PHASE EQUILIBRIUM FOR SOLID AND MOLTEN ${\tt CeO}_{2-x} \ \, {\tt ABOVE} \ \, 1500\,{\tt °C}$

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

by

Michael David Watson

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Ceramic Engineering

Georgia Institute of Technology

June, 1977

PHASE EQUILIBRIUM FOR SOLID AND MOLTEN ${\tt CeO}_{2-x} \ \, {\tt ABOVE} \ \, 1500\,{\tt ^{\circ}C}$

A. T. Chapman, Chairman

J./L. Pentecost

J. K./Cochran

Date approved by Chairman: May 25,1977

ACKNOWLEDGMENTS

The author wishes to express his appreciation to Dr.

A. T. Chapman for his assistance and advice in the investigation and for acting as chairman of the reading committee.

Thanks are also expressed to Dr. J. L. Pentecost and Dr. J. K.

Cochran for serving on the reading committee. The typing of the manuscript by Cassandra Harmon and Mary Ann Breazeale is also very much appreciated.

TABLE OF CONTENTS

																Page
ACKNOWL	EDGMENTS							•	•		•				•	ii
LIST OF	TABLES										•					V
LIST OF	ILLUSTRA	NOIT	is .					•			•					vi
SUMMARY							•	•			•		•	•	. V	iii
Chapter																
I.	INTRODUCT	ION						•								1
II.	SURVEY OF	LII	ERAI	URE				•	•	•					•	4
III.	Nonstoichiometric Solids Investigations of the Ce-O System Melting Points of CeO ₂ and Ce ₂ O ₃ Crystal Sturctures of Phases in the CeO ₂ -Ce ₂ O ₃ System Techniques for Studying Redox Equilibrium in Molten Oxides											33				
IV.	Redox Equently Procedure Temperatu Control of Determina RESULTS Solid CeC Results Molten Ce	e for eres of Ox tion 	for Tyger of Ox	CeOn Processor CeO	2-x ess 2-x en H	sure Co · · · Pres	s mpo • su:	osi • re	ti • Eq	on • ui	• ·	· ·	.um			55

Chapte	r																								I	Pag	е
V.	D]	SC	CUS	SSI	101	1 (OF	RE	EST	JLI	S	•	•	•	•	•	•	•	•	•	•	•	•	•		62	
	Sc	oli	id	Ce	e0,	2-2	ζ -	- (Эху	/ge	en	Pı	ces	ssı	ıre	e I	Ξqι	ıi]	Lil	or:	iur	n					
	Mo	olt	er	1	CeC	2-	- x	-	Re	edo	ХC	E	ąu:	i1:	Ĺbı	ciu	ım										
	De Ce	ete eO ₂	ern 2-x	nir K	nat	- :i	on	of	ΞI	ic	au :	idı	ıs	Т	emg	e:	rat	tui	ces	3 :	fo	r					
	Εī	7a]	Lua	ıt:	ior	n (on of nat	tł	ne	Ιr	nte	eri	na.	L N	10	lt€	en	Zc	one	€ .					9		
VI.	CC	ONC	LU	JS I	101	1S		•	•	•	•	•		•	•	•	•	•		•	•	•	•			82	
APPEND	ΙX	A	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•			•	83	,
APPEND:	ΙX	В		•			•		•			•	•			•	•		•	•	•	•	•	•	•	102	?
APPEND	ΙX	С	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	104	t
BIBLIO	GR <i>I</i>	ΑPΗ	ΙΥ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	106	,
VITA .	•						•										•					•	•			110	į

LIST OF TABLES

Table		Page
1.	Melting Points Reported for CeO_2 and $\operatorname{Ce}_2{}^{\mathrm{O}}_3$	21
2.	Oxygen Pressure-Composition Relationship for CeO_{2-x} at 1477°C	56
3.	Oxygen Pressure-Composition Relationship for CeO_{2-x} at 1587°C	57
4.	Oxygen Pressure-Composition Relationship for CeO_{2-x} at 1725°C	58
5.	Oxygen Pressure-Composition Relationship for CeO_{2-x} at 1808°C	58
6.	Molten CeO_{2-x} Redox Equilibrium Results	60
7.	Melting Temperatures for CeO _{2-x} in Equilibrium	
	with Various Oxygen Pressures	61
8.	Measured and Derived Data for Liquidus and Solidus Curves for Specific Gas Mixtures	75

LIST OF ILLUSTRATIONS

Figure		Page
1.	Phases Identified by Bauer and Gradinger in the Ceria System at Room Temperature	7
2.	Phases Identified in the Ceria System by Bevan .	9
3.	Isotherms for Oxygen Pressure-Ceria Equilibrium by Brauer	11
4.	Phase Diagram for the Ceria System by Brauer	11
5.	Phase Equilibrium in the Ceria System Reported by Brauer and Gingerich	12
6.	Isotherms for Oxygen Pressure-Ceria Equilibrium by Bevan and Kordis	14
7.	Phase Diagram for Ceria System Derived by Bevan and Dordis	15
8.	Isotherms for Oxygen Pressure-Ceria Equilibrium Published by Kofstad and Hed from Results of Bevan and Kordis	15
9.	Isotherms for Oxygen Pressure-Ceria Equilibrium by Panlener	18
10.	The Face Centered Cubic, Fluorite Crystal Structure of CeO ₂	27
11.	The Body Centered Cubic, Type C, Crystal Structure of Rare Earth Sesquioxides	27
12.	The Larger Induction Furnace	34
13.	The Smaller Induction Furnace for Determining Melting Points	35
14.	Schematic of Gas Control System	38
15.	Results for Solid CeO _{2-x} -Oxygen Pressure	59

Figur	e	Page
16.	Solid CeO _{2-x} -Oxygen Pressure Equilibrium from this Study Compared with Lower Temperature Equilibrium Determined by Panlener	63
17.	Liquidus Compositions from Internal Molten Zone Experiments Compared with Oxygen Isobars for Solid CeO_{2-x}	68
18.	Derivation of Liquidus and Solidus Curves with Measured Temperatures for Three Liquidus Compositions	74
19.	Composite Diagram for ${\rm CeO_2\text{-}Ce_2O_3}$ System Showing Results of this Study and Data from Panlener	76
20.	Phase Diagram for CeO ₂ -Ce ₂ O ₃ System Above 1200°C with Isobars Showing Oxygen Pressure Equilibrium	
21.	Isotherms for Solid CeO _{2-x} -Oxygen Pressure Equilibrium of Panlener	105

SUMMARY

CeO_{2-x} is a nonstoichiometric oxide having a wide solid solution region above 1000°C. The equilibrium between the composition of CeO_{2-x} and the oxygen pressure was determined for solid $\text{CeO}_{2-\mathbf{x}}$ from 1477°C to 1808°C and for molten ceria from 1850 to 2130°C. Solid ceria was equilibrated with oxygen pressures, 10^{-3} to 10^{-12} atmosphere, in controlled $\mathrm{CO/CO}_2$ gas mixtures. The solid $\mathrm{CeO}_{2-\mathrm{x}}$ had a continuous solid solution from CeO_2 to $CeO_{1.65}$. The molten CeO_{2-x} was studied with the "internal molten zone technique" to determine the liquidus composition in equilibrium with CO/CO2 gas mixtures. Liquidus temperatures for $\text{CeO}_{2-\mathbf{x}}$ were measured and used to calculate the oxygen pressures for the gas mixtures used in the "internal molten zone" experiments. A portion of the liquidus and solidus curves in the CeO_2 - Ce_2O_3 system was derived from this information. A phase diagram for the CeO2- $\text{Ce}_{2}\text{O}_{3}$ system above 1200°C is presented showing the oxygen isobars for the CeO_{2-x} solid solution and for molten oxide at the liquidus temperatures.

The study demonstrated that the "internal molten zone technique" can be used to investigate the redox equilibrium in nonstoichiometric, molten, refractory oxides. The internal molten zone technique combined with equilibrium data for the

solid at lower temperatures can be used to derive phase diagrams for such oxide systems.

CHAPTER I

INTRODUCTION

Cerium dioxide has one of the higher melting points of the oxides, greater than 2300°C, but it is rarely used as a refractory material. The major disadvantage is that stoichiometric CeO_2 is not stable in an even slightly reducing atmosphere because the dioxide tends to lose oxygen forming substoichiometric CeO_{2-x} . Above 700°C the CeO_2 - Ce_2O_3 system displays solid solution region in which the CeO_{2-x} composition depends upon the temperature and oxygen pressure in the environment.

The phase relations of the ${\rm CeO}_2$ - ${\rm Ce}_2{\rm O}_3$ system have been studied below 1500°C by several investigators. At room temperature there are several "so called" intermediate phases with compositions between ${\rm CeO}_2$ and ${\rm Ce}_2{\rm O}_3$. At higher temperatures these phases become unstable forming a continuous single phase solid solution region. The equilibrium relations between temperature, composition and oxygen pressure have been investigated up to 1500°C in this region. There has been no investigation of the nature of the solidus and liquidus curves in the system and there is even considerable conflict on the melting points of ${\rm CeO}_2$ and ${\rm Ce}_2{\rm O}_3$. The most comprehensive phase diagram extends to only about 1100°C and does not include the equilibrium oxygen pressure information.

The objective of this study was to extend the equilibrium information for solid CeO_{2-x} and the oxygen pressure from about 1500°C to 1800°C and to determine a portion of the solidus and liquidus curves. The data for the solid was obtained by equilibrating CeO_{2-x} in CO/CO_2 gas mixtures of known oxygen potential, quenching, and then analyzing the composition. The liquidus data was determined using the internal molten zone technique in which molten oxide is contained within the interior of a CeO_{2-x} pellet. The experimental data above 1500°C and the literature data were used to draw a phase diagram of the CeO_2 - Ce_2O_3 system including the solidus and liquidus curves and the oxygen pressure information.

The equilibrium information above 1500°C for the ceria system is of great value for the production of certain unidirectionally solidified oxide-metal composites¹. These composites are produced by a crystal growth procedure employing the internal molten zone technique. The necessary composition of the liquid oxide is obtained by using suitable gas mixture in order to control the nature of the solidified composite.

Ceria has also been recently utilized as additions to refractory oxides, i.e., ZrO₂ in the development of high temperature oxide electrodes for utilization in the search for alternate energy sources such as fuel cells or MHD

facilities. The ceria additions are generally used to improve the electrical conductivity of the insulating oxides and the basic oxidation reduction characteristics of the pure material, CeO_{2-x} are needed as a starting point to evaluate the total stoichiometry affects which are so important in controlling the electronic properties.

CHAPTER II

SURVEY OF LITERATURE

This section is an introduction to nonstoichiometric solids and particularly the ${\rm CeO}_2$ - ${\rm Ce}_2{\rm O}_3$ system. The various ceria phases are described and the published phase diagrams presented. The previous studies of ceria are reviewed to show the development of the knowledge of the ${\rm CeO}_2$ - ${\rm Ce}_2{\rm O}_3$ system. A section on cyrstal structures describes the phases in the system and the techniques for investigation of equilibrium in molten oxides are reviewed.

Nonstoichiometric Solids

When an element forms cations of different charges and the ionic size does not vary considerably, phases of variable composition exist. Usually intermediate phases also exist, containing some ordered mixture of the two cations. The classic example of this is the iron oxide system in which the ferrous and ferric cations led to the three oxide phases, Wustite FeO_{1+x} , magnetite $\text{Fe}_3\text{O}_{4+x}$, and hematite Fe_2O_3 . Other oxide systems exhibiting this behavior include the metals Ti, U, Zr, Pr, Tb, Eu, Ce, etc.

Cerium forms +4 and +3 cations with radii of 1.01 and
1.11 Å respectively. The oxides formed have the stoichiometric

compositions of ${\rm CeO}_2$ and ${\rm Ce}_2{\rm O}_3$. There is a large composition variation at high temperature in the dioxide making the nonstoichiometric formula ${\rm CeO}_{2-{\rm x}}$ more meaningful. The sesquioxide also has a composition variation (but not nearly so large) giving the formula ${\rm Ce}_2{\rm O}_{3+{\rm x}}$. Several intermediate ordered phases also exist at relatively low temperatures with at least one possessing wide composition range.

Solid solution regions around stoichiometric oxide phases are common in metal-oxygen systems in which the metal can form cations of varying charge. The single phase field often has a very narrow composition range, but in some systems the region may possess a widely variable metal to oxygen ratio. The composition within these single phase regions is controlled by the temperature and oxygen partial pressure of the environment. Most phase diagrams which contain such nonstoichiometric oxide phases do not show the equilibrium oxygen partial pressure because of the lack of information. equilibrium in the systems $\text{Fe-O}^{2,3}$ and $\text{U-O}^{4,5,6}$ has been determined and presented on phase diagrams. The equilibrium information is often presented on diagrams with temperature and oxygen pressure axes with isopleths giving the variation in composition^{3,4}. The common phase diagram with temperature and composition axes can present the oxygen pressure equilibrium by using isobars^{5,6}.

Investigations of the Ce-O System

There have been many studies of the Ce-O system but conflicting results and unstudied areas still remain. Initial investigations concerned the existence of the so called intermediate phases or those phases with compositions between ${\rm CeO}_2$ and ${\rm Ce}_2{\rm O}_3$. Later attention was turned to the higher temperature solid solution region, ${\rm CeO}_{2-{\rm x}}$. The equilibrium between the oxygen partial pressure and the composition of ${\rm CeO}_{2-{\rm x}}$ was investigated. The electrical conductivity and the defect structure of ${\rm CeO}_{2-{\rm x}}$ has been of recent interest.

The phase equilibrium relations in the system have been studied at temperatures below 1500°C by several investigators. This section will review their results in chronological order showing the development of the knowledge of the system.

The first studies of ceria involved reducing ${\rm CeO}_2$ with hydrogen. Several investigations produced a blue-black product after reduction of ${\rm CeO}_2^{~7,8}$. Meyer 9 concluded this substance was ${\rm Ce}_4{\rm O}_7$. Then Schneck and Roters 10 prepared the blue-black material by controlled reduction of ${\rm CeO}_2$ with carbon monoxide and found a single phase with variable composition between ${\rm CeO}_2$ and ${\rm CeO}_{1.90}$. Their results were based on experiments at 700° and 900° and gave the first indication of the solid solution region, ${\rm CeO}_{2-x}$. Foex 11 next reported results that again supported the composition of the blueblack materials as ${\rm Ce}_4{\rm O}_7$. Bruno 12 and later Rienacker and

Birkenstedt¹³ confirmed the existence of the CeO_{2-x} solid solution by X-ray diffraction techniques. Rienacker and Birkenstedt¹³ found the so called " Ce_4O_7 " phase to have the same X-ray pattern as CeO_2 . Bruno¹² reported that CeO_2 could be appreciably reduced and still retain the fluorite crystal structure with an increase in the unit cell size proportional to the concentration of Ce^{+3} ions in solution. Courtel and Loriers¹⁴ reported a continuous solid solution range between a cubic Ce_2O_3 and CeO_2 . Their conclusion was based upon electron diffraction experiments of oxide films on cerium metal.

Brauer and Gradinger¹⁵ studied the CeO₂ - Ce₂O₃ system by annealing many mixtures of the two oxides at 1400°C in nitrogen and then slow cooling over a period of a week. This treatment should yield the phases stable at room temperature if the slow cooling allowed equilibrium conditions to be met. The phases present were identified by X-ray diffraction using a 57.3 mm diameter camera. Their results are shown in Figure 1.

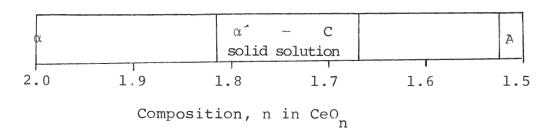


Figure 1. Phases Identified by Bauer and Gradinger 15 in the Ceria System at Room Temperature.

Brauer and Gradinger 15 found four phases in the CeO_2 - $\mathrm{Ce}_2\mathrm{O}_3$ system. The α phase was stoichiometric CeO_2 , having the face centered cubic crystal structure commonly called the fluorite structure. The α phase was a nonstoichiometric $\mathrm{CeO}_{2-\mathbf{x}}$ phase also having the fluorite structure. The C phase was another nonstoichiometric phase having a body centered cubic phase. Brauer and Gradinger 15 reported a continuous solid solution between the α , $\mathrm{CeO}_{1.812}$, and the C phase, $\mathrm{CeO}_{1.448}$, but they did not have direct experimental evidence to support this. The A phase was hexagonal $\mathrm{Ce}_2\mathrm{O}_3$ with a variation in composition from $\mathrm{CeO}_{1.525}$ to $\mathrm{CeO}_{1.50}$.

The nomenclature used by Brauer and Gradinger 15 and latter authors in naming the A and C phases refers to the "type A" and "type C" rare earth oxide crystal systems. The rare earth sesquioxides form three crystal structures commonly called types A, B, and C. The ceria sesquioxide, Ce_2O_3 , forms the hexagonal type A structure and was thus named the A phase. The intermediate phase, C, at about $\text{CeO}_{1.67}$ formed the body centered cubic structure called type C structure. Even though this phase was not a true sesquioxide phase, it was given the name referring to this crystal structure. The other phases in the system have been given Greek letters as names. The stoichiometric CeO_2 is α and the nonstoichiometric CeO_{2-x} of the same crystal structure is α' . Other Greek letters were used to name additional intermediate phases found by latter

investigators.

Bevan¹⁶ studied the intermediate phases in the CeO₂-Ce₂O₃ system by X-ray analysis. Samples of various compositions were annealed at temperatures between 800° and 1200°C (the majority at 1050°C) and then quenched to room temperature. The phases present after quenching were determined with a 19 centimeter diameter powder diffraction camera without exposing the sample to air. The gross composition of the sample was then analyzed by oxidation to CeO₂. Bevan believed his quenching technique would retain the phases present at elevated temperature. His results are summarized in Figure 2.

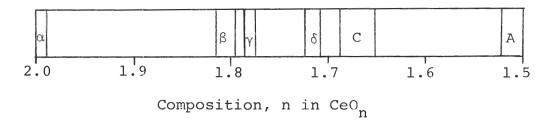


Figure 2. Phases Identified in the Ceria System by Bevan 16.
Samples were quenched from between 800° and 1200°C to room temperatures.

Brauer, Gingerich and Holtschmidt 17,18 investigated the ceria system by high temperature X-ray diffraction and by determining the oxygen partial pressures. They used ${\rm H_2/H_2O}$ gas mixtures to obtain the very low oxygen pressures necessary. The oxygen pressure-ceria equilibrium is shown in Figure 3. High temperature X-ray analysis with a 12 cm diameter camera

was used to identify the phases present. A phase diagram, Figure 4, was presented for the region ${\rm CeO}_2$ - ${\rm CeO}_{1.78}$. The major feature of this diagram was a solid state immiscibility dome. At room temperature the immiscible phases are stoichiometric ${\rm CeO}_2$, α , and ${\rm CeO}_{1.81}$, the β phase. At about 400° - 440° C the β phase transforms from the rhomoohedral crystal structure to the fluorite structure forming the α phase. From about 440° C to 685° C the two fluorite phases α and α are the immiscible phases. At 685° C the immiscibility dome closes forming a continuous solid solution region. This single phase region was reported to extend from ${\rm CeO}_{2.0}$ to ${\rm CeO}_{1.67}$ at higher temperatures.

Brauer and Gingerich 19 reviewed the various studies of the ceria system and explained some of the inconsistencies in the literature. They stated that the high temperature equilibrium could not be quenched for analysis at room temperature. Thus Bevan's 16 results, Figure 2, do not apply to high temperature equilibrium. In Brauer and Gradinger's 15 initial studies of ceria at room temperature a small X-ray camera was used. This camera could not detect the slight differences between X-ray patterns of the solid solution they reported and the phases, β , γ , and δ , reported by Bevan 16. Brauer and Gingerich 19 represented the phase relations at three temperatures by Figure 5.

Kuznetsov, Belyi and Rezukhina 20 investigated the ceria

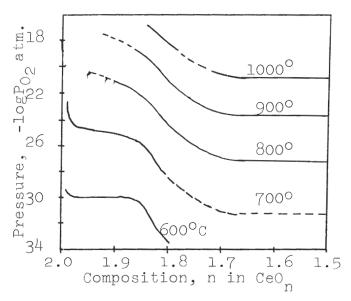


Figure 3. Isotherms for Oxygen Pressure-Ceria Equilibrium by Brauer, et. al. 10,18

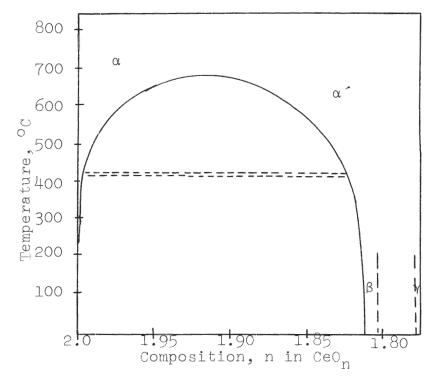


Figure 4. Phase Diagram for the Ceria System by Brauer, et. al. 17

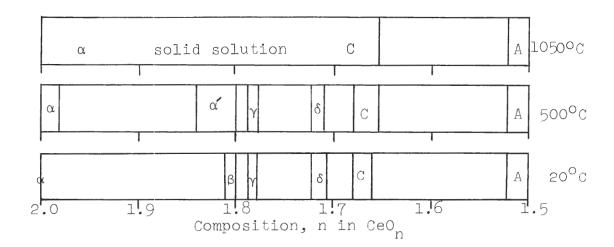


Figure 5. Phase Equilibrium in the Ceria System Reported by Brauer and Gingerich. 19
Unlabeled areas are two phase regions.

system using emf measurements in a galvanic cell and with gas equilibrium measurements. Their experiments were between 700° and 1000°C. A single phase solid solution region was found from CeO₂ to about CeO_{1.67}.

Bevan and Kordis 21 studied the ceria system by determining the equilibrium oxygen pressure from 636° to 1169°C using $\rm CO/CO_2$ and $\rm H_2/H_2O$ gas mixtures. Ceria samples were brought to equilibrium at some known temperature in a flowing gas mixture. The sample composition was determined by <u>in situ</u> direct weighing using a fused-quartz spring. The gas composition was determined by gas-volumetric methods. The results are shown, Figure 6, as isotherms on the composition-oxygen partial pressure diagram.

Bevan and Kordis²¹ used their experimental results to derive the phase relations. In Figure 6, areas of two phase equilibrium are indicated by a horizontal isotherm (constant pressure and temperature with a varying composition). Bevan and Kordis²¹ used derived thermodynamic data (plots of the free energy versus temperature) to obtain a more detailed analysis of the experimental results. This analysis allowed a correction to be made to the isotherms below 1000°C so that the two phase areas could be better defined. A phase diagram, Figure 7, was then drawn for the system.

The phase diagram, Figure 7, derived by Bevan and ${\rm Kordis}^{21}$, shows a solid solution region at elevated temperatures

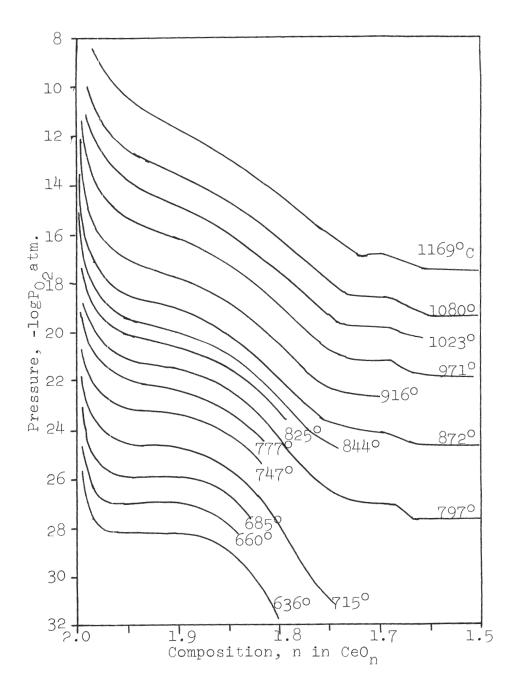


Figure 6. Isotherms for Oxygen Pressure-Ceria Equilibrium by Bevan and Kordis.

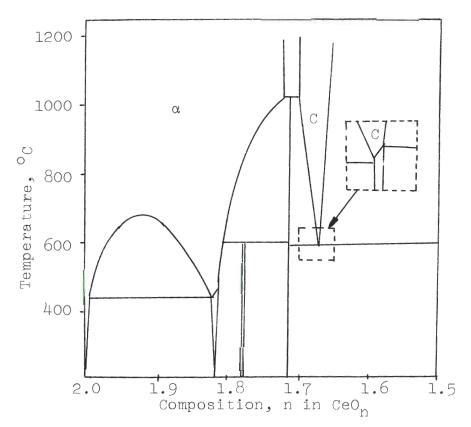


Figure 7. Phase Diagram for Ceria System Derived by Bevan and Kordis. See text for explanation of insert.

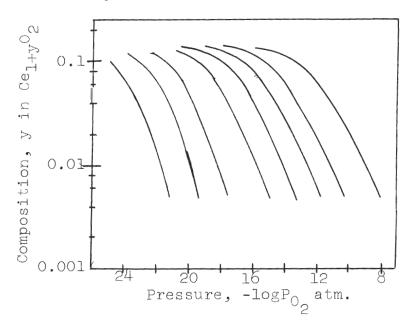


Figure 8. Isotherms for Oxygen Pressure-Ceria Equilibrium Published by Kofstad and Hed²² from Results of Bevan and Kordis.²¹

and several intermediate phases at lower temperatures. Above 1000°C a two phase region separates the solid solution region from the C phase. Below 600°C the C phase either transforms to an ordered phase or decomposes. Bevan and Kordis²¹ did not determine which situation was the equilibrium reaction but showed both possibilities on the diagram by using the insert. The two possibilities for the C phase are described as:

- 1) The ${\rm CeO}_{1.67}$ decomposes into ${\rm CeO}_{1.714}$ and ${\rm CeO}_{1.5}$ by the eutectoid reaction reaction at 600° as shown in the main diagram;
- The high temperature disordered $CeO_{1.67}$ orders on cooling at 600° to form an ordered, stoichiometric, phase Ce_3O_5 boarded by the two phase regions shown in the insert to the diagram.

The diagram of Bevan and Kordis²¹, Figure 7, is the most comprehensive diagram for the ceria system published to date but it does not contain the oxygen pressure equilibrium information and it conflicts with Brauer¹⁹ and Kuznetsov²⁰ in the extent of the fluorite single phase region. Above 1023°C Bevan and Kordis²¹ report the region extends from CeO_{2.00} to only CeO_{1.72} with even less range at lower temperatures. Above 1023°C they report a two phase region from CeO_{1.72} to CeO_{1.70}. Both Brauer and Kuznetsov believe the fluorite single phase region extends into this composition range. Below 1023°C Bevan and Kordis report the ordered phase

CeO_{1.714} with adjacent two phase regions. The essence of the conflict is that Brauer and Kuznetsov both observed a single phase extending across the region that Bevan and Kordis claim contains two phase regions and a low temperature (<1023°) intermediate phase.

Kofstad and Hed^{22} used Brevan and Kordis²¹ data to investigate the defect structure for CeO_{2-x} . The oxygen pressure data was reploted and presented in the form seen in Figure 8. Kofstad and Hed^{22} presented the ceria composition as $\mathrm{Ce}_{1+y}\mathrm{O}_2$ because they believed the defect structure to consist of interstitial cerium ions. Later studies disagreed with this defect analysis in favor of an oxygen vacancy model.

Ackermann and Rauh 23 investigated the vaporization behavior of the sesquioxide phase $\mathrm{Ce_2O_{3-x}}$ and determined the lower phase boundary is the composition of $\mathrm{Ce_2O_{3-x}}$ in equilibrium with the liquid metal saturated with oxide. This boundary varies from near $\mathrm{Ce_2O_3}$ at 1327°C to $\mathrm{CeO_{1.34}}$ at 1727°C. The oxygen partial pressures were not measured in this system but the partial pressures for Ce and CeO gases were determined over the $\mathrm{Ce_2O_{3-x}}$ - $\mathrm{Ce_{liquid}}$ system.

Panlener 24 studied the equilibria of $\mathrm{CeO}_{2-\mathrm{x}}$ from 750 to 1500°C in oxygen pressures of 10^{-2} to 10^{-26} atmospheres. He used thermogravimeteric measurements at these high temperatures in dynamic atmospheres of $\mathrm{CO-CO}_2$ and $\mathrm{Ar-O}_2$. His results are shown in Figure 9. The single phase region was found to

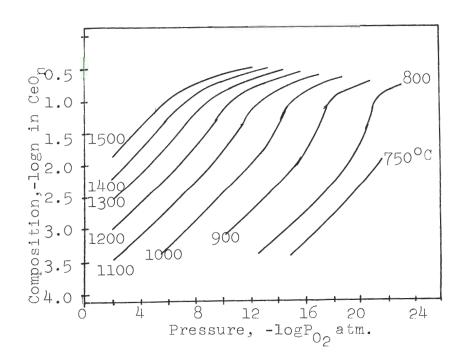


Figure 9. Isotherms for Oxygen Pressure-Ceria Equilibrium by Panlener, et.al. 24,25

extend over his entire range of composition, CeO2.0 to about CeO_{1-68} . Bevan and Kordis²¹ had reported a two-phase region from CeO_{1.70} to CeO_{1.72} above 1023°C. Paulener's investigation conflicts with Bevan and Kordis at temperatures from 1300 to 1500°C. Below 1300°C, Paulener's data did not extend past $CeO_{1.72}$ into the suspected two-phase region. In a later paper, Paulener, Blumenthal, and Garnier 25 misinterpret Bevan and Kordis²¹ regarding the region CeO_{1.72}-CeO_{1.70}. Paulener, et al., state that Bevan and Kordis observed an ordered single phase between CeO_{1.72} and CeO_{1.70}. But in Bevan and Kordis' paper, there are several references to two-phase equilibria in the region $CeO_{1,72}$ to $CeO_{1,70}$. The two investigations do generally agree on the oxygen pressure -- $\operatorname{CeO}_{2-\mathbf{x}}$ equilibria in the range 800-1200°C, $CeO_{1.95}$ - $CeO_{1.73}$. But exact comparisons of the data cannot be made because measurements were not made at the same temperatures.

There have been a number of other investigations of the ceria system, but they were not concerned with phase equilibria. Most of these studies measured the electrical conductivity of pure and doped ceria and analyzed the defect structure of CeO_{2-x} . At present, there seems to be general agreement in the literature that the defect sturcture is oxygen vacancies.

Melting Points of ${\rm CeO}_2$ and ${\rm Ce}_2{\rm O}_3$

The melting points of the ceria phases, CeO_2 and Ce_2O_3 , have not been well established. Reported temperatures for CeO_2 range from 1950° to 2810°C and for Ce_2O_3 , 1687° to 2142°C. Determining the melting point is difficult because of the high temperature involved and occurrence of reactions. The ceria will not only react with most refractory holders but also with the atmosphere changing the stoichiometry. To maintain CeO_2 , stoichiometric above 2000°C required a highly oxidizing atmosphere while Ce_2O_3 requires a highly reducing atmosphere. Difficulties in obtaining the necessary temperatures and atmospheric conditions have prevented reliable, reproducible determinations of the melting points.

The melting points reported in the literature are given in Table 1 along with information concerning the experimental conditions. Six of the references described the original melting point experiments. The remaining seven references were from tabulated data of melting points and did not list the source of information. Many other references not included here, listed some of the temperatures reported in Table 1 under the original reference. The most common values reported are those of >2600°C for CeO₂ and 1692°C for Ce₂O₃.

Evaluation of the various reported melting points for ${\rm CeO}_2$ eliminates several of the values. Ruff's 34 low value at 1950°C was for a sample contaminated with carbon and had an

Table 1. Melting Points Reported for CeO_2 and Ce_2O_3 .

	Malhin-				
Composition	Melting Point °C	Environment	Comments	Ref.	Date
CeO ₂	2810	-	*	26	1964
CeO ₂	2800	16 atm.	*	27	1949
CeO ₂	2750	-	*	28	1960
CeO ₂	2725 <u>+</u> 20	-	*	29	1961
CeO ₂	>2600	In air heated by O ₂ -accelylene flame	Did not melt at 2600	30	1931
CeO ₂	2600	-	*	31	1973
CeO ₂	2480	Air in solar furnace		32	1966
CeO _{2-x}	2397	Ar atmosphere in tungsten tube	Sample partially decomposed	33	1967
CeO ₂ -C	1950 (1973)**	Packed in ZrO ₂ in resistance heated carbon tube	Sample contaminated with carbon	34	1913
^{Ce} 2 ⁰ 3+x	2142	Technical grade H ₂	Sample was not completely reduced to Ce ₂ O ₃	33	1967
Ce ₂ O ₃	1692	H ₂ atmosphere		35	1925
Ce ₂ O ₃	1690	-	*	28	1960

^{*}These references are surveys that do not list the source of the original

^{**}Temperatures after conversion to the "International Practical Temperature Scale of 1948." The original reported temperatures were in the "Geophysical Temperature Scale."

increase in weight during the experiment. Mordovin's³³ value at 2397°C was determined in an argon atmosphere which would result in the reduction of the CeO₂ to a lower oxygen to cerium ratio. Mordovin stated that the solidified material corresponded to the formula CeO_{2-x}, but did not determine the value of x. In a general discussion of refractory oxides, Trombe²⁷ gave the value of 2800°C for the melting point of ceria and "16 env." (French for atmospheres) but no further explanation nor any reference to the source of the information. The temperatures of 2810°, 2750°, 2725° and 2600°C were found in surveys of melting point data but no references were listed. The 2600°C value was probably meant to be "greater than 2600" referring to Wartenberg and Geurr's³⁰ study, who could not melt CeO₂ at 2600°C.

Foex³² found the melting point of CeO₂ to be 2480°C. He used a solar furnace, with an optical pyrometer to measure the melting point of many refractory oxides. The melting points of alumina, 2042°, and zirconia, 2700° - 2710°, were used as reference points to calibrate the pyrometer. Foex's apparatus allowed a black body configuration and prevented contamination by other materials. Solar energy melted a portion of an oxide block creating a cavity partially filled with molten material. With a reduced energy flux, the optical pyrometer was used to measure the cooling curve of the molten oxide. The thermal arrest upon solidification gave the

desired temperature.

The melting point of $\mathrm{Ce_2O_3}$ was determined by Frederich and Sittig^{35} as $1692^{\circ}\mathrm{C}$ and Mordowin, et al. 33 , as $2142^{\circ}\mathrm{C}$. Two other values, 1690° and $1687^{\circ}\mathrm{C}$, were found with no references to the original investigations.

Mordovin, et al. 33 , did not measure the melting point for stoichiometric Ce_2O_3 but for a higher oxide, $\text{Ce}_2\text{O}_{3+x}$. They annealed CeO_2 rods in technical grade hydrogen at "2000-2200°K" for 10 minutes to produce Ce_2O_3 . They could not establish that they had created stoichiometric Ce_2O_3 because the fused material was unstable in air. Because very dry hydrogen and longer time is required to reduce CeO_2 to Ce_2O_3 , their fused material was probably oxygen rich, $\text{Ce}_2\text{O}_{3+x}$.

Frederich and Sittig³⁵ found 1692°C as the Ce₂O₃ melting point. They prepared Ce₂O₃ by reduction of CeO₂ in hydrogen, and confirmed the Ce₂O₃ stoichiometry by weight gain upon oxidation to CeO₂. The only question concerning their study is the temperature scale they used. If they used the "Geophysical Temperature Scale" a correction to the "International Practical Temperature Scale of 1948" would bring the melting point to about 1700°C. If they used the "International Scale of 1927," the correction to the 1948 scale would lower the value a few degrees. It is impossible to determine an exact value for the correction because their calibration method was not described. The scale of 1927 was

recognized internationally two years after their publication, but it is possible that it was in use in Germany in 1925.

The two values of 1690°C and 1687°C for the melting point of Ce_2O_3 were found in surveys that did not list the original reference. These values may have been obtained by attempting to correct Frederich and Sittig's value of 1692° by assuming they used the 1927 scale and converting it to the 1948 scale.

The author evaluated the techniques for determining the melting points and believed the most reliable methods were those used by $Foex^{32}$ for CeO_2 and Frederich and $Sittig^{35}$ for Ce_2O_3 . Foex's value of 2480°C for CeO_2 melting point was from a technique that prevented contamination, used an air atmosphere and relied on cooling curves. Other techniques caused contamination or reduction of the sample and relied on visual observation of the liquid formation to detect melting. Frederich and Sittig's value of 1692°C for the melting point of Ce_2O_3 was considered more reliable because they confirmed the oxide composition to be Ce_2O_3 . The other technique 33 reviewed did not maintain the stoichiometric composition for the sesquioxide.

<u>Crystal Structures of Phases</u> in the CeO₂-Ce₂O₃ System

The crystal structures of the various phases in the ${\rm CeO}_2{\rm -Ce}_2{\rm O}_3$ system are briefly described. The knowledge of

these structures is not necessary for a phase equilibria determination, but helps one understand the phase relations. Particularly helpful is the structures of CeO₂ and CeO_{1.67}. The existence of a continuous solid solution region between these phases could be explained by the transition from one crystal structure to another by the removal of oxygen ions.

Cerium dioxide, CeO_2 , crystalizes in the face centered cubic structure commonly called the fluorite structure. The cerium cation sites are found by a (1/2, 1/2, 0) translation relative to the (0, 0, 0) coordinate. The oxygen anion sites are located by a translation of (1/2, 0, 0) relative to a (1/4, 1/4, 1/4) coordinate. The unit cell contains four CeO_2 molecules and has a lattice parameter of 5.4110 Å. Figure 10 shows this crystal structure of CeO_2 .

Cerium dioxide becomes substoichiometric, CeO_{2-x} by the formation of oxygen vacancies 24 . Pascal 36 stated the defective fluorite structure of CeO_{2-x} can have the homogeneity domain of 0 < x < 0.25 in any of the LO_{2-x} systems where L is any of the lanthanides Ce, Pr, or Tb. The CeO_{2-x} structure was studied by Brauer and Gingerich 17 with high temperature X-ray diffraction. They found at 900°C a continuous linear variation in the face centered cubic lattice parameter from 5.41 Å for $CeO_{2.0}$ to 5.56 Å for $CeO_{1.67}$.

The intermediate phase around $\text{CeO}_{1.67\pm\text{x}}$ was reported by Bevan^{16} to crystalize in a body centered cubic structure com-

monly called the type C rare earth oxide structure. The lattice constant varied continuously from 11.107 A for CeO_{1.688} to 11.126 A for CeO_{1.651}. Bevan used room temperature X-ray diffraction techniques to analyze samples quenched from 1050°C and believed the quenching retained the high temperature crystal structure. Brauer¹⁹ later stated that the high temperature perature crystal structure could not be quenched to room temperature.

Suchet 37 explained that a continuous translation from the fluorite structure of ${\rm CeO}_2$ to the type C structure of CeO_{1.67} reported by Bevan¹⁶ is possible by the removal of oxygen ions. The type C structure is a overstructure of the defective flourite structure if a quarter of the oxygen ions were removed from the stoichiometric flourite phase. Figure ll shows the type C structure for a stoichoimetric L_2O_3 that crystallizes in this structure (L represents any rare earth element). Dotted circles in Figure 11 show the sites of the oxygen ions removed from the flourite structure and the dotted cube represents a flourite unit cell. Suchet believed that continuous solid solutions between phases of these different crystal structures were explained by this overstructure concept. He stated that many solid solutions between the oxides ${\rm LO}_2$ and $\text{L'}_2\text{O}_3$ (L and L' represent two different lanthanide type elements) exist because of this translation of crystal structures. The solid solution between CeO2 and CeO1 67 was

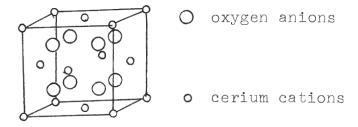


Figure 10. The Face Centered Cubic, Fluorite, Crystal Structure of CeO.

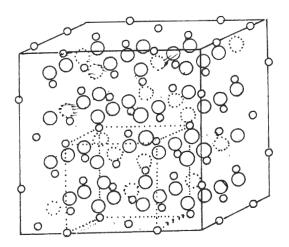


Figure 11. The Body Centered Cubic, Type C,
Crystal Structure of Rare Earth
Sesquioxides. The solid circles
represent the oxygen anions in a
stiochiometric sesquioxide. The
dotted circles are the oxygen
anions withdrawn from the fluorite
structure to derive the type C
structure. The dotted cube represents a flourite unit cell

also explained by this translation by considering $CeO_{1.67}$ as Ce_2O_{3+x} . If some of the vacant oxygen sites (represented by dotted circles in Figure 11) were occupied, the type C structure would describe the $CeO_{1.67}$ phase.

The sesquioxide, Ce_2O_3 , forms the hexagonal, type A, rare earth oxide structure. This structure which is found in many L_2O_3 lanthanide series oxides. Bevan eported lattice constants of a = 3.889 \pm .002 and c = 6.054 \pm .002 for the composition $CeO_{1.522}$ which is within the Ce_2O_{3+x} composition range.

The three low temperature ordered phases have the rhombohedral or hexagonal strucutre. The β phase at CeO_{1.81} is formed by the ordering upon cooling at about 400°C of the α ′ fluorite phase. This structure is derived from eight unit cells of CeO₂ by the creation of six anion vacancies. Bevan¹⁶ reported the lattice constants of a = 3.890 and c = 9.536 for β ; CeO_{1.812}. The γ phase CeO_{1.778}, has the lattice constants of a = 3.910 and c = 9.502. The δ phase, CeO_{1.717}, has the constants of a = 3.921 and c = 9.637.

Techniques for Studying Redox Equilibrium in Molten Oxides

The evaluation of the reduction-oxidation (redox) equilibrium in molten oxides has previously been determined in only two systems, Fe-O^3 and U-O^5 . The techniques used in these investigations are discussed in this section. The methods are

reviewed for consideration of their application to the Ce-O systems.

Darken and Gurry 3 studied the Fe-O system by using a variety of techniques. The equilibrium between molten oxide and oxygen was determined by a procedure that maintained molten oxide at a constant temperature in a flowing gas mixture of known oxygen partial pressure. After equilibrium was attained the material was quenched and the oxide composition analyzed. An extensive series of experiments varied the temperature between 1380° and 1640°C and the oxygen pressure from one atmosphere to log Po, of -10. The temperature range was low enough to use a platinum wound resistance tube furnace. molten oxide was contained in platinum crucibles. Platinum solubility in the molten oxide was low enough to avoid any measurable effect on the results. But the use of platinum crucibles was limited by absorption of iron from the sample. The crucibles became Pt-Fe alloys with the melting point decreasing as the iron content increased. Thus the crucibles were limited to temperatures much below the melting point of pure platinum.

Darken and Gurry determined the liquidus and solidus lines of wustite, FeO_{1+x} , and magnetite, $\text{Fe}_3\text{O}_{4+x}$, by the following technique. An iron wire was suspended in a flowing gas mixture at a constant temperature slightly below the suspected melting point. The iron was converted to an oxide

with a composition determined by the atmosphere and the temperature. The sample was cooled and visually examined. there was no evidence of melting, the sample was reheated to a slightly higher temperature in the same gas mixture. procedure was repeated until the melting point of the oxide in equilibrium with the gas mixture was found. composition corresponding to the measured melting point and oxygen pressure in the gas mixture was derived from appropriate Composition-temperature-oxygen pressure information measured for the solid at much lower temperatures was extrapolated to the melting points to determine the solidus compositions. The liquidus compositions were obtained from similar graphs of equilibrium determined for the molten oxide. measuring the melting points of oxides in eleven gas mixtures and deriving the oxide compositions, Darken and Gurry 3 established the liquidus and solidus lines for wustite and magnetite in the Fe-O system.

An investigation of the redox equilibrium in molten ${\rm UO}_{2\pm {\rm x}}$ was performed by Chapman, Brynestad, and ${\rm Clark}^5$. They determined the equilibrium oxygen partial pressure for molten ${\rm UO}_{2\pm {\rm x}}$ at the liquidus temperature and for solid ${\rm UO}_{2\pm {\rm x}}$ at $1660\,{\rm ^{\circ}C}$. These results were combined with literature data for equilibrium oxygen pressures from $1200\,{\rm ^{\circ}}$ to $1500\,{\rm ^{\circ}C}$ and the known liquidus and solidus lines to construct a phase diagram from $1200\,{\rm ^{\circ}}$ to $2900\,{\rm ^{\circ}C}$ for ${\rm UO}_{2\pm {\rm x}}$ including the oxygen isobars.

The technique used for studying molten UO_{2±x} was known as the internal molten zone technique. Cylindrical UO₂ pellets were heated by induction heating at 3.5 megahertz. A zone of molten oxide was contained within the interior of the pellet by the solid skin which was cooled by thermal radiation losses. The pellet was exposed to a flowing gas mixture until the composition of the oxide equilibrated with the oxygen pressure in the gas mixture. The pellet was quenched and the resolidified interior analyzed to determine the liquid composition. A series of experiments established liquid compositions for nine different gas mixtures.

Chapman, et al.⁵, believed the temperature of the molten oxide could not vary significantly from the liquidus temperature which was assumed to be approximately 3150°K for all experiments. This temperature was used to calculate oxygen pressures for the gas mixtures. The oxygen pressures and corresponding liquid compositions were believed to represent equilibrium conditions for the liquidus line in the phase diagram.

The major difficulties in using the internal molten zone for determining phase equilibrium are the presence of very large thermal gradients in the solid skin and the absence of any direct temperature measurements. Chapman, et al.⁵, discussed these problems and justified the use of the liquidus temperature for calculating the oxygen pressure. The internal molten zone technique provided a method for attaining a very

high temperature while containing the molten oxide without contamination from a crucible. The technique had problems in precisely defining the equilibrium conditions in the system but no other method has been demonstrated that can be used to determine equilibrium in molten oxides above 2000°C.

CHAPTER III

EQUIPMENT AND PROCEDURE

This chapter describes the equipment and procedures used for determining the redox equilibrium in the ${\rm CeO}_2$ - ${\rm Ce}_2{\rm O}_3$ system. The first section describes the equipment used in all phases of the investigation and latter sections describe different portions of the procedure. The first portion of the procedure concerns the temperature calibration of the furnaces. The next section is the procedure for determining equilibrium between solid ceria and oxygen at temperatures from 1477° to $1808^{\circ}{\rm C}$. The internal molten zone technique and the determination of melting temperatures are described in separate sections which both concern the liquidus equilibrium information. The final two sections cover calculation of oxygen pressures and the determination of ${\rm CeO}_{2-{\rm x}}$ compositions. These two sections are important for both the solid and the molten ${\rm CeO}_{2-{\rm x}}$ equilibrium experiments.

Equipment

The redox equilibrium experiments for both solid and liquid CeO_{2-x} were performed in the induction furnace shown schematically in Figure 12. A smaller induction furnace, shown schematically in Figure 13, was employed for determining

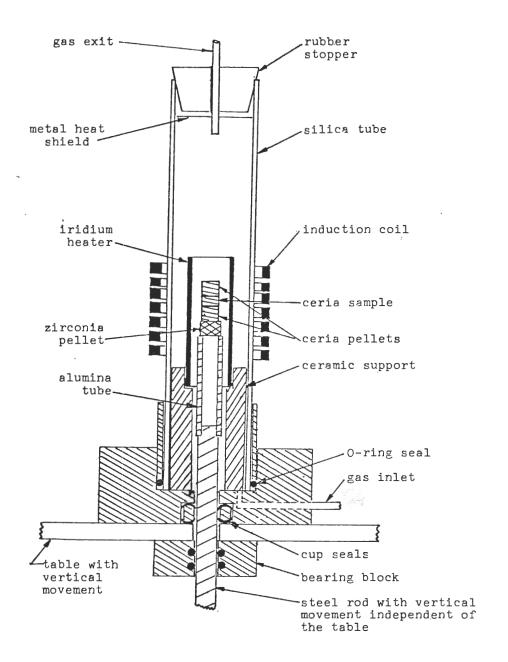


Figure 12. The larger induction furnace.

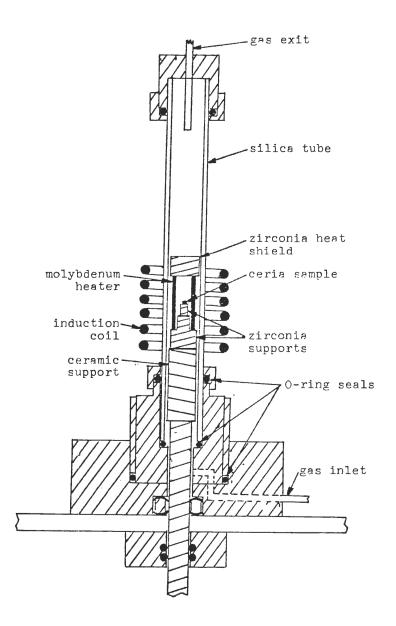
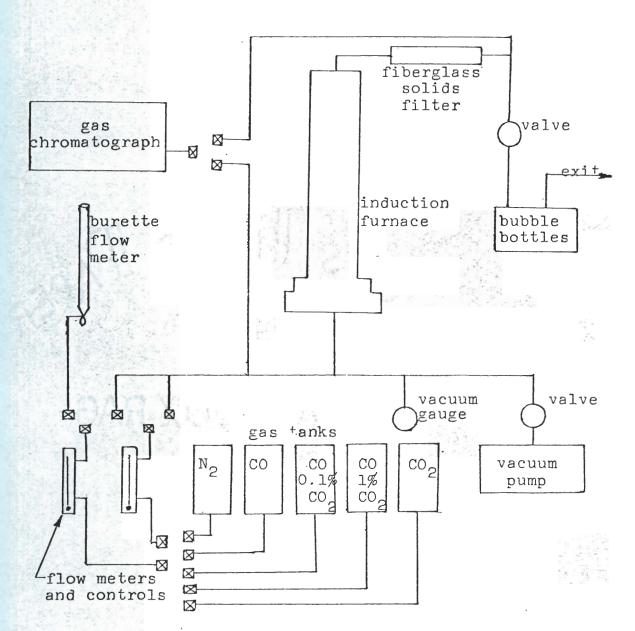


Figure 13. The smaller induction furnace for determining melting points.

the melting temperatures for CeO_{2-x} in selected oxygen pressures. These two furnaces could be used interchangeably with associated apparatus for control and analysis of the atmosphere.


The larger induction furnace shown in Figure 12 consisted of a fused quartz tube 38 millimeters in diameter enclosing the sample, refractory supports, and a iridium metal susceptor The iridium tube was heated by induction heating by the external induction coil. The power was supplied by a 10kw Lepel high frequency generator operating at 3.6 megahertz. Iridium was used as the susceptor because it does not react with the $\mathrm{CO/CO}_{2}$ atmosphere used to establish controlled oxygen The CeO_{2-x} sample was supported by a column consisting of a zirconia pellet, alumina tube, and a steel rod. The iridium tube was supported by an alumina refractor and the furnace base so that it was concentric to the sample column. The furnace was constructed so the iridium tube could be moved vertically, independent of the sample, while an experiment was in progress. This motion was necessary for the molten CeO2-x experiments in which the sample was first preheated within the iridium tube. The iridium tube was then lowered exposing the sample pellet to the electro-magnetic field allowing additional heating and subsequent internal melting.

The smaller induction furnace, Figure 13, was similar to the large furnace, but allowed movement of only the 15 millimeter diameter fused quartz tube. When vapor deposits

on the quartz tube hindered accurate temperature measurements by the optical pyrometer the quartz tube could be adjusted to allow viewing through a clean portion of the tube. The ceria sample was supported on zirconia and remained stationery within the molybdenum susceptor tube. The smaller susceptor tube could be heated to much higher temperatures making possible the measurement of the heating points of selected CeO_{2-x} compositions. The ends of the tube were slotted to allow flow of the CO/CO_2 gas mixture to the sample. However, the molybdenum could not be used in CO/CO_2 atmospheres containing over 10% CO_2 without oxidizing. A small diameter iridium tube would have alleviated this problem but it was not available.

The gas control system, shown schematically in Figure 14, provided the $\mathrm{CO/CO}_2$ gas mixtures and controlled oxygen potentials used during all the experiments in both induction furnaces. The system typically was evacuated prior to admitting controlled $\mathrm{CO/CO}_2$ mixtures. An analysis of the inlet or exhaust gas mixture was obtained with the gas chromatograph. Accurate measurements of the flow rates of either CO or CO_2 before their mixing were obtained with the burette flow meter.

The gas chromatograph was usually used to analyze gas mixtures to determine when equilibrium was attained in the induction furnace. Samples of gases on the inlet and exit sides of the furnace were analyzed and compared. Differences in the amounts of CO₂ in the inlet and exit gases indicated a

⊠ indicates a "Quick-Connect"

Figure 14. Schematic of gas control system.

reaction occurring between the ceria and the gas. Equilibrium in the sample was indicated by an identical analysis of the inlet and exit gas. The gas chromatograph was also used in conjunction with burette flow meter as a check on the ${\rm CO/CO}_2$ analysis of the inlet gas mixture.

The gas chromatograph was a Carle Model 8500 containing a 6 foot long column of Porapak Q, 80-100 mesh, in a 1/8 inch diameter stainless steel tube. The chromatograph used a thermal conductivity detector, helium carrier gas at 5 ml/min, and a column and detector temperature of 50° C. A sample of CO/CO_2 gas could be easily analyzed in five minutes with this chromatograph. If necessary, other gases (N₂, O₂, H₂O, etc.), could be detected with a 4 foot column of Molecular Sieve 5A, 80-100 mesh by using "series/bypass" switching in the chromatograph.

The burette flow meter was used to accurately measure the flow rate of individual gases after they passed through the controlling valve and flow meter. The gas entered the burette and pushed a soap film bubble up the burette. A stop watch was used to measure the time it took for the bubble to indicate a flow of 100 milliliters. The flow rate was then calculated and the burette flow meter removed from the gas system. The analysis of a CO/CO₂ mixture was calculated from the individual CO and CO₂ flow rates. The burette flow meter was also used in the calibration of the gas chromatograph and

to control the helium carrier gas flow rate at 5.0 ml/min.

Temperature Calibration

The establishment of a known sample temperature for the solid CeO_{2-x} sample within the susceptor tube is described in this section. The outer surface of the susceptor tube was observed with an optical pyrometer to determine the "optical temperature." The temperature of the sample within the tube was higher than this external temperature even after the optical temperature was corrected for emissivity and absorption losses. The interior sample temperature was correlated with the optical temperature by determining the optical temperature at known interior temperatures using the melting points of several metals.

The calibration of the interior temperature of the iridium tube was accomplished by determination of the melting points of cobalt (1494°C), palladium (1554°C), and platinum (1772°C). The procedure consisted of placing a small piece of the metal within a cavity between two zirconia pellets. The pellets were placed within the iridium tube in the same position the ceria samples would occupy. The system was then heated to a certain optical temperature, held at temperature fifteen minutes, then cooled and disassembled. The metal was then examined to see if it had melted. A series of experiments above and below the melting points bracked the "optical temperature" corresponding to the melting points within a few

degrees. The melting points for cobalt, palladium and platinum respectively had the measured "optical temperatures" in the iridium tube of 1305°, 1365°, and 1510° + 5°C.

The interior temperature of the smaller induction furnace using a molybdenum tube was calibrated in a similar fashion. Since this tube was used for higher temperatures, the calibration was done using platinum, 1772°C, and rhodium, 1963°C. The "optical temperatures" for these calibration points were 1480° + 5°C and 1680° + 5°C respectively.

The calibration points were used to draw graphs correlating the interior temperature with the observed optical temperature. The graph was assumed to be linear for two reasons: 1) the three points for the iridium furnace calibration had a maximum deviation of 8°C from a straight line, and 2) using a similar induction heated tungsten tube furnace Mordavid, et al. 33, found a linear correction in the optical temperature after using six calibration points.

The accuracy of the temperature control was estimated as \pm 20°C. The error at the calibration points was only about \pm 5°C but the possibility of additional errors was included in the \pm 20°C spread. Other possible errors are variations in silica tube thicknesses changing the transmitance or drifts in the temperature during an experiment.

This section describes the technique for determining the relationship between solid ${\rm CeO}_{2-{\rm x}}$ and the equilibrium oxygen pressure for the temperature range 1477°C to 1808°C, with oxygen pressures ${\rm 10}^{-3}$ to ${\rm 10}^{-12}$ atmospheres. To obtain the low oxygen pressures mixtures of CO and ${\rm CO}_2$ were used with the disassociation of ${\rm CO}_2$ providing the oxygen. Ceria compositions between ${\rm CeO}_{1.97}$ to ${\rm CeO}_{1.65}$ were obtained under these conditions.

Certified grade cerium dioxide powder from Fisher, lot number 753750, was used to dry press sample wafers 1.9 cm diameter, about 0.5 cm thick. A sample wafer was placed between two larger ceria pellets and then positioned in the induction furnace, Figure 12. Care was taken to insure the same positioning of the sample in each experiment. The two thicker ceria pellets and thinness of the sample were utilized to minimize thermal gradients within the sample.

The induction furnace was evacuated to remove air and check the system for leaks. The furnace was then filled with $\rm N_2$, and then heated, for about an hour, up to one of the selected temperatures of 1477°, 1587°, 1725°, or 1808°C. The $\rm N_2$ flow was turned off and the furnace filled with a flowing predetermined mixture of CO and CO $_2$. Using the optical pyrometer, the temperature was adjusted to the exact desired value

and the input power to the furnace carefully noted. The CO/CO₂ gas mixture was analyzed using the gas chromatograph and by measuring each flow rate with the burette flow meter. The flow rate of the gas mixture ranged from 500 to 1000 ml/min which gave linear flow rates of 1.3 to 2.6 cm/sec around the sample. These flow rates were greater than the 0.9 cm/sec value recommended by Darken and Gurry² to eliminate thermal separation effects.

The temperature and gas composition were held constant while the composition of the ${\rm CeO}_{2-{\rm x}}$ approached equilibrium. The furnace temperature was held constant by keeping the input power constant. This was necessary for, after extended times at the higher temperatures, vapor deposits on the silica tube sometimes prevented accurate optical temperature measurements. The ceria-gas reaction was monitored by periodically analyzing the exit gas composition with the gas chromatograph. Typically it required about four hours for the exit gas to match the inlet gas composition, indicating the solid ${\rm CeO}_{2-{\rm x}}$ sample had reached equilibrium. The sample was held at temperature for one additional hour to assure equilibrium was obtained.

The system was purged with nitrogen to help retain the composition and then quenched, cooling to below dull red heat, <800°C, in 30 seconds.

After cooling to room temperature, the sample was removed from furnace and portions weighed in the platinum crucibles

within two minutes for analysis of the composition. The quickness of the weighing was necessary because ${\rm CeO}_{2-{\rm x}}$ is pyrophoric, however, weight gains of the sample were not detected until 5 to 10 minutes after exposure to the air. When oxidation of the ${\rm CeO}_{2-{\rm x}}$ did initiate, there was a rapid, significant weight gain, a change in color from a blue-black to white and considerably heating of the sample. If any slight oxidation of the ${\rm CeO}_{2-{\rm x}}$ occurred before weighing the sample, it was not significant in the determination of the equilibrium composition.

$\frac{\texttt{Procedure for Determining Molten}}{\texttt{CeO}_{2-x}} \, \overset{\texttt{Redox Equilibrium}}{\texttt{Equilibrium}}$

This section describes the experimental technique for determining the redox equilibrium for ceria melted in controlled CO/CO₂ gas mixtures. The experimental method is named the "internal molten zone technique" because the molten oxide is contained within the interior of the sample pellet. This avoids the problems of contamination from contact and reaction with other container materials. The maximum temperature is limited by the liquidus temperature of the oxide being heated.

The internal molten zone technique employed the direct radio frequency (rf) induction heating of the ceria pellet.

The high frequency, 3.6 megahertz, induction heating was necessary due to the low electrical conductivity typical of oxides. Heat was generated within the oxide pellet while the

outer skin layer of the pellet was kept slightly cooler by loss of heat through the high radiation of energy at temperatures above 1800°C. Careful control of the power input allowed enough heat to be generated to melt the interior of the pellet while surface remained solid.

The experimental procedure involved three steps: 1) preheating, 2) induction coupling and obtaining a stable molten zone, and 3) equilibrating the ${\rm CeO}_{2-{\rm x}}$ composition in a fixed ${\rm CO/CO}_2$ gas mixture. The preheating step was very similar to the procedure in the solid ceria experiments except that a ceria pellet about 3 cm high was used instead of a thin sample wafer. The pellet was heated to $1600^{\circ}{\rm C}$ using the iridium susceptor tube around the pellet (very similar to Figure 12). Initial heating was in N₂ but at $1600^{\circ}{\rm C}$ the atmosphere was changed to an appropriate ${\rm CO/CO}_2$ mixture. The pellet was held approximately an hour at these conditions to sinter, to densify, and to adjust the ${\rm O/Ce}$ ratio. If the composition were not adjusted to a value near the expected composition of the molten ceria, the pellet would explode upon melting due to a very rapid explusion of oxygen.

The second step in the melting procedure involved induction coupling to the ceria pellet and establishing a stable internal molten zone. The iridium preheat tube was quickly lowered out of the induction coil and the power increased. The ceria pellet was exposed to the electromagnetic

field and inductively coupled to the rf generator. At 1600°C the electrical conductivity of the oxide was high enough to allow rf induction heating within the pellet and the temperature was further increased up to the melting point. Since the heat was generated within the sample itself, the interior of the pellet was slightly hotter than the surface, which was cooled chiefly by thermal radiation losses. If the input power was carefully controlled, the interior of the pellet was melted while the surface remained solid containing the molten material. The melting of the interior was easily detected on the meters of the rf generator. The molten oxide had a much higher electrical conductivity than the solid. When the material melted the load to which the generator was inductively coupled rapidly changed and the grid current and plate voltage decreased. At this time, the power of the generator was quickly adjusted to prevent a runaway situation and melting of the solid surface layers. The power was decreased to a value that maintained a molten interior but did not cause further melting of the solid surface. The input power was then balanced with the losses of thermal energy creating a stable molten zone.

After the internal molten zone was stabilized, the ${\rm CO/CO_2}$ mixture was adjusted to the ratio desired for the molten ${\rm CeO_{2-x}}$ redox equilibrium thus beginning the third step of the procedure. The pellet was held at constant temperature for

about four hours until the CeO_{2-x} composition equilibrated with the fixed CO/CO_2 gas mixture. Equilibrium was detected with the gas chromatograph by equal analyses of the inlet and exhaust gases. Conditions were maintained for an additional hour to assure equilibrium and then the sample was quenched in nitrogen.

The composition of the molten ceria was assumed to remain essentially constant during quenching. The pellet cooled from the molten state to below red heat (less than 800°C) in about 45 seconds. Since N_2 is not an actively reducing gas and there were no sources of oxygen in the system, the change in sample composition upon quenching was negligible. The cooled sample contained material of the same composition as the liquid and the unmelted solid surface layers. regions were very easily distinguished after crushing the sample pellet. The molten material had solidified into relatively large crystal grains and the solid maintained a very fine grain structure. The two materials were separated and the composition determined by weight gain upon oxidation to CeO2 0. The composition of the molten oxide was determined for every experiment, whereas the composition of the solid oxide was measured in only a few experiments.

Since there was no means of measuring the temperature of the molten ceria with the internal molten zone technique, another method was necessary to determine the liquidus temperature. Small samples of ceria were heated to various temperatures in a known gas mixture and examined to determine at what temperature the melting first occurred. The smaller diameter induction furnace, Figure 13, capable of achieving temperatures above 2000°C, was used because the larger furnace could not be consistently heated above 1830°C.

The small induction furnace used a molybdenum susceptor which reacted with the $\mathrm{CO/CO}_2$ atmosphere if greater than 10% CO_2 was present thus limiting the oxygen pressure range. A small diameter iridium tube would circumvent this problem but was not available for these experiments.

The procedure was to place a piece of ceria about 2 millimeters in diameter on the zirconia support shown in Figure 13. The furnace was evacuated and then filled with a known CO/CO₂ mixture. The furnace was then quickly heated, reaching the experimental temperature in one to two minutes. The gas chromatograph was used to monitor the exit gas to determine when the ceria had equilibrated with the gas mixture. Since the ceria sample was small, equilibrium was typically reached in 10 to 15 minutes. The sample was quenched and removed for examination. Samples were heated to successively

higher temperatures until evidence of melting was observed, and the melting temperature for that gas mixture determined. The series of experiments was then repeated using a different gas mixture.

To detect melting of the material, the ceria sample was broken in half exposing its interior. The pieces were placed in the scanning electron microscope, SEM, and examined at high magnifications. Unmelted samples were distinguised by a blocky grain structure with sharply defined edges. Melted samples had smooth flowing features without evidence of the previous grains.

Control of Oxygen Pressures

The low oxygen potentials or oxygen partial pressures in the furnace were established by controlling the ${\rm CO/CO_2}$ ratio in the gas mixture. Well established thermodynamic techniques 3,4 based on the disassociation of ${\rm CO_2}$, equation 1, were used to calculate the oxygen pressure.

$$2CO_2 \rightarrow 2CO + O_2 \tag{1}$$

The free energy of the reaction, ΔF , at the desired temperature was calculated from tables of thermodynamic data³⁸. The oxygen pressure was related to the free energy, temperature, and CO/CO_2 ratio by equations 2-4.

$$\Delta F = -RT \ln K \tag{2}$$

$$\Delta F = -RT \ln \left[\frac{(Pco)^2 (Po_2)}{(Pco_2)^2} \right]$$
 (3)

$$Po_2 = \left(\frac{Pco_2}{Pco}\right)^2 \exp \left(\frac{\Delta F}{-RT}\right) \tag{4}$$

where: T = absolute temperature

K = equilibrium constant for reaction (1)

R = gas constant

 Po_2 = partial pressure of O_2

 $Pco_2 = partial pressure of CO_2$

Pco = partial pressure of CO

The total pressure in the system was assumed to be one atmosphere and the partial pressures of CO and ${\rm CO}_2$ were assumed equal to their volume percents in the gas mixture. Oxygen pressures in the range 10^{-3} to 10^{-12} atmospheres were attained by this technique.

The utilization of $\mathrm{CO/CO}_2$ gas mixtures was limited to values yielding oxygen pressures less than about 10^{-3} atmospheres. At higher oxygen pressures the $\mathrm{CO/CO}_2$ ratio in the inlet or exhaust gas did not describe the conditions at the elevated temperature. The disassociation of CO_2 was high enough to significantly alter the $\mathrm{CO/CO}_2$ ratio making the calculations meaningless.

The lower range of oxygen pressure was limited by the occurrence of a side reaction in the gas. Under certain conditions carbon mcnoxide decomposed by Equation 5.

$$2CO \rightarrow CO_2 + C$$
 (5)

Thermodynamic calculations indicated the reaction should occur at room temperature but the kinetics of the reaction are very slow and usually prevent significant decomposition of CO. kinetics require high temperatures and a catalyic surface. temperatures above 1500°C the reaction is not thermodynamically favorable in most ${\rm CO/CO_2}$ mixtures. The reaction occurred in the cooler regions of the furnace (estimated at 300-700°C) as the gas was being heated and the deposition of solid carbon was a clear indication of the reaction. However, the rate of the reaction was so slow that it usually did not significantly alter the CO/CO2 ratio. The inlet and exhaust gases usually would come to equilibrium within the resulation of the gas chromatograph even when deposited carbon was observed in portions of the furnace. In general, equivalent inlet and exhaust gas ratios were established if the CO2 content was 1% or greater. An inlet gas of 0.1% CO2 was converted to an exhaust gas containing 0.2 to 0.3% CO_2 . This indicated that reaction 5 would alter the ${\rm CO}_2$ content by a few tenths of a percent which became significant only when the CO2 content was less than 1%. Thus minimum oxygen pressure obtainable

was limited by the inability to utilize gas mixtures containing less than 1% ${\rm CO}_2$.

The ceria sample was not contaminated by carbon deposition from reaction 5. During equilibration, the ceria samples were at 1500° or higher, much above the temperature at which this reaction is thermodynamically favorable. The reaction could not occur while the sample was being preheated up to the high temperature because nitrogen was used during preheating instead of the CO/CO₂ mixtures.

The accuracy of the calculated oxygen pressure depended upon the accuracy of the thermodynamic data, the experimental temperature, and the composition of the CO/CO₂ gas mixture. The largest possible error in the oxygen pressure was calculated by combining the worst errors in the temperature and gas composition. Error in the temperature was + 20°C. Error in the gas composition was based upon the error in the individual flow rates which was usually a few percent. Using the worst possible combination of errors, the highest and lowest possible oxygen pressures were calculated along with the "correct" oxygen pressure for each experiment. This information is shown in Appendix A.

Determination of CeO_{2-x} Composition

The ${\rm CeO}_{2-{\rm x}}$ composition or the O/Ce ratio of the ceria sample after quenching was determined by the weight change

upon conversion to a known reference composition $CeO_{2.000}$. Substoichiometric ceria, CeO_{2-x} converts to stoichiometric $CeO_{2.000}$ when heated in air at 800°C as shown in equation 6. If the initial and final weights of a ceria sample were known, the composition of value of x in the initial CeO_{2-x} was easily calculated.

$$CeO_{2-x} + x/2 O_2 \rightarrow CeO_{2.0}$$
 (6)

The experimental procedure was to remove the ${\rm CeO}_{2-{\rm x}}$ sample from the furnace system after it had cooled overnight in N2. The sample was broken and portions placed in two preweighed platinum crucibles. The platinum and ceria were then weighed together and placed in a small furnace. The furnace which had openings to allow sufficient air ventilation was heated overnight at 800°C. After cooling the platinum and ceria were reweighed. Using the weights of the platinum crucibles (PT), the platinum and ${\rm CeO}_{2-{\rm x}}$ (CX) and the platinum and ${\rm CeO}_{2.0}$ (CD), the value of x was calculated using equation 7 and the PDP-8 computer.

$$x = 10.7578 * \frac{(CD - CX)}{(CD - PT)}$$
 (7)

The numerical factor in equation 7 is the molecular weight of $CeO_{2,0}$ divided by the atomic weight of oxygen.

The error in the calculated ceria composition depended upon the accuracy of the three weighings, estimated as \pm 0.0002

grams. The largest possible error in the composition was calculated by combining the errors in the weighings to give the greatest deviation from the "correct" value. This error was calculated and printed as a "+" value following the "correct" composition as shown on the computer printouts in Appendix A.

CHAPTER IV

RESULTS

This chapter lists the results from the redox experiments and melting point determinations for CeO_{2-x} . The chapter is divided into sections covering the solid CeO_{2-x} - oxygen pressure equilibrium, the internal molten zone experiments, and the melting point determinations. The experimental data used to calculate the results are given along with error calculations in the computer printouts in Appendix A. The oxygen pressures were calculated using thermodynamic data from the JANAF tables 38 .

Solid CeO_{2-x} - Oxygen Pressure Equilibrium Results

The results of equilibrating solid CeO_{2-x} with atmospheres of selected oxygen pressures at 1477°, 1587°, 1725°, and 1808°C are given in Tables 2, 3, 4 and 5 respectively. The tables list the percent CO_2 in the CO/CO_2 mixtures, the calculated oxygen pressures, and the two measured solid compositions for each experiment. The oxygen pressure and compositions are plotted in Figure 15 with straight isotherms from a linear regression calculation.

$\hbox{Molten CeO}_{2-x} \ \hbox{--} \hbox{Redox Equilibrium Results}$

The results of the internal molten zone experiments are

Table 2. Oxygen Pressure-Composition Relationship for CeO_{2-x} at 1477°C.

Experiment Number	Percent CO ₂	-Log P _{O2}	Compo n in	sition CeO _n
18 19	24.2 31.0	8.84 8.54	1.8148 1.8332	1.8175 1.8315
25	39.3	8.01	1.8463	1.8457
26	39.3	8.23	1.8455	1.8416
28	92.1	5.71	1.9446	1.9401
29	80.5	6.61	1.8991	1.9010
30	6.0	10.23	1.7874	1.7823
31	6.0	10.23	1.7778	1.7778
32	10.1	9.75	1.7927	1.7971
33	6.1	10.22	1.7603	1.7612
34	10.1	9.74	1.7765	1.7770
35	6.8	10.12	1.7680	1.7581
36	4.8	10.45	1.7622	1.7586
37	1.1	11.76	1.7240	1.7223
39	2.4	11.07	1.7382	1.7369
40	0.2	13.24	1.6843	
42	38.3	8.26	1.8481	
43	48.4	7.90	1.8660	1.8618
44	95.8	5.13	1.9548	1.9542
45	1.0	11.84	1.7183	1.7228
57	1.0	11.83	1.7202	1.7247
58	96.4	5.00	1.9539	1.9512
64	96.5	4.96	1.9574	
78	59.0	7.53	1.8719	1.8726
79	84.4	6.38	1.9195	
80	95.8	5.13	1.9583	

Table 3. Oxygen Pressure-Composition Relationship for CeO_{2-x} at 1587°C.

Experiment Number	Percent CO2	-Log P _{O2}	Compo n in	sition CeO _n
60	1.0	10.85	1.6939	1.6996
61	86.3	5.26	1.9093	1.9076
62	48.3	6.92	1.8541	1.8574
63	7.9	9.00	1.7730	1.7811
72	1.0	10.85	1.7054	1.6990
73	4.5	9.52	1.7554	1.7607
74	95.9	4.12	1.9473	
81	41.1	7.18	1.8351	1.8375
82	28.8	7.65	1.8126	1.8045
83	27.8	7.69	1.8169	1.8162
84	17.0	8.24	1.8018	1.8069
85	71.8	6.05	1.8727	1.8769
86	2.2	10.16	1.7277	1.7178
87	0.2	12.26	1.6727	1.6737
88	94.2	4.44	1.9386	1.9389

Table 4. Oxygen Pressure-Composition Relationship for CeO_{2-x} at 1725°C.

Experiment Number	Percent CO ₂	-Log P _{O2}	_	sition CeO _n
89	90.4	3.84	1.8988	1.8973
90	80.9	4.53	1.8707	1.8765
92	28.8	6.57	1.7889	1.7960
93	26.2	6.68	1.7894	1.7961
94	39.3	6.16	1.8172	1.8182
95	59.4	5.45	1.8429	
96	0.3	10.83	1.6518	1.6538
104	3.2	8.75	1.7094	1.7105
105	10.5	7.65	1.7582	1.7586
106	4.5	8.44	1.7276	1.7298
107	1.0	9.77	1.6761	1.6847

Table 5. Oxygen Pressure-Composition Relationship for CeO_{2-x} at 1808°C.

Experiment Number	Percent CO ₂	-Log P _{O2}	_	ceO _n
97	80.1	4.00	1.8576	1.8559
98	87.8	3.49	1.8682	1.8735
99	47.3	5.30	1.8120	1.8109
100	11.8	6.95	1.7548	1.7552
103	3.2	8.17	1.7092	1.7101
108	1.0	9.19	1.6616	1.6525
109	29.2	5.97	1.7823	1.7867

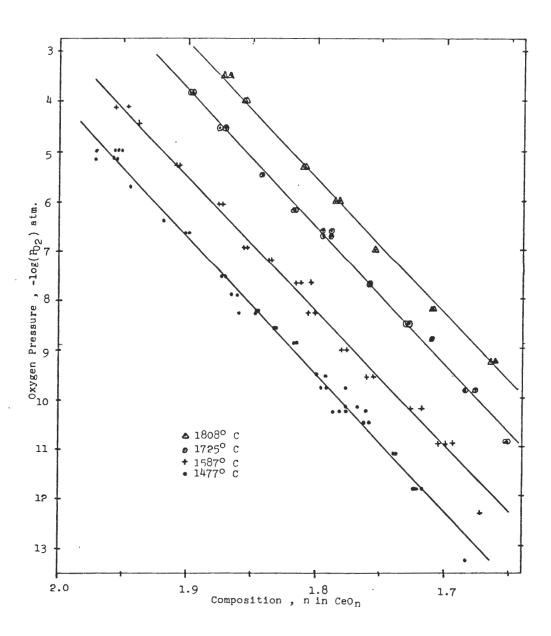


Figure 15. Results for Solid CeO $_{2-x}$ - Oxygen Pressure Equilibrium.

listed in Table 6. The percent CO_2 in the $\mathrm{CO/CO}_2$ gas mixture and the measured oxide compositions are given. The composition of the molten CeO_{2-x} was measured in all experiments but the solid CeO_{2-x} was measured in only three experiments. Two determinations of the molten CeO_{2-x} compositions were made for the experiments in which the solid compositions was not measured. Oxygen pressures for the gas mixtures are not given here because the necessary temperatures were not measured in the experiments.

Table 6. Molten CeO_{2-x} Redox Equilibrium Results

Percent CO ₂	Composition Liquid	n in CeO _n Solid
1.0	1.5968	1.6601
1.0	1.6000	
5.3	1.6416	1.7360
10.0	1.6631	
	1.6745	
15.6	1.6926	
29.5	1.7124	
	1.7164	
36.7	1.7294	1.8225
60.9	1.7552	
3 -	1.7657	
	1.0 1.0 5.3 10.0	CO ₂ Liquid 1.0 1.5968 1.0 1.6000 5.3 1.6416 10.0 1.6631 1.6745 15.6 1.6926 29.5 1.7124 1.7164 36.7 1.7294 60.9 1.7552

Liquidus Temperature Determinations

The liquidus temperatures of CeO_{2-x} in equilibrium with three different CO/CO_2 gas mixtures were determined in the small induction furnace. The percent CO_2 , the liquidus temperature, and the calculated oxygen pressure are listed in Table 7.

Table 7. Melting Temperatures for CeO_{2-x} in Equilibrium with Various Oxygen Pressures.

Percent	Melting Point	Oxygen Pressure
CO ₂	°C	-Log P
_		2
1.0	1850	8.9
5.3	1930	6.9
10.0	1970	6.1

CHAPTER V

DISCUSSION OF RESULTS

The experimental results are analyzed in this chapter. First, the equilibrium between solid ${\rm CeO}_{2-{\rm x}}$ and oxygen pressure is discussed with a comparison to the literature information at lower temperatures. Then the internal molten zone experiments are used to establish the composition changes in molten ${\rm CeO}_{2-{\rm x}}$ as a function of oxygen pressure. The derivation of the liquidus line is explained and the resulting phase diagram presented. The final section reviews the utilization of the internal molten zone technique to determine redox equilibria in molten refractory oxides that possess stoichiometric changes.

Solid CeO_{2-x} - Oxygen Pressure Equilibrium

The redox equilibrium in solid CeO_{2-x} is presented in Figure 15 as isotherms at 1477°, 1587°, 1725°, and 1808°C. To compare these results with equilibrium at lower temperature the oxygen pressure is shown as isobars in Figure 16. The isobars below 1500°C were from results of Panlener²⁴ which were replotted in Figure 21 of Appendix C for easier analysis.

Comparison of the results of this study and those of Panlener show good agreement at low oxygen pressures and a

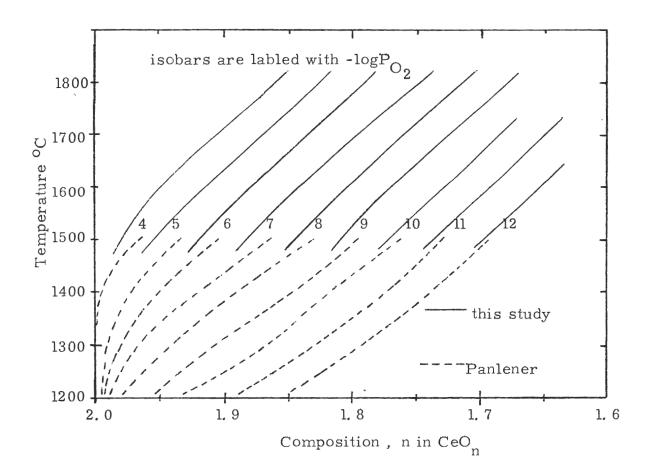


Figure 16. Solid CeO_{2-x} - Oxygen Pressure Equilibrium from this Study Compared with Lower Temperature Equilibrium Determined by Panlener. 24,25

small disagreement at higher oxygen pressures. At oxygen pressures of 10^{-10} to 10^{-12} atm., the results agree within the reported experimental errors. At pressures of $10^{-4}\,\mathrm{or}$ 10^{-5} atm. the disagreement is the most extreme. The difference expressed in the terms of ceria composition is a variation of 0.1 to 0.2 in the value of n in CeO_n. In both studies the compositions were determined by weight gains upon oxidation of CeO_{2-v} to CeO_2 . The region of disagreement is at ceria compositions which had very small weight gains upon oxidation. Any error in measuring this weight gain resulted in significant errors in the composition. Panlener 24 was very skeptical of his own results in this composition region because of possible errors in his method of weighing at high temperatures and uncertainty of complete oxidation to CeO_{2.00}. The present investigation avoided the difficulties that Panlener encountered by doing all weighings at room temperature and by oxidation at conditions well known to give stoichiometric CeO2.

A continous single phase region from CeO₂ to CeO_{1.65} was indicated by the slope of the isotherms in Figure 15. An isotherm would have to be horizontal (constant pressure with varying bulk composition) to indicate a two phase region. The results of Panlener, Appendix C, also showed linear isotherms with similar slopes at temperatures above 1000°C. At lower temperatures, 700-800°C, the slopes of Panlener's isotherms decrease to a almost horizontal region near CeO_{1.9}. This

decrease in slope is due to the influence of the two phase region at slightly lower temperatures. At elevated temperatures, neither the isotherms of this investigation, Figure 15, nor of Panlener's study, Appendix C, show any similar decrease in slope. The single phase region extending from ${\rm CeO}_2$ to ${\rm CeO}_{1.65}$ is consistent with the results reported by Brauer and Gingerich¹⁹, Kuznetsov, et al.²⁰, and Panlener^{24,25}. But Bevan and Kordis²¹ reported a two phase region in the range ${\rm CeO}_{1.72}$ - ${\rm CeO}_{1.70}$ at temperatures above 1023°C. In order for this two phase region not to conflict with other results, it must close between 1023° and 1300°C to allow for the single phase region. A similar relationship is well established in the region ${\rm CeO}_2$ - ${\rm CeO}_{1.8}$ in which the two phase region closes at about 685°C to form the single phase region at higher temperatures.

${\tt Molten~CeO}_{2-x} \ {\tt - Redox~Equilibrium}$

In this section the results of the internal molten zone technique are analyzed to determine the usefullness of this method in the investigating redox equilibrium in molten $$^{\text{CeO}}_{2-x}$$

When discussing the internal molten zone technique, the conditions in the pellet can not be described with traditional equilibrium concepts. The solid exterior surface of the sample exposed to the ${\rm CO/CO}_2$ gas mixture was typically

between 1800° and 2000°C. The molten interior of the CeO_{2-x} pellet was at the liquidus temperature between about 1850 and 2400°C, depending upon the composition. The obvious inherent difficulty of the technique was selecting the proper temperature for use in the calculation of the oxygen potential of the CO/CO_2 gas mixture. In the internal molten zone technique, equilibrium was assumed between solid oxide, liquid oxide, and oxygen in the gas phase. The equilibrium conditions are thus given on the phase diagram at the intersection of the pertinent oxygen isobar with the solidus and liquidus lines. The liquid compositions listed in Table 6 represent the equilibrium liquidus composition for each experimental condition.

In a similar determination of the redox equilibrium in molten ${\rm UO}_{2\pm x}$, Chapman, et al. 5 , made a strong case for using the temperature of the molten urania as the conditions establishing the oxygen potential in the gas mixture. The temperature and composition of the molten ${\rm UO}_{2\pm x}$ was believed to represent conditions on the liquidus line since there was equilibrium between solid and liquid phases. In the following sections evidence is presented that the temperature of the molten ${\rm CeO}_{2-x}$ also determined the oxygen pressure in the ${\rm CO/CO}_2$ mixture.

Analysis of the redox equilibrium data, presented in Table 6, for molten CeO_{2-x} was complicated by the lack of any

literature values for the liquidus and/or solidus temperatures in the CeO_2 - Ce_2O_3 system and the nature of the internal molten zone technique prevented direct measurements of the liquid temperature. For the first step of the analysis, oxygen pressures were calculated for a range of temperatures for each gas mixture listed in Table 6. A portion of this information is shown in Figure 17. Calculated oxygen pressures, $-\log P_{O_2}$ atm., are given at their corresponding temperatures along vertical lines representing the liquidus composition determined in the stated gas mixture. Sloping isobars at lower temperatures represent solid CeO_{2-x} -oxygen pressure equilibrium. goal of the analysis was to extend the isobars for solid CeO_{2-x} upward to meet the liquidus compositions (vertical lines in Figure 17) at the appropriate temperature. However this cannot be a simple extrapolation of the sloping isobars because a horizontal (isothermal) portion must be included as the isobar crosses the two phase region between the solidus and liquidus lines. To determine the location of the isothermal portion of a particular isobar, a measurement of the melting point of CeO_{2-x} in that oxygen pressure was necessary. The following section, "Determination of Liquidus Temperatures for CeO_{2-x} describes these measurements.

An effort was also made to establish the composition of the solid in equilibrium with the molten ceria by analysis of the unmelted skin adjacent to the molten zone. Selected

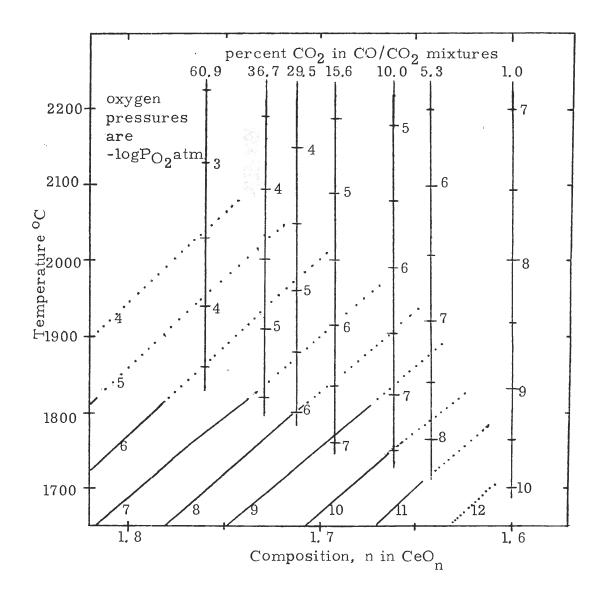


Figure 17. Liquidus Compositions from Internal Molten Zone Experiments Compared with Oxygen Isobars for Solid CeO . Vertical lines represent liquidus compositions determined in the stated gas mixtures with oxygen pressures calculated for a range of temperatures.

solidus composition values are listed in Table 6, however this data was inconsistent and probably does not represent equilibrium conditions for the solidus because of the large thermal gradients in the solid. Therefore, the solid compositions in Table 6 cannot be used in the analysis of the redox equilibrium.

Determination of Liquidus Temperatures for CeO_{2-x}

To determine the location of the liquidus and solidus curves on the ${\rm CeO_2-Ce_2O_3}$ phase diagram it was necessary to measure the melting points for various ceria compositions. The smaller induction furnace, Figure 13, was necessary equipment because the larger furnace would not heat to the desired temperatures. Melting points for three ceria compositions were measured using the same ${\rm CO/CO_2}$ mixtures (10%, 5.3%, and 1% ${\rm CO_2}$) that had been used in previous internal molten zone experiments. The use of these specific gas mixtures allowed the measurement of temperatures that correlated with the determined liquidus compositions. It was not necessary to know the solid ceria composition since the results were solidus or liquidus temperatures corresponding to particular gas mixtures. Oxygen pressures were calculated for the experiments from the ${\rm CO/CO_2}$ mixture and the measured temperature.

The analysis of the technique for determining the melting points depended upon two major considerations. First was the

question of whether or not there was equilibrium between the gas mixture and the ceria. The second concerned the ability to detect the initial melting of the ceria.

Evidence of equilibrium between the gas and the solid ceria was obtained from the gas chromatograph. Analysis of inlet and exit gas compositions during the initial minutes of an experiment indicated higher CO₂ concentrations in the exit gas. The amount of excess CO₂ decreased until after 10 to 15 minutes at constant temperature the inlet and exit concentrations were equal and remained constant. This was expected because the ceria sample initially contained more oxygen than the final composition. The ceria was being reduced by the gas, giving off oxygen which reacted to form excess CO₂. When the reaction ceased, and equilibrium was established between the gas and solid ceria, the inlet and exit gas compositions were identical.

The melting characteristics of a solid solution should be reviewed to understand the question concerning the ability to detect the initial melting (solidus temperature) of the ceria samples. The melting behavior of a solid solution depends partly on the experimental conditions. Two techniques will be considered. First, a sample sealed in an inert capsule to prevent any bulk composition change in the sample will melt over a temperature range. Melting initiates at the solidus temperature for the composition and is complete

at the liquidus temperature. The difference between these temperatures might be fifty to a hundred degrees in some To detect the solidus temperature in this technique requires a method for detecting the formation of the initial infinitesimal quantity of liquid. The second technique involves a sample in equilibrium with a gas of constant composition. In this method, the bulk sample composition must change in order to remain in equilibrium with the gas phase. If equilibrium conditions could be maintained in this technique, a solid solution would melt completely at a fixed temperature instead of over a temperature range. Consider an oxide solid solution in equilibrium with a flowing CO/CO, gas mixture. As the oxide is heated, the solid composition changes to remain in equilibrium with the oxygen partial pressure produced by the gas mixture. When the solidus temperature is reached, the system contains a fixed oxygen pressure, solid oxide of the solidus composition, and liquid oxide of the liquidus composi-If equilibrium conditions were maintained between the oxide and gas, the entire melting would take place isothermally. This requires a change in the bulk sample composition from the solidus to the liquidus composition. The liquidus and solidus temperatures are identical if equilibrium is maintained with a set gas composition.

The technique for determining the melting points in this study was best described by the second technique above. The

method of heating the sample in the flowing gas mixture and holding at a particular temperature allowed equilibrium to be established between the ceria and gas. Samples were heated in the same gas mixture to temperatures increasing in steps of about 10° to 20°C. Below the melting point the samples did not show evidence of liquid formation upon examination in the scanning electron microscope. Sample heated above the melting point has evidence of complete melting. The melting point for each gas mixture was determined with an accuracy of about \pm 20°C by this technique.

The measured liquidus temperatures for ${\rm CO/CO}_2$ gas mixtures containing 1.0%, 5.3%, and 10.0% ${\rm CO}_2$ are listed in Table 7 along with calculated oxygen pressures. Attempts to determine liquidus temperatures in gas mixtures of higher ${\rm CO}_2$ content failed due to oxidation of the molybdenum tube.

Determination of the Liquidus and Solidus Lines

The procedure used for the determination of the liquidus and solidus curves is described in this section. Liquidus compositions for specific gas mixtures are listed in Table 6. Liquidus temperatures and oxygen pressures for three of these gas mixtures are given in Table 7. The three known liquidus compositions and temperatures were plotted in Figure 18. Isobars of these temperatures were extended from the composition points to the left across the two phase (liquid and solid)

region. The corresponding isobars that had been determined for the solid phase at lower temperatures were extrapolated upward to meet the horizontal isobars. The intersection of these lines determined the solidus composition for that specific oxygen pressure. The portions of the liquidus and solidus lines determined by this procedure are shown as solid lines in Figure 18.

The initial approximation of the remaining portions of the liquidus line was drawn by extending the determined portions of the lines to the melting points of CeO2, 2480°C, and Ce2O3, 1692°C. The remaining liquidus compositions were assigned temperatures based upon this line. Oxygen pressures were calculated from the ${\rm CO/CO}_{2}$ gas mixture and these temperatures. Solidus points were then determined by the intersection of the horizontal isobars with the corresponding extrapolated oxygen pressures for CeO_{2-x} . When discrepancies occurred slight adjustments were made to the liquidus and solidus temperature until smooth curves, consistent with the oxygen isobars, were obtained. Table 8 lists the measured and derived temperatures, compositions, and oxygen pressures for the specific CO/CO2 gas mixtures. Figure 19 shows this experimental data in a composite diagram along with the solid CeO_{2-x} - oxygen pressure equilibrium at lower temperatures.

The phase diagram, for the ${\rm CeO}_2$ - ${\rm Ce}_2{\rm O}_3$ system is presented as Figure 20. This diagram shows equilibrium oxygen

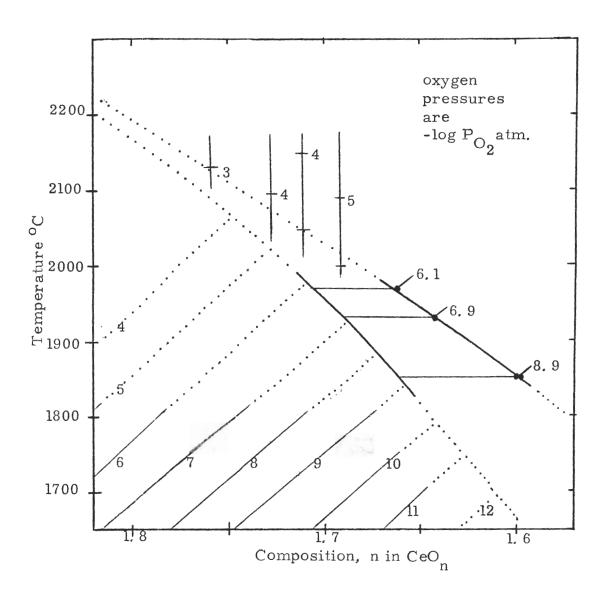


Figure 18. Derivation of Liquidus and Solidus Curves with Measured Temperatures for Three Liquidus Compositions.

Table 8. Measured and Derived Data for Liquidus and Solidus Curves for Specific Gas Mixtures.

Percent CO ₂	Composition, Derived Solidus	n in CeO _n Measured Liquidus	Tempera Derived	ture, °C Measured	Oxygen Pressure -Log P _O 2
1.0	1.66	1.60		1850	8.9
5.3	1.69	1.64		1930	6.9
10.0	1.71	1.66		1970	6.1
15.6	1.72	1.69	2010		5.4
29.5	1.74	1.71	2050		4.5
36.7	1.75	1.73	2070		4.1
60.9	1.78	1.76	2030		3.0

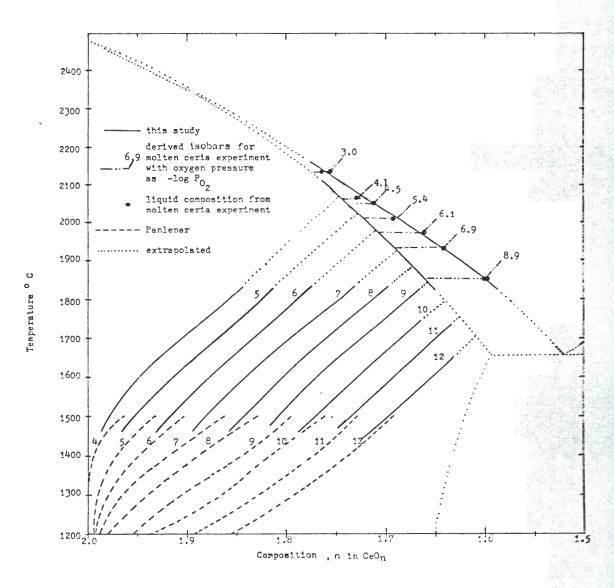


Figure 19. Composite Diagram for CeO -Ce O System Showing Results of this Study and Data from Panlener 24,25.

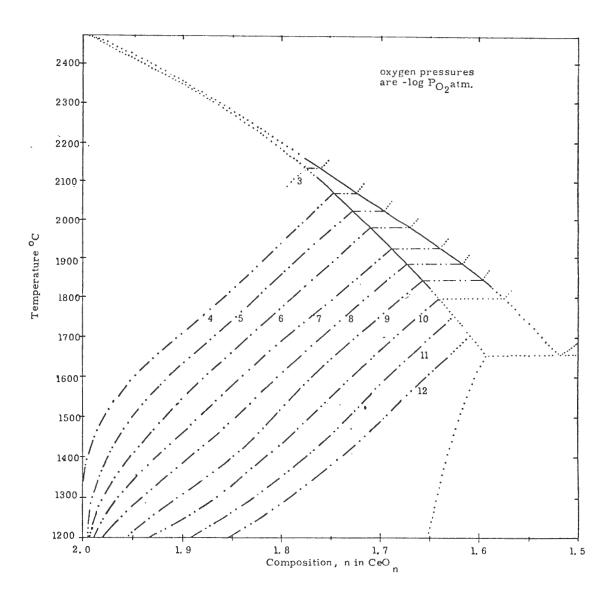


Figure 20. Phase Diagram for CeO2-Ce2O3 System above 1200°C with Isobars Showing Oxygen Pressure Equilibrium.

pressures as isobars extending from 1200°C to the liquidus line.

Evaluation of the Internal Molten Zone Technique for Determination of Redox Equilibrium

In the preceding sections of this work it has been possible to assemble a phase diagram for CeO2-x at temperatures up to and including the liquidus curve for this material. stoichiometric changes observed in solid CeO_{2-x} were collected using conventional isothermal equilibration of ceria samples in controlled oxygen pressures. However, the unique and potentially troublesome information generated in this work was obtained using the internal molten zone technique. areas of uncertainty in this approach include the uniformity of the temperature within the molten liquid itself and the large temperature gradients existing across the solid skin required to maintain and contain the molten material. order to utilize molten zone data it was necessary to postulate that the temperature of the molten pool and solid skin adjacent to the pool were essentially at the liquidus temperature of the equilibrium system for CeO_{2-v} and that this temperature controlled the oxygen pressure of the CO/CO2 gas mixtures used. The following discussion is an attempt to justify these statements.

During the induction heating of the CeO_{2-x} samples, the presence of the heating caused stirring in the molten material.

These currents certainly acted as a source of motion to minimize temperature gradients in the liquid. In addition, experimental evidence was also collected to support the lack of temperature gradients in the liquid. In experiments using the same ${\rm CO/CO_2}$ gas mixtures but varying the input power to the sample an identical liquid compositions, within experimental error, was measured. The higher input power did not serve to increase the temperature of the liquid but merely increased the size of the molten pool. Apparently any effort to increase the temperature of the molten pool was practically impossible since the liquid was in contact with the solid ${\rm CeO_{2-x}}$ skin. This behavior was used advantageously to obtain large samples for the measurement of the liquid composition.

While enough material was readily available for determining the liquid composition, the composition of the thin solid layer of material containing the molten zone was difficult to measure. The steep temperature gradient in the solid skin was accompanied by a composition gradient and it was impossible to select areas small enough to obtain reproducible composition values. Even attempts to obtain the solid sample from the region directly below the center of the molten zone gave inconsistent results. Only in the experiments using the 1% CO₂ mixture that resulted in samples with the lowest internal temperature was the measured solid composition near the solidus composition shown in Figure 18. The lower temperature and

reduced temperature gradients apparently provided a sample whose composition more nearly approached the equilibrium solidus composition.

Undoubtedly the most serious problem involved in using the internal molten zone technique is how to assign a reasonable oxygen pressure within the molten zone, or simply stated, what temperature should be used to calculate the oxygen pressure from the different CO/CO, gas mixtures. While no effort was made during this research to evaluate the mechanism whereby the various gases and/or oxygen was transmitted through the skin to the center of the sample, it became apparent that using the internal molten zone temperature gave the most consistent and realistic oxygen pressure values. Certainly the temperature controlling the oxygen potential must be between the surface temperature of the skin and the higher interior temperature of the sample. If the sample surface temperatures (some 400-500°C below the interior temperature) were utilized the consistency shown in the phase diagram, including the agreement with the extrapolation from solid CeO_{2-x} data, breaks down severely. Other investigators have used the internal molten zone technique to obtain redox equilibrium in molten UO_{2+x}^{5} . They were able to use liquidus and solidus temperatures obtained from an independent investigation to calculate oxygen pressures in ${\rm CO/CO_2}$ and ${\rm H_2/H_2O}$ gas mixtures and obtain good agreement between the molten redox equilibrium and the extrapolated lower temperature solid $\ensuremath{\text{UO}}_{2+x}$ data.

Although the preceding discussion cannot satisfy all objections to using the internal molten zone technique to determine redox equilibrium in nonstoichiometric refractory oxides, it certainly is evident that consistent and reasonable phase diagrams can be assembled for CeO_{2-x} and UO_{2+x} using data gathered with this technique. Since the technique is usable in very high melting refractory oxides it avoids many of the material containment and contamination problems associated with any other techniques. The only limitation is the need to use oxides that possess enough high temperature electrical conductivity to support eddy current heating needed for the successful generation of a stable internal molten zone.

CHAPTER VI

CONCLUSIONS

- 1. The phase relations for solid CeO_{2-x} was determined at 1744°, 1587°, 1725° and 1808°C and a continuous solid solution region was found from CeO_2 to $CeO_{1.65}$ in equilibrium with oxygen pressures between 10^{-3} and 10^{-12} atmospheres. The data are presented in Figure 15.
- 2. The internal molten zone technique was used to establish equilibrium between molten ${\rm CeO}_{2-{\rm x}}$ and oxygen pressure generated in controlled ${\rm CO/CO}_2$ gas mixtures.
- 3. Liquidus temperatures were experimentally measured and combined with the molten CeO_{2-x} composition data from the internal molten zone experiments to establish the liquidus curve. The intersection of the extrapolated oxygen isobars for solid CeO_{2-x} with the oxygen pressure values for molten ceria were used to approximate the liquidus curve. This information is shown in Figure 19.
- 4. A phase diagram, Figure 20, for the ${\rm CeO_2-Ce_2O_3}$ system was presented extending from 1200°C to the liquidus line showing oxygen pressure equilibrium as isobars.
- 5. The internal molten zone technique was reveiwed and demonstrated to be a viable method for establishing redox equilibrium in nonstoichiometric refractory oxides.

APPENDIX A

The experimental data, calculated oxygen pressures, ceria compositions, and error estimations are given in this section. Information for each individual experiment is grouped under the experiment number, "EXP NUMBER." The experiments are grouped by temperatures in increasing order. The first few lines give the temperature gas flow rates and errors in the flow rates. The oxygen pressure for the experiment was calculated and listed as log PO2. The maximum possible errors in the oxygen pressure were calculated by combining the errors in gas flows and a 20° deviation in temperature. The minimum and maximum oxygen pressures are listed in the two lines immediately below the correct value. The ceria composition was calculated from the weights of the platinum crucible, crucible plus CeO_{2-x} , and crucible plus CeO_2 . The value of n in CeO, is printed following "CEO." An maximum error in the composition was calculated and printed as a "+" value. This error was found by assuming a 0.0002 gram error in each weighing and combining the errors to give the maximum error in the composition.

```
FAP NUMBER : 18
                     CU2:118 % EKADK:2
CU:370 % EKADK:2
 TEMP C: 14/7 FLOWS,
                  LOG FO2 DG
                                DG17202
 TEMP C
          % CO2
          24.18 - 8.840 - 35378
23.46 - 9.068 - 35374
24.92 - 8.617 - 34880
   14//
   1457
   1497
WEIGHTS, PI :6.2087 PI+CEO2-X :7.3216 PI+CE02 :7.3411
 CEO 1.8148 +- 0.0038
LEIGHTS, P1 :6.5434 PT+CED2-X :8.8199 PT+CEW2 :8.8592
 CEO 1-8175 +- 0.0019
EXP NUMBER : 19
1EMP C:1477 FLOWS, CO2:184 % ERRUR:2
                  % EKKOK:2
          % CO2
 TEMP C
                  - 8.543 - 34191
          30.98
   1477
                   - 8.771
                               - 34700
   1457
         30.13
         31.84 - 8.320 - 33679
WEIGHIS, P1 :6.2087 P1+CE02-X :7.0405 P1+CE02 :7.0536
 CEO 1.8332 +- 0.8051
WEIGHIS: PI :6.5434 PI+CEO2-X :7.5300 PT+CE02 :7.5965
 CEO 1.8315 +- 0.0041
FXP NUMBER :25
TEMP C:1477 FLOWS, CO2:220 % ERROR:2.
                              % EKROR:2
                      CO:340
          % CU2
                  LOG POS
 TEMP C
                               DG1/202
          39.29
   1477
                  - 8.226
                                 32919
         38·34 - 8·453 - 33443
40·24 - 8·003 - 32392
   1457
  1497
WEIGHIS, PI : 6.5432 PT+CEO2-X : 7.3129 P1+CE02 : 7.3241
CEO 1.8457 +- 0.0055
WEIGHTS, PT : 6.2086 PT+CE02-X : 7.0365 PT+CE02 : 7.0485
CEO 1.8463 +- 0.0051
EXP NUMBER :26
TEMP C:1477 FLOWS, CO2:220 % ERROR:2
CO:340 % ERROR:2
          % CO2 LOG PO2
 TEMP C
                               DG1/202
                   - 8.226
  1477
          39.29
                               - 32919
                  - 8 · 453 - 8 · 003 -
  1457
         38∙34
                                  33443
  1497
         40.24
                                  32392
WEIGHTS, PT : 6.2086 PI+CEO2-X : 8.8088 PT+CE02 : 8.8467
CEO 1.8455 +- 0.0016
weights, PI :6.5432 PI+CE02-X :8.8781 PI+CE02 :8.9130
CEO 1.8416 +- 0.0018
```

```
EXP NUMBER : 28
            FLOWS
                     CO2:680
                               % ERROR:2
TEMP C: 1477
                      CO:58
                              % EKKOK:2
 1EMP C
           % COS
                   LOG PO2
                               DG1/202
   1477
          92.14
                   - 5.710
                                  22851
                   - 5.937
   1457
          91.85
                                  23490
                   - 5.487
   1497
          92 • 43
                                  22209
         WEIGHTS,
 CEO 1.9446
            +- 0.0022
weights, PT :6.5431 PT+CEO2-X :10.0252 PT+CE02 :10.0447
 CEO 1.9401
             +- 0.0012
EXP NUMBER :29
TEMP C:1477
             FLOWS
                     CO2:240
                               % ERROR:2
                              % ERKOR:2
                      CO:58
                               DG1/202
 TEMP C
           % COS
                   LOG PO2
  1477
          80.54
                   - 6.614
                                 26470
          79.90
                   - 6.842
                                 27068
   1457
                              - 25870
   1497
          81.16
                   - 6.391
         PT :6.5432 PT+CE02-X :7.8416 PT+CE02 :7.8539
WEIGHTS,
CEO 1.8991
            +- 0.0033
WEIGHTS, PT :6.2085 PT+CE02-X :11.4536 PT+CE02 :11.5023
 CEU 1.9010
            +- 0.0003
EXP NUMBER :30
TEMP C:1477 : FLOWS,
                    002:36
                              % ERKOR:2
                     CO:560
                               % EKKOR:2
 TEMP C
          % CO2
                   LOG PO2
                               DG1/202
           6.04
  1477
                   -10.231
                                 429 44
  1457
           5.32
                   -10.458
                                 41376
                              - 40509
  1497
           6.27
                   -10.008 .
WEIGHTS,
         P1 :6.2085 P1+CEU2-X :9.5515 P1+CEU2 :9.6189
CEO 1.7874 +- 0.0013
WEIGHTS, PT :6.5432 PT+CEO2-X :9.4961 PT+CE02 :9.5571
CEO 1.7823
             +- 0.0014
EXP NUMBER:31
             FLOWS,
TEMP C: 1477
                     CO2:36
                              % ERROR:2
                               % ERROR:2
                      CO: 560
TEMP C
          % CO2
                  LOG P02
                               DG1/202
          6.04
                                 40944
  1477
                   -10.231
  1457
          5.82
                   -10.458
                                 41376
  1497
          6.27
                   -10.008
                                 40509
         WEIGHTS,
CEO 1.7778 +- 0.0017
WEIGHTS, P1 :6.5432 P1+CE02-X :8.3871 P1+CE02 :8.4260
CEO 1.7778 +- 0.0023
```

```
EXP NUMBER :32
TEMP C: 1477
               FLOWS
                       CO2:65
                                 % ERKOR: 1
                        CO:582
                                  % ERROR: 1
                     LOG PO2
                                   DG1/202
 TEMP C
            % CO2
   1477
                     - 9.751
                                     39025
           10.05
            9.87
                     - 9.961
                                     39410
   1457
           10.23
                     - 9.546
   1497
                                     38638
WEIGHTS, PT : 6.2085 PT+CE02-X : 7.8679 PT+CE02 : 7.9005
 CEO 1.7927
             +- 0.0026
WEIGHTS, PT : 6.5431 PT+CE02-X : 8.1609 PT+CE02 : 3.1920
 CEO 1.7971
               +- 0.0026
EXP NUMBER : 33
TEMP C: 1477
              FLOWS
                       CO2:61
                                 % ERROR:2
                        CO:939
                                  % EKRUR:2
 TEMP C
            % CO2
                     LOG PO2
                                   DG1/202
   1477
            6.10
                     -10.222
                                     40908
   1457
            5.88
                     -10.449
                                     41340
                                  - 40473
                     - 9.999
            6.33
   1497
          PT :6.2085 PT+CEO2-X :8.8716 PT+CE02 :3.9323
WEIGHTS.
 CEO 1.7603
             +- 0.0016
WEIGHTS, PT :6.5432 PT+CE02-X :8.9878 PT+CE02 :9.0433
               +- 0.0017
 CEO 1.7612
EXP NUMBER :34
                       C02:63
TEMP C:1477
               FLUWS,
                                 % ERROR:2
                        CO:560
                                  % ERROR:2
 TEMP C
            % CO2
                     LOG PO2
                                   DG1/202
   1477
           10.11
                     - 9.745
                                     39000
                     - 9.972
   1457
            9.76
                                     39 45 4
                     - 9.522
                                     38 5 42
   1497
           10.43
         PT :6.2084 PT+CE02-X :8.6495 PT+CE02 :8.7013
WEIGHTS,
CEO 1.7765 +- 0.0017
WEIGHTS, PT : 6.5431 PT+CE02-X :: 9.7506 P1+CE02 : 9.8185
CEO 1.7770
              +- 0.0013
EXP NUMBER :35
TEMP C: 1477
              FLOWS
                       CO2:6.8
                                  % ERKOK: 1
                        CO:93.2
                                   % ERROR: 1
            % CO2
TEMP C
                     LOG PO2
                                   DG1/202
  1477
            6.80
                     -10.121
                                     40505
   1457
                     -10.331
                                     40873
            6.68
            6.93
  1497
                     - 9.915
                                     40135
        PT :6.2084 PT+CE02-X :7.9552
                                         PT+CE02 :7.9937
WEIGHTS,
CEO 1.7680 +- 0.0024
WEIGHTS, PT :6.5430 PT+CE02-X :7.6776 PT+CE02 :7.7037
CEO 1.7581
             +- 0.0037
```

```
EXP NUMBER :36
TEMP C: 1477
            FLOWS,
                     CO2:43
                               % ERKUR:2
                                % ERROR: 2
                      CO:860
 TEMP C
           % CO2
                   LOG PO2
                                DG1/202
   1477
           4.76
                   -10.449
                                  41818
                   -10.677
                                   42240
           4.53
   1457
                                - 41393
   1497
           4.95
                   -10.226
         PT :6.2032 PI+CE02-X :8.9109 P1+CE02 :8.9720
wEIGHTS,
CEO 1.7622
            +- 0.0016
WEIGHTS, PT :6.5430 PT+CE02-X :10.0325 PT+CE02 :10.1126
CEO 1.7586
            +- 0.0012
EXP NUMBER :37
TEMP C: 1477 FLOWS,
                     CO2:1.1
                                % ERROR:2
                                % ERROR:2
                      CO:98.9
                   LOG PO2
                                DG1/202
 TEMP C
           % COS
                   -11.755
                                  47042
   1477
           1 - 10
                   -11.982
           1.06
                                   47404
   1457
   1497
           1 - 15
                   -11.531
                                  46577
        PT :6.2082 PT+CE02-X :10.3972
                                        PI+CE02 : 10.5075
WEIGHTS,
 CEO 1.7240 +- 0.0010
weights, PT :6.5430 PT+CE02-X :10.7616 PT+CE02 :10.8734
 CEO 1.7223
              +- 0.0010
EXP NUMBER :39
TEMP C:1477 FLOWS,
                     CO2:2.4
                                % ERKOR: 1
                      CO:97.6
                                る ERROR: 1
 TEMP C
           % CO2
                   LOG PO2
                                 DG1/202
           2.40
   1477
                   -11.066
                                  44234
           2.35
                   -11.276
   1457
                                  44609
   1497
           2.45
                   -10.860
                                  43953
        WEIGHTS,
CEO 1.7382 +- 0.0015
WEIGHTS, PT:6.5430 PT+CE02-X:8.5533 PT+CE02:8.6037
CEO 1.7369
             +- 0.0021
EXP NUMBER : 40
                     CO2:0.2
TEMP C:1477
            FLOWS
                                % ERROR:2
                                % ERROR:2
                      CO:99.8
TEMP C
           % CO2
                   LOG PO2
                                DG1/202
  1477
                   -13.243
           0.20
                                  52998
  1457
           0.19
                   -13.470
                                  53292
  1497
          0.21
                   -13.020
                               - 52701
WEIGHTS
        PT :6.4+6.5430 PT+CE02-X :7.4857 PT+CE02 :7.5142
CEO 1.6843
              +- 0.0044
```

```
G
EXP NUMBER : 42
TEMP C: 1477
               FLOWS
                       CO2:220
                                  % ERROR:2
                                  % ERROR:2
                        CO:355
 TEMP C
            % CO2
                     LOG PO2
                                   DG1/202
           38 • 26
                     - 8.263
   1477
                                     33069
                     - 8.491
   1457
           37.32
                                     33591
                                     32544
           39.21
                     - 8.040
   1497
          PT :6.2084 PT+CE02-X :6.9974 PT+CE02 :7.0087
WEIGHTS,
             +- 0.0054
 CEO 1.3481
WEIGHTS, PT :6.5430 PT+CE02-X :7.6475 PT+CE02 :7.6620
              +- 0.0039
 CEO 1.8606
EXP NUMBER : 43
TEMP C:1477 FLOWS,
                       CO2:48.4
                                   % ERROR: 2
                        CO:51.6
                                   % ERROR:2
 TEMP C
            % CO2
                     LOG PO2
                                   DG1/202
   1477
           48 • 40
                     - 7.903
                                     31629
           47.40
                     - 8.131
   1457
                                     32167
   1497
           49 . 40
                     - 7.680
                                     31087
         PT :6.2086 PT+CE02-X :8.0716
WEIGHTS,
                                        PT+CE02 :8.0951
 CEO 1.8660
             +- 0.0023
WEIGHTS, PT:6.5432 PT+CE02-X:7.8727 PT+CE02:7.8900
 CEO 1.8618
               +- 0.0032
EXP NUMBER : 44
TEMP C: 1477
              FLOWS
                       CO2:300
                                 % ERROR:2
                        CO:35
                                 % ERROR:2
 TEMP C
            % CO2
                     LOG PO2
                                  DG1/202
   1477
           95.81
                     - 5.130
                                     20532
           95.64
                     - 5.358
   1457
                                     21196
                     - 4.908
           95.96
   1497
                                     19864
          PT :6.2087 PT+CE02-X :8.1511 PT+CE02 :8.1593
WEIGHTS,
 CEO 1.9548 +- 0.0022
WEIGHTS, PT :6.5432 PT+CE02-X :7.8062
                                        PT+CE02 :7.8116
 CEO 1.9542
               +- 0.0034
EXP NUMBER : 45
TEMP C: 1477
              FLOWS,
                       CO2:1
                                % ERROR: 0
                                 2 ERROR: 1
                        CO:99
 TEMP C
           % CO2
                    LOG PO2
                                   DG1/202
   1477
           1.00
                     -11.838
                                    47377
  1457
           0.99
                     -12.040
                                     47632
           1.01
  1497
                    -11.641
                                     47120
WEIGHTS
        PT :6.2087 PT+CE02-X :8.3581
                                         P1+CE02 :8.4159
CEO 1.7183 +- 0.0020
WEIGHTS, PT :6.5434 PT+CE02-X :9.0197 PT+CE02 :9.0852
CEO 1.7223
             +- 0.0017
```

```
EXP NUMBER: 79
TEMP. C:1477 FLOWS, CO2:363
                                  % ERROR: 1
                         CO:67
                                  % ERROR: 1
  TEMP C
             % CO2
                      LOG PO2
                                    DG1/202
    1477
            84.42
                      - 6.380
                                      25534
    1457
            84.15
                      - 6.590
                                      26073
            84.68
                      - 6.175
                                      24993
    1497
 WEIGHTS, PT:6.2089 PT+CE02-X:8.0839 PT+CE02:8.0962
  CEO 1.9299
              +- 0.0023
  WEIGHTS, PT:6.5437 PT+CE02-X:9.9655 PT+CE02:9.9913
  CEO 1.9195
              +- 0.0013
  EXP NUMBER :80
 TEMP C: 1477 FLOWS,
                        CO2:95.8
                                    % ERROR:2
                                   % ERROR:2
                         CO:4.2
  TEMP C
             % CO2
                      LOG PO2
                                   DG1/202
            95.80
    1477
                      - 5-132
                                   - 20539
                      - 5.360
                                     21204
    1457
            95.64
                                  - 19872
    1497
            95.96
                      - 4.909
          PT :6.2089 PT+CE02-X :7.8024 PT+CE02 :7.8086
 WEIGHTS.
  CEO 1.9583 +- 0.0027
 WEIGHTS, PT :6.5436 PT+CE02-X :8.5186 PT+CE02 :8.5223
-CEO 1.9772 +- 0.0022
```

```
EXP NUMBER :57
TEMP C:1477 FLOWS,
                      CO2:1
                                % ERROR: 1
                        CO:99
                                 % ERROR: 1
 TEMP C
            % CO2
                     LOG PO2
                                   DG1/202
            1.00
   1477
                     -11.838
                                     47377
            9.93
                     -12.048
                                     47666
   1457
                     -11.632
   1497
            1.02
                                     47085
WEIGHTS, PT :6:2087 PT+CE02-X :7.5381 PT+CE02 :7.5736
 CEO 1.7202 +- 0.0032
WEIGHTS, PT : 6.5435 PT+CE02-X : 8.6380 PT+CE02 : 8.6930
              +- 0.0020
 CEO 1.7247
EXP NUMBER :58
TEMP C: 1477
              FLOWS,
                       CO2:96.4
                                   % ERROR:2
                                  % ERKOR:2
                        CO:3.6
 TEMP C
            % CO2
                     LOG PO2
                                  DG1/202
   1477
           96.40
                     - 4.993
                                     19982
                     - 5.220
           95.26
   1457
                                     20653
   1497
           96.53
                     - 4.770
                                     19309
          PT :6.2088 PT+CE02-X :9.2280
WEIGHTS.
                                        PT+CE02 :9.2410
 CEO 1.9539
             +- 0.0014
WEIGHTS: PT :6.5433 PT+CE02-X :9.1965 P1+CE02 :9.2086
CEO 1.9512
              +- 0.0016
EXP NUMBER :64
              FLOWS,
TEMP C: 1477
                       002:822
                                  % ERROR:3
                        CO:29.7
                                   % ERROR: 1
           % CO2
                    LOG PO2
                                  DG1/202
 TEMP C
                     - 4.964
           96.51
                                     19868
   1477
                     - 5.192
           96.37
                                     20541
   1457
   1497
           96.64
                     - 4.742
                                     19195
WEIGHTS,
         PT :6.2087 PT+CEO2-X :7.8961
                                         PT+CE02 :7.9007
CEO 1.9708
             +-
                   0.0026
WEIGHTS, PT : 6.5432 PT+CE02-X : 7.7005 PT+CE02 : 7.7051
CEO 1.9574
              + -
                  0.0037
EXP NUMBER :78
TEMP C: 1477
              FLOWS
                                 % ERROR:2
                      CO2:59
                       CO: 41
                                 % ERROR: 2
 TEMP C
           % CO2
                    LOG PO2
                                  DG1/202
   1477
           59.00
                     - 7.532
                                     30141
  1457
          58.03
                     - 7.759
                                     30697
  1497
          59.97
                    - 7.308
                                    29583
        PT :6.2088 PT+CE02-X :9.3946 P1+CE02 :9.4330
WEIGHTS,
CEO 1.8719 +- 0.0013
WEIGHTS, PT : 6.5435 PT+CE02-X : 9.7049 PT+CE02 : 9.7428
             +- 0.6014
·CEO 1.8726
```

```
EXP NUMBER :79
TEMP. C:1477 FLOWS,
                        CO2:363
                                   % ERROR: 1
                          CO:67
                                   % ERROR: 1
 TEMP C
            % CO2
                      LOG PO2
                                     DG1/202
   1477
            84.42
                       - 6.380
                                        25534
            84.15
                       - 6.590
                                        26073
   1 457
   1497
           84.68
                      - 6.175
                                       24993
         PT :6.2089 PT+CE02-X :8.0839 PT+CE02 :8.0962
WEIGHTS.
 CEO 1.9299
              +- 0.0023
WEIGHTS, PT :6.5437 PT+CE02-X :9.9655
                                           PT+CE02 :9.9913
 CEO 1.9195
              +- 0.0013
EXP NUMBER :80
TEMP C:1477 FLOWS, CO2:95.8
                                     % ERROR:2
                                    % ERROR:2
                         CO:4.2
            % CO2
                      LOG PO2
                                    DG1/202
 TEMP C
            95.80
                      - 5.132
   1477
                                    - 20539
                      - 5.360
            95.64
                                       21204
   1457
                      - 4.909
                                    - 19872
           95.96
   1497
 VEIGHTS, PT :6.2089 PT+CE02-X :7.8024
CEO 1.9583 +- 0.0027
                                            PT+CE02 :7.8086
WEIGHTS.
WEIGHTS, PT :6.5436 PT+CEO2-X :8.5186
-CEO 1.9772 +- 0.0022
                                            PT+CE02 :8.5223
```

1

```
EXP NUMBER : 60
TEMP C: 1587 FLOWS,
                    CO2:1
                             % ERROR: 1
                      CO:99
                              % ERROR:1
         % C.12
 TEMP C
                   LOG P02
                                DG1/202
           1.00
                   -10.853
                                  46166
   1587
          0.98
                   -11.041
                                  46459
   1567
           1.62
                   -10.670
                                 45872
   1607
WEIGHTS.
        CEO 1.6939 +- 0.0014
weights, P1 : 6.5434 P1+CE02-X :8.3220 PI+CE02 :8.3731
            +- 0.0024
 CEO 1.6996
EXP NUMBER : 61
TEMP C: 1587 FLOWS, CO2: 561
                              % EKKOK:2
                              % ERROR:2
                     CO:39
 TEMP C
          % COS
                  LOG PO2
                               DG1/2U2
          86.31
                   - 5.264
                                 22391
  1587
                   - 5.469
         85.83
                                  23012
  1567
                  - 5.063
                              - 21767
         36.77
  1607
        PT :6.5432 PI+CEO2-X :7.7431 PI+CE02 :7.7533
WEIGHTS,
CEO 1.9093 +- 0.0036
wEIGHTS, PT :6.2087 PT+CE02-X :7.9048 PT+CE02 :7.9195
CEO 1.9076 +- 0.0025
 EXP NUMBER : 62
 TEMP C:1587 FLOWS, CO2:239
                                % ERROR: 2
                                % ERROR: 2
                       CO:256
           % CO2
                   LOG PO2
                                DG1/202
  TEMP C
                                - 29446
                    - 6.923
           48 - 28
    1587
                    - 7.127
                                - 29991
          47.29
    1567
                    - 6.721 ...
                               - 28897
   1607
          49.28
 WEIGHTS, PT :6.2086 PT+CEO2-X :7.2561 PT+CE02 :7.2705
 CEO 1.8541 +- 0.0041
 WEIGHTS, PT:6.5432 PT+CE02-X:7.9721 PT+CE02:7.9913
 CEO 1.8574
              +- 0.0030
 EXP NUMBER : 63
 TEMP C:1587 FLOWS,
                     CO2:40
                               % ERROR:2
                                % ERROR:2
                      CO: 467
                   LOG PO2
            % CO2
                                DG1/202
 TEMP C
   1587
            7.89
                    - 8.997
                                   38270
                    - 9.202
           7.60
                                   38720
   1567
           8 - 19
                    - 8.796
                                   37316
   1607
 WEIGHTS, PT :6.2088 PT+CEO2-X :8.0732 PI+CE02 :8.1131
 CEO 1.7746 +- 0.0023
 WEIGHTS, PT :6.5434 PT+CE02-X :8.6474 PT+CE02 :8.6911
 CEO 1.7811 +- 0.0020
```

```
EXP NUMBER :72
TEMP C:1587 FLOWS,
                    CO2:1
                            % ERROR: 1
                      CO:99
                              % ERROR: 1
 TEMP C
          % CO2
                   LOG PO2
                                DG1/202
   1587
           1.00
                   -10.853
                                  46166
                   -11-041
   1567
           0.98
                                  46459
                   -10.670
                              - 45872
   1607
          1.02
WEIGHTS, PT :6.2086 PT+CE02-X :8.5243 PT+CE02 :8.5895
 CEO 1.7054 +- 0.0018
WEIGHTS, PT :6.5430 PT+CE02-X :8.4884 PT+CE02 :8.5444
 CEO 1.6990 +- 0.0022
EXP NUMBER :73
TEMP C:1587 FLOWS, C02:31
                             % ERROR:2
                      CO:664
                               % ERROR: 4
           % CO2
 TEMP C
                  LOG PO2
                               DG1/202
                   - 9.524
                               - 40511
   1587
           4.46
                   - 9.746
                               - 41009
   1567
           4.21
                              - 40005
   1607
          4.73
                   - 9.305
        PT :6.2087 PT+CE02-X :7.2573 PT+CE02 :7.2817
wEIGHTS,
CEO 1.7554 +- 0.0040
WEIGHTS, PT :6.5430 PT+CE02-X :7.9053 PT+CE02 :7.9363
CEO 1.7607 +- 0.0031
EXP NUMBER :74
TEMP C:1587 FLOWS,
                    CO2:615
                              % ERROR: 4
                              % ERKOR: 4
                      CO:26
                  LOG PO2
 TEMP C
          % CO2
                               DG1/202
          95.92
                               - 17520
  1587
                  - 4.119
                   - 4.357
   1567
          95.61
                                 18334
                   - 3.886
                              - 16706
         96.21
  1607
WEIGHTS, PT :6.2086 PT+CE02-X :8.5031 PT+CE02 :8.5144
CEO 1.9473 +- 0.0019
WEIGHTS, PT:6.5430 PT+CE02-X:8.7345 PT+CE02:8.7432
CEO 1.9575
            +- 0.0020
EXP NUMBER :81
TEMP C:1587 FLOWS, CO2:206
                               % ERROR: 4
                     CO:295
                               % ERROR: 4
TEMP C
          % CO2
                  LOG PO2
                               DG1/202
                   - 7.175
                               - 30518
          41.12
  1587
          39.20
                   - 7.414
                                 31199
  1567
                  - 6.939
                              - 29832
          43.07
  1607
WEIGHTS, PT :6.2090 PT+CE02-X :8.5929 PT+CE02 :8.6300
CEO 1.8351 +- 0.0018
WEIGHTS, PT :6.5434 P1+CEO2-X :9.5222 PT+CE02 :9.5679
CEO 1.8375 +- 0.0014
```

```
FXP NUMBER :32
TEMP C:1587 FLOWS, CO2:28.8
                                 % ERROR:2
                                 % EKROR:2
                       CO:71.2
           % CO2
 TEMP C
                   LOG PO2
                                 DG1/202
   1587
           28.80
                    - 7.649
                                    32535
   1567 .
                    - 7.854
           27.99
                                    33047
                    - 7.448
           29.63
   1607
                                    32020
WEIGHTS, PT :6.2085 PT+CE02-X :7.7144 PT+CE02 :7.4+7.7411
 CEO 1.8126 +- 0.0028
WEIGHTS, PT :6.5434 PT+CEO2-X :8.1916 PT+CE02 :8.2220
 CEO 1.8052 +- 0.0026
EXP NUMBER :83
TEMP C: 1587 FLOWS,
                     CO2:214
                                % ERROR: 4
                       CO:555
                                % ERROR: 4
 TEMP C
           % CO2
                    LOG PO2
                                DG1/202.
                    - 7.691
- 7.930
- 7.455
   1587
          27.83
                                   32712
   1567
          26.25
                                   33369
                               - 32049
   1607
          29 • 47
WEIGHTS, PT:6.2086 PT+CE02-X:8.3398 PT+CE02:8.3767
 CEO 1.8169 +- 0.0020
WEIGHTS, PT :6.5432 PT+CE02-X :9.4021 PT+CE02 :9.4518
 CEO 1.3162 +- 0.0015
FXP NUMBER :34
                             % ERROR: 4
TEMP C: 1587 FLOWS,
                      CO2:17
                               % ERROR: 4
                       CO:83
 TEMP C
           % CO2
                   LOG PO2
                                DG1/202
          17-00
                   - 8.240
                                - 35049
   1587
                            - 35681
- 34411
   1567 .
                    - 8.480
          15.90
                - 8.004
          18 - 16
   1607
        PT :6.2085 PT+CE02-X :7.4177 PT+CE02 :7.4404
WEIGHTS.
 CEO 1.8018 +- 0.0035
WEIGHTS, PT: 6.5433 PT+CE02-X: 7.5992 PT+CE02: 7.6185
 CEO 1.8069 +- 0.0040
EXP NUMBER :35
TEMP C: 1587 FLOWS,
                               % ERROR:2
                      CO2:339
                      CO:133
                                % ERROR:2
 TEMP C
           % COS
                    LOG PO2
                                DG1/202
   1587
          71.82
                    - 6.050
                                - 25736
   1567
          71.01
                    - 6.255
                                   26321
                    - 5.849
                                - 25147
   1607
          72.63
WEIGHTS, PT :6.2088 PT+CE02-X :7.6031 PT+CE02 :7.6198
CEO 1.8727 +- 0.0031
WEIGHTS, PT :6.5462 PT+CE02-X :8.0407 PT+CE02 :8.0580
CEO 1.8769 +- 0.0029
```

```
EXP NUMBER :86
TEMP C: 1587 FLOWS,
                               % ERROR: 1
                     CO2:2.2
                      CO:97.8
                                % ERKOR: 1
 TEMP C
           % CO2
                   LOG PO2
                                DG1/202
   1587
           2.20
                   -10.158
                                - 43208
   1567
           2.16
                   -10.346
                                  43533
         2.24
                   - 9.974
   1607
                                  42332
         PT :6.2037 PT+CE02-X :7.2368 PT+CE02 :7.2635
WEIGHTS,
CEO 1.7277 +- 0.0041
WEIGHTS, PT :6.5434 PT+CE02-X :7.8982 PT+CE02 :7.9347
 CEO 1.7178 +- 0.0031
EXP NUMBER :87
TEMP C:1587 FLOWS, CO2:.0-0.2
                                 % ERROR:2
                                % ERROR:2
                     CO:99.8
 TEMP C
           % CO2
                   LUG PO2
                                DG1/202
                   -12.258 - 52141
   1587
           0.20
                   -12.463 -
           0.19
                                  52442
  1567
                   -12.057
                                  51836
   1607
           0.21
WEIGHTS, PT : 6.2035 PT+CE02-X : 7.5278 PT+CE02 : 7.5692
CEO 1.6727
            +- 0.0032
WEIGHTS, PT :6.5429 PT+CEO2-X :9.2764 PT+CE02 :9.3619
CEO 1.6737
            +- 0.0015
EXP NUMBER :88
TEMP C:1587 FLOWS,
                    CO2:94.2
                               % EKROR:2
                     CO:5.8
                               % EKKUR:2 .
          % CO2
                  LOG PO2
 TEMP C
                               DG1/202
  1587
          94.19
                   - 4.443
                                 18900
                   - 4.648
         93.97
  1567
                                  19556
                   - 4.243
 1607
         94.40
                              - 18241
WEIGHTS, PT :6.2084 PT+CE02-X :7.9164
                                     PT+CE02 :7.9262
CEO 1.9386 +- 0.0025
WEIGHTS, PT :6.5432 PT+CEO2-X :9.3098 PT+CE02 :9.3256
CEO 1.9389
           +- 0.0016
```

```
EXP NUMBER :89
 TEMP C:1725 FLOWS, CO2:532
                                 % ERROR:2
                        CO:56.5
                                  % ERROR:2
  TEMP C
            % CO2
                    LOG PO2
                                  DG1/202
                                  - 17541
    1725
            90.36
                    - 3.839
            90.02
                     - 4.020
                                    18183
    1705
           90.68 - 3.662
                                 - 16900
    1745
 WEIGHTS, PT : 6-2087 PT+CE02-X : 8-8205 PT+CE02 : 8-8453
  CEO 1.8938 +- 0.0016
 WEIGHTS, PT : 6.5435 PT+CE02-X :8.1513 PT+CE02 :8.1668
             +- 0.0027
  CEO 1-8973
EXP NUMBER :90
 TEMP C: 1725 FLOWS, CO2: 241 % ERROR: 2
                       CO:57 % EKROR:2
                    LOG PO2 DG1/202
- 4.532 - 20706
  TEMP C
            % CO2
    1725
           80.87
                    - 4.713
           80.24
    1705
                                     21321
                    - 4·353 - 20090
           81.47
    1745
 WEIGHTS, PT : 6.2083 PT+CEO2-X :8.8884 PT+CE02 :8.9210
 CEO 1.8707 +- 0.0016
WEIGHTS, P1 :6.5435 PT+CEO2-X :9.1862 P1+CE02 :9.2169
 CEO 1.3765 +- 0.0016
 EXP NUMBER :92
 TEMP C: 1725 FLOWS,
                       C02:225
                                 % ERROR:2
                                 % ERROR:2
                        CO:556
           % CJ2
                    LOG PO2
                                 DG1/202.
  TEMP C
    1725
           28.81
                    - 6.569
                                  - 30016
1705 28.00 - 6.751 - 30537
1745 29.64 - 6.391 - 29492
WEIGHTS, PT :6.2086 PT+CEO2-X :8.2466 PT+CE02 :8.2874
. CEO 1.7889 +- 0.0021
 WEIGHTS: PT : 6.5431 PT+CE02-X : 8.8351 PT+CE02 : 8.8794
 CEO 1.7960 +- 0.0019
EXP NUMBER :93
TEMP C:1725 FLOWS, CO2:199.6
                                  % ERROR:2
                                 % EKKOR:2
                       CO:563
 TEMP C
           % CO2
                    LOG PO2
                                  DG1/202
   1725
           26.17
                     - 6.634
                                  - 30541
                     - 6.866
   1705
           25.41
                                     31057
                                 - 30022
                     - 6.505
          26.95
   1745
         PT :6.2035 PT+CF02-X :7.7911 PT+CE02 :7.8227
WEIGHTS
 CEO 1.7894 +- 0.0027
WEIGHTS, PT :6.5433 PT+CE02-X :7.6300 PT+CE02 :7.6510
 CEO 1.7961 +- 0.0039
```

```
EXP NUMBER :94
TEMP C: 1725 FLOWS,
                      CO2:230
                                 % ERROR:2
                                 % ERROR:2
                       CO:355
 TEMP C
           % CO2
                   LOG PO2
                                 DG1/202
   1725
           39.32
                    - 6.161
                                   28148
   1705
           38.37
                    - 6.342
                                    28688
                    - 5.982
   1745
           40.28
                                    27605
WEIGHTS,
        P1 :6.2087 PT+CEO2-x :7.9323 P1+CE02 :7.9621
 CEO 1.8172
            +- 0.0025
WEIGHTS, PT :6.5433 PT+CE02-X :8.3290 PT+CE02 :8.3597
 CEO 1.8182
            +- 0.0024
EXP NUMBER :95
             FLOWS
TEMP C: 1725
                      CO2:336
                                 % ERROR:2
                                 % ERROR: 2
                       CO:230
 TEMP C
           % CO2
                    LOG FO2
                                 DG1/202
   1725
           59 • 36
                    - 5.454
                                    24922
   1705
           58.40
                    - 5.636
                                   25495
                    - 5.276
                                - 24347
   1745
           60.32
        PT :6.2084 PT+CE02-X :8.8079 PT+CE02 :8.3444
WEIGHTS.
CEO 1.8511 +- 0.0016
weights, P1 :6.5434 PT+CE02-X :9.3643 P1+CE02 :9.4061
CEO 1.8429
              +- 0.0015
EXP NUMBER :96
TEMP C:1725 FLOWS,
                      CO2:0.3
                                 % ERROR:2
                       CO:99.7
                                 % EKROR: 4
           % CO2
 TEMP C
                    LOG PO2
                                 DG1/202
   1725
                                   49 465
           0.30
                    -10.826
   1705
           0-23
                    -11.024
                                    498 63
                    -10.629
                               - 49053
   1745
           0.32
WEIGHTS, -PT : 6.2085 PT+CE02-X : 8.4535 PT+CE02 : 8.5287
CEO 1.6513 +- 0.0019
WEIGHTS, PT #6.5432 PT+CE02-X :8.3384 PT+CE02 :8.3981
             +- 0.0023
CEO 1.6538
EXP NUMBER : 104
TEMP C:1725 FLOWS,
                     CO2:13.5
                                 % EKROR:2
                       CO: 410
                                 % ERROR: 4
           % CO2
                   LOG PO2
                                 DG1/202
TEMP C
           3.19
                    - 8.748
                                   39971
  1725
                    - 8.947
           3.01
                                    40469
   1705
                                    39463
           3 • 38
                    - 8.551
  1745
WEIGHTS, PT :6.2079 PT+CE02-X :8.2825 P1+CE02 :8.3401
CEO 1.7094 +- 0.0020
WEIGHTS, PT :6.5429 PT+CE02-X :8.8755 PT+CE02 :8.9400
              +- 0.0013
CEO 1.7105
```

```
EXP NUMBER : 105
TEMP C: 1725 FLOWS.
                     CO2:48
                                % ERROR:2
                       CO:410
                                 % ERROR: 4
 TEMP C
           % CO2
                    LOG PO2
                                 DG1/202
   1725
          10.48
                    - 7.646
                                    34937
           9.94
                    - 7.845
                                    35486
   1705
                    - 7.450
          11.36
   1745
                                    34380
        PT :6.2082 PT+CE02-X :7.6434 PT+CE02 :7.6764
WEIGHTS.
 CEO 1.7582
             +- 0.0029
WEIGHTS, PT :6.5429 PT+CE02-X :8.5335 PT+CE02 :8.5792
CEO 1.7586
             +- 0.0021
EXP NUMBER : 106
TEMP C:1725 FLOWS,
                      CO2: 4.5
                                 % ERROR:2
                       CO:95.5
                                 % ERROR:2
 TEMP C
           % CO2
                    LOG PO2
                                 DG1/202
           4.50
   1725
                    - 8.437
                                    38548
                    - 3.618
   1705
           4.33
                                    38985
   1745
                                    38110
           4.63
                    - 8.258
        PT :6.2080 PT+CE02-X :8.4095 PT+CE02 :8.4667
WEIGHTS.
CEO 1.7276 +- 0.0019
WEIGHTS, PT :6.5428 PT+CE02-X :8.5299 PT+CE02 :8.5811
CEO 1.7298
              +- 0.0021
EXP NUMBER : 107
TEMP C: 1725 FLOWS,
                     CO2:1
                               % ERROR: 1
                       CO:99
                                % ERROR: 1
TEMP C
           % CO2
                    LOG PO2
                                 DG1/202
  1725
           1.00
                    - 9.774
                                   44659
                    - 9.938
  1705
           0.98
                                   44956
                    - 9.613
                               - 44362
  1745
           1.02
WEIGHTS, PT:6.2084 PT+CE02-X:8.5698 PT+CE02:8.6431
CEO 1.6761 +- 0.0018
WEIGHTS, PT :6.5431 PT+CE02-X :8.3183 PT+CE02 :8.3719
            +- 0.0024
CEO 1.6847
```

```
EXP NUMBER :97
TEMP C: 1808 FLOWS,
                      CO2:239
                                 % ERKOR: 4
                                 % ERROR: 4
                       CO:59.3
 TEMP C
           % CO2
                                  DG1/202
                    LOG PO2
                    - 3.995
           80.09
   1808
                                 - 19012
                    - 4.199
   1788
           78.80
                                    19793
                    - 3.794 -
           81.32
   1828
                                    18227
        PT :6.2033 PT+CE02-X :7.8628 PT+CE02 :7.8850
WEIGHTS
CEO 1.8576 +- 0.0026
WEIGHTS, PT :6.5431 PT+CEO2-X :8.0162 PT+CE02 :8.0362
  CEO 1.3559 +- 0.0029
EXP NUMBER :98
TEMP C: 1808 FLOWS,
                      CO2: 450 % ERROR: 4
                      CO:62
                                % ERROR: 4
 TEMP C
          % CO2
                    LOG PO2 DG1/202
          87.80
                    - 3 - 488
   1808
                    - 3.691 - 17396
- 3.290 - 15807
          86.95
   1783
          88.57
   1823
WEIGHTS, PT :6.2084 PT+CE02-X :8.1922 PT+CE02 :8.2163
 CEO 1.8682 +- 0.0022
weights, PT :6.5431 PT+CE02-X :9.2501 PT+CE02 :9.2323
 CEO 1.8735 +- 0.0016
EXP NUMBER :99
TEMP C: 1808 FLOWS,
                      CO2:220
                                 % ERROR:5
                       CO:245
                                 % ERROR: 2
 TEMP C
           % CD2
                    LOG PO2
                                 DG1/202
   1808
          47.31
                    - 5.298
                                 - 25212
                    - 5.495 - 25899
- 5.105 - 24529
   1788
          45.54
   1828
          49 • 03
        PT :6.2083 PT+CEO2-X :9.2606 PT+CE02 :9.3149
WEIGHTS,
CEO 1.8120
            +- 0.0014
WEIGHTS, PT :6.5432 PT+CEO2-X :9.7795 PT+CE02 :9.8374
CEO 1-8109
             +- 0.0013
EXP NUMBER : 100
TEMP C:1808 FLOWS, C02:62
                               % ERROR: 4
                       CO: 465
                                 % ERROR: 4
TEMP C
           % CO2
                    LOG PO2
                                 DG1/202
                    - 6.954
          11.77
                                   33095
   1808
                    - 7.159
   1788
          10.96
                                    33742
                - 6.752
   1828
          12.62
                               - 32441
WEIGHTS, PT:6.2084 PT+CEO2-X:8.8536 PT+CE02:8.9153
CEO ...1 • 7548 +-... 0 • 0016
WEIGHTS, PT :6.5431 PT+CE02-X :9.3599 PT+CE02 :9.4255
CEO 1.7552 +- 0.0015
```

```
EXP NUMBER : 103
                       CO2:13.5
TEMP C: 1808
            FLOWS
                                  % ERROR: 4
                        CO: 410
                                  % ERROR: 4
 TEMP C
            % CO2
                     LOG FO2
                                  DG1/202
            3.19
                     - 8 - 169
   1808
                                     38875
   1788
            2.95
                     - 8.374
                                     39 466
                     - 7.967
   1828
            3.45
                                     38277
          PT :6.2083 PT+CEO2-X :9.9-9.0917
WEIGHTS,
                                             PT+CE02 :9.1718
 CEO 1.7092 +- 0.0015
WEIGHTS, PT :6.5428 PT+CE02-X :8.3771 PT+CE02 :8.4279
 CEO 1.7101
              +- 0.0023
EXP NUMBER : 108
                                % ERROR: 1
TEMP C:1808 FLOWS,
                       CO2: I
                        CO:99
                                 % ERROR: 1
 TEMP C
            % CO2
                    LOG PO2
                                   DG1/202
                    - 9.195
   1898
            1.00
                                    43758
            0.98
                     - 9.345
   1788
                                     44057
                    - 9.045
   1828
            1.02
                                    43458
          PT :6.2084 PT+CE02-X :8.9151 PT+CE02 :9.0030
WEIGHTS.
 CEO 1.6616 +- 0.0015
WEIGHTS: PT : 6.5428 PT+CE02-X : 7.6932 PT+CE02 : 7.7316
CEO 1.6525 +- 0.2036
EXP NUMBER : 109
TEMP C:1808 FLOWS,
                      002:231
                                 % ERROR: 4
                       CO: 559
                                  % ERROR:2
 TEMP C
           % CO2
                    LOG PO2
                                  DG1/202
   1803
          29.24
                    - 5.972
                                    28 42 0
          28.00
                    - 6.160
   1788
                                    29032
   1828
           30.49
                    - 5.788
                                    27807
         PT :6.2084 PT+CE02-X :9.1958 P1+CE02 :9.2575
WEIGHTS,
             +- 0.0014
CEO 1.7823
WEIGHTS, PT : 6.5427 PT+CE02-X : 3.6238 PT+CE02 : 3.6659
CEO 1.7867 +- 0.0020
```

```
G
 EXP NUMBER : 46
 TEMP C:1850 FLOWS, CO2:1.0 % ERROR: 1 CO:99 % ERROR: 1
                                     % ERROR:1
  TEMP C % CO2 LOG PO2
                                     DG1/202
             1.00
                       - 8.920
                                      - 43304
    1850
                      - 9.001
                                      - 43496
             0.98
    1840
             1.02 - 8.838 - 43112
 WEIGHTS, PT : 6.5434 PT+CE02-X : 7.9891 PT+CE02 : 8.0454
 CEO 1.5968 +- 0.0029
 WEIGHTS, PT :6.2087 PT+CE02-X :7.7840 PT+CE02 :7.8354
CEO 1.6601 +- 0.0027
 EXP NUMBER : 47
TEMP C: 1850 FLOWS, CO2: 1.0 % ERROR: 1
CO: 99 % ERROR: 1
TEMP C % CO2 LOG PO2 DG1/202
1850 1.00 - 8.920 - 43304
1840 0.98 - 9.001 - 43496
1860 1.02 - 8.838 - 43112
1860 1.02 - 8.838 - 43112
WEIGHTS, PT :6.2098 PT+CE02-X :8.0976 PT+CE02 :8.1705
 CEO 1.6000 +- 0.0022
 WEIGHTS, PT : 6.5434 PT+CE02-X : 8.4617 P1+CE02 : 8.5386
 CEO 1.5854 +- 0.0022
 #G
 EXP NUMBER : 110
TEMP C:1930 FLOWS, CO2:32.3 % ERROR:2
                          CO:576 % ERROR:2
TEMP C % CO2 LOG PO2 DG1/202
1930 5.31 - 6.936 - 34943
1920 5.11 - 7.031 - 35259
1940 5.52 - 6.842 - 34626
WEIGHTS, PT:6.2080 PT+CE02-X:10.7084 PT+CE02:10.8635
 CEO 1.6416 +- 0.0009
WEIGHTS: PT : 6.5426 PT+CE02-X : 8.8798 PT+CE02 : 8.9386
 CEO 1.7360 +- 0.0018
 #G
  EXP NUMBER : 111
  TEMP C:1970 FLOWS, CO2:63 % ERROR:2
                           CO:566 % ERROR:2
            % CO2 LOG PO2
10.02 - 6.107
                                       DG1/202
   TEMP C
                                       - 31325
     1970
     1960 9.66 - 6.199 - 31657
1980 10.38 - 6.015 - 30991
  WFIGHTS, PT : 6.2082 PT+CE02-X :8.9117 PT+CE02 :8.9991
  CEO 1.6631 +- 0.0016
  WEIGHTS, PT :6.5431 PT+CE02-X :8.7542 PT+CE02 :8.3232
   CEO 1.6745 +- 0.0019
  #G
```

```
FXP NUMBER : 112
 TEMP C:2010 FLOWS,
                     CO2:62.3
                                 % ERROR: 2
                       CO:338
                                 % ERROR:2
           % CO2
 TEMP C
                   LOG PO2
                                 DG1/202
           15.56
   2010
                    - 5.443
                                   28419
                    - 5.534
           15.05
   2000
                                   28764
                    - 5.353
                                - 28072
          16.10
   2020
WEIGHTS: PT :6.5429 PT+CE02-X :9.1772 PT+CE02 :9.2547
 CEO 1.6926 +- 0.0016
WEIGHTS, PT:
200200003.02
#G
EXP NUMBER : 115
TEMP_C:2050 FLOWS, CO2:29.5
                                % ERROR:1
                                % ERROR: 1
                       CO:70.5
 TEMP C
           % CO2
                   LOG PO2
                                 DG1/202
          29 • 49
   2050
                    - 4.514
                                   23979
                    - 4.585
   2040
          29.08
                                   24251
          29.91
                    - 4.443
                                   23706
   2060
WEIGHTS, PT :6.2075 PT+CE02-X :9.3705 P1+CE02 :9.4574
 CEO 1.7124 +- 0.0013
WEIGHTS, PT :6.5422 PT+CEO2-X :9.5425 PT+CE02 :9.6238
 CEO 1.7162
            +- 0.0014
#G
EXP NUMBER : 116
TEMP C:2070 FLOWS,
                      CO2:187.6
                                 % ERROR: 1
                      CO:323.2
                                 % ERROR:2
 TEMP C
          % CO2
                   LOG PO2
                                DG1/202
   2070
          36.71
                   - 4.124
                               - 22096
          36.02
                    - 4.203
   2060
                                   22421
                    - 4.046
          37 - 41
                                  21769
   2080
        PT :6.5424 PT+CE02-X :10.1385 PT+CE02 :10.2826
WEIGHTS
CEO 1.7294 +- 0.0012
WEIGHTS, PT :6.2076 PT+CE02-X :11.0715 PT+CE02 :11.1531
C-E0 1.8225
              +- 0.0009
#G
EXP NUMBER : 117
                                % ERROR: 1
TEMP C:2130 FLOWS,
                     CO2:343
                      00:220
                                % ERROR:2
 TEMP C
          % CO2
                   LOG PO2
                                DG1/202
                   - 2.966
                                  16298
  2130
          60.64
                    - 3.041
          59.97
  2120
                                  16639
                   - 2.892
                               - 15957
          61.30
  2140
        PT :6.2037 PT+CE02-X :7.4522 PT+CE02 :7.4800
WEIGHTS,
 CEO 1.7657 +- 0.0034
%EIGHTS, PT :6.5370 PT+CE02-X :8.2464 PT+CE02 :8.2862
CEU 1.7552
            +- 0.0025
```

APPENDIX B

This appendix contains a copy of the computer program used to calculate the information in Appendix A. The language is FOCAL and the program was run on a PDP-8 computer.

```
C FOCL/F 05/08/72
01.01 E
01.03 A "EXP NUMBER " E .!
01.04 A "TEMP C"TC, " FLOWS, CO2"CD,"
                                              % ERROR"AD,!
                                   CO"CM,"
                                              % ERROR"AM.!
01.05 A "
Ø1.15 S M(15)=58241; S N(15)=94728
01-16 S M(16)=60284; S N(16)=9.4739
01.17 S M(17)=62315; S N(17)=94746
01-18 S M(18)=64337; S N(18)=94750
Ø1.19 S M(19)=66349; S N(19)=94751
01.20 S M(20)=68353; S N(20)=94752
01.21 S M(21)=70346; S N(21)=94746
01.22 S M(22)=72335; S N(22)=94744
01-23 S M(23)=74311; S N(23)=94735
01.24 S M(24)=76282; S N(24)=94724
Ø1.25 S M(25)=78247; S N(25)=94714
01.26 S M(26)=80202; S N(26)=94693
01.27 S M(27)=82153; S N(27)=94683
01.45 C THERMO DATA IS FROM JANAF TABLES
01.46 T " TEMP C
                              LOG PO2
                      % CO2
                                               DG1/202",!
01.49 S CT=CM+CD; S C1=CM/CT; S C2=CD/CT
01.50 F J=1,1,1; DO 2.0
01.55 S C1=CM+.01*AM*CM; S C2=CD-.01*AD*CD
01.57 S CT=C1+C2; S C1=C1/CT; S C2=C2/C1
01.60 S TC=TC-10; F J=1,1,1; DO 2.0
01.65 S C1=CM-.01*AM*CM; S C2=CD+.01*AD*CD
01.67 S CT=C1+C2; S C1=C1/CT; S C2=C2/CT
01.70 S TC=TC+20; F J=1,1,1; DO 2.0
Ø1.8Ø GOTO 3.01
02.01 S TK=TC+273
02.02 I (3200-TK)2. I (TK-800)2.97;
02.05 S Y= FITR(TK*.01)
02.10 S D1=M(Y) +.01* (TK-Y*100)*(M(Y+1)-M(Y))
02.20 S D2=N(Y) +.01* (TK-Y*100)*(N(Y+1)-N(Y) )
02.30 S DR= -2*(D1 - D2 )
02.32 S LKP= DR/( -1.987 *
02.34 S KP = FEXP(LKP)
02.40 S POA = KP *(C2/C1):2
02.43 S LA= FLOG(FOA)/2.303
02.50 S P2= C2 - 2*POA; S P1= C1 + 2*POA; S PT=P2 +P1 + POA 02.55 S C1= P1/PT; S C2=P2/PT; S POA= POA/PT
02.60 S P= KP*(C2/C1)+2
02.63 S LP =FLOG(P) /2.303
02.80 I (.01 - FABS(LA-LP))2.40,2.85,2.85
02.85 S G=0.5*1.986*TK*2.303*LP
02.89 S C2=100*C2
02.90 T %5.0 TC, %6.02 C2, "
                                "%5.03 LP, "
                                                   "%7, G, !
02.91 R
02.97 T " PROGRAM DOES NOT HAVE THERMO FOR THIS TEMP" ; Q
03.01 S I= 1+ I ; IF (2-I)3.50;
03.02 A "WEIGHTS, PT "PT," PT
                   PT "PT, " PT+CE02-X "CX, " PT+CE02 " CD ,!
03.03 S X =2-10.757828*(CD-CX)/(CD-FT)
03.05 S Z=X-2+10.757828*(CD-CX+.0004)/(CD-PT)
03-10 T %5-04 " CEO"X, "
03.15 GOTO 3.01
03.50 Q
03.55 C NUMBER IN LINE 3.03 IS MWT CEO2 / AWT OXYGEN
```

APPENDIX C

The results of Panlener 24,25 for CeO_{2-x} -oxygen pressure equilibrium from 700° to 1500°C were replotted in Figure 21. The axes of Figure 21 differ from those in Panlener's presentation of the phase relations. The tabulated data in the appendix of Panlener's report 24 was used to prepare Figure 21.

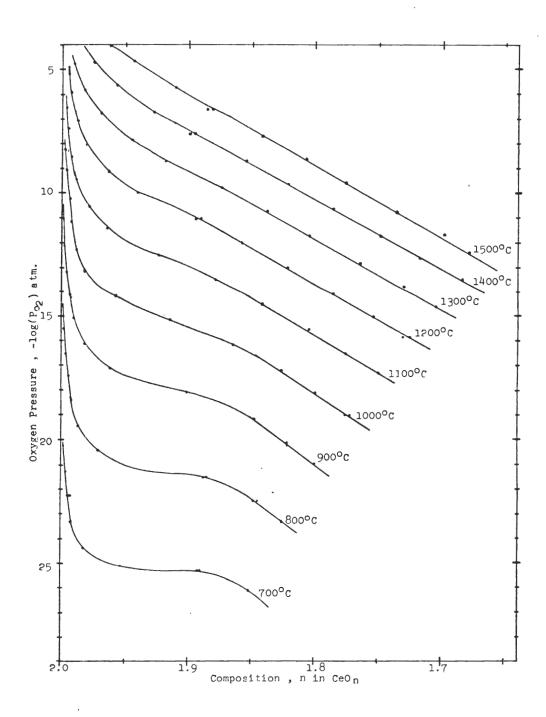


Figure 21. Isotherms for Solid CeO - Oxygen Pressure Equilibrium of Panlener 24.

BIBLIOGRAPHY

- 1. Chapman, A. T., et al., Melt-Grown Oxide-Metal Composites, Final Technical Report, ARPA Order Number 1637, December 1973.
- 2. Darken, L. S. and Gurry, R. W., "The System Iron-Oxygen. I. The Wustite Field and Related Equilibria," J. Am. Chem. Soc., 67, 1398-1412, 1945.
- 3. Darken, L. S. and Gurry, R. W., "The System Iron-Oxygen. II. Equilibrium and Thermodynamics of Liquid Oxide and Other Phases," J. Am. Chem. Soc., 68, 798-816, 1946
- 4. Chapman, A. T. and Meadows, R. E., "Volatility of UO_{2+x} and Phase Relations in the System Uranium-Oxygen,"
 J. Am. Cer. Soc., 47, 614-621, 1964.
- 5. Chapman, A. T., Brynestad, J., and Clark, G. W., "Redox Equilibria in Molten Urania and the System U O Above 1200°C," paper presented at the Pacific Coast Meeting of the American Ceramic Society, Nov. 2, 1976, submitted for publication to J. Am. Cer. Soc.
- 6. Levin, E. M., et al., <u>Phase Diagrams for Ceramists</u>, 1969 Supplement, Figures 2069, 2070 and 2084.
- 7. Rammelsberg, C., "Uber die Oxyde des Cers and die Sulfate des Ceroxydoxyduls," Ann. Phys. Chemic, Ser. 2, 108, 40-64, 1859.
- Sterba, J., "Preparation de l'oxyde de cerium pur,"
 R. Acad. Sci. (Paris), 133, 221-223, 1901.
- Meyer, R., "Die Reindarstallung des Cerdioxyds and seinc Reduktion in Wasserstoffstrome, Z. Anorg, Chem., 37, 378-393, 1903.
- 10. Schenck, R. and Roter, H., "Uber die Aktivierung von Oxyden durch Fredoxyde," Z. Anorg, Chem., 211, 65-82, 1933.
- 11. Foex, M., "Etude dilatometrique du bioxyde et de l'oxyde bleu de cerium," <u>C. R. Acad. Sci. (Paris)</u>, 222, 660-661, 1946.

- 12. Bruno, M., "Soluzioni solide anomaledi sesquiossido in biossido di cerio," Ric. Sci., 20, 645-647, 1950.
- 13. Richacker, G. and Birckenstaedt, M., "Natiz uber die Reduktion des Cerdioxyds insbesondere bei 250-350°C," Z. Anaorg, Chem., 265, 99-104, 1951.
- 14. Courtel, P. and Loriers, J., "Sur la formation de Ce₂O₃ cubique dans l'oxydation du cerium et sa mise en evidence par diffraction electronique," <u>C. R. Acad, Sci. (Paris)</u>, 230, 735-737, 1950.
- 15. Brauer, Von G. and Gradinger, H., "The Oxide Systems of Cerium and Praseodymium," (in German), Z. Anorg, Chem., 277, 89-95, 1954.
- 16. Bevan, D. J. M., "Ordered Intermediate Phases in the System CeO₂-Ce₂O₃," <u>J. Inorg, Nucl. Chem.</u>, 49-59, 1955.
- 17. Brauer, G. and Gingerich, K. A., "Uber die Oxyde des Cers-V, Hochtemperatur-Rontegenunter-suchungen an Ceroxyden," J. Inorg. Nucl. Chem., 16, 87-99, 1960.
- 18. Brauer, G., Gingerich, K. A. and Holtschmidt, H.,
 "Uber die Oxyde des Cers-IV, Die Sauerstoffzersetzungdrucke
 im System der Ceroxyde," J. Inorg. Nucl. Chem., 16, 77-87,
 1960.
- 19. Brauer, G. and Gingerick, K., "The Influence of Temperature on the Cerium Oxide System CeO₂-Ce₂O₃," Rare Earth Research edited by E. Kleber, MacMillian Co., New York, 1961.
- 20. Kuznetsov, F. A., Beliy, V. I., and Rezukhina, T. N., "Thermodynamic Properties of Cerium Dioxide," (in Russian), Dokl. Akad. Nauk. SSSR, 139, 1405-1408, 1961
- 21. Bevan, D. J. M. and Kardis, J., "Mixed Oxides of the Type MO₂ (Fluorite) M₂O₃ I," <u>J. Inorg. Nucl. Chem.</u>, 26, 1509-1523, 1964.
- 22. Kafstad, P. and Hed, A. Z., "Defect Structure Model for Nonstoichiometric CeO₂," J. Am. Cer. Soc., 50, 681-682, 1967.
- 23. Ackermann, R. J. and Rauh, E. G., "A High Temperature Study of the Stoichiometry, Phase Behavior, Vaporization Characteristics and Thermodynamic Properties of the Cerium + Oxygen System," J. Chem. Thermodynamics, 3, 609-624, 1971.

- 24. Panlener, R. J., "A Study of the Defect Strucutre of Pure and Calcia Doped Nonstoichiometric Cerium Dioxide," Ph. D. dissertation, Marquette University, Milwaukee, Wisconsin, 1972.
- 25. Panlener, R. J., Blumenthal, R. N., and Garnier, J. E., "A Thermodynamic Study of Nonstoichiometric Cerium Dioxide," J. Phys. Chem. Solids, 36, 1213-1222, 1975.
- 26. Cherepanor, A. M. and Tresvalskii, <u>Highly Refractory</u>
 <u>Materials and Objects Made from Oxides</u>, (in Russian)
 <u>Metallurgizdat</u>, Moscow, 1964, p. 358.
- 27. Trombe, F., "Les Oxydes Super-Refractaires," B. Soc. Fran. Ceramique, 3, 18-26.
- 28. Ryshkewitch, E., Oxide Ceramics, Academic Press, New York, 1960.
- 29. Kogan, B. I., Economic Outlines of the Rare Earths, (in Russian), Izd. ANSSSR Moscow, 1961.
- 30. Wartenberg, V. H. and Gurr, W., "Schmelzdiagramme Hochstfeuerfester Oxyde III," Z. Anorg U. Allge. Chemic., 196, 374-383, 1931.
- 31. Kaye, G. W. C. and Laby, T. H., <u>Tables of Physical and Chemical Constants</u>, Longman, New York, 1973.
- 32. Foex, M., "Mesure des Points de Solidification des Oxydes Refractaires," Rev. Hautes Temper. et Refract., 3, 309-326, 1966.
- 33. Mordovin, O. A., Timofeeva, N. I., and Drozdova, L. N.,
 "Determination of the Melting Points of Rare Earth Oxides,"

 J. Inorg. Mat., 3, 159-162, 1967, (translated from Russian,
 originally published in Izv. Akad. Nauk. SSSR, Neorg.
 Mat., 3, 187-189, 1967.)
- 34. Ruff, O., "Arbeiten im Gabiet Hoher Temperaturen, I," Z. Anorg. Chem, 82, 397-402, 1913.
- 35. Friederich, Von E. and Sittig, L., "Herstellung and Eigenschaften Hochschmelzender niederer Oxyde," Z. Anorg. Chem., 145, 127-140, 1925.
- 36. Pascal, P., <u>Nouveau Traite de Chimie Mineral</u>, Masoon, Paris, 1956.

- 37. Suchet, J. P., <u>Crystal Chemistry and Semiconduction in Transition Metal Binary Compounds</u>, Academic Press, New York, 1971.
- 38. JANAF Thermochemical Tables, National Bureau of Standards.

VITA

Michael D. Watson was born in Moline, Illinois March 2, 1947. In 1951 he moved to Huntsville, Alabama where he was educated in the public school system, graduating from Huntsville High School in 1965. He attended Georgia Institute of Technology and received a Bachelor of Ceramic Engineering in 1969. After one year of teaching chemistry at Forest Park (Georgia) Senior High School he returned to Georgia Tech for graduate study. In 1973 he received a Master of Science in Metallurgy after completing the thesis "Stabilized ZrO2-W Composites Produced by Unidirectional Solidification."