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ABSTRACT 

This paper presents a new systematic algorithm to symbolically derive 

the full nonlinear dynamic equations of motion of multi-link flexible 

manipulators. Lagrange's-assumed modes method is the basis of the new 

algorithm and adapted in a way suitable for symbolic manipulation by 

digital computers. The advantages of obtaining dynamic equations in 

symbolic form and of the presented algorithm are discussed. Application 

of the algorithm to a two-link flexible arm example via a commercially 

available symbolic manipulation program is presented. Simulation re

sults are given and discussed. 
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I. Introducti on 

Dynamics of a typical industrial manipulator, with six degrees of free

dom, is governed by coupled highly nonlinear ordinary differential equa

tions. These equations present a very complicated problem in control 
-

system design,~mainly because the knowledge in nonlinear control system 

theory is very limited. Traditionally independent servo controllers 

are designed based on the assumption that nonlinear coupling terms are 

negligible. However, this assumption is reasonable and the control 

system performance may be satisfactory only if the speed of manipulator 

is "relatively slow". Increasing demand for higher industrial produc

tivity requires.manipulators that move faster and more accurately. As a 

result, the speed of manipulators must increase and the independent 

linear servo controllers, designed based on the slow motion dynamics, 

will perform unsatisfactorily. 

In recent years there has been considerable progress in the adaptive 

control of robotic manipulators. Computed torque based methods are 

aimed at better performance by designing controllers based on more accu-

rate models. Ultimately the performance and the capabilities of a 

system, i.e. maximum speeds etc., are limited by the initial design of 

the overall system. A control system at best can utilize these capa

bilities in an optimum manner~ In other words no control law can make 

the system move at speed which can not be afforded by the existing actu

ators. Apparently one way of designing manipulators that can move fast-

er is to increase the actuator sizes. However, since actuators themsel

ves are carried by the other actuators, increasing size also increases 

the effective inertia resulting in a very massive structure. Thus this 

approach can be quickly self defeating and is not the ultimate answer. 
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The next option is to design light weight systems. Lightweight systems 

could have the following advantages: higher speed of operation, less 

overall cost, less energy consumption, smaller actuator sizes, higher 

productivity. The drawback of such systems is the structural flexibili

ty which deteriorates the accuracy and repeatability. Rigid body 

dynami c ana lysis wi 11 no longer be accurate and controllers based on 

this will not perform satisfactorily. Flexibility has to be included in 
." 

the analysis. 

Background: 

Modeling and control of a single link flexible arm [Fig.l] has been 

i~stigated by many authors [1,2,3,4]. The system is essentiaily 

modeled as Bernoulli-Euler beam and vibration coordinates are approxi

mated by a finite number of assumed mode shapes. This allows the appli

cation of the whole finite dimensional linear control theory to the 

problem. 

The multi-link flexible manipulator [Fig.2, and 3] modeling and control 

problem has not been researched as much as single -link case. First of 

all, the modeling problem is not a trivial one. Due to coupling between 

links, large configuration changes, and high speeds, the system can no 

longer be accurately represented by simple beam equations. An accurate 

dynamic model of a light weight arm involves highly complicated alge

braic manipulations and can become impossible to deal with by hand. 

Moreover, the possiblity of making errors along the way is very high. 

Making some changes in an existing model also requires long algebraic 

manipulations. There are two basic methods used in the modeling: 1. 

Lagrange's-Finite Element based methods, 2. Lagrange's- assumed mode 
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based methods. The end result of these methods are essentially the 

same. Many of the finite element based works on the analysis of closed 

chain mechanisms can be applied to the dynamic modeling of multi-link 

flexible arms [5,6]. 

In [7,8] the nominal joint variable time histories are assumed to be 

known and the small vibration dynamic model of the manipulators and 
,,:' 

mechanisms about nominal motions are developed. In [9] this assumption 

is removed and full dynamic model is derived. The main advantages of 

this method are: a) very systematic, b) Can be applied to complex' 

shaped systems, applicable to a very wide class of problems. The disad

vatages are: a) requires a substantial amount of software organization, 

b) results in constrained model, c) does not give much insight to the 

dynamic structure of the system. Static deflection modes are included 

in the modes to improve the accuracy of models with limited number of 

mode shapes [6]. Usuro et.al. investigated the performance of LQR with 

prescribed degree of stability on a two-link planar arm by digital simu

lations [10]. 

The Lagrangian - assumed modes method is used in the modeling of a two

link robotic manipulator in [11]. Distributed frequency domain analysis 

of non-planar manipulators using transfer-matrices has been developed in 

[12]. A recursive method using homogeneous transformation matrices to 

generate full coupled nonlinear dynamics of multi-link flexible manipu

lators is presented in [13]. 

It was experienced by the authors that the application of, this technique 

to multi-link manipulators works well, but with an important drawback: 

Algebraic complexity of intermediate steps. When carried out by hand 
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the length of expressions becomes very large and very time consuming. 

In addition, the possibility of making algebraic errors was quite high. 

On the other hand, the modeling method is easy to understand, recursive, 

does not require any dedicated special software and derives the full 

nonlinear dynamic model. 

The symbolic manipulation programs eliminate the major drawback of the 

method. Symbolic modeling allows one to model systems with large order 

in a very short time, check the elements of the dynamic equations in 

explicit form and manipulate them very conveniently. Leu and co-workers 

developed programs to obtain dynamic equations of rigid robotic manipu

lators symbolically using commercially available symboli~ manipulation 

programs [15, 16]. The method presented here is more general in the 

sense that it can handle structural flexibilities and rigid manipulator 

modeling problem is a special case of it. 

The remaining part of this paper is organized as follows: 

Section II summarizes the Lagrangian - assumed Modes method. Section 

III presents a new algorithm which adapts this method to a form suitable 

for symbolic manipulation by digital computer. In section IV, the algo

rithm is applied to a two-link flexible arm example. Application de

tails and simulation results are discussed. 

II. Lagrangian - Assumed Modes Method 

Kinematics: The first step in dynamic modeling of any mechanical system 

is to establish the kinematical relationships and be able to define 

fundamental vector quantities: position, velocity and acceleration. 

Consider the kinematic structure shown in [Fig.2] representing a manip-
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ulator with serial links and joints. Let the coordinate system~ used 

for kinematics of the system be; 

OOXYZ - Fixed to base ( Global Coordinate Frame) 

°ixyz Fixed to the base of the link i 

O' iXYz - Fixed-to the end of link i 

If arms are rigid then 0i 'xyz coordinates are not needed. The position 

vector of any point on link i can be expressed with respect to 0ixyz as 

ih(Xi) = [Xi,O,O,l]T 

+ [Wx(Xi,t),Wy(Xi,t),Wz(Xi,t),O]T (2.1) 

where; wx(xi,t), Wy(Xi,t),Wz(Xi,t) are displacements of the flexible arm 

due to flexibility in respective directions. The dependence of w's on 

the spatial coordinates makes the system infinite dimensional, leading 

to coupled ordinary and partial differential equations of motion. In 

general these are approximated by finite series consisting of spatial 

variable dependent functions multiplied by time-dependent generalized 

coordinates. Once the number of generalized coordinates to be used to 

represent the distributed flexibility of each link has been decided on, 

w's can be approximated as; 

ni 

Wp(Xi,t)= E ¢Pj(Xi) 0j(t) 

j=l 

P x,y,z (2.2) 

where ni is the number of assumed mode shapes used for link i for the 

wp, ¢Pj(Xi) are assumed mode shape functions from an admissable class, 

0j(t) are the generalized coordinates of approximation, ih(Xi) is 

6 

_J 



"Sabri Cetinkunt and Wayne J. Book" 

uniquely defined. Next we need to be able to transfer this position 

vector with respect to global coordinate frame to obtain absolute posi

tion vector. Let °Wi be the homogeneous matrix transformation from 

moving coordinate frame 0ixyz to fixed inertial frame 0oXYZ. Then the 

absolute position vector, [Fig.3] 

o h (x i) = ~ oW i • i h (x i ) (2.3) 

It is clear that the transformation 0Wi consists of two parts: joint 

variables and flexible deflections. More clearly, [Fig.2] 

°Wi = °Wi_1 • Ei-1' Ai (2.4) 

where 

Ai - the transformation between 0ixyz and 0' i-1xyz - joint trans

formation 

Ei-1 - the transformation from the end of the link coordinates to 

link base coordinates. 

°Wi_1 - the total transformation to the base cordinates from the 

link base coordinates. 

The form of these transformation matrices are 

jWi = 

I 
• I 
JRi IXj component of 0i 

I 
IYj component of 0i 

:Zj component of 0i 
--oT-'- -1- - - - -

I 

jRi is (3x3) matrix of direction cosines, OT (lx3); 
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1 0 0 li 0 -Bzij Byij Xij 
o 1 0 0 ni Bzij 0 -Bxij Yij 

Ei= I + 1: 0i . (t) (2.6) 
. 1 J o 0 1 0 J= -Byij Bxij 0 Zij 

000 1 0 0 0 0 

where BPij 's ~re rotation components of link i due to mode j, assuming 

small rotations due to flexible deflections, and li is the length of the 

1 ink i. 

Once the kinematic description of the system is set up, the process of 

obtaining the equations of motion is as follows: 

1. Pick generalized coordinates (natural choices are joint vari

ables and a finite number of an assumed modes series approximation for 

every flexible element). 

2. Form the kinetic, and potential energy, and virtual work for the 

system. 

3. Take the necessary derivatives of the Lagrangian Equations and 

assemble the equations. 

If the system has Nj number of joi~ts with single degree of freedom and 

Nl number of flexible elements with ni modal coordinates for each ele

ment, the dynamic model of the system will be governed by a set of 

Nl 
N. + 1: n. 
J i =1 1 

(2.7) 

coupled second order ordinary differential equations. 
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III. Symbolic Implementation of Lagrangian - Assumed Modes Method: 

Although 'the Lagrangian - assumed modes method is theoretically very 

well understood and documented [13], it is not quite in a form suitable 

for symbolic implementation on a digital computer, i.e. insufficient 
--

memory problem~ are likely to occur. Let us first specify some desired 

features of a modeling algorithm • 
. ~ .. 

Fi rst, the mode shapes and the mode shape dependent parameters shou"' d be 

easily varied by the analyst. The selection of "appropriate" or 

"best" mode shapes for a given flexible system is not a clearly 

answered problem [12]. One should be able to easily simulate the effect 

of different mode shapes on the system behavior. For the case of a 

simple beam under bending vibrations the mode shapes effectively deter

mine the natural frequencies of the system. Effective mass and spring 

matrix elements are functions of mode shapes as; (with simple boundary 

conditi ons ) 

1 i 

mij = J p A(x) ¢i(X) ¢j(x) dx 
o 

kij 
1 . 

= J1 E I(x) ¢i' '(x) ¢j' '(x) dx 
o 

(3.1) 

(3.2) 

If mode shapes are orthonorma.1ized such that mij = 1 for i=j and 0 , 

for. i ¢j, then ki j = w2i for i = j, 0 for i ¢j . The most accurate way is 

to update the mode shapes as the boundary conditions of the links vary 

as-function of controller impedance. 

Second, a recursive algorithm would be very desirable. For instance, 

when the number of modal coordinates increased or additional links in-

cluded, the dynamic modeling process should not be repeated allover. 

9 

_I 



------------

"Symbolic Modeling of Flexible Robotic Manipulators" 

Third, method should eliminate any unnecessary algebraic operations so 

that it would be more efficient and require less memory. 

The equations governing the dynamics of the system are given by; 

d (~-~-~g:) - 1~_~_~g_)+ _1~_~_~g_2 = Qi (3.4) 
dt oqi oqi oqi 

where; oJ 
N 

E KE = E(KE)i N: total number of discrete elements in the 
i =1 

system ( joints, links, payload ). 

N 
EPE = E ( PE)i gravitational + (PE)i elastic 

i=l 
(3.5) 

qi's are the generalized coordinates which are joint variables and 

flexible generalized coordinates of flexible elements. 

Kinetic energies for rotary joints, if considered as mass with rotary 

inertia about the axis of rotation 

(KE)joint i = 1/2 mi Vgi 2 + 1/2 Hgi • ~i (3.6) 

where mi is the mass of joint i, Vgi is the speed of joint i mass 

center, Hgi is angular momentum vector of joint with respect to its 

center of mass, wi is the total angular velocity vector of the joint. 

Kinetic energy of the flexibl~ links; 

1 i 
( KE ) i = 1/2 f Pi (x) ( ri • ri ) dx 

o 
(3.7) 

If' all the modal coordinates and associated mode shapes were given, then 

the integration over the spatial variable could be evaluated. However 

since the mode shapes and dependent parameters are desired to be entered 

later by the user for analysis purposes, we identify all possible ele-
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ments that are functions of spatial variables of link i and assign them 

parametric names. KEi is spatially dependent only because of link i 

flexibility. The effect of previous element flexibilities on KEi are 

reflected in W terms which depend only on resulting end point motions, 

and thus have no spatial variable dependence. From (2.3) 

olii (x), = 0Wi ihi (x) + °Wi ilii (x) (3.8) 

!i. ~i = OhiT(~y • °hi(X) 

= ihiT(x) 0Wi T 0Wi ihi(X) + iliiT(x) 0Wi T 0Wi ihi(X)+ 

ihiT(x) 0Wi T 0Wi ihi(X) + ihiT(X) 0Wi T 0Wi ihi(X) (3.9) 

where; 

ihiT(x) = [x + E¢xij(X) 0xij(t), E¢yij(X) 0yij(t), E¢zij(X) 0zij(t), 1J 

ihiT(x) = [ E¢xij(X) 6Xij(t), E¢yij(X) 6yij(t), E¢zij(X) 6zij(t), 0 J 

(3.10) 

Elements of the transformations 0Wi and oWi are functions of the gener

alized coordinates and parameters of the links k < i, such as {Oi, 

0iOk(t), ¢Pkj(lk), 5pkj(t), 0k(t), where k=l, •• i-1, p:x,y,z}, lk is the 

length of link k. 

In general for seriail link ro!Jotic manipulators, the kinetic energy of 

link i will have the following form; (.) is used to indicate the pos

sible existence of terms that are independent of spatial variable x • 

At- this point, from-a symbolic modeling pOint of view it is not im

portant what these (.) terms are. But what is important is to extract 
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all the possible combination of spatial-variable dependent terms and 

replace them with symbolic names so that the first objective of the 

modeling is accomplished. 

(K.E)i=(.)J p(x) dx+(.)J p(x) x dx+(.) J p(x) x2 dx 

+ E E J p(x) ¢Pij(X) ¢~ik(X) dx • 
. ~. 

[ ( .) 6 pi j 6 ~i k + ( .) 6 pi j 0 ~i k + (.) 0 pi j 0 ~i k ] + 

E E J p(x) ¢Pij(X) x dx [(.) 0Pij +(.) 6Pij ] + 

E E J p(x) ¢Pij(X) dx [(.) 0Pij +(.) 6Pij ] (3.11) 

where; P and e : x,y,z , j=l, ••• mi • At the calculation of absolute 

velocity of differential element of a flexible member, the parameters 

which are functions of the spatial variable can be extracted and be 

given symbolic names by the symbolic manipulation program very easily. 

These parameters represent the elements in the dynamic model which are 

functions of mode shapes, link length, and mass distribution of the 

flexible element. 

It is possible to anticipate the forms resulting from Lagrangian equa

tions and never explicity evaluate the Kinetic energy. This equivalent 

to substituting (3.12) .into (~.9), but replace the spatially dependent 

terms with numerical values obtained by multiplying with the density and 

integrating over the associated link length as shown in (3.13). 

Replace in (3.9) the following equations (3.12): 

12 
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nmpeijk + ¢Pij(X) ¢eik(X) , nwpij + ¢Pij(X) x , 

nqpij + ¢Pij (x) 

mi + 1 ., mi li/2 + x, Joi + x2 (3.12) 

and in the simulation level evaluate these terms by multiplying with 

p(x) and integrating over the link length. 
,;' 

nmpeijk = J p(x) ¢Pij(X) ¢eik(X) dx , 

nwpij = J p(x) ¢Pij(X) x dx , nqpij = J p(x) ¢Pij dx 

mi = J p(x) dx , mi li/2 = J p(x) x dx , 

Joi = J p(x) x2 dx (3.13) 

There are six basic parameters related to the inertia properties of the 

flexible element and with their use there is no longer spatial depen

dence in the kinetic energy expressions. With this approach one can see 

more explicitly the effect of mode shapes and system parameters on the 

dynamic model, leading to a better understanding of the dynamics, which 

is not offered by numerical or other modeling methods. Notice that if 

the mode shapes associated with a coordinate (i.e. y) are chosen to 

be orthonormal with respect to distributed mass and flexibility many of 

the above terms will be zero, such as nmpeijk = 1 if j=k, 0 if j~k • 

Similiarly for the elastic potential energy of the link i ( gravi

tational potential energy is omited here to save space) 

I I I I 

(P.E.);=1/2 EJ (Ely(¢yij(X) ¢yik(X) 0yij(t) 0yik(t)) 
I I I I 

Elz ( ¢z;j(x) ¢zik(x) Ozij(t) 0zik(t) ) + 

I I 

EA(x) ( ¢xij(X) ¢xik(X) 0xij(t) 0xik(t) ))dx (3.14) 
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Simi 1 i arly 

1 i I I I I 

kPijk = l E1p(x) ¢Pij(X) ¢pik(X) dx P y,z and j,k = 1, ni 

1 i I I 

kxijk = l EA(~) ¢xij(X) ¢xik(X) dx 

(P.E.) i = 1/2 E E [ kPiJk 0Pij (t) 0pik(t) + 

kxijk 0xij(t) 0xik(t) ] (3.15) 

Now the next important topic is the development of a recursive method 

which will not run into memory problems as the system dimension gets' 

large as well as eliminating unnecessary algebraic operations. Moreover 

once a model is developed~ some variations of the model should be pos

sible without repeating the whole modeling process. As the system di

mension gets larger, carrying out the derivations using total energy 

. expressions can easily run into memory problems. Thus 

~L -~ ( E KEj ) 
dt oqi 

~- ( E KE
j 

) 
oqi 

o + ---
oqi 

(EPE. ) = Q. 
J 1 

d 0 0 0 E ( -- -- (KE.) - --- (KE.) + --- (PE.)) = Q. 
dt o~. J oq. J oq. J 1 

1 1 1 

Due to serial nature of manipulator arm 

~--:- (KEj ) = 
o~i 

-~- (KE.) = ~- (PE.) = o. for i > j 
oq. J oq. J 

1 1 
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The equations of motion of the system are found to be; 

N d a 
E (--- --- (KE.) 

j=1 dt aq. J 
1 

a a -- (KE.) + ---(PE.)) = Q. 
oq. J oq. J 1 

1 1 

= l,j (3.19) 

The following algorithm, in combination with equation (3.19), can be 

effectively programmed in any commercially available general purpuse 

symbolic manipulation prQgram to obtain dynamic model equations of 
. ~ 

multi-link flexible robotic manipulators symbolically. 

Algorithm 

For j = 1 to N 

For i=I, to j 

Fi nd and store KEj , PEj 

Next i 

Next j 

d 

dt 
(-~-(KEj)) 
aqi 

-~-(KEj) 
oqi 

(3.11) and (3.15) 

--~-(PEj) 
oqi 

Given the results of the algorithm, substitute these to equation (3.19) 

and assemble the equations in a convenient form for simulations and 

analysis purposes. After the equations are assembled, it is very easy 

to program them in one of the standard scientific programming languages 

using the capabilities of the commercial symbolic manipulation packages. 

Let us assume that after modeling a manipulator, it is desired to add 

another link to the model with ni degrees of freedom. Based on the 

above algorithm one must evaluate 
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For i=1, to N + ni 
d a a ----(KE ) ,----( KE ) 
dt o~. N+1 oq. N+1 

1 1 

_2_( PE N+1) , 
oqi 

(3.20) 

Nexti 

Let us assume previous model was assembled in the form: 

[ M ] q + f = Q (3.21) 
",:" 

where the inertia matrix dimension is (NxN) , q , f, Q vector 

dimensions are (Nx1), N is the total number of generalized coordinates 

up to that point. 

The additional link contribution is of the form: 

l -~~~--: mnn+ 
1 j l ~~~~~-j 

mnn+1 I mn+1 qn+1 
+ l :~~~1j = l-~~~~~j 

fn+1 Qn+1 
(3.22) 

where the inertia matrix is of dimension (N+ni) x (N+ni) and the vector 

quantities are of (N+ni) x 1 dimension. 

Partition of the equation (3.22) is made such that it would clearly 

reflect the increase in the dimension of the system compared to (3.21). 

The complete equations of motion are obtained by the addition of (3.22) 

to (3.21), where (3.21) is extended to (3.22) dimensions with addition-

al zeros corresponding to the'new generalized coordinates qn+1 introduc

ed by the new element. 

The implementation adapted here has the following advantages: a) mode 

shape and dependent parameters can be easily varied, b) all unnecessary 

derivatives avoided, c) it is recursive, and d) memory problems are 

not likely to occur. 
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IV.Applications and Discussion of Simulation Results: 

Here the described modeling method is applied to a two-link planar flex

ible arm, with rotary joints and payload. Two mode shapes for each link 

are considered to represent the structural flexibilities. As noted 

earlier, mode shapes can be input into the simulation program and the 

effect of different mode shapes on the dynamic response and the accuracy 

of modes can be checked. Joints and payload are considered as mass with 

rotary inertia. These inertial parameters can be set to zero as well 

[Fig.4] 

System input parameters for simulation are as follows: 

Joint 1 mass and rotary inertia about its center of mass; mj1, jj1 

and similiarly for joint 2 ; mj2, jj2 , and for payload; mp , jp 

For link 1 and 2 ; mass per unit length, link lengths, flexural rigidity 

constants • 

pAl, pA2 , 11, 12 , Ell, EI2 

Assumed mode shapes and gravity vector 

;11 ex) , ¢12 ex) , ;21 ex) , ;22 ex) gx, gy , gz 

Initialization procedures 

,Time independent parameters are calculated at the initialization of the 

program only once per session. If mode shapes are up dated as function 

of changing boundary conditions, then these parameters need to be re

evaluated. These parameters are: 

nm11, nm12, nm21, nm22, nW11, nw12, nw21, nw22, 
nq11, nq12, nq21, nq22, kw11, kw12, kw21, kw22 

17 
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¢1l(11) , ¢12(11)' ¢21(11)' ¢22(12) 

a a a a ---(¢ ) I , ---(¢ ) I, ---(¢) I , ---(¢ ) I 
ox 11 ox 12 x=ll ox 21 ox 22 x=12 

Here, the objectives of digital simulations are as follows: 

1. Verify that the model generated by the above algorithm is correct. 

2. Demonstrate the ease of changing mode shapes and the resulting 

change in the dynamic response due to different mode shapes used in the 

model. 

1. Model verification will be done by comparing the response of the 

flexible arm model with that of a rigid arm, which has the same corre

sponding parameters. 

a) Cleary as the flexural rigidity, EI(x),of the links increases, 

joint angle response of flexible model should converge to that of rigid 

model response. Figures (5) and (6a-b) clearly show that joint angle 

responses converge to those of rigid arm case, as flexural rigidity, EI, 

of links is increased. 

b) The same test simulation is done with clamped-clamped mode 

shapes for the first link. For this case, when EI'is set to 100 Nt m2, 

the joint angle responses were almost the same as the rigid case (See 

Fig.5 and la-b). The reason for faster convergence for the clamped

clamped case than the clamped~free case is that clamped-clamped mode 

shapes result in a stiffer system. However, clamped-free case is a 

more accurate prediction of the system response than the clamped~clamped 

case, as discussed below. 

c) As EI(x) lncreases, the frequencies associated with structural 

flexiblity should increase, for the simple beam case natural frequencies 

are fuctions of EI as 

18 



----~~~~~"---~"~--~------.-. 

C1 

"Sabri Cetinkunt and Wayne J. Book" 

Wi = (7i 11)2 (EIIpA) 1/2 ( 4.1) 

where; 7i is the characteristic value of the simple beam eigenvalue 

problem. Even though in two link arm case we are considering here (4.1) 

does not hold exactly. it is still valid in principle and gives a quan

titative idea about what to expect. Rayleigh's energy principle also 

supports t.his expectation. Figures (8a and 8b) confirm these expecta-

tions. 
.~. 

2. modeling method cleary reveals that mode shapes are important 

parameters of the system dynamics (e.g. Eqn (3.12)). What assumed mode 

shapes should be used? Would different shapes make an important differ

ence in the system dynamic characteristics? Theoretically. the only 

constraint on the assumed mode shapes is that they must satisfy the 

geometric boundary conditions. but not neccessarily the natural boundary 

conditions nor the governing differential equations. The governing 

differential equations and natural boundary conditions are results of 

the functional variation of the Hamiltonian and are approximately satis

fi ed in any case. The contro 11 ed end of each 1 ink. dri ven by a hi gh 

gain feedback controller. behaves more like a clamped end [1]. The 

other end condition of the intermediate links should be approximated by 

a mass with rotary inertia due to other links of the serial structure 

and payload. However. for different structures and even for different 

payloads the resultant simple beam analysis will give different mode 

shapes. Given the fact that these are natural boundary conditions and 

will be approximately satisfied even if assumed mode shapes do not 

satisfy them. a clamped-free simple beam mode shape would be an appro

priate choice for the assumed modes used in the model. The clamped

clamped case results in a stiffer system. As a result. joint variable 
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response converges to rigid arm response much faster than clamped-free 

case as function of flexural rigidity (See Fig. 5.6.7). Frequency of 

flexible vibrations are significantly higher than those of clamped-free 

case for the same parameters and conditions (See Fig. 8). This analysis 

further reveals the importance of mode shapes in the dynamic behavior of 
-

the system. he~ce the importance of keeping the mode shapes as para-

meters in general at modeling level. 
-.;' 

V.Conclusion 

From the modeling technique point of view. it has been shown that 

Lagrangian - assumed modes method can be effectively used for multi-link 

flexible arms. The availability of general purpose symbolic manipula-

tion programs overcomes the algebraic complexity of derivation steps. 

and allows the researchers to obtain more complete models in very short 

time, in spite of their complexity. A new systematic algorithm based 

on Lagrangian-assumed mode method is presented suitable for symbolic 

manipulation by digital computers. The algorithm resUlts in scalar 

dynamic equations of motion of the system in explict form. There is one 

scalar diferential equation for each generalized force. This is very 

usefull in the parallel computation of control torques based on inverse 

dynamics (computed-torque) since the computation task of each of the 

scalar equations can be assigned to a single processor which are totaly 

independent of each other from computations point of view. The algo

rithm is applied to a two link flexible arm. Simulation results are 

discussed and shown that the method worked very well for this example 

case. 
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Figure Captions 

-.:' 

Fig. 1. One Link Flexible Arm 

Fig. 2. A Flexible Serial Manipulator 

Fig. 3. (4x4) Homogeneous Coordinate Transformations 

Fig. 4. Two Link Flexible Arm Example. 

Fig.' 5. Two Link Rigid Model Joint Angles 

Fig. 6. Two Link Flexible Model Joint Angles, Clamped-Free Mode shapes. 

a) Eli = 10. Nt-m2 , b) Eli = 100. Nt-m2• i=1,2 

Fig. 7. Two Link Flexible Model Joint Angles, Clamped-Clamped Mode 

Shapes for link 1. 

a) Eli = 10. Nt-m2• , b) Eli = 100. Nt-m2• i=1,2 

Fig. 8. Comparisions of Flexible vibration coordinate responses 

(Clamped-Free Mode shapes) 

a) Eli = 10. Nt-m2• , b) Eli = 100. Nt-m2 , i=1,2 

.' 
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