated resulting steady-state volumetric flow rate. We calculated the valve flow 

resistance 𝑅𝑣𝑎𝑙𝑣𝑒 = 𝑅𝑡𝑜𝑡𝑎𝑙 − 𝑅𝑣𝑒𝑠𝑠𝑒𝑙, where 𝑅𝑡𝑜𝑡𝑎𝑙 is the total resistance of the vessel and 

valve to flow, as calculated from simulation data, and 𝑅𝑣𝑒𝑠𝑠𝑒𝑙 is the flow resistance of a 

valve-less vessel section based on Poiseuille approximation and validated through 

simulation of a valve-less vessel segment. The ratio 𝑅𝑣𝑎𝑙𝑣𝑒 𝑅𝑣𝑒𝑠𝑠𝑒𝑙⁄  gives the relative 

resistive effects of the valve and vessel on flow. When 𝑅𝑣𝑎𝑙𝑣𝑒 𝑅𝑣𝑒𝑠𝑠𝑒𝑙⁄ < 1,  the valve 

causes less flow resistance than does the vessel, while the opposite is true for 

𝑅𝑣𝑎𝑙𝑣𝑒 𝑅𝑣𝑒𝑠𝑠𝑒𝑙⁄ > 1. A Poiseuille approximation of the valve-less vessel flow is appropriate 

given the low Womersley number flow under the conditions in this study, and further has 

been shown to be an appropriate approach for the low Reynolds number associated with 

lymphatic flow in regions away from valve segments [22, 34]. Under backflow conditions, 

valve closing should prevent fluid leakage. To characterize the ability of valves to resist 

leakage during the backflow, we introduce the fluid conductance 𝐶 = 1 𝑅𝑟⁄ . The valve 
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conductance 𝐶𝑣𝑎𝑙𝑣𝑒 = 1 𝑅𝑣𝑎𝑙𝑣𝑒⁄  is normalized by the conductance in an equivalent valve-

less vessel, 𝐶𝑣𝑒𝑠𝑠𝑒𝑙 = 1 𝑅𝑣𝑒𝑠𝑠𝑒𝑙⁄ , to give the relative effects of the valve and vessel on 

conductance of flow. 

For model dimensions, note that all dimensional values are given in lattice 

Boltzmann units, if not indicated otherwise. In our model, the vessel has constant length 

𝐿𝑣𝑒𝑠𝑠𝑒𝑙 = 150 and diameter 𝑑 = 20 and is contained within a rectangular computational 

domain. The vessel is filled with fluid of density 𝜌 = 1 and kinematic viscosity 𝜈 = 1/6. 

The valve leaflets are constructed of springs arranged on an equilateral triangular lattice 

with equilibrium length 𝐿𝑒𝑞 = 1.78.  The mass of each solid node is calculated to 

correspond to the approximate valve mass, based on the average lymphatic valve thickness 

reported by Lauweryns and Boussauw [89]. Under steady-state simulators, we consider a 

constant pressure drop Δ𝑃𝑎𝑝𝑝 = 1/300 , whereas Δ𝑃𝑎𝑝𝑝(𝑡)  changes following a 

trapezoidal waveform in dynamic simulations. The wave form is characterized by the 

maximum pressure drop Δ𝑃𝑎𝑝𝑝,𝑚𝑎𝑥. 

3.1.4 Convergence analysis 

Even though LBM, LSM, and coupling method have been successfully and 

extensively validated in several previous studies [72-77], additional numerical validation 

is required to determine the accuracy of model resolution. Thus, a convergence analysis of 

both the LBM and LSM components of the simulated model was conducted. Deviation of 

average velocity and leaflet opening at the center were used to analyze the convergence for 

LBM and LSM, respectively, and approximately 2% deviation in both average velocity 
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and leaflet opening were found when the resolution was doubled, supporting that the 

current grid is sufficiently accurate for the study conditions. 

To our knowledge, analysis of this chapter was the first time that the three-

dimensional dynamics of collecting lymphatic valves has been successfully modeled using 

two-way coupling of fluid mechanics and solid mechanics models. Thus, this simplified 

model of collecting lymphatic valves represents a significant step above the previous 

research and provides a means to study the effects of basic system parameters on dynamic 

valve behavior and on fluid resistance. 

3.2 Effect of valve aspect ratio 

When first studying the effect of valve aspect ratio and mechanical properties, we 

performed numerical simulations in which a steady pressure gradient was applied in either 

the favorable or adverse axial direction down a vessel containing a lymphatic valve. While 

a steady pressure gradient is not physiological, its application in this context allows for one 

to easily appreciate the influence of relevant valve parameters on its resistance. A favorable 

pressure gradient drives flow in the forward direction from left to right and causes the valve 

to open. Conversely, an adverse pressure gradient drives flow in the backward direction 

from right to left and causes the valve to close. We simulated flow through vessels of 

constant geometry containing valves of different length, so as to represent geometries with 

varied valve aspect ratio. 

3.2.1 Survey of experimental data on valve geometry 
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As indicated by previous studies, lymphatic valves come in varied geometries. For 

example, the valve aspect ratio varies widely across species and vessel location. In a brief 

survey of valves from vessel segments that we excised from rats and sheep, we observed 

this aspect ratio to vary over the range of approximately 1.15 < 𝐴𝑅 < 3, shown in order 

of increasing aspect ratio in Figure 3.2. While these data do not conclude that valves always 

fall into this range of aspect ratio, they provide a guideline for an aspect ratio range over 

which we focus our simulations. The experimental method of obtaining the valves’ 

geometric profiles is detailed in [49]. 

 

Figure 3.2 Images of lymphatic vessels with valves, excised from various vessel locations 

and species, given in order of increasing aspect ratio. a) rat thoracic duct: 𝑑 ≈ 550μm, 𝐿 ≈
640μm and 𝐴𝑅 ≈ 1.15, b) sheep popliteal lymphatic vessel: 𝑑 ≈ 650μm, 𝐿 ≈ 810μm 

and 𝐴𝑅 ≈ 1.25, c) rat cervical lymphatic vessel: 𝑑 ≈ 440μm, 𝐿 ≈ 660μm and 𝐴𝑅 ≈ 1.5, 

and d) rat mesenteric lymphatic vessel: 𝑑 ≈ 110μm, 𝐿 ≈ 295μm and 𝐴𝑅 ≈ 2.7. e) Two 

rat tail lymphangions (valves noted in red) in series with 𝑑 ≈ 220μm, 𝐿 ≈ 660μm, and 

𝐴𝑅 ≈ 3. The upper image shows the closure of the central valve with other valves open, 

while the lower image shows the same lymphangions but with the central valve now open 

and the other two valves closed. This shows how lymphangions in a chain work together 

to create a unidirectional flow. 
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3.2.2 Flow resistance variation, forward flow 

Figure 3.3a presents the normalized valve flow resistance over a range of 𝐴𝑅 with 

two different values of 𝐾𝑏,𝑟  under a favorable pressure gradient. We find that the 

normalized resistance of an open valve to forward flow increases monotonically with 

aspect ratio. This is because long valves (i.e., valves with a large aspect ratio) have longer 

constricted regions than short ones, thus leading to increased flow resistance. 

Consequently, from the perspective of purely minimizing resistance to forward flow, low 

aspect ratio valves would be the optimal configuration. We found that lymphatic valves in 

fact do tend toward the limit of a low aspect ratio, as the majority of the physiological 

valves that we considered have aspect ratios close to unity, as seen by labels a-c in Figure 

3.3a.  

 

Figure 3.3 Plot of normalized valve resistance and conductance of lymphatic valves to 

forward and backward flow, respectively, for various aspect ratios 𝐴𝑅 for a fixed vessel 

size and normalized stiffness values of 𝐾𝑏,𝑟 = 0.25  and 𝐾𝑏,𝑟 = 0.7 . a) Normalized 

resistance to forward flow. The markings a-e and dotted vertical lines correspond to the 

aspect ratios of the valves shown in Figure 3.2a-e, respectively. Also note that 𝐾𝑠,𝑟 is varied 

between 𝐾𝑠,𝑟 = 0.07  and 0.23  for selected values of 𝐴𝑅  at 𝐾𝑏,𝑟 = 0.7 . b) Normalized 

conductance to back flow. Labels for d and e are not shown as the solution converges to 

zero for 𝐴𝑅 > 1.5. The same 𝐾𝑠,𝑟 variation is studied for selected values of 𝐴𝑅 at 𝐾𝑏,𝑟 =
0.7 as was used in a). 
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3.2.3 Flow resistance variation, backward flow 

To provide a net pumping effect, lymphatic valves must not only allow forward 

flow, but they must also effectively resist backward flow. Thus, we examined the ability 

of lymphatic valves of varied aspect ratio to prevent backflow. In Figure 3.3b, we report 

the calculated normalized fluid conductance, which gives a measure of the ability of fluid 

to flow through the valve. The conductance is calculated over a range of 𝐴𝑅 for two values 

of 𝐾𝑏,𝑟. We found that in the limit of small aspect ratios the valve leaflets are too short to 

be able to fully occlude the vessel upon valve closure, allowing significant backflow as 

indicated by nonzero conductance in Figure 3.3b. However, as the valve aspect ratio is 

increased, the valve is able to close more fully to effectively block backflow, as is seen by 

the near-zero conductance above a critical aspect ratio 𝐴𝑅𝑐𝑟, whose value is dependent on 

the valve stiffness. Thus, lymphatic valves should be of an aspect ratio greater than 𝐴𝑅𝑐𝑟 

to effectively block backflow. Interestingly, some of the lymphatic valves shown in Figure 

3.2 fall near the critical aspect ratio range we found in the simulations, as indicated by the 

letters a-c on Figure 3.3b.  

Thus, functional lymphatic valves must balance having a low enough aspect ratio 

to reduce resistance to forward flow, while still maintaining a high enough aspect ratio to 

fully close and prevent backflow. This explains why the majority of the physiological 

valves which we have observed in our limited sample size (Figure 3.2) fall into a limited 

aspect ratio range, as seen in Figure 3.3. Furthermore, if we assume that lymphatic valve 

geometry is optimized to both facilitate forward flow and limit backward flow, our results 

suggest that the stiffness of physiological valves is likely such that it will result in 
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dimensionless values close to the range of those considered in our study. 

We note that actual geometrical configurations observed physiologically may differ 

from the critical aspect ratio for proper valve closing and backflow prevention as predicted 

in this study. This is expected since valve aspect ratios are approximated with some 

uncertainly, due to dynamic changes in the vessel diameter resulting from the significant 

contraction and expansion inherent to lymphatic vessels. This could in fact change the 

effective aspect ratio for a given valve. For example, Figure 3.3 does not indicate proper 

valve closure under back flow with 𝐴𝑅 < 1.2. However, in actual valves, the lymphatic 

vessel contracts during the phase in which the valve must prevent backflow. This means 

that the effective aspect ratio in fact will be much larger than 1.2 under backflow even for 

valves with an aspect ratio close to 1 under passive conditions. This indicates that valves 

with 𝐴𝑅 < 1.2  in an inflated state can still close properly due to vessel contraction. 

Furthermore, reported regional heterogeneity within the lymphatic system has been 

suggested to occur as a result of adaptations of the vessel to the natural loading conditions 

that it experiences in vivo [82, 90, 91]. Thus, valves that do not routinely encounter large 

unfavorable pressure gradients may have developed valve geometries that are less adept at 

preventing backflow. 

3.3 Effect of valve mechanical properties 

The dependence of 𝐴𝑅𝑐𝑟  on valve bending stiffness, as seen in the difference 

between the two curves on Figure 3.3b, also suggests that 𝐴𝑅 is not the only factor vital to 

valve closing function. Furthermore, analysis of flow resistance for different 𝐴𝑅 under 

different in-plane stiffness demonstrated that valve’s bending stiffness will be a key factor 
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in variation of valve’s flow resistance. Thus, we performed simulations of both high and 

low aspect ratio valves (𝐴𝑅 = 3.4 and 𝐴𝑅 = 1.7, respectively) over a range of normalized 

bending stiffness, 𝐾𝑏,𝑟.  

3.3.1 Flow resistance variation, forward flow 

As seen in Figure 3.4, the resistance of the valve to forward flow increases 

monotonically with 𝐾𝑏,𝑟. This is due to the fact that flexible valves deflect more readily 

than stiff valves, allowing them to open more fully, thus reducing fluid resistance to 

forward flow.  

In the limit of infinitely stiff valves, fluid flow is not able to deform valve leaflets 

and the flow resistance is defined by the valve geometry in the unstressed condition. To 

evaluate the limiting values corresponding to the valves with extremely high stiffness, we 

simulated flow through rigid valves of each aspect ratio. Thus, the normalized resistance 

of valves converges with increasing elasticity to the values 𝑅𝑣𝑎𝑙𝑣𝑒/𝑅𝑣𝑒𝑠𝑠𝑒𝑙 = 1.2  and 

𝑅𝑣𝑎𝑙𝑣𝑒/𝑅𝑣𝑒𝑠𝑠𝑒𝑙 = 6 , for 𝐴𝑅 = 1.7  and 𝐴𝑅 = 3.4 , respectively. As seen from previous 

analysis of valve resistance in different valve aspect ratios, low aspect ratio valves have 

lower limiting resistance values than higher aspect ratio valves, due to the fact that lower 

aspect ratio valves provide a shorter constriction than do higher aspect ratio valves. 
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Figure 3.4 a) Normalized valve resistance to forward flow for 𝐴𝑅 = 1.7 and 𝐴𝑅 = 3.4, 

plotted against normalized bending stiffness. As in Figure 3.3, a segment of various 𝐾𝑏,𝑟 

at 𝐴𝑅 = 1.7 was varied in 𝐾𝑠,𝑟 . b) Normalized valve conductance to backflow against 

normalized bending stiffness for the same aspect ratios as in a). The asymptotic dashed 

lines indicate the limit of normalized conductance in the limit of a completely rigid valve. 

Note the normalized conductance’s convergence to its limiting value at high stiffness. 

3.3.2 Flow resistance variation, backward flow 

As seen in Figure 3.4b, more flexible valves result in low backflow conductance 

for valves of both 𝐴𝑅 = 1.7 and 𝐴𝑅 = 3.4. As valves become stiffer, they are less easily 

closed by pressure drops across the valve, and thus are less effective in preventing back 

flow. For example, valves with 𝐴𝑅 = 1.7 and normalized stiffness above about 𝐾𝑏,𝑟 = 1 

yielded a dramatically increasing conductance of backflow with increasing 𝐾𝑏,𝑟, as seen in 

Figure 3.4b. Valves of higher aspect ratio are able to function with higher stiffness than 

those of lower aspect ratio, as seen by the conductance curve for 𝐴𝑅 = 3.4 in Figure 3.4b. 

However, increasing stiffness will eventually introduce backflow in all valve sizes, as 

extremely stiff valves will remain in their initially flat position.  

Thus, fluid conductance under backflow conditions would be expected to converge 

to a limit corresponding to a rigid valve, as shown by the dashed lines in Figure 3.4b for 

the two valve geometries. Low aspect ratio valves reach the threshold of increased 
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conductance at a lower stiffness value than higher aspect ratio valves because they must 

deflect further than higher aspect ratio valves in order to fully close.  

Overall, we find that more flexible valves are best both for allowing forward flow 

and for preventing backflow, although the effect of stiffness is dependent on valve 

geometry. While the extent to which changes in valve stiffness are an important 

determinant in the pathogenesis of lymphedema remains completely unexplored, these 

results suggest that valve stiffening could have a profound effect on overall lymphatic 

pumping performance. 

3.3.3 Role of in-plane stiffness on flow resistance 

It is also useful to consider the role of in-plane stiffness in valve behavior under 

varied valve geometry. Within the range of in-plane stiffness varied, Figure 3.3 shows a 

minor effect of in-plane stiffness on valve resistance and conductance in forward and 

backward flows, respectively. The variation of forward flow resistance under varied in-

plane stiffness was almost nonexistent, while the conductance in backflow varied slightly, 

most notably at the transition between zero and nonzero conductance, between 𝐴𝑅 = 1.4 

and 𝐴𝑅 = 1.6. Likewise, in-plane stiffness only has a minor effect on valve behavior in 

Figure 3.4, indicating that bending stiffness is the determining factor in valve deformation. 

Although this conclusion is solely based on the data of Figure 3.3 and Figure 3.4, this 

insensitivity to in-plane stiffness is similar to what was suggested by the heart valve study 

[68, 69, 92].  

We also analyzed how the average leaflet area changes from the initial state. This 

change was calculated to be around 6% and 4% for forward and backward flows for Figure 
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3.3, respectively. For Figure 3.4, valve area change from the initial state was calculated for 

both aspect ratios, with average values of 6.2% and 0.7% for forward and backward flow, 

respectively. This indicates that under the parameters used in this study, there is a limited 

in-plane stretching of the valve leaflets. For these reasons we focus the main attention in 

our numerical study on exploring the effect of 𝐾𝑏,𝑟 rather than 𝐾𝑠,𝑟. Furthermore, we can 

extend the assumption of limited effect of in-plane stiffness to the dynamic simulations 

discussed below where we set 𝐾𝑠,𝑟 = 0.1. This is justifiable since the variation of pressure 

over time is relatively slow, such that inertial effects in the simulation are negligible, as 

indicated by a relatively small magnitude of the Womersley number. 

3.4 Valve under time-dependent pressure gradient 

3.4.1 Introduction 

In-vivo lymphatic pressure waveforms are highly dynamic, due to the intrinsic 

contractility of each individual lymphangion, adjacent lymphangions, and extrinsic tissue 

motion (e.g., through skeletal muscle contraction). In order to understand the dynamic 

behavior of lymphatic valves and its effect on fluid flow, we simulated flow driven by a 

time-dependent pressure drop Δ𝑃𝑎𝑝𝑝(𝑡) in a trapezoidal waveform for four cycles, thus 

obtaining time-periodic valve behavior after an initial transient period. Results of our 

simulations are shown in Figure 3.5.  



 39 

 

Figure 3.5 a-c) Valve positions, normalized velocity magnitude contour plot and vector 

field on the x-z plane at the center y-coordinate of the model, as shown in Figure 3.1. The 

plots show various stages of the lymphatic valve opening and closing cycle induced by a 

dynamically changing pressure gradient that follows a trapezoidal waveform. Note that the 

red line outlines where the leaflets are attached to the vessel wall. a) The pressure gradient 

forces fluid flow in the forward direction, opening the valve. b) The pressure gradient has 

recently been reversed and the valve is just beginning to close, but backflow is still allowed. 

c) The pressure gradient has been reversed for sufficiently long that the valve has closed to 

stop backflow. d-f) Corresponds to a)-c), respectively, but looking at the x-y plane at the 

center z-coordinate of the model. Note that leaflet edges are outline with the red line. 

When Δ𝑃𝑎𝑝𝑝(𝑡) propels flow through the vessel from left to right (Figure 3.5a and 

Figure 3.5d), the valve leaflets deform to open, enabling relatively unobstructed flow. As 

the pressure gradient is reduced gradually and eventually reversed, the flow starts to slow 

down, stop, and move from right to left (Figure 3.5b and Figure 3.5e). After a short 

transient during which the valve remains open allowing backflow (Figure 3.5b and Figure 

3.5e), the pressure drop across the valve surface forces it to close (Figure 3.5c and Figure 

3.5f), increasing the backflow resistance, or reducing the backflow conductance. 

To further analyze the flow behavior, average flow velocity 𝑈𝑎𝑣𝑔 normalized by its 
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maximum velocity is shown in Figure 3.6. The asymmetric time evolution of 𝑈𝑎𝑣𝑔 

indicates that the valve in our model provides a net forward pumping effect. The peak in 

negative flow velocity reflects a lag in the dynamic closing response of the valve with 

respect to Δ𝑃𝑎𝑝𝑝(𝑡), which is the flow driving force. A qualitatively similar amount of 

reverse lymphatic flow has been observed experimentally in rat mesenteric lymphatics 

[22].  

The lymphatic flow profile is axially dominated except when the lymphatic valve 

is fully closed against backflow. Under a forward pressure gradient, the fluid flows through 

the valve opening and near the central axis of the vessel, with a distinct region of stagnation 

at the gap between the leaflet and the lymphatic vessel wall. When the flow direction just 

starts to reverse, similar axially dominated flow develops, but now in the reverse direction. 

The magnitude of the reverse flow decreases as the leaflets close. In the case of an active 

lymphatic vessel where vessel contraction and expansion provide for the pressure gradients 

that drive the flow, the local fluid flow profile would be expected to be more complex than 

those observed in our simulations. Additionally, it is likely that the valve behavior itself 

would change due to contraction of the vessel wall near the anchoring points, although it 

is worth noting that usually the contraction amplitude is lowest near the valve region. 
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Figure 3.6 Waveform of the normalized average axial velocity (the solid blue line) and the 

normalized pressure drop, and correspondingly gradient, (the dashed red line) over a cycle 

of oscillating pressure drop, with the valve (𝐴𝑅 = 2.8, 𝐾𝑏,𝑟 = 0.25, 𝐾𝑠,𝑟 = 0.1) positions 

from Figure 3.5a-c denoted with the corresponding letter and with vertical dashed lines. 

Positive pressure drop indicates pressure driving fluid from left to right, and vice-versa. 

Time is normalized by the cycle period 𝜏𝑟.  

3.4.2 Valve hysteresis 

In order to better understand the dynamic behavior of the valves and how it results 

in a momentary peak in backflow and affects overall cycle pumping, we further 

investigated the valve dynamics under a trapezoidal pressure gradient waveform. To do 

this, time variation of the distance between the center points of the tips of the top and 

bottom leaflets, referred to hereafter as the gap distance 𝛿𝑔𝑎𝑝, is measured.  

In Figure 3.7, the time evolution of the normalized gap distance throughout a 

trapezoidal pressure drop cycle was plotted against the normalized pressure drop for 𝐴𝑅 =

2.8, 𝐾𝑠,𝑟 = 0.1, and valve stiffness values of 𝐾𝑏,𝑟 = 0.25 and 𝐾𝑏,𝑟 = 0.7. In both cases, 

substantial hysteresis of the gap distance is observed between an increasing and decreasing 

pressure drop (i.e., back flow to forward flow and forward flow to back flow, respectively), 
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providing clarity into the delayed valve response to changing flow conditions.  

 

Figure 3.7 Valve gap distance plotted against the normalized pressure drop for a single 

trapezoidal pressure drop cycle, where the waveform profile is given in a subplot on the 

top left corner. Gap distance response was plotted for 𝐾𝑏,𝑟 = 0.25 and 𝐾𝑏,𝑟 = 0.7 with 

𝐴𝑅 = 2.8, 𝐾𝑠,𝑟 = 0.1. The normalized gap distance difference at zero normalized pressure 

drop between increasing and decreasing pressure drop segment of the trapezoidal 

waveform is noted as  (𝛿𝑔𝑎𝑝/𝑑)
0
. As a reference, normalized gap distance at the unstressed 

state  (𝛿𝑔𝑎𝑝/𝑑)
𝑢𝑛𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑

 is shown by the horizontal dotted line. 

Under an increasing pressure gradient that eventually opens an initially closed 

valve, valve opening lags the increasing pressure gradient. For 𝐾𝑏,𝑟 = 0.7, this lag can be 

seen near zero pressure drop, which is indicated by the vertical dashed line in Figure 3.7.  

The gap distance at zero pressure is lower than the gap distance at the unstressed state, 

which is marked with a horizontal dotted line. This result indicates that the valve is not yet 

at its unstressed state when the pressure drop increases to a value of zero and flow 

transitions from the reverse direction to the forward direction. On the other hand, the softer 

valve (𝐾𝑏,𝑟 = 0.25) shows minimal delay after changing pressure to this level.  

For both values of 𝐾𝑏,𝑟 , the vertical lines at maximum positive pressure drop in 
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Figure 3.7 show that valves are not fully opened to maximum gap distances when 

maximum positive pressure is initially reached and require additional time to reach the 

fully opened state. As seen in Figure 3.7, under a decreasing pressure gradient that 

eventually closes an initially opened valve, valve closing trails the applied pressure 

gradient and thus results in a larger gap distance for a given instantaneous pressure gradient 

than when the valve was opening from a closed state. This supports the observed peak in 

reverse flow when the pressure gradient was decreasing (Figure 3.6), as a larger gap 

distance initially allows more backflow until the valve is fully sealed. This non-linear 

behavior due to the delayed valve response has been observed experimentally [8], further 

emphasizing the importance of studying the valve’s dynamic behavior.  

Comparison of the dynamic response of valves of two different normalized stiffness 

values reveals a significant effect of valve stiffness on the hysteresis area and the gap size 

throughout the pumping cycle. Figure 3.7 shows a larger gap opening for flexible valves 

throughout the entire pumping cycle, except at the point when the valve is fully closed at 

maximum negative pressure ( Δ𝑃𝑎𝑝𝑝 Δ𝑃𝑎𝑝𝑝,𝑚𝑎𝑥⁄ = −1 ). When fully opened (i.e., 

Δ𝑃𝑎𝑝𝑝 Δ𝑃𝑎𝑝𝑝,𝑚𝑎𝑥⁄ = 1), the flexible valve is able to open to a greater gap than the stiff 

valve. This is due to the decreased elastic forces balancing the pressure forces from the 

pressure gradient and results in lower resistance to forward flow than in stiff valves, as 

shown in Figure 3.4a.  

On the other hand, the gap distance approaches zero when the valve is in the closed 

position (i.e., Δ𝑃𝑎𝑝𝑝 Δ𝑃𝑎𝑝𝑝,𝑚𝑎𝑥⁄ = −1) for valves of both stiffness values, as seen in Figure 

3.7. This is due to the fact that the limiting valve position when subjected to an adverse 
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pressure gradient is the fully-closed position with a zero gap distance. This is in agreement 

with the results in Figure 3.4b, which indicates that valve fluid conductance to back flow 

experiences little variation with stiffness, so long as the valve stiffness is not taken to values 

prohibiting proper closing.  

Figure 3.7 also shows that while valves of both stiffness values experience a 

significant response delay resulting in a gap hysteresis between an increasing and 

decreasing pressure gradient, this hysteresis is more pronounced for a flexible valve than 

for its stiffer counterpart. This effect can be quantified through comparison of the opening-

closing gap difference at zero pressure gradient. A flexible valve has a greater difference 

in gap distance at zero pressure gradient, as indicated in Figure 3.7. This is due in large 

part to the ability of flexible valves to open further than stiffer valves, resulting in a greater 

distance for them to travel during opening and closing. This larger distance to travel leads 

to greater valve velocities, hydrodynamic forces, and ultimately, to variation in hysteresis.  

3.4.3 Optimization of pumping 

An important quantitative measure of overall valve performance is the volume of 

fluid pumped through the valve. Figure 3.8 shows the volume, 𝑉𝑜𝑙 = 𝑄𝑟(𝑡)̅̅ ̅̅ ̅̅ ̅𝜏𝑟, pumped 

through a valve orifice in one cycle of a trapezoidal pressure waveform. Note that 𝑄𝑟(𝑡)̅̅ ̅̅ ̅̅ ̅ is 

the mean flow rate of the pumped fluid per cycle 𝜏𝑟. This is normalized by the volume 

passed through the vessel without a valve under a constant forward pressure gradient (the 

maximum forward pressure gradient in the trapezoidal waveform) throughout a single 

cycle period, calculated based on the Poiseuille approximation and denoted 𝑉𝑜𝑙𝑃𝑜𝑖𝑠. Note 

that the ratio 𝑉𝑜𝑙/𝑉𝑜𝑙𝑃𝑜𝑖𝑠  is also equal to the normalized average flow rate pumped 
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through the valve per cycle since 𝑉𝑜𝑙 𝑉𝑜𝑙𝑃𝑜𝑖𝑠⁄ = 𝑄𝑟(𝑡)̅̅ ̅̅ ̅̅ ̅𝜏𝑟 𝑄𝑟,𝑝𝑜𝑖𝑠𝜏𝑟⁄ = 𝑄𝑟(𝑡)̅̅ ̅̅ ̅̅ ̅ 𝑄𝑟,𝑝𝑜𝑖𝑠⁄ . The 

normalized volume pumped is plotted against valve aspect ratios for 𝐾𝑏,𝑟 = 0.25  and 

𝐾𝑏,𝑟 = 0.7. 

 

Figure 3.8 Normalized volume pumped during a single pumping cycle induced by a 

pressure gradient varied in a trapezoidal waveform through valves of varied aspect ratio 

with 𝐾𝑏,𝑟 = 0.25  and 𝐾𝑏,𝑟 = 0.7  with 𝐾𝑠,𝑟 = 0.1  for all cases. The markings a-e and 

dotted vertical lines correspond to the aspect ratios of the valves shown in Figure 3.2a-e, 

respectively. 

For both stiffness values, the volume pumped rapidly increases with increasing 

aspect ratio from the limit of low 𝐴𝑅 until it reaches 𝐴𝑅𝑐𝑟 in the range of approximately 

1.3 ≤ 𝐴𝑅 ≤ 1.7.  Above 𝐴𝑅𝑐𝑟 , a gradual decrease in pumping occurs with increasing 

aspect ratio. As shown in Figure 3.3, low aspect ratio valves have low resistance to forward 

flow, but also allow back flow, suggesting that little if any flow will be pumped in the 

forward direction. However, as backflow is reduced with increasing aspect ratio, an optimal 

aspect ratio can be reached where the most pumping is done per cycle for a given stiffness. 

Valves with aspect ratios which are higher than this optimal configuration will yield 

increased resistance to forward flow, leading to an overall decrease in pumping 

effectiveness with increased aspect ratios. Comparison of this result with aspect ratios of 
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physiological valves from Figure 3.2 again suggests that lymphatic valves are potentially 

optimized for maximum pumping capability.  

3.5 Combining with lumped parameter models 

Results from above sections reveal that valve morphology has a significant impact 

on valve’s contribution to lymph flow. In comparison, many lumped parameter models 

widely utilizes a sigmoidal functional relationship of valve resistance with multiple 

adjustable model parameters [26, 30, 31]. However, there is no clear relationship between 

the model parameters and properties of the valve like its morphology and mechanical 

properties.  

To compare the sigmoidal model with our flow resistance model, our own valve 

flow resistance model was created by running several steady-state simulations of varying 

applied pressure gradients, shown in Figure 3.9. Figure 3.9a shows that although sigmoidal 

model approximates valve flow resistance, the model fails to capture detailed features like 

a more gradual decrease in flow resistance under forward flow near the region of sudden 

resistance change (transition zone). Furthermore, a noticeable shift in resistance transition 

location occurs between different bending stiffness. Although similar sigmoidal fits are 

created under both bending stiffness in Figure 3.9a, parameters for each sigmoidal function 

have to be arbitrarily fitted for best shape as there is no clear relationship between different 

valve properties to the sigmoidal function parameters. 
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Figure 3.9 Flow resistance model of the lymphatic valve constructed from series of steady 

state-cases of varying parameters. Note that all axes are normalized based on the criteria 

mentioned in above sections. a) Comparison between flow resistance model our model 

with the sigmoidal model, noted in dashed lines, under two different bending stiffness. 

Other parameters for both 𝐾𝑏,𝑟 are set as 𝐴𝑅 = 2.7 and 𝐾𝑠,𝑟 = 0.28. The sigmoidal model 

parameters were adjusted to resemble the simulated data as close as possible. b) 3D surface 

plot of valve flow resistance as a function of aspect ratio and applied pressure difference, 

represented as 𝐴𝑅 and ∆𝑃𝑎𝑝𝑝 ∆𝑃𝑎𝑝𝑝,𝑚𝑎𝑥⁄ , respectively. 

Figure 3.9b then combines simulated results of Figure 3.9a under different valve 

aspect ratios, creating a surface plot of valve aspect ratio, applied pressure gradient, and 

valve resistance. The plot indicates that shorter valves begin to fail in preventing backflow 

effectively, as seen in the receding transition zone with lower aspect ratio, where valves 

start to not occlude properly until a larger backward pressure gradient is applied. The 

finding again supports that shorter valves can only be effective in pumping when they can 

prevent backflow properly and demonstrates that a flow resistance can be defined as a 

function of different valve properties. The findings also show that tabulation of valve 

resistance under different valve properties can supply lower-dimensional models such as 

lumped parameter models with more physiologically relevant values, which can vary with 

coherent trend. For example, valve resistance can be an oscillating function of time since 

valve aspect ratio would change under different phases of vessel contraction, as the change 

in vessel diameter would change the valve aspect ratio.  
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CHAPTER 4. LYMPHATIC VALVE IN A CONTRACTING 

VESSEL 

4.1 Introduction 

Although the previous chapter explores various aspects of the lymphatic valve, the 

model in the previous chapter was necessarily restricted to a study of lymphatic valve in a 

rigid vessel where flow was motivated by applied pressure gradient. By expanding our 

finding to a case with vessel contraction, this chapter investigates the second objective of 

the research goal, where lymphatic vessel contraction was applied to motivate the flow 

against an adverse pressure gradient.  

Specifically, we focus on understanding the pumping behavior of a peristaltically 

contracting vessel fitted with compliant valves similar to those found in lymphatic systems 

[93, 94]. We consider a periodic vessel that undergoes periodic radial contractions leading 

to a sinusoidal traveling wave [50, 51]. We use this model to investigate the effects of 

elastic valves on pumping performance of peristaltically contracting vessels. Specifically, 

valve and vessel properties such as vessel contraction wave speed, vessel contraction 

amplitude, and valve elasticity are systematically probed for the peristaltic pumping under 

a range of applied adverse pressure gradients. 

Additional complexity in lymphatic systems emerges due the coupling between the 

contraction amplitude of lymphatic vessel and the applied adverse pressure gradient [14]. 

Experiments show that an increasing adverse pressure gradient results in a decreased 

contraction amplitude diminishing the pumping performance of lymphatic vessel. Such 
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behavior is typically associated with the finite force generation by the lymphatic muscle 

cells driving contractions. Other physiological features affecting lymphatic pumping 

include nonuniformity of vessel contraction near the valve [14, 95] and lymph flow-

sensitive wall contraction via wall shear stress [96, 97]. Here, we examine how the coupling 

between the adverse pressure gradient and the vessel contraction amplitude affects the 

pumping performance of peristaltic vessels with elastic valves.  

4.1.1 Peristaltic pumping 

Without valves, peristaltic pumping generates fluid packets with alternating axial 

velocity that are steady in the moving frame of reference under constant contraction wave 

speed 𝑐 (Figure 4.1a). These velocity packets lead to a net transport of the fluid in the 

direction of wave propagation that we refer as the positive flow direction. The presence of 

an adverse pressure gradient can reduce the net fluid pumping by peristaltic oscillations 

and ultimately can result in a negative flow (Figure 4.1b). When the adverse pressure 

gradient is large enough, sections with positive flow velocity diminish or entirely 

disappear, even though the general pattern with repeating velocity packets is still 

maintained (Figure 4.1c). The peristaltic pumping in a vessel without valves provides a 

baseline that allows us to evaluate the function of valves and to identify their effects on the 

fluid flow and pumping.  
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Figure 4.1 a) Axial component of flow velocity 𝑈𝑥 in a valve-less peristaltic vessel without 

an imposed pressure gradient yielding a flow rate 𝑄 = 0.15. b) Axial velocity 𝑈𝑥  in a 

vessel with an adverse pressure gradient Δ𝑃 = 140 yielding a flow rate 𝑄 = −0.22. c) 

Centerline axial velocity 𝑈𝑥(0) in the moving reference frame 𝑋 − 𝑇. In these simulations, 

the contraction ratio is 𝜙 = 0.2, and the peristaltic Reynolds number is 𝑅𝑒 = 0.2. Note 

that 𝑋 = 𝑥 𝜆⁄ , 𝑇 = 𝑡 𝜏⁄ , Δ𝑃 = Δ𝑝𝜆 𝑟0
2𝜌/𝜇2 𝑄 = 𝑞 𝜋𝑟0

2𝑐⁄ , 𝜙 = 𝑎 𝑟0⁄ , and 𝑅𝑒 = 𝜌𝑐𝑟0
2/𝜇𝜆, 

where Δ𝑝𝜆 is the pressure difference across a contraction wavelength, 𝑞 is the vessel flow 

rate, 𝑟0 is the mean radius of the vessel, 𝑥 is the axial coordinate, 𝜌 and 𝜇 are the fluid 

density and dynamic viscosity, and 𝑡  is time. Furthermore, 𝜆 , 𝜏 , 𝑐 , and 𝑎  are the 

wavelength, period, speed, and amplitude of vessel contraction. 

4.1.2 Model geometry 

Initial geometry of the model is composed of a periodic fluid-filled axisymmetric 

vessel and two sets of valves with each valve made up of two compliant leaflets (Figure 

4.2), simulating an infinitely long repeating chain of valves. Each leaflet is created from an 

intersecting plane between an axisymmetric vessel and a plane that cuts through the vessel 

at an angle [49]. Thus, the elastic leaflets are initially flat. The leaflet edge that overlaps 

with the vessel wall is firmly attached to the wall and follows the wall motion. The free 

edge of the leaflet has a semicircular cutout mimicking the typical geometry observed for 

lymphatic valves [98]. The valve geometry combined with the axisymmetric vessel deem 
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it necessary to use of a three-dimensional computational model since lower dimensional or 

axisymmetric models are unable to capture the leaflet motion. The leaflet geometry is 

characterized by the aspect ratio that is defined as the ratio between axial length of the 

leaflet and mean diameter of the vessel. In this chapter, we keep the leaflet aspect ratio 

equal to 1.75 that is in the typical range of experimental values [49]. The simulation domain 

has 301 by 44 by 44 LBM nodes in x, y, and z-directions, respectively, while the vessel and 

valves are composed of 8272 LSM nodes. The initial distance between two neighboring 

LSM nodes is about twice the distance between neighboring LBM nodes.  

The vessel undergoes a prescribed radial motion that leads to a sinusoidal traveling 

wave propagating along the vessel in the axial 𝑥 direction. The periodic motion of the 

vessel wall is given by 

 
𝑟𝑣𝑒𝑠𝑠(𝑥, 𝑡) = 𝑟0 [1 + 𝜙 𝑠𝑖𝑛 (

2𝜋

𝜆
(𝑥 − 𝑐𝑡))] (31) 

where r0 is the mean radius of the vessel, 𝜙 is the normalized contraction amplitude, 𝜆 is 

the wavelength, and 𝑐 = 𝜆 𝜏⁄  is the wave speed with 𝜏 being the oscillation period. Note 

that 𝜙 = 𝑎 𝑟0⁄  where 𝑎 is the vessel contraction amplitude. We set the wavelength equal to 

the distance between centroids of two consecutive valves. The wavelength is kept at a 

constant value equal to the distance between valves to induce synchronous valve 

deformation, providing a clearer understanding behind fundamental operation of valves in 

contracting vessel.  
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Figure 4.2 a) Model of a periodic contracting vessel fitted with two valves. b) Shape and 

dimensions of the valve leaflet. The edge on the right side of the leaflet is free, whereas the 

remaining part of the edge is attached to the vessel wall. The aspect ratio of the valve is 

defined as 𝑙 𝑑 = 1.75⁄ . c) Image of a lymphatic vessel segment with a valve. d) Typical 

valve profiles during different stages of valve operation. i: initial valve configuration, ii: 

valve opening, and iii: valve closure. 

4.1.3 Survey of relevant experimental data  

Experiments report a wide range of the contraction wavelength 𝜆. Indeed, the wave 

speed 𝑐 ranges from zero to 10mm/s with the frequency between 7 and 21 contractions 

per minute yielding the wavelength between 0 and 81mm  [19, 95]. Since the vessel 

diameters typically range from 80μm to 2.8mm and considering that the larger vessels 

exhibit a longer wavelength, we estimate that the ratio of the wavelength to the vessel 

radius 𝜆 𝑟0⁄  is in a wide range between 0 and 60. In our simulations, we set 𝜆 𝑟0⁄ = 15, 
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which falls well in the experimental range. Furthermore, considering that inter-valve 

distance is the same as 𝜆, this puts the valve placement within the experimental range where 

the values of this ratio are up to 20 [20, 99, 100]. 

We vary the following system parameters to investigate the vessel pumping 

performance: the traveling speed of vessel contraction wave 𝑐 that is varied by varying the 

contraction period 𝜏, the normalized contraction ratio 𝜙, the adverse pressure difference 

over a contraction wavelength Δ𝑝𝜆, and the in-plane stiffness and the bending stiffness of 

the valve. The ranges of these system parameters are selected based on the available 

experimental data summarized in Table 4.1.  

Table 4.1 Lymphatic system parameters for simulating lymphatic valves with a contracting 

vessel 

Parameters Experiments Reference 

Valve length, 𝑙 (μm) 80~2800 

(est.) 

Pan, le Roux [20], Wilson, van Loon 

[21], Rahbar and Moore [34], Akl, 

Coté [95] 

Average vessel diameter, 𝑑 

(μm) 

80~2800 MacDonald, Arkill [19], Pan, le Roux 

[20], Wilson, van Loon [21], Rahbar 

and Moore [34], Akl, Coté [95] 

Valve thickness (μm) 0.5~6 Lauweryns and Boussauw [89] 

Applied adverse pressure 

difference, Δ𝑝𝜆 (Pa) 

0~2000 Davis, Rahbar [8], Davis, Scallan [14], 

Scallan, Wolpers [101] 

Contraction wave speed, 𝑐 

(mm/s) 

0~10 Akl, Coté [95]  

Contraction frequency, 1/𝜏 

(contraction/min) 

7~21 Akl, Coté [95] 

Dimensionless contraction 

amplitude, (𝜙) 

0~0.45 Davis, Scallan [14] 

Viscosity, 𝜇 (mPa ∙ s) 0.89~1.36 MacDonald, Arkill [19], Moore and 

Bertram [23], Kassis, Yarlagadda 

[102] 
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Fluid density, 𝜌 (kg/m3) 998~1016 MacDonald, Arkill [19], Moore and 

Bertram [23], Burton-Opitz and 

Nemser [103] 

Note that in lymphatic systems, the contraction amplitude depends on the adverse 

pressure difference Δ𝑝𝜆 [14]. Here, we first examine the flow where the two parameters 

are independent to isolate the effect of each parameter on the flow. Then, the two 

parameters are coupled via the experimentally reported relationship and investigated to 

reveal any difference arising from the coupling. 

4.1.4 Nondimensional number and simulation parameters 

The above mentioned physical parameters can be expressed in terms of the 

following dimensionless parameters relevant to peristaltic pumping [50, 51], which are 

indicated using the uppercase. We use the dimensionless axial coordinate 𝑋 = 𝑥 𝜆⁄ , radial 

coordinate 𝑅 = 𝑟 𝑟0⁄ , axial component of flow velocity 𝑈𝑥 = 𝑢𝑥 𝑐⁄ , and time 𝑇 = 𝑡 𝜏⁄ . The 

adverse pressure difference is nondimensionalized as Δ𝑃 = Δ𝑝𝜆 𝑟0
2𝜌/𝜇2 , which 

represents the ratio between pressure and viscous forces during peristaltic pumping [50, 

104-108]. The Reynolds number for peristaltic pumping is defined as 𝑅𝑒 = 𝜌𝑐𝑟0
2/𝜇𝜆, 

where 𝜌 is the fluid density, and 𝜇 is the dynamic viscosity [50, 51, 109-111]. Because 

parameters that describe 𝑅𝑒 are kept constant throughout the work except for 𝑐, a change 

in peristaltic Reynolds number means a corresponding change in contraction wave speed 

defined by 𝜏. We vary 𝑅𝑒 in the range between 0.1 and 1.4. The dimensionless valve 

leaflet in-plane and bending stiffnesses are 𝐾𝑠 = 𝑘𝑠𝜌𝑟0 𝜇2⁄  and 𝐾𝑏 = 𝑘𝑏𝜌 𝜇2𝑟0⁄ , 

respectively. These parameters represent the ratios between, respectively, stretching and 

bending forces experienced by the valve and the viscous forces applied on the vessel wall.  
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The pumping performance is quantified in terms of the flow rate 𝑞 averaged over a 

wave period 𝜏, the average work done by the vessel wall 𝑤𝑎𝑣𝑔, pumping efficiency 𝜂 and 

pumping economy 휀 that are both evaluated over a wavelength 𝜆 and averaged over a wave 

period 𝜏. To calculate 𝑤𝑎𝑣𝑔 the work done by vessel walls is calculated by integrating the 

hydrodynamic force on the wall over the wall displacement and averaging the work over 

the wavelength 𝜆 and period 𝜏 of the vessel. The pumping efficiency is defined as 𝜂 =

𝑞𝛥𝑝𝜆𝜏/𝑤𝑎𝑣𝑔   while the pumping economy is defined as 휀 = 𝑞(Δ𝑝𝜆 + Δ𝑝𝑣𝑖𝑠𝑐)𝜏/𝑤𝑎𝑣𝑔 , 

where Δ𝑝𝑣𝑖𝑠𝑐 is pressure loss due to viscous friction for laminar flow arising at flow rate 𝑞 

in a straight pipe with radius 𝑟0  and length 𝜆 . This is expressed as Δ𝑝𝑣𝑖𝑠𝑐 =

𝑞/ (𝜋𝑟0
4 8𝜇𝜆⁄ ). Thus, the pumping efficiency represents the relative amount of work done 

by the vessel that goes into the transporting the fluid against the adverse pressure gradient, 

whereas the flow economy indicates the proportion of the work that is consumed by the 

fluid transport and viscous losses. The flow rate is normalized as 𝑄 = 𝑞 𝑞0⁄ , where 𝑞0 =

𝜋𝑟0
2𝑐 is the flow rate in a rigid pipe with radius 𝑟0 and average flow velocity 𝑐. Note that 

this normalization that has been previously used for peristaltic pumping [50, 51]. Work 

done by the vessel wall per wave period is normalized by the corresponding friction loss 

generated in a rigid pipe with an average flow velocity 𝑐 using Hagen-Poiseuille law [112] 

and is given by 𝑊 = 𝑤𝑎𝑣𝑔 (8𝜇𝜆𝜋𝑐2𝜏)⁄ .  

To characterize valve opening, we evaluate the cross-sectional area defined by the 

free edges of the leaflets 𝑎𝑣𝑎𝑙𝑣𝑒  that is normalized as 𝐴 = 𝑎𝑣𝑎𝑙𝑣𝑒/𝜋𝑟0
2 . The maximum 

valve opening 𝐴𝑚𝑎𝑥  is defined as the maximum value of 𝐴  over a vessel cycle. 

Furthermore, we examine the time that the valve is closed per vessel cycle 𝑇𝑐 = 𝜏𝑐 𝜏⁄ . Here, 
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𝜏𝑐 is the time that valve remains closed during one vessel period. The valve is considered 

closed when 𝐴 < 0.05. The dimensionless parameters are summarized in Table 4.2. 

Finally, the Cauchy number from Table 3.1 is recalculated based on simulation 

parameters under contracting vessel, using 𝐶𝑎𝑐 = (𝜌𝑑3𝑐2)/𝑑𝑏. For the contracting vessel, 

the mean diameter of the vessel is used for 𝑑 while the characteristic velocity 𝑈𝑐 is set at 

𝑐. Based on typical operating conditions, the recalculated Cauchy number gives 𝐶𝑎𝑐 = 2.8, 

which is about an order of magnitude higher than its counterpart under a rigid vessel.  

Table 4.2 Definitions of the dimensionless parameters for simulating lymphatic valves 

with a contracting vessel 

Dimensionless parameter Expression 

Input parameters 

Peristaltic Reynolds number 𝑅𝑒 = 𝜌𝑐𝑟0
2/𝜇𝜆 

Contraction amplitude 𝜙 = 𝑎 𝑟0⁄  

Pressure difference Δ𝑃 = Δ𝑝𝜆 𝑟0
2𝜌/𝜇2 

Bending stiffness 𝐾𝑏 = 𝑘𝑏𝜌 𝜇2𝑟0⁄  

In-plane stiffness  𝐾𝑠 = 𝑘𝑠𝜌𝑟0 𝜇2⁄  

Output parameters 

Flow rate 𝑄 = 𝑞 𝑞0⁄ = 𝑞 (𝜋𝑟0
2𝑐)⁄  

Work done by the vessel 𝑊 = 𝑤𝑎𝑣𝑔 (8𝜇𝜆𝜋𝑐2𝜏)⁄  

Pumping efficiency 𝜂 = 𝑞Δ𝑝𝜆𝜏/𝑤𝑎𝑣𝑔 

Pumping economy 휀 = 𝑞(Δ𝑝𝜆 + Δ𝑝𝑣𝑖𝑠𝑐)𝜏/𝑤𝑎𝑣𝑔 

Valve opening cross section 𝐴 = 𝑎𝑣𝑎𝑙𝑣𝑒/𝜋𝑟0
2 

Valve closure time 𝑇𝑐 = 𝜏𝑐 𝜏⁄  

Descriptive parameters 

Axial coordinate 𝑋 = 𝑥 𝜆⁄  

Radial coordinate 𝑅 = 𝑟 𝑟0⁄  
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Axial flow velocity  𝑈𝑥 = 𝑢𝑥 𝑐⁄  

Time 𝑇 = 𝑡 𝜏⁄  

 

4.1.5 Numerical validation 

The simulations start with a stagnant fluid and continue for at least 5 contraction 

periods to eliminate the influence of the initial transient. This ensures that the difference in 

the results between consecutive periods does not exceed 1%.  

We have previously extensively validated our FSI model with application to 

different flows including lymphatic pumping [49, 72, 75, 77, 113]. Here, we perform two 

additional tests to examine the accuracy of the model for simulating flow generated due to 

moving vessel walls. The first test (Figure 4.3) compares the axial velocity profiles in 

vessels with radially moving walls with the analytical solutions for semi-infinite circular 

pipe flow with the same wall motion [114]. The normalized radial velocity is defined as 

𝛼 = 𝜌𝑣𝑟(𝑡)𝑟(𝑡) 𝜇⁄ , where 𝑣𝑟(𝑡) is the radial speed and 𝑟(𝑡) is the radial position. Three 

different normalized radial speeds were tested for expanding and contracting vessels. 

Normalized axial velocity profiles in Figure 4.3 indicate that the numerically calculated 

flow velocities are in close agreement with the analytical results for both expanding and 

contracting vessels. 

The second test compared 𝑄  and 𝑊  obtained using an analytical solution for 

peristaltic oscillation [50, 51] with simulated results, as shown in Figure 4.4. The 

comparison is made for 𝜙 = 0.2 and 0.25, ∆𝑃 = 0 and 140, and for a range of 𝑅𝑒. It was 

found that the simulations are close to the analytical solution under different system 
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parameters relevant to our study. Divergence from the analytical solution growths as 𝑅𝑒 

increases. This can be expected since the analytical solution assumes 𝑅𝑒 ≪ 1. 

 

Figure 4.3 Axial flow velocity 𝑢𝑥 in a) expanding and b) contracting vessels for different 

values of radial wall velocity α. Axial velocity is normalized by the mean axial velocity of 

the vessel 𝑢𝑚, whereas the radial coordinate 𝑟 is normalized by the vessel radius 𝑟𝑝𝑖𝑝𝑒. The 

lines represent the simulated results, whereas the symbols represent the analytical solution 

[114]. 

 

Figure 4.4 a) Flow rate 𝑄 and b) vessel work 𝑊  as a function of peristaltic Reynolds 

number 𝑅𝑒 for different contraction amplitude 𝜙 without valves. The solid and dotted lines 

show the analytical and numerical solutions, respectively. The empty and filled symbols 

represent data for Δ𝑃 = 0 and Δ𝑃 = 140, respectively. 
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4.2 General flow pattern and valve deformation 

Figure 4.5a and Figure 4.5b present snapshots showing axial velocity magnitude 

and valve deformation for different stages of the vessel contraction cycle, respectively, 

without and with adverse pressure gradient. Note that figures show one valve since the 

flow profile and valve deformation repeat due to their synchronous motion. Similar to 

peristaltic pumping without valves (Figure 4.1), the flow is divided into alternating packets 

of positive and negative axial velocities. Regions of the positive axial velocity travel in the 

expanded region of the vessel, while packets of negative axial velocity propagate within 

the contracted region of the vessel. This indicates that velocity packets propagate with the 

same speed as the contraction wave [50, 51].  

Unlike vessels without valves, velocity packets are disrupted when they pass 

through the elastic valves. Compared to an axisymmetric flow profile in the cases without 

valves, flow disruption by the valves results in a flow that is no longer axisymmetric even 

though the pattern of alternating positive and negative velocity packets still persists. The 

valves open when they encounter packets of positive axial velocity and close to occlude 

the flow when packets of negative axial velocity pass. Thus, the valves affect the forward 

and backward flow in different ways. While the forward flow is allowed with some viscous 

loss due to the reduced orifice size, the backflow can be significantly suppressed and 

ultimately stopped by fully closed valves.  
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Figure 4.5 a) Axial flow velocity 𝑈𝑥 at different instances of the contraction cycle in a 

valved vessel with no adverse pressure gradient. b) Axial flow velocity 𝑈𝑥  in a valved 

vessel with Δ𝑃 = 140. Note that due to the valves, flow profile is not axisymmetric. Flow 

profiles are shown at the symmetry plane perpendicular to the valve opening. The 

simulation parameters are 𝜙 = 0.2, 𝑅𝑒 = 0.2, 𝐾𝑏 = 88, and 𝐾𝑠 = 115. 

The valves deform differently when encountering fluid packets with positive and 

negative velocities, as shown in Figure 4.2d. When encountering packets of positive axial 

velocity, the leaflets stretch and deform outwards by a combined action of the flow and the 

vessel expansion. This process increases the opening area of the valve defined by the leaflet 

free edges, thereby enabling fluid flow. When the valve encounters negative velocity 

packets, the vessel contracts. The middle of the leaflets deforms inwards, allowing the free 

edges to rapidly collapse and block the flow. The valve closure process culminates by 

creating a coaptation zone expanding from the leaflet free edges. 
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The effect of valves on backflow reduction is more evident when the flow is 

subjected to an adverse pressure gradient. In this scenario, a peristaltic vessel without a 

valve has a limited capacity to transport fluid in the direction of wave propagation (Figure 

4.1b), whereas addition of unidirectional valves yields a positive net flow in the vessel 

(Figure 4.5b). Note that without adverse pressure gradient, both vessels with and without 

valves can successfully pump fluid in the positive direction (Figure 4.1a and Figure 4.5a). 

This further points to the important role that valves play in enabling pumping against 

adverse pressure gradients. 

 

Figure 4.6 a) Axial flow velocity difference ∆𝑈𝑥 at different instances of the contraction 

cycle in a valved vessel with no adverse pressure gradient. b) Axial flow velocity difference 

∆𝑈𝑥 in a valved vessel with Δ𝑃 = 140. Flow profiles are shown at the symmetry plane 

perpendicular to the valve opening. The simulation parameters are 𝜙 = 0.2, 𝑅𝑒 = 0.2, 

𝐾𝑏 = 88, and 𝐾𝑠 = 115. The flow velocity difference ∆𝑈𝑥 is calculated as the difference 

between flow velocities in vessels with and without valves. 
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The effect of valves on pumping is further revealed when considering the difference 

in axial velocity between vessels with and without valves denoted as ∆𝑈𝑥 and shown in 

Figure 4.6. When packets of positive velocity pass through an open valve (see Figure 4.6 

for 𝑇 = 0.2 and 0.4), the overall flow velocity pattern is similar to the flow in the valve-

less vessel with minor flow disturbances around the valves, where the flow accelerates due 

to the reduced opening between the leaflets. In this case, ∆𝑈𝑥 is nearly zero everywhere in 

the vessel except for a small region in the vicinity of the valve. The velocity difference 

∆𝑈𝑥 is more significant when vessel contraction passes the valve. In this case, negative 

flow velocity causes the valve to close and block the flow. This, in turn, results in a positive 

∆𝑈𝑥 in most of the vessel, as shown in Figure 4.6 for 𝑇 = 0, 0.6, and 0.8. A significant 

positive difference in velocity between the cases with and without valves when the valves 

are closed indicates that the valves increase pumping by reducing backflow. Furthermore, 

when comparing Figure 4.6a and Figure 4.6b, we find that the backflow reduction is more 

prominent when the pumping is against an adverse pressure gradient. Indeed, the adverse 

pressure gradient causes a significant negative flow when the valve-less vessel contracts 

(Figure 4.1b). The backflow is stopped by the closed valves in the case of the vessel fitted 

with valves (Figure 4.5b).   

4.3 Contraction wave speed on pumping 

4.3.1 General centerline axial velocity profile 

We first examine the effect of contraction wave speed on pumping by varying the 

peristaltic Reynolds number that, in turn, is realized by varying the contraction period 𝜏. 

In Figure 4.7, we show how the centerline flow velocity 𝑈𝑥(0) changes along the vessel 
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without an adverse pressure gradient at 𝑅𝑒 = 0.2 and 𝑅𝑒 = 0.6. The velocity is shown as 

a function of the distance along the vessel 𝑋 and in the moving reference frame 𝑋 − 𝑇. In 

Figure 4.7a and Figure 4.7c, which show the velocity 𝑈𝑥(0) as a function of the distance 

along the vessel 𝑋, the two vertical dotted lines indicate the location of the valve with the 

leaflet free edge being on the right side. Furthermore, the horizontal lines in these figures 

show the maximum and minimum magnitude of the centerline velocity in a vessel without 

a valve. Figure 4.7b and Figure 4.7d show the velocity 𝑈𝑥(0) in the moving reference 

frame 𝑋 − 𝑇 in which case the velocity in a valve-less vessel is represented by a single 

line. Note that the velocities in Figure 4.7a and Figure 4.7b correspond to the snapshots 

shown in Figure 4.5.  

 

Figure 4.7 a) Centerline axial flow velocity 𝑈𝑥(0) in the stationary reference frame in a 

vessel with no adverse pressure gradient with 𝑅𝑒 = 0.2. The maximum valve opening is 

𝐴𝑚𝑎𝑥 = 0.44.  b) Same as a) but in the moving reference frame, the solid black line 

indicates the average centerline velocity for the valve-less vessel. c) Centerline axial flow 

velocity 𝑈𝑥(0) in a stationary reference frame in a vessel with 𝑅𝑒 = 0.6. The maximum 

opening is 𝐴𝑚𝑎𝑥 = 0.68. d) Same as c) but in the moving reference frame, the solid black 

line indicates the average centerline velocity for the valve-less vessel. The horizontal solid 
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lines indicate the maximum and minimum centerline velocities in a vessel without valves. 

The dashed vertical lines indicate the boundaries of valve position. The blue and red lines 

show the velocities when the valves are, respectively, open (𝐴 ≥ 0.05) and closed (𝐴 <
0.05). The simulation parameters are Δ𝑃 = 0, 𝜙 = 0.2, 𝐾𝑏 = 88, and 𝐾𝑠 = 115. 

Outside from the regions around the valve, the centerline velocity follows a 

sinusoidal wave (Figure 4.7a), which is characteristic for the centerline velocity in 

peristaltic vessels without valves (Figure 4.1c). The valves introduce a velocity disturbance 

that is manifested by a velocity maximum at the valve orifice located at 𝑋 = 0.6 and is 

formed by the partially open leaflets at 𝑇 = 0.2 and 0.4 (Figure 4.7a). Furthermore, when 

the valve is closed at 𝑇 = 0, 0.6, and 0.8, the centerline velocity between coapted leaflets 

is nearly zero. Thus, the valve prevents a negative flow at the valve orifice.  

To identify the velocity changes induced by the valves with respect to the centerline 

velocity in the valve-less vessel, we use a moving reference frame that is translated with 

the speed of the traveling wave (Figure 4.7b). We find that the valve can both decrease and 

increase the centerline velocity with respect to the valve-less vessel. The velocity 

corresponding to the open valve condition is somewhat lower than the valve-less velocity. 

Thus, the flow resistance in the valves on average reduces the flow in the entire vessel. On 

the other hand, when the valve is closed, the centerline velocity in the vessel exceeds the 

valve-less velocity. For a fully closed valve, the velocity within the vessel is defined by the 

fluid redistribution induced by the peristaltic wave propagating along the vessel.  

The overall pumping in the vessel with valves is greater than in a valve-less vessel 

when the backflow reduction due to valve closure outweighs the velocity decrease due to 

the hydrodynamic resistance in the open valve. Thus, the pumping performance is 
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determined by the valve properties and is maximized when the valve is able to fully block 

the backflow with minimal resistance for the forward flow.  

4.3.2 Centerline velocity profile under different contraction wave speed 

Increasing the Reynolds number from 𝑅𝑒 = 0.2 to 𝑅𝑒 = 0.6 does not change the 

general shape of the centerline velocity profile, although the maxima at the valve orifice 

are less pronounced (Figure 4.7c). During the backflow phase the valve is able to fully 

close as indicated by the near zero velocity at 𝑇 = 0 and 0.8 at the leaflet edge. Compared 

to the case of 𝑅𝑒 = 0.2, the increase in wave speed decreases the deviation of centerline 

velocity from that of a valve-less vessel. We also find that the velocity during the open 

valve phase matches closer to the valve-less velocity with increased Reynolds number, 

which can be attributed to a reduced hydrodynamic resistance of the valve from a greater 

opening due to the faster fluid flow. Indeed, at 𝑅𝑒 = 0.2 the maximum opening of the valve 

is about 44% of the cross-sectional area under the average vessel diameter, whereas the 

maximum opening increases to 68% when 𝑅𝑒 = 0.6. 
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Figure 4.8 a) Centerline axial flow velocity 𝑈𝑥(0) in the stationary reference frame in a 

vessel with 𝑅𝑒 = 0.2 with an adverse pressure gradient. The maximum valve opening is 

𝐴𝑚𝑎𝑥 = 0.3. b) Same as a) but in the moving reference frame, the solid black line indicates 

the average centerline velocity for the valve-less vessel. c) Centerline axial flow velocity 

𝑈𝑥(0) in a stationary reference frame in a vessel with 𝑅𝑒 = 0.6. The maximum opening is 

𝐴𝑚𝑎𝑥 = 0.61 . d) Same as c) but in the moving reference frame, the solid black line 

indicates the average centerline velocity for the valve-less vessel. The horizontal solid lines 

indicate the maximum and minimum centerline velocities in vessels without valves. The 

dashed vertical lines indicate the boundaries of valve position. The blue and red lines show 

the velocities when the valves are, respectively, open (𝐴 ≥ 0.05) and closed (𝐴 < 0.05). 

The simulation parameters are Δ𝑃 = 140, 𝜙 = 0.2, 𝐾𝑏 = 88, and 𝐾𝑠 = 115. 

Figure 4.8 shows centerline velocities for the flow in vessels with 𝑅𝑒 = 0.2 and 

𝑅𝑒 = 0.6  that experience an adverse pressure difference Δ𝑃 = 140.  The velocities in 

Figure 4.8a and Figure 4.8b correspond to the snapshots in Figure 4.5b. An adverse 

pressure gradient has a minor effect on the shape of the velocity profiles compared to the 

case of the flow with  Δ𝑃 = 0 (Figure 4.7) although the velocities are shifted towards the 

negative values. For 𝑅𝑒 = 0.2, the valve-less vessel is unable to produce a net positive 

flow resulting in 𝑄 = −0.22. For the same 𝑅𝑒, the vessel with the valves yields a small 

positive 𝑄 = 0.01, indicating that a sufficiently high Δ𝑃 can stop pumping by such vessels. 
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Note that further increase of Δ𝑃 leads to the valve remaining fully closed throughout the 

entire contraction cycle. When compared to the velocity in the valve-less vessel, the 

velocities at the open valve condition are nearly identical to the valve-less velocity (Figure 

4.8b). This can be attributed to a reduced flow through the valve at this Δ𝑃 as shown in 

Figure 4.8a. 

At a larger 𝑅𝑒 = 0.6 (Figure 4.8c) both vessels with and without valves are able to 

generate a net positive fluid flow in spite of an adverse pressure gradient. However, valves 

enable significantly greater pumping of 𝑄 = 0.11 compared to 𝑄 = 0.04 without valves. 

This is again due to the ability of valves to stop backflow. The velocity during the open 

valve phase is slightly lower than the valve-less velocity (Figure 4.8d) and comparable to 

the velocity in the flow without adverse pressure gradient (Figure 4.8d). Indeed, in both 

cases normalized maximum valve openings are comparable with 61% and 68%, for Δ𝑃 =

140  and Δ𝑃 = 0 , respectively. Thus, this adverse pressure gradient has a rather 

insignificant effect on the maximum valve opening.   

Note that increasing 𝑅𝑒  has opposing effects on the peristaltic pumping with 

valves. On one hand, increasing 𝑅𝑒 facilitates valve opening and decreases the associated 

viscous loss; on the other hand, the time during which the valve is closed decreases 

impairing the valve’s ability to fully arrest the backflow. Indeed, at 𝑅𝑒 = 0.2 the valve is 

closed about 62% of the contraction cycle, whereas at 𝑅𝑒 = 0.6 the valve is closed about 

42% of the contraction cycle.  
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4.3.3 Pumping parameter variation 

The dependencies of the pumping parameters on 𝑅𝑒 are summarized in Figure 4.9. 

The data is shown for Δ𝑃 = 0 using the empty symbols, and for Δ𝑃 = 140 using the filled 

symbols. Figure 4.9a shows that normalized flow rate 𝑄 mostly increases as 𝑅𝑒 increases. 

Without an adverse pressure gradient, 𝑄  remains nearly flat in valve-less vessels and 

slightly increases when vessels are fitted with valves. Thus, the flow rate has nearly a linear 

relationship with the wave speed. When the pumping occurs against an adverse pressure 

gradient, 𝑄  rapidly decreases with decreasing 𝑅𝑒 . Without valves, low 𝑅𝑒  results in a 

negative 𝑄 , meaning that peristaltic pumping cannot overcome the adverse pressure 

gradient at these wave speeds. With valves, however, low 𝑅𝑒 leads to slightly positive 

values of 𝑄, indicating that whereas peristatic motion cannot pump the fluid, the valves are 

able to eliminate the backflow.  

Figure 4.9b shows the normalized work 𝑊  done over a wave period by the 

peristaltic vessel. In valve-less cases and in valved cases with Δ𝑃 = 0, 𝑊 is nearly constant 

indicating that work done by the vessel increases nearly quadratically with 𝑅𝑒 since the 

normalization factor is proportional to 𝑅𝑒2 . Otherwise, the work 𝑊  decreases with 

increasing 𝑅𝑒, as increased flow rate leads to a larger valve opening and decreased loss 

from valve interference with the flow.    

Pumping efficiency 𝜂 = 𝑞Δ𝑝𝜆/𝑤𝑎𝑣𝑔   is shown in Figure 4.9c as a function of 𝑅𝑒. 

The efficiency is defined as the ratio between the work due to the fluid transport against 

the adverse pressure gradient and the work done by the vessel. Note that when Δ𝑃 = 0 the 

efficiency is zero. We therefore present data only for Δ𝑃 = 140. We find that the efficiency 
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curves for vessels with and without valves exhibit maxima indicating the existence of 

optimum Re maximizing the pumping per unit work against an adverse pressure gradient. 

This result is consistent with the analytical solution for peristaltic pumping [50, 51]. The 

maxima of efficiency are a result of two opposing trends. At small Re, peristaltic pumping 

cannot overcome the adverse pressure gradient diminishing the flow rate and therefore the 

pumping efficiency. For higher Re , the flow rate increases as Re , whereas the work 

increases as 𝑅𝑒2 , leading to overall efficiency decrease with Re. Interestingly, valves 

increase the maximum efficiency and shift it to the lower values of Re. This can be related 

to a more rapid decrease of the flow rate with decreasing Re in valve-less vessels due to 

the adverse pressure gradient compared to vessels fitted with valves. Furthermore, the 

efficiency is greater for larger 𝜙 as a result of a faster flow (Figure 4.9a). For larger Re, the 

efficiency of valve-less and valved vessels nearly overlaps, indicating a weak effect of 

valves on pumping in this flow regime. 

 

Figure 4.9 a) Flow rate, b) vessel work, c) pumping efficiency, d) pumping economy, e)  

maximum valve opening area 𝐴𝑚𝑎𝑥, and f) valve closure time 𝑇𝑐 as a function of peristaltic 

Reynolds number for vessels with 𝐾𝑏 = 88, and 𝐾𝑠 = 115. The empty and filled symbols 
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represent data Δ𝑃 = 0  and Δ𝑃 = 140 , respectively. The dashed lines represent results 

from valve-less vessels. The valve is considered closed when 𝐴 < 0.05. 

Another metric to characterize the performance of the peristaltic pumping is flow 

economy 휀 shown in Figure 4.9d as a function of 𝑅𝑒. In addition to accounting for the work 

against the adverse pressure gradient, as it is in the case for 𝜂, 휀 also accounts for the 

viscous losses in the vessel. We find that 휀  is significantly greater than 𝜂  and closely 

resembles the trend of the normalized flow rate shown in Figure 4.9a, indicating that 

greater amount of work by the vessel goes to viscous loss than to pumping the fluid. 

Without an adverse pressure gradient, 휀 for the valve-less vessel exceeds the value for 

vessels with valves, due to the additional loss associated with valves restricting the flow. 

The difference decreases with increasing 𝑅𝑒 due to the larger valve opening (Figure 4.9e). 

However, when Δ𝑃 = 140, 휀 for vessels with valves exceeds valve-less 휀. Thus, adding 

valves improve the economy when the flow is confronted by an adverse pressure gradient, 

whereas without an adverse pressure, pumping of the valve-less vessel is more economical. 

We further characterize valve behavior during peristaltic pumping by quantifying 

the maximum valve opening area 𝐴𝑚𝑎𝑥 and the occlusion time 𝑇𝑐, which are shown as a 

function of 𝑅𝑒 in respective Figure 4.9e and Figure 4.9f. The maximum opening area 

steadily increases with 𝑅𝑒 and plateaus for 𝑅𝑒 > 1. For lower 𝑅𝑒, an adverse pressure 

gradient somewhat decreases 𝐴𝑚𝑎𝑥  as a result of a lower positive flow velocity in the 

vessel (Figure 4.8). The occlusion time 𝑇𝑐 is relatively constant with 𝑅𝑒 when the flow is 

not affected by Δ𝑃. This is consistent with the velocity profiles shown in Figure 4.7 that 

exhibit minor variations for different 𝑅𝑒. On the other hand, an adverse pressure gradient 
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causes 𝑇𝑐  to increase with decreasing 𝑅𝑒, as longer occlusion period occurs due to the 

increased backflow. 

4.4 Adverse pressure gradient on pumping 

 

Figure 4.10 a) Flow rate, b) vessel work, c) pumping efficiency, d) pumping economy, e) 

maximum valve opening area 𝐴𝑚𝑎𝑥, and f) valve closure time 𝑇𝑐 as a function of adverse 

pressure difference Δ𝑃 for vessels with 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115. The dashed 

lines represent results from valve-less cases. The valve is considered closed when 𝐴 <
0.05. 

Figure 4.10 presents the dependence of peristaltic pumping parameters for vessels 

with and without valves on the magnitude of the adverse pressure difference Δ𝑃. Here, we 

keep the wave speed constant leading to 𝑅𝑒 = 0.4. We find that the normalized flow rate 

𝑄  decreases linearly with increasing Δ𝑃  (Figure 4.10a). Furthermore, 𝑄  increases with 

wave amplitude 𝜙. For vessels without valves the decrease of 𝑄 is more rapid than for 

vessels with valves. As a result, valved vessels are able to pump fluid against significantly 

greater Δ𝑃 . However, this enhanced pumping in valved vessels comes at the cost of 

increased work 𝑊 performed by the vessel (Figure 4.10b). The work by vessels with valves 
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exceeds the work by valve-less vessels likely due to the increased viscous losses associated 

with the flow through the occluding valves. Increased wave amplitude 𝜙 results in greater 

𝑊. 

Pumping efficiency is presented in Figure 4.10c. In spite the greater work done by 

vessels with valves, their efficiency is either comparable (at lower Δ𝑃) or exceeds (at 

higher Δ𝑃) that of valve-less vessels. Thus, in terms of pumping efficiency, the greater 

pumping capacity overcomes the increased viscous loss created by the valves. Furthermore, 

pumping efficiency curves exhibit maxima indicating the existence of optimum values of 

the adverse pressure gradient leading to the most efficient peristaltic pumping. For a vessel 

with valves, the optimum Δ𝑃  significantly exceeds that for a valve-less vessel. 

Furthermore, increasing 𝜙  increases the efficiency and the optimum Δ𝑃 . Thus, by 

changing vessel parameters the pumping can be optimized to a specific value of Δ𝑃. 

Flow economy shows nearly linear decrease with Δ𝑃 (Figure 4.10d). At lower Δ𝑃, 

the work of vessel contraction mostly goes to overcome viscous friction loss rather than 

useful pumping. At these conditions, 휀 for valve-less vessels exceeds 휀 for vessels with 

valves. At higher Δ𝑃, vessels with valves exhibit better economy than valve-less vessels. 

Note that the economy is greater when the wave amplitude is increased.   

The maximum valve opening area and valve occlusion time are shown in Figure 

4.10e and Figure 4.10f, respectively. Increasing adverse pressure gradient gradually 

decreases the valve maximum opening and increases the time that valve stays closed per 

contraction cycle. That is consistent with the reduction of the pumping flow rate with 

increasing Δ𝑃  (Figure 4.10a). Indeed, the slower flow velocity and lower favorable 



 73 

pressure gradient in the vessel decrease the forces acting to open the elastic valve resulting 

in lower 𝐴𝑚𝑎𝑥 and longer 𝑇𝑐. 

4.5 Valve elastic properties on pumping 

4.5.1 Valve deformation profile under different elastic properties 

Figure 4.11 shows the side views of the valves with three representative bending 

stiffnesses, which we further refer as soft, normal, and stiff valves. The valves are plotted 

at different instances of vessel operation. Figure 4.11a indicates that soft valves experience 

valve depression at the middle of the valve under backflow. This deformation does not 

prevent backflow until the valve free ends fully close. Normal and stiff valves in Figure 

4.11b and Figure 4.11c experience closures at the valve free ends, leading to a more 

effective backflow prevention than the soft valve. However, stiff valves are less responsive 

to changing flow rate, lengthening the time required for the valve to be fully open and 

closed, decreasing the maximum valve opening area during the forward flow and 

increasing the time the valve remains closed after the flow reversal. Finally, it is also worth 

noting the increased complexity in valve response as a function of bending stiffness 

compared to the stiffness analysis under a rigid vessel, especially against backflow. Valve 

response against backflow in Figure 3.4 shows monotonically increasing backflow 

reduction with decreasing valve bending stiffness, but this is not necessarily the case when 

vessel contraction is incorporated, even though both cases show faster deformation 

response by more flexible valves under changing flow conditions.  
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Figure 4.11 a) Deformation of valves with 𝐾𝑏 = 11, b) with 𝐾𝑏 = 88, c) with 𝐾𝑏 = 263 

at different instances of the vessel contraction cycle. The dots represent leaflet position at 

the centerline. The simulation parameters are Δ𝑃 = 140, 𝜙 = 0.2, 𝑅𝑒 = 0.4, and 𝐾𝑠 =
115. 

4.5.2 Flow rate and valve opening variation 

The behavior of the elastic valves can be further characterized by analyzing the 

time evolution of the flow rate 𝑄𝑠 and the leaflet cross-sectional opening area 𝐴 that are 

shown in Figure 4.12 for flow with and without an adverse pressure gradient. The flow rate 

𝑄𝑠 is averaged over the entire simulation domain. Note that for a valve-less vessel, 𝑄𝑠 
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remains constant as shown by the dotted lines in Figure 4.12a and Figure 4.12c. Figure 

4.12b and Figure 4.12d also show the vessel radius at the valve location. 

 

Figure 4.12 a) Time evolution of flow rate in vessels with Δ𝑃 = 0. b) Time evolution of 

valve opening area 𝐴 in vessels with Δ𝑃 = 0. c) and d) are the same as a) and b) but with 

Δ𝑃 = 140. The flow rate is averaged over contraction wavelength. The horizontal dashed 

line represents flow rate in the valve-less vessel while the dotted lines in b) and d) represent 

normalized vessel radius near the valve (𝑟 𝑟0⁄ ). Dashed lines in a) and c) indicate when 

𝑟 𝑟0⁄ > 1 while solid lines indicate 𝑟 𝑟0⁄ < 1. Horizontal dash-dot lines in a) and c) denote 

𝑄𝑠 = 0. The simulation parameters are 𝜙 = 0.2, 𝑅𝑒 = 0.4, and 𝐾𝑠 = 115. 

The valves open when the vessel diameter at the valve location increases (Figure 

4.12b and Figure 4.12d), which corresponds to the forward fluid flow through the valve 

(Figure 4.5). The valve opening is maximized when the vessel diameter is near its mean 

value. Softer valves can open more widely during flow through the valve and stay open 

longer. Furthermore, for such valves the opening starts later than for stiffer valves. 

Comparing the flow with and without an adverse pressure gradient we find that the adverse 
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pressure gradient suppresses valve opening with the effect being more significant for softer 

valves. This can be attributed to the lower flow velocity and favorable pressure gradient 

for valve opening when the flow is affected by an adverse pressure.  

The valve kinematics strongly affects the flow rate in the vessel (Figure 4.12b and 

Figure 4.12d). When the valves are open, softer valves impose lower resistance on the flow 

leading to a faster flow. However, even with the softest valve, the instantaneous flow rate 

with an open valve is slower than in the case of a valve-less vessel. When the valves are 

closed, the flow rate increases and exceeds the valve-less flow rate. Stiffer valves that close 

sooner enable a larger mean flow rate. Thus, during the oscillation period, the fluid is 

mostly pumped when the valves are closed, and the fluid is transported by the contracting 

wave propagating along the vessel. This behavior is more evident when the flow is 

confronted with an adverse pressure gradient (Figure 4.12c). In this case, the flow rate is 

negative when the valves are open, and the fluid is transported in the positive direction 

only when the valves are closed. Note that for the same adverse pressure gradient valve-

less vessel generates a nearly zero net flow.  

We therefore conclude that valve elasticity has opposing effects on the pumping 

performance. Softer valves enable greater valve opening, reducing viscous losses when the 

flow is moving in the positive directions through the valve. On the other hand, stiffer valves 

can close more rapidly during backflow minimizing flow reversal during this phase. This 

indicates that an optimum valve of elasticity exists that maximizes the vessel pumping 

performance.  
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4.5.3 Pumping parameter variation  

Figure 4.13 presents the pumping parameters as a function of valve bending 

elasticity 𝐾𝑏 for vessels with Δ𝑃 = 140 and two wave amplitudes 𝜙 = 0.2 and 𝜙 = 0.25. 

We indeed find that the flow rate is maximized when 𝐾𝑏 ≈ 63  (Figure 4.13a). This 

optimum bending elasticity is about the same for both contraction wave amplitudes. The 

pumping efficiency and economy (Figure 4.13c and Figure 4.13d) also exhibit maxima 

with 𝐾𝑏 . Here, the optimum elasticity 𝐾𝑏 ≈ 50  is somewhat lower than that for the 

maximum flow rate.  

We also find that work done by the vessel 𝑊 gradually increases with increasing 

𝐾𝑏 (Figure 4.13b). The work increase is related to the higher viscous losses associated with 

less deformable valve leaflets [49] that exhibit a lower valve opening area (Figure 4.13e). 

These figures show that this trend is independent of the wave amplitude. While 𝐴𝑚𝑎𝑥 

steadily decreases with increasing 𝐾𝑏 , the time the valve stays closed 𝑇𝑐  is nearly 

independent of 𝐾𝑏 for 𝐾𝑏 > 50, and sharply decreases for lower 𝐾𝑏. This indicates that 

softer valves are unable to properly close and fail to prevent the backflow in the vessel.  

In Figure 4.13, we also examine the effect of the leaflet in-plane stiffness 𝐾𝑠 on the 

valve performance. We compare valves with 𝐾𝑠 = 23, 115, and 575. We find that a nearly 

25-fold change of in-plane stiffness has a minor effect on the vessel parameters such as 

flow rate 𝑄 , work done by the vessel 𝑊 , efficiency 𝜂 , and economy 휀 . Only a slight 

decrease of 𝐴𝑚𝑎𝑥 is found for the valves with 𝐾𝑠 = 575 compared to the less stiff valves. 

Interestingly, the time that valve is closed 𝑇𝑐 is practically insensitive to changes in 𝐾𝑠. 
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Thus, we conclude that the valve behavior is mostly defined by the valve bending elasticity 

whereas in-plane stiffness plays a minor role.  

 

Figure 4.13 a) Flow rate, b) vessel work, c) pumping efficiency, d) pumping economy, e)  

maximum valve opening area 𝐴𝑚𝑎𝑥, and f) valve closure time 𝑇𝑐 as a function of valve 

bending stiffness 𝐾𝑏 for vessels with Δ𝑃 = 140 and 𝑅𝑒 = 0.4. The dashed lines represent 

results from valve-less cases. The valve is considered closed when 𝐴 < 0.05. 

4.5.4 Variation of optimal 𝐾𝑏 under different adverse pressure gradient 

The emergence of an optimum 𝐾𝑏 indicates that the vessel mechanical properties 

can be optimized for specific pumping conditions. Furthermore, the optimum 𝐾𝑏 leading 

to the fastest pumping performance and the highest efficiency and economy are somewhat 

different due to the dependency of 𝑊 on 𝐾𝑏. Indeed, increasing 𝑊 with 𝐾𝑏 results in the 

softer valve being more efficient while providing slightly slower pumping. In Figure 4.14, 

we examine the dependency of the optimum valve elasticity on the magnitude of the 

adverse pressure gradient. The figure shows that the optimum elasticity increases with ∆𝑃. 

We relate this trend to the improved ability of stiffer valves to withstand backflow due to 
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an increasing adverse pressure gradient as such valves can close faster than softer valves 

(Figure 4.12d). When ∆𝑃  increases, flow rate in the vessel reduces and the ability to 

prevent the backflow has more significant effect on the pumping than increased viscous 

losses due to stiffer valves.  

 

Figure 4.14 Optimal normalized bending stiffness yielding the maximum efficiency, 

economy, and flow rate under different adverse pressure gradients. The simulation 

parameters are 𝜙 = 0.2, 𝑅𝑒 = 0.4, and 𝐾𝑠 = 115. 

4.6 ∆𝑷-dependent contraction amplitude 

In the lymphatic system, the vessel contraction amplitude depends on the magnitude 

of the adverse pressure gradient [14]. As shown in Figure 4.15, contraction amplitude 

gradually decreases with increasing ∆𝑃. The decrease is more rapid for lower ∆𝑃 and the 

amplitude converges to a non-zero value when the pressure gradient increases beyond 

∆𝑃 > 1000 due to the inability of the lymphatic muscle cells to generate enough force for 

the pressure in the vessel proximal to the valve to exceed the pressure distal to the valve.  
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Figure 4.15 Contraction amplitude as a function of normalized pressure difference. 

Experimentally reported values [14] are shown by the triangles while the fit is shown by 

the solid line. 

In Figure 4.16, we examine the effects of the pressure dependence of the contraction 

amplitude on the pumping performance. To isolate these effects, we compare normalized 

flow rate 𝑄 , work done by the vessel 𝑊 , and pumping efficiency 𝜂  for a vessel with 

pressure dependent contraction amplitude to a vessel with a constant contraction amplitude. 

For the later vessel, we set the contraction amplitude such that the amplitudes for both 

vessels are identical when ∆𝑃 = 0. The data is presented for two values of 𝑅𝑒. 

 

Figure 4.16 a) Flow rate, b) vessel work, and c) pumping efficiency as a function of the 

pressure gradient for vessels with and without pressure-dependent contraction amplitude. 

The valve elasticity is 𝐾𝑏 = 88, and 𝐾𝑠 = 115. Without adverse pressure gradient both the 

vessels exhibit an identical contraction amplitude of 𝜙 = 0.44. 

The simulations show that vessels with pressure dependent amplitude significantly 

underperform compared to the constant amplitude vessels, resulting in a rapid decrease of 
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the pumping flow rate with increasing adverse pressure gradient (Figure 4.16a). This trend 

is consistent with the results shown in Figure 4.10a indicating a reduction in pumping rate 

with lower contraction amplitude. Pressure dependent contraction amplitude also has 

significant effect on the work done by the pumping vessel. As shown in Figure 4.16b, 

constant contraction amplitude leads to an increasing amount of work as the adverse 

pressure increases. By contrast, the pressure dependent amplitude results in work that is 

nearly independent from ∆𝑃 . This result suggests that lymphatic vessel contraction 

amplitude is limited by the work of contractile muscles driving vessel contraction and that 

once exposed to an adverse pressure gradient, lymphatic muscle quickly achieves 

maximum capacity in terms of the work generated. It is also interesting to note that the 

work only slightly changes with 𝑅𝑒 . Furthermore, pressure dependent contraction 

amplitude decreases the pumping efficiency compared to the constant amplitude case 

(Figure 4.16c). Although the work is roughly constant with pressure, the decreasing 𝑄 in 

the pressure dependent vessels results in a rapid decrease in efficiency when ∆𝑃  is 

sufficiently large. As a result, the optimum pumping occurs at lower values of ∆𝑃 

compared to the vessels with a constant contraction amplitude.  
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CHAPTER 5. ROLE OF VALVE PLACEMENT ON LYMPHATIC 

PUMPING 

5.1 Introduction 

Due to the need to establish fundamental understanding and evaluation of pumping 

performance under different parameters for a contracting vessel, many aspects of the model 

were not explored in the previous chapter. Two primary examples of this are the effects of 

valve placement and wavelength of the contraction wave. By fixing the valve spacing and 

contraction wave’s wavelength to be equal to each other, synchronous valve deformation 

was induced for a given lymphangion. This allowed a simpler flow disruption by the valve, 

leading to a more fundamental investigation of valve’s effect on pumping performance.  

Although the simulated model’s valve spacing or contraction wavelength are within 

the experimentally reported range (as shown in the previous chapter), it is highly unlikely 

for valve spacing and contraction wavelength to consistently match to induce synchronous 

motion. Thus, this chapter further utilizes the modified model of contracting vessel with 

valves from the previous chapter and explores the effect of valve spacing and contraction 

wavelength on pumping performance. Particularly for valve spacing, two distinct patterns 

are studied. First pattern assumes uniform inter-valve spacing with varying distance while 

the second pattern implements a pattern with repeated nonuniform valve placement. 

Combined with the variation of contraction wavelength, the effect of these three conditions 

on pumping performance is explored.   
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This chapter first investigates the effect of valve spacing under uniform valve 

placement. While varying the inter-valve spacing with a fixed contraction wavelength, 

fundamental understanding of the valve placement’s effect on flow pattern and 

performance is studied via means such as axial velocity profile, centerline velocity profile, 

and flow rate gains between cases with and without valves under various valve spacing. 

Once this general understanding is established, flow performance metric like in the 

previous chapter is calculated over different valve spacing and contraction wavelength. 

Then, the chapter investigates the effect of nonuniform valve placement through axial 

velocity profile, centerline velocity profile, and flow rate gains between cases with and 

without valves. Finally, the same performance metric is evaluated, and the relationship 

between flow performance between two valve placement patterns is discussed. 

5.1.1 Nondimensional numbers and simulation parameters 

While the same dimensional and nondimensional variables are used from the 

previous chapter with contracting vessel, additional variables are introduced to account for 

variation of valve placement. The definition of these variables in relations to the model 

geometry is shown below in Figure 5.1.   

 

Figure 5.1 Model of a periodic contracting vessel fitted with two valves with relevant valve 

spacing parameters defined. Note that for this chapter, the number of valves within the 
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model 𝑛𝑣𝑎𝑙𝑣𝑒𝑠 can vary, as well as the total domain length 𝑙. Coordinate 𝑅 denotes radial 

coordinate while 𝑋 denote axial coordinate. Even though the simulations are conducted in 

a Cartesian coordinate system, radial coordinate is implemented for contraction since radial 

contraction is applied on the vessel.  

Under uniform valve spacing, the distance between two neighboring valves is 

defined as 𝑙𝑖𝑛. Due to its periodic boundary condition, the length of the domain 𝑙, number 

of valves 𝑛𝑣𝑎𝑙𝑣𝑒𝑠, and inter-valve distance under uniform valve spacing are related as 

𝑙𝑖𝑛 = 𝑙/𝑛𝑣𝑎𝑙𝑣𝑒𝑠. Nondimensionalized variables for 𝑙𝑖𝑛 is defined as 𝐿𝑖𝑛 = 𝑙𝑖𝑛/𝜆. The 

wavelength is normalized as Λ = 𝜆/2𝑟0 and is used when inspecting the effect of 

contraction wavelength on pumping performance. 

For studying the effect of irregular valve spacing on pumping performance, a 

single pattern of nonuniform valve placing was created for this chapter. The geometry of 

this model is shown in Figure 5.2. 

 

Figure 5.2 Model of a periodic contracting vessel fitted with two valves with nonuniform 

valve spacing. Coordinate 𝑅 denotes radial coordinate while 𝑋 denote axial coordinate. To 

gauge the degree of nonuniformity, a ratio between smaller and larger inter-valve spacing 

𝛿 is defined.  

For studying the effect of nonuniform valve spacing, a configuration with 

alternating valve spacing is used. For this configuration, only two valves are placed for 

each vessel length equaling to two contraction wavelengths, putting the average 𝐿𝑖𝑛 to 1 
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for a given vessel segment of length 2𝜆. However, when the model is focused on a region 

with vessel length of 2𝜆 and two valves, as seen in Figure 5.2, a distinct spacing pattern 

emerges. The two unique spacing can be separated as the inner inter-valve spacing 𝑙1 and 

outer inter-valve spacing 𝑙2 . From these two alternating spacings, the degree of 

nonuniformity 𝛿  is defined as 𝛿 = min(𝑙1, 𝑙2) /max (𝑙1, 𝑙2), which is the ratio between 

smaller and larger of the two valve spacings. This configuration places the limit of 𝛿 as 

0 < 𝛿 ≤ 1. But in reality, the lower limit of 𝛿 will be greater than 0 to prevent overlapping 

of valves at such low values of 𝛿. Also, note that the outer inter-valve spacing is still 

considered inter-valve spacing even at domain boundary since the model has a periodic 

boundary condition.  

Parameters not specifically defined above have the same definition as previous 

chapter, as outlined in Table 4.2. However, there is one exception when describing the 

effect of adverse pressure gradient under different contraction wavelengths. Previous 

chapter uses pressure difference per contraction wavelength following relevant literature 

[50], and this definition and applied adverse pressure gradient could be used 

interchangeably through a constant multiplier since the contraction wavelength was a 

constant. However, this definition creates a variable Δ𝑝𝜆 under different 𝜆, even though the 

applied adverse pressure gradient is constant. To address this, a normalized adverse 

pressure gradient 𝑑𝑃𝑥 = (∂𝑝 ∂x⁄ )𝑥r0
3ρ/μ2 , where (∂𝑝 ∂x⁄ )𝑥  is the applied adverse 

pressure gradient.  

Finally, note that this chapter mostly keeps vessel length 60  times 𝑟0 , making 

𝑙 𝑟0⁄ = 60. However, to get finer data points of 𝐿𝑖𝑛, 𝑙 𝑟0⁄  may extend to 𝑙 𝑟0⁄ = 75, 80, 90 
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in some cases. Results from different vessel lengths were compared in a consistent manner 

by keeping their Δ𝑃, 𝑑𝑃𝑥, 𝑅𝑒, 𝜙, 𝐾𝑏 , 𝐾𝑠, 𝐴𝑅, 𝐿𝑖𝑛, Λ, and 𝛿 from their shorter counterparts. 

5.1.2 Survey of relevant experimental data 

Although most of the relevant experimental data from previous chapter still applies, 

further examination is done for contraction wavelength and valve spacing. For contraction 

wavelength, experimental data from previous chapter reports a wide range of normalized 

wavelength 𝛬 between 0 and 30. Even when the contraction wavelength is varied, our 

simulated 𝛬 is from 5 to 15 with majority of cases around 𝛬 = 7.5, which falls well within 

the experimental range.  

Previous chapter sets inter-valve spacing equal to the contraction wavelength, 

which makes 𝐿𝑖𝑛 = 𝑙𝑖𝑛 𝜆⁄ = 1 and 𝛿 = 1. This can be compared with the experimentally 

reported lymphangion length since a lymphangion is defined as a region between two 

consecutive valves. Work by Margaris and Black [99] reports a collecting lymphangion 

length of 1~2mm, but when compared with vessel diameter, this puts the ratio between 

lymphangion length and vessel diameter as 𝑙𝑖𝑛 2𝑟0⁄ = 1~10 . Our work varies valve 

spacing from 𝑙𝑖𝑛 2𝑟0⁄ = 3~37.5 with majority of cases tested in 𝑙𝑖𝑛 2𝑟0⁄ ~7.5. Although 

the maximum ratio can go over the range reported experimentally, majority of the cases 

fall within the experimental range, thus making a reasonable variation of valve spacing 

when compared to the vessel diameter.  

Furthermore, the valve spacing can be compared with the contraction wavelength 

calculated from previous chapter, which is in the range of 0 to 81mm. Although this is a 

very large range for calculating 𝐿𝑖𝑛 = 𝑙𝑖𝑛 𝜆⁄ , we can see that minimum 𝐿𝑖𝑛 can fall as low 
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as 𝐿𝑖𝑛~0.01 if the minimum spacing of 1mm and maximum wavelength of 81mm is used. 

Considering that our work has a range of 𝐿𝑖𝑛 = 0.2~4, this is well within the range of 

experimentally reported 𝐿𝑖𝑛.   

5.2 General flow pattern and valve deformation 

Like in the previous chapter, flow pattern and valve deformation are first analysed. 

The axial velocity profile and valve deformation for 𝐿𝑖𝑛 = 0.67, 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 =

0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases of the contraction cycle 𝑇 

is shown below at Figure 5.3. 

 

Figure 5.3 Axial flow velocity 𝑈𝑥 for 𝐿𝑖𝑛 = 0.67, 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 = 0.25, 𝑅𝑒 =
0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases of the contraction cycle 𝑇. Note the 

asynchronous valve deformation due to mismatch between the valve placement and vessel 

contraction wavelength. 

Unlike cases where 𝐿𝑖𝑛 = 1 from Figure 4.5, one of the most notable features in 

Figure 5.3 is the asynchronous valve deformation. Unlike in the previous chapter where all 
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valves underwent the same vessel expansion and contraction for a given time, different 

valves can now undergo different vessel expansion stage and consequentially, different 

velocity packets encountered for a given time. Note that a valve is expected to deform 

synchronously only when 𝐿𝑖𝑛 is an integer value.  

The impact of asynchronous valve deformation is also reflected on velocity profile 

with nonuniform disturbance by the valves. Valves no longer simultaneously encounter the 

same velocity packets for a given time, leading to different valves passing forward flow 

with flow reduction and preventing backflow at the same time. This also means that unlike 

in synchronous valve deformation, there is a higher likelihood for at least one valve to 

encounter a negative velocity packet to prevent backflow during any given stage in its 

contraction cycle. And once backflow prevention via valve occlusion occurs in at least one 

of the valves, the other non-disturbed negative velocity packets also experience partial 

reduction in their magnitudes due to mass conservation, as shown most notably in 𝑇 = 0.4 

in Figure 5.3. Given that a valve improves pumping through backflow prevention, this 

observation indicates that asynchronous valve deformation may improve pumping due to 

its higher likelihood for backflow prevention by at least one of the valves during a 

contraction cycle.    

To further investigate the effect of asynchronous valve deformation, axial velocity 

difference between cases with and without valves is plotted as Figure 5.4. 
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Figure 5.4 Axial flow velocity difference Δ𝑈𝑥 for 𝐿𝑖𝑛 = 0.67, 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 =
0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases of the contraction cycle 𝑇. 

Note the asynchronous valve deformation due to mismatch between the valve placement 

and vessel contraction wavelength. 

Like the analysis from Figure 5.3, Figure 5.4 shows nonuniform improvement in 

axial velocity during different stages of the contraction cycle. However, there exists some 

region of velocity increase during all stages of the contraction cycle unlike its synchronous 

counterparts in Figure 4.6. Regions of velocity increase despite minimum valve 

interference can also be observed in 𝑇 = 0.4 and 0.8, supporting the observation from 

Figure 5.3. These findings indicate that asynchronous valve deformation caused by 

mismatching valve spacing with contraction wavelength not only improves pumping by 

inducing more effective backflow prevention, but also allows a smoother improvement in 

pumping compared to its valveless counterpart.  
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5.3 Uniform valve spacing  

5.3.1 Centerline axial velocity profile 

To further investigate the effect of uniform valve spacing 𝐿𝑖𝑛 on flow profile and 

pumping performance, centerline velocity profile of axial velocity is plotted under different 

stages of the contraction cycle. Centerline velocity profiles under two different uniform 

valve spacings of 𝐿𝑖𝑛 = 0.67 and 1 are plotted in Figure 5.5, allowing a further comparison 

between cases with uniform and nonuniform valve deformations.  

 

Figure 5.5 a) Centerline axial velocity 𝑈𝑥(0) for 𝐿𝑖𝑛 = 0.67, 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 =
0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases of the contraction cycle 𝑇. 

b) Centerline axial velocity 𝑈𝑥(0) for 𝐿𝑖𝑛 = 1.0, 𝛬 = 7.5, Δ𝑃 = 140 , 𝜙 = 0.25, 𝑅𝑒 =
0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases of the contraction cycle 𝑇. Note the 

centerline velocities are plotted under a moving frame of reference 𝑋 − 𝑇 while black 

dashed lines show centerline velocity for cases without valves. 

Several notable features can be seen from Figure 5.5. First, cases with nonuniform 

valve spacing in Figure 5.5a shows non-repeating centerline velocity profiles for every 𝑋 −

𝑇 for all stages of the contraction cycle. Due to asynchronous valve deformation from non-

integer 𝐿𝑖𝑛, this is expected and alluded from Figure 5.3 and Figure 5.4. Second, Figure 

5.5a shows a narrower distribution of its centerline velocity throughout all stages of the 

contraction cycle. This supports the observation of Figure 5.4, where a more even 
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distribution of flow increase throughout the contraction cycle under asynchronous valve 

deformation may lead to a more consistent improvement in pumping.  

Finally, it is also worth noting the position of centerline velocities relative to their 

valveless counterparts marked in black dashed lines. Unlike synchronous deformation in 

Figure 5.5b, centerline velocities in Figure 5.5a do not go lower than their valveless 

counterparts in all stages of the cycle throughout most of 𝑋 − 𝑇. This is noticeably different 

from synchronous cases where centerline velocities during roughly half of the contraction 

cycle is slightly or noticeably below its valveless counterparts due to loss in forward flow 

from valve. Much like the findings from previous two figures, this may indicate an overall 

flow improvement through mismatching valve spacing and contraction wavelength. 

However, Figure 5.5b shows a significantly large improvement in centerline velocity 

profile during certain stages of the contraction cycle unlike its asynchronous counterparts 

in Figure 5.5a. Although hinted, this means that further analysis is needed to accurately 

capture the variation in flow performance by valve spacing compared to contraction 

wavelength.  

5.3.2 Time-averaged gain in flow rate under different valve spacing 

To further understand the effect of uniform valve spacing on flow, an additional 

parameter is introduced. For a given axial position 𝑋, flow rate is evaluated as a function 

of time, giving 𝑄(𝑋, 𝑇). This flow rate is then compared against cases without valves as 

Δ𝑄𝑡𝑜𝑡𝑎𝑙(𝑋, 𝑇) = 𝑄(𝑋, 𝑇) − 𝑄𝑣𝑒𝑠𝑠(𝑋, 𝑇), where 𝑄𝑣𝑒𝑠𝑠(𝑋, 𝑇) is flow rate under a valveless 

vessel. This value is then split based on whether 𝑄𝑣𝑒𝑠𝑠(𝑋, 𝑇) undergoes forward flow for a 
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given time and space (i.e. 𝑄𝑣𝑒𝑠𝑠(𝑋, 𝑇) > 0) or backward flow (i.e. 𝑄𝑣𝑒𝑠𝑠(𝑋, 𝑇) < 0). The 

time averaged value of this for forward flow is defined as 

 
Δ𝑄𝑓𝑜𝑟(𝑋) =

1

𝑐𝜋𝑟0
2𝜏

∫ Δ𝑄
1

0 𝑓

(𝑋, 𝑇)𝑑𝑇 (32) 

 
Δ𝑄𝑓(𝑋, 𝑇) = {

Δ𝑄𝑡𝑜𝑡𝑎𝑙(𝑋, 𝑇) 𝑖𝑓 𝑄𝑣𝑒𝑠𝑠 > 0
0 𝑖𝑓 𝑄𝑣𝑒𝑠𝑠 < 0

 (33) 

The counterpart for backflow is defined as 

 
Δ𝑄𝑏𝑎𝑐𝑘(𝑋) =

1

𝑐𝜋𝑟0
2𝜏

∫ Δ𝑄
1

0 𝑏

(𝑋, 𝑇)𝑑𝑇 (34) 

 
Δ𝑄𝑏(𝑋, 𝑇) = {

0 𝑖𝑓 𝑄𝑣𝑒𝑠𝑠 > 0

Δ𝑄𝑡𝑜𝑡𝑎𝑙(𝑋, 𝑇) 𝑖𝑓 𝑄𝑣𝑒𝑠𝑠 < 0
 (35) 

The difference in flow rates between the cases with and without valves averaged 

over a contraction cycle provides a more accurate evaluation of pumping improvement 

under different valve configuration. Then, by splitting the improvement between when 

positive or negative velocity packets pass through, even more detailed analysis can be made 

in pumping improvement. Plots of Δ𝑄𝑓𝑜𝑟  and Δ𝑄𝑏𝑎𝑐𝑘 under three different 𝐿𝑖𝑛 of 𝐿𝑖𝑛 =

0.67, 1, 1.33 are plotted in Figure 5.6.  
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Figure 5.6 a) Time-averaged normalized flow rate gain under forward flow 𝛥𝑄𝑓𝑜𝑟 for 𝛬 =

7.5, Δ𝑃 = 140, 𝜙 = 0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different 𝐿𝑖𝑛 . Note 

the dashes with matching colors represent spatially averaged values for respective time-

averaged flow rate gains. b) Time-averaged normalized flow rate gain under backward flow 

Δ𝑄𝑏𝑎𝑐𝑘  for 𝛬 = 7.5 , Δ𝑃 = 140 , 𝜙 = 0.25 , 𝑅𝑒 = 0.4 , 𝐾𝑏 = 88 , and 𝐾𝑠 = 115  under 

different 𝐿𝑖𝑛. Note the dashes with matching colors represent spatially averaged values for 

respective time-averaged flow rate gains while the mean axial positions of every valve for 

a given case are marked with crosses. 

Two plots of Δ𝑄𝑓𝑜𝑟 and Δ𝑄𝑏𝑎𝑐𝑘 in Figure 5.6 reveal several interesting features, 

especially when valve spacing is varied compared to contraction wavelength. First in 

general, there is a noticeable drop in Δ𝑄𝑓𝑜𝑟  and bump in Δ𝑄𝑏𝑎𝑐𝑘  around the valve 

locations, where their mean axial positions are noted in crosses in Figure 5.6. This supports 

the effect of valve on flow as shown previously. When positive velocity packets encounter 

forward flow shown in Figure 5.6a, dissipation of forward flow momentum by the valves’ 

flow resistance creates a reduction in flow rate gained. In a limiting case of 𝐿𝑖𝑛 = 1, flow 

rate is actually lower than the valveless counterpart, noted by the negative Δ𝑄𝑓𝑜𝑟 around 

valve locations. When the valve encounters backflow, the flow rate gain increases around 

the valve location, again supporting the valves’ role of backflow reduction. Overall, the 

shapes of Δ𝑄𝑓𝑜𝑟 and Δ𝑄𝑏𝑎𝑐𝑘 deviate from a sinusoidal pattern if 𝐿𝑖𝑛 is not an integer.  

More evenly distributed reduction in backflow under asynchronous valve 

deformation also increases minimum gain in flow rate throughout model while the 



 94 

difference between maximum and minimum ∆𝑄𝑓𝑜𝑟 and ∆𝑄𝑏𝑎𝑐𝑘 decreases, supporting the 

observation of centerline velocity profile in Figure 5.5. Although the maximum ∆𝑄𝑓𝑜𝑟 and 

∆𝑄𝑏𝑎𝑐𝑘 is higher for 𝐿𝑖𝑛 = 1 compared to 𝐿𝑖𝑛 = 1.33, again consistent with Figure 5.5, 

this increased flow rate gain is not enough to compensate for increased minimum ∆𝑄𝑓𝑜𝑟 

and ∆𝑄𝑏𝑎𝑐𝑘 under asynchronous valve deformation. Thus, when the flow rate gain is also 

averaged over space, noted in corresponding dashed lines, average flow rate gain in 

forward flow and backflow under 𝐿𝑖𝑛 = 1  is the lowest of the three valve placement 

configurations plotted.  

Finally, having lower non-integer 𝐿𝑖𝑛  increases spatially averaged ∆𝑄𝑓𝑜𝑟  and 

∆𝑄𝑏𝑎𝑐𝑘, thus increasing pumping performance under both forward and backward flows. 

Furthermore, the difference in maximum and minimum ∆𝑄𝑓𝑜𝑟 and ∆𝑄𝑏𝑎𝑐𝑘 is smaller when 

𝐿𝑖𝑛 is a lower non-integer value. This may be attributed from the increased number of 

valves to create a smaller and uniform inter-valve spacing, which provides a greater 

frequency of backflow reduction occurring from at least one valves within the system. 

Furthermore, increased number of valves may provide a more evenly distributed backflow 

reduction throughout the contraction cycle, thus providing a smaller variation in flow rate 

gain regardless of proximity to valves or if the valves encounter forward or backward flow. 

Overall, this demonstrates that through a more effective implementation of backflow 

reduction, asynchronous valve deformation by mismatching of valve spacing and 

contraction wavelength improves overall pumping and provides pumping improvement 

more steadily. 
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5.3.3 Pumping parameter variation  

The effect of uniform valve spacing on pumping parameters is plotted on Figure 

5.7. Of the parameters listed on Table 4.2, only the flow rate 𝑄, work done by the vessel 

𝑊, and pumping efficiency 𝜂 are plotted as a function of uniform valve spacing relative to 

contraction wavelength 𝐿𝑖𝑛 . For flow rate, there is a noticeable dip in integer 𝐿𝑖𝑛  with 

generally increasing flow rate with lower 𝐿𝑖𝑛, which is expected from previous analysis. 

The dip of 𝑄 at 𝐿𝑖𝑛 = 1 is slightly lower than 𝑄 at 𝐿𝑖𝑛 = 2, indicating that pumping with 

twice the valve spacing and half the number of valves under synchronous valve 

deformation has little effect on pumping performance between 𝐿𝑖𝑛 = 1 and 2. In fact, 

having less valves is slightly more advantageous in most cases by reducing the flow 

resistance caused by the valves.  

 

Figure 5.7 a) Flow rate, b) vessel work, and c) pumping efficiency as a function of 

normalized valve spacing 𝐿𝑖𝑛  for vessels with 𝛬 = 7.5, 𝑅𝑒 = 0.4, 𝜙 = 0.25, and 𝐾𝑠 =
115. Unless stated otherwise, the valve aspect ratio 𝐴𝑅 is kept at 𝐴𝑅 = 1.75. 

Flow rate as a function of 𝐿𝑖𝑛 follows a similar pattern under different valve elastic 

and geometric parameters, as well as adverse pressure gradient applied. However, there are 

some noticeable deviations under ∆𝑃 = 0 and 𝐾𝑏 = 18. When there is no adverse pressure 

gradient applied, the effect of greater backflow reduction from asynchronous valve 

deformation is reduced as there is less backflow from no ∆𝑃, which is consistent with 
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findings from centerline velocity analysis at Figure 4.7. Consequentially, the dip in 𝑄 at 

𝐿𝑖𝑛 = 1 is less pronounced while the flow rate is much higher at higher 𝐿𝑖𝑛 compared to 

cases with applied adverse pressure gradient. 

A noticeable drop in 𝑄 compared to other cases occurs as 𝐿𝑖𝑛  is reduced under 

lower valve bending stiffness 𝐾𝑏. This may be consistent with analysis in Section 4.5, 

where very flexible valves do not occlude properly under backflow. This added delay to 

prevent backflow from improper valve closure results in increased backflow and reduced 

𝑄. And since lower 𝐿𝑖𝑛 means increased number valves within the model, the less effective 

backflow reduction at lower 𝐾𝑏 stacks up as 𝐿𝑖𝑛 decreases, creating a greater drop in 𝑄 

compared to other cases. Finally, a minor increase in 𝑄 can be seen for valves with lower 

aspect ratios, which can be attributed to lower flow resistance from valves due to their 

shorter lengths.  

For work done by the vessel 𝑊, there is a generally increasing trend as 𝐿𝑖𝑛 becomes 

lower. This is expected since lower 𝐿𝑖𝑛 under uniform valve spacing means higher number 

of valves within the system, which requires more work supplied from the vessel contraction 

towards valve deformation.  

Aside from the general trend, there are consistent bumps in 𝑊 for all cases at 𝐿𝑖𝑛 =

1 and 𝐿𝑖𝑛 = 0.5 although not as significant as decrease in 𝑄 around 𝐿𝑖𝑛 = 1. This may be 

attributed to synchronous valve deformation, as they bring about a larger change in velocity 

profile throughout a contraction cycle as seen in Figure 5.5. This more drastic change in 

flow throughout a contraction in turn may lead to synchronous valve deformation requiring 

more work to deform from one configuration to another. Although not an integer, 𝐿𝑖𝑛 =
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0.5 has an alternating valve deformation with synchronous valve deformation for every 

other nearby valve. This leads to less evenly distributed backflow prevention from at least 

one of the valves throughout a contraction cycle, causing a larger change in velocity within 

a given contraction cycle and larger work needed for valve deformation compared to cases 

with similar valve spacings. Changes in 𝑊 under a larger integer 𝐿𝑖𝑛 such as 𝐿𝑖𝑛 = 2 are 

more subtle as there are less valves within the model to have a significant impact.  

Variation of 𝑊 is much more drastic under different 𝐾𝑏, especially on lower 𝐿𝑖𝑛. 

This is expected from analysis of Figure 4.13, which shows a monotonically increasing 𝑊 

with increasing 𝐾𝑏. Since cases with lower 𝐿𝑖𝑛 have more valves within the model, the 

effect of 𝐾𝑏  on 𝑊  becomes more apparent with cases with lower 𝐾𝑏  having lower 𝑊 .  

Cases with ∆𝑃 = 0 also has a noticeable decrease in 𝑊 compared to cases with adverse 

pressure gradient. This is an expected behavior from the analysis of Figure 4.10 with valves 

requiring more work to deform while overcoming greater adverse pressure gradient. 

Finally, cases with lower aspect ratio have almost an identical profile of 𝑊 compared to 

cases with larger 𝐴𝑅. 

When combined, the efficiency plot under different 𝐿𝑖𝑛 shows two distinct local 

maxima with much more distinct dips around 𝐿𝑖𝑛 = 1. Note that efficiency under ∆𝑃 = 0 

is not shown since setting 𝜂 = 0 when Δ𝑃 = 0 due to efficiency’s definition. Despite the 

increase in 𝑄, cases with lower 𝐿𝑖𝑛 do not continue to increase with decreasing 𝐿𝑖𝑛 due to 

an increase in 𝑊  being more rapid with decreasing 𝐿𝑖𝑛 . The rapid increase in 𝑊  and 

decreased 𝜂 under lower 𝐿𝑖𝑛 may explain why lymphatic valves are not actually placed 
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closely, as lymphatic contraction cannot supply a large 𝑊 like in lower 𝐿𝑖𝑛 while pumping 

under such configuration is not as efficient.  

The effect of 𝑊  is also highlighted when 𝜂  is compared between 𝐿𝑖𝑛 = 1  and 

𝐿𝑖𝑛 = 2, where efficiency at 𝐿𝑖𝑛 = 1 is more noticeably less than when 𝐿𝑖𝑛 = 2 due to a 

larger work done by the vessel when 𝐿𝑖𝑛 = 1. Caused by a significantly larger 𝑊 at stiffer 

valves, efficiency is overall lower under stiffer valves. Finally, a minor increase in 𝜂 is 

noted for cases with lower valve aspect ratio due to an increase in 𝑄 with lower 𝐴𝑅. 

5.4 Contraction wavelength with uniform valve spacing 

5.4.1 Pumping parameter variation 

In previous sections, the variation of 𝐿𝑖𝑛 was carried out by changing the inter-

valve spacing 𝑙𝑖𝑛 by varying the number of valves 𝑛𝑣𝑎𝑙𝑣𝑒𝑠. Thus, contraction wavelength 

𝜆 was kept constant at Λ = 7.5. Even though varying only the inter-valve spacing captures 

the effect of mismatching contraction wavelength and valve spacing has on pumping, the 

contraction wavelength is also varied to change 𝐿𝑖𝑛 to investigate any additional effect that 

different contraction wavelength has on pumping performance. 

Since much of the understanding in flow behavior under different 𝐿𝑖𝑛  has been 

already investigated, this section only focuses on the variation of pumping parameters due 

to the change in Λ and inter-valve spacing, resulting in variation of 𝐿𝑖𝑛  under different 

contraction wavelength. The plots of 𝑄, 𝑊, and 𝜂 under this condition are shown below at 

Figure 5.8. Note that due to the variation of Δ𝑃 from changing Λ, normalized pressure 

gradient 𝑑𝑃𝑥 is kept at a constant value of 𝑑𝑃𝑥 = 9 for this case. Also, note that contraction 
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wave speed varies with different Λ, meaning that the normalization factor for 𝑄 and 𝑊 

change with Λ and Λ2 under a constant contraction period, respectively.  

 

Figure 5.8 a) Flow rate, b) vessel work, and c) pumping efficiency as a function of 

normalized valve spacing 𝐿𝑖𝑛 under different 𝛬 for vessels with 𝑑𝑃𝑥 = 9, 𝑅𝑒 = 0.4, 𝜙 =
0.25, 𝐾𝑏 = 88, 𝐾𝑠 = 115, and 𝐴𝑅 = 1.75.  

In general, the pumping performance has a similar trend regardless of the changes 

in Λ. Flow rates increase with decreasing 𝐿𝑖𝑛, work done by the vessel also increases with 

decreasing 𝐿𝑖𝑛, and the efficiency has a large dip near 𝐿𝑖𝑛 = 1 while remaining relatively 

steady otherwise.  

However, as Λ  increases, the particular effect around 𝐿𝑖𝑛 = 1  seen in previous 

section becomes less noticeable, eventually disappearing around Λ = 15. In an extreme 

case around Λ = 15, the flow rate and work done by the vessel increase smoothly and more 

gradually with decreasing 𝐿𝑖𝑛 , leading to a steady efficiency regardless of inter-valve 

spacing. This behavior is similar to when the system experiences no applied adverse 

pressure gradient at Figure 5.7, where backflow reduction becomes less significant due to 

increased overall pumping from vessel contraction. As Λ  increases under a constant 

contraction period 𝜏, the contraction wave speed correspondingly increases, creating a 

situation under high Reynolds number much like in Figure 4.8 with 𝑅𝑒 = 0.6. Note that 

although the peristaltic Reynolds number remain the same under different Λ  since 
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contraction period 𝜏  is not changed, the increase in contraction wave speed increases 

forward flow supplied from vessel contraction, comparable to the high Reynolds number 

cases in Figure 4.8. Forward flow supplied by high contraction wave speed mitigates 

applied adverse pressure gradient, makes backflow prevention less important and 

emphasizes the valve’s ability to minimize loss in forward flow from the valve’s flow 

disruption.  

This reduces the advantage that models with more valves have in preventing 

backflow. On the other hand, models with less valves have increased pumping from less 

flow disruption by the valves, leading to a more gradual increase in 𝑄 with lower 𝐿𝑖𝑛 . 

Furthermore, asynchronous valve deformation reduced backflow more effectively by 

having a larger portion of the contraction cycle where at least one valve within the model 

reduces backflow and aids backflow reduction in non-interacting negative velocity packets 

through mass conservation. But this means that asynchronous valve deformation can have 

the same effect on flow disruption of forward flow, where there is a greater percentage 

within a given contraction cycle that at least one valve disrupts forward flow. Then much 

like backflow reduction, other positive velocity packets are affected by this flow disruption, 

bringing down the forward flow overall in a greater level. Contrarily, synchronous valve 

contraction under integer 𝐿𝑖𝑛 will reduce forward flow less, thus reducing the dip in flow 

rate seen under Λ = 15.  

The reduction in bump for 𝑊  around 𝐿𝑖𝑛 = 1 under higher 𝛬  also follows the 

analysis from Figure 4.8 under higher 𝑅𝑒 . Greater forward flow supplied by higher 

contraction wave speed mitigates the effect of adverse pressure gradient and increases 
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overall forward flow from vessel contraction. This in turn reduces the magnitude of 

backflow, thus reducing the positive flow gained from valve’s backflow prevention as 

shown in Figure 4.8d. This less work from the vessel will go to the valves’ occlusion 

against backflow, regardless of how advantageous different valve placement is, thus 

smoothing out 𝑊 even around integer 𝐿𝑖𝑛 values. 

5.5 Irregular valve spacing  

After the effect of uniform valve spacing on pumping has been investigated in 

previous sections, this section studies variation of pumping under irregular valve spacing, 

specifically an alternating valve spacing regime outlined in Figure 5.2. Although many 

fundamental findings have been made through valve placement with uniform spacing, the 

valves are most likely not spaced uniformly in an actual lymphatic chain. Furthermore, 

tight valve spacing of 𝐿𝑖𝑛 < 0.5  may also be an unrealistic placement even though 

pumping under tightly spaced valves generally has a higher flow rate.  

To explore beyond these limitations, the effect of nonuniform valve placement such 

as alternating valve spacing on pumping is studied in this section. Like in the previous 

section, this section will first look at the general flow profile, centerline velocity, and flow 

rate gain under a model with alternating valve spacing with 0 < 𝛿 ≤ 1. Once a general 

understanding on the effect of 𝛿 on pumping is established, this section will explore the 

effect of 𝛿 on pumping parameters like flow rate, work done by the vessel, and efficiency.  

First, flow pattern and valve deformation are first analysed under an alternating 

valve spacing with 𝛿 ≠ 1. The axial velocity profile and valve deformation for 𝛿 = 0.4, 
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𝛬 = 7.5, Δ𝑃 = 140, 𝜙 = 0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases 

of the contraction cycle 𝑇 is shown below at Figure 5.9. 

In general, the different valve spacings between two consecutive valves create a 

similar asynchronous valve deformation and flow disruption from cases with 𝐿𝑖𝑛 ≠ 1, even 

though the average 𝐿𝑖𝑛 in all valves would be 1. This means that the total time of backflow 

reduction from at least one valve seem to increase when 𝛿 ≠ 1. And considering that 

backflow reduction of at least one of the negative velocity packets in the model reduces 

backflow magnitude in other packets, this configuration of alternating valve spacing may 

provide improved pumping through a more effective backflow reduction.  

 

Figure 5.9 Axial flow velocity 𝑈𝑥 for 𝛿 = 0.4, 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 = 0.25, 𝑅𝑒 = 0.4, 

𝐾𝑏 = 88 , and 𝐾𝑠 = 115  under different phases of the contraction cycle 𝑇 . Note the 

asynchronous valve deformation due to mismatch between the valve placement and vessel 

contraction wavelength. Note that due to the model’s periodic boundary condition, a 

combined length between a distance from the right valve to the flow outlet on the right and 

a distance from flow inlet on the left to the left valve can be also considered an inter-valve 

spacing from the right valve to the left valve.    
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Although a greater degree of backflow reduction can be expected from 𝛿 ≠ 1, a 

constant number of valves within the model means that the improvement in net flow 

through variation of 𝛿 will be limited. To highlight this, a difference in axial velocities 

between cases with and without valves is plotted at Figure 5.10. Note that the case with 

valves has the same model parameters as Figure 5.9. Like Δ𝑈𝑥 plot in Figure 5.4, a wider 

distribution of backflow improvement can be seen throughout the contraction cycle. 

However, unlike in uniform valve spacing with asynchronous contraction, some portion of 

the contraction cycle like at 𝑇 = 0.4 experience a noted lack of flow improvement. In such 

instances, regions of backflow are either too far from valve or just starting to interact with 

a valve, in which the valve will begin to deform and not yet block any flow. The density 

of valves for a given length of a model is not enough to prevent backflow more frequently 

compared to its counterparts under uniform valve spacing. 

 

Figure 5.10 Axial flow velocity difference Δ𝑈𝑥  for 𝛿 = 0.4, 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 =
0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases of the contraction cycle 𝑇. 
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Note the asynchronous valve deformation due to mismatch between the valve placement 

and vessel contraction wavelength. 

5.5.1 Centerline axial velocity profile and time-averaged flow rate gain 

The limited benefit of alternating valve spacing with a fixed number of valves is 

further investigated with a centerline axial velocity profile comparison between two 

different valve spacing regimes with 𝛿 = 0.4 and 𝛿 = 1, shown below on Figure 5.11.  

Centerline velocity profile of nonuniform valve spacing under 𝛿 = 0.4 does share some 

characteristics with comparable cases under uniform valve spacing such as reduced 

bandwidth between the highest and lowest centerline velocity, characterizing a distributed 

backflow reduction throughout the contraction cycle. Still, many aspects of Figure 5.11a 

resemble features of its counterpart with uniform valve spacing and synchronous 

deformation in Figure 5.11b. A good example would be a greater concentration of 

centerline velocity profile near the valveless counterpart noted in black dashed line. Unlike 

the case with uniform valve spacing in Figure 5.5a, where almost all of the centerline 

profile clearly stays above the valveless counterpart, instances in contraction cycle like 

𝑇 = 0.4 in Figure 5.11a almost coincide and often fall below 𝑈𝑥,𝑣𝑒𝑠𝑠(0). Overall, the 

centerline velocity profile shows that alternating valve spacing partially incorporates the 

benefit of increased pumping through a more effective backflow reduction. However, this 

valve configuration is limited by the fixed number of valves, where more frequent 

backflow reduction from shorter inter-valve spacing is balanced by the less frequent 

backflow reduction by the other, longer inter-valve spacing.     
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Figure 5.11 a) Centerline axial velocity 𝑈𝑥(0)  for 𝛿 = 0.4 , 𝛬 = 7.5 , Δ𝑃 = 140 , 𝜙 =
0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115 under different phases of the contraction cycle 𝑇. 

b) Centerline axial velocity 𝑈𝑥(0) for 𝛿 = 1.0, 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 = 0.25, 𝑅𝑒 = 0.4, 

𝐾𝑏 = 88 , and 𝐾𝑠 = 115  under different phases of the contraction cycle 𝑇 . Note the 

centerline velocities are plotted under a moving frame of reference 𝑋 − 𝑇 while black 

dashed lines show centerline velocity for cases without valves. 

In addition to the centerline velocity profile, flow rate gains from forward and 

backward flow in Figure 5.12 shows alternating valve spacing as a combination of 

synchronous and asynchronous uniform valve spacing. 

 

Figure 5.12 a) Time-averaged normalized flow rate gain under forward flow Δ𝑄𝑓𝑜𝑟 for 

𝛬 = 7.5 , Δ𝑃 = 140 , 𝜙 = 0.25 , 𝑅𝑒 = 0.4 , 𝐾𝑏 = 88 , and 𝐾𝑠 = 115  under different 𝛿 . 

Note the dashes with matching colors represent spatially averaged values for respective 

time-averaged flow rate gains. b) Time-averaged normalized flow rate gain under 

backward flow Δ𝑄𝑏𝑎𝑐𝑘 for 𝛬 = 7.5, Δ𝑃 = 140, 𝜙 = 0.25, 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 =
115 under different 𝛿. Note the dashes with matching colors represent spatially averaged 

values for respective time-averaged flow rate gains while the mean axial positions of every 

valve for a given case are marked with crosses. Finally, the alternating valve spacing is 

repeated twice throughout the domain, thus placing four valves with two smaller and two 

longer inter-valve spacings in the model. 
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Clearly, a more distributed backflow reduction by at least one of the valves brings 

about a more effective backflow reduction overall, as noted by the increased minimum 

Δ𝑄𝑓𝑜𝑟  and Δ𝑄𝑏𝑎𝑐𝑘  compared to the uniformly spaced, synchronously deforming 

counterpart at 𝛿 = 1. Considering that the maximum flow rate gain does not vary much 

between different 𝛿 , this brings up the average flow rate gain significantly overall. 

However, the existence of less extensive gain peaks and dips highlight the limitation of 

alternate valve spacing. The smaller dips of Δ𝑄𝑓𝑜𝑟 near the second and fourth valves from 

the left, highlighted by crosses on Figure 5.12a, indicate that forward flow loss is smaller 

under these dips. But the smaller peaks of Δ𝑄𝑏𝑎𝑐𝑘 at the same valves on Figure 5.12b show 

that pumping improvement from backflow reduction is limited by these valves.  

5.5.2 Pumping parameter variation 

As seen in previous sections, alternating inter-valve spacing produces more 

effective backflow reduction compared to uniformly-spaced, synchronous valve 

deformation. However, when compared to uniformly-space, asynchronous valve 

deformation in Section 5.3, the alternating inter-valve spacing is limited in its pumping 

performance. To further analyze the effects of two valve placement regimes, pumping 

parameters of flow rate, work done by the vessel, and pumping efficiency are also plotted 

against the degree of nonuniform valve placement 𝛿  on Figure 5.13. Note that like in 

previous figures, efficiency for Δ𝑃 = 0 is not plotted since the efficiency would be 0 based 

on the definition of pumping efficiency. 
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Figure 5.13 a) Flow rate, b) vessel work, and c) pumping efficiency as a function of valve 

nonuniformity 𝛿 for vessels with 𝛬 = 7.5, 𝑅𝑒 = 0.4, 𝜙 = 0.25, 𝐾𝑏 = 88, and 𝐾𝑠 = 115. 

As mentioned in previous sections, having an alternating inter-valve spacing 

between consecutive lymphangions increase net flow, peaking around 𝛿 = 0.3 . This 

behavior is also consistent when there is no adverse pressure gradient applied, even though 

the increase in 𝑄  is smaller than with adverse pressure gradient. Again, this may be 

contributed to the decreased importance in backflow prevention since there is more forward 

flow created by vessel contraction without an applied adverse pressure gradient.  

Despite the limited increase in flow rate, having an alternating inter-valve spacing 

displays a significant advantage in work done by the vessel. Because the number of valves 

is fixed under different 𝛿, the work done by the vessel stays relatively constant even though 

flow rate increases and peaks around 𝛿 = 0.3. This behavior is starkly different than cases 

with uniform valve spacing and varying valve number, where cases with decreasing 𝐿𝑖𝑛 

and increasing number of valves also have increasing 𝑊. The relatively constant 𝑊 under 

different 𝛿 may have some physiological implication, as analysis from Section 4.6 suggests 

that lymphatic vessel may contract quickly to generate its maximum work for contraction 

regardless of operating conditions. Finally, when the flow rates and work done by the 

vessel are combined together, the pumping efficiency has similar trend as flow rate, 

peaking around 𝛿 = 0.3.  
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Overall, limitation in number of valves to provide a more effective backflow 

reduction yields a partial, yet still significant, improvement in flow rate. But with a constant 

𝑊 under different 𝛿 suggests that nonuniform valve placement such as alternating inter-

valve spacing may operate under comparable or higher pumping efficiency. Furthermore, 

the relatively constant 𝑊 under different 𝛿 suggests that the analysis of nonuniform valve 

placement with a fixed number of valves may have a greater implication in actual lymphatic 

operation considering that the actual lymphatic system may exhibit a similar 𝑊. 
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CHAPTER 6. LYMPHATIC FILARIAL WORM MODEL 

6.1 Introduction 

This chapter investigates the final objective, which is the behavior of lymphatic 

filarial worm within lymphatic system. This chapter specifically focuses on filarial worm’s 

interaction with lymphatic valve and how the interaction affects worm’s migration under 

applied flow condition. A model of a filarial worm is newly this developed and integrated 

into the existing model of a vessel and a valve. For this chapter, a model with rigid vessel 

wall is used to focus on the interaction between valve and the filarial worm without 

considering the additional factors from vessel contraction.  

6.1.1 Overview of lymphatic filariasis 

Lymphatic filariasis is a debilitating condition of the lymphatic system and is a 

concerning public health issue affecting over one hundred million people worldwide, 

mostly in tropical regions [36, 37]. Lymphatic filariasis is caused by two parasitic filarial 

worm species, W. bancrofti and B. malayi, where W. bancrofti makes up about 90% of the 

total infection worldwide [37]. These filarial worms live in both mosquitoes and humans, 

but a part of worm’s larval stage, adult life, reproduction, and death take place in human 

hosts. Once entered a human host via a mosquito bite, these worms specifically target the 

lymphatic system as their nests, where they can live over a decade [35]. 

During their lifecycle, adult filarial worms’ residence and death in lymphatic 

vessels cause obstruction in lymph flow, causing symptomatic infection and impairment of 

lymph transport in some of the infected hosts. If left untreated, the repeated obstruction of 
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adult and dead worms can bring about lymphedema and sometimes hydrocele or limb 

elephantiasis [35]. 

Despite the pervasiveness and seriousness of filariasis, many aspects like the 

infective stage of the filariasis remain unknown. For example, there is little study done on 

understanding the migratory behavior of filarial larvae in its infective L3 stage, where the 

larval worms can arrive at specific regions of within the host body. Through computational 

modelling, this chapter aims to explore a part of this migratory behavior in a mechanical 

perspective and aims to understand how different conditions within the lymphatic system 

may aid or hinder the worm’s migratory behavior. 

6.2 Thrashing worm model 

The filarial worm is modelled as a long hexagonal rod with high aspect ratio, where 

the worm aspect ratio 𝐴𝑅𝑤 is defined as the ratio between worm length 𝑙𝑤𝑜𝑟𝑚 and the span 

of worm cross section 𝑑𝑤𝑜𝑟𝑚. For our work, 𝐴𝑅𝑤 is set between 45 and 100, which covers 

initial infective larval stage L3 to approximately a later larval stage of L4 [47, 48]. 

However, most of the cases tested had 𝐴𝑅𝑤 = 100, placing the worm simulated in later L3 

to L4 larval stage. Finally, the mean diameter of the lymphatic vessel is set around 

10𝑑𝑤𝑜𝑟𝑚, which places the mean diameter of the vessel around 300~500𝜇𝑚 based on the 

experimentally reported values of filarial worm width during the L3 and L4 larval stages 

[47, 48].  

The geometry of the worm and its mechanism for movement are shown below in 

Figure 6.1. The thrashing of worm is created based on the locomotion models of filarial 

worm’s well-studied nematode cousin C. elegans [43-46]. 
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Figure 6.1 Geometry of filarial worm under its initial, undeformed state and during 

thrashing. a) Undeformed geometry of a filarial worm model showing its length 𝑙𝑤𝑜𝑟𝑚. b) 

Sides of a filarial worm highlighted in pink. Note that there are six sides in a worm model 

due to its hexagonal cross section. c) Undeformed geometry of a filarial worm model 

showing its span 𝑑𝑤𝑜𝑟𝑚 . d) Filarial worm during thrashing. The thrashing occurs by 

ipsilateral contraction and expansion of the two opposite sides of the worm. The red line 

in the figure highlights applied contraction by changing the equilibrium length of each 

LSM bond uniformly while the expansion with same strength occurs on the opposite side 

by expanding the LSM bond’s equilibrium length. Note that contraction and expansion do 

not need to occur through the entire length of the worm’s side. 

As seen in Figure 6.1b, the model of a filarial worm is split into six distinct sides 

due to its hexagonal cross section. Deformation that drives worm thrashing occurs only at 

bonds along a side. As seen in Figure 6.1d, the deformation occurs as a pair of contraction 

and expansion highlighted in red and blue, respectively. The contraction and expansion 

occur through a variation of equilibrium length of each LSM bond along the respective 
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side within the region of contraction/expansion, leading to a creation of 

contraction/expansion force on a stretching spring that connects two LSM nodes. Also seen 

in Figure 6.1, the contraction and expansion do not need to occur along the entire length of 

the side, as long as each contraction and expansion occurs at the same strength per bond 

while the affected LSM bond must correspondingly has an opposite deformation occurring 

on the respective LSM bond on the opposite side.  

6.2.1 Nondimensional number and simulation parameters 

The strength of each contraction/expansion pair is defined as 𝑆 = 𝑙𝑛𝑒𝑤/𝑙0, where 

𝑙𝑛𝑒𝑤  is the new equilibrium length of a given LSM bond, and 𝑙0  is the undeformed 

equilibrium length of a given LSM bond. If 𝑆 > 1 , then an LSM bond experiences 

expansion force compared to its undeformed state, while 𝑆 < 1 induces contraction.  The 

contraction strength is greater for lower values of 𝑆 while expansion strength is greater for 

higher values of 𝑆. Despite a deformation created, this force application keeps total force 

and moment created internally by the contraction/expansion pair equal to zero. This is 

because the two LSM nodes that an LSM bond connects experience force in equal and 

opposite direction due to any contraction or expansion. Furthermore, because forces are 

only created in the direction of the LSM bond, there is no rotational force created either. 

The strength of each contraction/expansion pair are applied in probability with 

Gaussian distribution. The mean value of this distribution determines the strength of 

thrashing, referred to as 𝑆𝑚𝑒𝑎𝑛  and will be used interchangeably with 𝑆 hereafter. The 

expansion/contraction regularly at a frequency 𝑓𝑐𝑜𝑛𝑡 and is normalized as a  𝑊𝑜𝑤𝑜𝑟𝑚 =

𝑑𝑤𝑜𝑟𝑚√2𝜋𝑓𝑐𝑜𝑛𝑡𝜌/𝜇. Note that density 𝜌 denote that of surrounding fluid, not of worm.  
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Morse potential-based repulsion between nodes of the model is implemented to 

prevent crossing of different bodies within the model. Elastic properties of valves such as 

bending and in-plane stiffness are defined with the same definitions as previous chapters. 

Elastic properties of worm are noted with an additional subscript of worm and are defined 

with modified variables than what was used for valves in a rigid vessel model. The bending 

stiffness is normalized as 𝐾𝑏,𝑟,𝑤𝑜𝑟𝑚 = 160𝑘𝑏,𝑤𝑜𝑟𝑚/√3𝜋𝑑𝑤𝑜𝑟𝑚
3 ∆𝑃𝑎𝑝𝑝 , and in-plane 

stiffness is defined as 𝐾𝑠,𝑟,𝑤𝑜𝑟𝑚 = 𝑘𝑠,𝑤𝑜𝑟𝑚 𝛥𝑃𝑎𝑝𝑝𝑑𝑤𝑜𝑟𝑚⁄ .  

Finally, unlike C. elegans which produces undulation for self-propulsion, 

lymphatic filarial worm is reported to have little or no ability to propel by itself [39]. The 

worm model’s thrashing parameters are adjusted to ensure this by randomly selecting 

elements such as contraction strength, side of contraction in a worm, and region of 

contraction within a worm.  

6.3 Migration of filarial worm in a rigid vessel 

Inspection of the filarial worm’s behavior and interaction with the surrounding 

environment will focus on two aspects: variation under different thrashing strength 𝑆𝑚𝑒𝑎𝑛 

and change in worm kinematics when interacting with valves. The worm is first inspected 

visually to identify notable changes. Then, worm’s motion is further analyzed through 

variables such as mean axial position of worm over time. 

6.3.1 General worm behavior under oscillating pressure difference   

Profile of filarial worm inside a rigid vessel with a lymphatic valve under applied 

oscillating pressure difference is shown below as Figure 6.2. Some relevant parameters are 
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𝑅𝑒𝑟 = 1.2 , 𝑊𝑜 = 0.4 , 𝐾𝑠,𝑟 = 0.04 , 𝐾𝑠,𝑟,𝑤𝑜𝑟𝑚 = 1.6 , 𝐾𝑏,𝑟 = 0.1 , 𝐾𝑏,𝑟,𝑤𝑜𝑟𝑚 = 0.1 , 

𝑆𝑚𝑒𝑎𝑛 = 0.4, and 𝑊𝑜𝑤𝑜𝑟𝑚 = 0.5. Note that initial geometry of filarial worm is contracted 

by applying contraction/expansion to a random side pair with 𝑆𝑚𝑒𝑎𝑛 until the geometry no 

longer changes. This is done to ensure that the filarial worm starts inside the lymphatic 

vessel while not stretched out to interfere with the lymphatic valve.  

 

Figure 6.2 Filarial worm, valve, and vessel profile noted in green, magenta, and blue, 

respectively, under different time. The simulation parameters are 𝑅𝑒𝑟 = 1.2, 𝑊𝑜 = 0.4, 

𝐾𝑠,𝑟 = 0.04, 𝐾𝑠,𝑟,𝑤𝑜𝑟𝑚 = 1.6, 𝐾𝑏,𝑟 = 0.1, 𝐾𝑏,𝑟,𝑤𝑜𝑟𝑚 = 0.1, 𝑆𝑚𝑒𝑎𝑛 = 0.4, and 𝑊𝑜𝑤𝑜𝑟𝑚 =
0.5. 

As expected, the most change in worm’s geometry occurs when the filarial worm 

interacts with the lymphatic valves even though random contraction is still applied before 

the worm meets the valve. Compared to the coiled status of the worm before interaction, 

the valve forces the worm to be straighter, while the valve leaflets also experience minor 

extra deformation due to the worm’s passing. After its interaction with the valve, the worm 

again remains unchanged in its shape. From visual inspection, the filarial worm’s migration 
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is heavily influenced by applied flow condition and interaction with lymphatic valves. 

Furthermore, the lymphatic valve’s interaction with worm may have some disruptive effect 

on overall flow as well although the disruption may be minor and brief during the worm’s 

passage through the valve.  

To see the effect of different 𝑆𝑚𝑒𝑎𝑛, the profile of worm, valve, and vessel are 

plotted for 𝑆𝑚𝑒𝑎𝑛 = 0.6 below at Figure 6.3. All other simulation parameters are equal to 

that of Figure 6.2.  

 

Figure 6.3 Filarial worm, valve, and vessel profile noted in green, magenta, and blue, 

respectively, under different time. The simulation parameters are 𝑅𝑒𝑟 = 1.2, 𝑊𝑜 = 0.4, 

𝐾𝑠,𝑟 = 0.04, 𝐾𝑠,𝑟,𝑤𝑜𝑟𝑚 = 1.6, 𝐾𝑏,𝑟 = 0.1, 𝐾𝑏,𝑟,𝑤𝑜𝑟𝑚 = 0.1, 𝑆𝑚𝑒𝑎𝑛 = 0.6, and 𝑊𝑜𝑤𝑜𝑟𝑚 =

0.5. 

Like in the previous case with 𝑆𝑚𝑒𝑎𝑛 = 0.4, the filarial worm’s own thrashing has 

a limited effect on overall shape until the worm starts to interact with the valve. However, 

interaction with the valve has a less noticeable effect for the worm in Figure 6.3. Even 

though the worm starts with a looser curl, the valve flattens and straightens the worm much 
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like in Figure 6.2. But once through the valve, the filarial worm recovers much less curl 

compared to its counterpart under 𝑆𝑚𝑒𝑎𝑛 = 0.4. This indicates that filarial worm with 

different thrashing strengths such as dead worms or worms under different larval stages 

may navigate through the lymphatic system differently.  

6.3.2 Filarial worm kinematics, position and displacement 

Although the visual inspection of worm profile in relation to lymphatic valve 

deformation provided some insights into worm migration, more analysis is conducted to 

quantifiably identify changes in worm movement under different phases of the flow and 

under different thrashing strengths. First, the axial position of the centroid of the worm is 

plotted over time under different thrashing strengths and is shown at Figure 6.4. Note the 

simulation parameters are the same as in Figure 6.2 and Figure 6.3, and thrashing strengths 

are noted separately with differently colored lines.  

 

Figure 6.4 Filarial worm’s normalized axial position of centroid over time under two 

different thrashing strengths. Note the horizontal dashes indicate the limits of axial position 

of the lymphatic valve. 
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Overall, the filarial worm has a net forward movement but with some oscillation. 

This behavior can be attributed to the oscillatory nature of the flow within the model, which 

is caused by the delay in valve response to changes in pressure difference. This means that 

from onset of backflow from pressure difference to valve occlusion, there will be some 

backflow, causing the worm to go back slightly. However, like the overall flow pumping, 

the net positive pumping in flow occurs, translating to an overall migration of the worm. 

As expected, the worm’s movement is highly dominated by the surrounding flow pattern. 

However, we can see some diversion occurring between cases with different thrashing 

strengths, especially when the worm reaches the valves noted in black dashed lines. This 

again supports the analysis from previous section on interference in worm’s migration by 

the lymphatic valve and its possibly varying effect depending on worm’s thrashing 

strengths. 

Although Figure 6.4 shows some interesting aspects of worm migration, the profile 

is dominated by the oscillating worm movement which masks the effect of interaction 

between the worm and the valve. To view this aspect more closely, a displacement of 

period-averaged axial position worm’s centroid is plotted over time in Figure 6.5. By 

averaging the centroid axial position over a pumping period 𝜏𝑟  and plotting the axial 

position gain of the period-averaged centroid’s axial position, this plot can more clearly 

show how the worm’s movement changes near and through the valve.  



 118 

 

Figure 6.5 Period-averaged axial displacement of filarial worm’s normalized centroid over 

time. Note that dashed lines indicate period-averaged displacement of minimum axial 

position of the worm while dotted lines indicate the period-averaged displacement of 

maximum axial position. If a centroid of the filarial worm is within the axial limits of the 

valve, the corresponding ranges in time are highlighted in circles.   

First, we can see that the case with higher thrashing strength, noted in lower 𝑆 

value, has a higher axial displacement even before the interaction with lymphatic valve. 

This may be attributed to the greater degree of worm’s proximity to the centerline of the 

vessel, which has a higher velocity. As noted in filled circles, worm with higher trashing 

strength further increases its speed by having a greater gain in displacement per consecutive 

pumping period when the worm interacts with the valve. As a result of that, the worm with 

𝑆 = 0.4 interacts with the valve for a shorter period of time, noted in 𝑡 𝑡𝑟⁄ ~3 of interaction 

time with the valve. In comparison, worm with lower thrashing strength not only has 

unnoticeable increase in movement when it goes through the valve, but the time that the 

worm stays near the valve also increases to 𝑡 𝑡𝑟⁄ ~4. This difference occurs even though 

both worms experience a significant “straightening” as it tries to pass through the valve’s 

opening. This “straightening” can be seen from the increase in difference between period-
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averaged maximum axial position of the worm, plotted in dotted lines, and period-averaged 

minimum axial position of the worm, plotted in dashed lines. In both thrashing strengths, 

the difference in axial positions of the worm’s extremes drastically increase as the worm 

interacts with the valve.  

Once much of the worm passes through the valve, both worms experience a brief 

decline in axial displacement. Then, the reversal in displacement of the maximum and 

minimum worm positions occur (referred also as front and back hereafter), making the 

axial displacement of the worm’s back greater than its front and essentially shrinking the 

worm axially. This can be attributed to the delay flow the front and back of the worm 

experience, especially once the worm is axially stretched by the valve. As seen in Figure 

6.3b and c, the front of the worm may be at the similar position as the back of the worm 

3𝜏𝑟  before, making the displacement comparable to that of the front 3  cycles before. 

Eventually, when even the back of the worm is free from flow disturbance by the valve, 

the worm gradually recovers to its pre-valve profile. Overall, we can see that the valve’s 

deformation and flow disruption affect worms with greater thrashing strength more.  

6.3.3 Filarial worm velocity and flow velocity 

Finally, the worm’s movement is analyzed again in terms of the worm’s mean axial 

velocity and its impact on the lymphatic flow by examining the average flow velocity per 

pumping cycle. The plot of both velocities is shown below at Figure 6.6. 
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Figure 6.6 a) Period-averaged normalized axial velocity of filarial worm over time under 

different thrashing strengths. If a centroid of the filarial worm is within the axial limits of 

the valve, the corresponding ranges in time are highlighted in circles. b) Period-averaged 

normalized mean axial fluid velocity over time under different thrashing strengths. If a 

centroid of the filarial worm is within the axial limits of the valve, the corresponding ranges 

in time are highlighted in circles. 

As demonstrated in Figure 6.5, the period-averaged velocities of the worm in both 

thrashing strengths show increase as the worm starts to interact with the valve. This may 

be attributed to the decreased cross-sectional area due to the valve, thus increasing the flow 

speed and worm axial velocity near the valve opening as the flow approaches from the 

forward direction. Once the worm and flow pass through the valve opening, the sudden, 

wider cross section of the vessel briefly decreases the flow velocity, thus decreasing the 

worm velocity as well. Eventually, the flow and worm’s axial velocities recover to the 

value before interacting with the valve. Like in Figure 6.5, relatively unchanged axial 

velocity can be seen for 𝑆 = 0.6, again highlighting the behavioral difference in worms 

with varying thrashing strengths.  

The worm’s interaction with the valve has a temporary yet noticeable effect on 

overall flow of the model. This can be noted in both thrashing strength and especially strong 
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at the end of the worm’s interaction with the valve, noted in a dip in period-averaged flow 

velocity under a rigid vessel model, �̅�𝑥,𝑟. This drop in velocity can be attributed to the 

worm’s passage through the valve opening, blocking forward flow and allowing more 

backflow from incomplete valve closure.  
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CHAPTER 7. CONCLUDING REMARKS 

7.1 Scientific contributions 

The overarching objective and contribution of this thesis is the implementation of 

fully coupled 3D fluid-structure interaction model in the lymphatic system. This model 

specifically focused on the collecting lymphatics and its flexible valves’ effect on flow, as 

there is very little study done about the lymphatic valves. By utilizing a combination of 

lattice-Boltzmann and lattice spring models, complex geometries like the lymphatic valves 

can be easily integrated into parallel high-performance computing with good 

computational speed, which is well suited for studies like the lymphatic system that 

requires multiple simulations of the model under a wide variety of parameters. 

The focus and findings of this thesis can be divided into three main areas: lymphatic 

valves, lymphatic valve and vessel under vessel contraction, and incorporation of filarial 

worm into the lymphatic system model. First, the lymphatic model utilized a rigid vessel 

with flexible lymphatic valves and the role and importance of lymphatic valves were 

investigated under various valve and flow conditions, leading to a journal publication [49]. 

The model had a rigid vessel unlike its physiological counterpart because it was necessary 

to focus specifically on the role lymphatic valves. Under unidirectionally applied flow, our 

study showed that shorter and more flexible valves reduce flow resistance from the valves, 

thus facilitate a better pumping. However, very short valves cannot properly prevent 

backflow, meaning that there exists some critical range of aspect ratio 𝐴𝑅𝑐𝑟 where the flow 

is optimized. When flow varied as a function of time, our study demonstrated that there is 

a delay in valve response under changing flow condition computationally supporting the 
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experimental observation of valve hysteresis. When time-dependent flow was applied 

under different valve aspect ratio (or length), optimal aspect ratios with maximum net 

pumping were found, supporting the findings from our unidirectional flow study. Finally, 

the valve resistances were calculated under different valve properties and pressure 

difference applied and showed that existing model of the lymphatic valve resistance may 

be improved by providing a more pinpointed valve resistance under different properties of 

the valve. 

The second objective of the thesis led to a creation of a lymphatic model with a 

contracting vessel based on peristaltic contraction, thus more closely resembling the 

conditions and geometries of the actual lymphatic system. This objective also led to a 

publication that is currently in press [115]. Instead of driven by an applied flow condition, 

vessel contraction like the lymphatic muscle contraction powered the flow while adverse 

pressure gradient is applied. Prescribed peristaltic contraction is implemented as a good 

baseline for valve-less behavior as there have been extensive work done on peristaltic 

pumping in general. General study of flow and centerline velocity showed that lymphatic 

pumping achieves its benefit from its valveless counterparts through prevention of 

backflow. The degree of effective backflow prevention varies by many factors such as 

speed and wavelength of contraction wave, amplitude of contraction of the vessel, applied 

adverse pressure gradient, elastic properties of the valve, and inter-valve spacing. Under 

all valve and vessel conditions investigated, optimal conditions with maximum flow 

efficiency existed, demonstrating the complex relation that lymphatic valves and vessels 

have on effective pumping. Notably, valve bending stiffness had optimal condition for flow 

rate as well, demonstrating that extremely flexible valves occlude properly to prevent 
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backflow. Different inter-valve spacing also indicated that backflow prevention and 

lymphatic pumping may not be as effective if applied vessel contraction leads to 

synchronous deformation on multiple valves, as these overlapped occlusion across multiple 

valves do not provide proportionally increased backflow prevention. Finally, an 

incorporation of experimentally reported vessel contraction amplitude as a function of 

applied pressure gradient suggested that lymphatic vessels may rapidly apply its maximum 

work regardless of the adverse pressure gradient. 

The final objective incorporated the model of a lymphatic filarial worm into the 

existing lymphatic model. Although greater investigation is needed, studies on lymphatic 

filariasis during its infective migratory phase is extremely limited, and a computational 

model of that stage is almost non-existent to our knowledge. Often neglected within the 

neglected tropical condition of lymphatic filariasis, the combined model of a filarial worm 

and the simplified lymphatic system showed that filarial worm and lymphatic valve may 

interact differently under different worm parameters such as worm’s thrashing strength. 

Furthermore, the filarial worm’s interference to proper valve occlusion may lead to 

temporary reduction in pumping capacity when the worm flows through the valve.  

7.2 Future works 

Despite the numerous aspects of the lymphatic valve and vessel this thesis explored, 

there are still many more aspects unexplored in this thesis. Some of the potential avenues 

for future work are listed below. 

1. Incorporation of valve resistance model into lumped parameter models: 

Although a model of valve resistance under different valve and vessel 
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conditions are created, incorporation of this mode into the lumped parameter 

model is still needed. Combining the results from our model with the lumped 

parameter model brings in the advantages of two models by allowing high speed 

calculation of a long chain of lymphangions while incorporating more detailed 

model of valve resistance.  

2. Further investigation of flow response under vessel contraction: Due to a 

large range of parameters to be investigated, many parameters were necessarily 

unexplored or relied on studies under a rigid vessel model. Valve aspect ratio 

is an important example of this. Although analyzed extensively under a rigid 

vessel model, analysis of valve response under different bending stiffness in a 

contracting vessel indicates that more complex relationship may exist between 

valve geometric properties and flow response. Interaction between different 

solid components within the model may also need further investigation, as 

interactions like adhesion may lead to different valve response under changing 

flow condition from a fully closed state. 

3. Nonuniform vessel contraction: Although the peristaltic contraction of the 

lymphatic vessel is a good representation, physiological lymphatic vessels 

experience less uniform and less sinusoidal contraction while the contraction 

itself can travel bi-directionally [95]. These nonuniform contractions also 

produce retrograde contraction where the contraction wave travels against the 

valve opening, while contractions and flow near lymphatic junctions may bring 

an additional complexity.  
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4. Shear stress-sensitive vessel contraction: Although our work explored flow 

under different contraction amplitudes based on adverse pressure gradient, 

other factors that affect vessel contraction such as shear stress has not been 

explored [96, 97]. This means that coupling of vessel contraction to flow 

condition may be needed for more physiological representation of vessel 

contraction. Eventually, vessel contraction not prescribed but driven by a well-

studied lymphatic muscular contraction model can be incorporated to provide 

full representation of physiological vessel contraction. 

5. Diversification of valve spacing: The current model utilizes three major valve 

placement schemes: synchronous and uniformly spaced valves, asynchronous 

and uniformly spaced valves, and asynchronous and nonuniformly spaced 

valves. Even though our model covers many valve configurations, a greater 

inspection of valve placement of the actual lymphatic system may be needed. 

By doing so, a more physiological valve placement pattern can be found and 

incorporated into the existing model. 

6. Further investigation of filarial worm migration behavior in the lymphatic 

system: Although the computational investigation of filarial worm migration 

itself is notable due to its rarity, the model is at its early stage mainly due to 

many unknown parameters from limited experimental studies on filarial worm 

migration pattern. Further studies of filarial worm under more diverse thrashing 

patterns, wider lymphatic valve and vessel parameters, and diverse navigational 

challenges are needed.  
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