
THEORETICAL ANALYSIS OF UNSTEADY SUPERSONIC 

FLOW AROUND HARMONICALLY OSCILLATING TURBOFAN CASCADES 

A THESIS 

Presented to 

The Faculty of the Division of Graduate 

Studies and Research 

By 

John Evere t t Caruthers 

In P a r t i a l F u l f i l l m e n t 

of the Requirements f o r the Degree 

of Doctor of PhMosophy in the Schooi of 

Aerospace Engineer ing 

Georgia I n s t i t u t e of Technology 

September, 1976 



THEORETICAL ANALYSIS OF UNSTEADY SUPERSONIC 

FLOW AROUND HARMONICALLY OSCILUTING TURBOFAN CASCADES 

Approved• 

_ _ ^ 2 -=-WL 

f ' • ^ « 1 T — — — • • • • - . : 

G. Alv in Pierce, Chairman 

Warren C. Strahle 

Howard M. McMahon 

Date approved by Chairman: £T-c3£-7£ 



I I 

ACKNOWLEDGMENTS 

To my advisor, Dr. G. Alvin Pierce, I owe special 

thanks for a variety of reasons. For the many hours he 

spent in reviewing this th.es is and his subsequent contri-

bution to the quality of the work, I am greatly appre-

ciative. Our many private conversations concerning 

theoretical aspects of aerodynamlcs have contributed 

greatly to my understanding and many of the ideas dis-

cussed may be found within this thesis. For his counsel 

and personal concern du ring my academic career at Georgia 

Tech I am truly grateful» 

I also extend my thanks to the other members of 

the advisory committee, Dr. Howard M„ McMahon and Dr. 

Warren C. Strahle for their comments and suggestions 

concerning the thesis. 

I am indebted to Mr. Peter C. Tramm of Detroit 

Diesel Allison who made it possible for me to continue 

my education. I also gratefully acknowledge the financial 

assistance given me in support of this work by General 

Motors Corporation under their Graduate Feliowship program. 

Thanks are also due Mr. R. R. AI Iran, also of Detroit 

Diesel Allison, who supported and helped coordinate this 

effort. 

th.es


I I I 

I would also 1ike to thank Mrs. Marlene Jacobs 

who typed the final draft of the thesis with a great 

deal of patience and a high spirit of Cooperation. 

Thanks also to Mrs. Ruth Shaw whose Instructions and 

suggestions concerning the format and typing of the 

thesis werevery Kelpful. 

Throughout my academic career my parents have al-

ways been a source of help and encouragement. This 

endeavor was no different. To my father who graduated 

from this Institution thirty yeairs ago and to my mother 

who is herseif a teacher, and who gave me my f i rst tablet 

and pencil, this accomplishment has special meaning. I 

am proud to be able to share it with them. 

Lastly, I can here give only a first installment 

of thanks to my wife, Susan, who provided our prirnary 

financial support during this period and who also typed 

the rough draft of the thesis. If there has been a hard-

ship over these years, it is she who has borne it. Her 

unfailing love and devotion have given this effort mean-

ing. To our infant son, Brian, whose recent arrival 

made this task more rewarding yet more difficult, I say 

we look forward to your education. 

I cannot rightfully close without giving considered 

and prayerful thanks to God upon whom I have called upon 

frequently for assistance during this pursuit. It is He 



IV 

who ultimately gives purpose and meaning to all 

endeavor, including this one„ 



V 

TABLE OF CONTENTS 

Page 

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . vii 

NOMENCLATURE . . . . . . . . . . . x 

SUMMARY . . . . . . . . . . . . . . . . . . . . . xix 

Chapter 

I. INTRODUCTION 1 

I I . THEORY . . . . 8 

The Linearized Problem 

Linearization for Non-Uniform Steady 
Flow 

IM. THE SOLUTION METHOD . . . . . . . . . . kk 

The Numerical Procedure 

Acoustic Resonance 

IV. DISCUSSION . . . . . . . . 66 

Results of the Numerical Computations 

V. CONCLUSIONS AND RECOMMENDATIONS . . . . 107 

Conclusions 

Recommendat i ons 

APPENDIX 

A. PERTURBATION OF THE SOUND SPEED . . . . 113 

B. LINEARIZATION OF THE PRESSURE 
COEFFICIENT 116 

C. DERIVATION OF THE POTENTIAL EQUATION IN 
ORTHOGONAL CURVILINEAR COORDINATES . # # 120 



VI 

Page 

D. EVALUATION OF EQUATION (105) IN 
TERMS OF SUCCESSIVE ITERATIONS . . . . . 125 

E. AERODYNAMIC WORK CALCULATION FOR 
ARBITRARY AIRFOIL MOTION . . . . . . . . 128 

BIBLIOGRAPHY . . . . . . . . . . . . 131 



VI I 

LIST OF ILLUSTRATIONS 

F i g u r e Page 

1. Schematic of an Infinite Fiat Plate 
Cascade .'..... . . 10 

2. Isolated Blade Channel . . . . . . . . . . 17 

3. Rigid Body Motion of Fiat Plate . . . . 22 

4. Supersonic Cascade with NL < 1 . . . . 25 
r n 

5. Natural Orthogonal Curvilinear 
Coordinates . . . . . . . 31 

6. Displacement of Airfoi1 Surface in 
(T,X) Coordinates 39 

7. The Finite Difference Grid h& 

8. The Computational Domain . 51 

9. The Finite Cascade 5*+ 

10. Traveling Pressure Wave at Cascade 
Inlet 60 

1 1 . P r o p a g a t i o n o f t h e Lead ing Edge D i s -
t u r b a n c e i n a S u p e r s o n i c Cascade . . . Gk 

12 . Compar ison w i t h I s o l a t e d A i r f o i 1 
( R o t a t i o n a l O s c i l l a t i o n About 
Q u a r t e r - C h o r d , 67 

13 . Out o f Phase P ressu re D i s t r i b u t i o n -
U d o O a U f c J M e . . . . . . o . . . . . . . D»/ 

1*+» L ä S C a Q c M i . . . . . . i, . a . . . . . /U 

15« Out of Phase Pressure Difference 
Distributions for Translational 
Oscillations of Cascade B . . . . . . . 71 

16. Cascade B 73 



V 

Figure Page 

17. Comparison of Velocity Potential and 
Pressure Amplitude Solutions for 
Cascade C . lh 

18. Out of Phase Pressure Difference 
Distribution for Rotational Oscilla-
tions of Cascade B . . 76 

19. Out of Phase Pressure Dist ri but ions 
Effect of Interblade Phase Angle -
Cascade B 77 

20. Comparison of Out of Phase Pressure 
Difference Distribution with a Method 
of Characteristics Solution for 
Rotational Oscillation of Cascade B . . 79 

21. Cascade C 80 

22. Effect of Interblade Phase Angle on 
the Moment Coefficient for Rotational 
Oscillation of Cascade C 81 

23. Convergence Near Resonance - Case 1 . . 83 

24. Convergence Near Resonance - Case 2 . . 8k 

25. Behavior of the Solution Near 
Resonance Frequency - Case 1 . . . . . 86 

26. Behavior of the Solution Near 
Resonance Frequency - Case 2 87 

27. Convergence of the Method . . . . . . . 88 

28. Surface Pressure Distributions for 
Cascade B (Rotational Oscillation) . . 90 

29. Surface Pressure Distributions of 
Cascade D (Rotational Oscillation) . . 91 

30. Cascade D . . 92 

31. Cascade E . . „ „ 95 



gure 

32. Effect of Reduced Frequency on the 
Out of Phase Moment Coefficient at 
Various Mach Numbers (Midchord 
Rotational Oscillation of Cascade E) 

33. Damping Required for Stability as a 
Function of Compressor RPM for a 
Typical Turbofan Rotor . 98 

3*f. Effect of Reduced Frequency on the 
Out of Phase Lift Coefficient at 
Various Mach Numbers (Translational 
Oscillation of Cascade E) . . • ' . * . . 100 

35. Effect of Mach Number on Out of 
Phase Moment Coefficient (Rotational 
Oscillation of Cascade E) * * 101 

36. Effect of Mach Number on Out of 
Phase Lift Coefficient (Translational 
Oscillation of Cascade E) . 102 

37. Effect of Stagger Angle on Out of 
Phase Moment Coefficient (Rotational 
Oscillation of Cascade E) 103 

38. Effect of Stagger Angle on Out of 
Phase Lift Coefficient (Translational 
Oscillation of Cascade E) 104 

39. Effect of Cascade Solidity on Out 
of Phase Moment Coefficient (Rota
tional Oscillation of Cascade E)-. . . • 106 

Page 

. . 96 



NOMENCLATURE 

local steady State sound speed 

local sound speed 

undisturbed sound speed far upstream 

perturbation in sound speed 

A/a 
CD 

a ' e - ' w t / a 8 
00 

coefficient defined by Equation (D-10) 

coefficients in the finite difference 
System defined by Equations (8k) and (85) 

location of airfoil torsion axis non-
dimensionalized with respect to c, 
positive in x direction 

coefficients defined by Equations (60), 
(61), and (62) 

normalized perturbation lift coefficient 

complex lift coefficient for torsional 
oscillation about mid-chord 



XI 

Cg complex lift coefficient for pure trans -
h lational oscillation normal to the chord 

C complex moment coefficient for torsional 
ma oscillation about mid-chord 

C complex moment coefficient about mid-chord 
mh for pure translational oscillation normal 

to the chord 

CMa Cm (8/nk
2) 

C normal ized pressure coefficient, (P-P ) / 
P (iProU„26) 

C * normalized pressure coefficient amplitude 

c chord 

g damping 

h airfoil translation amplitude 

h' h/c 

h unsteady t rans l a t i o n a l di spla.cement 
normal t o a i r f o i l chord = h e l W t 

dr 

n 2 — 
dX 

I integral as defined by Equation (D-2) 



xi i 

iTT 

i u n i t v e c t o r in x d i r e c t i o n 

j u n i t v e c t o r in y d i r e c t i o n 

reduced f requency = coc 

L* comp lex l i f t 

i distance along coordinate T 

4» i/c 

A 

4 unit vector in r direction 

M Mach number 

M Mach number at « 
00 

M component of Mach number normal to 
cascade inlet plane 

Mp local Mach number in stream direction 

M* comp lex moment 

N number of periodicity iterations (or 
number of blades in the cascade) 

Nj number of the fjrst Solution to be used 
in evaluating S 



X I I I 

n distance along eoordinate X 

n1 n/c 

n unit vector in X direction (unit normal) 

P static pressure 

P local steady value of static pressure 

P1 perturbation in static pressure 

amplitude of perturbation pressure, 
P1 = p'* e'wt 

P^ static pressure at » 
CO ~ 

q" velocity vector 

q velocity in x direction 

q velocity in y direction 

q r velocity in r direction 

q velocity in x direction 
A. 

q steady velocity magnitude 

q velocity relative to a point on moving 
ai rfoi1 surface 

q. velocity of airfoil surface 



XIV 

radius 

J.L. 

Solution at the n iteration 

arithmetic mean of Sn 

cascade airfoi1 spacing 

normalized spacing = s/c 

t i me 

steady streamwise relative velocity at OD 

component of upstream velocity normal 
to the cascade stagger 1?ne (along the 
compressor axis) 

component of upstream velocity parallel 
to the cascade stagger 1ine 

perturbation velocity in x direction 

amplitude of the x component of the 
complex perturbation velocity 

real and imaginary parts of u* 

steady velocity vector in (T,X) coordinates 

steady velocity in T direction 

phase speed of cascade wave 

perturbation velocity in y direction 



amplitude of the y component of the 
comp lex perturbation velocity 

real and imaginary parts of v'v 

aerodynamic work/cycle 

rectangular Carteslan coordinates 

normalized x coordinate, x/c 

finite difference x1 grid spacing 

point on stationary airfoii surface 

normalized y coordinate, y/c 

finite difference y1 grid spacing 

y coordi nate of airfoii surface 

ys/c 

unsteady rotational amplitude 

unsteady rotational di splacement, a = 

interblade phase angle 

specific heat ratio 



XVI 

orthogonal curvi1inear coordinates lying 
along and perpendicular to the steady 
flow streamli nes 

ai rfoi 1 surface point perturbation dis-
placement vector 

nondimensional perturbation amplitude of 
a'\ rfoi 1 motion 

cascade stagger angle 

airfoi1 surface angle measured to 
hori zontal 

angle between T coordinate and horizontal 

perturbation solid body rotation of the 
ai rfoi 1 

phase angle between translational and 
rotational oscillation 

finite difference grid ratio 

angle between local velocity vector and 
Mach wave 

densi ty 

local steady value of density 

density at upstream 



XVI I 

cascade solidity c/s 

phase angle = cot 

total nonlinear potential 

perturbation potential 

comp lex perturbation potential amplitude 

normalized perturbation potential 
arnpl i tude, "0/U Co 

real and imaginary parts of 0 

steady nonlinear potential function 

X coordinate of ai rfoi 1 surface 

real part of C * 

imaginary p a r t of C * 

f requency 

(M„2/(M„2 + 1) ) k 

gradient Operation in (x,y) coordinates 

gradient Operator in orthogonal curvilinear 
coordinates (r,x) 



xv ii i 

Laplacian Operator in (x,y) coordinates 

Laplacian Operator in orthogonal curvi-

linear coordinates (T, x) 

linear Operator, -2(i k+ — ( ) 



XI X 

SUMMARY 

A Solution method is developed for the supersonic 

cascade prob lern utilizing a finite-difference/pressure-

amplitude-function technique. The method developed is 

valid for both the supersonic and subsonic leading edge 

Problems, although developed specifically for the latter 

problem, Excellent agreement is obtained with existing 

Solutions in all the limiting cases and the cascade 

results are compared with some recently published results 

using other methods. A parametric study is given of a 

typical supersonic cascade configuration. 

The introduction of the pressure amplitude function 

as the primary independent variable rather than the 

velocity potential allows the exit region to be solved 

without explicit consideration of the wake. The objection-

able numerical wake reflections of the characteristic 

discontinuities prevaient in the finite-difference-velocity 

potential method are shown to be eliminated by the present 

development. 

The iterative technique developed for enforcement 

of the cascade periodicity conditions is shown to corre-

spond precisely to adding one blade at a time to a finite 

cascade. The convergence of the method is in doubt at the 
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resonance points, but appears to converge slowly (at 

least in the sense of a mean) just away from resonance. 

Convergence well away from resonance is shown to be much 

more rapid. 

Theoretical considerations are given for the ex-

tension of the linearized perturbation method to oscil-

latory flows under nonuniform steady flow conditions. 

The perturbation equations and boundary conditions are 

developed in natural orthogonal curvilinear coordinates 

yielding an equation very similar in form to the previous 

uniform steady flow case. Physical interpretations are 

given for the modified equation and boundary conditions, 
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CHAPTER I 

INTRODUCTION 

One of the most serious problems associated with 

the design of turbomach ine compressors and fans has been 

that of self-excited blade Vibration (i.e., flutter). 

This flutter may fall into three basic categories, stall 

or positive incidence flutter, choke or negative incidence 

flutter, and unstalled flutter,. Stall flutter, as the 

name implies, occurs under conditions of partial or füll 

flow Separation over the low pressure surface of each 

airfoi1. This happens under high loading conditions when 

the cascade of rotor airfoils is at high positive incidence 

or angle of attack (i.e., near the compressor steady State 

"surge" or stall line). Choke flutter, on the other hand, 

occurs at very low pressure ratios near the compressor 

"choke line" where the airfoils are operating at negative 

incidence thereby causing stream tube convergence and 

local sonic or choked flow. 

Both stall and choke flutter occur at so called 

"off design" conditions away from the normal operating 

line or design point for the compressor and generally are 

only encountered during excursions near the steady opera-

tional limits of the compressor. Unstalled flutter, 
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however, may occur anywhere withln the normal operational 

envelope of the compressor and indeed even at the design 

point itself. For this reason it is of utmost importance 

to know the unstalled flutter susceptibi1ity of a given 

compressor blade row design as early as possible in the 

design process. Adjustments may then be made to the 

design (e.g., the addition of part span shrouds or use of 

composite materials) before the final design and testlng 

stage after which such major redesign is prohibitively 

time consuming and expensive. 

Although it has been shown both theoretical ly D ,2,3] 

and experimental ly[*f] that unstalled cascade flutter is 

possible in incompressible and subsonic compressible flow, 

Snyder[5] shows why it has not been a significant design 

problem for modern turbofans. However, the trend toward 

lighter weight, high stage pressure ratios, and greater 

efficiency has, fron Performance considerations, dictated 

higher rotational speeds with accompanying supersonic 

rotor tlp Mach numbers and thin lower frequency super

sonic blading, This has resulted in comp ressor/turbofan 

designs which are susceptible to supersonic unstalled 

flutter [5,6,7] thereby prompting a concerted effort toward 

the analysis of supersonic unsteady cascade flows. 

The first such supersonic cascade analysis is due 

to Lane[8] who applied a Laplace transform method to the 
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case with supersonic axial flow (referred to as the super« 

sonic leading edge locus case), The same prob lern was 

more recently solved by Platzer and Chalkley[9] who ex-

tended a method of characteristics procedure previously 

developed by Platzer and Pierce [10] for the purpose of 

studying supersonic wind tunnel wall interference. Un-

fortunately, the restriction of the above analyses to 

supersonic axial flow precludes its use in the analysüs 

of present day compressors and turbofans where the condi-

tion exists of supersonic rotoir relative flow with sub-

sonic axial component. This c'ondition gravely compli-

cates the formulation and Solution of the prob lern by 

requiring consideration of the infinity of cascade blades 

along with their inlet and exit flow fields, whereas 

only one blade Channel need be considered in the former 

case. 

Verdon [11] (1973) gave the first significant ana-

lytical treatment of the subsonic leading edge prob lern 

(i.e., supersonic relative flow with a subsonic axial 

component). The analysis is based on the linearized small 

disturbance velocity potential equations and considers 

the cascade of airfoils to be a cascade of flat plates. 

It also introduces the idea of an infinite cascade as the 

asymptotic limit of a finite cascade by considering the 

flow around only a finite number of blades. The Solution 
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procedure used is a mixed analytical/finite-difference 

method. A Laplace transform Solution is used in the inlet 

flow region and a finite dlfference technique is used in 

the interblade and exit flow regions. The results of 

this analysis show considerable irregularity in the pres

sure distrfbution over the aft portion of the blade 

pressure surface. The behavior of the Solution near the 

acoustic cutoff or resonance [l 2,13] conditions is not 

discussed. More recently, Verdon and McCune [l*f] (1975) 

presented a more rigorous analytical treatment of this 

problem which eliminated the previous pressure irregulari-

ties but which failed to converge over the ränge of inter

blade phase angles lying between the acoustic resonance 

points. 

Kurosaka [15] (197*0 obtained a closed form Solution 

of the same linearized flat plate problem by expanding 

the velocity potential in a power series of the frequency 

parameter and neglecting all terms above first order. 

Although mathematically appealing, the limitation of this 

approach to small frequency parameters severely restricts 

its applicabi1ity to typical high frequency turbofan 

b 1 ad i ng • 

Nagashima and Whitehead [16] have also published a 

Solution of this problem obtained by a method of distri-

buted pressure dipoles. The results show fair agreement 
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with other published results for particular cases, however, 

the analysis is restricted to very simple cascade flows 

which have at most one bow wave reflection within the 

blade Channel. 

Brix and Platzer [17] (1974) have extended the 

earlier work of Platzer and Chalkley[9j to the case of 

subsonic axial flow using Verdon's idea of a finite cas

cade Simulation of an infinite cascade. Again no mention 

is made of the Solution behavior near the acoustic cutoff 

conditions and no results are shown to illustrate the 

convergence of the method. 

An inadequacy common to all the above mentioned 

analyses is the failure to consider potentially important 

steady field effects (e.g., the effect of finite blade 

camber, thickness, and back pressure). Even though 

typical supersonic fan blades are thin and of small camber, 

they may, nonetheless, possess a significant expansion 

and/or shock compression System. This, of course, is in-

consiStent with the assumption of uniform undisturbed 

steady flow used in the above analyses and none of these 

analyses may be easily extended to consider such effects. 

A good experimental example of the important effects of 

blade shape and back pressure on the supersonic unstalled 

flutter of a cascade is presented by Snyder[5] . Other 

recent experimental evidence [l8j has indicated that in 
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certain cases these steady field effects may be of critical 

irnportance in determi ni ng the aerodynamic stabil ity of the 

cascade. Ni [l9j abandons this assumption of uniform un-

disturbed steady flow and attempts to solve the cascade 

problem for thick cambered airfoils with back pressure by 

applying a time marching finite difference method to 1:he 

modified small perturbation equations. Although this 

analysis represents a reasonable approach to the totally 

subsonic problem, other critical considerations (e.g., 

shock translation and acoustic»disturbance/shock-wave 

interaction) must be made before such an analysis can be 

properly applied to the subsonic case with finite strength 

shock-expansion Systems. 

Another serious problem may also be encountered in 

the practical application of these two-dimensional flow 

analyses along the rotor blade span. At some point along 

the blade span it is possible, indeed even likely, that 

conditions exist which are at or near the previously 

mentioned (resonance) conditions. linder these conditions, 

the idea of the infinite cascade as the asymptotic limit 

of a finite cascade is subject to serious doubt and the 

convergence of the method in this region is not assured. 

The purpose of this investigation is to develop a 

new Solution procedure for the unsteady flat plate cascade 

problem under conditions of supersonic relative flow and 
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subsonic flow perpendicular to cascade stagger line. The 

finite difference Solution procedure is developed in a 

form which might be readily adapted to the more complex 

problem of unsteady perturbation from a nonuniform flow. 

Theoretical consideration is given this problemwith the 

equations and boundary conditions developed in a form 

most suitable for physical interpretation as well as 

numerical calculation. 
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CHARTER II 

THEORY 

The Linearized Problem 

The ultimate intent for the analysis presented 

herein is to provide aerodynamfc force and moment coeffi-

cients for the supersonic outer span portion of a fan or 

compressor rotor» These coefficients, along with esti-

mated structural damping and calculated or estimated 

aerodynamic damping for the remaining span of the rotor, 

are required for the determi nati.on of the flutter stabil-

ity of the rotor dynamic System. The first assumption 

needed to reduce this prob lern to a tractable model relates 

to replacing the three dimensional flow field in the 

rotor by a series of two dimensional sections for which 

the aerodynamic properties are calculated independently. 

Considering the lack of a rigorous justification of this 

process, (sometimes referred to as "strip analysis"), 

confidence to proceed on the basis of this assumption 

derives from its successful application to high aspect 

ratio wings in aircraft wing flutter theory [20] and to 

the calculation of steady fan/compressor rotor flows. 

The two dimensional sections to be analyzed are also 

assumed to lie on cylindrical stream surfaces which 
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i n t e r s e c t the annular r o t o r cascade at the des i red r a d i a l 

l o c a t i o n s . This assumption a l lows the prob lern t o be 

cast in a c o o r d i n a t e System r o t a t i n g w i t h the blades 

w i t h o u t having t o a l l o w f o r c e n t r i f u g a l and C o r i o l i s 

e f f e c t s . The next assumption, which s h a l l be reconsidered 

in a l a t e r s e c t i o n , is t h a t the supersonic r o t o r a i r f o i l 

sec t ions which are very t h i n and have l i t t l e camber, may 

be replaced by f l a t p l a t e s at the same cascade stagger 

angle (8 as shown in F igure 1) and c h o r d - t o - s p a c i ng r a t i o , 

CT . 

The problem has now been reduced, under the above 

assumptions, to the two-dimensional problem depicted in 

Figure 1 where the cylindrical surface has been "un-

wrapped" into an infinite cascade by requiring periodicity 

over intervals containing the same number of blades as 

is in the annular rotor, The inlet relative Mach number 

to the cascade for the flow regime under investigation is 

supersonic while the component of velocity in the direc-

tion of the cornpressor axis is less than sonic. This 

condition constitutes the so-called subsonic leading edge 

locus problem in analogy to the three-dirnensional super

sonic wing problem when the leading edge is swept behind 

the leading edge Mach cone. 

Before proceeding with the development of the 

equations and boundary conditions governing the unsteady 
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velocity 
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Figure 1. Schematic of an Infinite Fiat Plate Cascade 

o 
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cascade flow, it is convenient to list the assumptions 

which shall be used in the derivation including the 

assumptions used in reducing the problem thus far. 

(1) The flow at any section is two-dimensional 

and lies entirely in a cylindncal stream 

surface. 

(2) The blades are flat plates of zero thickness. 

(3) The flow is invisctd, isentropic, and irrota-

tional . 

(k) The steady relative flow is uniform through-

out the blade passage, which implies that 

the cascade has a pressure ratio of one# 

This assumption will be reconsidered later. 

(5) The flow is supersonic. 

(6) The blades are oscillating simple harmonically 

at small amplitude with a constant phasing 

between blades, ß, such that ßH - 2n TT where 

N is the number of blades in the rotor and 

n i s an i nteger. 

Assumption (3) allows the momentum and continuity 

equations to be combined in terms of a velocity potentiial, 

Q, and the local sound speed, a, as [21] 

v 2 0 = ? [ ä + ̂ V0'2 + v * ' v H 2 / 2 ] <') 
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where 

70 == ( 2 ) 

now, under assumptions k and 6 , l e t 

q = v0 = Uco? •+ v ^ ' where 1^0' | « uc (3) 

It is shown in Appendix A that the above small perturba-

tion assumption along with the assumption that 
501 

öt 
and 

V01 are of the same order of magnitude implies that 

a = a %+ a 

where 

« a 

In fact, a' may be written in terms of the velocity poten« 

tial to first order (Appendix A) as 

a = -
y - i 

2a„ 
51' + u„ **' 
at öx 

Substituting for 0 and a in Equation (1) gives 

w 

i + 2£'+4] v2
0« = ± f ö ' +JL[ ( UJ+V) (5) 

a«, aeo
z / aj a t St l 

(Ucoi + v 0 
1 (U r o i + v 0 ' ) r A 

)J+ 2 ' 7 | ( U J +V0 ) , ( U » [ 
A I . 

+ 70 ) 
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or 

1 + 2a 2 \ 
v V a20 

ät2" 
2ü.äi,

 + [^)2 (6) 

00 • |2 
+ (UJ + v0 ) 

Ö 2 0 ' /> 

öxZ dxdy 

A 

j 

'Ö01
 ö

2 0 ' 0 0 ' d 2 0 ' | A /Ö0* a 2 0 ' Ö0' Ö 2 0 ' \ A 
+ I I + I + f J 

' ^x ^x ^y ^v" xöy ' 1 öx dxdy dy dy2 / j 

Negiec t ing on ly the t h i r d order terms in the per turbat : ion 

q u a n t i t i e s and c o l l e c t i n g terms g ives 

0 - M/) + 2a_ 2K Ö0 

U, 

a V a2
0' 

TT" + T T (7) 

•oo L. 
^ - + 2 ( u < 

+ U l i a f l l + 2u — äf^- + 2 ^- ' & 2 0 ' 
Sx ' 9tdx dy dxdy dy dtäy 

- 2a a — x — 
9y' J 

The second order terms on the right hand side are now 

negiected relative to the retained first order terms to 

give 
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(1 " M / ) + 
2a • 2M 

U 
*t 
3x 

? j -i 
•a 0 + Ö0 
ÖX2 ä ^ 7 

(8) 

t 2 ^ ' 2 ^ ' 

Z 00 
st ÖXÖt ' 

E q u a t i o n (k) may be used t o pu t E q u a t i o n ( 8 ) i n t h e more 

f a m i l i ä r " t r a n s o n i c " f o r m 

(1 - M * ) ' -
y - i Ö01 

at 
+ (y + D 

M. 30' 

U öx 

2 , i 5 0' . ö 0 — - _ + — 
ö x

Z öy 
(9) 

= ' K + 2U 
a A a r 

00 

ö x a t 

In o r d e r t o n e g l e c t t h e r e m a i n i n g second o r d e r non 

l i n e a r te rms i n E q u a t i o n ( 9 ) , i t i s n e c e s s a r y t h a t t h e 

f l o w reg ime o f i n t e r e s t be r e s t r i c t e d such t h a t 

1 - M » V0 

This implies that the Mach number of the flow must not be 

too close to unity. Under this condition the governing 

equation takes the well known form 

( , - M 2 ) ^ + ^ ' Uafi' + 2U 
ax öy' \bf 

aV 
axat l 

= o (10 ) 
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Assuming a s i m p l e h a r m o m c t i m e V a r i a t i o n 

0 ( x , y , t ) = 0 ( x , y ) e , W ' 

where 0(x,y) is the comp lex amplitude of the perturbation 

velocity potential, and using the following normalizations 

x = x/c 

y1 = y/c 

0* = ^"/Um
cö 

CO 

k =wc/U 
CO 

where Ö is the nondimensional perturbation amplitude, the 

•*• i i 

linearized potential flow equation for 0"(x ,y ) becomes 

(, - M 2 ) ä f £ + <££ - 2 i M 2 k < + M „ 2 k V = 0 (11) 
hx *• dy z dx 

As discussed previously the actual rotor section 

has been modeled in two dimensions by requiring that the 

entire flow field repeat after each section containing N 

blades. In other words, the N + 1 blade and the first 

blade are actually the same blade in the rotor so that 

the equivalent two-dimensional flow field is periodic, 

Since all the cascade blades are assumed to oscillate in 

simple harmonic fashion with a constant phase angle 

relative to the adjacent blade then the blade motion and 
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associated flow fleld are identical to the adjacent 

blade except that they are shifted in phase by the inter-

blade phase angle, ß. This allows consideration of a 

Single blade Channel such as shown in Fi girre-2 which 

consists of an Upper and lower blade and hypothetical 

boundaries extended toward upstream and downstream 

infinity« The boundary conditions along the hypothetical 

boundaries are thus obtained from the periodiclty condi-

tion which may be stated in terms of the comp lex ampli-

tude of the nondimensional perturbation velocity poten-

tial as 

0* (x',y') = e'^0* (x' + s' sine, y' + s' cosö) (12) 

The boundary condi t ion f o r the a i r f o i 1 surface is 

stated most simply by the condi t ion that the component 

of the re l a t i ve ve loc i t y vector , q , normal to a i r f o i 1 

surface must vanish. 

q r • ft = 0 (13) 

where n is a unit vector normal to the airfoi1 surface. 

Now let a blade surface be described by 

f(x,y,z,t) = 0 (14) 



Compressor axial direction 

y 

i_:_x 
h-<-

Cascade inlet plane 

Figure 2. Isolated Blade Channel 
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where fo r two-dimenslonal f low ^ 7 = 0 . Equation (14) 
oZ 

then implicitly defines 

y != ys(x,z,t) (15) 

or 

f(x,y,z,t) = y -ys(x,z,t) = 0 (16) 

Now 

n* = vf/|vf| 

and 

q r " * - % 

where q, \s the velocity of the airfoil surface, so that 

Equation (13) can be written as 

(q - qb) - vf = 0 (17) 

but 

^L^^L + ^L^L + ̂ L^L + ^L^L^O 
dt 9t öx dt öy dt dz dt 

or 

££.- - q . vf (18) 
3t D 
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so that Equation (17) becomes 

5£ + q . v f = Ü L = 0 (19) 
at dt 

which is the form given by Lamb [22]. 

Using Equation (16) the boundary condition for two-

dimensional flow is written as 

9Yc ayQ 
qy(x'ys} V + q x r ( 20 ) 

7 ot ÖX 

Note that this is the exact boundary condition which is 

to be applied at the airfoil surface which is assumed to 

be undergoing some unsteady motion at small amplitude. 

It is shown, however, that to first order approximation 

this boundary condition may be applied at the mean sur

face position. Expanding q in a double Taylor's series 

yx>ys>=yxo'y0
)+—*• (ys-Vo5-™ (x-x ) + ... (an 

7 7 by dx 

+ [o] 6x2
t Ay2, AxAy 

Si nee 

- M O . ^ 

q x = uro + — -
X öx 
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= 2*1 
qV 3y 

then t o second order in p e r t u r b a t i o n q u a n t i t i e s 

3 0 ' 

a y 
X>Y, 

3 0 

3y 
x o ' V o 

ö * 0 ' f > o. 

a ^ " ( y s " y o } + 
aV 
axay 

( x - x Q ) (22) 

but s ince 

Ay = y c - y 
s ' o 

A x = x - xQ 

are themselves p e r t u r b a t i o n q u a n t i t i e s , then t o f i r s t 

o rder 

0 0 ' 

57 
50" 

x ,y ( 

(23) 

x , y , 

Substituting Equation (3) i nto the right hand side 

of Equation (20) and dropping second order terms in the 

perturbation quantities the linearized boundary condition 

for the airfoi1 surface becomes 
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Assuming simple harmonic motion so that 

ys(x,t) = cy^(x,t) == cy"s' e
,,W (25) 

the normalized boundary condition on the upper surface of 

the lower ai rfoi 1 is 

30 * 

öy 
ikys' + 

*v\ 

x ,o 
dx 

(26) 

From the p e r i o d i c i t y c o n d i t i o n of Equation (12) 

öy 
x ,y 

- e 1 ' **-
3y 

* 

x ' + s s i n 0 , y + s ' cos Q (27) 

thus the boundary condition on the lower surface of the 

upper ai rfoi1 i s 

50* - .- T/3 
= e 

x ,s cosö 

i ky ' (x -s sinß) + — -
J i I 

dy ' (x-s sinß) 

dx 

(28) 

Although the airfoi1 surface boundary conditions of 

Equations (26) and (28) are applicable for any prescribed 

— i 
y (x), only rigid body rotation and translation normal 

to the chord 1ine (see Figure 3) will be considered here. 

For this type of airfoi1 motion y is given by 
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h e i cot 

Figure 3. Rigid Body Motion of a 
Fiat Plate 
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ys' (x\ t) = U ( X ' - b ) + h'l e
I C O t 

(29) 

where a is assumed to be small and h = h/c may be com-

plex so that rotation and translation are not necessarily 

in phase. This slight complication in the boundary condi-

tions may be avoided, however, without any loss in generai 

ity because the linearity of the governing equation and 

boundary conditions allow superposition of separate Solu

tions for rotation and translation at any desired phase 

relationship. The boundary conditfon of the lower airfoil 

for rotation is then 

80* 

8y» 
= lk(x' - b) + 1 (30) 

x ,o 

where 6 = ct. For translation the boundary condition is 

30* 

8y' 
= ik (31) 

x ,o 

where ö = h . The boundary conditions for the upper air

foil surface are obtained through Equation (28) as 

00^ 

x ,s C O S Ö = e 8-e- f* ikCx'-s'sfnÖ - b) + 1 (32) 

for rotation and 
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30* 

dy i i a 

x ,s cosö 

- ike" i / S (33) 

for translation. 

Turning now to the consideration of the boundaries 

at infinity of Figure 2, it is not clear what conditions, 

if any, are appropriate and it is here that some attention 

must be devoted to the peculiar properties of the in

finite supersonic cascade mathematical model. It is not 

appropriate to assume that the unsteady disturbances 

vanish at infinity since beyond the acoustic cutoff points 

(see Chapter III) these disturbances may appear at in

finity even for supersonic relative flow«, Notice that 

the domain of influence of a point lying at the cascade 

inlet bounded by its right and left running characteris-

tics, includes the infinity of cascade blades lying above 

it. This Situation is illustrated in Figure *f and occurs 

whenever Nl < 1 while Nl > 1. It is clear that distur-n °° 

bances originating in the cascade inlet region may propa-

gate infinitely far in front of the cascade while remain-

ing within their characteristic or Mach wedges• It is 

therefore apparent that some form of radiation condition 

must be specified at infinity or some acoustic impedance 

distribution must be given at boundaries far upstream and 

downstream which would allow transmission of all the 



Lef t running leading edge 
c h a r a c t e r i s t i c s 

F igure k. Supersonic Cascade wi th M < 1 
n vn 
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i ncident waves. 

The radiation condition at the far upstream and 

downstream boundaries and the periodicity condition, 

Equation (12), are thus necessary for the physical com-

patibility of the model and the original rotor problem, 

A difficulty arises here, however, since for M^ > 1 

Equation (11) is hyperbolic in the ent ire domain and 

specification of upstream and downstream boundary condi

tions would now enclose this entire domain. This repre-

sents an improper mathematical specification [23] for 

equations of this type. One proper posing of this 

problem might be specification of Cauchy type data [23] 

along an upstream initial data 1ine and removal of the 

downstream boundary condition while maintaining the same 

side boundary conditions. Although this now appears to 

represent a proper mathematical specification, there are 

two serious difficulties. First, from a practical point 

of view, no such initial data is known at any location 

since all of infinity is influenced by the cascade. 

Second, the existence of a periodic Solution is not 

assured for arbitrary data given along the initial data 

line. This difficulty has not been totally resolved, 

however, it is believed that a reiationship exists between 

the allowable upstream conditions and the existence of 

periodic Solutions to the infinite cascade problem. This 
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Situation has an analogy in steady supersonic cascade 

flow theory known as the unique incidenee requ i rement [2*f] . 

It will be shown in Chapter III how this consideration 

leads naturally to the finite cascade Simulation of the 

i nfi ni te cascade. 

In addition to the difficulty described above, 

there are two other comp 1icat?ons which are unique to 

unsteady cascade flows of this type and which require 

special considerations in the formulation of the Solution 

procedure. The first is that the physical domain con-

tains an infinite number of characteristies across which 

the perturbation velocities as well as the velocity de

rivatives are discontinuous. These 1ines of finite dis-

continuities originate at the leading and trailing edges 

of the airfoils and extend through all of Space. The 

second complication arises from the fact that the un

steady convected vortex wakes which originate at the ai r-

foi1 trailing edges influence every blade above them in 

the cascade. This is in contrast with the supersonic 

isolated ai rfoil where the wake carinot influence the 

upstream airfoil. As a result, the wakes must be con-

side red in the calculation of the exit flow field which 

now contains an infinite number of 1ines across which 

the velocity potential itself is discontinuous. The 

condition of pressure continuity across the wake allows 
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this dlscont?nuity to be calculated as follows. 

The normallzed pressure coefflcient (Appendix B) 

may be written for uniform flow in terms of 0' as 

= - 2 ik0" +' 
Ö0: 

ax 
(3*0 

D i f f e r e n c i n g E q u a t i o n ( 3 M above and be low a wake y i e l d s 

AC. 
•k 

= - 2 |kA0* + U£\ = o 
öx / 

(35) 

Now a l o n g a wake a t c o n s t a n t y E q u a t i o n (35 ) may be 

i n t e g r a t e d t o g i v e 

A><* - ~ " i kx A ^ * 
A<t> i = e A 0 . . i . i •: 

v wake t r a i l i n g edge 

(36) 

These wake discontinuitIes require explicit con-

sfderation in the velocity potential formulation and 

Solution of the cascade problem. A more convenient for

mulation for this problemwhich does not require explicit 

handling of the wake discontinuities may be obtained in 

* TT 

terms of the pressure amplitude function, C , which is 

equivalent to a pressure or acceleration potential. The 

governing equation for C * may be obtained by di rect 

applicatlon of the linear Operator 

L(0*) - - 2 ?k + 
öx 

= C (37) 
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to the potential flow relation of Equation (11) and inter-

changing the order of the 1inear Operators. The equation 

for C i s obtai ned as 
P 

a^c a2c ac 
( ) . M

2 ) _ J 1 _ + E_ _2fM
 2 k — E - + M 2 k 2 C * - 0 

" s x ' 2 a y ' 2 - . ax " p 
( 3 8 ) 

The periodicity condition of Equation (12) yields 

C*(x',y') = e'" Cp*(x' + s'sine, y' +s'cos9) (39) 

The airfoi1 surface boundary conditions are ob-

tained similarly by operating on Equations (30), (31), 

(32), and (33). 

For rotation 

ac 

ay 

= 2k'1(x, - b) - k ik (W>) 

x' ,o 

and 

ac 

ay 

= e " ]ß (2k2(x' »s'sine - b) -k ik) (M) 
x1 ,s' cosÖ 

For translation 
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ü 
V 

* 

= 2k' 

x' ,o 

c*2) 

and 

ac 

av' 
= 2k" e 2 Ä -10 

x1,s'cosö 

(̂ 3) 

Li nearization for Non-Uniform Steady Flow 

In the previous derivation, the steady flow field 

consisted of a constant uniform stream and the blades 

were approximated by flat plates (assumptions 2 and *f). 

The governing equations and boundary conditions are now 

derived for the velocity potential without resorting to 

these assumptions. Although shock waves are now allowed, 

they must still be sufficiently weak or straight enough 

so that assumption (3) applies. 

Considerable simplification in the governing 

equations and boundary conditions can be achieved through 

transformation to an orthogonal curvilinear coordinate 

System (r, x) with one set of coordinates lying along the 

steady flow streamlines as indicated in Figure 5« The 

füll nonlinear potential equation in this System as 

derived in Appendix C can be written as 



H o r i z o n t a l 

F igure 5 . Natura l Orthogonal C u r v i l i n e a r Coordinates 

u> 
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d~i2 "dn2
 ¥J& d"n "dn dA 

(44) 

ä ! | + 5fll + q . v (q2/2) 
at 2 .at c 

where 

JL = ^£ JL 
lü dx ar 

(45) 

JL = ä* JL 
¥n dn öX 

(46) 

c a^ a n 

(47) 

Also note t h a t 

o ^ 2 T 2 Ö0 7 Ö8 T 

c "öX2 V "an "ä^ "öi "an 
(48) 

As b e f o r e , l e t the unsteady par t of the p o t e n t i a i 

be a smal l p e r t u r b a t i ö n from the steady p a r t , but l e t the 

steady pa r t be a general non l i near steady f l o w , Then 

q = vc<2> = V(r,X) + v c 0 ' ( r , x , t ) (49) 

where 
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vc0 |«|v(r,x) 

Since one coordinate lies in the steady stream direction 

v(r,x) = vri (50) 

Also let a be a smal 1 perturbation of the local sound 

speed so that 

a(r,X,t) = A(T,X) + a'(r,X,t) (51) 

where 

a' « A 

Using Equations (k9) and (51) in Equation (*f*f) gives 

(A2 + 2Aa' + a'2) (v . V + v V ) = ^ C 
c c dtz 

(52) 

L ( 2 v r | l + | v ' | 2] + J(vri + v ' ) 

^r. i 

V r
2
+ 2 V r ^ - + 1*0' 

-dl 

Again restricting consideration to flows for which 

1 - Mr
2 » v 0* 
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a l l second order terms in the perturbation quantities are 

neglected relative to the retained terms to give 

A2(v . V) + (A2v 2 01 + 2A(V 
\ c \ C C 

v ) - - ) - 2 V 
3 f 

(53) 

+ ,M d fä"0' U u 2 a v r + v
 a V r ä 0 ' + U 2 SV 

+ 2 Vr — = — I + W-. = — + Vy —— = — + v-n _ * 
at LOA / x öi A ax a* ax z 

+ 1 Vr2 • V 

Since 0 is a function of t and Vp is not, Equa

tion (53) may be split into two parts with a Separation 

function, 

5V 
v - V F

2 / A 2 ^ = f ( r , x ) 
öje 

(54 ) 

and 

V C0 ' - Mr
2 £ f - + 2(vc • V) a'/A = 1 a x z c 

_ I 
ö f 

(55 ) 

+ 2Vr-L |Ä 
öt l ax SX ÖX 

2 c T c v - f(r,x) 

However f(T,x) is equal to zero since Equation (5*0 is 

the steady flow equation in the natural coordinate System 

for Vp which is completely uncoupled from the unsteady 

equation. Replacing a1 is Equation (55) from Equation 
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(A-5) of Appendix A the perturbation potential equation 

becomes 

7 V . Mr
2 | 4 - - l/A2 

c 9JT 
äff. + 2Vr -L[Ml 
a t * 3t v ÖJ8 

(56) 

l/A i. !^L'|Äl + J vcvr
2. v » + ( y - , ) ( v c . v ) ( ^ + v r ^ " 

. z öĵ  ÖX ^ c i c c ^ t i - a i 

Again assuming a simple Harmonie t ime V a r i a t i o n , 

the equat ion f o r the normal ized p e r t u r b a t i o n p o t e n t i a l 

ampli tude i s 

( 1 -Mr2) L^- + I r^- + =r£ ^ - ^ ~ 
ÖX'2 ön»2 an ' ö i ' a i ' ö n ' 

(57) 

+ k 2 M 2 0* - 2 i k 
MrMco ä"0* l [i dVr 00* 

a ax' — T 
A z 

2 a * ' äx» 

+ J- v
c' v r

2 • vc' 0* + ( y - n ( ^ • v)[iucoi<0* + v r | * i ] 

where 

i _ A a A a 
v •= x 3 — + n — 

ol an 

(58) 

Coliecting terms, the equation may be rewritten as 
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( N M r
2 ) | J 8 1 + | ^ + c . t r .x) ^ f + c 2 ( r f x ' ) | Ä l (59) 

r ax'2 an '2 ' ax' z an' 

where 

+ C3 ( r ,X)0* = 0 

•2fkM.Mr Ö6c ] ÖVr
2 

Ci(r.X) - • - f ^ + r r - - V = - 7 - - ( M ) V r ( v « V ) (60) 
1 3 ön' A2 ax' i c 

ae , av r
2 

c 2 ( F i X ) . - - =rr - A ^ T - <61) 

ax 2A an 

M 2 k 2 , _". U . 

c3(r ,x) - - 7 2 - - 1 k(y-i)(v^ . v) - y (62) 

are considered known functions of the steady nonlinear 

ve loc i ty f i e l d . 

Notice the s i m i l a r i t y of Equation (59) to the 

previous form, Equation (11) o The equation remafns l inear , 

but now the coe f f i c ien ts are v a r i a b l e . I f 

V = U ? 
CO 

then Equation (59) reduces identically to Equation (11). 

Physically the variations of local Mach number, sound 

speed, and flow direction alter the speed, direction, 

shape, and intensity of the spreading acoustic disturbances 
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This is reflected in the Solution for 0* through the 

dependence of the coefficients of the governing equation 

on the steady flow field. Examination of Equation (59) 

for the presently considered hyperbolic case (Mp > 1) 

reveaIs that its physical characteri st i es [25] .are'iden-

tical with those of the steady flow being inclined at + M 

relative to the steady flow velocity vector where 

p = Sin"1 1/Mp 

This verifies the physically expected result that the 

acoustic disturbances are confined to the same domains 

of influence as are the steady flow disturbances. The 

hodograph characteristics, on the other hand, are deter-

mined by both the coefficients of the higher order deriva

tives and by the remaining lower order terms. These 

terms prevent "simple wave11 Solutions of Equation (59) 

or Equation (11) for that matter, and are responsible for 

the wave 1ike Variation and decay of the disturbances 

along and behind the physical characteristies. 

One of the most significant of the nonuniform 

steady field effects is also the most subtle. The effect 

is introduced through the appearance of an extra term in 

the unsteady boundary conditions which may be thought of 

as serving to translate the steady field with the moving 

ai rfoi1 surfaces. 
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For the development of the boundary conditions,, 

consider a general motion of an arbitrarily shaped air

foil surface in the previously described (F,x) coordinate 

System (See Figure 6). Let the airfoil surface be de

scribed by 

f(r,x,t) = 0 (63) 

which implicity gives 

f(r,x,t) = x - xs(r,t) = o (6*0 

and the boundary c o n d i t i o n frorn Equation ( 2 0 ) is 

d f - 0 

which expanded in these coordinates gives 

— + — qr — + — qx — = 0 (65) 

at h}
 l ar h2

 x
 ÖX 

or, using Equation (6k) 

3X qr ÖX q 

i-JL_S. + ̂ u*0 (66) 
dt hj cT h1 

Rearranging gives 



Instantaneous position 
of ai rfoi 1 surface 

Figure 6. Dispiacement of Airfoi1 Surface in (F, x) Coordinates 
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ax -. ax \ [ ax ÖX 

x 2l at h1
 r ar / 2\ at

 r ax j 

Referring to Figure 6 the angle between the instantaneous 

surface and coordinate directions, 0 9 i s g iven by 

e' = 6o - e^ = Tan"1 • h 9 —£• (68) 
z a4 

so the exact boundary condition to be applied at the rnov-

i ng airfoil surface is 

ax , 
qv •-•'S — - + q r

 t a n e (69) 
x z at 

With the small perturbation assumption 

ax 
01 ~ tanÖ = h9 —5. (70) 

2 a^ 

Si nee 

v x - o 

then 

q - V V + | 4 - - | Ä - (71) 
* x 3n an 
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and a l s o 

qp = V-p + z~~" 
34 

(72) 

so t h a t t o f i r s t order approx imat ion in p e r t u r b a t i o n 

q u a n t i t i e s the boundary c o n d i t i o n a t the a i r f o i l sur face 

becomes 

30* 

dn 
T s , x s 

äV 
= h s + V r ( 9 s - 9 c ) 

dt 
(73) 

s9 *s 

Now f o r r i g i d body motion the instantaneous sur face a n g l e , 

s I r s , t 

may be given as the sum of the unperturbed steady surface 

angle, 

6 
r ,x 
m* m 

plus an unsteady angle p e r t u r b a t i o n , ö R ( t ) , so t h a t 

6
s ( i7t) ^ = e

c(r,x)l + eR(t) 
b "p c I Y* v r\ 

s rrr m 

(74) 

It is desirable to apply the boundary condition along a 

fixed boundary in (r,X) rather than on a surface In (r,X,t). 
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This is accomplished by substituting Equation (7*0 into 

the boundary condition, Equation (73), and expanding the 

remaining terms in a double Taylor1s series from the un-

perturbed steady surface position. To first order in 

(Ar, Ax) t h e result is 

B0 
ön r ,x 

m' m 

JLI iü 
ärUn 

Ar + -*. m 
lr ,x 

m' m 

a x » ön 
AX (75) 

m ,Xm 

= h 
8X. 

at 
+ - ^ h 

ax. 

m ,Xm 
ar l * at r ,x 

m' m 

a / ö X 

A r + - L h9—5 
ax\ 2 a t 

AX 

r ,x 
m' m 

V-, 
avr 

r m > X m Ö r 

m m 

avr 
Ar + — 

r v a * 
m* m 

AX 
l r ,x 

m' m 
m , X m 

R 1 c 

ö6 

r v *r 
m , A m 

r
m » x m m m 

ae 
Ar + —£ 

ax 
Ax 

r ,x 
m' m 

Dropping second order terms in perturbation quantities 

and simplifying gives 

a0* 

an 
= h 

r ,x 
m' m 

ax 
at r ,x 

m' m 

+ v r e R ( t ) 
r ,x 
m' m 

ö6 
+ v r— - ty 

r ,x 
m' m 
(76) 
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where the last term is expressed in terms of the total 

derivative in the direction of the surface perturbation 

displacement (Figure 6) as 

dB ö8 50 
• —£. Ar = —£. Ar + —£• AX (77) 

dy ar ax 

The first two terms on the right hand side of Equatlon 

(76) are familiär and are completely analogous to the 

corresponding terms in the unsteady boundary condition 

with uniform steady flow, Equation (24). The first term 

is simply the component of the airfoil velocity normal to 

its surface. The second term is the induced normal veloc

ity due to a change in surface angle. The third term, 

which did not appear in the former case, is due to un

steady translation of the airfoil surface through the 

steady vector field, V(r,X). 
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CHAPTER III 

THE SOLUTION METHOD 

The Numerical Procedure 

The choice of the Solution method for the super-

sonic flat plate cascade model is influenced by a desire 

to choose a method which might be readily extended to 

treat the more generai perturbation probiem deveioped in 

the last section. Since ffnite difference methods are 

ideally suited to treatment of equations of this type, 

this method was chosen. 

Consider the governing equation for the complex 
,JL. 

pressure ampl i tude f u n c t i o n C which can be s p l i t i n t o 

rea l and imaginary pa r ts as 

Cp* - * R + i t , (78) 

Then Equat ion (38) may be s p l i t i n t o the coupied equat ions 

2 ö \ a \ 2 3 * l 2 2 
O-M« / ) 7 + — - y + 2M Zk —f. + M r o

ZkZ tR = 0 (79) 
a x , Z ö y ' 2 ra öx R 

and 

2^ S 2 * l . S 2 * l , „ 2, 3*R . .. 2 , 2 , ( ] . M „ ' ) • + ^ . 2M.'k - f + M/k'», = 0 (80) 
ÖX oy L bx 
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The second order f i n i t e d i f f e r e n c e approximat ions 

of these equat ions a t a po ln t (m,n) in the g r i d network 

of F igure ( 7 ) are obta ined by s u b s t i t u t i n g the a p p r o p r i a t e 

d i f f e r e n c e r e p r e s e n t a t i o n s of the d e r i v a t i v e s . These 

d i f f e r e n c e equat ions are 

0 - K / ) . •• - 2 
m+] ,n R 

m, n m-1 ,n 
(81) 

(&)t • • - 2t + <J>D 

m,n+l m,n m,n-1 

+ M 2 k ö x ' * - * , 1 + Mro
2k26x'2*R = 0 

m+l ,n m- l „n j m,n 

and 

d - O *, , -2t. + •. 
\ m+ l ,n m,n m - l , n 

( 8 2 ) 

öx i \ 2 

V m,n+l 
- 2 + ¥ 

m,n m,n- l 

- M 2 k ö x ' 
1 m+1,n m-1 ,n 

+ M 2 k2 öx'2 = 0 
m,n 

Since f o r supersonic f low the System of governing equat ions 

is h y p e r b o l i c , then the a p p r o p r i a t e f i n i t e d i f f e r e n c e p r o -

cedure f o r the r e s u l t i n g i n i t i a l va lue prob lern is t o solve 

f o r po in t ( m + l , n ) in terms of da ta along m and m - 1 . The 
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Characteri st ic lines 
boundlng physical 
domain of dependence 

Stability step limit [26] 

n + 1 

— n - 1 

m -1 m m + 1 

• (m,2) 

7 
(mJJ 

7 
/ 

Figure 7. The F in i i te D i f f e rence Gr id 



System of equations can then be written as 

kl 

2 2 i 
1 - M M zköx 

- M 2k6x' 1 - M * 

R 

m 

m+1 ,n 
r i 

m+1 ,n 
B2 

• 

(83) 

where 

B r[ 2 ( N M oo 2 ) + 2*2 - k 2 Moo2 ö><1 2] 
m.n 

(84) 

- X 2 ( t R + t D ) + M 2 k ö x \ 
m,n+l Km,n-1 °° ' m - l , n 

- ( 1 - M / ) * R 
m-1 ,n 

B2 = [2(1-M r o
2 ) + 2X2 - k2Mco

2ßx l2] 
m,n 

(85) 

- X 2 ( 
m,n+l m,n«l 

) - M„/köx' R m-1, n 

- d - M « ) • , 
m-1 , n 

and 

X = £ x _ (86) 

Solv fng Equat ion (83) g ives 
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R = { B ] ( 1 - M 0 0
2 ) - B2 M A Ö X ' ] (87) 

m+1, n 

/ [ ( IV) 2 H^ 2 ^ ] 

and 

•.,-. = [ B 2 ( 1 - M „ 2 ) + B,M„2k6x'] (88) 
m+1, n 

2 2 / [ d V ) . +K.Vax'*] 

For s t a b i l i t y reasons, i t is necessary t ha t the 

Couran t -F r ied r i cks -Lewy C26,] step c r i t e r i o n be observed; 

i , e . 

X * VM»2 - ] ( 8 9 ) 

Referring again to Figure 7 the above restriction on ^ 

assures that the Mach wedge, which defines the physical 

domain of dependence for the point ( m + 1 , n), is con-

tained within the numerical domain of dependence, which is 

bounded by the two rear diagonal rows of nodes passing 

through the point (m + 1, n). It is interesting to note 

that for the special case of zero frequency oscillation, 

the governing equation becomes the spatial wave equation 

and Hildebrand [26] shows that Solution of the correspcnd-

ing difference equation represents an exact Solution if X 
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assumes the equality in Equation (89). 

A first order difference representation for Equa-

tions (kO) and (k2) give the airfoil surface boundary 

conditions (only the lower surface is given here; the 

upper surface is obtained in a symmetrica] manner) for 

rotational ose i Hat ion as 

* R = 'l>R - 2k2(x'-b) 6y 
m, 1 m,2 

<L = t . + ifk öy 
'm,l m,2 

and for translational oscillation 

V , • V - 2k2fiy 
m,I m, l 

*, = *, (93) 
•m,l ni,2 

Now if Cauchy type data C23j is given along a non-

characteristic 1ine somewhere upstream of the blade Channel 

shown in Figure 2, then Equations (87) and (88) may be 

used, along with the periodicity and blade boundary condi

tions to advance the Solution from upstream through the 

entire domain. The discussion in Chapter II indicated 

that no such initial data is known and that periodic Solu

tions might not exist for arbitrarily chosen data. The 

proper posing of this initial value problem, however, 

(90) 

(91) 
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demands that the Solution begin with established initial 

data. 

The choice of the hypothetical upstream boundaries 

of the domain shown in Figure 2 was arbitrary. A more 

convenient choice for purposes of numerical calculation 

is shown i n Figure 8«, 

The boundary conditions along the hypothetical up

stream and downstream boundaries follow from the periodic-

ity condition, Equation (39) as 

o,y' 

e]ß C * 6 LP 
s si n0, y + s cose 

(9*0 

and 

ac 

ax 
= e?* 

ac 

o,y' 
ax i i . _ • s si n©, y + s cosQ 

(95) 

for the inlet and 

CP* 
= e ; /? c * 

i.y' 1 + s si n0, y + s cosö (96) 

and 

ac. * 

ax 
i,y 

\R d C n " 

1 + s si n8, y + s cosö 

(97) 



Mco> 1 

Leading edge cha rac te r i s t i c 

Cascade stagger 1ine 

Figure 8. The Computational Domain ui 
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for the exit. 

Considering the inlet region, initial data is 

sought along the line x* = 0 above the leading edge of 

the lower blade such that the resulting Solution along 

the linex' =s'sine satisfies Equations (9/0 and (95). 

Suppose that the disturbance pressure and derivative are 

initially zero along x' = 0. Then Equations (87) and (88) 

along with the lower surface boundary condition may be 

used to march the Solution along x to produce a nonzero 

Solution along segment C-D of the line x = s'sin0 bounded 

by the leading edge of the upper blade and the leading 

edge characteristic of the lower blade, Notice that the 

numerical calcuiation need only be performed for the domain 

below the upper bounding characteristic since above it the 

Solution remains identically zero. Since the periodicity 

requirement demands that thi's Solution along C-D be re

lated only by a phase shift to the Solution along segment 

A-B, it is clear that this condition is violated. If the 

initial data along A-B is replaced with the Solution along 

C-D and shifted by the appropriate phase angle, then an 

iteration is defined which proceeds as follows: 

(1) Choose initial data long line x' = 0 arbi-

trarily (for reasons that wiM.be made ap-

parent, zero is a good choice). 

wiM.be
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(2) Generate the Solution along 1 i ne x ='s sin0 

by using Equations (87) and (88) along with 

the lower blade surface boundary conditions 

to march from the initial data line. 

(3). Replace the initial data along x' = 0 with the 

resulting Solution along x = s'sin9 and shift 

in phase by the interb lade phase angle (i.e. 

use Equations (9*0 and (95) to obtain the new 

initial data). 

(k) Repeat Steps (2) and (3) until convergence is 

reached in some sense. 

From the previous argument on the existence of periodic 

Solutions of this problem, there is no guarantee that the 

above iteration can converge in the sense of producing a 

Solution which is periodic within an arbitrarily small tol-

erance all the way to infinity. Instead, Solutions are 

sought which converge to a periodic Solution in the "vicin-

ity" of the reference blade Channel. Some confidence as 

to the convergence of the iteration in the latter sense 

can be gained on physical grounds. 

If the initial data is taken as zero, as suggesteid 

in stepone, then it is easily ascertained that the first 

step corresponds to the Solution of a two blade cascade. 

A close examination of the iteration procedure along with 

Figure 9 reveals that each step in the iteration corresponds 



Third Iteration 

Second iteration 

First iterati on 
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-P-



55 

precisely to adding an additional blade to the cascade. 

Convergence in the physical sense occurs if the Solution 

for C * on the first blade surface approaches a limit as 
P 

the number of blades in the cascade approaches infinity. 

With the expectation that this process does physically 

converge in the above sense for all but a finite number or 

ränge of cases, then this criterion is also taken as the 

definition of the convergence of the iteration. The con

vergence of this process was investigated numerically and 

the results are discussed in Chapter IV. 

The introduction of the pressure amplitude function, 

as discussed. earlier, leads to a considerable simplifica-

tion in the exit field calculation due to its continuity 

through the exit field wakes. The inlet field calculation, 

however, becomes slightly more complicated because local 

velocity information is lost through the introduction of 

C * and this information is needed to calculate the jump 
j ^ 

discontinuity in C x across the airfoil leading edges. 

Explicit enforcement of jump conditions is not required 

for the velocity potential formulation due to the continu-

ity of <£* across the leading edge characteri sti es. Since 

ö,x is conti nuous through the leading edge characteristies, 

-<- ort* 
the jump in C " may be related to the jump in u* = -2— , 

P öx 
through Equation (3^) as 
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AC p * = - 2Au* (98) 

The hodograph c h a r a c t e r i s t i c equa t ion [25] (some-

t imes caMed the c o m p a t i b i 1 i t y r e l a t i o n ) may be used t o 

r e l a t e A u * t o A v * across the l e f t and r i g h t leading edge 

c h a r a c t e r i s t i c s . S p l i t t i n g t h i s equat ion i n t o i t s real and 

imaginary pa r t s g ives 

Av R -T.V^2" 1 - U M ^ - k u , +M o o
2 k 2 0 R ) Ay_ 

A u R 
L,R 

(99) 

L,R 

and 

Av 

A7 
- + V M T - 1 • + (2M c o

2 ku R -M o o
2 k 2 0 | ) ^ L 

L,R L,R 

(100) 

Recognizing t h a t 

Ay -» 0 

* while Au remains f i n i t e across the leading edge char

acter i st ic 1ines then 

R - + \A - i (101) 
A u 

R 
L,R 
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and 

Av 

Au 
-T\/* - 1 (102) 

L,R 

so that 

AC 
L,R t' 

- 1 Av * (103) 

L,R 

which gives the jump in the pressure amplitude function as 

a function of the jump in normal velocity at the airfoil 

leading edge. This condition ?s a more general form of 

the result given by Miles'[27] that the pressure and phase 

at the leading edge of an isolated airfoil osciiiating in 

supersonic flow may be calculated from quasi-steady con-

siderations. 

Equation (3*0 may be differentiated with respect to 

y to obta? n 

i kv * *£-
ax' 

1 
7 

BC * 

ay 

(104) 

which may be integrated with respect to x' at constant y' 

from an upstream reference point x' to give 
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x' 

'*(x') = v*(x')eik(xr -x') ' e-ikx' 
ac * 

. a y ' 
E - e i k x dx (105) 

Equation (105) may now be used to evaluate v* just ahead 

of an alrfoll leading edge and v* at the leading edge Is 

given by the velocity boundary condltion, Equation (26). 

The difference between the two gives AvA and Equation 

(103) now determines the jump in C *. The evaluation of 

Equation (105) in terms of successive iterations is given 

i n Appendix D. 

The inlet region calculation just described may 

easily be continued through the blade passage with the 

aid of the upper and lower blade surfäce boundary condi-

tions to provide initial data along segment E-F of the 

exit field initial data line, x' = 1 . Initial data for 

the remainder of this line for the first exit iteration 

is obtained from an isolated airfoi1 Solution on the 

bottom side of the lower blade. The Solution then proceeds 

as in the inlet region with the Solution being generated 

at the aft boundary of the exit region and then used to 

replace the initial data v\a Equations (96) and (97). 

Acoustic Resonance 

Depending on the Mach number, stagger angle, blade 
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spacing, and interblade phase angle, the acoustic dis-

turbances created by the vibrating cascade may either 

decay or propagate undiminished to infinity, Any point 

along the boundary separatIng these two regimes is called 

an acoustic cutoff or resonance point, A detailed dis-

cussion and derivation of this condition for cyclindrical 

ducts with no through flow is given by Tyler and Sofrin 

Cl23. The convergence of the iteration described in the 

last section is greatly influenced by the proximity of 

the case under consideration to the cutoff point, Since 

this condition may actually be encountered at some section 

along the rotor blade span, it is necessary to know where 

?t occurs, the effect it has on the Solution at the point 

itself, and more importantly, the behavior of the Solution 

in the neighborhood of the point, 

The following derivation for the cutoff condition 

in two dimensions for the case with flow proceeds on the 

basis of the physical condition that cutoff occurs when 

the pressure disturbance pattern created at the inlet of 

the vibrating cascade travels at Mach one relative to the 

approaching flow (Figure 10). Then at cutoff 

(U8 + V ) + (U^cosS) = a2 (106) 



Figure 10. Travel ing Pressure Wave at Cascade Inlet 
ON 

o 
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The phase ve loc i t y along the cascade, V - may also be 

w r i t t e n as 

Vp = " Uro k/o(ß± 2nTT) (107) 

where o is introduced as the blade chord to spacing r a t i o 

or so. l id i t 'y , ß is the interblade phase angle, defined as 

pos i t i ve f o r the lower blade leading the upper, n is an 

a r b i t r a r y integer and k is the previously defined reduced 

frequency parameter. Subst i tu t ing Equation (107) in to 

(108) gives 

ß + 2nTT = k/a sine + pp y l - M ^ 2 cos26 (108) 

For supersonic f low the r igh t hand side of Equation 

(108) is always pos i t i ve f o r a l l real values of the radical 

(subsonic leading edge) since 

/ 
sine * p p V 1 - Mro

ZcosZe 

This means that both the cu to f f phase angles given by 

Equation (108) correspond to backward t rave l ing waves 

( i . e . opposite to the d i r ec t i on of ro tor ro ta t ion as 

measured in ro tor f i xed coord inates) . In s ta t ionary or 

eng ine f i xed coordinates choice of the minus sign gives 

a forward ro ta t ing wave and the plus gives a counter 
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rotating wave at the same speed; i.e. 

V + - - V" - a \ / l - M 2 c o s 2 e (109) 
p abs. p abs. 

Then for 

M < 1/cose 
00 

there ex is t two d i s t inet cutoff points fo r a given cas

cade geometry and blade frequency parameter so that for 

the ränge of interblade phase angles 

k/ü fsinö + pp- \ / l -M a )
2 cos 2 6 < ß + 2nTT (110) 

k/u | s i n 6 - jJ- \J) -Mo o
2cos2e 

-1 

the disturbances decay away from the cascade and outside 

of this ränge the disturbances propagate to infinity. 

For the special case 

Mm = 1/cose 

which corresponds to the case when the leading edge Mach 

wave is eoineident with the cascade stagger line, then 

there exists only one cutoff point. If the Mach number 

is increased further so that 
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M > 1/cosö 
00 

the leading edge Mach wave is swept inside the cascade, 

and disturbances created by the cascade can no longer 

exist upstream of the cascade stagger Jine. 

To understand a Jittle more clearly how the cutoff 

condition might affect the Solution of the cascade probiem, 

consider a pressure disturbance generated at the leading 

edge of the lower airfoi1 in Figure 11 at time, t . when 

the blade is at some reference phase angle. 

Now assume that this disturbance arrives at the 

leading edge of the above blade At later so that this 

blade is'ägain at the reference phase angle (i.e. the 

disturbance arrives in phase). The time required for the 

disturbance to reach the leading edge of the second blade 

? s gi ven by 

At = -; M sine + \/l -M 2 C O S 2 Ö 1 (111) 

a (-M 2 - l ) l " ~ V ^ J 
OO 00 

but also 

At = (ß + 2nTT) c/kU (112) 

where n is chosen so that 

ß + 2nTT > 0 



Leading edge character is t 

Disturbance wavefront 
at t j 

I / 
_ ^ ^ Centers of disturbance (convected at U ) 

00 ' 

. • \ 

\ Disturbance wavefront 

Figure 11. Propagation of the Leading Edge 
Disturbance in a Supersonic Gas cade 
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Equating times then gives 

ß + 2nTT = -^ [ M^sinÖ + \f\ - M^2 cos2e (113) 
0(Hj - 1) 

or equivalent ly 

-1 
ß + 2nTT - k/a /sine + pf- \/1 - MoQ

2cos2e j (11^) 

which is identical with the expression derived for the 

cutoff condition, Equation (108), Choice of the plus 

sign now corresponds to the front of the wave arriving in 

phase at t, and the minus corresponds to the back of the 

wave arriving in phase at 1 arger time, t2. The distur-

bances created by successive blades may thus interfere 

constructively at the cutoff points. It was found numeri-

cally that convergence of the Solution method described 

in the first section of this chapter is greatly affected 

by this condition« The results of this numerical investi-

gation are presented and discussed in the foilowing chapter 



CHAPTER IV 

DISCUSSION 

Results of the NumericalComputations 

A Computer program was written following the Solu

tion method presented in Chapter III and the results thus 

obtained are compared to some existing Solutions for spe

cial cases and to some very recently published results 

using different methods. The program has also been used 

to perform parametric studies, and these results are pre

sented in this section. The convergence of the method, 

both near and away from resonance points, is numerically 

investigated. 

In Figure 12 the present numerical method is com

pared to the isolated supersonic airfoi1 results of 

Garrick and Rubinow [28]. The comparisons are made in 

terms of the Garrick and Rubinow parameters CNL and Ö5 

where 

CM„ = (8/iTk2) C 
a " \ x • • 

and 

tc = kM 2/ (Mco2 + 1) 



M(CMJ 
Garrick and Rubinow [28] 

X Present numerical method 

- 1.0 

- 2.0 
Figure 12. Comparison with Isolated A i r f o i 1 for 

Rotational OscMlat ion About Quarter-Chord ^ i 
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The out of phase component of the moment coefficient 

for rotational oscillation is presented for Mach numbers of 

1.3 and 1A and the results are seen to be in virtually 

perfect agreement with the Garrick and Rubinow results. 

Although not presented here, this same excellent agreement 

was typical of the lift and moment results over a wide 

Mach number and frequency ränge for both translational and 

rotational osci 1 lati.ons. 

The method presented is valid for both the super

sonic and subsonic leading edge problem. The iteration 

method described in the previous chapter for enforcing the 

upstream periodicity condition converges in a Single step 

for the supersonic leading edge case since the Mach wave 

from the lower blade is swept inside the cascade stagger 

line, thus leaving the upstream flow undisturbed. Figure 

13 shows the out of phase component of the pressure coeffi

cient along the lower surface of the supersonic leading 

edge cascade depicted in Figure )k for rotational osci11a-

tions about the leading edge. The predicted pressure dis-

tribution shows excellent agreement with Chalkley's C29] 

method of characteristics Solution. The observed dis-

continuities in the pressure distribution correspond to 

the reflection points of the leading edge bow waves in 

Figure 14. 

Figure 15 compares the present method with 
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H . - V 1 . 2 5 
k = .2 
f = 0 . 0 
0 - 13.5° 
o = 1 . 9 4 5 
b = 0 . 0 

O = Chalkley-Method of 
Characterf s t ics [29] 

X = Present Method 

Figure 13. Out of Phase Pressure D is t r ibu t ion -
Cascade A 
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Figure l*f. Cascade A 
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M_ = 1 
00 

= 1.3<* 
ß = 0.0 
e = 59.5° 
0 = 1.27 

Verdon [11] 
" Present method 

k = .297, N - 10 
*1± v 

x / H , s^A 
ll ^-' * * 
\\ 
\\ k - .178, N - 7 

« • - " * . 

II k = . 0 5 9 , N = 15 
ff f.A '•- - • • --' •„ - » X 

—e-
.8 

+• 

1.0 x /c 

Figure 15. Out of Phase Pressure Difference Di stributions 
for Translational Osciliations of Cascade B 
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Verdon's "p U results for translational (or bending) 

oscillations of Cascade B Figure 16. The results, in the 

form of pressure difference distributions, show very good 

agreement for several frequencies, except over the last 

third of the ai rfoi 1 chord where Verdon's results show 

considerable irregularity. This irregularity is due to 

improper numerical reflection of the characteristic dis-

continuities from the wake surfaces and is not, as sug-

gested by Verdon and McCune [14] , attributable to the 

inherent "waviness" of the finite difference approxima-

tion in the immediate vicinity of finite discontinuities. 

The magnitude of this characteristic waviness in the pres-

ent method was typically less than five percent of the 

maximum pressure amplitude and was always very rapidly 

damped with distance away from the discontinuity. The 

basic finite difference method presented here was also 

programmed in terms of the velocity potential with the 

wake treated explicity as outlined in Chapter II by requir-

ing continuity of the pressure and normal velocity across 

the wake. The resulting pressure distributions calculated 

by this method (see Figure 17) exhibit the same irregular

ity as Verdon's method over the portion of the blade sur-

face which is within the domain of influence of the wake. 

Careful tracking of the discontinuit?es du ring the exit 

field Iteration process revealed that the local irregulär 



H. - ' 1.3 -̂
6 - 59.5* 
CT = 1.27 

/ 
/ 

/ / 
/ / 

/ / 
/ / 

/ / 
/ / 

/ / 
/ / -

/ 

/ 
/ 

/ 
/ 

/ 

/ /. y 

M / 
/ 

/ 

4L 
/ 

/ 

/^ 
/ 

e \ 

7< ' 
v / \ \ 

\ \ 
— < \ \ 

\ \ 
\ \ 

\ 
\ 

\ \ 
\ \ 

N V 

\ 
\ 

73 

Figure 16. Cascade B 
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IM(Cp/2) 

»•54 

1.0-

.5-

- .5-

- 1.0 

Mco SB 1.3 
k = 1.0 
ß = 57.3 
e = 60 
a = 1.2 
b = .5 

X - Velocity potential 
Solution 

O - Pressure amplitude 
Solution 

Figure 17. Comparison of Velocity Potential and 
Pressure Amplitude Solutions for 
Cascade C 
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spikes in the pressure distribution corresponded to the 

location of multiply reflected leading and trailing edge 

characteristics from the wake surfaces. The introduction 

of the pressure coefficient amplitude function, C , as 

the primary dependent variable eiiminated both the need 

for explicit numerical consideration of the wake and the 

undesirable wake reflections obtained with the velocity 

Potential method. The relatively smal1 osci1lations 

through the d?scontinuity produced by the pressure ampli

tude method (indicated by the solid line in Figure 17) 

are the ones characteristic of finite difference methods 

and can in no way account for the 1 arge undamped oscill la

tions observed in the velocity potential-finite difference 

method. 

Further comparisons of the present method with 

Verdon's results are shown in Figure 18 for rotational os

ci 1lations of Cascade B. Again excellent agreement is 

obtained except over the aft third of the blade. The 

effect of interbiade phase angle on the out of phase pres

sure distribution for this case is shown in Figure 19 for 

the case of translational oscillation. 

The characteristic method developed by Platzer and 

Chalkley £9] for the supersonic leading edge problem has 

been extended to treat the subsonic leading edge problem 

by Platzer and Brix[l7j. A comparison of the present 
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Figure 18. Out of Phase Pressure Difference 
Distribution for Rotational 
Oscfllations of Cascade B 
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Figure 19. Out of Phase Pressure Difference 
Distributifons - Effect of Interblade 
Phase Anglle - Cascade ß 
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method with the characteristies method for torsional os-

cillation of cascade B is presented in Figure 20. The 

agreement is seen to be exceilent for a fifteen blad€* 

Simulation with neither method exhibiting irregulär pres

sure distributions over the aft part of the blade. 

Using Verdon's analysis, Snyder and Commerford f30] 

have presented complex moment coefficients for a typical 

turbofan cascade (Cascade C of Figure 21) for a ränge of 

interblade phase angles at several different values öf 

the frequency parameter. Figure 22 gives a comparison of 

these results with those produced by the present method. 

All points for the present method were produced using a 

ten blade Simulation. The number of blades used by Snyder 

and Commerford is not known, however, with the exception 

of the points near the unusual loop of the lowest frequency 

case, all points were reasonably well converged and com-

pare favorably. The origin of the loop for the lowest 

frequency case is unknown, but it is approxlmateiy centered 

about an acoustic resonance point occurring at an inter

blade phase angle of 128.9 degrees. The convergence of 

the method was also found to be very slow in this region 

although it is not known whether or not this is directly 

associated with the resonance condition. The failure to 

observe this loop at the other resonance point for this 

frequency and the absence of similar loops near the 
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resonance points at the other frequencies investigated 

would indicate that the occurrence of the observed loop 

is only coincidentally related to the actual occurrence 

of resonance. The absence of this loop in the Snyder-

Commerford presentation is probably due simply to an in-

adequate number of points within this phase angle ränge 

to proper1y identify the loop. 

The convergence of the iteration (recall from the 

discussion in Chapter III that each iteration corresponds 

to adding a blade to a finifte cascade) is investigated in 

Figure 23 for interblade phase angles falling within the 

loop of Figure 22. In each case, the most rapidly chang

ing component of the complex moment coefficient is dis-

played. At the resonance phase angle of 128.9 degrees 

the Solution, after twenty iterations, still continues to 

climb giving no indication that an asymtotic value might 

be achieved by continuing the iteration (?.e. by adding 

more blades). Two other points, away from the resonance 

point but still within the loop, are also shown. These 

cases, especially the interblade phase angle of 100.0 

degrees, exhibit an oscillatory behavior although the 

magnltude of the ose?1lation appears to decay as the 

iteration continues. A similar behavior is observed at 

resonance fora higher reduced frequency of 1.588 (Figure 

24). Only 15.6 degrees away from the resonance in this 
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case, the behavior of the Solution for large N is seein to 

be markedly different. The Variation of the Solution with 

frequency through resonance for the above two cases is 

shown in Figures 25 and 26. Ten iterations were performed 

to produce the Solution for each point. No large changes 

are noted at the resonance frequencies of the two cases 

presented, however, at the resonance points the Solution 

is far from convergence at ten iterations and does not 

appear to ose?1late about any apparent mean value as do 

the nonresonance cases. 

A more typical convergence behavior is illustrated 

in Figure 27 for two cases well away from their resonance 

phase angles. In both cases the Solution is observed to 

rise very quickly and then oscillate at low amplitude 

about an apparent mean value. As shown, the oscillation 

in the lower frequency case is of 1 arger amplitude and 

more persistent than the higher frequency case. The 

1 arger and more slowly damped oscillation of the lower 

frequency cases was consiStently observed in all the cas-

cade configuratJons and Mach numbers studied. This fact 

is of practical importance in determining the number of 

iterations required for a particular case to establish a 

representative Solution. 

Although the convergence of this method has not 

been proved, the observed behavior of the Solution over 
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a significantly large number of iteratiöns would seern to 

indicate that with the exception of the resonance points, 

the Solution is at least bounded as N -> °° and oscillates 

about some mean value. At best, the oscillation damps as 

N -» °° and the Solution approaches a limiting value. In 

either case a Solution which approaches a limit as N -> °° 

can be given by 

N 

S = 1/(N-N1 + 1 ) S Sn (115) 
n=N] 

f"h 
where S^ is the Solution at the n iteration, N is the n ' 

total number of iteratiöns performed and Ni is selected, 

based on experience, to obtain the best sample for the 

data set considered« Choice of N| beyond the first local 

maximum of the Solutions plotted in Figure 27, for example, 

would yield a better Solution for relatively small N. 

In Figures 28 and 29 detailed pressure coefficient 

distributions are given for two different cascade con-

figuratiöns (shown in Figures 16 and 30 respectively) 

operating at different Mach number and reduced frequency 

conditions. The results after only ten iteratiöns compare 

very favorably with an infinite cascade Solution recently 

given for these cascades by Verdon and McCune [1*0 . The 

excellent agreement thus obtained helps to dispel concern 
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over the convergence of the present method, although it 

is pointed out that the Verdon-McCune method itself falls 

to converge over a wide ränge of interblade phase angles. 

The method presented here shows no unusual behavior over 

the same interblade phase angle ränge. 

A brief parametric study is given below over a 

ränge of parameters considered typical of tip region 

sections of modern supersonic turbofan rotors. The para

meters varied are Mach number, reduced frequency parameter, 

cascade stagger angle, blade chord to spacing ratio.(cas

cade ' solid ity) and interblade phase angle. The Computer 

program Output consists of compiex unsteady 1ift and moment 

coefficients fo'r both rotational and translational ose 111 a-

tion. For pure rotational and pure translat ional motion, 

the aerodynamic work/cycle is proportional to the out of 

phase component of the moment and lift respectively. 

Since this aerodynamic work/cycle determines the stability 

of the cascade under the assumed motion, the out of phase 

(imaginary) component can be considered indicative of the 

cascade stabi1ity. For the cases presented a positive 

imaginary component indicates work transferred from the 

air to the cascade (unstable) and a negative component 

indicates work from the cascade to the air (stable). 

Arbitrary simple harmonic rigid body cascade motion can 

be obtained by superposition of the separate rotational 
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and translational Solutions. The general aerodynamic 

work/cycle expression for coupled bending and rotational 

oscillation is derived in Appendix E. 

Generally, it is necessary for the actual dynamic 

stability analysis of a fan rotor to seek the most un-

stable interblade phase angle. Figure 22 shows the 

dramatic Variation with interblade phase angle of the 

moment coefficient for midchord torsional oscillation of 

Cascade C (Figure 21) for several values of reduced fre

quency. It is noted that in each case the most unstable 

phasing occurs for phase angles between zero and -120,0 

degrees. The most unstable phase angle, of course, de-

pends on the particuiar cascade configuration, Mach number, 

and reduced frequency. The following parametric studies 

for Cascade E (shown in Figure 31) are performed for an 

interblade phase angle of -60.0 degrees. 

Figure 32 shows the Variation with reduced fre-

quency of the out of phase pitching moment for midchord 

rotational oscillation of Cascade E. The results, pre-

sented for a ränge of Mach numbers, show a universal 

tendency toward increased stabi1ity with increasing 

reduced frequency. The particuiar interblade phase angle 

for which this study was performed shows the lowest Mach 

number to be the least stable over nearly all of the un

stable low frequency ränge. It should be noted, however, 
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that the least stable interblade phase angle differs for 

each Mach number and reduced frequency point. In inter-

preting the results, it should be noted that, for a given 

rotor, the blade reduced frequency (based on the natural 

frequency*) and relative inlet Mach number are not in-

dependent but are both functions of the compressor rota-

tional speed (RPM). Thenwith increasing RPM, the reduced 

frequency drops as the Mach number increases giving an 

overall decrease in stability with increased rotor speed. 

The results of an actual blade/wheel System flutter analy-

sis using the present aerodynarnic analysis to provide the 

needed unsteady lift and moiment coefficients are given in 

Figure 33. The results are presented in terms of the 

System mechanical damping required for stability versus 

compressor RPM. The above discussed decrease in stability 

with RPM is clearly demonstirated. The predicted flutter 

RPM is obtained as the intersection of the damping avail-

able 1 ine with the damping required curve. 

The out of phase component of the lift coefficient 

for translational oscillation (normal to the airfoil chord) 

*lt has been found that the flutter frequencies and mode 
shapes are generally very close to the natural frequencies 
and mode shapes for typical fan and compressor rotors. 
This result is counter to that observed in aircraft wing 
flutter due to the greatly increased density of the blade 
relative to the density of the surrounding air. 
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is shown in Figure lk. The results show that this type 

of osciilation is stable for all Mach number and reduced 

frequency combinations at the chosen phasing. These 

results are also plotted versus Mach number at selected 

frequencies in Figures 35 and 36. The lower frequency 

case is shown here to be more sensitive to changes in 

Mach number, 

The very dramatic effects of changes in the cascade 

stagger angle are shown in Figures 37 and 38. The rela

tional osciilation case is seen to go from a stable Situa

tion at the lower stagger angles to an unstable Situation 

at the higher stagger angles. One reason for such large 

changes in stabiüty with change in stagger angle should 

be obvious from examination of the calculated pressure 

distributions for any of the presented cascades. The 

location of discontinuities in the pressure distributions 

is highly dependent on the cascade stagger angle. It 

follows that the lift and moment coefficients are also 

strongly influenced. The out phase component of the lift 

coefficient is also seen to be greatly affected by changes 

in cascade stagger angle, although for pure translational 

osciilation the cascade remains stable over the entire 

stagger angle ränge present€id. 

The effect of cascade solidity (chord to spacing 

ratio) on the moment coefficient for midchord rotational 
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oscillation is presented in Figure 39. The influence of 

changes in cascade solidity is also seen to be quite 

strong over the ränge of solidities given, however, typi-

cal supersonic fan designs usually fall in a narrower 

solidity ränge of 1.0 to 1 .** over which the changes are 

seen to be nominal, 

A comparison of predicted pressure distributions 

with recently obtained low frequency unsteady cascade data 

is presented in Reference 31. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

ConcJusions 

A Solution to the supersonic cascade problem using 

a finite difference-pressure amplitude function method 

has been obtained. Solutions obtained using this method 

have been compared to some existing Solutions in the limit-

ing cases and to some very recently published results 

using different methods. Excellent agreement is obtained 

in all the limiting cases and any discrepancies in the 

cascade results (which also show generaliy good agreement) 

are explained. The convergence of the method was numeri-

cally investigated both in the neighborhood of and away 

from the resonance points. The influences of the various 

governing parameters on the Solution are demonstrated in 

a brief parametric study of a typical cascade configura-

t ion. 

The equations and boundary conditions for unsteady 

perturbations about a non-uniform steady flow are developed 

in natural orthogonal curvilinear coordinates. Physical 

interpretations are given for the new equations and bound

ary conditions. 
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The primary conclusions drawn from the presenl: 

study are summarized as follows: 

(1) The agreement of the firiite difference-

pressure amplitude method presented in this 

study with a variety of special cases and 

different methods establishes it as a viable 

Solution method. 

(2) The introduction of the pressure amplitude 

function as the primary independent variable 

rather than the velocity potential allows the 

exit region to be calculated without explicit 

consideration of the wake. 

(3) The irregulär pressure d?stributions over the 

aft portion of the upper blade surface ob-

tained by Verdon's method are due to improper 

numerical reflection of characteristic dis-

continuities from the wake surface and are 

not inherent in the finite difference method. 

This same behavior was obtained when the pres-

ent method was programmed in terms of the 

velocity potent ial, but is completely elimii-

nated by reformulation in terms of the pres

sure amplitude function. 

(k) The iterative method used in this analysis to 

enforce the periodicity conditions corresponds 
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precisely to addfng one blade at a time to a 

fi ni te cascade. 

(5) The convergence of this method is in doubt at 

the resonance points. More importantly, how-

ever, the convergence in the neighborhood of 

resonance appears to be at least "convergent" 

in the sense of a mean although convergence 

is slow. Away from resonance, the iteration 

converged relatively quickly, although the 

convergence was still a function of frequency 

and interblade phase angle with the lower 

frequency and counter-rotating waves generally 

converging more slowly. 

(6) The influence of non-uniform steady flow on 

the small perturbation unsteady cascade flow 

may be included within the Jimits of linear 

theory. The choice of the natural orthogonal 

curvilinear coordinate System allows the per

turbation equation to be written in a form 

very similar to that for uniform steady flow 

in a rectangular Cartesian System. 

(7) An additional term arises in the unsteady 

boundary conditions for the case of non-uniform 

steady flow which is needed to account for the 

displacement of the airfoi1 from its mean 

Position in the non-uniform steady flow field. 
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Recommendat i ons 

At present, there is very little detailed experi-

mental Information with which the theoretical results 

may be compared. The data presented in Reference 31 com-

pares favorably with the results obtained using the pres

ent analysis. The reduced frequencies of these experi -

ments, however, are too low (less than ,3) to be taken as 

representative of typical blade frequencies which are on 

the order of 1,0. Experimental verification is therefore 

needed in the higher reduced frequency ranges. The re

sults of Reference 31 were obtained in ä stationary linear 

cascade and are thus as nearly two-dimensional as possibie. 

Detailed measurements of this kind are also needed in ac-

tual rotating blade rows to substantiate the two-dimensional 

assumption and thus validate (or invalidate) the strip 

theory approach to analysis of unsteady rotor flows. 

The basic theoretical groundwork has been laid for 

the Solution of the unsteady cascade problem under non

uniform steady flow conditions. The governing equations 

have been developed in such a way as to make the finite 

difference Solution procedure used in the uniform steady 

flow case applicable to the non-uniform case with only 

minor modifications as long as the steady flow remains 

supersonic. Programming of this procedure would allow 

evaluation of moderate thickness, camber, and compression 
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ratio effects on the stability of supersonic cascades. 

In order to analyze the unsteady supersonic cas-

cade under high loading conditions (high compression 

ratio) a generalized perturbation analysis should be 

formulated and a Solution method obtained which is appli

cable to rotational and mixed subsonic supersonic un

steady flows. This is due to the occurrence of strong 

inter-passage shocks which invalidates the assumptions of 

the present method as well as the spatial forward march

ing Solution technique. The time marching Solution 

techniques, developed for solving mixed steady flow 

Problems, offer a possible approach to this prob lern, 

either by direct Solution of the nonlinear unsteady 

equations or by Solution of a generalized perturbation 

model. 
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APPENDIX A 

PERTURBATION OF THE SOUND SPEED 

For isentropic flow 

7-1 

a/A = (P/7) iy (A-l) 

where A and P are loca] steady values of the sound speed 

and s t a t i c p ressu re . Expand a(P) i n a T a y l o r ' s se r i es 

t o o b t a i n 

a(P) = A + ^ = i = (.p-p) + . . . + f o l (P-P) (A-2) 
27 P L J 

Then i f 

P1 = P-P 

is a small perturbation in pressure, then a(P) is given 

to first order in the perturbation pressure as 

a(P) = A + ̂ 1 t P1 (A-3) 
27 P 

so 



Ulf 

V - a - A = 2 z y A p , . 2 ^ . p' (A-*) 
iy p 2PA 

In terms of the per turbat ion potent ia l Equation (B-9) 

y ie lds 

V • - . 2 Ü f ä £ ' + q s p . ' l (A-5) 
2A Lat s hl J 

where the streamwise velocity perturbation, u, has been 

replaced by the streamwise derivative of the perturbation 

velocity'potential• That is 

Ö0 _ ~ 

hl 

For uniform steady f low Equation (A-5) reduces to 

. • • - _ z = i fäil + U 5 Ü 1 (A-6) 
L Bt " öx J 2A 

Assuming a simple harmonic time Var ia t ion and def in ing 

,* = a * e - i w t / a o « 

and 

ä = A/a 
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then, using the notation of Chapter II, 

a* = -
C-l)Mm

2 

23 [' k0* + q Ml 
* äV 

(A-7) 
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APPENDIX B 

LINEARIZATION OF THE PRESSURE COEFFICIENT 

Kelvin's equation is 

P 

f — -
J P 

5£ + q2/2 + | ü^ - f ( t ) 
at 

( B - l ) 

Evaluation at upstream infinity where the flow is con-

sidered undisturbed gives 

f ( t ) = U V 2 (B-2) 

so that 

/?- [£• w-o] (B-3) 

Now let P1 be an unsteady pressure perturbation from the 

local steady value P and let u and v be unsteady veloc-

ity perturbations along and normal to the steady flow 

streamline. Equation (B-3) can then be expressed as 

P* P*+P' - -1 
f d P . r dP_ M 0 s n - - 0 ' ) , j / . 2 2 2 | 

(B-4) 
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where 

0 = 0 + 0 
S 

q = (q s + u) + v 

V0 « V0 

ni v • « 

Noting that 

30 

dt 
=• 0 

and from steady flow that 

P 

/

dP = 1 / 2 ,, 2> 
- j (q s - u„ ) 

(B-5) 

then to first order in perturbation quantities Equation 

(B-*f) gives 

P+P1 

?--[£••'•*] (B-6) 

Now since the flow has been assumed isentropic let 

1/p'- F(P) 

be expanded in a Taylor1s series about P = P. 

F(P) = F(P) + F'(P)(P-P) +...+ [o] (P-P)2 (B-7) 
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then 

p+p« p+p' 

j — = [ F(P) + F ' ( P ) ( P - P ) + . . . + [ u ] (P-P)2 dP 

(B-8) 

2 
= F(P)P* + F'(P) -— +...+ [o] P 

so t h a t t o f i r s t o rder i n p e r t u r b a t i o n q u a n t i t i e s Equat ion 

(B-6) becomes 

P'/p = - [ — + q s " l (B-9) 

which f o r a s imple harmonic t ime V a r i a t i o n g ives 

Pl*/p = - \lutV + qs 0?-\ (B-IO) 

where 

p i = p ' * e i co t 

and 

er = *£1 e
?cot 

3 i 

I n t r o d u c t i n g the normal ized parameters 

file:///lutV
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C * = p'*/ 1; p u 2 g 
n Z. oo «> 

P = P/ P, 

q - qc / u S oo 

0* = 0 ,*/U c oCÖ 

i - i/c 

then the equation for the normal ized perturbation preis 

sure coefficient amplitude becomes 

C P * = 
A 

2P i K0 + q —~ 
a4 

(B-ll) 
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APPENDIX C 

DERIVATION OF THE POTENTIAL EQUATION IN 
ORTHOGONAL CURVILINEAR COORDINATES 

Let q_ and q be the velocity components along the 

orthogonal curvilinear coordinates (r,X) of Figure 5. 

Also let 9 be the local slope of the r coordinate 1ine 

(measured to horizontal). Then 

qy = q x c o s 0 c + q r s l n 6 c ( c " ] ) 

and 

q x = q r C O S 0 c " q X s i n 0 c ( C - 2 ) 

The two-dimensional c o n t i n u i t y equat ion in r e c t a n g u l a r 

C a r t e s i a n coord ina tes is 

a 0 SPqx *P% 
5£ + _ 2 L + Y_ = 0 (C-3) 
dt bx by 

S u b s t i t u t i n g f o r q and q from Equations ( C - 1 ) and ( C - 2 ) , 
x y 

expanding the partial derivatives, and collecting terms 

gives 
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* £ + 2 L cosö + - ^ - S i n e i (C-i f) 
d t \ öx c öy •/ 

* ( P q J ö ( p q j 
*_ s in8 + ^ - cosen 

öx w ay 

B8. aö 
.+ Pq„ * —=• s i n 0 r + — ± cosQ 

r l ÖX
 c ay

 G 

ae_ a-9 
+ p q* l^f cosec + i7 s?neJ =0 

or 

... a(pqr) a(Pqy) aec aec 
^ + « = J L + _rJL + pq _£. + pc. _£.-o (C-5) 
dt 3X dn x 3n "'* 34 

where 3- and =- are the total derivatives with 
b& hn 

respect to arc length along r and X respectively given by 

^ = cose„ -i- + sinö — (C-6) 
öX c dx öy 

and 

1. Ä . sj n ö JL + CosÖ -£- (C-7) 
ön c dx c By 

Equation (C-5) can be expanded and written in the form 
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i ä £ + ( ! 2 c + . ! i ) +q . 1 
p dt \ b£ ön / p 

V c P ( C - 8 ) 

öS 39 
+ q ^ z r ^ - - q v = ^ - - 0 

ön ax 

where 

v - = & — - + n — 
c Bi ön 

(C-9) 

Assuming i s e n t r o p i c and i r r o t a t i o n a l f l o w then 

q = v 0 H c 

and K e l v i n ' s equat ion may be w r i t t e n as 

(C-10) 

f dP r ö0 , 1 , 2 ..2,1 
(Oll) 

Taking the partial time derivative of Equation (C-3) gives 

öt J P L ötz z dt 
(C-12) 

but for any barotropic flow 

P = P(P) 



so t ha t 

1 _ f äP . ± . f f ( P ) d P = ^ - F ( P ) 
dt J P ö t J dt 

(c 

P Pm 
CO <» 

. dF(P) 3_P = f ( p ) dP d£ = l dP dp 

dP dt dp d t p dp dt 

then Equat ion (C-4) and (C-5) y i e l d 

I M . . . 1 / a 2 f ^ + l i_q2l (c 
P dt l d t Z d t 

Taking the g rad ien t of K e l v i n ' s equat ion l i k e w i s e g ives 

I , c P = . I / a 2 ( g + . V c q 2 ) (c 

Substituting Equations (C-14) and (C-15) i nto Equation 

(C-8) and remembering that 

30 
1 d£ 

and 
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a20 + a^0 a£ Ö0C 
^ 2 JTn2 a"i' an 

HM 90 
O0 C 
an di 

(C-16) 

1/a 
2 ? 

d 0 ,_ öq - 2 - _ + J _ + q . 7 2 / 2 
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APPENDIX D 

EVALUATION OF EQUATION (105) IN 
TERMS OF SUCCESSIVE ITERATIONS 

The geometry of the »nlet Solution domain (Figure 

8) and the nature of the periodicity Iteration are such 

that Equation (105) may not be directly evaluated at a 

particular iteration from flow field Information generated 

during that iteration alone, 

Let 

Ax = s si n0 

and 

Ay - s'cosö 

Equation (105) written for the vertical velocity 

1*h 

just ahead of the upper blade leading edge for the m 

iteration is then 

vm*(0.Ay) = v m * ( - A x , A y ) e -
i k ^ . ' r 0 - L l

( C P * ( X , ' A y ) ) e i ^ d x ' 

-Ax a y 

(D-l) 

Now defi ne 
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m,n " 2J Äwi 

-Ax 

, r° a (C*(x\nAy)) Jkx- ' , 
p e'KA dx" (D-2) 

By" 

so that 

vm*(0,Ay) =v m*(-Ax,iy)e-
i k A x

 + l m ) , (D-3) 

but v. * (-Ax,Ay) is obtained by applying the periodicity 

condition to the previous iteration. Therefore, using 

Equation (12) 

vm*(-Ax,Ay) - e'*v *j (0,2Ay) (D-4) 

but 

0 

V mt 1(0 (2Ay)=v m* 1(-Ax,2A y) - t f ^ CP* ( x' ' M y ) )
 e'

 k*' dx 

-Ax 

- vm-l<- A x' 2 Ay> + lm-1.2 ( D" 5 ) 
.* 

Then substituting Equations (D-4) and (D-5) into Equation 

(D-3) gives 

vm*(0,Ay) - e ' ^ ^ ^ ^ v ^ ^ - A x ^ A y ) (D-6) 

m-l,2 m,1 
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Replacing v*_j(-Ax,2Ay) in like manner gives 

vm*(0,Ay) = e
i ^ - k A x ) [ e i ^ - k ^ ) . (0-7) 

(vm*2(-Ax,3Ay) + lm.2#3] + lm . ] > 2] 

+ 'm. l 

Repeating t h i s process m t imes and recogn iz ing t h a t 

v 0 * ( - A x , m A y ) = 0 (D-8) 

then the r e s u l t i s genera l i zed as 

m 
vm"(0,Ay) - s a. I m + , . . %. (D-9) 

where a. i s de f i ned by 

a = e K j - D (0 - kAx ) ( D . | o ) 
j 
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APPENDIX E 

AERODYNAMIC WORK CALCULATION FOR 
ARBITRARY AIRFOIL MOTION 

It is easily verified by direct Substitution into 

Equation (11) that either the real or the imaginary part 

of 0*e' satisfies the original time dependent equation 

subject to the actual airfoil motion given respectively 

as either the real or imaginary part of the comp lex bound-

ary condition, Equation (26), The actual corresponding 

unsteady lift and mornent are thus given by either the 

real or imaginary parts of their complex representations. 

The aerodynamic work/cycle, defined as positive for work 

transferred from the air to the blade, may be calculated 

by integrating the actual mornent through the actual angle 

plus the actual lift through the actual normal displace-

ment over a cycle of the oscillation. The aerodynamic 

work/cycle can thus be calculated using either the real 

or imaginary components. Choosing the real part and 

letting 

T = cot 

the aerodynamic work/cycle is given as 
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2TT 

W. 

•I 
RE(M*) •RE(da.)-.dt 

dT 
( E - l ) 

2TT 

+ f RE(L*) • RE(^ l )dT 

Now l e t the t r a n s l a t i o n a l o s c i l l a t i o n lag the r o t a t l o n a l 

o s c i 1 J a t i o n by the phase ang le , 8 b . A lso l e t 

a = a e 
I T 

iT I T - - i 8 b i T 

h = n e = ch e = c h ' e e 

The work expression can then be written as 

2TT 

a z oo co f R E ( ( C a+C FT' e b ) e ' T ) as i nrdr (E-2) 
J 0 l ma mh / 

2" 

" JPt 
U V f 

> oo J 

18, 
' x _ I T I 7-1 . RE (C, e D a +c h ) e' V s i n T d 

a 

Taking the app rop r i a te rea l pa r t s o f the i n t e g r a n d , 

i n t e g r a t i n g and c o l l e c t i n g terms g ives 

W. = i». u
 2A ( 

> CO 1 

IM(C ) cT + 
a 

( E - 3 ) 
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• 

f(IM(C ) + |M(C, )) cose + 

( R E ( V " R E ( Cmh^ S l n 9 ] a R " ' 

+ IM(C ) h 

•'} 
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