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SUMMARY

This work presents a new class of algorithms that extend the domain of

Navigation Among Movable Obstacles (NAMO) to unknown environments. Efficient

real-time algorithms for solving NAMO problems even when no initial environment

information is available to the robot are presented and validated. The algorithms

yield optimal solutions and are evaluated for real-time performance on a series of

simulated domains with more than 70 obstacles. In contrast to previous NAMO

algorithms that required a pre-specified environment model, this work considers the

realistic domain where the robot is limited by its sensor range. It must navigate to a

goal position in an environment of static and movable objects. The robot can move

objects if the goal cannot be reached or if moving the object significantly shortens

the path. The robot gains information about the world by bringing distant objects

into its sensor range.

The first practical planner for this exponentially complex domain is presented.

The planner reduces the search-space through a collection of techniques, such as

upper bound calculations and the maintenance of sorted lists with underestimates.

Further, the algorithm is only considering manipulation actions if these actions are

creating a new opening in the environment. In the addition to the evaluation of the

planner itself is each of this techniques also validated independently.

ix



CHAPTER I

INTRODUCTION

Robots would be much more useful if they could move obstacles out of the way.

In the near future robots will move out of the laboratories and into homes. Humans

will then expect the robots to react to high-level directions such as “please open the

door” or “ please come to the kitchen”. Given the command, it is expected that the

task will be performed and only further information be required if something critical

occurs, preventing a successful execution. The domain of Navigation Among Movable

Obstacles moves the boundary of what is declared as preventing a successful execution

by the robot closer to the one of humans. For example if a human wants to move

from the living room to the kitchen but a chair is in the only doorway, the human

would move the chair out of his way instead of declaring that it is not possible to

reach the kitchen. Nevertheless would most robots nowadays simply declare failure in

this case. However, even if another way into the kitchen would exist, humans might

rather move the chair than take a long detour, again in contrast to robots.

The human decision of when to rather move the chair in the previous example

rather than taking a detour is guided by the effort involved in either option. This

notion can be described by a cost function, having a cost for both manipulation and

pure navigation. Based on this cost function, the optimal, or lowest effort, option

should be chosen.

This work therefore explores the problem of optimal Navigation Among Movable

Obstacles (NAMO). NAMO is an important problem in motion planning because it

gives mobile robots better ability to reason about the environment and choose to

manipulate obstacles [23]. Robots that solve NAMO will accomplish tasks that are
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otherwise difficult or impossible. They will operate in cluttered human environments

and strive towards human-level navigation. In order to accomplish this goal, motion

planning must overcome a number of theoretical and practical challenges.

In contrast to most prior work in this field is this work exploring NAMO in practi-

cal scenarios where the robot attempts to reach a fixed goal position in a reconfigurable

and unknown environment. Starting with no knowledge about the environment, the

robot uses limited sensor information to locally detect objects and incrementally build

a world model while simultaneously manipulating its environment. The robot may

move objects if the goal cannot be reached or if moving the object would significantly

shorten the path to the goal. The robot is required to always take the optimal action

based on his current world knowledge as defined by a cost function.

An illustrative example of this domain is given in Fig. 1(a) where the robot must

alter the environment in order to navigate towards an otherwise unreachable goal.

With only local and incomplete information, including the existence and movabil-

ity of objects, the robot makes an optimal decision at each step based on acquired

knowledge. As shown in Fig. 1(b), the robot gradually improves the world model as

it navigates towards the goal, changing optimality conditions at each step.

1.1 Concepts

An illustrative example of this domain is given in Fig. 1(a) where the robot must

alter the environment to navigate towards an otherwise unreachable goal. With only

local and incomplete information, including the existence and movability of objects,

the robot makes an optimal decision at each step based on acquired knowledge. As

shown in Fig. 1(b), the robot gradually improves the world model as it navigates

towards the goal. Every world model update can however affect the robots current

plan. The current plan can become invalid through intersections with the new world

information or the plans optimality can be affected.

2



(a) Map configuration: showing start, goal and obstacles.

(b) During execution: showing the first two manipulation actions.

Figure 1: Simulated demonstration of the NAMO algorithm for problems that re-
quire both navigation and manipulation without prior knowledge of the environment.
Visible information in (b) is gathered online.

In order to find an optimal plan, all possible actions may have to be reevaluated

whenever new information is perceived. Yet, iteratively recomputing the cost of all

possible actions is infeasible for realistic domains since the computational complexity

of planning is exponential in the number of known objects [23]. In practice, this näıve

approach yields a runtime of 5 weeks, 2 days and 6 hours for a problem very similar

to the one visualized in Fig. 1(a). This work presents a computationally feasible

strategy that accounts for environmental changes, reducing the runtime for the same

domain to seconds, while still ensuring optimal decision making.
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1.1.1 Primary Concepts

This work introduces three major concepts that reduce the search space for NAMO

in Unknown Environments while perserving optimality.

1.1.1.1 Replanning

The proposed algorithm identifies cases where new information does not affect previ-

ous calculations. Instead of reevaluating all actions when new obstacles are detected,

the algorithm only performs additional computation when information affects with

the optimality of the existing plan.

1.1.1.2 Obstacle Evaluation

An upper bound is calculated and maintained that limits the number of manipulation

actions that have to be evaluated for each obstacle. The upper bound is given by the

global minimum cost plan at each time. The bound is checked against cost estimates

of plans. If the estimate is exceeding the upper bound, no plans that have at least

equal manipulation actions on the object are considered anymore.

Further are only plans considered that include manipulation actions were the

manipulation actions create a new opening in the environment as well as one plan

having no manipulation actions.

1.1.1.3 Obstacle Ordering

Not every object known to the robot is necessarily evaluated for possible manipulation

actions. Rather the algorithm maintains two lists with underestimates and iterates

over the lists until further iteration can not yield a lower cost plan. The lists associate

obstacles with the minimum cost of all plans manipulating that obstacle. While both

lists represent underestimates, the first list takes the world as currently known to the

robot into account while the second list assumes free space. The list taking the world

into account usually provides a tighter bound. However, the list has to be invalidated
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if a manipulation action is performed after the list was created. This is because free

space is created that was not assumed during the creation of the list. The second list,

on the other hand is never invalidated since free space was already assumed at the

time of the creation. This list can therefore be used for lazily recovering of the first

list.

1.1.2 Secondary Concepts

This work further details on the navigation planning for NAMO in Unknown Envi-

ronment. A slight modification of the D* Lite [10] algorithm is presented that allows

its usage in the domain of Navigation Among Movable Obstacles in Unknown Envi-

ronments. The D* Lite search-tree is updated if environment changes are detected,

but an actual path is not always calculated by D* Lite since the navigation goals can

change drastically in the NAMO domain. This is because the robot might have to

navigate to a manipulation configuration rather than the goal configuration.

1.2 Outline

This work is structured in the following way. First, related work is discussed in the

following chapter. Chapter 3 is then providing a formal problem formulation and state

all the assumptions and restrictions made to the domain. Chapter 4 is introducing

two algorithms that are both capable of finding the optimal solution, the baseline and

optimized algorithm. Chapter 5 is providing the optimality proofs for the algorithm.

For clarity, these two chapters omit secondary aspects, the detection of openings in

the environment and the navigation planning. Chapter 6 and 7 discus these secondary

aspects: opening detection and navigation planning, respectively.

Chapter 8 is providing detailed experimental results. The baseline and optimized

algorithms are compared. Further, each of the optimization steps used in the opti-

mized algorithm are evaluated independently.

Challenges of the domain itself as well as algorithm limitations are discussed in

5



chapter 9. The thesis concluds with future work in chapter 10 and final remarks in

chapter 11.
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CHAPTER II

PREVIOUS WORK

This chapter provides an overview of related work. First, work directly connected to

the domain of Navigation Among Movable Obstacles is discussed. The second section

of this chapter focuses on general motion planning in unknown environments.

2.1 Navigation Among Movable Obstacles

Problems involving movable obstacles with complete environment information pose a

significant computational challenge. Wilfong [29] first proved that motion planning

among movable obstacles is NP-hard. Demaine [3] further proved that even the

simplified version of this problem, in which only unit square obstacles are considered,

is also NP-hard. Chen [2] designed the first planner that handled multiple movable

objects and a navigation goal. The heuristic planner first generated a series of subgoals

and solved the subgoals separately by a local planner. However, Chen’s planner did

not address problems where the order of object manipulations decides the solution.

Okada [17] presented a planner for a humanoid robot that is capable of finding

a navigation path from a given goal location to a start location while manipulating

movable obstacles. The presented solution decomposes the task into subtasks that

are solved by independent planners. This approach lead to an environment manip-

ulation task planner, navigation motion planner and manipulation motion planner.

The environment manipulation task planner decomposes the given task into naviga-

tion and manipulation tasks that are represented in a graph. Standard graph search

techniques are then performed on the graph. The navigation motion planner first

determines possible goal locations for manipulation configurations on the object cho-

sen as the navigation goal before determining a collision free path. The manipulation

7



motion planner finds a goal location for a movable object. The goal location is chosen

to be the closest to the original object location while not colliding with a navigation

path from the global start location to the global goal location. However, this planner

requires global world knowledge for planning and can not guarantee optimality. It is

therefore not applicable to the domain discussed in this work.

In [23], Stilman presented a planner that solved a subclass of NAMO problems

termed LP1 where disconnected components of free-space could be connected inde-

pendently by moving a single obstacle. This approach reduced the search space of

NAMO by considering the difficulty of the navigation task rather than the dimen-

sionality of the space. By formulating LP1 problems as a graph of disjoint free space

components, a resolution complete solution was found using a heuristic planner. The

planner was able to solve the difficult problems presented in [2] and was successfully

implemented on the humanoid robot HRP-2 [25]. Further work considered the corre-

lated motions of multiple objects [24, 16] and presented a probabilistically complete

algorithm for NAMO domains [28].

Li [13] constructed an autonomous system which combined moving objects and

leaping over obstacles with other high-level behaviors using a unified planning strat-

egy. However, these methods solved NAMO given complete knowledge about the

environment. Furthermore, instead of aiming for global optimality, heuristics were

used in order to find a feasible solution.

Wu [4] presented the first extension to the work of NAMO in known environ-

ments and introduced a planner that could solve NAMO in Unknown Environments.

However the domain was restricted to push actions for obstacle manipulation, and

obstacles were limited to rectangular shapes. While this planning algorithm was op-

timized for performance, it did not guarantee optimal decision making given available

information.

Kakiuchi e.t all [7] has demonstrated a robot operating in an environment in
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which the robot can manipulate obstacles to reach the goal while not having prior

information about the obstacles. The robot only used onboard sensors to perceive

it’s environment. Movability of objects was detected based on the execution of a

push action on the object and observing the result. However, this work was mainly

focused on the perception aspects of the task. The actual planning within the domain

was limited. The robot first tried to find a path to the goal while avoiding all the

obstacles. If such as path is found then the plan is executed. If, however, no plan

avoiding all the obstacles is found, the robot tries to push the object closest to it and

re-checks if a path can be found. No actual planning incorporating the obstacles was

performed. Consequently optimality can not be guaranteed for the robots actions.

2.2 Motion Planning in unknown environments

In more general approaches to motion planning, LaValle [12] presented a game-

theoretic framework for robot motion in uncertain environments. Pirjanian [18] in-

troduced many approaches to formulating the motion planning problem as action

selection and also presented an implementation of Multiple Objective Action Selec-

tion for robot navigation [19]. By defining objective functions for different subgoals,

Pareto optimal actions were calculated to determine ”good enough” action for the

current state. Although these methods are promising directions for decision mak-

ing under uncertainty, it remains challenging to model problems within changeable

environment configurations and maintain guarantees on the optimality of each action.

The D* algorithm [21] [22] incrementally searches paths in partially known envi-

ronments by propagating the cost evaluated from the previous state to the new state.

Thus, repeated replanning can be avoided without losing optimality. Koenig [9] in-

troduced a rather less complicated algorithm, D* Lite, which only recomputes costs

relevant to new information. The NAMO domain does not permit direct application

of D* since the robot not only detects new obstacles, but also needs to manipulate

9



them. Appropriate extension of the algorithm would require a significant reformula-

tion of the algorithm due to the drastically increased number of degrees of freedom.

D* Lite can also not directly serve for the simple navigation planning portion in this

domain since the robot may need to navigate to a grasping configuration, potentially

at a significantly different configuration than the goal. This would change the root

of the D* Lite search tree, making it inefficient [9]. However, D∗ Lite can be made

applicable to the NAMO domain as discussed below by keeping track of multiple

search trees. This is implemented in the algorithms presented in this work.

Koenig [8] also established a series of techniques for goal-directed motion in the

presence of incomplete information. This work suggested applying agent-centered

search methods to minimize the cost of planning as well as plan execution. Koenig

also used partially observable Markov decision process (POMDP) [1] to enhance the

reliability of planning with incomplete information. POMDPs maintain and update

a probabilistic model to minimize the cost of plan execution. Yet, such work was

restricted to planning solutions that do not change the environment. It is expected

that future development of the presented work will integrate these methods to handle

environments with greater uncertainty.

One of the most successful algorithms in planning for unknown environments is

the Bug family studied by Lumelski [14]. Bug algorithm provide complete solution

to path planning towards a global goal based on local information. They also guar-

antee bounds on path length. Variants of the Bug algorithm [15] utilized different

optimizations strategies such as reducing the length of the path or the information

needed. However, the Bug family did not handle reconfiguration of environments

and sacrificed optimality for completeness and planning efficiency. Inevitably, the

resulting solutions had higher cost. In contrast to the limited memory used by bug

algorithms, the method in this work incrementally constructs a complete model of

the observed environment and makes the optimal decisions assuming that unknown

10



space is free.
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CHAPTER III

PROBLEM FORMULATION

Navigation Among Movable Obstacles in Unknown Environments is defined as follows.

A Robot R and a planar workspace containing a set O of static obstacles and a set

M of movable obstacles are given. A configuration of the world, qW , is defined by

the position of the robot qr and the position of each movable obstacle qi(Mi ∈ M).

It is assumed that both the robot and the obstacles are rigid bodies that occupy a

set of points in the workspace at any given time. Let G be the set of all points in the

workspace. The following definitions define sets to indicate the occupied points:

R(t) = {x ∈ G|x is occupied by R at time t}

Mi(t) = {x ∈ G|x is occupied by Mi ∈M at time t}

O(t) = {x ∈ G|x is occupied by any Oi ∈ O at time t}

The NAMO task can now be forumlated. The starting configurations for the robot

and the movable obstacles are defined by qs
W = qs

r , q
s
0 . . . q

s
n. The goal is a target

configuration for the robot qg
r . While the algorithm is given qs

r and qg
r , it is not

given any information about the dimensions, configurations or movability parameters

for any of the obstacles. This information must be gathered online through limited

sensing.

The NAMO task is to find a sequence of collision-free actions by the robot that

results in the configuration qg
r for the robot. The sequence of actions must ensure that

at all times, t, the sets of points occupied by the robot, R(t), each movable obstacle

Mi(t) and the static obstacles O do not intersect. Sensing information becomes

available after each action execution.

12



3.1 Action Specification

The NAMO domain allows two types of robot action primitives: navigation, specified

by the set AN , and manipulation, AM . Both action primitives are defined by paths τr

of fixed length for the robot from a start configuration τr(ts) to an end configuration

τr(te). The time t at the beginning of the traversal of τr is noted as ts and the end

noted as te. Consequently Eq. 1 defines all the points in the workspace that the robot

occupies during the execution of the action A.

Γr(A) =
⋃

t∈[ts,te]

R(t) (1)

Navigation Actions are simply path plans that displace the robot. Since the robot

is allowed to change the environment, a sound plan must take into account the state

of the world at a given time. Consequently, the free space of the robot at time t is

therefore defined as follows:

F (t) = G\(
⋃

Mi∈M

Mi(t) ∪O(t)) (2)

This restricts the action AN ∈ AN to paths where Γr(AN)∩F (ts) ≡ Γr(AN) holds. In

other words the swept volume, Γr(AN), of action AN does not intersect the obstacles.

In the case of manipulation actions there is an additional constraint on the starting

point for the action defined by the relative configuration of the robot and one movable

obstacle. Furthermore, a function τMi ← M(τr) is defined that maps the motion of

the robot to a displacement of the obstacle Mi. In the implementation presented in

this work, M is simply a transformation of the robot path to the coordinate system of

the object. This is consistent with grasp and displacement. The precise specification

of M is not critical to the algorithm or analysis. Alternative definitions of F can

restrict AM to pushing or other manipulation primitives.

Manipulation Actions are path plans that displace both the robot and obstacle

Mi. In accordance with Γr, which specifies the workspace points occupied by the
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robot during the execution of AN or AM , ΓMi
denotes the points occupied by the

obstacle Mi during the execution of AM .

ΓMi
(AM) =

⋃
t∈[ts,te]

Mi(t) (3)

In contrast to navigation actions, F (t) changes during the execution of manipulation

actions. AM ∈ AM is therefore restricted to paths where equations (4)-(6) hold:

∀t ∈ [ts, te] : R(t) ∩ F (t) ≡ R(t) (4)

− The robot is intersection free.

∀t ∈ [ts, te] : (∀Mj 6= Mi ∈M : Mi(t) ∩Mj(t) ≡ ∅) (5)

− The manipulated obstacle Mi is intersection free with all other movable obsta-

cles.

∀t ∈ [ts, te] : Mi(t) ∩O(t) ≡ ∅ (6)

− Mi is intersection free with all static obstacles.

3.2 Unknown Environments

Since the robot is only given partial environment information, it must be defined how

the robot interprets its understanding of the world. Incomplete information comes

from two possible sources at any time t:

• M and O are incomplete or erroneous:

There may not be sufficient information to determine M and O, leading to

missing objects or assumptions that non-existent obstacles exist. Incomplete

information comes from missing sensor data. Erroneous conclusions come from

assumptions on movability before interaction.
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• Incomplete Mi(t) and O(t):

The set Mi(t) for an Mi ∈ M may not be complete as the entire range of the

object may not have been detected at time t. The same applies for obstacles

Oi ∈ O and as such for the set O(t).

In this study, the following minimal set of assumptions to handle the challenges of

unknown environments are made:

1. Obstacles are assumed movable: An obstacle is movable unless a manipulation

action failed on the obstacle.

2. Free space: Unknown space is assumed to be free of obstacles.

The first assumption enables an insert of newly detected obstacles into the set

M, and defines an explicit rule of when obstacles have to be removed from M and

inserted into O. The second assumption compensates for incompleteness of the sets

M,O,Mi(t) and O(t). Following these assumptions the sets can be treated as correct

at any given time t.

3.3 Action Sequences

A consecutive sequence of actions is denoted as a plan P . The actions A in a plan

P will be indexed from A1 to An. The swept volume of P is defined by Eq. 7. It

represents all the points occupied by the robot and manipulated obstacles.

S(P) =
⋃
A∈p

Γr(A)
⋃

AM∈p

ΓMi
(AM) (AM ∈ AM) (7)

In the following the robots configuration at time t is denoted as qt
r. Further, the

set P (t) is defined to be the set of all sound plans P at time t that satisfy the following

constraints:

1. transfer R from the robots current configuration qt
r to its goal configuration qg

r
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2. satisfy the restrictions described in section 3.4

Let PMi
(t) ⊆ P (t) be the set consisting of sound plans having a non-zero sequence

of manipulation actions on the movable obstacle Mi. Similarly, the set P (t) ⊆ P (t)

denotes the set of sound plans only consisting of navigation actions. A plan P ∈ P (t)

will be denoted as pure navigation plan. This yields:

P (t) =
⋃

Mi∈M

PMi
(t) ∪ P (t) (8)

3.4 Domain Restrictions

The domain is restricted as follows in this work:

3.4.1 Manipulation

The possible interactions with obstacles are limited to axis-aligned manipulations.

Obstacles have to be grasped at the center of one of the axis-parallel sides.

3.4.2 Single obstacle

A plan P involves at most a single consecutive sequence of manipulation actions:

∀x ∈ [1 · · ·n] : Ax ≡ AN ∨ ∃i, j ∈ [1, · · · , n] :

i ≤ x ≤ j ⇔ Ax ≡ AM

(9)

This restriction is only in reference to a plan P given the current environment

knowledge. Since the environment knowledge can change, the robot may manipulate

multiple obstacles before reaching the goal configuration.

3.4.3 No obstacle interactions

Obstacles are solid and can only be moved by the robot.
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3.4.4 Goal is always free

The points in the workspace occupied by a configuration qg
r are always free of obsta-

cles.

3.5 Cost Definition

A constant cost, CM , is assigned to manipulation action primitives, AM , as well as

a constant cost, CN , to navigation action primitives, AN . The following inequality

holds:

CM > CN ≥ 0 (10)

Following equation (9), let i be the index of the first manipulation action, j the

index of the last manipulation action. If P does not include any manipulation actions

i, j = 0. The cost of any plan P ∈ P (t) can be defined to be the number of navigation

actions times the cost for navigation and the number of manipulation actions times

the cost for a manipulation action.

C(P) = (i+ n− j)CN + (j − i)CM (11)

3.6 Optimality Definition

Let P∗ be the plan with the least cost.

P∗ = argminP∈P (t)(C(P)) (12)

Due to assumption 3.4.2 and a simple rewrite of equation (11) any P ∈ P (t) can

be split into three parts, navigating to the obstacle, manipulating the obstacle and

navigating to the goal. Equation (11) can therefore be rewritten as

C(P) = c1 + c2 + c3 (13)
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with

c1 = iCN (14)

c2 = (j − i)CM (15)

c3 = (n− j)CN (16)

and substituting (13) into (12) yields

P∗ = argminP∈P (c1 + c2 + c3) (17)

If P does not include a manipulation action c1 and c2 evaluate to zero. A visual-

ization of the costs associated with a plan can be seen in Fig. 2.

Figure 2: The three phases of a plan

Further, let P∗Mi
∈ PMi

(t) be the optimal plan with at least one manipulation

action on the obstacle Mi.

P∗Mi
= argminP∈PMi

(t)(c1 + c2 + c3) (18)

3.7 Openings

In the following chapters the term new opening will be used. While a detailed dis-

cussion about this is proposed until chapter 6, for clarity, the general definition will
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be given here. The definition of a new opening is based on the notion of a homotopic

plans, which will be defined first.

Definition 1. Two pure navigation plans P1,P2 ∈ P (t) are homotopic if and only if

there exists no known obstacle in the area enclosed by the paths that the robot traverses

if executing the plans. Otherwise they are ahomotopic.

This definition is adopted from [5]. Based on this definition the definition of a

new opening can be given.

Definition 2. A manipulation action created a new opening if the set P (t′) at time

t′after the execution of the manipulation action has at least one plan P that is aho-

motopic to all the plans in the set P (t) at time t prior to the execution of the ma-

nipulation action.
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CHAPTER IV

ALGORITHMS

In this algorithms, the space is represented by a grid. Each of the sets of occupied

points is defined by the set of grid cells that contain at least one point.

The optimality definition provided in (12) can be expanded by using the set defi-

nition (8). This yields that P∗ is the plan P ∈ {P∗M1
, · · · ,P∗Mn

, argminP∈P (C(P))}

with minimal cost. P∗ can therefore easily be determined if all those plans are known.

The algorithms explained in this work follow these intuition. In the following the cal-

culation of P∗Mi
will be referred to as performing an obstacle evaluation on Mi.

Further the terminology constructing a plan is used to indicate that a plan is ac-

tually constructed, e.g. actual navigation actions are determined to exactly calculate

c1 and c3. This is in contrast to the estimation of those costs, where no actual plan

is constructed.

This chapter first describes the simplifications that are going to be used for the

algorithm explanations. Next the Baseline algorithm is presented, a näıve algorithm

that optimally solves NAMO in Unknown Environments. Finally this chapter is

providing a detailed description of the Optimized algorithm that proves to drastically

reduce the runtime while still guaranteeing optimality. The optimality proofs for both

algorithms will be given in Chapter 5.

4.1 Algorithm Simplifications

For clarity, some details of the algorithms are omitted that do not represent the main

part of the algorithms. This allows for the pseudocodes and diagrams to be more

detailed on the core parts of this work. In the following those simplifications will be

stated.
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4.1.1 Static Objects

Static objects will not be explicitly be mentioned. All cells that correspond to a

detected static object are marked as blocking robot and object motion in future

plans.

4.1.2 Multiple Grasping points

In Chapter 3.4.1 it was defined that obstacles have to be grasped on one of the axis

parallel sides of the object. This can yield between zero and four possible grasping

points per obstacle depending on its shape. It can not generally be assumed that the

grasping point currently closet to the robot has to be chosen in order to find P∗Mi
. It

is therefore necessary to evaluate all valid grasping points.

The actual implementations of the algorithms described below are therefore eval-

uating plans for all possible grasping points in parallel in different threads. If one

thread returns, inter thread communication is used to kill threads that can, based

on its calculations, not yield a plan with lower cost anymore (for details on this es-

timation see section 4.3.2). This process will not be reflected in the pseudocode or

algorithm descriptions.

4.1.3 Navigation Planner

For simplicity, A∗ is assumed as a navigation planner for the algorithm as well for the

proofs. The actual implementation of the algorithm however is based on a variation

of D∗ Lite. Since the use of D∗ Lite is not essential to the concepts presented in

this work and does not affect the optimality aspects, is its discussion postponed to

Chapter 7.

4.2 Baseline

The naive solution to optimal NAMO in Unknown Environments is to calculate plans

for all possible actions on all known objects once any change in the environment is
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Algorithm 1 BASELINE(qs
r , q

g
r )

1: R⇐ qs
r ;

2: M⇐ ∅;
3: P∗ ⇐ A∗(qs

r , q
g
r );

4: while R 6= qg
r do

5: Onew ⇐GET-NEW-INFORMATION();
6: if Onew 6= ∅ then
7: M =M∪Onew;
8: for each Mi ∈M do
9: P ⇐ EVALUATE-ACTIONS(Mi);

10: if C(P) < C(P∗) then
11: P∗ = P ;
12: end if
13: end for
14: Pavoid = A∗(qt

r, q
g
r );

15: if C(Pavoid) < C(Popt) then
16: P∗ = Pavoid;
17: end if
18: end if
19: R⇐ Next step in P∗;
20: end while

detected. P∗ can than simply be chosen to be the plan with minimum cost. The

Baseline algorithm basically implements this intuition, with just a small modification

on the navigation planning. Not all plans with equivalent manipulation actions are

constructed. Rather just one plan is constructed having these manipulation actions

whereby c1 and c3 are calculated based on the navigation actions returned by the

navigation planner using on A∗.

The algorithm is initialized with a direct path to the goal and re-planning is

performed once environment changes are detected.

This approach is visualized in fig. 3 and outlined in Algorithms 1 and 2.

4.3 Optimized algorithm

In order to gain scalability for big maps with a high number of objects, the opti-

mized algorithm alters the Baseline algorithm in three main aspects.

The first optimization step drops the necessity to re-evaluate the set P (t) of all
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Algorithm 2 EVALUATE-ACTIONS(Mi)

1: P∗Mi
, closedList,Q⇐ ∅

2: C(P∗Mi
) =∞;

3: Pto obstacle =A∗(qt
r, q

t
Mi

);
4: INSERT (Q,P∗Mi

);
5: INSERT (closedList, qs

Mi
);

6: while Q 6= ∅ do
7: Px ⇐POP(Q);
8: for d in {left, right, up, down } do
9: qtmp

Mi
⇐GET POSITION(Mi, Px) + d;

10: if !HAS ELEMENT(closedList, qtmp
Mi

) then

11: INSERT(closedList, qtmp
Mi

);
12: APPEND(Px, d);
13: Pto goal =A∗(qt

Mi
, qg

r );
14: P = Pto obstacle + Px + Pto goal;
15: if C(P) < C(P∗Mi

) then
16: P∗Mi

= P
17: end if
18: INSERT(Q,Px);
19: end if
20: end for
21: end while
22: return P∗Mi

;

sound plans (see section 3.3) on every environment update. The second optimization

steps reduces the calculations performed by an obstacle evaluation. Finally, the third

optimization step potentially eliminates entire sets PMi
(t) of plans with a non-zero

manipulation sequence on Mi (see section 5) from equation (8).

Similar to the baseline algorithm, plans with equal manipulation actions on an

object Mi are not evaluated for all possible c1 and c3. These costs are determined

once through a navigation plan computed with A∗ used as the navigation planner.

4.3.1 Recalculation triggering

In contrast to the Baseline algorithm re-planning is not automatically performed

upon the detection of new objects or updated object information in the optimized

algorithm.
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Algorithm 3 OPTIMIZED(qs
r , qg

r )

1: R⇐ qs
r ;

2: minCost, euclidianCost⇐ ∅;
3: mC pt, eC pt = 0;
4: P∗ ⇐ A∗(qs

r , q
g
r );

5: while R 6= qg
r do

6: Onew ⇐ Onew∪ GET-NEW-INFORMATION();
7: if S(P∗) ∩ Onew 6= ∅ then
8: P∗ ⇐ A∗(qt

r, q
g
r );

9: for each Mi ∈ Onew do
10: UPDATE(euclidianCost,Mi);
11: end for
12: Pnext=GET-NEXT(mC pt, eC pt);
13: while C(P∗) ≥ C(Pnext) do
14: if mC =true or Pnext /∈ minCost then
15: P=OPT-EVALUATE-ACTION(Pnext,P∗);
16: UPDATE(minCost, [Mi, Costl(Mi)]);
17: if C(P) < C(P∗) then
18: P∗ = P ;
19: end if
20: Pnext = GET-NEXT(mC pt, eC pt);
21: end if
22: end while
23: Onew ⇐ ∅;
24: end if
25: mC pt, eC pt = 0;
26: if Next step in P∗ ≡ AM then
27: minCost⇐ ∅
28: end if
29: R⇐ Next step in P∗;
30: end while
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Figure 3: Flow chart of baseline algorithm

In the optmized algorithm re-planning is only triggered if the currently executed

plan P is no longer intersection free with the newly detected environment information.

If P is intersected it is invalid. Let Onew be the set of all points which are newly

detected as occupied:

Onew = {x ∈ G|x is occupied but was assumed free at the calculation time of

P∗ }

Re-planning is then performed according the following constraint:

S(P∗) ∩Onew 6= ∅ ⇒ P∗ /∈ P ⇒ re-plan (19)

This optimization step can be seen in line 6, 7 and 23 in algorithm 3.
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Algorithm 4 GET-NEXT(mC pt, eC pt)

1: mC = false;
2: PmC = minCost(mC p);
3: PeC = euclidianCost(eC p);
4: if C(PmC) ≤ C(PeC) then
5: Pnext = PmC ;
6: mC pt++;
7: mC=true;
8: else
9: Pnext = PeC ;

10: eC pt++;
11: mC =false;
12: end if
13: return (mC,Pnext) ;

4.3.2 Limit Navigation Planner calls

In the following discussion P∗tmp refers to the minimum cost plan determined through

calculations in the current map configuration so far. In order to reduce calculations

necessary in determining P∗Mi
, are plans for a valid sequence of manipulation actions

seq on Mi omitted, if seq

(a) is not creating a new opening

(b) the estimated cost Cest(P) is exceeding C(P∗tmp)

where

Cest(P) = c1 + |seq|CN + euclidianCost (20)

with

euclidianCost = d|q
t
r − qg

r |
dis

eCN (21)

whereby dis represents the distance a single move action primitives translates the

robot.
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The plan P∗tmp therefore functions as an upper bound and is initially set to be a

plan avoiding all obstacles. It is updated constantly if a new plan with lower cost is

found. This can be seen in line 8 and 17-19 of algorithm 3.

If condition (b) is reached, no more plans with seq as a beginning manipulation

sequence are considered.

Part (a) can be seen in line 25 and part (b) in lines 22-24 of algorithm 5.

New openings can only occur in space directly adjacent to the currently manip-

ulated obstacle, which is shown in section 5.2.2. The definition of a new opening is

given above in definition 2. How opening detection is implemented in the code will

be discussed in Chapter 6.

4.3.2.1 Special case: no initial P∗tmp

A special case can occur if no collision free path avoiding all the object can be found,

yielding C(P∗tmp) = C(PMi
) ≡ ∞ initially, and as such not providing an upper bound

for evaluating sequences. However, if no bound can be provided all possible manipu-

lations for an obstacle have to be evaluated until

• a valid plan was found (and as such providing an upper bound) or

• the entire search-space for manipulations on that obstacle was searched.

As can be easily imagined can this result in an intractable amount of calculations.

For example, if an obstacle is evaluated which, however manipulated, can not make

the goal accessible is chosen to be evaluated first. This object will still have to be

evaluated for all possible manipulations. For a large map this search-space could not

be searched in reasonable time and as such practically prevent the robot from reaching

the goal. This can even occur when potentially first evaluating a different obstacle

could have provided a path to the goal with a limited amount of computations.
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A basic solution to this problem is to perform all obstacle evaluations on the

known movable obstacles in parallel. The proposed algorithm implements a variation

of this solution.

First, the observation can be made that it is possible to determine which objects

are not effecting the robots ability to reach the goal. This, for example, can be done

by setting the space occupied by an obstacle temporary to be free space. It can now

be verified if a path to the goal can be found. If no path can be found then this

object is considered non-blocking, however if a path can be found then it is a blocking

object. This process is repeated for each object.

The algorithm now iterates over the list of blocking objects and in each iteration,

increasing the maximum number of allowed manipulation actions on each object. This

is similar to a breath-first search. Upon the detection of a new opening, it is attempted

to construct a plan to the goal. If such a plan can successfully be constructed, P∗tmp

is set to be equal to this plan. Otherwise the procedure is continues. Once a path

to the goal has been found P∗tmp can be set to a value smaller than infinity and the

optimized algorithm can continue its execution as described above. This special case

is not outlined in the pseudo-code or diagram.

4.3.3 Reduce candidate objects

Not every P∗Mi
is determined but rather only those where a computation seems promis-

ing. To achieve this two sorted lists minCost and euclidianCost are maintained. Both

lists contain underestimates of the true costs to reach the goal if a plan with a non-zero

sequence of manipulation actions on Mi is constructed.

Every element in the list minCost is a tuple associating an obstacle Mi ∈ M

with the smallest Cp(P) determined by the latest evaluation of Mi. The minCost

list therefore represents underestimates for any C(P) having a non zero sequence of

manipulation actions on Mi for most times. However, elements in this list are not
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guaranteed to represent a lower bound if free-space has been created, eg. by moving

an object, that was assumed blocked at the time an entry was inserted into the list.

Updating the minCost list in case free-space creation is tedious, since it is not

trivial to determine which entries in the list are actually affected by this change. The

algorithm therefore entirely invalidates the minCost list once free-space has been

created and lazily recover elements of the list if necessary. For recovering purposes

are a second list, euclidianCost, is maintained. This list again consists of tuples

but associates all movable objects encountered so far with an underestimate of just

c3. The estimate can be calculated using equation (25). Other space-representation

specific quantities are also possible. The only requirement on this estimate is that

it is an under estimate and is independent of observed obstacles (e.g. assumes free-

space even in known parts of the world). The euclidanCost list is never invalidated,

however has update operations. Update operations are insert, for newly detected

obstacles, and obstacle update for the cases when more information about an already

known obstacle becomes available (it increases in size) or an object is moved. This is

necessary because those cases could affect the grasping point and as such the estimate

for c3.

Both lists are sorted in ascending order.

While both lists contain underestimated, the minCost list usually provides tighter

bounds.

Upon recalculation triggering both lists are traversed in parallel until the next

smallest cost associated with the next entry exceeds the cost of P∗tmp which is set and

updated as described in chapter 4.3.2.

Traversal is done in such a way that the next element is chosen to be the smallest

of the minimum of the two lists. However if this tuple belongs to euclidianCost

and the associated obstacle is also referenced in minCost the entry is ignored and

traversal continued (since a tighter bound exists). If the next smallest element either
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• belongs to minCost or

• belongs to euclidianCost but is not referenced in minCost

the associated obstacle is evaluated and minCost and P∗tmp are updated if applicable.

Figure 4 summarizes this optimization step in an UML diagram and fig 17 demon-

strates an easy example.

The update operation on the euclidianCost list can be seen in lines 9-11 of algo-

rithm 3. The method of choosing the next element can be found in line 12 of algorithm

3 and in detail in algorithm 4. In algorithm 5, the entries for the minCost list is cal-

culated through the lines 29-31. This value is then used in line 16 of algorithm 3 to

update minCost.
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Algorithm 5 OPT-EVALUATE-ACTION(Mi, P∗)
1: P∗Mi

, Q, closedList⇐ ∅;
2: Cl(Mi)←∞;
3: Pto obstacle = A∗(qt

r, q
t
Mi

);
4: if Pto obstacle NOT valid then
5: return failure
6: end if
7: C(P∗Mi

) =∞;
8: INSERT(Q,P∗Mi

);
9: INSERT (closedList, qs

Mi
);

10: while Q 6= ∅ do
11: Px ⇐POP(Q);
12: for d in {left, right, up, down } do
13: qtmp

Mi
⇐GET POSITION(Mi,Px) + d;

14: if !HAS ELEMENT(closedList, qtmp
Mi

) then
15: skip;
16: end if
17: INSERT(closedList, qtmp

Mi
);

18: if qtmp
Mi

causing robot or obstacle collision then
19: skip;
20: end if
21: APPEND(Px, d);
22: if Cest(Px) ≥ C(P∗Mi

) or Cest(Px) ≥ C(P∗) then
23: skip;
24: end if
25: if new opening was created then
26: Pto goal = A∗(qtmp

Mi
, qg

r );
27: if Pto goal is valid then
28: P = Pto obstacle + Px + Pto goal;
29: if C(Px) + C(Pto goal) < Cl(Mi) then
30: Cl(Mi)← C(Px) + C(Pto goal);
31: end if
32: if C(P) < C(P∗Mi

) then
33: P∗Mi

= P ;
34: end if
35: end if
36: end if
37: INSERT(Q,Px);
38: end for
39: end while
40: if P∗Mi

was set then
41: return (P∗Mi

, Cl(Mi));
42: else
43: return ∅;
44: end if
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Figure 4: Flow chart for optimization step 4.3.3. Green: euclidianCost operations,
red: minCost operations, orange: actual evaluation points, yellow: skipping points.
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(a) No calculation necessary, obstacles only saved in EuclidianCost list

(b) Plan intersected, a path avoiding all obstacles could be found but
entry with lower cost estimate in one of the lists (EuclidanCost), traversal
started. The euclideanCost for the obstacle M1 was updated as new
information of M1 became available.

(c) Evaluation of M3 since it is the next smallest entry of both lists and
in EuclideanCost but not referenced in MinCost. The upper bound is
updated and traversal stops. M2 and M1 will not be evaluated.

Figure 5: Example of optimization step 4.3.3
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CHAPTER V

OPTIMALITY

As required in Chapter 3 has P = P∗ to hold at each time t for the currently executed

plan P . Consequently, following equation (17) the sum of c1, c2 and c3 has to be

minimal for P . This includes the cases of having c1 and c2 set to zero, yielding a plan

without obstacle interaction as defined in chapter 3.4.2.

This chapter will provide optimality proofs for the baseline as well as the optimized

algorithm.

5.1 Baseline

In the following optimality for the Baseline algorithm will be shown.

Lemma 1. The Baseline algorithm described in 4.2 is optimal.

Proof. The Baseline algorithm is initialized with an A∗ search from qs
r to qg

r using

the euclideanCost (equation (25)) as the heuristic. This heuristic is an admissible

heuristic. Following assumption 2 (assumed free-space in unknown environment) is

the algorithm therefore initialized with P∗.

For all plans having equal manipulation actions on one object, only the plans with

c1 and c3 determined through a navigation plan returned by A∗ are considered. This

is valid since following equation (13) the cost is the summation of the positives value

c1, c2 and c3. For plans with equal manipulation actions c2 is equal. The costs c1 and

c3 are minimized if determined through A∗ using and admissible heuristic as is done

here.

Upon the detection of any new environment information interfering with the as-

sumption stated in chapter 2 (free-space assumption) the algorithm evaluates all
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sequences of all possible manipulations for each known object. c1 and c3 are again

based on a navigation plan returned by an A∗ search. Further is the case of c1 and c2

being equal to zero - yielding a direct path to the goal without obstacle interaction-

based on the A∗ search evaluated.

Because of the assumptions described in chapter 3.4.2 (a plan involves at most

a single consecutive sequence of manipulation actions) and 3.4.3 (obstacles are only

moved by the robot) does this cover all valid P ∈ P with the exception of plans with

equivalent obstacle interaction but differing sequences of moving to the obstacle and

or to the goal. However as described above these sequences can not have lower cost

than the ones found through the A∗ search.

The costs for each plan are than calculated according to equation (13). Finally,

P is determined according to equation (17) and as such is equal to P∗. This is valid

for each time t since reevaluation is performed upon any change of the environment

and consequently any possible change on the set P .

5.2 Optimized algorithm

In the following discussion it will be shown that optimality can still be guaranteed

for the optimized algorithm described in chapter 4.3. This will be done by showing

that none of the optimization steps are affecting the property of P = P∗ at any time

t.

The time of the calculation of the currently executed plan P will be denoted as

tcalc. The current time as tcur. Similarly, if necessary, will Pcalc be used to denote

the set P at time tcalc. Pcur and P∗cur will denote P and P∗ at the current time. The

term occupied a grid field will be used to indicate that a certain plan Px ∈ P includes

either a manipulation action or navigation action that causes the robot or an obstacle

to enter a grid field.
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5.2.1 Recalculation triggering

It is now shown that the optimization step described in chapter 4.3.1 of delayed re-

planning is valid. This will be done by demonstrating that if P ≡ P∗ at tcalc and

newly detected obstacles information do not intersect with P than P ≡ P∗cur. Lemma

2 will first state that this holds for the detection of entirely new obstacles. Lemma

3 will than show that it also holds for updated size information of previously known

obstacles.

Lemma 2. A newly detected object Mi which does not intersect with any part of the

current optimal plan P can not affect the optimality of P. This is Mi(t) ∩ S(P) ≡

∅ ⇒ P ≡ P∗calc.

Proof. Due to assumption 2 (free-space assumption) every Px ∈ Pcalc is calculated

assuming free-space at the grid fields which are now occupied by obstacles. Conse-

quently every Px ∈ Pcalc occuping the newly as occupied detected grid cells becomes

invalid and is not an element of Pcur. Let Pinv = {P|P ∈ Pcalc ∧ S(P) ∩Mi(t) 6= ∅}

be the set of all such plans.

Let Pnew = {P|P ∈ P (t) ∧ P /∈ Pcalc} define the set of all new valid plans that

can be constructed, yielding Pcur = (Pcalc \ Pinv) ∪ Pnew. P /∈ Pinv following the

assumption given in the lemma. In the following it is shown that every Px ∈ Pnew

has to have higher cost than P , yielding that P ≡ P∗cur.

Prove by contradiction. First, any Px ∈ Pnew has to have a non-zero sequence of

manipulation actions on the newly detected obstacle, otherwise it would have already

been an element of Pcalc.

Assume ∃Pnew ∈ Pnew : C(pnew) ≤ C(p). There has to be a Px ∈ Pcalc similar to

Pnew ∈ Pnew just having navigation actions instead of manipulation actions. This Px

has to exists because of the free-space assumption in chapter 2. Also due to inequality

(22) C(px) has to be smaller than C(Pnew). Consequently
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C(Px) < C(Pnew) ≤ C(P)⇒ C(Px) < C(P) (22)

Since Px ∈ Pcalc and C(Px) < C(P) P can not have been optimal at tcalc, thus

having a contradiction.

It is now shown that updated size information does not effect optimality.

Lemma 3. If the size of a previously known object Mi ∈ M is updated but remains

intersection free with the current optimal plan P the optimality of P is not affected.

Proof. Obstacles can only increase in size if new information is detected due to the

free space assumption stated in chapter 2: Mi(tcur) ⊃ Mi(tcalc). Again P /∈ Pinv by

assumption.

No new plans can be constructed since no new obstacle or free-space is present,

yielding Pnew ≡ ∅.

Since P remains ∈ Pcur and no new plans are added does P ≡ P∗calc hold.

Lemma 2 and 3 are justifying the optimization step presented in chapter 4.3.1.

5.2.2 Limit Navigation Planner Calls

In the following discussion it will be shown that the bounding of the calculations for

an obstacle evaluation does not effecting optimality. This will be done by proving

that only plans are being omitted that could not possibly lead to an optimal plan.

Lemma 4 will justify the limitation of plan evaluations through the use of Cest as an

upper limit. Lemma 5 will in turn show that the limitation to only calculate upon

the detection of a new opening is valid.
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Lemma 4. The cost estimate Cest always underestimates the true cost of a plan. Cest

is monotonically increasing for additional manipulation actions.

Proof. Cest is the summation of c1, |seq|Cman and euclidianCost. |seq|Cman is following

(15) equivalent to c2. euclidianCost is an underestimate of the true cost. Cest is

therefore the summation of actual costs and an underestimate, consequently less or

equal the true cost.

Let Cest add denote Cest with an additional manipulation action. Cest add has equal c1

to Cest. |seq| for Cest add increases by one and the euclidean cost can at most be reduced

by one navigation action. This yields Cest add−Cest = CM or Cest add−Cest = CM −CN .

Following equation (22) CM > 0 and CM − CN > 0, yielding a positive value for the

subtraction.

This directly justifies the optimization step described in chapter 4.3.2 (b).

Lemma 5. A plan Px ∈ P with a non-zero sequence of manipulation actions that

does not create a new opening (according to definition 2) in the map can not be

optimal.

Proof. If P ≡ ∅ this is trivially true, since this indicates that qg
r is blocked and not

reachable. Consequently if no new opening is created by Px, qg
r is still not reachable

through Px, which yields Px /∈ P . An evaluation of Px is therefore not necessary.

Assume P 6= ∅. If all all plans in P have a non-zero sequence of manipulation

actions than this indicates that the goal configuration qg
r is only reachable through the

creation of a new opening. Further, assume Px has a non-zero manipulation sequence

on an obstacle while not creating a new opening. Following the domain restriction

stated in chapter 3.4.2 can every plan at most have one consecutive sequence of
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manipulation actions. Px can therefore not successfully transfer the robot to qt
r. This

yields that Px /∈ P and no evaluation is necessary.

Now, let the set P have at least one plan with no manipulation actions.

Due to the domain restriction in chapter 3.4.2, Px, has to share a subsequence of

navigation actions with a plan only consisting of navigation actions in order to be

element of P .

Let Q ⊆ P be the set of valid plans only consisting of navigation actions. Starting

from some point after manipulating the obstacle, Px has to share an equal subsequence

with at least one element in Q, leading to qg
r . Let R ⊆ Q ⊆ P denote the set of valid

plans that have the same subsequence. Let pt denote the point after which the

subsequence is equal with Px.

R has to have at least one element which performs navigation actions to the same

grid field where Px performs the first manipulation action, denoted as start manipulation,

and circulates the obstacle to the point pt. Let r denote such an element. Due to

assumption 3.4.4 (goal is always free - obstacle can not be pushed over the goal) Px

must have navigation actions after the manipulation actions to either

• move to the side of the obstacle,

• in the reverse manipulation direction

• or combination of this.

This is visualized in Fig. 6. Consequently r has to have equal or less distance

from start manipulation to pt.

Due to inequality (22) this yields C(r) < C(px)⇒ Px 6= P∗.

It is now shown that new openings can only be created adjacent to the obstacle

so that the detection becomes independent of the actual map size.
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Figure 6: Lemma 6 visualization.

Lemma 6. Any manipulation action on an obstacle Mi can only create openings

directly adjacent to Mi.

Proof. An opening at time t, denoted as o(t) is a subset of the free-space o(t) ⊂ F (t).

Further, in order to be a new opening must o(t) 6⊂ F (tprev) at time tprev before the

manipulation. Following the definition of free-space (chapter 2) the free-space can

only be altered through the manipulation of an Mi. Consequently o(t) ⊂ F (t)∧o(t) 6⊂

F (tprev) ⇒ o(t) ∩Mi(tprev) 6= ∅ ∧ o(t) ∩Mi(t) ≡ ∅. New openings can therefore only

appear in space previously occupied by Mi, which now has to be adjacent to Mi.

Due to assumption 3.4.3 (no obstacle interactions) an obstacle can only be moved

directly by the robot, consequently the opening can only occur adjacent to the ma-

nipulated obstacle.

Lemma 5 and 6 justify part (a) of the optimization step described in chapter 4.3.2.

5.2.3 Reduce candiate objects

In the following it will be shown that the minCost list, explained in chapter 4.3.3,

consists of lower bounds as long as no manipulation has been performed since the

calculations of the entries.
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Lemma 7. The elements in the minCost are lower bounds for the actual cost for

any P having a non-zero manipulation sequence on Mi, if no manipulation actions

have been performed since the last time the elements where modified in the list.

Proof. Following the definition of minCost any P having a non-zero sequence of

manipulation actions on Mi has greater or equal partial cost than the value in the

minCost list. Further, due to inequality (22) has every P a non-negative c1.

If no deviation from assumption 2 is observed at any time t > tcalc only c1 for any

P ∈ PMi
will change, however it will always remain non-negative and therefore the

lower bound holds.

In case of a deviation from the free space assumption the newly as blocked cells

detected grid cells will have to be avoided. This is because of assumption 3.4.2

(single obstacle manipulation) and 3.4.3 (no obstacle interactions) no more obstacles

can be manipulated. This yields that every plan in PMi
occupying those grid fields

becomes invalid. Further, due to assumption 3.4.2 can no new plans be constructed.

In consequence will any P ∈ PMi
either change just in c1 or be removed from the set,

however no new plans can be added.

Please note that if a manipulation action has been performed after the elements

where added to the list, free-space was altered, causing that new plans could poten-

tially be constructed. The elements in minCost are not guaranteed to be underesti-

mates anymore.

Lemma 7 justifies the use of the list minCost if no manipulation actions have been

performed since the cost values in minCost are lower bounds. Upon execution of a

manipulation action the entire list is invalidated and therefore each element in the

list fulfills the requirements of lemma 7 at each time t.

The euclidean distance will always be an underestimation of the actual cost since

free space is assumed everywhere. Therefore the list euclidianCost does not have to
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be invalidated. This allows the usage of the list euclidianCost to efficiently recover

a valid minCost list without having to evaluate each obstacle. This justifies the

optimization step 4.3.3.

It has been shown that none of the optimization steps are affecting the optimality

criterion defined in 5. The optimized algorithm is therefore optimal.
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CHAPTER VI

OPENING DETECTION

The optimization step described in chapter 4.3.2 (a) requires that openings can be

detected for the evaluation of manipulation sequences on an obstacle Mi. This chapter

will first provide a general discussion about the opening detection process before

explaining the opening detection algorithm developed for this work.

6.1 Discussion

Definition 2 was given in accordance to the set P (t) and as such in relation to the

goal. Every opening detection algorithm used in combinations with the techniques

discussed in chapter 4.3.2 has to detect openings according to definition 2.

However, if an opening detection algorithm is returning false positives then this

will only lead to additional computations by the algorithm proposed in this work.

Optimality will not be affected by false positives. If an opening detection algorithm

causes false negatives, on the other hand, optimality could be affected.

Due to the assumptions made in chapter 3.4 the map can only be altered through

the robot, and obstacle interactions are restricted. Consequently openings can only

occur in relation to the currently manipulated obstacle. An algorithm that is observ-

ing the space adjacent to the currently manipulated obstacle is therefore sufficient

in finding the true positives while introducing the risk of false positives which is not

affecting optimality.

The algorithm developed for this work follows this approach.
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6.2 Algorithm

In the following the algorithm developed in this work for the opening detection will

be discussed.

6.2.1 Approach

The core idea of the proposed opening detection algorithm is to track areas that

prevent the robot from passing the currently manipulated obstacle over different

manipulations.

This is done by extending the objects boundaries of the currently manipulated

obstacle Mi by the robots dimensions. Let this new representation of the object

Mi be denoted as M ′
i . Intersections of M ′

i with any other obstacles known to the

robots are than determined. If such an intersection exists, the intersecting area is

tracked over different manipulations. If such an area disappears, the detection of a

new opening is declared. As discussed above may this cause false positives according

to definition 2, however it will ensure that the manipulation actions causing a new

opening as defined by definition 2 will be found. Fig. 15 shows this idea.

6.2.2 Implementation

The following algorithm allows for opening detection on arbitrary shaped obstacles

and manipulation directions based on the discussions above. The example shown in

Fig. 8 will be used to demonstrate each step of the implementation.

To represent the intersections for the extended obstacle M ′
i , the algorithm draws

the bounding box around M ′
i . The cells contained within the bounding box are

represented by a matrix F .

If a grid cell is occupied by an object and M ′
i and an object Mj, i 6= j, the

corresponding entry in F is assigned a number unequal zero, otherwise zero. If a

number unequal zero has to be assigned, the number is assigned based upon a 3× 3

neighborhood of the currently to set entry in F . If a number has already been assigned
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(a) Original configura-
tion

(b) Blue: M ′
1, red: intersect-

ing areas
(c) Areas that will be tracked

(d) Configuration after manip-
ulation

(e) Areas successfully tracked, no new opening.

Figure 7: Example of opening detection

within this neighborhood, the same number is assigned. In case no number has been

assigned yet, a number not used in F so far is assigned. For the example in Fig. 8(a)

the following matrix is obtained:

F =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0

0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0


The same procedure is performed for the world configuration after the simulated

obstacle manipulation. Let E denote the matrix obtained based on the new world

configuration. For the example in Fig. 8(b) the following matrix is obtained:
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(a) Original configuration, leading to matrix F (b) Configuration after manipulation leading to
matrix E

Figure 8: Example setup. The robot is moving the couch to the right and checks for
new openings. Gray: the extended object.

E =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0


The detection of openings is now performed through the following steps:

• the entries in the matrix E are shifted back according to the negative manipu-

lation direction, producing E ′. For the example this yields:

E ′ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0


• F and E ′ are now compared:
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– if an entry Fxy and E ′xy is non-zero for both matrices, all entries in F

having the same number as Fxy are set to 0. Let Fr denote the resulting

matrix. For the example in Fig. 8 the following Fr is obtained:

Fr =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


• if Fr equals the zero-matrix after this operation no new opening were detected.

If F does not equal the zero matrix one intersecting area could not be found

anymore and the possibility of an opening is returned. Since the matrix Fr

obtained for example Fig. 8 is not equal to the zero-matrix is an opening

detected.

In order to save computation time is M ′
i saved for future use. However, if new

information about Mi becomes available that changes the shape or dimensions of Mi

is M ′
i invalidated and recomputed if Mi is evaluated again.
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CHAPTER VII

NAVIGATION PLANNING

In this chapter D∗ Lite will first briefly be explained. Than, the typical the navi-

gation planning performed by the proposed algorithms will be analyzed. They will

be grouped into three different groups. It will than be explained how D∗ Lite can

be used to enhance the navigation planning of two out of these three groups. This

chapter will be concluded with a discussion on the heuristics used for the planners in

this work.

7.1 D* Lite

D∗ Lite [9] is an incremental heuristic search method for incompletely known envi-

ronments. It builds upon the Lifelong Planning A∗ [11] algorithm.

D∗ Lite plans from the goal vertex to the start vertex. It maintains two different

estimates on this distance. The first, denotes as g, being the estimate of the goal

distance, similar to the g value used in the A∗ algorithm just in reference to the

goal vertex. The second denoted as rhs value (right-hand side value [20]). The rhs

value is based on the vertexes predecessors. It is the minimum of the the g values

of any of its predecessors and the the edge cost between this predecessor and the

vertex. A vertex is called locally consistent if its g value is equal to its rhs value. If

all vertices are locally consistent the g values equal the actual goal distance and one

can determine a shortest path. However, not all nodes have to be locally consistent.

Rather is a heuristic used to guide the nodes that have to be made locally consistent.

The heuristic used for D∗ Lite has to be nonnegative and backward consistent. A

priority queue is maintained with the locally inconsistent vertices. The queue is sorted

according to a key with two values. The first value is the smaller of its g and rhs value
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plus the heuristic value. The second is just the minimum of the g and rhs value. The

keys are used in lexicographical order. D∗ Lite expands nodes in the priority queue

until the start vertex is locally consistent. Expanding a node sets the nodes g value

equal to the rhs value if the g value is larger than the rhs value and as such making

the node locally consistent or sets the g value to be infinity. The node will than be

made locally consistent upon the next expansion. If edge costs change, it updates the

affected vertices rhs value and their position the priority queue and a new path is

calculated. Similar, if the robot moves are the entries in the priority queue updated,

however this step can be saved with small modifications on the algorithm. See [9] for

more details.

7.2 Typical Navigation Planner calls

The NAMO in Unknown Environments domain as described in this work has three

typical calls to a navigation planner:

1. from the robots current configuration to the goal configuration,

2. from the robots current configuration to an object manipulation configuration,

3. from the robots configuration after the manipulation of an object to the goal

configuration.

The first case is the case most typical for robot navigation. The goal configuration

is fixed and the robot has to perform navigation actions from its current configuration

until the goal configuration is reached.

The second case is more unique to the NAMO domain and manipulation planning.

The navigation goal is not the global goal but rather a goal that is decided online by

the robot.

The third case is similar to the first case in the sense that the navigation goal

is the global goal, however the start configuration is not equal to the robots current
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position.

7.3 Taking use of D∗ Lite

Until now A∗ was assumed as the navigation planner. However, A∗ has the property

that each call to it is independent of the previous once. Given the frequency navigation

plans are constructed in this work this property can result in a bottleneck.

7.3.1 Navigation to goal configuration

The first case described in the previous section is very suited for D* Lite, since the goal

configuration is not changing. However, in NAMO the robot does not always traverse

this path, e.g. it navigates to a manipulation configuration. D* Lite has therefor

been modified for this domain. The search tree updating has been implemented to be

independent of the path calculation. As such D* Lite receives environment updates

and the priority queue is updated accordingly, however no new path is computed until

explicitly requested by the algorithms described in Chapter 4.

7.3.2 Navigation to manipulation configuration

The case of navigating to a manipulation configuration, if treated in a nutshell, is

very similar to the first case in that the robot needs a path to a configuration, and

this path might have to be construced multiple times during the execution of the

algorithm. A similar concept as for the first case is therefore applied. The robot

maintains a D* Lite search tree to the manipulation configurations for each object.

The priority queues are again updated but no new path is computed. However, in

contrast to the first case, the desired goal configuration can change. This can occur if

more of the obstacle becomes visible to the robot. If this is the case, the root of the

D* Lite search tree has to change. This has been shown to be a bottleneck of D∗ Lite

[9]. To avoid this bottleneck, the entire D* Lite searchtree is invalidated and lazily

recovered when an actual path is needed. It would also be possible to use Moving
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Target D* Lite [27] here; however it seems the additional overhead is not justifiable

here given that the manipulation configuration typically just changes when the robot

is close to the object and as such a typically small search tree.

The computational overhead for maintaining the D∗ Lites for each possible ma-

nipulation configuration for each object is minimal. This is because upon environ-

ment updated each D∗ simply receives the environment updates and just changes

the affected nodes rhs values and updates the nodes position in the priority queue.

However the actual computation of a path and as such iteration over the updated

queue is delayed until an actual path is needed. Nevertheless, if desired the minCost

and euclidianCost lists can be used to limit the D∗ Lites. For example only the first

couple objects that are referenced in this list could have a D∗ Lite search tree while

the remaining do not have a maintained D∗ Lite search tree.

7.3.3 Navigation to goal configuration after obstacle manipulation

The case of planning a navigation path to the goal configuration after planning the

manipulation of an object is different than the previously two cases.

In contrast to the other two cases is it necessary to plan the navigation actions in

the process of evaluating manipulation actions. It therefore occurs during the internal

simulated manipulation of an obstacle. Consequently the navigation planner has to

work on a grid world that is not equivalent to the grid representation of the actual

world but differs according to the manipulation. Updates to a D∗ Lite search tree are

therefore updates that are not reflected by actual world updated. Once the obstacle

evaluation has terminated, all the updates to the search tree would therefore have to

be reverted. In addition would each manipulation action sequence that is evaluated

require its own search tree, which would result in an immense amount of copying

operations. These facts make it difficult to apply D∗ Lite for this case.

Besides the limitations on the usability of D∗ Lite for this case it does not usually
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present a bottleneck during the actual execution of the algorithm. This is because the

navigation planning done for this case typically occurs through the most free space.

The free space assumption is combination with the fact that this case only occurs

when an opening around the obstacle has been detected lead to this behavior.

Given the difficulty of using D∗ or any other incremental search algorithm and

the circumstances for the third case, it seems justifiable to rely on A* for the third

case.

7.4 Heuristic

Now the heuristic is explained. In the previous chapters the heuristic was stated to

be the euclidian distance to the goal configuration. This is an admissable heuristic

and can directly be used in all of the algorithms described above mostly independent

of the world representation.

The heuristic can however be modeled to take the actual world representation

into account. In this work the world was represented as an 8-connected grid, further

was assumed that a diagonal navigation action has
√

2 times the cost of an axis

aligned navigation action, again denoted as CN . The above algorithms were therefore

implemented using a heuristic that takes this representation into account.

The heuristic is calculated based on the amount of steps a robot has to take in

the grid to reach the goal. The following formula was used for a node s and the goal

g given the fact that one diagonal navigation action saves two straight navigation

actions:

h(s, g) =
√

2CNdS + CN(m− 2dS) (23)

with

dS = min(|sx − gx|, |sy − gy|) (24)
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m = |sx − gx|+ |sy − gy| (25)

dS therefore represents the possible diagonal navigation actions and m the man-

hattan distance.

If assigning a different cost for diagonal navigation actions inequality (22) has to

be changed accordingly. May CN be the cost of an axis aligned navigation action and

CNd the cost for a diagonal navigation action than:

CM > max(CN , CNd) ≥ 0 (26)

has to hold.
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CHAPTER VIII

EXPERIMENTS

In order to validate the effectiveness of the proposed algorithm and each optimization

step, a series of experiments were conducted.

This chapter will first evaluate the difference between the baseline and the opti-

mized algorithm before analyzing each of the optimization steps independently. All

the experiments where performed on a machine equipped with an Intel Core 2 Duo

(2.93GHz) processor and 2GBs of RAM. If runtime is discussed, the values refer to

the time between the moment the simulation was started until the robot reaches the

goal. This includes actual movements of the robot. Obstacle evaluations refers to the

amount of times the search for a poptMi
was triggered.

8.1 Algorithm comparison

The algorithms were compared on maps of different sizes and complexity However,

basically searching the entire search space as the baseline algorithm does, becomes

unfeasible for even small maps, for example the map shown in Fig. 9. The robot

first tries to circumvent the vertical couch before detecting the second horizontal

couch. The robot online decides to move the horizontal couch to the right in order

to be able to walk between the couches. Using the baseline algorithm it takes the

robot more than 2 hours to reach the goal in this map. During the execution the

navigation planner is called over 72,000 times and the vertical and horizontal couches

was evaluated 46 and 43 times respectively. The optimized algorithm reduces the

time it takes the robot to reach the goal (again, including the actual movement) to

just 18 seconds while only calling the navigation planner 102 times. The vertical

couch was evaluated only 4 times while the horizontal couch was evaluated 32 times.
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Please notice that multiple calls are necessary since the robot detects its environment

step by step. Further, the goals and objects are very close together, which does not

allow for a very clear decision if the object should be manipulated and the robot has

to re-evaluate quite frequently since possible manipulation actions cannot be rejected

before hand based on estimates.

Figure 9: Realistic setup with two couches

However, as the map size increases and the number of obstacles increases, the

differences become even more distinct. This is because the explored portion of the

search space does not necessarily increase for the optimized algorithm for a bigger

map due to the fact that many obstacles and actions are never evaluated. This is

not true for the baseline algorithm. The entire search space has to be searched, and

as such bigger maps necessarily increase the search space. Fig. 1 shows an example

of a bigger map. The baseline algorithm was run on a map very similar to Fig. 1.

The optimized algorithm caused the robot to reach the goal within 50.2 seconds and

only 112 navigation planner calls. The baseline algorithm took for the same map 5

weeks, 2 days and 6 hours with more than 1,413,700 navigation planner calls. The

optimized algorithm triggered 66 obstacle evaluations while the baseline algorithm

triggered 2348. The average savings for 5 maps of different sizes, ranging from maps

similar to Fig. 9 to Fig. 1, can be seen in table 1.

The baseline algorithm proves to not be practically for realistic scenarios.
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Table 1: Average savings for the optimized vs baseline algorithm
Average savings

Runtime 99.84%
Obstacle Evaluations 88.70%
Navigation Planner Calls 99.98%

Figure 10: Complex setup. Blue obstacles are movable while gray obstacles are static

8.2 Optimization Steps

Each optimization step is now evaluated separately. However, this was done by turn-

ing one optimization step off while still relying on the remaining optimization steps

since the runtime would have been to high otherwise. The following results therefore

have to be interpreted as ’how much and when the optimization step adds additional

savings’ to the algorithm. Evaluation for each step was performed on 50 randomly

generated maps ranging in complexity from configurations similar to Fig. 9 up to

maps with more than 70 obstacles. The graphs are interpolated and bezier smoothed

to allow a clearer observation of the tendencies.
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Figure 11: savings by using minCost and euclidianCost compared to the optimized
algorithm without the lists

8.2.1 Reduce candidate objects

The optimization step using the minCost and euclidianCost lists heavily depends

on the map configuration. For maps with sparse obstacle placements almost all the

obstacle evaluations can be eliminated, however if many obstacles are close together

all with similar estimated cost it might not be possible to eliminate them as candidates

that could yield a plan with smaller cost. This was tried to be captured in the ratio

of move actions to manipulation actions the robot has to perform to reach the goal.

Due to the observation that a path mainly consisting of move actions mostly appear

on maps where obstacles are sparsely placed or easily circumventable. Fig. 11 shows

the results. A clear tendency can be observed that for maps with a high move to

manipulation action ratio the savings increase as expected.

Table 2 shows the average savings over all maps compared to the optimized algo-

rithm without the lists.
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Table 2: Average savings for the use of minCost and euclidianCost
Average savings

Runtime 78.08%
Obstacle Evaluations 81.68%
A∗ Calls 70.65%

8.2.2 Limited Navigation Planner calls

In the following the modifications to the obstacle evaluation procedure are evaluated.

First the usefulness of the upper bound is evaluated and later the opening detection.

8.2.2.1 Upper bound

The savings compared to the baseline algorithm mainly depend on the map size.

Fig. 12 therefore shows the averaged additional savings dependent on the map size,

opening detection was still used for this graph.
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Figure 12: Additional savings if the upper bound is used in the optimized algorithm
compared to the baseline algorithm.

It can be observed that the upper bound has a significant impact for bigger maps.

Please notice that this optimization step does not alter the number of obstacle evalu-

ation calls. In addition, it can be observed that the runtime savings increase besides
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the fact that the navigation planner call savings remain almost constant. This is

mainly caused by the optimization step that only navigation plans are constructed if

openings in the map occur, as described above. A larger map size does therefore not

necessarily indicate more navigation planner calls, but rather is this quantity mainly

influenced by the actual map setup. However, if the upper bound is not used, all pos-

sible manipulations have to be constructed, yielding a very high runtime difference.

8.2.2.2 Opening detection

Fig. 13 shows again the savings vs the ratio of move and manipulation actions. It

can be observed that for maps with a high move to manipulation ratio the savings

decrease. This is because of the affect discussed in the optimization step of reduced

candidate objects. As can be seen in Fig. 11 the amount of evaluated obstacle almost

goes to zero (savings approach 100%) and as such most of the navigation planner

calls are not caused by obstacle evaluations anymore. They are rather just caused by

the initialization of upper bound, constructing a pure navigation plan, and the lists

than prevent an actual obstacle evaluation and the effect of this optimization step.

Further, the runtime savings are not quite as high as the savings for the navigation

planner calls, this is because of the computational overhead of detecting the openings.

This optimization step does not affect the number of obstacle evaluations. The

average savings are again summarized in table 3.

Table 3: Average savings for opening detection
Average savings

Runtime 53.59%
Obstacle Evaluations 0%
A∗ Calls 54.24%

8.2.3 Recalculation triggering

A similar graph as used for the evaluation of the previous two optimization steps

can be seen in Fig. 14 and the average results are listed in table 4. It is especially
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Figure 13: savings if opening detection is used

interesting to see that the average savings are the lowest for this optimization step

in comparison to the other optimization steps. This is mainly caused by the fact

that even if calculation is triggered upon any update of environment information, the

other optimization steps, especially the usage of minCost ensures that the necessary

calculations are very limited.

The runtime drop in Fig. 14 is mainly caused by simulator specific calculations

that occur for bigger maps (e.g rendering, grid calculations etc). Bigger maps that

had to be used to increase the ratio. The drop is not visible in the previous graphs

because most of the computation was caused by the planning. Here, in contrast,

planning is almost entirely eliminated by the remaining optimization steps causing

the simulator specific calculations to become dominate.

Table 4: Average savings if calculation is only triggered once the current plan is
intersected.

Average savings
Runtime 43.62%
Obstacle Evaluations 53.38%
A∗ Calls 63.18%
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Figure 14: savings if the calculation of a plan is only triggered if the the currently
optimal plan is intersected

8.3 Examples

Fig. 15(a) shows an example setup with more than 30 obstacles. The goal is not

reachable without manipulation. At the beginning of the execution the robot only

knowns the position of the goal but has no information about the objects. Fig 15(b)

shows the robot during the execution. Colored objects represents objects or partial

objects known to the robot. The obstacles in light blue and gray are not known to the

robot yet. The robots sensor range is visualized through a red circle around the robot.

The robots plan it has been chosen for execution is visualized. Navigation actions are

shown in red. One can see that the robot plans navigation actions through obstacles

that he has not yet encountered due to the free space assumption. Further has the

robot in Fig. 15(b) already moved the couch right above it since it has detected that

it can not reach the goal otherwise.

Fig. 15(c) shows the robots executed actions mapped into the original map con-

figuration. Again, navigation actions are shown in red, additionally are manipulation

actions shown in orange. One can see that the robot has manipulated three objects
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before reaching the goal.

During the execution of this map using the optimized algorithm the navigation

planner was called 203 times and obstacles were evaluated 75 times for possible ma-

nipulations. The robot reached the goal within 63 seconds. The baseline algorithm

was not capable of solving this map besides a runtime of multiple days.

8.3.1 Multiple obstacle evaluations

In addition to the previous discussed reasons for multiple obstacle evaluations (ob-

stacles close to the goal, yielding almost a tie in cost values) can the repeated calls

be caused by problem inherit to unknown environments while requiring optimality. If

the robot plans to manipulate an obstacle it has to navigate towards the manipula-

tion configuration. Further, as discussed above does the robot plan to manipulate an

object in order to create a new opening in the map. An optimal plan usually yields a

navigation actions that passes right next to the obstacle after the opening has been

created. Now, if the robot actually has not encountered the full object yet, it will

detect more parts of the obstacle. In this situation the newly detected object infor-

mation will in most cases intersect with the current plan, triggering recalculation.

These recalculations in turn are causing obstacle evaluations to be executed on the

obstacle on which a manipulation was planed in the previous plan because it is very

likely that it could still yield a lower cost plan to the goal. Fig. 16 shows a typical

example of multiple obstacle evaluations.

A similar, if the robot detects more of the obstacle it is also very likely that the

manipulation action is changing based on the requirement that the obstacle hast to be

grasped at the center of one of the axis aligned sides of the obstacle. This again will

almost certainly trigger obstacle evaluations on at least the object that was previously

planned to be manipulated.

These cases are difficult to avoid. One could stall re-planning while the robot
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is navigating towards a manipulation configuration if newly detected information is

not interfering with navigation plan towards the navigation configuration. However,

optimality could than obviously not be guaranteed anymore.
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(a) Original map configuration.

(b) The robots knowledge of the world. Colored ob-
jects are known while grayed objects are unknown.
Red circle around the robot visualizes its sensor range.

(c) Executed steps mapped into the original setup.

Figure 15: Example with more than 30 objects.
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Figure 16: Multiple obstacle evaluation caused by incomplete knowledge of the object
that is to manipulate.
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CHAPTER IX

CHALLENGES

This chapter will detail on challenges inherent to the the domain of Navigation Among

Movable Obstacles in Unknown Environments as well as challenges introduces by the

restrictions made in this work.

9.1 Inherent Challenges

The domain of NAMO with incomplete information has unsolvable problems. If

the robot is given only partial information, the robot cannot avoid all the negative

effects resulted from reconfigurations. The robot makes its decisions based on the

assumption that unknown space is free space. This assumption can cause the robot

to reconfigure its environment in such a way that it actually hardens the global

problem. Local solutions will not always solve the global problem.

Secondly, the presented planner is limited to at most manipulating one obstacle for

every plan. If this limitation would not be given the robot would have the capability of

potentially reversing previous manipulations that potentially block necessary further

manipulations after detecting more objects.

9.2 Example

The scenario in Fig. 17(a) demonstrates an example where local information prevents

the robot from finding a global solution. Since the robot only has partial knowledge

about the world it will first just detect the brown couch as a blocking obstacle (Fig.

17(b)). Based upon this information the couch can be moved up. Unfortunately, if

the couch is moved up the goal can not be reached anymore, as seen in Fig. 17(d).

If the the robot would have moved the brown couch down it would have avoided
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to block itself and the goal could be reached, see Fig. 17(c). This fact can not be

discovered by the robot due to the partial knowledge of its environment. This is an

inherit problem introduced by the partial knowledge.

In same scenario also demonstrates the limitations introduces by the restriction a

plan to manipulate at most one object. The presented planner is limited to at most

manipulating one obstacle for every plan. If this limitation would not be given the

robot could, after moving the brown couch up and detecting the green couch move

the brown couch down and than move the green couch back and as such find the

solution in Fig. 17(d) for a plan involving two obstacle manipulations.

In addition, ff the robot would detect both objects at the same time the pro-

posed planner would fail since no single object manipulation can yield a path to the

goal given the current world knowledge. This example shows two restrictions of the

domain.

In summary, the presented approach faces two major challenges. First, given

the premise that partial information is complete, the best solution for the currently

known environment does not necessarily solve the global problem. Reconfigurations

can even block the solution. Second, the limitations to single object manipulations

can result in unsolvable cases.
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(a) Map configuration

(b) Partial knowledge

(c) If the brown couch was moved down, the goal can
be reached.

(d) If the brown couch was moved up, the goal is
blocked

Figure 17: Example of the limitations of NAMO in Unknown Environments.
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CHAPTER X

FUTURE WORK

This chapter will give an outline of how the domain of Navigation Among Movable

Obstacles in Unknown Environments could be extended to allow multiple object ma-

nipulations within a plan. Further will practical aspects be addressed that have to

be handled to transfer the proposed planer to a physical robot.

10.1 Multiple Objects

The algorithms introduced in this work are capable of handling arbitrary displace-

ments and obstacles of arbitrary shape. However each plan P is restricted to have

at most one consecutive sequence of manipulation actions on one obstacle. While

the fact that obstacles are detected over time - yielding that multiple plans might be

partially executed - allows the robot to practically manipulate multiple objects before

reaching the goal, this restriction is limiting as was shown in chapter 9.

Further work in the domain of NAMO in Unknown Environments should therefore

drop this restriction.

The search space reduction techniques presented in this work could potentially

be used to extend the domain to multiple object manipulations. One such approach

could be to formulate the entire NAMO in Unknown Environments problem has a

heuristic search. For example, could the movable objects as well as the goal are

represented as the nodes in a search tree. The edges, connecting the nodes, represent

the possibility to navigate from one object to the next. The expansion of a node is now

done through the techniques described in this work. To expand a node, all the possible

manipulation actions on the obstacle are evaluated up to an upper bound and the

openings are detected. For each opening the navigation cost to all the other objects
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are computed. The cheapest combined cost of manipulating costs and navigation

costs to an object represent the edge cost to the node representing the next object.

To guide this search a list similar to the here introduced minCost lists could be used.

Once the goal is chosen for expansion the algorithm terminates.

This approach would require a fast navigation planner, potentially reusing as many

information from previous search as possible. Techniques would have to be developed

to explicitly take use of the fact that the search space is incrementally increasing over

the runtime and very manageable at the beginning of the execution.

10.2 Uncertainty

This work is investigating the domain of Navigation Among Movable Obstacles in

Unknown Environments. The robot does not have any initial knowledge about the

world and just gains knowledge incrementally as more of the world become accessible

by his sensors. However, once information is perceived by the sensors it is taken

to be correct. The new information is incorporated in the internal map which is

also taken to be correct for all the parts that have been observed yet. The robot

therefore assumes his current map to be correct at all times. Any real sensor system

however will not be able to always and only return correct information. This should

be accounted for. Further is always assumed in this work that the grasping of an

obstacle and its manipulation will succeed. Again, in real systems this is not given.

Further work should therefore try to extend the domain of Navigation Among

Movable Obstacles in Unknown Environments to the domain of Navigation Among

Movable Obstacles in uncertain environments. This domain should account for the

uncertainty introduced by a real robot system. Taking the uncertainty of the sensor

system into account will lead to different decisions by the robot. The robot can now

in addition take its certainty into account. For example may it be better to avoid

certain obstacles if the uncertainty about such these obstacles is exceeding a threshold
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and a successful manipulations seems unlikely. In addition could the robot decide to

perform actions with the premises to gain more information about an obstacle prior to

making a decision about manipulating it. The Partially Observable Markov Decision

Processes (POMDP) [1] could potentially be modified to be used for this domain.

10.3 Free space

The robot in this work assumes free space for unknown space. This yields two prob-

lems. As described in chapter 8.3, multiple obstacle evaluations are caused by the

robot detecting more of an object while navigating towards the object in order to

manipulate it. The impact of this could be reduced by making assumptions about

the remaining parts of the object, even though they have not been within the sensors

range yet. The robot could than plan more efficiently.

Secondly the robots knowledge about the observed parts of the world could be used

to make assumptions about the unobserved space. The robot can then adopt its cost

functions depending on the environment. For example if the robot has observed that

it is in an environment that does not seem very cluttered, it might bias its decision of

manipulating an object towards circumventing it because it is seems unlikely that a

detour would encounter many more objects. On the other hand, if the robot seems to

be in a very cluttered environment it may try to shorten its path as much as possible

because it seems likely to encounter objects very frequently.
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CHAPTER XI

CONCLUSION

This work has introduced the first practical and optimal planner for the domain of

Navigation Among Movable Obstacles in Unknown Environments. The planner is

capable of working with objects of arbitrary shape and can handle arbitrary displace-

ments.

The basline algorithm was introduced. The baseline algorithm is a näıve algorithm

that allowed for optimal decision making in the domain. The baseline algorithm com-

putes upon any new environment information all possible plans with the exceptions

of plans that only differ in the navigation actions. The final plan is chosen to be the

plan with the minimum cost as defined through a cost function. It was shown that

optimality can be guaranteed for this planner. However, the planner proved to not be

practical even for moderately sized environments with a runtime of multiple weeks.

Consequently the optimized algorithm was introduced. The optimized algorithm

still guarantees optimality while drastically reducing the search space. The optimized

algorithm introduced three major differences to the baseline algorithm.

First re-planning is only performed if the newly detected environment information

is intercepting the current plan.

Secondly the algorithm determines an upper bound on obstacle evaluations. The

upper bound is set to be the value of the currently known minimum cost plan and is

checked against a final cost estimate of a plan. Further are only such plans considered

that are creating an opening in the map.

Finally, two lists are maintained that represent underestimates of plans having a

non-zero sequence of manipulation actions on an obstacle referenced in the lists. The
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list minCost represents tighter bounds than the list euclidanCost as the list includes

partial costs actually calculated. The euclidanCost list only saves a distance estimate

to the goal while assuming free-space. Due to the fact that free space can be created

in the domain of Navigation Among Movable Obstacles and as such alter elements

in the minCost list is the list invalidated when manipulation actions are performed.

The euclidianCost is used to lazily recover the minCost list.

This work also introduced concepts for the navigation planning typically occurring

in this domain. A combination of different D∗ Lite trees was used to ensure that

information from previous searches are being reused.

The detection of openings, as necessary for the optimized algorithm, was discussed.

An algorithm was presented that efficiently performs this opening detection based on

matrices representing the areas that prevent the robot from passing by the currently

manipulated object.

The baseline algorithm was compared against the optimized algorithm showing

saving in runtime of more than 99.8% for environments were the baseline algorithm

was still applicable. Each of the optimization steps introduced in this work were than

evaluated independently. It was shown that each of the optimization steps has its

strength in different areas. The step reducing the re-planning triggering was shown

to be the least effective if the remaining optimization steps are still being used. This

is because the remaining optimization steps ensure that re-planning will terminate

quickly if the new environment information is not affecting the current plan.

Challenges of the domain itself as well as limitations of the proposed algorithms

were discussed. It was shown that given only local information, a goal solution can not

always be found. Limitation of the algorithm to only manipulate one object within

one plan was shown to yield cases that are not solvable. During the entire execution

however the robot may manipulate multiple objects before reaching the goal.
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Future work was presented for not just extending this domain but also incorpo-

rating the uncertainty introduced by physical systems.
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[15] Ng, J. and Bräunl, T., “Performance comparison of bug navigation algo-

rithms,” J. Intell. Robotics Syst., vol. 50, no. 1, pp. 73–84, 2007.

[16] Nieuwenhuisen, D., van der Stappen, A., and Overmars, M., “An effec-

tive framework for path planning amidst movable obstacles,” Algorithmic Foun-

dation of Robotics VII, pp. 87–102, 2008.

76



[17] Okada, K., Haneda, A., Nakai, H., Inaba, M., and Inoue, H., “Environ-

ment manipulation planner for humanoid robots using task graph that generates

action sequence,” in In: Proceedings of 2004 International Conference on Intel-

ligent Robots and Systems, pp. 1174–1179, 2004.

[18] Pirjanian, P., “Behavior coordination mechanisms – state-of-the-art,” 1999.

[19] Pirjanian, P., “The notion of optimality in behavior-based robotics,” 1999.

[20] Ramalingam, G. and Reps, T., “An incremental algorithm for a generaliza-

tion of the shortest-path problem,” in J. Algorithms, vol. 21, pp. 267–305, 1996.

[21] Stentz, A., “Optimal and efficient path planning for partially-known environ-

ments,” in In Proceedings of the IEEE International Conference on Robotics and

Automation, pp. 3310–3317, 1994.

[22] Stentz, A., “The focussed d* algorithm for real-time replanning,” in In

Proceedings of the International Joint Conference on Artificial Intelligence,

pp. 1652–1659, 1995.

[23] Stilman, M. and Kuffner, J., “Navigation among movable obstacles: Real-

time reasoning in complex environments,” in Proceedings of the 2004 IEEE In-

ternational Conference on Humanoid Robotics (Humanoids’04), vol. 1, pp. 322

– 341, December 2004.

[24] Stilman, M. and Kuffner, J., “Planning among movable obstacles with ar-

tificial constraints,” in WAFR, pp. 119–135, 2006.

[25] Stilman, M., Nishiwaki, K., Kagami, S., and Kuffner, J., “Planning and

executing navigation among movable obstacles,” in IEEE/RSJ Int. Conf. On

Intelligent Robots and Systems (IROS 06), pp. 820 – 826, October 2006.

77



[26] Sun, X., Koenig, S., and Yeoh, W., “Generalized adaptive a*,” in Proceedings

of the 7th international joint conference on Autonomous agents and multiagent

systems - Volume 1, AAMAS ’08, (Richland, SC), pp. 469–476, International

Foundation for Autonomous Agents and Multiagent Systems, 2008.

[27] Sun, X., Yeoh, W., and Koenig, S., “Moving target d* lite,” in Proceed-

ings of the 9th International Conference on Autonomous Agents and Multiagent

Systems: volume 1 - Volume 1, AAMAS ’10, (Richland, SC), pp. 67–74, Inter-

national Foundation for Autonomous Agents and Multiagent Systems, 2010.

[28] Van Den Berg, J., Stilman, M., Kuffner, J., Lin, M., and Manocha,

D., “Path planning among movable obstacles: a probabilistically complete

approach,” Workshop on Algorithmic Foundation of Robotics (WAFR VIII),

pp. 599–614, 2008.

[29] Wilfong, G., “Motion planning in the presence of movable obstacles,” in SCG

’88: Proceedings of the fourth annual symposium on Computational geometry,

(New York, NY, USA), pp. 279–288, ACM, 1988.

78


