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Notation 
 
 
 
The following symbols are used in this report: 
 
a  : Location of sampling point in Gaussian quadrature (-) 
A  : Active cross-sectional area of channel flow (L2) 

oA  : Inactive cross-sectional area (off-channel storage) (L2) 

B  : Active cross-sectional top width (L) 

oB  : Inactive cross-sectional top width (L) 

1c  : Unit system dependent constant in Manning’s equation (-) 
E  : Dummy parameter (-) 
f  : Function (-) 
g  : Gravitational acceleration (LT-2) 

xg  : The x-coordinate of the parametric equation defining the river in domain (-) 

yg  : The y-coordinate of the parametric equation defining the river in domain (-) 

dh  : Downstream boundary condition water surface elevation (L) 

gh  : Groundwater hydraulic head above a datum (L) 

0gh  : Initial groundwater head (L) 

gĥ  : Approximate groundwater hydraulic head above a datum (L) 

( )
avggĥ  : Element average approximate groundwater head above a datum (L) 

rh  : Channel flow water surface elevation (stage) above a datum (L) 

0rh  : Initial water surface elevation in channel (L) 

Th  : Total headloss in a junction (L) 

uh  : Upstream boundary condition water surface elevation (L) 

DH  : Specified head boundary condition value (L) 
I  : Infiltration rate (LT-1) 



 ix

K  : Channel conveyance (L3T-1) 

ecK  : Contraction/expansion coefficient (-) 

rK  : Hydraulic conductivity of channel bottom sediment (LT-1) 

xK  : Hydraulic conductivity in longitudinal direction (LT-1) 

yK  : Hydraulic conductivity in transverse direction (LT-1) 

L  : Momentum flux due to lateral seepage inflow/outflow (L3T-2) 

dL  : Total channel flow domain length (L) 

rm  : Channel bed thickness (L)  

cn  : Manning’s roughness coefficient in channel (L-1/3T) 

wn  : Number of wells (-) 

N  : Total number of nodes in the entire channel network or in groundwater flow 
domain (-) 

iN  : ith weighing function (-) 

jN  : jth shape function (-) 

kN  : Number of nodes in channel k (-) 

Lq  : Lateral inflow/outflow per channel length (L2T-1) 

Cq  : Head-dependent boundary condition flux value (L2T-1) 

Nq  : Specified flux boundary condition value (L2T-1) 

Q  : Channel discharge (L3T-1) 

0Q  : Initial channel discharge (L3T-1) 

dQ  : Downstream boundary condition discharge (L3T-1) 

uQ  : Upstream boundary condition discharge (L3T-1) 

wQ  : Well discharge (LT-1) 

R  : Residual in the Galerkin method (-) 

hR  : Hydraulic radius (L) 

s  : Scale parameter in underrelaxation coefficient (-) 

cs  : Sinuosity factor for continuity equation (-) 

ms  : Sinuosity factor for momentum equation (-) 

eS  : Contraction/expansion slope (-) 

fS  : Channel/floodplain boundary friction slope (-) 



 x

yS  : Specific yield of unconfined aquifer (-) 

t  : Time coordinate (T) and parameter (-) 
V  : Flow velocity (LT-1) 
w  : Weighing constant in Gaussian quadrature (-) 

rw  : Wetted perimeter of channel bed (L) 
x  : Global longitudinal coordinate (L) 
y  : Global transverse coordinate (L) 

bz  : Top elevation of bottom impervious layer above a datum (L) 

rz  : Bottom elevation of channel bed above a datum (L) 
 
 
α  : Time weighing parameter in Galerkin method (-) 

cα  : A weighing parameter in Newton-Raphson method used to evaluate the first 

estimate of the unknown variables (-) 
β  : Momentum correction coefficient for non-uniform velocity distribution (-) 
δ  : Dirac delta function (argument-1) 
γ  : Iteration-dependent underrelaxation coefficient (-) 

ε  : Maximum change in hydraulic head for all nodes between two iterations (L) 
η  : Local transverse coordinate (L) 
θ  : Weighing factor for space derivative in the four-point scheme (-) 
ξ  : Local longitudinal coordinate (L) 
Γ  : Global groundwater flow domain boundary (L) 

1Γ  : Specified head boundary in groundwater flow model (L) 

2Γ  : Specified flux boundary in groundwater flow model (L) 

3Γ  : Head-dependent boundary in groundwater flow model (L) 

ψ  : Weighing factor for time derivative in the four-point scheme (-) 
Ω  : Global groundwater flow domain (L2) 

eΩ  : Local groundwater flow domain (L2) 

 
 
A  : Global coefficient matrix 
B  : Global load vector 
f  : Vector of arbitrary functions 



 xi

F  : Load vector 

gĥ  : Global approximate hydraulic head vector 

J  : Jacobian matrix in Newton-Raphson scheme 
M  : Mass matrix 
n  : Unit normal vector to the boundary 
S  : Stiffness matrix 
x  : Vector of unknown variables 
 
 

omlkji ,,,,,  : Indices 
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A Simultaneous Solution Approach for Coupled 
Surface and Subsurface Flow Modeling 

 
 
 

Orhan Gunduz and Mustafa M. Aral 
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Atlanta, GA 30332 
 

 
Abstract 
 
Coupled hydrologic modeling of surface and subsurface systems has gained a lot of 
popularity in the last two decades. Channel flow and groundwater flow models are coupled 
to obtain a better understanding of these hydrologic pathways in a watershed. In general, 
this coupling process is done in an iterative fashion until sufficient convergence is achieved 
for common parameters linking these different domains. In this study, we propose a new 
solution methodology based on the simultaneous solution of channel and groundwater flow. 
The method is based on the idea of solving a single global matrix at once rather than 
solving separate matrices for each flow domain and iteratively improving the solution. This 
new solution technique is tested by coupling a one-dimensional stream flow model that 
uses the complete form of the St. Venant equation with a two-dimensional vertically-
averaged groundwater flow model. The proposed simultaneous solution approach provides 
a more efficient solution for this coupled flow problem and is superior to the approximate 
solution obtained through an iterative approach. 
 
 
1. Introduction 
 
The movement of water in the hydrologic cycle is a complex phenomenon because of 
numerous flow pathways and interactions between these pathways. Discrete modeling of 
these surface and subsurface pathways has been studied extensively and various models of 
different complexities have been formulated in the past (McDonald and Harbaugh, 1988; 
Aral, 1990; Fread, 1993). In all of these studies, there is limited or no interaction between 
different pathways. Even though these models provide good results in simulating the 
hydrology of their domains, they start to show deviations from observed data when these 
interactions become considerably important.  
 
This restricted and isolated nature of these models motivated researchers to focus on 
coupled models. Pinder and Sauer (1971), Smith and Woolhiser (1971) and Freeze (1972) 
were among the earliest to work with coupled models. More recently, Cunningham and 
Sinclair (1979), Akan and Yen (1981a), Swain and Wexler (1991), VanderKwaak and 
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Loague (2001) and Morita and Yen (2002) have all formulated coupled models of various 
complexities to simulate the interactions of surface and subsurface systems. The level of 
complexity is generally determined by the number of dimensions included in the model as 
well as the inclusion of all possible physical phenomena. In this regard, the most advanced 
model would involve a three-dimensional surface flow component based on the complete 
Navier-Stokes equations and a three-dimensional variably saturated subsurface flow 
component. Currently, no such model exists in the hydrologic literature due to the 
inevitable drawbacks of (i) insufficient computational power (i.e., storage capacity and 
processing speed); and, (ii) insufficient calibration and verification data. 
 
Because of these limitations, it is still very tempting for the hydrologic modeler to use 
approximate models over large scale applications. In this research area, the works of 
Vanderkwaak and Loague (2001) and Morita and Yen (2002) both include a three-
dimensional variably saturated subsurface flow component and two-dimensional non-
inertia wave surface flow component. It must be noted that even with this fairly complex 
approximate formulation, these models can only be operated on test or small scale 
applications. In order to perform practical simulations of larger scale domains, it is 
necessary to make further simplifications in the formulation of the physical system. One 
such approximate formulation of coupled surface/subsurface flows involves the use of a 
one-dimensional approach for the surface flow in streams and rivers and a two-dimensional 
vertically averaged approach for the subsurface flow in the saturated zone.  
 
Regardless of the level of complexity, the coupling process in all models is based on the 
idea of solving for the common parameters linking the surface and subsurface components. 
This solution can be done in an iterative or non-iterative fashion. The non-iterative 
technique involves a one-time solution of surface and subsurface flow equations and is also 
known as “external” coupling. On the other hand, the iterative technique involves numerous 
solutions of both surface and subsurface equations until the outcome of subsequent 
solutions become less than a tolerance criterion. Iterative coupling is sometimes known as 
“internal” coupling. Because of the fact that iterative coupling algorithms involve numerous 
solutions of surface and subsurface flow equations within a time step, they require more 
computational time as opposed to external coupling algorithms. On the other hand, this 
iterative improvement of the solution generally provides more accurate results and thus it is 
generally proved to be superior over external coupling. 
 
In this study, a new solution technique is proposed for the coupled solution of surface and 
subsurface flows. In this approach, the surface and subsurface flow equations are solved 
simultaneously within the same global matrix structure and, hence, this new method is 
called the “simultaneous solution” approach to differentiate it from internal and external 
coupling methods. Since this new approach eliminates the need for iterative solution of the 
governing equations, it is comparably faster than the iterative coupling algorithm. 
Furthermore, as there is no necessity to check for the convergence of an iterative solution, 
and thus it yields a more accurate solution than iterative coupling approach. To test the 
applicability of this approach, a one-dimensional stream flow model based on the dynamic 
wave form of the St Venant equations is coupled with a two-dimensional vertically 
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averaged saturated groundwater flow model to simulate surface/subsurface interactions 
along the river bed. 
 
The mathematical background of the coupled model is given in the second section of this 
report where the governing partial differential equations of the channel flow and saturated 
groundwater flow models are presented together with the accompanying initial and 
boundary conditions. In the third section, the numerical solution methodology for the 
coupled model is presented where spatial and temporal discretization of the equations is 
given and the simultaneous solution methodology is explained. The new approach is first 
applied to two hypothetical domains to test its capabilities and limitations and finally to a 
watershed in southern Georgia for real-time modeling. 
 
 
2. Mathematical Model 
 
The coupled model is a combination of a one-dimensional channel flow model and a two-
dimensional groundwater flow model (Figure 1). The channel flow model is based on the 
dynamic wave form of the St. Venant equations and the groundwater flow model is based 
on the vertically-averaged mass conservation equation of groundwater flow. The link 
between the two models is provided via the lateral flow term at the river-bottom interface 
using the relative values of the river water surface elevation and the groundwater head.    

 
Figure 1. Coupled modeling domain 
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2.1. Channel Flow Model 
 
2.1.1. Governing Equations 
 
The governing equations of the one-dimensional channel flow model are given by the 
continuity and momentum equations modified to include the effects of natural channel 
geometry and characteristics. The momentum equation is based on the complete dynamic 
wave form of the unsteady non-uniform St. Venant equations (Fread, 1993): 
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where sc and sm are sinuosity factors for continuity and momentum equations, A is the 
active cross-sectional area of flow, Ao is the inactive (off-channel storage) cross-sectional 
area, Q is the discharge, t is the time, x is the longitudinal distance along the channel/flood 
plain, qL is the lateral flow per channel length that provides the link with the groundwater 
flow model (positive for inflow and negative for outflow), β is the momentum coefficient 
for velocity distribution, g is the gravitational acceleration, hr is the water surface elevation 
in the stream (i.e., stage), L is the momentum flux due to lateral seepage inflow/outflow, Sf 
and Se are channel/flood plain boundary friction slope and contraction/expansion slope, 
respectively. The momentum flux due to seepage inflow/outflow, channel/flood plain 
boundary friction slope and contraction/expansion slope are evaluated as: 
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where Kec is the expansion/contraction coefficient, Δx is the reach length, c1 is the unit 
system dependent constant, nc is the Manning’s roughness coefficient, K is the flow 
conveyance factor and Rh is the hydraulic radius. The hydraulic radius is defined as the 
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ratio of cross-section area to wetted perimeter but can be approximated as the ratio of cross-
section area to top width for large rivers. It is important to note that the momentum influx 
due to seepage inflow is assumed to be negligible and is not considered in the model. The 
lateral flow that provides the link between the channel flow model and the groundwater 
flow model is defined as: 
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where Kr is the river bottom sediment conductivity, mr is the river bed thickness, zr is the 
river bottom elevation and wr is the wetted perimeter of the river bed as shown in Figure 2. 
It can be seen from the expression given in Equation (6) that lateral flow is a function of 
water surface elevation and groundwater head, and provides the coupling mechanism 
between the surface and subsurface flow systems. The coupling term is explicitly 
embedded in the governing equation for the channel flow model. 
 
 
 

 
Figure 2. Channel flow / groundwater flow interaction (Gunduz and Aral, 2003) 
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2.1.2. Initial Conditions 
 
In order to start the transient solution, initial values of the model unknowns (i.e., discharge 
and water surface elevation) are to be specified along the one-dimensional stream domain. 
The initial conditions can be obtained from: (i) field data; (ii) a previous unsteady model 
solution; or, (iii) solution of steady, non-uniform flow equation. In any case, the initial 
conditions are given as: 
 

( ) ( )xQxQ 00, =                                                         (7) 
 

( ) ( )xhxh rr 00, =                                                        (8) 
 

where Q0 and hr0 represent the discharge and water surface elevation in the channel at the 
beginning of the simulation, respectively. 
 
2.1.3. Boundary Conditions 
 
In the one-dimensional channel flow model, there are two different types of boundary 
conditions specified at (i) external; and, (ii) internal boundaries of the domain. The external 
boundary conditions are given at the most upstream and downstream points of the channel 
network where as the internal boundary conditions are specified at internal junction points 
of the channel network. 
 
2.1.3.1. External Boundary Conditions 
 
The proposed model is capable of modeling a network of river channels. The network is 
generally composed of several upstream and internal channels and a single downstream 
channel. Therefore, the model can accommodate several upstream boundary conditions and 
a single downstream boundary condition. At any upstream boundary, a discharge or a stage 
hydrograph can be used as the boundary condition. These conditions are expressed as 
discharge and stage time series and are given as: 
 

( ) ( )tQtQ u=,0                                                          (9) 

 
( ) ( )thth ur =,0                                                       (10) 

 
where Qu and hu represent upstream boundary discharge and water surface elevation values, 
respectively. Similarly, the boundary condition at the downstream boundary can also be 
defined as a discharge or a stage hydrograph and specified as: 
 

( ) ( )tQtLQ dd =,                                                       (11) 
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( ) ( )thtLh ddr =,                                                       (12) 

 
where Qd and hd represent downstream boundary discharge and water surface elevation 
values, and Ld is the total domain length. Moreover, it is also possible to define the 
downstream boundary condition as a single-valued rating curve, a looped rating curve or a 
critical depth section. The single-valued rating curve maps a particular stage value to a 
corresponding discharge value and can be expressed by using linear interpolation within a 
table of stage-discharge data: 
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where Qk, Qk+1, hk and hk+1 are consecutive tabular data sets of the rating curve and hd is the 
stage at the downstream boundary. A looped rating curve, on the other hand, maps a stage 
value to several possible discharge values depending on the hydraulic conditions of the 
channel and can be expressed using the Manning’s equation: 
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where Sf is given by the modified momentum equation as: 
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Finally, it is also possible to use a critical depth section as the downstream boundary 
condition when the most downstream point of the modeling domain is a controlled structure 
such as a weir. In this particular case, the critical depth is mapped to the critical discharge 
via the following equation: 
 

( ) 2/3, A
B
gtLQ d =                                                      (16) 

 
 
where B is the cross-sectional top width of the channel.  
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2.1.3.2. Internal Boundary Conditions 
 
Any two or more channels intersecting within a channel network forms a junction where 
internal boundary conditions are specified to satisfy the mass and energy balance. The 
proposed model does not allow for looped networks and require that there is always a 
single outflow channel from a junction. The mass balance equation at a junction can be 
specified as:  

dt
dSQQ o

m

k
k =−∑

=1
                                                        (17) 

 
where m is the total number of inflowing channels to the junction, Qk is the discharge at the 
end of the kth inflowing channel to the junction, Qo represents the discharge at the 
beginning of the outflowing channel from the junction, and dS/dt corresponds to the change 
in storage within the junction. For many modeling applications, it is a common practice to 
assume that the change in storage within a junction is negligible compared to the change in 
storage within in a channel (Akan and Yen, 1981b; Fread, 1993; Jha et al., 2000). 
Consequently, the mass balance equation reduces to a simple continuity equation. On the 
other hand, the energy equation is written as: 
 

( ) ( ) mkh
g

V
h

g
V

h T
o

or
k

kr ,,2,1
22

22

…=++=+                         (18) 

 
where (hr)k and Vk are the stage and flow velocity at the end of the kth inflowing channel to 
the junction, (hr)o and Vo are the stage and flow velocity at the beginning of the outflowing 
channel from the junction and hT is the total headloss in the junction. When all the flows in 
all the branches joining a junction are subcritical and the head lost in the junction is 
negligible, the equation simplifies to: 
 

( ) ( ) mkhh orkr ,,2,1 …==                                        (19) 
 
 
2.2. Groundwater Flow Model 
 
2.2.1. Governing Equations 
 
The governing equation of two-dimensional groundwater flow in an anisotropic, non-
homogeneous unconfined aquifer with principle permeability directions not matching the 
coordinate directions is given by: 
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where hg is the vertically averaged hydraulic head, zb is the top elevation of bottom 
impervious layer, Kxx, Kxy, Kxy and Kyy are anisotropic saturated hydraulic conductivities, Qw 
is the flow rate of the kth well located at point (xk, yk) in the domain (i.e., positive for an 
injecting well and negative for a discharging well), nw is the number of wells in the domain, 
δ is the Dirac delta function, qL is the lateral flow at the river-bottom interface defined by 
Equation (6) (i.e., positive for lateral inflow and negative for lateral outflow), gx and gy are 
the Cartesian coordinate components of the parametric equation of the mth river in the 
domain, nr is the number of rivers in the domain, t is the parameter, I is the infiltration rate 
and Sy is the specific yield of the aquifer.  
 
2.2.2. Initial Conditions 
 
The initial values of the hydraulic head, hgo, are specified as the initial conditions of the 
groundwater flow model: 
 

( ) ( )yxhyxh gg ,0,, 0=                                                    (21) 
 
2.2.3. Boundary Conditions 
 
Three different types of boundary conditions can be specified along different external 
boundaries of the groundwater flow domain. Type-1 or specified head boundary conditions 
are used to model boundaries with known hydraulic head values. It is also known as a 
Dirichlet boundary condition and is given as: 
 

( ) ( )yxHtyxh Dg ,,, =                                                   (22) 
 
where HD is the known hydraulic head value. Type-2 or specified flux boundary conditions 
are used to model boundaries with known flux values. It is also known as a Neumann 
boundary condition and is given as: 
 

( )( )gbgN hzhq ∇⋅−⋅−= Kn                                              (23) 
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where qN is the known flux value and n is the unit normal to the boundary. Finally, type-3 
or head-dependent boundary conditions are used to model boundaries on which the 
conditions depend on the changing hydraulic head such as streams and rivers at the external 
boundaries of the domain. It is also known as a Cauchy boundary condition and is given as: 
 

( )( )
( )
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−
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−
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rrg
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rrr
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rrg
r
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rr
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m

mzh
wK

mzh
m

hh
wK

qhzhq Kn    (24) 

 
where qC is the head-dependent flux value that is also equal to the lateral flow between the 
two systems. It must be noted, however, that the lateral flow is no longer a head-dependent 
flux when the second condition applies in Equation (24) since (zr - mr) term becomes 
constant when the hydraulic head falls below the bottom elevation of river sediments. In 
this particular case, the head-dependent flux is treated as a constant flux condition. The 
coupling term is now implicitly embedded in the boundary condition term for the 
groundwater flow model. 
 
2.3. Coupling of Models 
 
The coupling of the channel flow and groundwater flow models is provided via lateral 
inflow/outflow. The lateral inflow/outflow term appears as a source/sink term both in the 
channel flow model and in the groundwater flow model. In its current state, the coupled 
model does not allow any other lateral inflow/outflow to the channel flow model such as 
overland flow, precipitation and evaporation. Therefore, the following coupling mechanism 
is assumed to be valid in the channel flow model: 
 

• gr hh >  
Seepage occurs from the channel to the groundwater flow domain. Hence, it becomes a 
lateral outflow for the channel flow model and a lateral inflow for the groundwater flow 
model. 

 
• gr hh =  
No seepage occurs between the two domains. Hence, the lateral inflow/outflow term in 
equations (1) and (20) becomes zero representing a no flux condition for both models.  
 
• gr hh <  
Seepage occurs from the groundwater flow domain to the channel. Hence, it becomes a 
lateral inflow for the channel flow model and a lateral outflow for the groundwater flow 
model. 
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3. Numerical Solution 
 
3.1. Channel Flow Model 
 
In general, the available numerical techniques for the solution of expanded Saint-Venant 
equations can be given as: (i) method of characteristics; (ii) finite difference methods; and, 
(iii) finite element methods. Of these methods, the finite element method is rarely used 
when flow is approximated as one-dimensional such as in the case of Saint-Venant 
equations. The other two methods have been commonly applied for the numerical solution 
of one-dimensional unsteady flow since 1960s. The finite difference methods can further be 
classified as explicit and implicit techniques, each of which holds distinct numerical 
characteristics. A major advantage of the implicit finite difference method over the method 
of characteristic and the explicit finite difference technique is its inherent stability without 
the requirement to satisfy the Courant condition, which sets the criteria for the maximum 
allowable time step. This requirement to satisfy Courant condition often makes the method 
of characteristics and explicit techniques very inefficient in terms of the use of computer 
time. Furthermore, certain implicit schemes such as the one proposed by Preissmann (1961) 
allow the use of variable time and spatial steps, which make the method extremely 
convenient for applications in routing of flood hydrographs in river systems (Sturm, 2001). 
Considering these advantages, the implicit finite difference technique is used to solve the 
channel flow equations given by Equations (1) and (2).  

 
Of the various implicit schemes that have been developed, the "weighted four-point" 
scheme of Preissmann is very advantageous since it can readily be used with unequal 
distance steps that becomes particularly important for natural waterways where channel 
characteristics are highly variable even in short distances. Similarly, the applicability of 
unequal time steps is another important characteristic of this technique for hydrograph 
routing where floodwaters would generally rise relatively quickly and recess gradually in 
time.  
 
The finite difference counterparts of the continuity, momentum and boundary condition 
equations are derived in Appendix 1. In a channel network, the discretized forms of 
Equations (1) and (2) form the core of the channel flow model. These equations are written 
for each channel in the network, and supplemented by the discretized forms of the 
boundary condition equations. For each channel, the final form of the continuity equation is 
written as: 
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The final form of the momentum equation is written differently for lateral inflow and 
outflow. It is important to note that the lateral inflow has no contribution to the momentum 
balance, and therefore, the terms associated with the lateral flow drop out from the 
difference equation. For the case of lateral outflow, the finite difference form of the 
momentum equation is written as: 
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In Equations (25) and (26), subscripts (i) and (j) represent the spatial and temporal indices, 
respectively. The terms with subscript (j) are known either from initial conditions or from 
the solution of Saint-Venant equations at the previous time line. Since cross sectional area 
and channel top width are functions of water surface elevation, the only unknown terms in 
these equations are discharge and water surface elevation at the (j+1)th time line at nodes (i) 
and (i+1). Therefore, there are only four unknowns in these equations. All remaining terms 
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are either constants or are functions of these unknowns. The resulting two algebraic 
equations obtained by the application of the weighted four-point scheme are nonlinear and 
an iterative solution technique is required. When the finite difference forms of continuity 
and momentum equations are solved for each grid shown in Appendix 1, a system of 2(Nk-
1) equations are formed for one time-line between the upstream and downstream boundary 
of channel k, where Nk represents the number of nodes in channel k. The two unknowns in 
each of these equations yield a total of 2Nk unknowns for each time line. The system of 
2(Nk-1) equations with 2Nk unknowns requires two additional equations for the closure of 
the system. These two additional equations are supplied by the upstream and downstream 
boundary conditions of the channel. When this procedure is repeated for each channel of 
the network, a total of Σ(2Nk)=2N equations are formed, where k runs from 1 to the number 
of channels in the network, and N represents the total number of nodes in the entire system. 
The resulting system of 2N non-linear equations with 2N unknowns is solved by a suitable 
matrix solution algorithm such as the Newton-Raphson iterative technique.  
 
Of all the non-linear solution procedures, the Newton-Raphson method is one of the most 
common iterative techniques used for the solution of a system of non-linear equations. It 
provides an efficient means of converging to a root given a sufficiently good initial guess. 
For any channel network application, the system of equations can be denoted as 2N 
functional relations to be zeroed that involves variables Q and hr represented by xk for 
k=1,2,…,2N: 
  

0),...,,,( 2321 =Nk xxxxf                                                (27) 
 
If x denotes the entire vector of unknown variables xk and f denotes the entire vector of 
functions fi, each of the functions fi can be expanded as a Taylor series expansion in the 
neighborhood of x: 
 

( ) ( ) ( )∑ +
∂
∂

+=+
=

N

m
m

m

k
kk δOδx

x
f

fδf
2

1

2xxxx                                  (28) 

 
where the matrix of first partial derivatives is called the Jacobian matrix, J. The elements of 
the Jacobian matrix for 2N unknowns are evaluated in Appendix 2. In matrix notation, one 
can rewrite Equation (28) as: 
 

( ) ( ) ( )2xxJxfxxf δδδ O+⋅+=+                                         (29) 
 
Neglecting the higher order terms and setting the left hand-side equal to zero, one can 
obtain a set of linear equations that are solved for the corrections δx: 
 

fxJ −=⋅ δ                                                             (30) 
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This matrix equation is solved by a matrix solver such as Gaussian elimination or LU 
decomposition for the unknown δx, and an improved estimate of solution is obtained by: 

 
kjkjkj ,1,11,1 ++++ += xxx δ                                                   (31) 

 
where superscript k represents the level of iteration at the unknown time line. The iterative 
solution is tracked by finding the values of the unknowns Q and hr so that the residuals 
given in Equation (31) are forced to zero or very close to zero. It must be noted that the 
convergence process depends on a good first estimate for the unknown variables. Fread 
(1985) states that a reasonably good estimate for the first time step is to use the initial 
condition of discharge and water surface elevation. For all other time steps, the first 
estimates of the unknown variables can be obtained by using the linearly extrapolated 
values from solutions at previous time steps according to the algorithm given below: 
 

( ) 1j             
1

11,1 ≠
Δ
Δ

−+=
+

−+
j

j
jj

c
jj

t
txxxx α                              (32) 

 
where xj+1,1 is the first estimate of unknown variables at (j+1)th time line, xj is the solution 
vector of Q and hr values from previous time step, xj-1 is the solution vector of Q and hr 
values from two previous time steps, αc is a weighing factor from 0 to 1 and Δtj+1 and Δtj 
are the two consecutive time step sizes.  
 
 
3.2. Groundwater Flow Model 
 
In groundwater flow modeling literature, there exist numerous models implementing 
different numerical solution procedures. The most common of these procedures are the 
finite difference and finite element methods (McDonald and Harbaugh, 1988; Aral, 1990). 
The finite element method became a popular method due to the flexibility it offers in 
simulating aquifer domains with irregular boundaries as well as heterogeneous aquifer 
properties. In this regard, the Galerkin finite element method based on the method of 
weighted residuals is used in the numerical solution of the groundwater flow component of 
the proposed coupled model. 
 
The numerical procedure starts with the idealization of the solution domain by a finite 
number of distinct, non-overlapping regions, called the finite elements, over which the 
unknown variables are to be interpolated. In any idealization, the elements are selected such 
that the material properties of the domain, such as hydraulic conductivity and specific yield, 
are retained in individual elements. In two-dimensional finite element analysis, families of 
triangular and/or quadrilateral elements are generally used to discretize the analysis 
domain. Although these elements can be linear, quadratic or cubic, using simple linear 
elements provides sufficient accuracy and a better solution strategy. Quadrilateral elements 
are superior as opposed to triangular elements due to the fact that they are computationally 
more efficient and they simplify the task of tiling the problem domain without introducing 
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any bias that the triangular elements possess. For these reasons, linear irregular 
quadrilateral elements with four nodes are selected to discretize the domain and develop 
basis functions in the proposed model (Figure 1). The details associated with the basis 
functions are given in Appendix 3. 
 
Following the idealization of domain and selection of the interpolating functions, an 
appropriate weak form of the problem is developed. Using the Galerkin weighted residual 
method, a weak form of the groundwater flow equation is derived in Appendix 4 by using 
standard steps of writing the weighted residual, integration by parts and incorporating the 
natural boundary conditions. The resulting finite element matrix equation obtained by 
applying the Galerkin procedure is given as: 
 

F
h

MhS g
g =⋅+⋅

dt
d ˆ

ˆ                                                 (33) 

 
where S, M and F stand for global stiffness matrix, global mass matrix and global load 
vector, respectively, and ĥg is the approximate hydraulic head vector. These global matrices 
and vectors are obtained by tiling their element counterparts according to the connectivity 
of elements within the solution domain. The explicit formulas of element matrices and 
vectors are derived in Appendix 5. At this point, it is clearly seen that these element 
integrals are generally complex and can not be integrated analytically. Hence, a numerical 
integration scheme is required to evaluate these element integrals. In the proposed model, a 
two-dimensional Gaussian quadrature technique is implemented to evaluate these integrals 
numerically. The details of this technique are discussed in Appendix 6. 
 
The ordinary differential Equation (33) obtained as a result of finite element discretization 
can be solved using a number of techniques including the one-step finite difference 
approximations. Since the hydraulic head is a function of time, it is possible to define two 
positions, j and j+1, representing the known and unknown time lines, respectively. If one 
defines an intermediate point between the known and the unknown time line (i.e., j+α 
where 0≤α≤1.0), then the corresponding head could be calculated as a weighted average: 
 

( ) jjj
ggg hhh ˆ1ˆˆ 1 ααα −+= ++                                            (34) 

 
such that if the intermediate point is selected as the mid point between the two time lines 
(i.e., α=0.5), the head becomes an arithmetic average of the two heads at two ends. Using 
the Taylor series expansion of the hydraulic head around the intermediate point using the 
points j and j+1, one would obtain: 
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h h                 (35) 
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Neglecting the terms equal to or higher than second order and subtracting the second 
equation from the first yields: 
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and after rearranging, reduces to: 
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Since it is always possible to write the ordinary differential equation for a particular time 
line, one would obtain the following equations for the two time lines: 
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When these equations are multiplied by the weighing parameters (1-α) and α, respectively 
and added together, one would obtain: 
 

( ) ( ) ( ) jj
j
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It must be noted that in saturated unconfined aquifer flow, the mass matrix, M, is a constant 
matrix which is not a function of hydraulic head and takes the same values for all time 
steps. Therefore, the above formulation can be simplified as: 
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It is now possible to substitute for the weighted averaged derivative terms given in 
Equation (38) for the term in the parenthesis to obtain: 
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After rearrangement, the equation takes the following final from: 
 

( ) ( ) jjjjjj
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It is now possible to obtain different time integration schemes depending on the value of 
the time weighing parameter. Even though infinitely many values of the weighing 
parameter are possible, several of these are particularly important and have significant 
properties With α=0, the equation becomes an explicit scheme and it does not require the 
solution of any system of equations in order to advance the solution across the time. 
However, explicit schemes often encounter numerical instabilities if the time step is taken 
too large. When α=0.5, the scheme becomes the so-called Crank-Nicholson method, which 
implements a central-difference approximation between two time lines. It is known that this 
choice of the time weighing factor corresponds to the optimal sampling of the first temporal 
derivative over the time step. If the data of the problem have sufficient continuity, this 
scheme exhibits its optimal accuracy properties and results in a very efficient method for 
handling the time-dependence of the transient problem. Unfortunately, presence of any 
discontinuity in the data might lead to spurious oscillations of the computed solution. If 
α=1, the scheme becomes a fully-implicit scheme and resists the development of solution 
oscillations better than any other one-step method. Therefore, it is commonly used for most 
difficult problems. However, it should be noted that this scheme is not fully accurate or 
especially efficient but it will dampen spurious high-frequency effects more strongly than 
the other schemes. The proposed model generally uses a time-weighing parameter of 0.5. 
 
Due to the non-linearity of the governing equation of unconfined aquifer flow, a suitable 
iterative scheme is implemented to solve the system of non-linear equations. Common non-
linear solution techniques such as Newton-Raphson method or successive substitution 
(Picard) iteration method can be applied in this solution. Although the Newton-Raphson 
method is faster in convergence, it requires the computation of partial derivatives that is 
rather costly in finite element framework. Hence, the relatively simple Picard iteration 
technique is applied in the solution of the groundwater flow model. The Picard method is a 
very simple technique and is based on successively substituting the latest values of the 
hydraulic head to compute new values until sufficient convergence is achieved. When 
Picard method is applied, the discretized groundwater flow equation can be written as: 
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where superscripts k and k+1 represent previous and current iteration values of hydraulic 
head at the unknown time level. For all iterations, most recent values of the hydraulic heads 
are used to obtain an improved estimate of the heads at the unknown time level according 
to the following formula: 
 

( ) kjkjkj ,11,11,1 ˆ1ˆˆ +++++ −+= ggg hhh γγ                                  (46) 
 
where γ is an iteration-dependent underrelaxation coefficient (or a damping parameter) 
taking values between 0 and 1. The left hand-side value at (k+1)th iteration represents the 
improved estimate to be used in next iteration. For very non-linear problems, head change 
in iterations might be large enough to cause the solution to oscillate. In such cases, a 
damping parameter can be used to restrict the head change from one iteration cycle to the 
next (Huyakorn et al, 1986). In each iteration cycle, the value of damping parameter is 
computed according to the following procedure: 
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where s is a scale parameter evaluated according to the following rule: 
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where εk+1 and εk represent the hydraulic head change for iteration k+1 and k, respectively, 
that is largest in absolute value and γold is the value of damping parameter at the previous 
iteration. 
 
 
3.3. Simultaneous Solution of the Coupled Model 
 
The initial step for the numerical solution of the coupled model is discretizing the analysis 
domain. In this procedure, the channel network is discretized first considering the stability 
requirements of the channel flow model. Then, the groundwater flow domain is discretized 
considering the heterogeneity of the aquifer. During the discretization of the groundwater 
flow domain, each node of the channel flow model is selected such that it coincides with a 
node in the groundwater flow model as seen in Figure 3. This one-to-one correspondence of 
the nodes along the channel network is essential for the simultaneous solution of the 
coupled model. If there is a requirement for finer discretization of the groundwater flow 
domain at any point along the channel network due to highly variable aquifer properties, 
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the discretization of the channel flow model must also be modified to satisfy the one-to-one 
correspondence of the nodes. In this regard, the simultaneous solution of the coupled model 
is always based on finest discretized domain that either model enforces along the channel 
network. For any other point in the analysis domain, the discretization is solely based on 
the requirements of the groundwater flow model. 
 

 
 

Figure 3.  Discretization of the domain 

 
The only exception to the one-to-one correspondence of nodes is observed at the channel 
junction points. At any junction with k inflowing channels and one outflowing channel, the 
numerical discretization of the channel flow model require that k+1 nodes are used to 
properly represent the k downstream boundary nodes of the inflowing channels and one 
upstream boundary node of the outflowing channel. Since all k+1 nodes physically 
represent the same junction point, they all correspond to a single point in the groundwater 
flow model. Therefore, at junction points, k+1 nodes of the channel flow model 
corresponds to one node of the groundwater flow model.  
 
The second step of the simultaneous solution of the coupled model is to write discretized 
equations of channel and groundwater flow equations. These are given in Equations (30) 
and (45), respectively. When these equations are written for all nodes of channel and 
groundwater flow domains, a system of equations is obtained for both channel and 
groundwater flow system. At this point, these systems of equations are assembled together 

Analysis domain 

Groundwater flow 
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within a single system so that they can be solved together in a simultaneous manner. The 
assembled final matrix equation is shown in Figure 4. 
 

 
Figure 4. Global matrix equation and component blocks 

 
In the assembled global matrix equation, A is the global coefficient matrix, B is the global 
load vector and x is the global unknown vector. As seen from Figure 4, the global matrix 
and vectors are obtained by combining their separate blocks obtained from channel and 
groundwater flow model. These separate blocks are written as: 
 

( )MSA tkjGW Δ+= + /1,1α                                                 (49) 
 

kjRIVER ,1+= JA                                                          (50) 
 

( ) ( ) ( )( ) jjjkjGW t ghMSFFB ˆ/111,1 ⋅Δ−−−−+= + ααα                        (51) 
 

kjRIVER ,1+−= fB                                                         (52) 
 

1,1ˆ ++= kjGW
ghx                                                         (53) 

 
1,1 ++= kjRIVER xx δ                                                       (54) 

 
Although the global matrix is shown in full-matrix format, the calculations are performed 
using a banded matrix structure to reduce computer memory required to store and solve the 
system. The total bandwidth of the global matrix depends on the relative magnitudes of the 
bandwidths of channel flow and groundwater flow models. Therefore, the size of the global 
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matrix is determined by the size of the bigger bandwidth. In general, the bandwidth of the 
groundwater flow model is bigger than the bandwidth of the channel flow model. 
 
It is important to note that since the global system is non-linear and time dependent, it is 
solved several times for each time step until sufficient convergence is achieved for the 
unknown parameters. Hence, the global matrix solution involves an iterative portion to 
handle the non-linearity of the governing equations of both models. However, this iterative 
non-linear solution does not affect the simultaneous solution of the overall coupled system. 
The iterative solution is only used in the solution of the non-linearity in the two sub-
systems. The convergence of the non-linear solution is checked using two separate criteria 
for channel flow and groundwater flow components. Therefore, although the systems are 
solved together, the convergence of the solution is tested with different criteria since the 
degree of the non-linearity in channel flow is generally much higher than the degree of non-
linearity in groundwater flow. Typically, 2 to 3 iterations are found to be sufficient for the 
convergence of two sub-domain models. 
 
Even though the two hydrologic systems coupled in this model may have significantly 
different time scales, their simultaneous solution, unlike an iterative solution, requires a 
common time step in numerical discretization. Particularly, the behavior of a channel flow 
model is generally more dynamic than the overall response of a groundwater model. This 
constraint could occasionally create long simulation periods with the proposed algorithm 
but is always faster than the iterative solution approach that utilizes the same time step size. 
 
 
4. Application 
 
Three sets of simulations are made using the proposed model and the solution algorithm. In 
the first application, a hypothetical test case is simulated to test the model’s capabilities and 
limitations with a rectangular groundwater flow domain and an overlying single channel 
domain. In the second application, the same hypothetical test case is modified to analyze 
the model’s response with the presence of a channel network. Finally, the third application 
is based on simulating a real system from southern Georgia. 
 
4.1. Hypothetical Case: Single Channel 
 
The coupled channel/groundwater flow model is first applied to a hypothetical stream-
aquifer system to demonstrate the performance of the proposed simultaneous solution 
algorithm. The physical setup of the hypothetical domain is shown in Figure 5. In this 
application, the stream is a 30m wide 10km long uniform rectangular channel with a 
constant slope of 0.0001m/m and divides the aquifer into two equal domains of 2000m 
wide on each side of the channel. The Manning’s roughness coefficient of the stream is 
uniform through out the channel and has a value of 0.025. At steady flow conditions, the 
channel carries 100m3/s discharge at the uniform flow depth of 3.56m. The thickness of the 
sediments at the bottom of the channel is 0.3m and the hydraulic conductivity of the 
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deposits is 1.0E-6m/s. The channel bottom elevation at the most upstream point is given as 
30m above mean sea level. To visualize results easily, the 10km long and 4 km wide 
unconfined aquifer is assumed to have a uniform and isotropic hydraulic conductivity of 
1.0E-3m/s and the aquifer base is set at mean sea level. The stream flow model is 
discretized by 100m long elements giving a total of 101 nodes. The groundwater flow 
model domain is discretized by square elements with a side length of 100m giving a total of 
4141 nodes and 4000 square elements. Furthermore, a constant time step of 1hr is used in 
simulations. 
 
In the channel flow model, the upstream boundary condition for the channel is given by a 
trapezoidal discharge hydrograph with a base discharge of 100m3/s, a peak discharge of 
350m3/s and a time to peak of 10 days (Figure 6). The downstream boundary condition is 
given by a single-valued rating curve that maps the discharge to its normal depth. In the 
groundwater flow model, the boundaries parallel to the stream are specified as constant 
head condition and the boundaries perpendicular to the stream are specified as no-flux 
condition. Moreover, the internal boundary, where the stream runs through, is specified as a 
head-dependent line source. The initial conditions in the stream flow model is given as 
uniform flow conditions (i.e., 100m3/s of discharge and a corresponding 3.56m of depth) at 
all nodes. In the groundwater flow model, two different sets of initial hydraulic head 
surfaces are used. In the first simulation, the initial groundwater head in the aquifer is 
chosen to be at 32m at all nodes. This simulation illustrates a condition where lateral inflow 
occurs from the stream to the aquifer. In the second simulation, the opposite scenario is 
simulated and the initial groundwater head in the aquifer is chosen to be 35m, illustrating a 
condition where the lateral inflow occurs from the aquifer to the stream. These two 
simulations of Problem-1 are referred to as Scenario-1 and Scenario-2, respectively and are 
abbreviated as P1-S1 and P1-S2 in the following discussion. 
 
In both scenarios, the point comparisons of groundwater head and stream stage are 
presented in figures 6 and 8 at the mid point of the analysis domain (i.e., 5000m from the 
upper boundary of the aquifer, which also corresponds to the mid point of the stream). A 
spatial distribution of groundwater heads are also presented in figures 7 and 9 along the line 
(-2000m ≤ x ≤ 2000m; y = 5000m). Analysis of groundwater head time series in figures 6 
and 8 reveals that the passage of the flood wave creates an increase in the groundwater 
heads by creating a mound near the river as long as the stream stages are higher than the 
groundwater heads for a sufficiently long period of time. This mound is the result of lateral 
inflow to the aquifer (Figure 7). It is also seen that the mound subsides and the bank storage 
is drained back to the stream when the stream stage falls below the groundwater heads. It is 
also seen from figures 6 and 8 that there is a lag between the peak values of the hydraulic 
head and the stream stage which clearly represents the dynamic behavior of the stream flow 
as opposed to the groundwater flow. 
 
The response of the coupled system to a flood wave is directly related to the initial 
conditions in the stream and the aquifer. A comparison of figures 7 and 9 demonstrate the 
effect of initial groundwater head in the aquifer and its position relative to the stage in the 
stream. When the hydraulic head in the aquifer is higher than the stream stage (Figure 9), a 
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discharge from bank storage occurs in the first 5 days of the simulation creating a 
drawdown near the stream. During the second 5 day period, stream stages increases due to 
the arrival of the flood peak and this creates a flow reversal towards the aquifer (Figure 9).  
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Figure 5. Physical setup of hypothetical domain, single channel 
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Figure 6. Groundwater head and river stage at the mid point and river discharge at the 
upstream boundary (P1-S1) 
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Figure 7. Groundwater head profile at various times along the mid point (P1-S1) 
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Figure 8. Groundwater head and river stage at the mid point and river discharge at the 

upstream boundary (P1-S2) 
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Figure 9. Groundwater head profile at various times along the mid point (P1-S2) 
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4.2. Hypothetical Case: Channel Network 
 
In the second application, the coupled channel/groundwater flow model is applied to a 
hypothetical stream network-aquifer system to demonstrate the performance of the 
proposed simultaneous solution algorithm to multiple channel applications. The physical 
setup of the hypothetical domain is shown in Figure 10. In this application, two stream 
channels (i.e., channels 1 and 2) meet and form a larger channel (i.e., channel 3) at the 
junction point shown in Figure 10. The two upstream tributaries are 30m wide and 7071m 
long uniform rectangular channels with a constant slope of 0.00015m/m. The downstream 
stream is 45m wide and 5000m long uniform rectangular channel with a constant slope of 
0.0001m/m. The two upstream channels confluence at the mid-point of the domain and 
creates the junction. The Manning’s roughness coefficients of all channels are uniform 
through out the domain and have a value of 0.025. At steady flow conditions, the two 
upstream channels carry 100m3/s whereas the downstream channel carries 200m3/s. The 
thickness of the sediments at the bottom of the channel is 0.3m and the hydraulic 
conductivity of the deposits is 1.0E-6m/s. To visualize results easily, the 10km long and 4 
km wide unconfined aquifer is assumed to have a uniform and isotropic hydraulic 
conductivity of 1.0E-3m/s and the aquifer base is set at mean sea level. The stream flow 
model is discretized by variable length elements giving a total of 155 nodes. The 
groundwater flow model domain is discretized by quadrilateral elements with variable side 
lengths giving a total of 4161 nodes and 4022 elements. A constant time step of 1hr is used 
in simulations. 
 
In the channel flow model, the upstream boundary conditions are given by a trapezoidal 
discharge hydrograph with a base discharge of 100m3/s, a peak discharge of 350m3/s and a 
time to peak of 10 days (Figure 11). The downstream boundary condition is given by a 
single-valued rating curve that maps the discharge to its normal depth. In the groundwater 
flow model, the boundaries parallel to the stream are specified as constant head condition 
and the boundaries perpendicular to the stream are specified as no-flux condition. 
Moreover, the internal boundary, where the stream runs through, is specified as a head-
dependent line source. The initial conditions in the stream flow model are given as uniform 
flow conditions at all nodes. In the groundwater flow model, two different sets of initial 
hydraulic head surfaces are used. In the first simulation, the initial groundwater head in the 
aquifer is chosen to be at 32m at all nodes. This simulation illustrates a condition where 
lateral inflow occurs from the stream to the aquifer. In the second simulation, the opposite 
scenario is simulated and the initial groundwater head in the aquifer is chosen to be 35m, 
illustrating a condition where the lateral inflow occurs from the aquifer to the stream. These 
two simulations of Problem-2 are referred to as Scenario-1 and Scenario-2, respectively and 
are abbreviated as P2-S1 and P2-S2 in the following discussion. 
 
In both scenarios, the point comparisons of groundwater head and stream stage are 
presented in figures 11 and 15 at three points in the analysis domain. These points are 
shown in Figure 10. Of these three points, points 1 and 2 are on the left upstream channel 
and are situated 1745m and 4537m from the most upstream point of channel 1. On the other 



 29

hand, point 3 is on the downstream channel and is situated at the mid point between the 
junction and the channel’s most downstream point (i.e., 2500m from the junction). These 
three points are also positioned on the three transects depicted in Figure 10 (i.e., 1600m, 
4200m, and 7500m from the upper boundary of the aquifer). These transects are used to 
present the spatial distributions of groundwater heads along the aquifer.  
 
Analysis of groundwater head time series in figures 12 through 14 and 16 through 18 reveal 
that the passage of the flood wave creates an increase in the groundwater heads by creating 
a mound near the river as long as the stream stages are higher than the groundwater heads 
for a sufficiently long period of time. This mound is the result of lateral inflow to the 
aquifer. It is also seen that the mound subsides and the bank storage is drained back to the 
stream when the stream stage falls below the groundwater heads. The spatial distribution of 
groundwater heads in transects 1 and 2 illustrate a symmetric response behavior since the 
physical characteristics of the upstream channels and their boundary conditions are exactly 
identical as a function of time. Any difference between these characteristics would clearly 
create an asymmetric hydraulic head distribution in the upper half of the aquifer.  
 
In P2-S1, the initial groundwater head in all three transects are below the initial river 
stages. This situation creates a lateral outflow from stream channels towards the 
groundwater domain, creating an increase in groundwater heads as seen in figures 12, 13 
and 14. Then, the flood wave arrives and this increase is even more pronounced. Once the 
flood wave starts receding, the groundwater heads start falling. Since the water surface 
elevation decrease in channel is much more dynamic than the groundwater head decrease, a 
flow reversal is observed creating a lateral inflow to stream channels from the groundwater 
domain. This behavior is present in all transects after 09/15/1997 in figures 12, 13 and 14. 
In P2-S2, however, the initial groundwater head in all three transects are above the initial 
river stages. Hence, an immediate lateral inflow to the stream channels starts to develop. In 
the absence of a flood wave, this situation creates a decrease in groundwater heads in the 
immediate vicinity of the channels. Therefore, it is possible to observe the drawdown 
associated with this behavior in all transects till 09/05/1997 in figures 16, 17 and 18. After 
09/05/97, the arrival of the flood wave forces an increase in the groundwater heads due to 
lateral outflow from the channel.  
 
It is important to mention the fact that a relatively high hydraulic conductivity value and a 
relatively smoothly-increasing upstream discharge hydrograph are used to promote a rapid 
response behavior so that the results could be analyzed in a simpler and idealized fashion. 
In real time simulations, however, the aquifer conductivity values are generally much 
smaller and the hydrographs are commonly much steeper on the rising limb. Such a 
situation is presented in the next application of the model. 
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Figure 10.  Physical setup of hypothetical domain, channel network 
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Figure 11. Groundwater head and river stage at various points in domain and river 
discharge at the upstream boundary (P2-S1) 
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Figure 12. Groundwater head profile at various times along the transect-1 (P2-S1) 
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Figure 13. Groundwater head profile at various times along the transect-2 (P2-S1) 
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Figure 14. Groundwater head profile at various times along the transect-3 (P2-S1) 
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Figure 15. Groundwater head and river stage at various points in domain and river 
discharge at the upstream boundary (P2-S2) 



 36

 
 
 
 
 

-2000 -1000 0 1000 2000
Distance from Aquifer Centerline (m)

34

34.5

35

35.5

36

36.5

G
ro

un
dw

at
er

 H
ea

d 
(m

)

t=0days
t=5days
t=10days
t=15days
t=20days
t=25days
t=30days

 
 

Figure 16. Groundwater head profile at various times along the transect-1 (P2-S2) 
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Figure 17. Groundwater head profile at various times along the transect-2 (P2-S2) 
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Figure 18. Groundwater head profile at various times along the transect-3 (P2-S2) 
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4.3. Lower Altamaha Watershed 
 
The proposed model is also applied to the Altamaha River basin in southern Georgia. The 
modeling domain includes a portion of the Altamaha and Ohoopee rivers. It covers the 
drainage area bounded by the USGS stream gaging stations at Baxley, Reidsville and 
Doctortown. This area is discretized by 7,031 nodal points and 6,828 quadrilateral finite 
elements in the groundwater flow zone and 394 nodal points in the channel flow zone. The 
average element side length along the river sections varies from 150 m to 400 m and about 
1000 m elsewhere. The discretized modeling domain is shown in Figure 19. 
 
An unconfined surfacial aquifer overlying the Upper Floridian aquifer is considered to be 
present in the entire area, with an average thickness of about 40 m. The aquifer consists 
primarily of unconsolidated, well sorted sand and silt soils. The soil types in the aquifer 
were determined using the State Soils Geographic Database (STATSGO) of Georgia 
developed by the US Department of Agriculture (STATSGO, 1998). The corresponding 
saturated hydraulic conductivities of these soils are assumed to follow the statistically 
averaged values provided by Carsel and Parrish (1988). The conductivity values used in the 
model was 1.25E-6m/s for silt loam soils, 4.05E-5m/s for loamy sand soils and 1.23E-5 m/s 
for sandy loam soils. In addition, a 0.3m thickness of river sediments is considered to be 
uniformly present along the channel system with a hydraulic conductivity of 6.94E-7m/s, 
representing silt material deposited in the channel bottoms. The Altamaha river system is 
modeled as a head-dependent line source that creates lateral in/out flow to/from the 
groundwater flow domain according to the relative values of the river and groundwater 
heads. The natural and artificial lakes and ponds in the basin are modeled as constant-head 
boundary conditions. Moreover, the external watershed boundary is simulated as a no-flux 
type boundary condition except for the immediate vicinity of the Altamaha River near 
Doctortown gage that is mostly characterized as marshland and modeled as a constant head 
boundary condition. 
 
The cross-sectional areas of computational nodes in the channel flow domain are obtained 
by using (i) the measurements taken at the gaging stations by USGS; (ii) the profiles of 
highway bridges along the river channels; and, (iii) the topographic maps of the area. The 
Manning’s roughness coefficients used in simulations vary between 0.020 to 0.030 within 
the main channel and 0.030 to 0.070 along the floodplain. The simulation period covers a 
two-month period starting with 09/01/1997 through 11/01/1997 with a common time step 
of 6 hrs for both the groundwater and the channel flow domains. The discharge 
hydrographs at Baxley and Reidsville are used as the upstream boundary conditions of the 
channel model and the stage-discharge rating curve at Doctortown are used as the 
downstream boundary condition. The discharge hydrographs at Baxley and Reidsville can 
be seen in Figure 20. The single-valued stage-discharge rating curve at Doctortown is given 
in Figure 21. 
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Figure 19. Discretized domain of Lower Altamaha River Basin 
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Figure 20. Discharge hydrographs observed in Baxley and Reidsville gaging stations 
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Figure 21. Doctortown gaging station rating curve 
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The stage and discharge hydrograph recorded at Doctortown is used as the calibration 
parameter. A comparison of simulation results vs. Doctortown gage measurements are 
shown in Figure 22 and 23. As seen from the figure, the model simulations are found to be 
very close to the gage measurements. The maximum error between the measured and 
simulated stage values is calculated to be 1.2% and the mean error is calculated to be below 
1%. Similarly, the maximum error between the measured and simulated discharge values is 
calculated to be 10% and the mean error is calculated to be below 2%. These values are 
well below the accepted deviations reported in the literature (Fread, 1985). Part of these 
errors is associated with the contributions from the tributaries of the Altamaha River 
between Baxley and Doctortown gages. These are not quantified and not modeled in the 
simulations. Hence, the discharge in the river is modeled to be less than measured. Another 
possible source of error can be attributed to the quality of input data used in simulations 
including the channel cross-sections and river bottom slopes. These datasets are created 
mostly from the measurements taken at the gaging stations by USGS and the profiles of 
highway bridges along the river channels; and partly from the topographic maps of the area.  
Any possible errors in the creation of these datasets are reflected in the modeling results. 
 
The groundwater head contours obtained at the time of peak flood time (i.e., 09/13/1997) 
are shown in Figure 24. The head contours in the surfacial aquifer mostly follow the surface 
elevation. The groundwater head contours are consistent with the river positions within the 
domain. Most of the closed contours are attributed to the natural and artificial ponds and 
lakes that are included in the simulations as constant head boundary conditions. Along all 
no-flux boundaries of the domain, the groundwater contours make perfect right angles 
representing the absence of any flow out of these boundaries. Due to the large nodal 
spacing used along the channel vicinity (about 300m), small hydraulic conductivity values 
of the aquifer and the non-symmetric nodal positions in both banks of the river, the entire 
behavior of the bank-storage effect along the channel is not clearly represented as shown in 
previous problems.  
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Figure 22. Simulated vs. measured stage values in Doctortown gaging station 
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Figure 23. Simulated vs. measured discharge values in Doctortown gaging station 
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Figure 24. Groundwater head distribution in the project area at 09/13/1997 
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5. Conclusions 
 
A new solution strategy is proposed to solve surface and subsurface flow systems in a 
coupled manner. In this regard, a one-dimensional channel flow model is coupled with a 
two-dimensional vertically-averaged groundwater flow model via the lateral flow 
interactions beneath the channel bottom. Instead of implementing the commonly applied 
iterative solution technique, the proposed method is based on the idea of solving the two 
systems in a simultaneous manner within a single global matrix format. The model is 
applicable to systems with non-looped channel networks overlying a non-uniform, 
anisotropic unconfined aquifer.  The link between the two domains is provided by the 
lateral flow term. Three applications of the model are performed on hypothetical and 
existing systems to test its response characteristics to imaginary systems as well as 
capabilities to simulate real systems. The model results indicated good predictive capability 
of combined surface-subsurface systems. Therefore, it is proposed as an alternative tool for 
analyzing the hydrologic patterns in large watersheds. 
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Appendix I. Derivation of Finite Difference Equations of Channel Flow 
 
 
The finite difference equations of continuity, momentum and boundary condition equations 
of channel flow are derived in this appendix. For each channel of the network, the 
continuity and momentum equations given in Equations (1) and (2) are discretized in the x-t 
plane using the “four-point” weighted difference implicit scheme. Two additional equations 
are then used to represent the conditions in the upstream and downstream boundaries of the 
channel. When this procedure is done for all channels, a system of 2N equations is formed 
which is then solved to evaluate the unknown discharge and stage at the discretized nodes. 
The discretized forms of the continuity, momentum and boundary condition equations are 
given in the following sections.  
 
Channel Network 
 
In order to assist the derivation, the sample network shown in Figure 25 is used in the 
following discussion. This network contains 5 channels and 2 junctions. The channel 
numbering scheme starts from the most upstream channel and follows the direction of flow. 
When a junction is reached, the node numbering continues from the next channel’s most 
upstream node and follows sequentially up to the junction until all inflowing channels are 
numbered sequentially. When all inflowing channels are numbered for a particular junction, 
node numbering continues with the most upstream node of the outflowing channel. This 
procedure is continued until the entire system is numbered. 
 
Discretized forms of continuity and momentum equations 
 
The finite difference discretization of continuity and momentum equations is done for all 
channels as shown in Figure 26. It can be seen from Figure 26 that the solution plane for 
channel k is represented by a total of Nk nodes with local node numbers starting from 1 and 
running through Nk. In the four-point scheme, the approximations of derivatives and 
constant terms are given in Equations (55), (56) and (57) for a dummy parameter E: 
 
 

( ) j

j
i

j
i

j

j
i

j
i

t
EE

t
EE

t
E

Δ
−

−+
Δ
−

=
∂
∂ +

+
+
+

1
1

1
1 1 ψψ                                     (55) 

 

( )
i

j
i

j
i

i

j
i

j
i

x
EE

x
EE

x
E

Δ
−

−+
Δ
−

=
∂
∂ +

++
+ 1

11
1 1 θθ                                      (56) 

 

( )
2

1
2

1
11

1
j

i
j

i
j

i
j

i EEEE
E

+
−+

+
= +

++
+ θθ                                       (57) 

 



 51

where i and j are subscripts for x and t axis, respectively, ψ and θ are weighing factors 
between 0 and 1, and Δxi and Δt j are reach length between nodes i and i+1, and time step 
between timelines j and j+1, respectively. It is possible to create different modifications of 
the scheme using different values for the weighing factors. A θ value of 0.0 and 0.5 
corresponded to the “explicit” scheme and “box” scheme, respectively. Similarly, a scheme 
with a θ value of 1.0 is known as the “fully-implicit” scheme in space. Many researchers 
preferred using a ψ value of 0.5 and approximated the time derivative at the center of grid 
between (j)th and (j+1)th time lines (Amein and Fang, 1970; Chaudhry and Contractor, 
1973) where as others used varying values depending on the particular application (Fread, 
1985).  
 

 

 
 

Figure 25. Sample channel network and numbering scheme 
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Figure 26. The distance-time grid used to formulate the implicit 

finite difference scheme for channel k (After Fread, 1974) 

 
Fread (1974) has shown that the weighted four-point implicit scheme is unconditionally 
stable for any time step if the value of θ is selected between 0.5 and 1.0. In addition to 
stability criteria, he also analyzed the influence of the weighing factor on the accuracy of 
computations and found out that the accuracy decreases as θ departs from 0.5 and 
approaches to 1.0. He reported that this effect became more pronounced as the magnitude 
of the computational time step increased. Furthermore, his analysis revealed that a θ value 
of between 0.55 and 0.6 provided unconditional stability and good accuracy, which makes 
this scheme superior compared to the explicit scheme that requires time steps of less than a 
critical value determined by the Courant condition. With the template given in Equations 
(55), (56) and (57), the space derivatives in Equations (1) and (2) are approximated as: 
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Similarly, the time derivatives are approximated as: 
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Finally, the constant terms such as q, Sf, Se, L and A are approximated as: 
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where the variables with subscripts (i+½) are defined for the reach between nodes (i) and 
(i+1) as an average of the two nodal values. The following explicit formulations are used to 
define the above variables:  
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The finite difference form of continuity equation is obtained when Equations (58) through 
(80) are substituted into (1) and rearranged for each channel in the network:  
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Similarly, the finite difference form of the momentum equation is obtained when Equations 
(58) through (80) are substituted into (2) and rearranged for each channel in the network 
(i.e., written for the lateral outflow case):  
 

[ ]

( ) ( )
[ ]

( )

( )
( ) ( )

( )

( )

0

2

//

1

2

//

2

2/12/1
2/12/1

2/1

2/12/112/1

2
1

2

1
2/1

1
2/1

1

2/1
1

2/1

1
2/1

1
2/1

1
2/1

11
1

1
2/1

121
1

2

2/112/1
11

2/1
1

1
1

2/1

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−Δ

+Δ+Δ+−

+−

−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−Δ

+Δ+Δ+−

+−

+−−+
Δ
Δ

++
++

+

++++

+

+

+

+
+

+

+
+
+

+
+

+
+

+

+

++
+

+
+

++

+

+++
++

+
+
+

+
+

j
ig

j
ir

j

ir

rr
j

i

j
i

i

j
iei

j
ifi

j
ir

j
ir

j
i

j
i

j
i

j
ig

j
ir

j

ir

rr
j

i

j
i

i

j
iei

j
ifi

j
ir

j
ir

j
i

j
i

j
i

j
i

j
im

j
i

j
im

j
i

j
im

j
i

j
imj

i

hh
m

wK
A

Q
x

SxSxhhgA

AQAQ

hh
m

wK
A

Q
x

SxSxhhgA

AQAQ

QsQsQsQs
t
x

ββ

θ

ββ

θ

     (82) 

 
Since there is no contribution to momentum for the case of lateral inflow, the last terms 
inside the second and third brackets drop out. 
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Discretized forms of external boundary condition equations 
 
At any upstream external boundary of a channel, a discharge or a stage hydrograph can be 
used as the boundary condition equation. The discretized forms of these equations are given 
as: 
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where subscript m represents the global upstream node number of the channel. For a single 
channel system, m takes the value 1. In the sample network, channels 1, 2 and 4 have 
external upstream conditions and m takes values 1, 5 and 14, respectively. Since the 
proposed model does not allow looped networks, only one external downstream boundary 
condition can be included in the model. The boundary condition at the downstream external 
boundary can also be defined as a discharge or a stage hydrograph. The discretized forms of 
these equations are given as: 
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where N represents the last node in the entire network. In the case of the sample network 
shown in Figure 25, N takes the value of 20. In addition to the stage and discharge 
conditions, the external downstream boundary condition can also be specified as a single-
valued rating curve, a looped-rating curve and a critical depth section. If a single-valued 
rating curve is used as the downstream boundary condition, the discretized form becomes: 
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where subscript k represents the values from the rating curve data. If a looped-valued rating 
curve is used as the downstream boundary condition, the discretized form becomes: 
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where the friction slope is approximated using the known values of discharge and stage at 
the downstream reach: 
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Finally, if a critical depth section is used as the downstream boundary condition, the 
discretized form becomes: 
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Discretized forms of internal boundary condition equations 
 
When the external boundary conditions are implemented, it is observed that certain 
channels do not have any upstream and downstream boundary condition. These missing 
conditions occur at the junction points of these channels. Therefore, internal boundary 
conditions are written to satisfy the mass and momentum balance at these junctions. For 
any junction with m inflowing channels, it is required to specify a total of m+1 internal 
boundary condition. These conditions are specified as m downstream boundary conditions 
for each inflowing channel and one upstream boundary condition for the outflowing 
channel. In this regard, one momentum equation is written for each inflowing channel 
satisfying the continuity in stages.  
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where subscript i now represent the last node of the particular inflowing channel to the 
junction and subscript o represent the first node of the outflowing channel from the 
junction. When (91) is written is for all inflowing channels, a total of m equations are 
written for the junction and the missing internal downstream boundary condition of all 
inflowing channels are completed. Finally, one last condition is specified to get the missing 
internal upstream boundary condition of the outflowing channel. This condition is satisfied 
by writing the continuity equation for the junction: 
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where i represents the last node of channel k. For the first junction of the particular network 
shown in Figure 25, the internal downstream boundary conditions of the inflowing channels 
1 and 2 is specified by: 
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and the internal upstream boundary condition of the outflowing channel 3 is specified by: 
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Similarly, for the second junction of the particular network shown in Figure 25, the internal 
downstream boundary conditions of the inflowing channels 3 and 4 is specified by: 
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and the internal upstream boundary condition of the outflowing channel 5 is specified by: 
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Appendix II. Derivation of Partial Derivatives of the 
Finite Difference Equations of Channel Flow 

 
 
The Newton-Raphson technique is based on the analytical or numerical differentiation of 
the continuity and momentum equations to evaluate the partial derivative terms of the 
Jacobian matrix. The difference forms of continuity and momentum equations given in (25) 
and (26) are partially differentiated with respect to the unknown terms hr and Q at the 
(j+1)th time line for the nodal points (i) and (i+1). In the following derivations, the 
continuity and momentum equations are represented by the letters “C” and “M”, and the 
external upstream and external downstream boundary condition equations are represented 
by the letters “UB” and “DB”, respectively, for clarity. Similarly, the internal boundary 
condition equations are represented by the letter “IB”. 
 
Partial Derivatives of the Continuity Equation 
 
The partial derivatives of the continuity equation with respect to the unknown terms (i.e., 
hi, hi+1, Qi and Qi+1 at (j+1)th time line) are computed as follows: 
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Partial Derivatives of the Momentum Equation 
 
The partial derivatives of the momentum equation with respect to unknown terms (i.e., hi, 
hi+1, Qi and Qi+1 at (j+1)th time line) are computed as follows: 
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where: 
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where: 
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where: 
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Partial Derivatives of the External Boundary Conditions 
 
At upstream boundaries, a discharge or a stage hydrograph can be implemented as the 
boundary condition. When a discharge hydrograph is used as the upstream boundary 
condition, the partial derivatives of Jacobian become: 
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where subscript i represent the upstream node number of the channel. However, if a stage 
hydrograph is used as the upstream boundary condition, then the partial derivatives 
become: 
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At the downstream boundary, a discharge hydrograph, a stage hydrograph, a single-valued 
rating curve, a looped rating curve or a critical depth section can be implemented as the 
boundary condition. If a discharge hydrograph is used as the downstream boundary 
condition, the partial derivatives become: 
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If a stage hydrograph is used as the downstream boundary condition, the partial derivatives 
become: 
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For the single-valued rating curve, the partial derivatives can become: 
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If a looped rating curve is used, the partial derivatives are written as: 
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Finally, if a critical section is used at the downstream boundary, the partial derivatives are 
written as: 
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Partial Derivatives of the Internal Boundary Conditions 
 
At any junction with m inflowing channels, a total of m+1 internal boundary conditions are 
specified. The partial derivatives of the junction momentum equation shown in Equation 
(91) written for each inflowing channels become: 
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where subscript i represents the last node of the particular inflowing channel to the 
junction. Similarly, the partial derivatives of the junction momentum equation shown in 
Equation (91) written for the outflowing channel become: 
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where subscript o represents the first node of the outflowing channel from the junction. The 
partial derivatives of the junction continuity equation shown in Equation (92) written for 
each inflowing channels become: 
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where subscript i again represents the last node of the particular inflowing channel to the 
junction. Similarly, the partial derivatives of the junction continuity equation shown in 
Equation (92) written for the outflowing channel become: 
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Appendix III. Interpolating Functions in Galerkin Method 
 
 
Interpolating (or basis/shape) functions form the core of the finite element analysis. There 
is a one-to-one relation between basis functions and nodes in the discretized domain. A 
basis function that is identified at a particular node is zero over any element unless that 
node is associated with the element of concern.  
 
Theoretically, basis functions can be written in global or local coordinates. However, it is 
practical to use a local coordinate system with quadrilateral elements to simplify the 
integrations and differentiations of the basis functions. In this regard, a local coordinate 
system together with a master element concept is implemented in this study (Figure 27). A 
direct consequence of this approach is the necessity to formulate a transformation function 
between global and local coordinates. Unfortunately, this transformation is not linear for an 
irregular quadrilateral element and hence a numerical integration scheme is normally 
required to evaluate the integrals in the finite element analysis. 
 

 
Figure 27. Global and local coordinate systems and the master element concept 

 
In this method, the two dimensional domain is globally discretized using irregular 
quadrilateral elements. Then, coordinates of the nodes of each element is mapped to a local 
coordinate system via the master element concept. The master element is a 2X2 square 
located at the center of the local coordinate axes with nodes at each corner. The corner 
coordinates of the master element are (-1,-1), (1,-1), (1,1) and (-1,1). Therefore, all the 
integrations can be done on the master element using the limits -1≤ξ≤+1 and -1≤η≤+1. The 
general formula for the shape functions of a quadrilateral element can be obtained by taking 
the tensor product of the two shape functions for the linear line element and given by the 
expression: 
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where ξ and η define the local coordinate system used with the master element concept. 
Using this formula and the local coordinates of the master element, it is possible to write 
the four shape functions of the quadrilateral element shown in Figure 27: 
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There are two important modifications that should be done before the master element 
concept can be used in finite element analysis. The first one of these modifications is to 
transform the derivatives of the integrands to local coordinates. In order to implement this 
transformation from global to local coordinates, derivatives of these shape functions with 
respect to local coordinates are evaluated using the chain rule of differentiation: 
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which can be represented in matrix form as: 
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The derivatives of the shape functions with respect to local coordinates can easily be 
computed as follows: 
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The coefficient matrix, however, requires a functional relationship that maps the global 
coordinates to local coordinates. This transformation from global to local coordinates is 
obtained by using shape functions to interpolate the global coordinates. Hence, one can 
write: 
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If the derivatives of these expressions are taken with respect to the local coordinates, one 
would obtain a 2X2 matrix that is commonly known as the Jacobian matrix:  
 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=
∑∑

∑∑

==

==
4

1

4

1

4

1

4

1

i

i
i

i

i
i

i

i
i

i

i
i

N
y

N
y

N
x

N
x

yy

xx

J

ηξ

ηξ

ηξ

ηξ                                (149) 

 
The determinant of the Jacobian is an important quantity and is extensively used in the 
master element integrations using local coordinates.  
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It should be noted, however, that the matrix required to transform the derivatives in global 
coordinates to derivatives in local coordinates is not exactly the Jacobian matrix given 
above. The link between these two matrices can be established if an identity matrix is 
written such that: 
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In the above equation, the second matrix is simply the transpose of the Jacobian matrix. 
Since the identity matrix is obtained by multiplying a matrix and its inverse, the first matrix 
then becomes the inverse of the Jacobian transpose.  
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It is now possible to complete the transformation of the shape function derivatives by using 
this matrix and the derivatives of the shape functions with respect to local coordinates. The 
second modification that is required to use the master element concept in finite element 
analysis is to convert the integration variables to local coordinates. The basic formula for a 
change of integration variables is given as: 
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where the determinant of the Jacobian is used explicitly. It should be noted that this change 
in integration variables does not pose any extra difficulty as long as the determinant of the 
Jacobian is a constant. For non-linear coordinate transformations, such as the one used in 
quadrilateral elements, the Jacobian is not a constant and the above integration can only be 
done using a numerical integration scheme. 
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Appendix IV. Derivation of Galerkin Form of 
Groundwater Flow Equation 

 
 
The first step of the derivation of the weak form is to approximate the unknown function 
over the domain using interpolating functions, Nj, of the form: 
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where ĥg is the approximate value of the hydraulic head and N is the total number of nodes 
in the two dimensional groundwater flow domain. In essence, the temporal and spatial 
discretization is separated from each other in the approximate solution. The nodal values, 
hj(t), becomes only a function of time and the shape function, Nj(x,y), is now only a 
function of space. It is also important to note that the shape functions are defined only its 
corresponding node and neighboring elements. They are zero elsewhere. Since the solution 
is only approximate, it does not satisfy the differential equation exactly and a residual, R, 
occurs. The Galerkin method states that the weighted average of this residual over the 
whole domain becomes zero. Furthermore, the weighing functions are taken to be the basis 
functions. If the approximate solution is substituted in the differential equation, one can 
write the total residual as: 
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The Galerkin finite element method is based on weighing this residual over the whole 
domain using interpolating functions as the weighing functions: 
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where i runs from 1 through N. When the expression for the residual is substituted in 
Equation (156) and the square root expression is written simply as the norm of the gradient 
of parametric vector equation g = gxi + gyj, the integral simplifies to: 
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The integration by parts is now applied to the second order derivative terms in the above 
integral to reduce them to first order and incorporate the natural boundary conditions: 
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where nx and ny represent the x and y components of unit normal vector. Substituting these 
expressions and rearranging gives: 
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In the above form, the boundary integral can be split in to three parts, according to the 
boundary conditions, Γ1, Γ2 and Γ3: 
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In this format, the first boundary integral represents the essential boundary conditions and 
the others correspond to the natural boundary conditions. If the assumed solution is 
required to satisfy the essential boundary conditions, then the weighing functions become 
zero over the first boundary, Γ1. Hence, the first integral vanishes. The expressions in the 
specified flux and head dependent boundary conditions can be substituted in the remaining 
integrals to obtain the following simplified form for the boundary integrals: 

 

 
( )

∫∫

∫

ΓΓ

Γ

Γ−Γ−=

Γ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
−

32
32

ˆˆˆˆ
ˆ

dNqdNq

dnN
y

h
K

x
h

KnN
y

h
K

x
h

Kzh

iCiN

yi
g

yy
g

yxxi
g

xy
g

xxbg
    (162) 

 
It is also possible to write the head-dependent boundary integral using the flux expression 
between the river and the aquifer when the hydraulic head is greater than river bottom 
sediment lower elevation (zr - mr): 
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Otherwise, the flux is no longer head dependent and is treated as a constant flux integral. 
From this point on, the derivation is based on the case where a head-dependent flux exists 
and does not collapse to a constant flux. With these modifications, the equation simplifies 
to: 
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The domain integral of point source term associated with wells can be simplified using the 
sifting property of the Dirac-δ function. After implementing the property for each delta 
function, one would obtain: 
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Since the interpolating function takes the value of 1 at the particular node, the expression 
simplifies to: 
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After substituting this expression and writing the lateral flow according to the first 
condition of Equation (6), one would obtain: 
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It is seen that this boundary value problem is non-linear due to the term (ĥg-zb). Therefore, 
it is required to use an iterative solution technique and a suitable convergence criterion. In 
the proposed model, this term is treated as a constant by using an element average value for 
each iteration step. Hence, it is possible to write this term as: 
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With this simplification, we obtain the following expression when the approximate solution 
in (154) is substituted in the weak from: 
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Since the nodal values are only a function of time and the shape function is only a function 
of space, the above expression can be simplified by taking some of the terms out of the 
derivatives: 
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Simplifying further, we obtain: 

 

( )

( ) ( )( )

( ) ( )( ) ( )( )

( )
( )

0
ˆ

,

ˆ

ˆˆ

ˆ

11

1

1

0 1

1

3
1

32
332

=Ω
∂

∂
−Ω++

Ω
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

Ω

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂

∂
+

∂
∂

∂

∂
+

∂
∂

∂

∂
+

∂
∂

∂

∂

−−

Γ
⎭
⎬
⎫

⎩
⎨
⎧

−Γ+Γ−

∫∫ ∑∫∫∑

∫∫ ∑ ∫ ∑

∫∫ ∑

∫ ∑∫∫

Ω =Ω=

Ω = =

Ω =

Γ =ΓΓ

dN
t

h
SNdINyxQ

dNdttgytgxNhh
m

wK

d

y
N

y
N

K
y

N
x

N
K

x
N

y
N

K
x

N
x

N
K

zhh

dNNh
m

wK
dN

m
hwK

dNq

i
jg

y

N

j
ji

n

k
kkw

i

n

m
mymx

m

N

j
jjgr

mr

rr

ij
yy

ij
yx

ij
xy

ij
xx

bavgg

N

j
jg

i

N

j
jjg

r

rr
i

r

rrr
iN

w

k

r
δδg

(171) 

 
Since Ni is defined such that it is non-zero only over elements adjacent to node i, the 
integrations may be performed piecewise over each element and subsequently summed.  
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(172) 
 

When linear quadrilateral elements are used to discretize the domain, the sides of the 
element are straight lines between two nodal points. Therefore, the river (i.e., the line 
source) becomes a combination of several straight line segments. Each of these segments is 
defined by the two end points such that the parametric equation of each line segment is 
written as: 
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where points A(xA,yA) and B(xB,yB) define the global coordinates of the end points of a line 
segment. For a straight line, the gradient of parametric vector equation g is evaluated to be 
the length of the line segment:  
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It is assumed that the lateral flow associated with each line segment is constant along the 
segment and is not a function of the parameter t. Therefore, both the gradient term and the 
lateral flow term can be taken out of the integral with respect to t such that the line source 
integral becomes: 
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The integration with respect to t can now be performed using any one of the Dirac-δ 
function expressions. After substituting the expressions for gx and gy given in Equation 
(173), the integral becomes: 
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If the x-component is selected to perform the integration, the y-component of the Dirac-δ 
function can be written as some function h(t) such that the integral becomes: 
 

( ) ( )( )∫ −+−
1

0
,,,,,, dttxxxxth meBmeAmeAδ                                     (177) 

 
The expression in the Dirac-δ function can now be rearranged to give: 
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Since the term (xA,e,m-xB,e,m) is a constant, it can be written as: 
 

( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−

−

−
=−+− t

xx
xx

xx
txxxx

meBmeA

meA

meBmeA
meBmeAmeA

,,,,

,,

,,,,
,,,,,,

1 δδ         (179) 

 
Rewriting the Dirac-δ function gives: 
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Since the derivative of the Dirac-δ function is the Heaviside step function by using the 
sifting property (Harris and Stocker, 1998), the integration over t yields: 
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where H is the Heaviside step function. Evaluating this function at two points gives: 
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Along the line where xA,e,m≤x≤xB,e,m, the Heaviside function expression above is calculated 
to be 1 and 0 elsewhere. After evaluating the function h(t) and substituting, the integral 
with respect to parameter t simplifies to: 
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This term can now be substituted back in the general line source term to give: 
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Taking the constant terms out of the domain integral gives: 
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The domain integral can now be isolated from the summations such that: 
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The expression in front of the Dirac-δ function is treated as a function and the element 
integral can be evaluated using the sifting property and the Heaviside function: 
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(187) 
 
In this equation, both the shape function and the expressions in front of them are reduced to 
a single variable valid along the line segment. Therefore, the integral with respect to x will 
be performed between the two end points of the line segment. Dropping out the functional 
parenthesis for simplicity and substituting this expression in the line source term yields: 
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It is important to note that the shape functional and the expression in front of the shape 
function are evaluated along the line segment. The general equation now becomes: 
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If the entire equation is multiplied by -1, one would obtain the weak form of the governing 
equation: 
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Combining terms under the element summation: 
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The element integrals can be written in matrix form: 
 

ege
g

e F
h

MhS =⋅+⋅
dt

d ˆ
ˆ                                          (192) 

 
where ĥg is the unknown vector and Se, Me and Fe are element matrices and vectors defined 
as follows: 
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Finally, the global assembly of these matrices would yield the following matrix equation: 
 

F
h

MhS g
g =⋅+⋅

dt
d ˆ

ˆ                                                (194) 

 
where S, M and F is generally known as stiffness matrix, mass matrix and load vector, 
respectively, from the structural mechanics analogy. 
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Appendix V. Derivation of Element Integrals 
 
 
The key point in finite element analysis is the derivation of element matrices and vectors. In 
the proposed model, the element matrices and vectors will be 4X4 and 4X1 systems, 
respectively, since four-noded linear quadrilateral elements are selected as the element 
shape. The main advantage of using element matrices and vectors is that the complex 
integrations can be performed on the element level and then the resultant element matrices 
could be assembled sequentially to obtain the global system. In the following sections, 
derivation of element integrals is presented for inner and boundary elements of the analysis 
domain. It should be noted that each component of the weak form shown in Appendix 4 are 
analyzed separately in the following discussion. 
 
Derivation of Element Matrices and Vectors within the Domain 
 
For all elements within the domain, a series of two dimensional integrals are evaluated to 
obtain the members of the 4X4 element matrix. Hence, in what follows, the subscripts i and 
j run from 1 to 4. 
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This integral is associated with the flux term in x-direction due to the change in hydraulic 
head in x-direction. The basic assumption is that the hydraulic conductivity Kxx and the 
average hydraulic head are taken to be constant values over the element. Therefore, both of 
these terms can be taken out of the integral.  
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Furthermore, the integral is written in local coordinates using the determinant of the 
Jacobian matrix and the master element concept. At this stage, it is important to transform 
the partial derivatives with respect to the global coordinates to the partial derivatives with 
respect to the local coordinates. Using the chain rule of differentiation and the 
transformation matrix, the partial derivatives of the shape functions are written as:  
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In these two equations, all the derivatives are simple partials of the shape functions with 
respect to local coordinates and can be computed easily. Substituting these two derivatives 
and writing the integral in terms of local coordinates, one would obtain: 
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If the whole expression inside the integral is simplified and written as: 
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then the integral simplifies to: 
 

( )∫ ∫∫∫
− −Ω

=Ω
∂
∂

∂

∂ 1

1

1

1
, ηξηξ ddfd

x
N

x
N

e

eij                                      (199) 

 
and evaluated using the Gaussian quadrature: 
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Finally, the element matrix is written using the above formula and substituting the 
derivatives of the corresponding shape functions for each node of the element. The final 
outcome of the integral is a 4X4 element matrix. 
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This integral is associated with the flux term in x-direction due to the change in hydraulic 
head in y-direction. The basic assumption is that the hydraulic conductivity Kxy and the 
average hydraulic head are taken to be constant values over the element. Therefore, both of 
these terms can be taken out of the integral.  
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Furthermore, the integral is written in local coordinates using the determinant of the 
Jacobian matrix and the master element concept. At this stage, it is important to transform 
the partial derivatives with respect to the global coordinates to the partial derivatives with 
respect to the local coordinates. Using the chain rule of differentiation and the 
transformation matrix, the partial derivatives of the shape functions are written as:  
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In these two equations, all the derivatives are simple partials of the shape functions with 
respect to local coordinates and can be computed easily. Substituting these two derivatives 
and writing the integral in terms of local coordinates, one would obtain: 
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If the whole expression inside the integral is simplified and written as: 
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then the integral simplifies to: 
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and evaluated using the Gaussian quadrature: 
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Finally, the element matrix is written using the above formula and substituting the 
derivatives of the corresponding shape functions for each node of the element. The final 
outcome of the integral is a 4X4 element matrix. 
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This integral is associated with the flux term in y-direction due to the change in hydraulic 
head in x-direction. The basic assumption is that the hydraulic conductivity Kyx and the 
average hydraulic head are taken to be constant values over the element. Therefore, both of 
these terms can be taken out of the integral.  
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Furthermore, the integral is written in local coordinates using the determinant of the 
Jacobian matrix and the master element concept. At this stage, it is important to transform 
the partial derivatives with respect to the global coordinates to the partial derivatives with 
respect to the local coordinates. Using the chain rule of differentiation and the 
transformation matrix, the partial derivatives of the shape functions are written as:  
 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂

∂

∑∑

∑∑

==

==

ηξξη

ηξξη

i

k

k
k

i

k

k
k

i

j

k

k
k

j

k

k
k

j

NN
x

NN
x

Jy
N

NN
y

NN
y

Jx
N

4

1

4

1

4

1

4

1

1

1

                         (208) 

 
In these two equations, all the derivatives are simple partials of the shape functions with 
respect to local coordinates and can be computed easily. Substituting these two derivatives 
and writing the integral in terms of local coordinates, one would obtain: 
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If the whole expression inside the integral is simplified and written as: 
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then the integral simplifies to: 
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and evaluated using the Gaussian quadrature: 
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Finally, the element matrix is written using the above formula and substituting the 
derivatives of the corresponding shape functions for each node of the element. The final 
outcome of the integral is a 4X4 element matrix. 
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This integral is associated with the flux term in y-direction due to the change in hydraulic 
head in y-direction. The basic assumption is that the hydraulic conductivity Kyy and the 
average hydraulic head are taken to be constant values over the element. Therefore, both of 
these terms can be taken out of the integral.  
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Furthermore, the integral is written in local coordinates using the determinant of the 
Jacobian matrix and the master element concept. At this stage, it is important to transform 
the partial derivatives with respect to the global coordinates to the partial derivatives with 
respect to the local coordinates. Using the chain rule of differentiation and the 
transformation matrix, the partial derivatives of the shape functions are written as:  
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In these two equations, all the derivatives are simple partials of the shape functions with 
respect to local coordinates and can be computed easily. Substituting these two derivatives 
and writing the integral in terms of local coordinates, one would obtain: 
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If the whole expression inside the integral is simplified and written as: 
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then the integral simplifies to: 
 

( )∫ ∫∫∫
− −Ω

=Ω
∂
∂

∂

∂ 1

1

1

1
, ηξηξ ddfd

y
N

y
N

e

eij                                    (217) 

 
and evaluated using the Gaussian quadrature: 
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Finally, the element matrix is written using the above formula and substituting the 
derivatives of the corresponding shape functions for each node of the element. The final 
outcome of the integral is a 4X4 element matrix. 
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This integral is associated with the time rate of change of the hydraulic heads over an 
element. The basic assumption is that the specific yield is a time independent constant 
value over an element. Therefore, this term can be taken out of the integral. Furthermore, 
the integral is written in local coordinates using the determinant of the Jacobian matrix and 
the master element concept.  
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element matrix is written using the above formula and substituting the 
corresponding shape functions for each node of the element. The final outcome of the 
integral is a 4X4 matrix from each element.  
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This integral represents the contribution of infiltration over an element. The basic 
assumption is that infiltration is taken to be a constant value over an element. Therefore, the 
I term can be taken out of the integral. Furthermore, the integral is written in local 
coordinates using the determinant of the Jacobian matrix and the master element concept.  
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
 

( ) ( ) ( )∑ ∑∫ ∫
= =− −

=
NSP

l

NSP

m
lmlmimli JNwwddJN

1 1

1

1

1

1
,,, ηξηξηξηξ                     (222) 

 
Finally, the element vector is written using the above formula and substituting the 
corresponding shape function term for each node of the element. The final outcome of the 
integral is a 4X1 vector from each element.  
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This term represents the contribution of discharge/recharge wells in the domain. The basic 
assumption is that well locations coincide with the nodal points. For each well, the 
corresponding flow rate is included in the load vector. 
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This integral represents the contribution of head-dependent part of the line source. The 
basic assumption is that lateral flow is constant along each segment. Therefore, the integral 
reduces to: 
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The integration of the shape functions along the line can be done using global coordinates 
or local coordinates. The result is a 2X2 matrix. Below, the integration is shown for the 
(1,1) position such that:  
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The other positions follow the same idea. When the result of the integration is substituted in 
the original term, one would obtain: 
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The coefficient of the length of the line changes for other positions such that it is 1/3 for 
positions i = j and 1/6 for i ≠ j. 
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This integral represents the contribution of constant part of the line source. The basic 
assumption is that lateral flow is constant along each segment. Therefore, the integral 
reduces to: 
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The integration of the shape functions along the line can be done using global coordinates 
or local coordinates. The result is a 2X1 vector. Below, the integration is shown for the 
(1,1) position such that:  
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The other positions follow the same idea. When the result of the integration is substituted in 
the original term, one would obtain: 
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The result is the same for the other position (2,1). 
 
 
 
Derivation of Element Matrices and Vectors along the Boundaries 
 
Elements involving a boundary where a natural boundary condition (i.e., Neumann or 
Cauchy type) is specified require the computation of the three boundary integrals shown in 
Appendix 4. In these integrals, the integration is performed over the global boundary 
coordinate dΓe along the boundary of the element that must be written explicitly. Moreover, 
the integrands of these integrals must be written on the master element using the local 
coordinate system and must also be specified for a particular side of the element, which in 
turn requires that the shape functions are expressed for the particular boundary side of the 
element. As seen in Figure 28, the boundary of the element can be any side of the 
quadrilateral depending on its position in the analysis domain. In order to write the shape 
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functions along each side, appropriate values of ξ and η are substituted for the general 
shape function formulae. 
 

 
Figure 28. Boundary coordinates on the master and actual element 

 
The global boundary coordinate Γ is mapped to a local boundary coordinate a (-1≤a≤1) for 
each side as shown in Figure 28. The local coordinates holds the values ξ = a, η = -1 for 
side 1, ξ = 1, η = a for side 2, ξ = -a, η = 1 for side 3 and ξ = -1, η = -a for side 4. Using 
these values, one would obtain the following four shape functions for each side of the 
element: 
 

⎥⎦
⎤

⎢⎣
⎡ −+

⎥⎦
⎤

⎢⎣
⎡ +−

⎥⎦
⎤

⎢⎣
⎡ +−

⎥⎦
⎤

⎢⎣
⎡ +−

2
1,0,0,

2
1:4

2
1,

2
1,0,0:3

0,
2

1,
2

1,0:2

0,0,
2

1,
2

1:1

aaSIDE

aaSIDE

aaSIDE

aaSIDE

                                     (229) 

  
If the values of -1 and +1 are substituted for a in the above formulae, one would indeed 
obtain the fact that shape functions are equal to 1 at the node it is written for and 0 at all 
other nodes of the element. The integral over the element in global coordinates must also be 
transformed to an integral over the master element in local coordinates. This transformation 
introduces the determinant of the Jacobian between global boundary and local boundary 
coordinates.  
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where Ja is the Jacobian of the boundary and the incremental boundary coordinate in global 
coordinate system, dΓ, can be written as follows according to the Figure 29: 
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Figure 29. Relationship between boundary coordinate with global coordinates 

 
Dividing both sides of this relationship with differential length, da, would give the 
following relationship between the global and local boundary coordinate:  
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Therefore, the Jacobian of the boundary is written as: 
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where da will always take the value of 2 since it is the length of any side on the master 
element. Using these fundamental concepts, the boundary integrals can be evaluated as 
follows: 
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This integral represents the contribution of Neumann boundary condition. The basic 
assumption is that flux is taken to be a constant over the boundary side of the element. 
Therefore, the qN term can be taken out of the integral.  
 

∫∫
ΓΓ

Γ=Γ
ee

e
iN

e
iN dNqdNq

22

22                                             (234) 

 
Furthermore, the integral is written in local coordinates using the determinant of the 
Jacobian matrix and the master element concept. At this stage, it is important to transform 
the shape functions with respect to the global coordinates to the shape function with respect 
to the local coordinates. 
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and can further be simplified since the Jacobian is simply one half the length of the 
boundary side. 
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It is important to note that this integral is simple and does not need numerical integration. It 
can be integrated exactly to obtain 1 regardless of the side and the associated nodes of the 
element. Therefore, the final outcome of this boundary integral is a 2X1 vector from each 
boundary element. 
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This integral represents the contribution of head dependent boundary condition due to the 
constant term. The basic assumption is that the Krwrhr/mr term is taken to be a constant over 
the boundary side of the element. Therefore, it can be taken out of the integral to yield: 
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Furthermore, the integral is written in local coordinates using the determinant of the 
Jacobian matrix and the master element concept. At this stage, it is important to transform 
the shape functions with respect to the global coordinates to the shape function with respect 
to the local coordinates. 
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and can further be simplified since the Jacobian is simply one half the length of the 
boundary side. 
 

∫∫
−Γ

=Γ
1

1
2 2

3

daN
L

dN i
ee

i
e

                                                 (239) 

 
As before, this integral is simple and does not need numerical integration. It can be 
integrated exactly to obtain 1 regardless of the side and the associated nodes of the element. 
Therefore, the final outcome of this boundary integral is a 2X1 vector from each boundary 
element. 
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This integral represents the contribution of head dependent boundary condition due to the 
variable groundwater head. It must be noted, however, that this term might also reduce to a 
constant flux term if the hydraulic head is below the bottom elevation of the river 
sediments. In such a case, the integral is evaluated as an added contribution to the constant 
flux integral. Otherwise, this integral is treated as a head-dependent boundary condition. 
Here, the basic assumption is that the Krwr/mr term is taken to be a constant over the 
boundary side of the element. Therefore, it can be taken out of the integral to yield: 
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Furthermore, the integral is written in local coordinates using the determinant of the 
Jacobian matrix and the master element concept. At this stage, it is important to transform 
the shape functions with respect to the global coordinates to the shape function with respect 
to the local coordinates. 
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and can further be simplified since the Jacobian is simply one half the length of the 
boundary side. 
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As before, this integral is simple and does not need numerical integration. It can be 
integrated exactly using the non-zero shape functions to obtain 2/6 for i = j and 1/6 for i ≠ j, 
regardless of the side and the associated nodes of the element. Therefore, the final outcome 
of this boundary integral is a 2X2 vector from each boundary element. 
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Appendix VI. Numerical Integration of Element Integrals 
 
 
Element integrals obtained after transformation to local coordinates are generally not 
evaluated by analytic integration since the integrands are very complicated non-linear 
functions of local coordinates due to the presence of non-constant Jacobian and its inverse. 
Particularly for irregular quadrilateral elements, a numerical integration scheme involving 
various numbers of integration points and corresponding weights is the only viable method 
of integration. The most common numerical integration scheme is the Gauss quadrature 
formula. In a one-dimensional setup, this formula takes the following form:  
 

( ) ( )∫ ∑
− =

=
1

1 1

NSP

j
jj wafdf ξξ                                                 (243) 

 
where NSP is the total number of sampling locations, f(aj) is any function evaluated at 
sampling location aj and wj is the corresponding weighing constant. The sampling locations 
and corresponding weighing coefficients in Gauss quadrature formula are given in Table 1 
for the commonly applied schemes of less than six points. 
 

Table 1. Integration Points and Weighing Coefficients in Gauss Quadrature Formula 
(after Zienkiewicz and Taylor, 1989) 

Number of Sampling Point 
(NSP) 

Sampling Location 
(a) 

Weighing Coefficient 
(w) 

1    0.000 000 000 000 000 2.000 000 000 000 000 
2 ± 0.577 350 269 189 626 1.000 000 000 000 000 
3 ± 0.774 596 669 241 483 

   0.000 000 000 000 000 
0.555 555 555 555 556 
0.888 888 888 888 889 

4 ± 0.861 136 311 594 953 
± 0.339 981 043 584 856 

0.347 854 845 137 454 
0.652 145 154 862 546 

5 ± 0.906 179 845 938 664 
± 0.538 469 310 105 683 
   0.000 000 000 000 000 

0.236 926 885 056 189 
0.478 628 670 499 366 
0.568 888 888 888 889 

6 ± 0.932 469 514 203 152 
± 0.661 209 386 466 265 
± 0.238 619 186 083 197 

0.171 324 492 379 170 
0.360 761 573 048 139 
0.467 913 934 572 691 

 
In general, a one-dimensional Gauss quadrature scheme with NSP sampling locations 
integrates any polynomial of 2*NSP-1 order exactly on the interval [-1,1]. Therefore, a two-
point scheme will integrate a 3rd order polynomial exactly. Integration in two-dimensions is 
done based on the same analogy according to the following formula: 
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The inner integral is evaluated first by taking the η variable constant. The evaluated 
expression is then integrated with respect to the ξ variable. Generally, the same number of 
sampling points is used in both integration directions. In the proposed coupled model, the 
numerical integration is performed by using a three-point Gaussian quadrature formula. 
 
 
 


