© FF

A N
REVEREEGURRENTRELAY COHNECTIONSANDOPERATTON

A THESIS
SUBMITTED FOR THE DE REE.OFM. S.

I N
EEEGTRICALENGINEERING
EX

ANT
EARLE.SHERMANHANNAFORD GEORCIA SGHOOL OF TEGRNOLOGY

1927

Approved:

Approved:

COMTMNTI

THERODUGMS	
CHAPTER 10	CENERAL THEORY ANB MESHODS OEF
	calgulation
CHAPTER 玉.	DETERMTATION OF GEARACTERISTICS OFP
	IIN 70EIX
GHAPHER 3.	AGTUAL PESTE, GALGULATIEP DATA ANB
	RESULTS OBPANED H SHORT CIRGUIT
	TEESTES
	HNVESTIGATICA OF RELAY CONNEMEIONS
	AND RESULTS*******
CHAPHER 5.	DISGUSSION OF RESULTE
BIBLIOGRAPHY.	,

INTRODUCRION
With the advent of super-power networks and the attendant inter-commection of transmission aysitemas, many heretofore unforseen problems preaented themselves. Mot the least among them was the probiem of isolative ections in which short-circuits occurred and at the came time proviaing for the removal of the apparatuas ondangered by the mort-circuit in time to preveat its ruin. Thals involved the predetermination of ehort-cireuit carrenta and the proper relay conneations asd settings.

In our inveatigation we have not only attempted to verify exieting infomation, which is by no means: extencive, but we have also conducted some orieimal work in order to examine, and if possible determine the limiting conditions of the exiating theory of wingle phase or line to grounc mort oircuita.

After a complete and detailed review of existives information on the subject, the authors decided that the most acaurate, practical solution would obtained (oolving according to uro A. E. Mackerras of the central sitation Engineerlug Department of the foneral Electrie company: His method is called the "Lethod of symmetrical components and in outilined in chapter

1 with such-additions and subtractions: as the authors deemed consistent with the fivestigation as conducted.

In the study of relay comnections and operatiom as applied to this type of work, we ussed the Westinge house Induction Type CR Directiomal Over-current Relay, three of which were Ioanedi us by the Goargia Railway and Hower Company.

Theluded in the testa and comnections of the CR耳elaye is the test and check of a comnection gubmitteal to us for verification and finwestigation by the लorgia सeil way and Fower Company Engineers: This connection ils: in use at the Company"si Marietta, Heorgia, HighTension sub-station.

The investigation divides itself into four chapters or phasem as shown on the second peese.

The authore are indebted to the Georgia सailWay and Bower Company for the loan of the relays used, to the Gemeral Electric Gompany for the articless Dy Mro Weckeras and particulariy to Professor D. Po Savant of the Electrical Fingineerine Department of the ceorgia fichool of "Fechmolegy fin his constant and irvaluable adriee and superviailan in the preparation and the performance of the tests covered by this the is.

Maspter 1.

GGNERAL PHEORY AND METHODS OF CALCULATION

The method used for the calculation is besed on the Hethod of 段metrical compomentsias used by A. P. Mackerras of the central station Engineeming Department of the General Electric company of Schenectady Hew Fork.

Inis: method depradis fuxdamentally on the discovery my Mr. C. Fio Fortescue that any three vectors may be remolved finto three sota of componeatra, two of which consiat of balanced three phase vectiorgs, and the third of three wectors which are equal and in phase.

It will be remembered that $f=\sqrt{-1}$ is an operatior which rotates any vector to which it applies thru 90 degreea in the positive direction without changiag ita length. In the same way the operator "an rotates any vector thru 120 degrees in the positive divection without changing its leristh.

We mall assume throughout this paper that the positive direction is monteroclockrise, that all vectore: rotate in this direction and that for vectores of positive phase sequesee, phase blage behind phase a by 180 degrees and therefore the phasea are lettered cloakwise.

If any vector I in Hig. 1 is aperated upon by a, it is rotated 120 degrees in the counterolockwise direction; and therefore the vector a I leads the vector II 120 deg. We wee at onee from Fig. 1 that the vector

$$
\begin{align*}
a I & =0.5 I+j 0.866 I \\
\text { or } a & =0.5+j 0.866 \tag{1}
\end{align*}
$$

If a oparates on all it rotates it $2 \pi 0$ deg. in the ounter-clockwise direotion and therefore a I leade II by 840 deg., or laga it by 120 deg.

Again from FIs. 1 we see that the weotor

$$
\begin{align*}
a^{2} I & =-0.5 I-j 0.8661 \\
\text { or } a^{2} & =-0.5-j 0.866 \tag{2}
\end{align*}
$$

Hrom equations (1) and (2) or from Fig. 1

$$
\begin{equation*}
1+a+a^{2}=0 \tag{3}
\end{equation*}
$$

If a operates succesalvely on the vector I it rotaties it 3×120 deg. $=360$ deg. I is therefore unaltered in position or magnitude, and we have

$$
\begin{equation*}
a^{3}=1 \tag{4}
\end{equation*}
$$

5.

Fig. I The Relation Between the vectors K al $\% 0^{2} \%$.

Fig. 4 Vector Diagram for Conditions in Fig. 3

Fig. 3 Example of Line to line Short Circuit. There ore no zero phase sequence currents.

Fig 5 Total Current Flowing in Fig. 3
(6)

THE METHOD OF SYMMETRICAL COMPONENTS:

Mr. ©. L. Fortescue has shown that any three vectors: off a three phase 『y iem may be resolvei into three mytems of vectors knawn as the positive phase sequence compments, the negative phase sequence componentw, and the zero phase sequence components:

We chall consider the currents in a three-phase groundied neuteral syantem the actual currents in phases a, b, c we will call I_{a}, I_{b}, I_{c} and the current In the neutpal or ground is: $I_{\text {ge }}$

It inght easier to understand the fundamental relations if the wectiors ape taken equal to the peak value of the sine waves represented. Fowever, the vectors may be arioitrarily taken equal to effective values and the peak values need not be ussed at all. Positive Hhase Sequence Compomenta

The positive phase sequence components in phases; a, b, e. are $I_{a l}, I_{b l}, I_{e l}$. These components are all aqual to each other and separated by 120 deg. in phase. They consititute a balanced set of threem phase currents of positive phase sequence; that is: the phases are lettered elockwise. Then

(7)

Ill lace $I_{a 1}$ by 120 dego

$$
\text { and } \quad I_{e l} \text { lags } I_{\text {as }} \text { by } 240 \text { deg. }
$$

Therefore

$$
\begin{align*}
& I_{a l}=a I_{b l}=a^{2} I_{a l} \tag{5}\\
& I_{b 1}=a^{2} I_{a 1}=a I_{a l} \\
& I_{a l}=a I_{a 1}=a^{2} I_{a l}
\end{align*}
$$

These are gnome in Fig. Ka.
From equations (3) and (5) we find that.

$$
\begin{equation*}
I_{a l}+I_{a l}+I_{a l}=0 \tag{6}
\end{equation*}
$$

Therefore there is no positive phase sequence sound
currents and at any instant the positive phase sequence current flowing in any conductor is returning alone the other two condu ctors.

Negative Phase Sequence Component
THe negative phase sequence components in phase a a, b, c, are $I_{a z}, I_{u 2,} I_{e 2}$. These components are all equal to each other and separated by 120 deg. in phase. They make up a balanced set of three-ghase current of negative phase sequence; that is the phases are lettered comter-cilockwise. When,

0

(d)

(3)

Fig: Z Diagrams Illustrating Phase Sequence Components.
Fig 7 a Positive Phase Sequence Com- Fig. 2 e. Three Given Vectors; eg. Total ponents of Vectors in Fig. $2 d$
Fig. 2 b. Negative Those Sequence Components of Vectors in Fig. 2 d
Fig. 2 c. Zero Prose Sequence Components of Vectors in Fig: $2 d$
Fig Id. Relationship Between Total* and Their Phase Sequence Com ponents : (* currents)

Currents of Fig z od
Fig. $2 f$ Method of Finding the Leno Those Sequence Components of the Vectors ingle? Fig . g . Method of Finding the Pasture phis Sequence Components of the Vectors in Eg 2 e. Fig. In. Method of Finding the Negative Phase Sequence Components of the Vectors in tho 20.

$$
I_{12} \text { leads } I_{a 2} \text { by } 120 \text { deg. }
$$

and $I_{\text {e2 }}$ leads $I_{a 2}$ by 240 deg .
Therefore,

$$
\begin{align*}
& I_{a 2}=a^{2} I_{a 2}=a I_{a z} \\
& I_{02}=a I_{a 2}=a^{2} I_{a 2} \\
& I_{a 2}=a^{2} I_{a 2}=I_{62} \tag{7}
\end{align*}
$$

An example of this is given in Pig. 260.
It is evident from equations (3) and (7) and trig. 2b that

$$
\begin{equation*}
I_{\mathrm{a} 2}+I_{\mathrm{p} 2}+I_{\mathrm{e} 2}=0 \tag{8}
\end{equation*}
$$

Therefore there is: no negative phase sequence ground current; and at any instant the negative phase sequence current in any conductor is returning along the other two conductors.

Zero Phase Sequence Components

The zero phase sequence components in phasesia, a, c, are $\mathbf{I}_{\text {ao }}$. $\mathrm{I}_{\text {bo, }} \mathrm{I}_{\text {co }}$. These components are all equal and are in phase with each other. Therefore,

$$
\begin{equation*}
I_{a 0}=I_{\text {bo }}=I_{C O} \tag{9}
\end{equation*}
$$

Since these currents are all in phase, their sum minst return thru the ground. But there are no positive or negative phase sequence ground currentsis and therefore the total ground current

Allo

$$
\begin{equation*}
I_{\mathrm{e}}=I_{a 0}+I_{60}+I_{60} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
I_{g}=I_{a}+I_{b}+I_{\mathrm{e}} \tag{11}
\end{equation*}
$$

because the vector sum of the three line currents mast be equal to the ground owrent．
sinnee the three zero phase sequence components are equal，$\quad I_{g}=3 I_{a 0}=3 I_{B 0}=3 I_{00}$（1Z）

An exapiple of zero phase sequence componentsi is given in 基量• 玉c．

Zero phase sequence currents may be somewhat unfamiliar but it should not be difficult if we remember that they flow from some grounded point，through the three phases；of the system in parallel，to one or more other grounded points：where they may enter the ground and return through the ground to their starting point．

Totial Currents
The total current in ary phase is the wector sum of the three components：in that phase．Wherefiore

$$
\begin{align*}
& I_{a}=I_{a c}+I_{a 1}+I_{a 2} \\
& I_{b}=I_{b 0}+I_{b 1}+I_{b 2} \tag{13}\\
& I_{c}=I_{a 0}+I_{c l}+I_{a 2}
\end{align*}
$$

Expressing the tharee total currentis in terms of the components in phase a with equations（5），（7），and （9）

$$
\begin{align*}
& I_{a}=I_{a 0}+I_{a 1} I_{a 2} \tag{14}\\
& I_{b}=I_{a 0}+a^{2} I_{a 1}+a I_{a 2} \tag{15}\\
& I_{c}=I_{a 0}+a I_{a 1}+a I_{a 2} \tag{16}
\end{align*}
$$

Wo solve the above for $I_{a 0}, I_{a l}$. $T_{a z}$, movltiply (14), (15), (16) through by the appropriate operator, eithezr, 1 , a or $\boldsymbol{\rho}^{2}$ and add, remembering that $1+a+a^{2}=0$ that $a^{3}=1$ and that $a^{4}=a$

Thius,

$$
\begin{align*}
& I_{a 0}=I / 3\left(I_{a}+I_{b}+I_{a}\right) \tag{17}\\
& I_{a 1}=I / 3\left(I_{a}+a I_{b}+a^{2} I_{c}\right) \tag{i'18}\\
& I_{a 2}=I / 3\left(I_{a}+a^{2} I_{b}+a I_{c}\right) \tag{19}
\end{align*}
$$

The components in the other phases may then be found from equations (5), (7), (9).
Hig. 刃a shows the relationship between the total currents in phases a, b, c, and their positive, negative and zero phase sequence components. This: shows graphically the physidel meaning of equations; (5) to (16) Inclusive, If the phase sequence componentas are given the total currents may be found graphieally as in ing. 2d.

The positive, negative and zero phase sequence components act as if there were a metallic contact
across all three phases to ground at each end of the circuit. This is necessary from the very nature of the components; but it will be found in the diffierent cases that the components combine together in such a. way that the total currents satisaty the conditions of the short circuit under consideration.

Method of Resolving Any Three Wectors Into Their Phase sequence Components,

Let the three given vectors, as show in fig. Be, be

$$
\begin{aligned}
& I_{a}=10 \\
& I_{\mathrm{b}}=6 \cdot J 1 \\
& I_{\mathrm{c}}=3-J 3
\end{aligned}
$$

The wi m of the three vectors: from equation (11), is

$$
\begin{aligned}
I_{\mathrm{E}} & =I_{\mathrm{a}}+I_{\mathrm{D}}+I_{c} \\
& =17+j 6
\end{aligned}
$$

The zero phase sequence components are equal to onewhird of the sum of the three vectors; as: seen from equation (17). Wherefore

$$
\begin{aligned}
I_{20}=I_{\mathrm{boO}}=I_{e 0} & =\frac{I_{g}}{5} \\
& =2.33+j 2
\end{aligned}
$$

This is shown graphically in Fig. af.
From equation (18) we see that the positive phase sequence component in phase a is one -third of the sum of $I_{a,} I_{\text {b }}$ rotated through 120 deg. in the positive direction, and I_{c} rotated 240 deg. in the positive direction.

Now
and

$$
\begin{aligned}
a I_{b} & =(-0.5+j 0.866)(16-j 1) \\
& =-3+j 5.196+.866+j 51 \\
& =-2.154+j 5.696 \\
a^{2} I & =(-2.5-j 0.866)(-3-j 3) \\
& =1.5+j 2.598-2.598+j 1.5 \\
& =-1.098+j 4.098
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I_{a 1} & =1 / 3(4+j 10-9.134+j 5.690-1.098+j 4.098) \\
& =0.256+j 6.598
\end{aligned}
$$

Then $I_{b 1}$ lags $I_{a l}$ by 120 deg and $I_{a l}$ lags $I_{a l}$
240 deg.
Therefore

$$
\begin{aligned}
& I_{D 1}=a^{2} I_{a 1}=(-0.5-j 0.966)(.256+j 6.598) \\
&=.128-j 5.299+5.715-50.222 \\
&=5.587-j 3.521 \\
& \text { and } \\
& I_{e 1}=a I_{a l}=(-0.5+j 0.866)\left(0.256+j 6_{0} .598\right) \\
&=-0.128-j 3.299-5.715+j 0.282 \\
&=-5.843-j 3.077
\end{aligned}
$$

The above process is shown graphically fin fig as. From equation (19) we nee that the negative phase equine component in phase a is one-thirdi of the rum of I_{a}. $I_{\text {lm }}$ rotated through 240 deg. In the positive d direction, and I_{c} rotated through 180 deg.
in the positive direction. Then

$$
\begin{aligned}
a^{2} \mathbb{I}_{b} & =(-0.5-j 0.866)(6-j 1) \\
& =-3 .-j 5.196-0.866+j 0.5 \\
& =-3.866-j 4.696 \\
\text { and } \quad a I_{a} & =(-0.5+j 0.866 i)(-3-j 3) \\
& =1.5-j 2.598+2.598+j 1.5 \\
& =4.098-j 1.098
\end{aligned}
$$

Therefore

$$
I_{a 2}=1 / 3(4+510-3.866-14.696+4.098
$$

51.098)

$$
=1.4106+J 1.402
$$

Then

$$
I_{\mathrm{b} 2} \text { leads } I_{\mathrm{a} 2} \text { by } 120 \text { deg, and } I_{\text {e2 }}{ }^{\text {leadss }} I_{a 2}
$$ by 240 deg.

Therefore

$$
I_{\mathrm{b} 2}=a I_{\mathrm{a} 2}=((-0.5+j 0.966)(1.4106+
$$

j1.402)

$$
\begin{aligned}
& =.7053-j 0.701-1.215+j 1.282 \\
& =-1.9183+j 0.521
\end{aligned}
$$

and. $H_{a 2}=a^{2} I_{8.2}=(-0.5-j 0.866)(1.1106+j 1.402)$

$$
\begin{aligned}
& =-0.7053-50.701+1.215 \cdot 51.222 \\
& =0.5097 \cdot j 1.923
\end{aligned}
$$

We will now test our results by adding together the components in each phese and the sum should be equel to the original vector in that phase, in accordance With equations (13)

Therefore

$$
\mathbf{I}_{\mathrm{a}}=8.33+\mathfrak{j}+0.256+j 6.598+1.4106+
$$

51.40%
mont-sizelit $=4_{0}+j 10$
 $-540.33+12+5.587-j 3.52 \cdot 11.9383+v$
50.521

$$
\begin{aligned}
& =6-1 I \\
I_{C} & =I_{00}+I_{C l}+I_{e 2}, \\
& =2.33+j 2-5.843-13.077+.5097-
\end{aligned}
$$

j1. 923

$$
=-3 * j z
$$

This proves the accuracy of the above work. This 1s whown graphically in Fis. 20.0

HHREE-PHASE SHORT CIRCUITS

Hie current in the three phase of a three-phase short esceuit are equal in magnitude and spaced at 120 deg. from each other and there is no ground current. It follows then that the negative and zero phase sequence components ape all zero and that the positive phase sequence components are the total short-efreuit currents.

Thus the method reduces to the ordinary study for symmetrical threeephasie short circuits. The positive phase sequence network is the ordinary system network, and the positive phase sequence impedances are the ordinary three-phase impedances, phase to neutral.

If $Z_{1}=$ Positive phase sequence impedance to neutral of the system to the point of short circuit

$$
\begin{aligned}
& E_{a}= \text { Induced voltage, from neutral to terminal a } \\
& I_{n}= \text { Normal three-phase current corresponding } \\
& \text { to the chosen kra. base. }
\end{aligned}
$$

Then if Z_{7} is in ohms and Ea_{a} is in volts:

$$
\begin{equation*}
I_{d}=I_{a 1}=\frac{E_{a}}{Z_{I}} \text { arp. } \tag{20}
\end{equation*}
$$

If Z_{1} is in per cent on the chosen lv a base,

$$
\begin{equation*}
I_{2}=I_{a 1}=\frac{I_{00 I_{n}}}{Z_{1}} \text { amp. } \tag{221}
\end{equation*}
$$

We shall always take the "positive direction of current from the generators toward the point of shortcircuit. This applies to all components ass well as to the total currents.

LINE TO LINE SHORT CIRCUITS
The Negative Phase Sequence Network

The negative phase sequence components are balanced three-phase currents, and therefore the circuits involved in the negative phase sequence network are exactly the same as in the positive phase sequence netwark is the same as the positive phase sequence impedance; but the negative phase sequence reactance of synchronous machinery is not equal to its positive phase sequence reactance. This is due to the interaction of one winding on another lying in the same slot, but belonging to a different phase. Tests show that the negative phase sequence transient reactamce of a synchronous machine is about 73\% of its ordinary transient reactance.

The negative phase sequence impedance is designated loy Z_{2}.

Ine-to-IIne Shortocircuit Currents.

In a lineoto-line short circuit there is no ground connection at the fault and therefore there aannot be any zero phase sequence components of current.

Therefore
andi

$$
\begin{align*}
I_{a 0}=I_{b o}=I_{c o} & =0 \tag{22}\\
I_{\mathrm{g}} & =0 \tag{23}
\end{align*}
$$

If the short circuit is between phases b and c It can be proved that the positive phase sequence component at the farit in phase a is

$$
\begin{equation*}
I_{a l}=\frac{E_{a}}{Z_{1}+Z_{2}} \text { Amp } \tag{24}
\end{equation*}
$$

where z_{1} and z_{2} are In_{m} ohms
or

$$
\begin{equation*}
I_{a l}=\frac{100 I_{a}}{Z_{1}+Z_{2}} \text { Amp. } \tag{25}
\end{equation*}
$$

where ZI_{1} and Z_{2} are in per cent on the same krea base as $I_{n} \cdot Z_{1}$ and Z_{2} are the positive and negative phase Impedanees of the network to the point of short circult.

The above equations (24) and (25), are fundamental fin the application of the method to the calculation of

Ine-to-Ine short circuits. $I_{Q 1}$ is the first current to be found and everything follows from it. since the short circuit is between phases b and e only, there cannot be any total current in phase a.

Therefore
and

$$
\begin{align*}
I_{a 1}+I_{a 2}+I_{2 a} & =I_{a}=0 \\
I_{22} & =-I_{a 1} \tag{26}
\end{align*}
$$

Mince

$$
I_{a o}=0 \quad y+b e
$$

The components in the other phase can then be found from equations (5) and (m).

Example of Line-toline Shat circuit

To Illustrate how the phase sequence currents How with a short circuit between phases and c the example shown in . H g. WIll be worked out in detail.

Since there is no ground connection at the fault, there are no zero phase sequence currents and no ground current.

Therefore

$$
I_{a 0}=I_{120}=I_{a 0}=0
$$

The positive and negative phase sequence currents are shown in Fig. $\mathrm{F}_{\text {, }}$ where the arrows give the positive direction. since the positive and regative phase sequence components are balanced three-phase currents, the current in each conductor must return along the other two conductors. Therem Pore the positive and negative phase sequence components behave as: if there were a threeephase shortcircuit at Fr. Fut the components: masit combine in such a way that the total currents a satsty the conditions of a short circuit between phases b and conly.

Suppose the line to neutral voltage of the generator is 1000 and that the ordinary three-phase Impedances, Ilne to neutral, of the generator and transmission Ine are $Z=j 10$ ohms and $Z^{\text { }}=5+j 5$ ohms, respectively.

Then the positive phase sequence transient impedance to the fault,

$$
\begin{aligned}
Z_{1}=Z+Z^{n} & =j 20+5+j 5 \\
& =5+j 15 \text { ohms }
\end{aligned}
$$

The negative phase sequence transient reactance of the generator is 73 per cent of its: positive phase sequence transient reactance, the negative phase sequence transient fimpedance to the fault 1s:

$$
\begin{aligned}
Z_{2} & =j 7 \cdot 3+5+j 5 \\
& =4 j 12.3 \text { ohms }
\end{aligned}
$$

Taking the voltage in phase a as standard phase, that is the positive direction of the axis of real quantities:

$$
E_{a}=1000 \text { volts }
$$

therefore

$$
E_{1}=a^{2} E_{a}=-500-j 866 \text { volt者 }
$$

mad

$$
\mathbf{E}_{\mathbf{C}}=a \mathbf{E}_{\mathbf{a}}=-500+5866 \text { volts }
$$

The induced voltages of the generator are taken in pomtive phase tequemee.

Ila transient impedances are used, therefore the currents will be the instantaneous symmetrical mort-ancult values.
men from equation (24)

$$
\begin{aligned}
& I_{a 1}=E_{a} \quad=\frac{1000}{21+2(15+5+512.3} \\
&=\frac{1000}{10+j 27.3}
\end{aligned}
$$

from equations (5)

$$
\begin{aligned}
& I_{01}=a^{2} I_{a 1}=033.9+j 5.9 \text { amp } \\
& I_{a 1}=a I_{a 1}=22.1+j 26.4 \mathrm{amp}
\end{aligned}
$$

As previously noted,

$$
I_{a 0}=I_{b 0}=I_{c o}=0
$$

suine the total current in phase a is zero

$$
I_{a}=0
$$

Therefore,

$$
\pi_{a 2}=-\frac{\pi_{a 1}}{a}=-11.85+j 32.3 \text { amp }
$$

and
$I_{b 2}=a I_{a z}=Z_{c I}=-2 R .1-j 26.4$ amp.
and

$$
\frac{\pi}{c 2}=\varepsilon^{2} \pi_{a 2}=-I_{b 1}=33.9-15.9 \mathrm{amp}
$$

Then the total currents in phases b and crom equations (13) are

```
Ib}=0-33.9+j5.9-22.1 - j26.
    = 56.0 * j20.5 amp.
I
    = 56.0 + j20.5 amp.
```

The vector relations are shown in Fig. 4. The short-eircuit current flows alons one conductor and returns by the other as show in Fig. 5.
LINE - TO - GROUWD SHORT - GIRCUITS

Zere Bhase Sequence 尚etworic
The zero phase sequence network is much simpler than the other two networks inasmuch as it usually involves only the portions of the network which have grounded neutrals in the particular circuit in which
a. ground fault cocura. It should be remembered that the zero phase sequence components in phases $a ; b$, and are equal in magithude and are fin phase With each other. Therefore the path of the zero phase sequence currents: (regarded in the negative direction (is from the ground fault through the thee phases of the networm in parailel, into the eround through some or all of the grousded meutrals, and through the ground back to the fault.

The native of the zero phase sequence network depends entirely on the transfonmer and generator. comections, and whether they are grounded or not. The method of setting up the zero phase sequence network will be explained by the example fin Fife 6 which involves. most of the common onnections:

An aryow representa a zero phase sequence companent of current in the positive direction, and a zero elose to the nductor indicates that there 1s no zero phase sequence ourrent in that conductor. Whe zero phase requence eomponents are equal in the three phases, therefore it is necessary to consider that the ground fault exista simaltaneously on all three phases; otherwite it would be Imposaible to have zero phase
sequence axrents fin all the phaseas. It will be
found that the pomitive and negative phase sequence WILL NEUTRALIZE THE ZERO PHASE SEQUENCE COMPONENTS. components个tin the two wgrounded ghafes at the fault, and the total currente will them satisfy the conditions on a linotco-grown short circuit.

HLE 7 is: a onewine diagram of His. Gis and where the circuit is complete for the zerg phase sequenee. current, the enductor is shown grounded at the end, ind cating that the current may return through the ground to the fault. Where the zero phase sequence current cannot flow, the braneh is left ungrounded at the end, indicating that there is infinite fimpedance to zero phase sequence current.

Fig. 8 is the zero phase sequence mork which 1s obtoined from FiEs 7 on onitting the mramehes which eamot earry zero phase sequence current. mhe ordinary threo-phase linewtoneutral impedancea are given in HIg. 6 or a 50,000 kwa base, and in Pigsi. 7 and 8 the correspondiag zero phase sequence impealances are given on the same base.

The positive direction of the zero phase sequence currenta: in the oaduc tors is toward the fault, but in wetting up the zero phase sequence
network it is usually easier to start at the fault and work beck through the system, considering which bramehea provide a path for zero phase sequence currents, and which do not.

We mill now conoider the portions of the networic in. detail.

27

Fig. 6 Diagroin Illustrating the Path of Zero Phase Sequence Currents.

Fig. 7 one -line Diagram of system Shown in Fig 6

Fig s Zero Phase Sequence Network for System Shown in Fig 6 .

Resistance

The zero phase sequence resistance of a conductor in any phase is equal to its ordinary resistance value; but if the conductor is in the neutral its zero phase sequence resistance is three times the ordinary value. This is because the ordinary resistance of a conductor i: referred to the total current in it, while the zero phase sequence resistance refers to the zero phase sequence current in one phase only, and this is onethird ofthe total current in the neutral.

Transformers A and \mathbb{B}
Zero phase sequence currents cannot flow in the lines leading to an ungrounded Y or delta because there is no ground connection through which the current may return to the fault. This is always true, no matter what connection is used on the other side of the transformer.

Transformer \mathbb{C}
If a I -delta trangformer is grounded and a ground frault occurs on the \mathbb{I} side, its zero phase sequence impedance is equal to its ordinary three-phase impedance, Iine to neutral. It will be noticed in Fig. 6 that the
currents in the Ψ all flow away from the neutral point, and that the compensating currents will circulate In the delta. Consequently no zero phase sequence currents can flow in the lines: connected to the delta, and the network on the fiar side of the delta has: no influance on the zero phase sequence current:. Shince the currents flowing from the ground through the transformer encounter the impediance of the transformer, the ground in Higm. 7 and 8 is show on the far side of the transformer reactance, ©.

Transformer D
The zero phase sequence impedance of a $X-Y$ transformer, grounded on the fault side but isolated on the other side is inf inite. Nlthough there is a path for the zero phase sequence currenta: on the grounded side, there is no path fror the compensating currents which would have to flow on the ungrounded alde to balance the ampere turns: on the grounded side. Consequently, it is impossible for sero phase sequence currents to flow in the ines connected to a \mathbb{Z}-Y transiformer which has one side 1玉olated from ground.

Trensformer E
The impedance of a I-I transformer with both neutrals grounded is equal to the ordinary threephase impedance. fie far as the transformer itself Is concermed, there is a path for zero phase sequence currente on both primary and secondary sidea, since there is a connection to each neutral.

Zero phe sequence currents will flow in the Iines comnected to both sides of the tramaformer, providea of course that the rest of the path can we completed as shown in Fig. 6. If the generator © had been whgrounded, no zero phase sequence currents could have flowed in transformer E or the lines: connected to either its primary or secondary.

Generator

Since thia generator has a neutral connection, it providies a path for zero phase sequence current to flow from the ground and return to the fault. Hiesta mhow that the zero phase sequence transient reactarce of a synchronous machine is about 27 per cont of its ordinary transient reactance.

Impedance in Generator Neutral: The zero phase sequence impedance of the generator neutral connection is three times its ordinary impedance, because it is referred to the zero phase sequence current in one phase, which is one-third of the current flowing in the neutral.

Three-vinding Transformers
In a one-line diagram, a three-winding transformer is represented by an equivalent circuit. In Fig. 9, let the reactance from primary to secondary be x_{ps}, from primary to tertiary x_{pt}; and from secondary to tertiary be $x_{\text {st }}$. Then in the equivalent network,

$$
\begin{align*}
& x_{\mathrm{p}}+x_{\mathrm{s}}=x_{\mathrm{ps}} \tag{27}\\
& x_{\mathrm{p}}+x_{\mathrm{t}}=x_{\mathrm{pt}} \tag{28}\\
& x_{\mathrm{s}}+x_{\mathrm{t}}=x_{\mathrm{st}} \tag{29}
\end{align*}
$$

Therefore

$$
\begin{align*}
& x_{p}=1 / 2\left(x_{p s}+x_{p t}-x_{s t}\right) \tag{30}\\
& x_{s}=1 / 2\left(x_{p s}+x_{s t}-x_{p t}\right) \tag{3I}\\
& x_{t}=1 / 2\left(x_{p t}+x_{s t}-x_{p s}\right) \tag{32}
\end{align*}
$$

Transformer H
Let

$$
\begin{aligned}
& x_{p s}=5 \\
& x_{p t}=9 \\
& x_{s . t}=3
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& x_{p}=1 / 2(5+9-3)=5.5 \\
& x_{\mathrm{S}}=1 / 2(5+3-5)=-0.8 \\
& x_{\mathrm{t}}=1 / 2(9+3-5)=3.5
\end{aligned}
$$

The negrative reactance for X_{g} means that the secondary leg of the equivalent circuit acts as a capacitance.

The secondary and tertiary are both deltas and both provide circulating currents to compensate for the zero phase sequence currents in the grounded. Y. primary. The zero phase sequence reactance of the transformer is therefore equal to the ordinary primary reactance x_{p} in series with the secondary x_{s} and the tertiary x_{t} in parallel. The zero phase sequence reactance of transformer H is therefore equal to

$$
\begin{aligned}
x_{p}+\frac{x_{t} x_{B}}{x_{t}+x_{s}} & =5.5-\frac{3.5 \times 0.5}{3.5-0.5} \\
& =4.92 \text { per cent }
\end{aligned}
$$

Transformer J

In transformer J one winding is an ungrounded Y which cannot carry zero phase sequence currents. Therefore the circulating current in the delta must entirely compensate the zero phase sequence in the grounded Y. This three-winding transformer acts in
exactly the alame manner am transformer c.

Auto-tranaformer K
A. grounded Y auto-transformer fith a delta tertiary 1s equivalent to a three-winding transformer with two grounded \bar{Y} windings and a delta. In setting up the equivalent circuit we look ahead and notice that the secondary is connected to an ungrounded generatior is, which will not allow zero phase sequence current to flow in the lines connected to it. Hence the autatransformer K acts as if it were a Ψ-delta trangformer with grounded Y, live transformer co and itss zero phase sequence reactance is equal to its ordinary reactance from the high voltage W to the delta.

drounding mansformers

A.transformer connected either grounded Ydelta or grounded zig-zag, which floats on the line for the purpose of establishing a ground, acts in the same manner as transformer c.

Zero Phase Sequence Impedance
The zero phase sequenee network is now completely set up and all the poasible paths for zero phase sequence currents are indicated by grounds at both ends. We then
calculate the zero phase sequence impedance, Z_{0}, of the network of Pig. 8 to the point of short aircuit as follows:

The impedances of the paths in parallel are,

Branch	Impedance	Reciprocal
C	55	$-j 0.200$
K	$j 6$	$-j 0.167$
J	$j 10$	$-j 0.100$
H	$j 4.96$	$-j 0.203$
H	$9+j 13.7$	$0.0335-10.051$
	Total	$=0.0335 \times j 0.721$

Brangh
c.

K
J
H
H

$$
9+j 13.7
$$

$$
\text { Total }=0.0335 \cdot 10.721
$$

Then $Z_{0}=$

$$
=0.064 .+j 1.38 \text { ohms }
$$

Hine-io-ground Short-eircuit currents:

When we have a linewto-ground short circuit the current fllowing into the fault must return through the grounds and there must be positive, negative and zero phase sequence components of current:

Wake a simple circuit ∞ nsisting of grounded Ψ generator feeding a three phase line with a ground frult on line a. We know that the total current in phase a is equal to the current in the ground and
that the total currents in phases and e are zero.
Then $I_{a 1}=1 / 3\left(I_{a}+a^{2} I_{a}+a^{2} I_{c}\right)=\frac{I_{a}}{3}$
Ai so $\quad I_{a 2}=1 / 3\left(I_{a}+a_{a}^{2}+a I_{c}\right)=\frac{I_{a}}{3}$
and $\quad I_{a \rho}=1 / 3\left(I_{a}+I_{a}+I_{a}\right)=\frac{I_{a}}{3}$

Therefore,

$$
\begin{equation*}
I_{a 1}=I_{a 2}=I_{a 0}=I_{b 0}=I_{c o}=\frac{I_{a}}{3}=\frac{I_{g}}{3} \tag{39}
\end{equation*}
$$

It will be noticed that the total currents satisfy the conditions of a ground fault on phase a only; but the component currents behave as if all three phases are short-sircuited to ground.

Flo Find the Value of ' $I_{a l}$
Let $Z_{1} Z_{2}$, Z_{0} the positive, negative and zero phase sequence impedances of the circuit from the neutral of the generator to the fault. Then the voltage drop due to the component Ialflowing through impedance Z_{1} is: $I_{a l} Z_{1}$. Also the drop due to the negative phase sequence current is $\mathrm{I}_{\mathrm{a}} \mathrm{Z} \mathrm{Z}$; and for the zero phase sequence current, the voltage drop iss $I_{80} Z_{0}$. Therefore the total drop in phase a is

$$
I_{a 1} Z_{1}+I_{a 2} Z_{2}+I_{a c} Z_{0}
$$

since phase a is shorted to ground, the total drop in phase a is equal to the line-to-neutral ind aces voltage, E_{a}, in phase a.

Therefore,

$$
E_{a}=I_{a l} Z_{1}+I_{a 2} Z_{2}+I_{a 0} Z_{0}
$$

But we have shown that $I_{a 1}=I_{a 2}=I_{a 0}$.
Therefore,
or

$$
\begin{align*}
E_{a} & =I_{a 1}\left(Z_{1}+Z_{2}+Z_{0}\right) \\
I_{a 1} & =I_{a a}=H_{a 0}=\frac{I_{a}}{3}=\frac{I_{g}}{3} \\
& =\frac{E_{a}}{Z_{1}+Z_{2}+Z_{0}} \tag{40}
\end{align*}
$$

where $Z_{1}, Z_{\text {a }}, Z_{0}$ are in ohms.
If Z_{1}, Z_{2}, Z_{0} are in per cent on some kr a
base, and $I_{\text {nl }}$ is the normal current corresponding to that base, then equation (40) becomes

$$
\begin{align*}
I_{a I}=I_{a Z} & =I_{a 0}=\frac{I_{a}}{3}=\frac{I_{g}}{3} \\
& =\frac{100 I_{a}}{Z_{1}+Z_{2}+\frac{Z_{0}}{Z_{0}}} \tag{41}
\end{align*}
$$

Equations (40) and (41) are fundamental in the calculation of line-tomground short circuits. $I_{a l}$ is first ealoualted, and all the other currents are derived from it.

CWERERAL CCNSIDERATIONS

In the calculations of three-phase or singlephase short circuits on complicated systems the solution of netwowls by Kirchoffis. Laws becomes very laborfous. The שalculating Board offers a very good solution to this difeiculty provided that certain conditions are fulfilled.

The firsit condition is that the three phases must be symmetrical, so that the sysitem may be represented by a one-line diagram. This is true for the positive, negative and zero phase sequence networks.

The second condition is that the currents throughout one phase of the network mast be in phase with each other, so that alternating currents may be represented By direct current so far as their behavior according to Kirchoff"s Laws is concerned. This condition is fulfilled if there is no resistance in the circuit.

A third condition is that all generators must have the same induced voltage. This assumption mast be made in both three-phase and singile phase circuits. Any disadvantages of the Caleulating Board are just as: serious for three-phase short circuits as they are for singlemphase short circuits.

With the Method of Symmetrical Components the calculation of the actual fault current is very simple once the phase sequence impedances of the net. work have been found: but considerable labor is inWived in finding the currents in all the phases of all the branches. Most of the numerical work consists in multiplying vectors by a or a^{2}; and great care is necessary to avoid making mistakes: with the aigns. If, however, the resistance of the circuit is neglected, the components are entirely reactive, and the multiplication by a or a^{2} may be performed directIy on the diagram of تlg. 10. For example, if $I_{a l}=$ - j60, it will be seen, by projecting to the horie zontal and vertical axes of FH . 10 that a^{2} ($-j 60$) $=-52+j 30$.

The signs can be read immediately on Flg. 10 and the values are accurate enough for most purposes. We note however that the nomerical values of the real and immaginary components are either 0.866 or 0.5 times the numerical value of the veotor. Therefore we may set our silide male with one end at 0.866 to perform all the multiplications by this factor, and the other component may be foundby dividing by
2. The signs and approximate values can be seen at once on Fig. 10.

When the circuit contains both resistance and reactance the phase sequence components are complex quanities. To multiply a complex quanity by a or

- a^{2} with the help of Kig. 10 it is only necessary to treat the real and imaginary parts separately. Thusi,

$$
\begin{aligned}
\Lambda(30+j 44) & =a(30)+a(j 44) \\
& =-15+j 26-38-j 22 \\
& =-53+j 4
\end{aligned}
$$

This may be terified by translating into the polar form but considerably more work is involved. Thus,
and

$$
30+j 44=53.2 \quad / 55.7 \text { deg. }
$$

The magnitudes are the same and the angles differ by 120 deg.

聠damental As sumptions:
In all short-circuit calculations it is necessary to make assumptions which may, in reality, be far from exact.
(41)
(1) We assume a zero resistance fault. שsually the impedance at the fault is amall; but if a conductor falls on a dry wooden crossamm and the only reture path is through the wood, the resistance may rua into thousandss of ohms.
(8) We neglect load current and charging current. If these are taken into account the calcuriations become extremely complicated.
(3) The induced Foltages of all generators are assumed to be equal and in phase, so that there is no circulating carrent before the short circuit occurs.

(b)

Fig 9 One line Representation of Three Winding Transformer

(43)

GHAPTER 2
DETERMINATION OF CHARACTERISTICS OF
MACHINERY AND APPARATUS USED IN WORK.

In selecting the apparatus to use in our tests we were fortunate to have available in the laboratory a. bank of transformers whose characteristics and Constants were such as to test the existent theory in its limiting conditions.

The necessary apparatus consisted of: -
1 Westigghouse Motor Generator Set; Rotating armature type of alternatior.

Westinghouse a-e generator, $7.5 \mathrm{kv}-a, 125$ volts, Delta connected, 220 volts Star connected; 60 cycle, 1800 r.p.m. 34.3 Amp. per terminal Delta connected 19.7 m ${ }^{7}$ " ${ }^{\text {m w }}$

Serial number 1470261
1 Bank of Wagner Electric Company Transformers
1 kw. 220/110 volts, $7 / 14$ amperes serial numbers, $54945,54946,54947$

1 Benk of Westinghouse Electric Company
Transformers. 2.5 kreali, 2.7\% Impedance;
240/120 volts - 88/22: volts

Serial Numbers, 1089477, 1092259, 1089479 The rans madie for characteristic dotermination were as follows:
A. an the alternator

1. Open circuit characteristic or magnetization curve mun.
2.
3. Effective a eresistance of ammature with the armature removed from the machine, not including brushes.
4. Oinnic or dl eresistance of armature including brushes.

The alternator was rua under load for a sufficient time to bring it up to stable operating temperature before the above readings were taken.

Due to the fact the alternator was of the rotating armature type it was necessary to determine the brush drop with direct weurrent with the armature in place, as there was no way of setting the brushess on the sidp rings with the armature out of the alternator for effective a - c resistance determination.

The brush drop per phase was obtained by subtracting the resistance per phase obtained from Run 4 from rum 3.

Fig. 21 shows the diagram of connections for run \#1

Fig. 13 includes the open and short circuit characteristics as obtained in mums (1) and (2)

No diagram of comnections is included for runs (3), (4) and (5) due to the fact that standard practice for resistance determination was followed.

The observed data from the above runs follows in section 1 and the calculated data is tabulated in section 2.

RUN \#1
OPEN CIRCUIT CHARACTERISTIC OR MAGNETIZATION GURVE

Wolts: Per Ehase	Hield current	Speed R. F.M
00.0	0.0	
22.0	5.0	1800
39.5	8.3	m
54.8	21.85	m
67.0	14.8	m
80.0	27.25	m
89.0	29.5	m
		m

(46)

99.0	22.5	1800
106.3	24.75	m
115.0	27.5	m
121.3	30.0	w
127.	32.0	m
137.5	35.8	m
144.5	39.5	m

 Open Circuit
D. C. Motor same as Above.

$\cdots \infty$

Short. Circuit
Fig I?
Figl/18/2. Diogroms of Connection for Obtaining the Characteristic Curves of an Alternator.

RUN \#2

SHORT CIRCUIT CHARACTERISTIC

	I_{1}	I_{2}	I_{3}	I_{f}	SPEED	$I_{\text {av }}$.
$\mathrm{k}=$	5	5	5	.05	1800	5
	- 7	. 84	. 8	- 1.5	m	. 78
	1.78	1.8	1.83	4.8	m	1.803
	2.66	2.62	2.68	7.2	\%	2.653
-	3.45	3.4	3.48	9.75	m	3.443
	4.00	3.925	4.03	11.0	m	3.985
	4.87	4.825	4.87	14.0	*	4.855
$\mathbf{k}=$	10	10	10			10
	2.98	2.93	2.98	17.		2.9633
	3.45	3.4	3.46	19.5		3.437
	3.93	3.86	3.93	22.2		3.907

RUN \#3

EFFEGTIVE A-C: RESISTPANGE WITH ARMATURE

REMOVED FROM MAGHINE (NOT INCLJDING BRUSH RESISTANGE)

	Current	Wattiss	
$\mathbf{k}=$	5	1	
	3.875	98.	
	4.725	137.	Phase 1
*	2.968	54.	a-a
	$3.87{ }^{\circ}$	91.8	
	4.725	138.0	Phase 2
	2.95	53.5	b-b
		-	
	3.875	92. 0	
	4.725	137.5	Phase 3
	2.975	54.0	c-¢

(51)

RUNS \#4 AND \#5

OHMIC RESISTANGE OF ARMATURE

Current	E Trerminal	Without Rmashes:	
19.7	6.1	4.6	
8.46	3.2	3.	Phase 1
35.	10.3	8.32	
35	10.08	8.35	
19.7	6.8	4.66	Phase 2
8.265	3.2	2.0	
40.0	3.2	1.83	
19.6	6.1	4.52	
6.85	10.1	8.88	

(Es)

CALOUEATIONS

EFFECTIVE RESISTANCE OF ARMATURE WITHOUT ERUSHES

Ehame 1

> .8448 ohms $.2453 \quad \mathrm{~m}$ $.2400 \quad$ Average $=.2434$

Phase 2:
.2455 ohma
.24770
.2460

$$
\text { Average }=.346
$$

Phase 3
. 2448
.24685
.2440

$$
\text { Awerage }=.24508
$$

OHMIC RESISTANGE

With Mrushea
 Without Brushess

Using average of 2 values corresponding to highest currentis:-

AVERAGE WALUES OR RESISTANGE

	Eff. . R Arm. alone	Effi: Bi Inc. Bru sheas	Obmie \mathbb{R} Inc. Elone	Ohmic IR Inc. Brushes
Phase	1.24505	. 31145	. 2355	.3019
Phase:	2 .24685	.309575	. 237385	. 30065
Phase	3.34552	. 312195	. 2344	. 301075

SYNGHRONOUS TMPEDANGE PER PHASE
Faken from open Cireuit and short Gircuit
Characteristics
run \#3
I, short circuit $=40 \mathrm{amp}$.
E, open circuit $=100$ volts
$Z=100 \div 40=2.5$ ohms
Reactance per phase, $X_{S}=\sqrt{Z_{s}} \chi_{e}$
Phase $1, X_{S}=2.48$ ohm
Phase 2, $\mathrm{X}_{\mathrm{S}}=2.48$ ohms
Phaste 3, $X_{\mathrm{g}}=2.48$ ohms:
B.

RUNS MADE ON THE TRANSHORMERS FOR DEIERMINATION OF CHARACTERISTICS:

The only rum made frow the charaeteristice or constants of the transformers was a short circuit mum from which the reactance, effertive resistance and the impedance of the individual transformers was calculated.

The olraerved data follows in Section 1
The caleulated m w w \quad *
for both the Wagner Transformerg and the Westingfrouse transformers:

SECTION 1

OBSERVED DATA-SHORT CIRCUIT RUNS ON TRANSFORMERS

Wagner transformers
Coil ratio of turns 2 to 1 i.e. 220/110

Current	Wolts	Watts	
4.54	11.48	52	Trans. A \#54946
4.54	11.8	52.5	Trans. B \#54945
4.54	11.48	52.3	Trans. C. \#54947

Goil ratio of turns 1;1 i.e. 220/220

4.54	8.3	37.5	Trans:
4.54	8.65	39	Trans.
4.54	8.275	37	Trans. C

Westinghouse Transformers:

10.4	7.83	77	\#1089477
10.4	7.21	68	\#1092259
10.4	7.44	72	\# 1089479

(56)

SRCPION

CALGUEATED DATIA

TRANSFORMER MMEBDANCES, REACTANCES AND

RESISTANCES

Wagner Transformers

蔍 \quad Z
220/110 220/220

4 2.528 3.588 1.8191 .83

c. $2.538 \quad 2.528$ 1.7931 .823

Referred to High side联 Z X

In the atove transformers the reactance was to Low that it was not possible to measure it. As this: will be indicated later this was a fortwate thing

Festinghouse Transfionmers:

Heferred to High $\mathbb{\$ i}$ de $\quad 820 / 80$

	Pe_{0}	2	स
1089477	,7115	. 753	. 24.4
1092259	.688	.693	. 8931
1089479	. 866	. $\% 16$. 263

GHAPTER 3

AGTUAL TESTS, DATA AND RESUETS OBPAINED IN
SINGEE PHASE SHORT CIRCUIT TESTS.

The single phase short cirouit tests were three in number, each consisting of a different type of connection. The most logical way to label and distinguish them is to call them Tests 1, \%, and 3 since the character of each is best denoted by its diagram of connections.

The curpent literature on the suibject of shortcircuits, bases its theory and ealculations upon the Fract that the resistance of the circuit is negiligible on short-circuit and that the inductive reactance is: the only factor restricting current flow.

Due to this prevalent assumption our three investigations of single phase short-circuits are subdivided into five parts: -
a. The calculation of the short-circuit currents: using the numerical value of the impedances of the apparatus in question.
b. The calculation of the short-circuit currents using the complex form of solution.
e. The calculation of the ihort-circuit current: using only the inductive reactance of the apparatus in question.
d. The calculation of the short-circuit currents using only the resistances of the apparatus in question.
e. Whe actual tests for the short-circuit currents actually existing under the shortcircuit conditions: assumed for the apparatus whose characterfistic values and constants were used in the calculated results of parts a, it, c, and d above.

Hor the purpose of our investigation it was Indeed fortunate that the transformers avallable and usea in thetests, had a very high value of resistance as compared to their value of reactance. In fact, one bank of transformers, the wagaor, 1 kw . Fank to be sexact; had a resistance per phase practically *qual to impedance. Thus the reactance was negligivie in comparison. This is ovident from the characteristic or constant determination tests as: discussed in Chapter F.

Abstract

Due to this fact we were investigating for the extreme case and if we found that the resistance could be neglected in this case, it would show that the common assumption that resistance does not affect the value of current on short-circuit was correct.

SINGLE PHASE SHORT-GIRCUIT TEST

$$
\text { NO. } 1
$$

In Fest No. 1 , the apparatus consilsting of the Westing house Y-connected alternator, Wagner bank of Transformers connected Y to Eelta with a turn ratio of 1 to 1 and the Westinghouse transformers onnected as show in Wig. 14. The fault was as indicated.
timmeters: were placed in the ground connection or fault and also in the grounded leg of the Y-delta conneateat westinghouse grounding transformers. With the fault connection open, the alternator voltage Wh: set at 220 volts and the frequency at 60 cycles. The fault circuit was then closed causing the line-to-ground or as it is calle "single phase shortcircuit" to take place.

(61)

Hwo readings were made; flrst, the instantaneous or transient current in both the ground or frault and the grounded leg of the transformer were read at the instant of causing the fault, and secondiy, the same currents were read after steady state conditions had been established.

The instantaneous or transient values are of only passing interest in this paper $\begin{aligned} & \text { noe they endure for }\end{aligned}$ culy a few cyeles and cannot be accurately investigated without the use of an oscillopraph.

The steadiy state conditions, however, are of peimary fuportance since it is these values that relay settings are based upon, and it is these valuess that give us a check upon the accuracy of our cal erwlations as made to predetermine their magnitudes.

Following are the calculations as made according to the theory outlined in chapter 1. In these calculations the average per phase values of the constants determined.in Chapter 2 were used. These values will be found on the respective positive, negative and zero phase pequence networks diagrams accompansing the various solutions.

Test 1. Part. 1. Calculation of single phase short-circuit currents using the numerical value of the impedances of the apparatus as the basis for the calculation.

Impedance of the alternator per phase 2.5 ohms
Impedance of Delta to Delta Transformers
Per Phase 1.83 ohms:
Impedance of Y to Delta Transformers
Per Phase
0.75 ohms

From the positive phase sequence network diagram on following page it is seen that for the positive phase sequence currents the impedance is

Z, positive phase $=Z$, alternator $+Z$. DeltaDelta Transformers $=2.5+1.83=4.33$ ohms

- Z, negative phase sequence $=Z$, altemator
x.73 +Z , Delta-Delta Transformers: $=2.5$
$x \cdot 73+1.83=3.66$ ohms
Z, zero phase sequence $=Z, Y$-Delta Transformers
$=.75$ o
The total impedance is:

$$
4.33+3.66+0.75=8.74 \text { ohms }
$$

The current in the grounded leg of the Y connected grounding transformers is thus:

$$
I=\frac{E}{\bar{Z}}=\frac{220 / \sqrt{3}}{8.74}=14.51 \text { amperes }
$$

As is proven in Chapter 1 the ground current is three times the above value and is thus:-

$$
I_{g}=3 \times 14.51=43.53 \text { amperes }
$$

Positive
Phase Sequence Network

Negative Prose Sequence
Network

Zero Prose sequence Network

Port Z

Positive Phone Sequence

Megotive Phase sequence Netivark.

Zero Phose Sequence
Network

Fig:17. Test No: Single Phase Short Circuits.
One Line Diagrams of the Positive, Neg::
active and zero Phase Sequence Networks.

Trest 1, Part 2. Calaulation of the single phase short-circuit currenta using the complex expression for the values of the impedance of the apparatus as the basis for the calculation.

Impedance of the alternator per phase

$$
z=.31+j 2.48 \text { ohms }
$$

Impedance of the DeltarDelta Tran fiormers per phase

$$
z=1.9+j 0 \text { ohms }
$$

Impedance of the Y-Delta transformers per phase

$$
\text { Z. } 06685+j 0.368 \text { ohms: }
$$

From the positive phase sequence network diagram for Test 1. Part 2 It is seen that for the positive phase sequence current the impedance is:

$$
\begin{aligned}
& \text { Z, positive phase sequence }=\mathrm{Z}, \\
& \text { alternator }+\mathrm{Z}, \text { Delta-Delta Pransformers } \\
& =(0.31+j 2.48)+(1.9+j 0) \\
& =2.21+j 2.48 \text { ohms }
\end{aligned}
$$

and in same manner
Z, negative phase sequence $=Z$, 良lternator + Z, Delta-Delta transformer $=(0.31+j .73 \times 2.48)$
$+(1.9+j 0)=2.21+j 1.81$ ohms
also,

$$
\begin{aligned}
Z, & \text { sere phase sequence }=Z, \quad Y \text {-Delta transformer } \\
& =0.6685+j 0.268 \text { ohms }
\end{aligned}
$$

The total impedance is
$(2.21+j 2.48)+(2.81+j 1.81)+(0.6685$
$+j 0.268)$
$Z=5.089+j 4.58$ ohms, the numeric of which is
$Z=\sqrt{(5.089)+(4.56)}=6.835$ ohms
The. current in the grounded leg of the Y-connected grounding transformer is thus:-

$$
I=\frac{E}{Z}=\frac{880 / \sqrt{3}}{6.835}=18.62 \text { amperes }
$$

and the ground current is

$$
I_{g}=3 \times 18.02=55.86 \text { amperes }
$$

Test 1. Part 3. Galalation of the single phase䀳ort-eirouit currents using only the values of the inductive reactance of the apparatus as the basis. for calculation, neglecting the resistance.

Prom the positive phase sequence network diagram for Peat 1. Part 3 it is seen that for the positive phase sequence current the reactance is :-
X_{L}, positive phase sequence $=X_{L}$ alternator +

$$
\begin{aligned}
X_{L}, \text { Delta-Delta transformers: } & =2.48+0 \\
& =2.48 \text { ohms }
\end{aligned}
$$

and in the same manner

$$
\begin{aligned}
& X_{L}, \text { negative phase sequence }=X_{L} \text {, alternatior } \\
& +X_{L}, \text { DeltawDelta transformers }= \\
& \mathbf{3 . 4 8 \times 0 . 7 5 + 0 = 1 . 8 1 \text { ohms }}
\end{aligned}
$$

also $X_{L},=$ zero phase sequence $=X_{L}, T$-Delta transformers

$$
=.268 \text { ohms }
$$

The total reactance 15

$$
2.48+0.73 \times 2.48+0.268=4.558 . \text { ohms }
$$

The current in the grounded leg of the Y-connected grounding transformer is thus

$$
I \equiv \frac{E}{D}=220+\sqrt{5} \times 4.558=27.9 \text { amperes }
$$

and the ground current is

$$
I_{G_{6}}=3 \times 27.9=83.7 \text { amperes }
$$

Pushae ohase Seguence Netniont

Wegutwe chase Sequence Networt.

Zers phose seguence Networt

$$
x_{2}+4
$$

Positive Phose Sequence Arotimort

Vogotive Phose seoternce Netmork.

Zero Phose Seqijence Neware
 pres hare Diograms of the fortive Nimotim ary rera Phose Sequerice Aravis.

Test 1. Part 4. Calculation of the single phase short-circuit currents using only the values: of the resistance of the apparatus as the basis for calculation, neglecting the inductive reactance.

From the positive phase sequence network diagram for Test 1. Fart 4 it is seen that for the positive phase sequence current the resistance is
\mathbb{R}^{\prime}, positive phase sequence $=\dot{R}$, alternator + Re, Delta-Delta transformer $=0.31+1.9=2.21$ ohms sadis In the same manner.

EP, negative phase sequence $=\mathbb{R}$, alternator + Ri, Delta-Delta transformer $=0.31+1.9$
$=2.21$ ohms
also R, zero phase sequence $=R, T-$ Delta transformex
$=0.6685$ ohms
The totaleosistance is
$2.21+2.21+0.6685=5.0885$ ohms
The carrent in the grounded zeg of the Feoonnected grounding transformer is thus:*

$$
I=\frac{F}{R}=220+\sqrt{3} \times 5.0885=24.93 \text { amperes }
$$

and the ground current is

$$
I_{g}=3 \times 24.93=74.79 \text { amperes }
$$

Test Mo. 1, Fart 5
OBSERVED DATA
I
I

39.5
30.5

Grounde Current

119

81

Generator
Voltage
89 Instantancous: or Transient Walue

125 Sustained or steady sitate Walue

Before closing fault circuit i.e., suddenly applying the short circuit from line to ground, the alternator voltage was set at 220 wolts and the frequency at 60 cycles.

TABULATION OF CALCULATED RESULTS

TEST 1

I

Grounded Trans. Phase Gumrent
I_{g} Gurrent
43.53 All of these
55.86 are steady state
83.7 values.
74.79

The steady state values obtained for this hook" up on test were

I, grounding transformer phase current $=30.5$ amperes: I, ground current $=81$ ampepes

As may be readily seen the observed steady state currents check the values as calculated in part 3. These values calculated in part 3 were calculated using only the inductive reactance of the apparatus: as a basis for calculation, neglecting the resistance. This: shows conelusively that the assumption that the resistance may be neglected in single phase shortcircuit calculations, is correct since the ratio of resistance to reactance in the apparatus used was high, and in the delta to delta connected bank of transformers the reactance was so low as to be negligitio.

Prart 3.calculations are on the anly ones checking the actual test results.

SINGEE PHASE SHORT-GIRCUIT TEST NO. 2

In test No. 2, the apparatus consisting of the Westinghouse Y-connectied alternator, Wagner bank of transformers connected Dalta to \# with a turn ratio of 1 to 1 , and the Westinghouse bank of transformers connected Y to delta with a turn ratio of Z.75 to 1
was comected as shown 1n 汎g. 15. The fault was as indicated.

Ammeters were placed in the ground connection or fault and also in each of the grounded legs of the Y-conneoted transformerse

With the fault connection open, the alternator voltage was set at 220 volts and the frequeney at 60 eycles.

The fault ofrcuit was then elosed caucing the IIne-to-ground or as it is called "single phase shortecircuit to take place

Iwo readings were made; first, the instantaneouss or transient currents in the fault, and both grounded: transformer legs were read at the instant of causing the fault and secondly, the same currents were read. after steady state conditions had been established.

As in Test Ho. 1, the instantaneous or transient Walues are of only passing interest in this paper since they only entlure for a frew cycles and cannot Be investigated without the use of an oscillograph.

The steady state conditions are of primary
fimportance since it is these values that relay settings
are based upon and it is these values that give us: a check upon the accuracy of our calculations as: ,made to predetermine their magnitudes.

Test 2 Part 1. Galculation of single phase shortcircuit currents; using the numerical value of the impedances of the apparatus as the basis for the calcuIation.

Impedance of the al.ternator, per phase $=2.5$ ohms:

From the positive phase sequence network diagram for Pest 2. Part 1, it is seen that for the positive phase sequence current the impedance is

* Z, positive phase sequence $=Z$, alternator +

Z, deltaē transformers $=2.5+1.9=4.4$ ohms and in the same manner

$$
\begin{aligned}
\text { Z, negative phase sequence }= & Z, \text { alternator } \times 0.73 \\
+Z, \text { delta-Y transformers } & =2.5+0.73+1.9 \\
& =3.725 \text { ohms }
\end{aligned}
$$

also

$$
\mathrm{Z} \text {, zero phase sequence }=\frac{1}{\frac{1}{\frac{1}{\mathrm{Z} \text {, बlta- } \mathrm{Y}}}+\frac{1}{\mathrm{Z,Y-} \mathrm{\operatorname{del} t a}}}
$$

(74)

$$
\begin{aligned}
1+(1 / 1.8+1 / 0.75) & =1+(0.526+1.333) \\
& =0.5375 \text { ohms }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The total impedance 1s } \\
& \qquad 4.4+3.725+0.5375=8.6625 \text { ohms }
\end{aligned}
$$

I, combined transformer leg currents $=$

$$
220+\sqrt{3} \times 8.6625=14.67 \text { amperes }
$$

I, delta-Y transformer phase $=\frac{14.67 \times 1.9}{0.5375}=10.5$ amps.
I, ground $=3 \times 14.67=44$ amperes.

Test No. 2, Part 2. Galculation of the single phase short-circuit currents using the complex expression for the values of the impedance of the apparatus as the beasis for the calculation.

Hirom the positive phase sequence network diagram fror Test \mathbb{Z}, part 2 it is seen that for the positive phase sequence current the impedance is,

Z, positive phase sequence $=2.21+j 2.48$ ohms and in the mame manner

$$
\begin{aligned}
& \text { Z. negative phase sequepce }=(0.31+j 0.73 \times 2.48) \\
& +(1.9+j 0)=2.21+j 1.81 \text { ohms }
\end{aligned}
$$

also for the zero phase sequence
Y, delta-Y transformers: $=1+Z$, delta $-Y=$
$1+(1.9 \div j 0)=.5265+j 0$
Y, Y-delta transformers $=1+(.6685+j 0.268)=$ $1+(.6685+j .268) \times \frac{(.6685-j .268)}{(.6685-j .268)}=$

$$
1.29-10.517
$$

Y. zero phase sequence $=Y$, delta-Y $+Y, \quad Y$-delta $=$

$$
\begin{aligned}
& (0.5265+j 0)+(1.29-j .517) \\
& =2.816-j .517
\end{aligned}
$$

Z, zero phase sequence $=1+Y$, zero phase sequence

Total impedance is thus
adding positive, negative and zero phase sequences,
$=(2.21+12.48)+(2.21+j 1.81)+(0.51+10.145)$
$=4.93+j 4.435 \quad$ numeric $=\sqrt{(4.93)}+(4.435)=6.63$ ohms
I, combined transformer phase currents
$=820+\sqrt{3} \times 6.63=19.3$ amperes
I, ground $=3 \times 19.13=57.39$ amperes:
I, delta-Y transiformers $=I$, total phases $x Z$, zero
phase sequence $+Z$, delta-Y transformers
$=19.13 \times 053 \div 1.9=5.34$ amperes
I, Y delta transformers $=19.13 \times .53+\% 75$
$=13.55$ amperes

Test 2, Prart 3 . Calculation of single phase short-circuit currents uaing only the inductive reactance of the apparatus as the basis: for the calculation, neglecting the resistance.

Trom the positive phase sequence network diagram 1 for Pest2, Part 3 it is seen that for the positive phase sequence current the inductive reactance is se
X_{I}, positive phase sequence $=X_{L}$, alternator + X, delta- F transformers $=(2.48+j)=$ 52.48 ohms and in the same manner

$$
\begin{aligned}
X_{L}, & \text { negative phase sequence }=X, \text { alternator } \times 0.73 \\
& +X, \text { delta- } X \text { transformers }=j 2.48 \times .75+j 0 \\
& =1.81 \text { ohras }
\end{aligned}
$$

also

$$
\begin{aligned}
& =\frac{1}{\frac{1}{0}+\frac{1}{-268}}=?
\end{aligned}
$$

As can be readily seen this solution as indicated above would be indeterminate due to the fact that the Inductive reactance of the delta-Y bank of transformers was negligithl θ 。

This indicates conclusively that the values of single phase short-circuit currents for this particular type of connection cannot be calculated when the ree sistance is neglected and only the inductive reactance used. This is unfortunate since in Wiew of the previouss test the above mentioned method of calculation was evidently the best.

Although the calculation would tend to indicate infinite current in the delta- I grounded transformer phase, this was not the case as is shown by the test data for this particular hook-up. This indicates conclusively that the resistance mast have a limiting effect in this peculiar and particular type of connection.

In view of the above fact, the current could be predicted by calculation by merely using the value of the delta-Y transformer reistance in place of the linductive reactance in making the calculation.
X, zero phase sequence $=1+(1 / 1.9+1 / 0.268)$ $=0.237$ ohms

The total inductive reactance is:-
Adiang the positive, negative and zero phase sequence inductive reactances we have,
$j 2.48+j 1.81+j 0.237=j 4.527$ ohms
I, combined transformer phase currents:
$=220+\sqrt{3} \times 4.527=$ amperes
I, ground $=3 \times 28=84$ amperes
I, delta-Y transformer phase $=I$, total $X^{\prime} X_{L}$, zera phase sequence +X , delta-W transformer $=84 \mathrm{x} \cdot 237+1.9=10$ amperes

I, \bar{F}-delta transformer phase
$=I$, total $\times X_{L}$, zero phasie sequence $+X$, Y -delta transformer $=84 \times 0.237+.268$ $=74$ amperes.

As will be readily seen on the rinal tabulation of data and comparision of calculated and test valuess, this does not check the test resulta. This: findicatess conclusively that this method of calculation of the single phase short-circuit currents is of no value for this type of connection when the transformers have negilgtible reactance.
(88)

V Test 2, Part 4. Galculation of the single phase short-circuit currents, using only the resistance of the apparatusi ass the basis: for the calculation, negiecting the inductive reactuance.

Hrom the positive phase sequence network diagram fror Test 2, Part 4 it is seen that for the positive phase sequence current the reactance is:*

R, pomitive phase sequence $=\mathbb{R}$, alternator + R, delta-Y transformer $=.31+2.9$ $=2.21$ ohms
and in the same manner,

$$
\begin{aligned}
& \text { R, negative phase sequence }=R \text {, alternator }+ \\
& \text { R, delta-W transtormer }=.31+1.9=2.21 \text { ohms }
\end{aligned}
$$

al*o

$$
R \text {, zero phase sequence }=\frac{1}{\frac{1}{R_{p} \text { delta-Y }+\frac{1}{R, ~} \mathbb{T} \text { delta }}}
$$

$$
=\frac{1}{\frac{1}{1.9}+\frac{1}{0.6685}}=: 495 \text { ohims }
$$

The total resistence is
$2.21+2.21+0495=4.915$
I. combined transformer phase $=$
$220+\sqrt{3} \pi 4.915=25.85$ amperes
I, deltaeI transformer phase $=\frac{25.85 \pi .495}{1.9}$
$=6.735$ amperes

I, Yedelta transformer phase $=\frac{25.85 X .495}{.6658}=19.12$ amperess.

Teat No. 2, Part 5 OBSERVED DATA

Type of Reading		I I	
	grounded	Y-celta	delat-Y
	current	Trans: Phase	Trans: Phe

Transient	92	17.5	66	
Sustined	55	13.	39.5	Fun \#1
Transient	90	17	66	
Sustained	56	13	39	Fum \#2

Before elosing the fault circuit, i.e. suddenly applying the short-circuit from line to ground, thealternator voltage wass set at 220 volts and the freequency at 60 cycles.

TAABULATION OF GALCULATED RESULTS

Test 2.

	II Ground	I Combined Phase	$\begin{gathered} \text { I } \\ \text { Delta } \mathrm{Y} \\ \text { Phase } \end{gathered}$	$\begin{gathered} \text { I } \\ \text { X-Delta } \\ \text { Phase } \end{gathered}$
Fart 1	44	14.67	4.15	10.5
Hart 2	57.39	19.13	5.34	13.55
Hart 3	84	28.	10.	74.
part 4	77.55	25.85	67.35	19.12

All of the above values are for the stieady state condition.

As is readily seen by the comparison of the calculated and observed values, they do not check In any instance. This is due no doubt to the fact that the type of hook-wp used made an exact calculation of the currents in part 3 impossible. This does not in any way, however, nwilify the results of test 2 . It merely shows that whon the transformers used have an inductive reactance which is negligimle as compared to the resistance, sccurate predetermination of the magnitud of the single phase short-circuit currents: is impossible when ueing the present theory which bases its calculation of the inductive reactance anly. This clearly indicates a limiting condition for the theory as-used. This condition, 1.e., transformers whose indiuctive reactance is negigime, would never be met with under practical transmission line conditions of operation, thus it is evident that the assumption that the inductive reactance is the oniy factor lindting current flow under short-circuit conditions is permissable only when the ordinary comercial type of apparatus is used and is not neaessarily true for all types of apparatus, experimental and special.

TPEST NO. 3
INVESTIGATION OF SINGLE PHASE SHORT-GIRCUIT GURRENTS USING THREE-WINDING TRANSFO RMERS AS GROUNDING IRANSFORMERS.

The authors spent a great deal of time in predetermining the single phase short-circuit currents for the apparatug when connected as shown in Fig. . 16, using three-winding or tertiary grounding transformers.

Due to the fact that the transformers available and used in the test were not of the usual threewinding type, but were ordinary two winding transformers with a split secondary, and also, the lack of accurate lowreading meters, we were umable to arrive at satisfactory results.

Our results indicated that the theory as developed for the three-winding grounding transformer would not hold for the split secondary type. This is probably because of the great difference between the inter. laced impedances in the two types.

The authors regret the lack of time and instrumentss which made it impossible to extend our investigation to such an extent as to definitely determine the reasons why the tertiary theory was not applicable to the split secondary type of transformer.

GHAPTER 4
INVESTIGATION OF RELAY CONNECTIONS
AND RESULTS.

We were requested by some engineers of the Georgia Railway and Power Company to investigate the operation of the Type Ge Directional Over-Current. Relay manufactured by the Westinghouse Company. The Fower Company had been having trouble with these relays on their lines and wish to ascertain if the connections were correct. We made four separate tests each involving a different connection of apparatus. These tests will be numbered Tests 4, 5, 6 and 7 and will be discussed separately in detail. We are including in this thesis pages 16-24, inclusive of the Westinghouse bulletin which describes the operation, constru* ction and adjustment of the GR Directional Gurrent Relay.

The Directional Over-Current Relay is designed to protect Transmission lines which feed to a common bus. If a short-circuit or other fault occurs on one Ine of a system feeding thru a common bus the other line or another line if there are more than two separate lines will feed power thru the station buss and back to the point of trouble on the defective line.

By placing these relays between the line and the sub-station bus that line will be protected against \& reverse flow of power back to the fault should one occur.

This relay works similarily to the umual standard Wathour meter. However, it can be eassily seen that if the relation between the current and voltage coils: were such thet the current and voltage were practically in phase with the current in the right direction, should a short occur on the line dropping the power factor to albout zero, the current and voltage colls would be 90 degrees: out of phase and congequentily there would be no torque.

The CR Directional Over-Gurrent Relay is so dew gigned that with unity power factor load on the line the current in the relay directional element will lead the voltage supplying the directional element by 30°. This: will allow the current to lage a considerable amount during time of short-circuit without placing a 90° angle between the voltage and current.

Before making any connections to the relays for a. three-phase distribution it is absolutely necessary that the phase rotation be determined. We looked through several references but found nothing on the subject. However, after some study on our parb we developed a method of determining the phase rotation
which is fairly simple and requires only a single phase wattmeter since the current and potential transformers would be necessary for the relays.

The wattmeter is connected as shown in Fig. 21. one wattmeter can be used and changed from one line to another. The vector diagram shows the relation between the currents: and voltage. It will immediately be seen that if a reading is taken of wattmeter A with the potential coils on lines A and B and if a reading is taken of the same wattmeter with the potential coils on lines A and C the wattmeter readings will be respectively $I_{A} E_{B A} \cos \left(30+45^{\circ}\right)$ and $I_{A} E_{C A} \cos \left(30^{\circ}-\right.$ a very small angle) Consequently the second reading will be the larger of the two. Now take the reading of watmeter \mathbb{C} with the potential leads first from \mathbb{B} to © and next from A to ©. The wattmeter readings: will be $I_{C} E_{B C}$ as: (30° - a very small angle) and I_{C} $\mathrm{E}_{\mathrm{AC}} \cos \left(45^{\circ}+30^{\circ}\right)$. Consequently the first reading, will be the larger of the two. Thus with the phase rotation as shown, $A B C$ and the wattmeter in line A the larger wattmeter reading will occur with one potential lead on the line which precedes line A in phase rotation. This is also shown by the readings taken in line C. In any case one potential lead is always kept on the line which goes through the meter and the other lead changed from one line to the other.

Fig. 21. Method for Determining Phase Rotation by llse of Two WATTMETERS.

If the phase rotation is reversed as shown in \#Pgure 21 the reading of Wattmeter A can be shown in the vector diagram. It will be seen that the wattmeter reading will be larger for wattmeter A when its potential coils are connected from \mathbb{B} to A than when connected from \mathbb{C} to \mathbb{A}. This would indicate from the previous reasoning that the rotation should be soch that A. follows in rotation or that the rotation is CBBA. These two connections with their accompanying vector diagrams show that this method of determining phase rotation is correct.

After this method had been used for determining the phase rotation in our tests we learned of a method described in the Augugt 29th 1925 issue of the Electrical World by Mr. John Awchincloss of the Swithhboard Engineering Department, General Electric Company under the title, "Determining the Sequence of Phases: ${ }^{\text {t. }}$.

This method uses two lamps and a reactance of approximately the same impedance as the lamps. These are connected as shown in Fig. 22. One of the lamps: Will burn more brightly than the other. In the first case shown, lamp \mathbb{B} burns bright. The toctor diagram
is as shown and the point 0 will be on the righthand side of the circle. $E_{\mathbb{B}}$ represents the voltage across: lamp \mathbb{B} and $E_{\mathbb{A}}$ represents the voltage across lamp A. The currents in the two lamps are of course in phase with their voltages, consequently I_{R} represents the phase position of the current in the reactance. We know that the current in a reactance lags approximately 90 degrees behind its voltage. Therefore, E_{R} represents the voltage across the reactance and the phase rotation is $1-2-3$.

In the second case shown lamp a bubns bright and the point 0 is on the left-hand side of the circle. The construction is similar to the first case and it will be seen that the phase rotation is $3-2$ - 1 .

FigZzMethod of Determining Phase Rotation by live of \because amps and inductance.

DESCRIPTION OF TESTS

Test No. 4 was made with the connection as shown in Fig. 35 of the Westinghouse bulletin. The polarities are not shown in this figure but we endeavored to make the connections and polarities consistent. Adjastment was made so that the contacts of the directional element were all open when the power was flowing towards the bus bars. When the power was reversed and with a power factor of about 10% two of the relays closed and the other stayed open. We spent considerable time trying to make this connection work but were unable to do so.

Test No. 5 was made with connections as shown in Fig. 23 which were developed by the authors. An open-delta transformer connection was used for supplying the potential coils of the relays. This connection proved satisfactory as the relays all stayed open with the power flow in the right direction and the phase rotation correct. The relays all closed when the direction of power was reversed with about 10% power factor. The objection to the open-delta connection is that unbalanced voltages are obtained under short circuit conditions which might prevent the relays from
obtaining ehough torque to operate.
Test No. 6 was made with connections as shown in Fig. 24. This connection was given us by Professor Savant and uses a Y-delta connection of power transformers and an open-delta connection of potential transformers for supplying the potential coils of the relays. This worked entirely satisfactorily giving the same results as in the previous test.

Test No. 7 was made with connections as shown in Hig. 25 This diagram of connections wese furnished us: by some engineers of the Gorgia Railway and Power Company and it represents the connections of Mo. I Bank at the Marietta, Georgia, 罳gh Tension Station. This uses a delta-F connection of power transformers: and an open-star connection of potential transformers for supplying the potential coils of the relays. The advantage of the open-star connection is that balanced voltages are obtained. The contacts opened with current flow in the right direction and closed with power flow in the opposite direction with about 10% power factor. We then tried the connection with a ground on the line side of the relays and the contacts closed as they should have done. We checked the current and voltage relations between the current

Fig. 23. Type C-R Relay Connections with $\Delta-Y$ Power Transformer between Line and Station.

Fig. 24. Type C-R Relay Connections with Y-A Power Transformer between Line and station.

In the current coil of the relay and the potential supplying the potential coil of the relay. The curreat was found to be leading approximately 28 degrees in all the relays with the power in the right direction and a unity power factor load which ehecks fairly closely with the value of 30 degrees claimed by the Westinghouse Company. With the power flowing in the opposite direction and a reactive load of about 10% power factor we obtained a current lag of approximately 56 degrees in the relays, as calculated from the wattmeter, voltmeter and ammeter readings. The power factor meter gave a value of 23 degrees: lag. Inasmach as the power factor meter is very offten off considerably, the value of 56 degrees: as calculated from the other meters is probably nearer thencorrect value.

In all the above tests except the first the relation between the current and voltage in the relays was approximately 28 degrees lead.

In the first test with the Westinghouse connections we could make the releys open with power flow in the right बirection by manipulation of the potential leads: but the power factor would

Fig 25 . Vector Diagrams for Connections on CR. Relays of Morietto Noil Bonk. Whose Sequench $3,2,1$ Vector Rotation os Shown
not theck anywhere near what it should be. Pys changing the potential transforier connections to open-delta the operation was satisfactory in every way.

TYPE CR WESTINGHOUSE OVERCURRENT DIRECTIONAL RELAYS

TRANSFORMER BANK NO. 1
MARIEPTA HIGH TENSION STATION

CHAPIER 5

DISCUSSION OF RESUETS

In our introduction we stated that it was our intention to verify existing theory on silngie phase short circuits and to determine if possible, the limits of its practical application and use.

Our results verify the existing theory for practical connections and assumptions in calculation, and we have achieved a condition which sets a limit wpon the use of the present theory, and indicates an avenue of investigation which if followed, would result in defining the exact conditions of application.

The thesig was divided into two main parts as Implied in the title. The first part, the investigation of singile phase short-circuits as indicated above, resulted in some very interesting imformation Which pointa the way to further more or less original research.

The second part, the investigation of relay connections and operation, resulted in some valuable द5") checks on existing methods of comeotion and indicated some inovations in methods of connection.

Test number one in the single phase ahortcircuit group, shows clearly that for the usual commercial type of hookoup, that the prevalent assumption as to inductive reactance being the only factor limiting: current flow on short-circuit is correct. This is accentuated by the fact that the transformers used had highly resistive windings as compared to their inductive reactance and in one bank, the reactance was negligible as compared to the resistance.

The values of short-circuit current were calculated by four methods as indicated in chapter three and the only predetermined values that cheeked the actual test values were those obtained in part 3 of test 1 where inductive reactance was assumed to the the only factor limiting current flow. This presents a very strong argument in favor of the
 accepted theory with respect to inductive parctance as the limiting factor on short-circuit.

Test Mo. 2 in the single phase short-circuit group resulted in some rather mystifying although important data. It indicates clearly that for the type of transformers used on the test, the special experimental low reactance type, the assumption that

Inductive reactance is the only factor limiting current flow on short-circuit is erroneous. The predetermined values in no way checked the experimental results. As is seen in chapter three, test number \mathbb{E}^{2} this is due in a great measure to the peculiarities of the transformer hook-up. This test is very important due to the fact that with the apparatus used and the type of hook-up used we have exceeded the limits of the theory for single phase short-circuits.

It is true that the results were obtained from a special case of hook-up and test, but it is the meeting and interlinking of the general case with the special case that usually determines the limiting factors and conditions of any theory and practice.

The results of this test show that further invemtigation along this line would result in much evidence as to the conditions under which the present theory of single phase short-circult calculation may be applied with safety and certalnty.

The authors regret the lack of time and sufficientIy delicate instruments to thoroughly investigate this phase of the problem.

Test number 3 of the single phase short-circuit section was productive of one fact. The threewinding transformer theory for tertiary connections under short-circuit conditions evidently does not hold for the ordinary two winding, split secondary type of transformer when used in this mamer. The authors have come to this conclusion after a considerable time has been spent in tosting and calculation In an attompt to apply the existing theory or to develop new relationships which would hold. It was: with real regret that the authors had to terminate this part of the investigation and proceed with the study of relay connection and operation.

The results obtained in the second part of the investigation, the relay tests, showed conclusively that for accurate predetermination of relay operation, great care mast be taken in deriving the type of connection used. Absolute determination of the phase rotation, definfte knowledge of instrument and transformer polarities and strict adherence to the diagram of eonnections as worked out ane imperative.

The work with relays showed that the diagrams supplied with relays cannot be relied upon implicitly. The connections for the runs in chapter 4 are correct theoretically and work out most satisfactorily in practice. From the tests it can be seen that if the connections are worked out consistently with polarities: and rotation taken into consideration satisfactory operation will be obtained with various types of transformer connections.

In connection with the statement of the engineers: of the Georgia Railway and Fower Company that trouble had been experienced in the operation of these relays at the Marietta High Tension Station, it would seem from our tests that the trouble must have been due to mechanical causes in the relays inasmach as our tests indicated that the relays would work under the extreme conditions usually met in practiee. The operator at the Marietta station stated that it was sometimes: necessary to take a pencil and touch the moving element of the relay so that it would function properly. Consequently the connections as used there are correct and that more consistent.results can only be obtained by an improvement in the mechanical design

BIBLIOGRAPHY

Calculation of SHIgle-Phase Short Gircuits by the method of symmetrical components by A. P. Mackerras, Gomeral Electric Review, April and July 1926.

Mothods of symmetrical Co-ordinates Applied to the solution of Polyphase Networks by Ge E. Foxetescue, Pransactions A. I. E. E. Wolume 37., Part 2, Page 102\%.

Theory of Threoceircuit Transformers by A. Boyajian, A. I. E. E. Journal April 1928.

Stingleaphase Short-circuit Calculations by W. W. Lewis, (Heneral Electric Review, July 1925, Page 487.

A Hew Short-circuit Calculating Trable lay W. W. Lewis, Goneral Electric Review, August 1920, Page 669.

Galaulation of Short-circuit Ground Gurrents on Three-phase Fower Networks by S. Bekkw, (Heneral Flectric Review, July 1985, Page 473.

(105)

of the relays.
The results on the whole were more than satiafactory practically and indicate decisively that there is much investigation and research along this line of endeavor as yet undone.

Fig. 21-Front and Side Sectional View of Low-Energy Type CO Over-Current Relay

CONSTRUCTION

Figure 18 shows the Low-Energy Type CO Relay with cover removed while figure 21 shows a cross section view. The construction of the magnetic element, the disc, the case and the cover are exactly the same as the Type CO Relay. The method of mounting the contacts is different, however, inasmuch as they are mounted on a separate shaft which is geared to the main disc shaft. With this arrangement a very small amount of energy is all that is necessary to cause the disc to rotate. The number of turns in the winding of both the main and the auxiliary coils is different from that on the standard energy Type CO Relay. The torque compensator is also omitted and the definite minimum time characteristic is obtained by having the disc run at synchironous speed with excessive overload. This is possible inasmuch as the gearing makes it necessary for the disc to make a number of revolutions before the contacts are closed.

OPERATION AND CHARACTER, ISTICS

The operation of the Low-Energy Type CO Relay is the same as that already described for the high energy type. Inasmuch as it requires such a low amount of energy for operation it is consequently much more sensitive than the standard type. The gearing makes it some-
what slower in resetting than the standard type of relay.

The inverse time characteristic and the definite minimum time are similar to those of the standard CO Relay. As will be noted by figure 22 showing the time current curves of the low energy relay, the curves are somewhat more inverse and do not flatten out as quickly as those of the standard Type CO.

The relay is also equipped with an internal contactor switch and it may be supplied with either single or double tripping circuits and with either 2 or 4 second minimum time characteristics.

Fig. 22-Current-Time Curves of Low-Energy Type CO Over-Current Relays

Fig. 23-Characteristic Curves lof Low-Energy Type CO Over-Current Relay, Showing the Burden Placed on the Current Transformer with Various Currents in the Relay Windings

INSTALLATION, ADJUSTMENT AND TESTING

The instructions for installing, adjusting and for the care and maintenance of the LowEnergy Type CO Relay are the same as those already given for the standard Type CO. Also the same general test information is applicable.

Fig. 24-Diagram of Internal Connections for Low-Energy Type CO Over-Current Relay

- The current tap values of the 4 to 12 ampere range are the same as the standard relay, namely, 4-5-6-7-8-10-12 amps. The tap values of the $1 / 2$ to $21 / 2$ amperes range are $.5-.6-.8-1.0-1.5-2.0-2.5$.

Type CR Directional Over-Current Relay

application

The line of Type CR Directional Over-Current Relays is designed to protect or disconnect transmission lines when there is a short circuit or other fault on the system of such a nature that the current flow is excessive in the direction for which the relays are connected to operate. In general practice the direction in which the current flows in order to have the directional relay trip is away from the station bus bars inasmuch as in most applications the relays are connected so as to hold their contacts open as long as the flow is toward the sub-station. The Type CR Relay may be depended upon to discriminate as to the direction of current flow under all conditions of low voltage which are likely to occur in cases of severe short circuits.

Parallel Transmission Lines-The Type CR Relays are suitable for use at the receiving end of lines where a fault on any line will cause the power to reverse and flow back to the point of the trouble on the defective line. Figure 25 shows a typical application of the directional over-current relay for the protection of parallel feeders.

Vector Relations of Current and Potential Circuits

Fig. 25-Ordinary Method of Connecting Type CR Directional Over-Gurrent Relayson Three-PhaseSystem. Voltage Vec-
tors shown. Connections give Current 30° lead at 100% P.F.

Fig. 26-Type CR Directional Over-Current Relay
Ring Systems-A ring system such as shown in figure 28 is similar to the case of two parallel feeders supplying a substation except that each feeder is made to loop through a number of substations. On such a system definite time limit directional over-current relays such as the Type CR must be used. The time limit of each successive relay is increased by a sufficient amount to allow time for the circuit breaker in the preceding substation to open. Relays applied on such a system are usually installed in such a way that at each substation the normal direction of power is assumed to be into the substation. The relays will trip only when the current is flowing out of a given substation and exceeds the amount for which the over-current element of the Type CR Relay is set to close its contact.

Fig. 28-Typical Ring System Protected by Means of Type CO and Type CR Relays

Fig. 27-Type CR Directional Óver-Current Rélay (Cover Removed)

Special Application-There are many special applications in which the Type CR Relay is used. Among these might be mentioned the cross connection system of protection as used on parallel feeders shown in figure 29. Another application is the use of the Type CR Duo-Directional Relay for the protection of two parallel feeders. A schematic diagram of this is shown in figure 30.

CONSTRUCTION

Figures 26 and 27 show the general appearance and arrangement of the parts of the Type CR Directional Relays. Each relay consists of two separate and distinct parts, excess current

Fig. 29-Diagram of Cross-Connected Type CR Relays for Parallel Lino Protection

Fig. 30-Diagram of Connections for Type CR Duo-Directional Relays for the Protection of Two Parallel Lines
element and the directional or wattmeter element. The over-current element is identical with the Type CO Overload Relay as already described, and is mounted in the lower part of the case with the wattmeter element mounted directly above it.

Directional Element-The wattmeter or directional element is composed of an electromagnet, the moving element, contact assembly, and mounting frame and bearings; mounted in the upper half of the relay case. The electromagnet resembles that of the standard Westinghouse Watthour Meter and operates in exactly the same way as the Watthour Meter element. The current coils are wound on the
two upper poles and the potential coil on the main lower pole.

Moving Parts-The moving parts of the directional element are practically the same as those already described under the Type CO Relay. The disc differs from that of the Type CO inasmuch as there are no holes punched in it and is copper. The special type of ball bearing as used in the over-current element is not used in the directional element but instead a rigid steel shaft with a hemispherical bottom rests on a sapphire cup jewel. At the top of the shaft is an adjustable pivot bearing. This construction gives a means of adjustment for end play and allows very little so that heavy short circuits will not cause undue vibration.

The moving element is carefully balanced and is controlled by a light spring so that its action in closing the directional contacts will be as nearly simultaneous with the reversal of current as possible. With the standard adjustment there should be practically no torque placed on the disc by the spring. The spring is used mainly for a current conductor for the moving contact.

Contact Assembly-The contact assembly consists of a stationary contact screw mounted and a moving contact spring mounted on an insulating sleeve on the disc shaft. The moving contact closes a circuit in one direction or both

Fig. 31-Front and Side Sectional View of Type CR Directional Over-Current Relay

Fig. 32-Internal Wiring Diagram of Type CR Relay Showing Standard Connections With Six Terminals. (Rear View)
directions of travel according to whether it is a uni-directional or a duo-directional relay. Its motion is exceedingly small, being only about $\frac{1}{32}$ of an inch either way. As shown by the wiring diagram in figures $32,33,34$, and 39 the contacts of the directional element are connected in series with those of the over-current element and the contactor switch as used in the Type CO Current Relay is so connected in the tripping circuit that the contacts are relieved of practically all duty.

Latest Design-In the latest design of the CR Directional Relay as shown in figure 26, the stationary contact or contacts as the case may be are made screw mounted and located in the front of the case instead of at one side as in the former design. The moving contact is spring mounted. In this design the contactor switch is located at the bottom of the case to the rear of the overload element thus insuring it against accidential tripping when the cover is being removed.

It is sometimes desired to install standard CR Directional Relays inasmuch as future additions to the system will make them necessary, but at the time of installation it is desired to have them operate as straight overload relays. With the new design of the

Fig. 33-Internal Wiring Diagram of Type CR Relay with Special Terminal in Trip Circuit between Elements (7 Terminals, 2 Contactor Switches)

Type CR this is easily accomplished inasmuch as the directional element contacts may be locked shut by closing the screw mounted stationary contact firmly against the moving contact. This eliminates the action of the directional element from the action of the relay as a-whole.

Fig. 34-Internal Wiring Diagram of Type CR Relay with Double-Trip Circuit (7 Terminals)

Westinghouse Induction Type Over-Current and Directional Over-Current Relays

OPERATION AND CHARACTERISTICS

The directional element of the Type CR Relay is so constructed that it is extremely sensitive and quick acting. It will close its contacts with a reasonable excess current flowing and with a voltage as low as one per cent of normal. The contacts of the directional element will only close, however, with the current flow in the direction for which the relay is connected to act. No amount of excess current flowing in the other direction will operate this element. As stated in the preceding paragraph the spiral spring on the directional element exerts practically no torque on the disc shaft, its main purpose being to conduct the current of the tripping circuit. In the unidirectional relays as soon as there is any current flowing in the proper direction there will be a torque exerted on the disc tending to hold the contacts open. With no current flowing in the line the directional element contact may close, but this is of no consequence, as the overload element contacts will remain open.

INSTALLATION

Caution-As already mentioned, too much care cannot be exercised in the handling of the relays, as, although they are of sufficiently rugged construction to stand all ordinary handling, they are sensitive instruments and will not stand the excessive bumps and knocks to which other apparatus is sometimes subjected.

Fig. 35-Type CR Diractional Over-Current Relay Connections with $Y-\triangle$ Power Transformer between Line and Station. Connections as shown give Current 30° lead at 100% P. F.

This scheme of connections requires three voltage transformers, but enables the standard $\mathbf{1 2 5}$-volt relays to be used.

Fig. 36-Proper Connections for Type CR Direction OverCurrent Relay used on Thres-Phase System with $\triangle-Y$ Power Transformers between Line and Substation.

If the relay is not already mounted on a slate panel when received it should be mounted by means of the terminal studs. Drilling plans for preparing the panel for mounting the relay are either supplied with the relay or may be obtained from the factory upon request.

After the relay has been permanently mounted it should be thoroughly cleaned by means of a small brush and cloth. The cover should be removed and the interior part of the relay carefully inspected for any damage which might have been done in shipment. This inspection should especially include a test of the moving parts to see that they have not become out of alignment and that there is no friction existing. The presence of friction can usually be determined by moving the disc with the hand and allowing it to return to the normal position. The auxiliary contactor switch plunger should also be moved up and down with the finger in order to insure against any sticking or friction.

CONNECTIONS

After the relay has been properly mounted as described above, connections should be made to terminals on the rear of the panel
either according to the diagrams of connections accompanying the relay or according to standard diagram as shown in figure 25. All connections made to the terminals should be well tightened and where it is necessary to make connections where there is no connecting stud all joints should be well soldered. Poor or loose connections are very often the cause of a great amount of trouble.

In applying the Type CR Directional Relays to polyphase systems consideration must be given to the varying effects of short circuits involving two or three or four conductors or to ground on the phase relation of the current and the voltage applied to the relay. The characteristics of the ordinary wattmeter element are such that the disc will reverse its direction or rotation when the phase relation between the voltage and current becomes 90 degrees or greater. As many faults very greatly disturb the relation of the voltage and current, care must be taken to connect the directional relay in such a way that the voltage and current phase relation may never become more than 90 degrees apart.

Connections must therefore be made so that with unity power factor on the line the current in the relay directional element will be

30 degrees ahead of the potential supplying the directional element. This will allow the current to lag a considerable amount during time of short circuit without placing a 90 degree angle between the voltage and current. This will enable the relay to operate properly upon the occurrence of unbalanced short circuits such as results where only two wires of a three phase system are short circuited and also on other faults of a similar nature.

The following methods should be used in checking up the correct connections to the directional element of the relay.

Wattmeter Method-With the power flowing in either direction, if the current is lagging, so that power factor is between 100 and 50 per cent, connect the current coils of a single phase wattmeter in series with the current winding of the relay. Then select a pair of voltage leads which give the highest reading on the wattmeter. The two leads should be connected to the relay potential terminal. Inspect the contact of the directional element, which should be open when the power is flowing towards the bus-bars. If the contacts are closed when the current flows towards the bus bars then the potential leads of the relay should be reversed.

NOTE-These connections require voltage transformers with 200 volt secondary, the star voltage on the relay in such case being 116-volts. If standard 110 -volt secondary transformers are used, special 58-volt relays or extra 58-116-volt step up transformers are necessary.

Fig. 37-Proper Connections for Type CR Directional Over-Current Relay when used on Three-Phase Syatem with $\triangle-\mathcal{Y}$ Power Transformers between Line and Sub-station. Connections use only Two Voltage Transformers, and as ahown give current 30° iead at 100% P. F.

Power Factor Meter Meth-od-A second method is to connect the current coils of a single phase power factor meter in series with the current coils of the relay. A pair of potential leads are then selected which will give 86.6 per cent power factor leading on the power factor meter when the line power factor is 100 per cent. These two leads should be connected to the relay potential terminals. The upper contact should be inspected as before as mentioned in the preceding paragraph and checked for proper operation.
Phase Meter Method-A third method of checking the proper connections of the relay is by means of the Westinghouse Phase Meter. It is a portable instrument built on very much the same principle as a power factor meter but

Fig. 38-Portable Phase Indicator for Use in Making Connections
calibrated to read in degrees and show precisely the phase relation between any current and voltage sources to which it may be connected. Full directions for the use of the portable phase meter are supplied with the instrument, which is shown in figure 38 .

Characteristics-The operating characteristics of the over-current element are the same as those on the Type CO Relay. The same time current curves therefore apply as shown in figure 11.

With the contacts of the directional element and those of the overload element connected in series three conditions are necessary before the relay will completely close the tripping circuit.
(1) Excess current must be flowing;
(2) In the direction for which the relay is connected to operate.
(3) For a length of time sufficient to close the excess current element contacts.
The sensitivity of the directional element is such that it may close its contacts on momentary surges of current in the reverse direction, but unless the excess current is maintained a sufficient length to operate the over-current element the tripping circuit is not completed. Conversely, the contacts of the overload element may be closed by excess current flowing in the normal direction but the directional element contact will remain open.

Type CR Duo-Directional Relays-The Type CR Duo-Directional Relays as already

Fig. 39-Internal Wiring Diagram Type CR Duo-Directional Relay. (7 Terminals, 2 Contactor Switches)
mentioned under special applications are used in cross connected relay schemes where practically no current flows in the windings unless trouble exists. This relay is exactly the same as the standard single contact relay except that there is a stationary contact on each side of the moving contact, thus allowing the tripping circuit to be made in either direction. The contact arrangement, spiral spring, and all mountings are exactly the same as in the standard relay. Under ordinary conditions either contact may be closed by the floating of the disc in either direction, but under such conditions the over-current element contact will remain open. After any faulty condition, however, the flow of current will be such that torque will be produced in the directional disc to close the contact in the proper direction and thus have the tripping circuit completed as soon as the over-current element contacts are closed.

CURRENT AND TIME SETTINGS

Current Setting-These settings of the Type CR Directional Over-Current Relay are practically the same as those already described for the Type CO Over-Current Relay. The only possible current adjustment of the CR Relay is that of the over-current element which is obtained by changing the current screw in the contact block located above the element prop-
er. Full directions for the proper setting of the over-current elements have been given. See pages 8 and 9 .

Caution-Care should be taken whenever the current adjustment is being changed that the secondary circuit of the current transformer is not opened. When changing the current screw from one current tap hole to another the transformer secondary circuit may be closed either by shorting the current terminals on the rear of the relay, (the two lower current terminals) or by inserting the extra screw in the tap hole desired before removing the screw from the existing setting. One extra screw for this purpose is supplied in a hole in one of the bosses on which the mounting frame is fastened.

Time Setting-The time setting of the over-current element of the Type CR Relay is exactly the same as that already described for the Type CO. The directional element contacts are so arranged that they close almost instantly when there is a reversal in the flow of current so that all time adjustments for the complete operation of the relay are taken care of by the time adjustment of the overload element.

CARE AND MAINTENANCE

Initial Test-After the relays have been properly installed, they should be given an initial inspection and test to insure that the operation of the relay is going to be as desired. Inspect the moving parts of both the over-current and the directional element and also the plunger of the auxiliary contactor switch to see that no sticking or unnecessary friction exists. The discs of both elements should be turned through their complete travel and it should be noted that they run true, or, in other words, remain at all points in their travel approximately in the center of the air gap through which they pass. The discs are carefully adjusted at the factory so that they rotate exactly in the center of the air gap and such a condition is necessary for the proper operation of the relay.

The plunger of the auxiliary contactor switch should be moved up and down with the finger in order to insure it against sticking. It should be observed that the Type CR Duo-

- Directional Relay contains two auxiliary contactor switches, one being connected to shunt each of the directional element contacts and the over-current contacts.

Electrical Test-The initial electrical test of the relay varies somewhat with different operating companies. The operation of the directional element, however, should be checked out to insure that it closes the contacts when the current is flowing in the desired direction. This check, of course, can be made by observing the action of the directional element when there is power flowing in the line. For instance, if the directional element is connected to close its contact whenever the current is flowing away from the substation bus bars, then with the current flow towards the substation bus bars the directional element contacts should remain open. 'With the current flow in the opposite direction the contact should close immediately even upon a very small voltage. The over-current element may be tested as already described under testing in the Type CO Relay. See pages 10 and 11.

Routine Test-In installations of any importance, it is the common practice to subject all relays to periodic test. These tests are usually much the same as the initial test and it is recommended that each test be made to include all the features as described in the initial test. As noted under the testing of the Type CO Relay, it is also recommended that record cards be kept whereon all information gained at each test can be recorded and thus a life record of the relay kept readily accessible.

Inspections and Care-Inasmuch as the working part of all relays are inclosed in a practically dust-proof case, few inspections are necessary other than those which may be made at the time of the routine testing. As the operation of the ordinary protective relay is rather infrequent, and the construction is relatively rugged, little care is necessary after the initial installation is properly made.

ADJUSTMENTS

The following adjustments are those made in the factory when the relay is assembled and the same instructions should be followed out in case occasion arises where any adjustments of the mechanical features of the relay are necessary.

Over-Current Element-The over-current element of the Type CR Directional Over-Current Relay is tested and calibrated in the same way as the Type CO Over-Current Relay. All mechanicall adjustment and current time settings are therefore the same for the Type CR

Westinghouse Induction Type Over-Current and Directional Over-Current Reläys

over-current element as for the Type CO Over-Current Relay. See pages 8, 9 and 10.

DIRECTIONAL ELEMENT

Adjustment of Jewel Screws-The top jewel screws should be turned down far enough to reduce the play of the disc shaft to a minimum. These screws should not, however, be tightened so much that friction is introduced. With some care the jewel screw may easily be adjusted so that no appreciable end play can be detected by pushing up and down on the edge of the disc and at the same time no friction will be present. The lock nut on the jewel screw should be well tightened after any adjustment has been made.

The proper adjustment of the jewel screw is very important and great care should be taken to insure that the disc will vibrate the minimum amount on high current.

Spiral Spring Adjustment-The spiral spring should be so adjusted that the contacts are just barely held open with zero current and voltage.

Contact Adjustment-In the latest design of directional element contacts, the contact stop should be so adjusted that the moving contact arm is in a central position, and then
the fixed contacts should be adjusted so that. there is a $\frac{1}{32}$ " gap between the contacts. For the duo-directional type relay, the spring should be so adjusted that the movable contact floats in the middle position and then the fixed contact should be adjusted to give approximately a ${ }_{\gamma^{3} s^{\prime \prime}}$ gap total.

Electrical Test-The directional element disc should not tend to creep in either direction when 30 amperes is passed through the winding with zero voltage on the potential coil, and the spring disconnected. If the disc creeps in either direction on current alone the position of the magnetic shunts situated above the disc on either side of the mainpole should be change until the disc stops creeping. This adjustment is manipulated with a screw driver in the same manner as the light load adjuster on the Type OA Watthour Meter. Turning either one of the adjusters in toward the mainpole causes the movable contact to move in the direction that the adjuster is being turned.

With one volt impressed on the voltage coil of the directional element, and 40 amperes or less flowing in the series coil, the contact should close on a reversal of direction of the current flow, and remain open on the normal direction of current flow.

Type CRA Directional Over-Cúrrent Relay

The Type CRA Relay consists of the standard Type CR directional element with the Type COA over-current element instead of the standard Type CO over-current element. Its characteristics and operation are therefore exactly the same as the Type COA Relay. Its application is also the same as the standard Type CR Relay where it is desired to have supervision of the current flowing in the relay circuit without going to the extent of supplying separate amrneters for the circuit.

For the calibration of the current indicating elements see description under Type COA Relay. See pages 13 and 14.

Fig. 40-Type CRA Directional Over-Current Relay

Low-Energy Type CR Directional Over-Current Relay

APPLICATION

The Low-Energy Type CR Directional Over-Current Relay consists of the standard directional element and the low-energy Type CO over-current element mounted in the
same case. The relays are made in two standard ranges, each being suitable for a different application as follows:

The relay having a current range of 4 to 12 amperes is used for line sectionalizing to

