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SUMMARY

Today’s cybercriminals must carefully manage their network resources to evade

detection and maintain profitable businesses. For example, a rogue online enterprise has

to have multiple technical and business components in place, to provide the necessary in-

frastructure to keep the business available. Often, cybercriminals in their effort to protect

and maintain their valuable network resources (infrastructures), they manipulate two fun-

damental Internet protocols; the Domain Name System (DNS) and the Border Gateway

Protocol (BGP).

A popular countermeasure against cybercriminal infrastructures are Autonomous Sys-

tems (AS) reputation systems. Past research efforts have developed several AS reputation

systems that monitor the traffic for illicit activities. Unfortunately, these systems have se-

vere limitations; (1) they cannot distinguish between malicious and legitimate but abused

ASes, and thus it is not clear how to use them in practice, (2) require direct observation of

malicious activity, from many different vantage points and for an extended period of time,

thus delaying detection.

This dissertation presents empirical studies and a system that help to counteract cy-

becriminal infrastructures. First, we perform empirical studies that help to advance our

understanding, about how these infrastructures operate. We study two representative types

of infrastructures: (1) fast-flux service networks which are infrastructures based on DNS

manipulation, (b) malicious ASes (hubs of cybercriminal activities) which are infrastruc-

tures that are primarily based on BGP manipulation. Second, we build on our observations

from these studies, and we design and implement, ASwatch; an AS reputation system that,

unlike existing approaches, monitors exclusively the routing level behavior of ASes, to ex-

pose malicious ASes sooner. We build ASwatch based on the intuition that, in an attempt

xi



to evade possible detection and remediation efforts, malicious ASes exhibit agile routing

behavior (e.g. short-lived routes, aggressive re-wiring). We evaluate ASwatch on known

malicious ASes, and we compare its performance to a state of the art AS reputation system.

xii



CHAPTER I

INTRODUCTION

1.1 Introduction

Today’s cybercriminals must carefully manage their network resources to evade detection

and maintain profitable businesses. For example, a rogue online enterprise has to have mul-

tiple technical and business components in place, to provide the necessary infrastructure to

keep the business available and profitable. Some elements of the technical components,

may include botnet services, domain registration services, name servers, and hosting or

proxy services. Cybercriminals take measures to protect these resources; for example, bot-

masters protect their botnet command-and-control (C&C) servers from take-downs, spam-

mers secure spam delivery by rotating IP addresses to evade trivial blacklisting, and illicit

business operators protect scam hosting services by setting up proxies, etc. We refer to the

distribution, maintenance and protection of these resources as operations. We refer to the

network resources that support these operations as infrastructure.

For example, Figure 1 illustrates the infrastructure that supports the operations of: (1)

an illicit pharmaceutical business (Figure 1(b)) and (2) a malware which attacks point of

sales (PoS) systems (Figure 1(a)). In the case of the illicit pharmaceutical business, the

infrastructure involves a spamming botnet, servers that provide domain registration, name

service, web hosting and payment. In the case of the PoS malware, named Poseidon, the

malware targets PoS systems, and infects machines to access the memory for credit card

information, which exfiltrates at a later time. The infrastructure includes a command and

control (C&C) server, file servers and exflitration servers.

Often, cyber-criminals in their effort to maintain and protect their infrastructure, they

manipulate two fundamental internet protocols that are critical for connectivity, namely the

Domain Name System (DNS) and the Border Gateway Protocol (BGP).

Examples of how cybercriminals manipulate DNS to maintain and protect their infras-

tructures, include DNS based botnets, and scam hosting using fast flux service networks

(FFSN). Figure 2(a) shows an example infrastructure of a FFSN. Somewhat similar to a

technique used by content distribution networks (CDNs) such as Akamai, a fast-flux do-

main is served by many distributed machines and short time-to-live (TTL) values are used

to quickly change a mapping between a domain and an IP address. However, the hosts

involved for serving a fast-flux domain are botnet zombie drones and instead of hosting

1
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Figure 1: Example cyber-criminal infrastructures; 1(a) illustrates the poseidon malware
infrastructure as described by Cisco security blog post [18], 1(b) illustrates the infrastruc-
ture involved to support an illicit pharmaceutical business, as described by [62].

actual content, these zombies often act as front-end proxies that relay messages between
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a client and a mothership node. Consequently, using this fast flux technique, cybercrim-

inals can easily throw in and out a large number of compromised hosts as needed while

effectively hiding their mothership node.

Examples of how cybercriminals manipulate BGP to maintain and protect their infras-

tructures, include short-lived prefix announcements to perform an illicit operation (e.g.large

volumes of spam, prefix hijacking), hosting their services in a dedicated AS (called bullet-

proof AS) which is often connected to a masking upstream provider. Figure 2(b) shows

an example of the latter case. We show the upstream and downstream connectivity of a

crime-friendly AS, Troyak, around the time it was reported in a blog. Before the report, it

was connected with ASes Root, Ihome, and Oversun-Mercury. After the blog report, AS

Troyak lost all of its upstream providers and relied on a peering relationship with AS Ya

for connectivity. After the report, AS Troyak and its customers went offline. We refer to an

AS as malicious, if it is managed and operated by cybercriminals, and if its main purpose is

to support illicit network activities (e.g., phishing, malware distribution, botnets). In con-

trast, we refer to an AS as legitimate, if its main purpose is to provide legitimate Internet

services. In some cases, a legitimate AS’s IP address space may be abused by cybercrimi-

nals to host malicious activities (e.g., sending spam, hosting a botnet command-and-control

server). Such abuse is distinct from those cases where cybercriminals operate and manage

the AS.

1.1.1 Challenges of defenses against cyber-criminal infrastructures

We describe the challenges that researchers face, to design defenses against cybercriminal

infrastructures. These challenges motivate the measurement studies that we perform, and

the detection system that we develop in this dissertation.

Distinguishing between malicious and abused ASes.
A countermeasure against cybercriminal infrastructures are AS reputation systems. The

community has developed several AS reputation systems that monitor data-plane traffic

for illicit activities. Existing AS reputation systems typically monitor network traffic from

different vantage points to detect the presence of either malware-infected machines that

contact their C&C servers, send spam, host phishing or scam websites, or perform other

illicit activities. These systems establish AS reputation by measuring the “density” of ma-

licious network activities hosted within an AS. For instance, FIRE [101] tracks the number

of botnet C&C and drive-by malware download servers within an AS. ASes that host a

large concentration of malware-related servers are then assigned a low reputation. Simi-

larly, Hostexploit [35] and BGP Ranking [12] compute the reputation of an AS based on

data collected from sources such as DShield [26] and a variety of IP and domain name

3
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BGP manipulation

Figure 2: Cyber-criminals manipulate critical Internet protocols to maintain and protect
their infrastructures. Examples of DNS 2(a) and BGP 2(b) manipulation.

blacklists.

Unfortunately, these existing AS reputation systems have a number of limitations:

(1) They cannot distinguish between malicious and legitimate but abused ASes. Legitimate

ASes often unwillingly host malicious network activities (e.g., C&C servers, phishing sites)

simply because the machines that they host are abused. For example, AS 26496 (GoDaddy)

and AS 15169 (Google) repeatedly appeared for years among the ASes with lowest reputa-

tion, as reported by Hostexploit. Although these ASes are legitimate and typically respond

to abuse complaints with corrective actions, they may simply be unable to keep pace with

the level of abuse within their network. On the other hand, malicious ASes are typically

4



unresponsive to security complaints and subject to law-enforcement takedown. (2) Because

of the inability to distinguish between malicious and legitimate but abused ASes, it is not

clear how to use the existing AS rankings to defend against malicious ASes. (3) Existing

AS reputation systems require direct observation of malicious activity from many different

vantage points and for an extended period of time, thus delaying detection.

Limitations of defenses against DNS-based infrastructures.
In the case of infrastructures that are based on DNS manipulation, most defense ap-

proaches have naturally focused on exposing the associated domain names. Unfortunately,

DNS-based infrastructures are highly agile, and they often exhibit high ”churn” rates. For

example a botnet may iterate over thousands of domains names and IP addresses over the

course of a few days [88]. Domain names are a cheaper resource in comparison to IP ad-

dresses [71,72], and thus we expect IP addresses to be ”consumed” at a lower rate than the

associated domain names. Thus, focusing primarily on the domain names, even though it

is effective for early exposure of malicious domains names, it maybe not enough to keep

up with the hosting IPs of DNS-based infrastructures.

1.1.2 Understanding malicious infrastructures and designing control-plane based
defenses.

Thesis Statement: This dissertation counteracts cybercriminal infrastructures by targeting

malicious ASes, which are hubs of cybercriminal operations. We demonstrate that it is

possible to achieve more accurate and earlier detection of malicious ASes, by monitoring

the control-plane AS behavior. We perform empirical studies that help to advance our

understanding of how cyber-criminals manipulate two critical Internet protocols - DNS and

BGP - to maintain and protect their infrastructures. We then build on this understanding,

to design and implement an AS reputation system, to expose malicious rather than abused

ASes.

This dissertation makes the following contributions in defense of the thesis statement:

• We present an empirical study of the dynamics of fast-flux service networks - a rep-

resentative DNS based infrastructure - as they are used to host point-of-sale sites for

email scam campaigns. We actively monitor the DNS records for URLs for scam

campaigns received at a large spam sinkhole over a one-month period to study the

rates of change in fast-flux networks, the locations in the DNS hierarchy that change,

and the extent to which the fast-flux network infrastructure is shared across different

campaigns.

• We present the first systematic study of the re-wiring dynamics of malicious ASes.
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We track the ASes that were listed by Hostexploit over a period of two years and

compared their AS-level re-wiring dynamics with non-reported ASes. Using a pub-

licly available dataset of Customer-Provider (CP) relations in the Internets AS graph,

we study how interconnection between autonomous systems evolves, both for ASes

that provide connectivity for attackers and ASes that were not reported as malicious.

• We present a fundamentally different approach to establishing AS reputation. We

design and implement a system, ASwatch, that aims to identify malicious ASes using

exclusively control-plane data (i.e., the BGP routing control messages exchanged

between ASes using BGP). Unlike existing data-plane based reputation systems,

ASwatch explicitly aims to identify malicious ASes, rather than assigning low repu-

tation to legitimate ASes that have unfortunately been abused.

We now elaborate on the contributions:

Understanding the dynamics of FFSN, a DNS based infrastructure. We study the

roles of fast-flux nodes in hosting different parts of the infrastructure (e.g., authoritative

name server, Web server, or spammer) and how these roles evolve over time. We study:

(a) the rates at which fast-flux networks redirect clients to different authoritative name

servers, or to different Web sites entirely. (b) The extent to which individual fast-flux

networks “recruit” new IP addresses and how the rate of growth varies across different

scam campaigns. (c) the location of change; the extent to which fast-flux networks change

the Web servers to which clients are redirected. (d) the use and sharing of infrastructure.

We study the geographical and topological locations of fast-flux hosts (both authoritative

nameservers and Web servers), as well as how fast-flux infrastructure is shared over time,

across scam campaigns, and between spamming and hosting infrastructure.

The fist systematic study to understand the control-plane behavior of malicious ASes.
We track reported ASes and non-reported ASes, with the goal of improving our understand-

ing of how malicious networks exploit interconnection through different upstream ASes to

cover their traces. Rather than attempting to detect any individual type of attack (e.g., spam,

denial of service), we characterize the re-wiring activity of malicious networks that are pri-

marily responsible for attacker activities. This preliminary study motivated us to design

ASwatch.

Designing control-plane features to capture the behavior of malicious ASes. The

main intuition behind ASwatch is that malicious ASes may manipulate the Internet rout-

ing system, in ways that legitimate ASes do not, in an attempt to evade current detection
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and remediation efforts. For example, malicious ASes “rewire” with one another, forming

groups of ASes, often for a relatively short period of time [49]. Only one AS from the

group connects to a legitimate upstream provider, to ensure connectivity and protection for

the group. To capture this intuition, we derive a collection of control-plane features that is

evident solely from BGP traffic observed via Routeviews [86]. We identify three families of

features that aim to capture different aspects of the “agile” control plane behavior typical of

malicious ASes. (1) AS rewiring captures aggressive changes in AS connectivity; (2) BGP

routing dynamics capture routing behavior that may reflect criminal illicit operations; and

(3) Fragmentation and churn of the advertised IP address space capture the partition and

rotation of the advertised IP address space.

An AS reputation system to expose malicious ASes, rather than abused ASes. We

present ASwatch, an AS reputation system that aims to identify malicious ASes by moni-

toring their control plane behavior. We evaluate ASwatch on real cases of malicious ASes.

We collect ground truth information about numerous malicious and legitimate ASes, and

we show that ASwatch can achieve high true positive rates with reasonably low false pos-

itives. We evaluate our statistical features and find that the rewiring features are the most

important. We compare the performance of ASwatch with BGP Ranking, a state-of-the-art

AS reputation system that relies on data-plane information. Our analysis over nearly three

years shows that ASwatch detects about 72% of the malicious ASes that were observable

over this time period, whereas BGP Ranking detects only about 34%.

Practical help for network operators to defend against malicious traffic: Our work

is motivated by the practical help that an AS reputation system, which accurately identifies

malicious ASes, may offer: (1) Network administrators may handle traffic appropriately

from ASes that are likely operated by cyber criminals. (2) Upstream providers may use

reliable AS reputation in the peering decision process (e.g. charge higher a low reputation

customer, or even de-peer early). (3) Law enforcement practitioners may prioritize their

investigations and start early monitoring on ASes, which will likely need remediation steps.

1.1.3 Outline

This thesis is organized as follows: Chapter 2 discusses related work. Chapters 3 and 4

present measurement studies of cyber-criminal infrastructures that rely on DNS and BGP

manipulation, respectively. Chapter 5 presents ASwatch, an AS reputation system that can

help to defend against malicious ASes. Chapter 6 discusses general lessons we learned,

and future work.
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CHAPTER II

RELATED WORK

In this chapter, we review measurement studies of FFSN, defenses against DNS-based

infrastructures, studies of the structure of online crime, studies of “unclean” ASes and

existing AS reputation systems, as well as applications of machine learning and signal

processing to detect BGP anomalies. Also, we describe how our work relates to these

studies.

2.1 Measurement studies of FFSN

The operation of fast-flux service networks was first described in detail by the Honeynet

Project [102]. By closely monitoring the behavior of fast-flux agents executed in test envi-

ronments, the report showed two different types of fast-flux service networks—single-flux

and double-flux. Their findings provide insights on the changing nature of fast-flux service

networks and lead us to design the multi-level measurement method that form the bases of

our study of dynamics of scam infrastructure.

Holz et al. [33] analyzed fast flux domains using periodic DNS lookups and presented

the characteristics focusing on the diversity of A records and the network locations (AS

numbers) that these A records reside at. They also showed various analysis results includ-

ing the percentage of scam campaigns leveraging fast-flux service networks and the rate at

which new machines are added to fast flux domains for a few selected ones. In addition

to these measurements, we measured the change of fast flux domains at multiple levels

of the DNS hierarchy (A records, NS records, and IPs of NS records) and found many

different structures of fast-flux service networks, some of which are previously unknown.

We also present the geographic and topological distribution of flux hosts, the prevalence

resource sharing found across different scam campaigns, and the relationship between fast-

flux agents and various blacklists.

Previous work observed fast-flux domains via DNS measurement [111]. From the anal-

ysis of passively collected DNS responses at a university gateway, Zdrnja et al. observed

an instance of fast-flux domain that was short lived (only for three days) and resolved to

80 different IP addresses [111]. In comparison, our study actively probes a large number

of suspicious DNS domains to profile different types of fast-flux networks over a longer

period of time.
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Our primary data is drawn from emails collected at a spam trap. Spam traps provide

a window to glimpse into the underlying network operations of online scammers who use

bulk email for solicitation. Because of relatively easy deployment and data processing,

many previous studies used email collected at spam traps for measuring the effectiveness of

DNS-based blacklists [44], studying the network-level behavior of spammers [82], charac-

terizing the scam hosting infrastructure [6], and studying the dynamism of the IP addresses

of spammers [109]. Others have used passive DNS monitoring to study the dynamics of

botnets [22, 79], which are now believed to host fast-flux networks.

Content-based scam campaign clustering is a commonly used technique for analyzing

spammer behavior. Anderson et al. used image fingerprints to group similar Web pages [6].

Holz et al. used strings found from HTML documents for grouping [33]. Pathak et al. pro-

pose that spammers could be clustered into campaigns by looking for relationships across

SMTP connections [76]. In comparison, we used image comparison in addition to string

matches of the names of embedded files of each URL. Although the similarity metric em-

ployed in each work is slightly different, we believe that clustering results would not bear

too much difference.

2.2 Defenses against FFSN and DNS-based cyber-crminal infrastruc-
tures

FFSN detection systems: Earlier approaches, [33, 73, 75] studied fast-flux domains ad-

vertised through spam email messages and attempted to detect them as follows: collected

spam emails, extracted the urls advertised through these messages, and extracted features

features from the urls, then performed active probing (repeated DNS queries to collect the

resolved IP addresses) and classified each individual domain as fast-flux.

In contrast, Fluxbuster [77] was based on passive analysis of recursive DNS traces

collected from large ISPs, to classify entire groups of domains into fast-flux or non-fast-

flux. More specifically, they deployed a sensor in front of the recursive DNS server of large

ISPs, to passively monitor the DNS queries and responses from the clients, and applied

prefiltering rules to selectively store information about potential fast-flux domains, into a

central DNS data collector. Finally, they clustered relative domains together, they extracted

features from these groups (e.g.total number of resolved IPs, diversity of BGP prefixes),

and classified each group of domains as likely fast-flux or not.

Botnet takedowns: Nadji et al [71] proposed a methodology to perform effective botnet

takedowns. The authors enumerate the C&C infrastructure (IP addresses that host C&C
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domains from the same botnet). They perform the enumeration using: 1) passive DNS data

to identifying historic relationships between domain names and hosts, and 2) interrogating

malware samples. In earlier work, Nadji et al [72] studied cyber-criminal infrastructures

using graphs; the authors considered as nodes the IP addresses of hosts that perform mali-

cious activities (spam, scam hosting, C&C domain) and draw an edge between two nodes

if they have found historic relationship based on passive DNS data. Then, they applied

community detection algorithms to identify parts of the graph which have are densely con-

nected, and hence likely to belong to the same cyber-criminal network. They also studied

the importance of different parts of the networks, with respect to volumes of DNS queries

performed by the victim clients.

DNS reputation systems: Antonakakis et al [8–10] and Bilge et al [14] developed DNS

reputation systems. These systems build models of known legitimate domains and mali-

cious domains, to compute a reputation score for unknown domains. They primarily rely on

the following types of features: network-based features (e.g.total number of IPs historically

as sociated with a domain), zone-based features (e.g.distinct TLDs, frequency of different

characters in the domain string), and evidence-based features (e.g.distinct malware samples

that contacted the domain or the hosting IP).

2.3 Measurement studies and defenses against malicious networks

Studies of “unclean” ASes. Previous studies have attempted to identify “unclean” ASes,

which are ASes with a high concentration of low reputation IP addresses. In contrast, we

attempt to understand the behavior of ASes that are controlled and managed by attackers,

rather than ASes which are heavily abused. Collins [20] first introduced the term network

uncleanliness as an indicator of the tendency for hosts in a network to become compro-

mised. They gathered IP addresses from datasets of botnets, scan, phishing, and spam

attacks to study spatial and temporal properties of network uncleanliness; this work found

that compromised hosts tend to cluster within unclean networks. Kalafut et al. [45] col-

lected data from popular blacklists, spam data, and DNS domain resolutions. They found

that a small fraction of ASes have over 80% of their routable IP address space blacklisted.

Konte et al. [49] studied ASes that are reported by Hostexploit and how they changed their

upstream connectivity. Johnson et al. introduced metrics for measuring ISP badness [42].

Moura et al. studied Internet bad neighborhoods aggregation. Earlier papers have looked

into IP addresses that host scam websites or part of spamming botnets are organized intro

infrastructures [17,30,110]. Finally, Ramachandran et al. found that most spam originates
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from a relatively small number of ASes, and also quantified the extent to which spammers

use short-lived BGP announcements to send spam [80, 81]. These studies suggest that it is

possible to develop an AS reputation system based on analysis of control-plane features,

which is the focus of our work.

AS reputation systems . The state of the art in AS reputation systems is to use features

that are derived from data-plane information, such as statistics of attack traffic. Current

systems correlate data from multiple sources such as spam, malware, malicious URLs,

spam bots, botnet C&C servers, phishing servers, exploit servers, cyber-warfare provided

by other organizations or companies. Then, then rank ASes based on the concentration of

low reputations IP addresses. Organizations, such as Hostexploit [90], Sitevet [90], and

BGP Ranking [12] rate each AS with an index based on the activity of the AS weighted

by the size of its allocated address space. FIRE [101] examines datasets of IRC-based bot-

nets, HTdetection-based botnets, drive-by-download and phishing hosts and scores ASes

based on the longevity of the malicious services they host and the concentration of bad

IP addresses that are actively involved. ASMATRA [107] attempts to detecting ASes that

provide upstream connectivity for malicious ASes, without being malicious themselves.

Zhang et al. [113] find that there is a correlation between networks that are misman-

aged and networks that are responsible for malicious activities. The authors use a misman-

agement metric to indicate which ASes may be likely to exhibit malicious behaviors (e.g.

spam, malware infections), which does not necessarily indicate if an AS is actually oper-

ated by cyber-criminals or not. In contrast, we focus on detecting ASes that are operated

by attackers, rather than ASes that are mismanagement and likely abused. Also, [113] ex-

amined short-lived BGP announcements as an indication of BGP misconfigurations. Even

though we also examine the duration of prefix announcements, this is only one of the fea-

tures we use to capture control plane behavior. Our analysis shows that this feature alone

is not enough to distinguish between legitimate and malicious ASes.

Roveta et al. [87] developed BURN, a visualization tool, that displays ASes with ma-

licious activity, with the purpose to identify misbehaving networks. In contrast to these

reputation systems that rely on data-plane observations of malicious activity from privi-

leged vantage points, ASwatch establishes AS reputation using control-plane (i.e., routing)

features that can be observed without privileged vantage points and often before an attack.

Machine learning and signal processing approaches. These approaches detect BGP

anomalies (e.g., burstiness), with the goal to help system administrators diagnose problem-

atic network behaviors, but they do not provide a connection between BGP anomalies and
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criminal activity. In contrast to these approaches, ASwatch attempts to capture suspicious

control-plane behavior (e.g., aggressive change of connectivity, short BGP announcements)

with the goal to detect malicious ASes. Prakash et al. developed BGPlens, which mon-

itors anomalies by observing statistical anomalies in BGP updates based on analysis of

several features, including self-similarity, power-law, and lognormal marginals [78]. Sim-

ilarly, Mai [66], Zhang [112] and Al-Rousan [3] have examined BGP update messages

using tools based on self-similarity and wavelets analysis hidden Markov models to design

anomaly detection mechanisms.

2.4 Designing disincentives for cyber-criminal activities

Leontiadis et al. [57] studied empirically different types of online criminal networks with

the goal to: a) identify common business characteristics across cyber-criminal networks,

and b) identify common economic pressure points that may help to make cyber-crime less

profitable. More specifically, Leontiadis et al. studied the following types of criminal

activities: 1) online prescription drug trade [59–61], 2) exploitation of trending news topics

and of prescription drugs [69], and 3) WHOIS misuse [58].

The authors empirically identified the following common components across these

three types of criminal businesses: 1) search engines; they play an important role providing

the means for cyber-criminals to engage victims, 2) payment networks; they provide means

of monetization of the activities, 3) registrars and internet service providers; they provide

the necessary resources, 4) law enforcement: the authors suggest that international cooper-

ation along with targeted efforts may have the best results for taking down cyber-criminal

business that span across countries and hosting providers.
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CHAPTER III

FAST FLUX SERVICE NETWORKS: DYNAMICS AND ROLES IN
HOSTING ONLINE SCAMS

3.1 Introduction

Online scams require victims to contact a point-of-sale Web site, which must be both highly

available and dynamic enough to evade detection and blocking. Until recently, many sites

for a scam were hosted by a single IP address for a considerable amount of time (i.e., up

to a week) [6]; unfortunately, the relatively static nature of these sites made it possible to

block scams with simple countermeasures, such as blocking the IP address. To maintain

sites that are both dynamic and highly available, cybercriminals are increasingly using fast

flux—a DNS-based technique used by botnets to rapidly change these delivery sites.

In this chapter, we find that the scam infrastructure has become considerably more so-

phisticated and dynamic. Indeed, in this chapter we show that attackers have developed a

sophisticated infrastructure for directing victims to scam sites that move around frequently

to evade detection and blocking. Attackers that mount scam campaigns appear to be mak-

ing extensive use of fast-flux service networks [40], which can dynamically (and quickly)

redirect clients to different sites for hosting scams. The machines that host content are typ-

ically ephemeral (i.e., they may simply be compromised machines) and distinct from the

controllers that provide content and control redirections.

This chapter studies the dynamics of fast-flux service networks as they are used to host

point-of-sale sites for email scam campaigns. We study the scam sites that were hosted by

more than 350 domains as part of 21 scam campaigns in over 115,000 emails collected over

the course of a month at a large spam simkhole. We study characteristics of dynamics of

the infrastructure hosting fast-flux service networks, the roles that various machines play in

hosting online scams, and the effectiveness of various blacklists at identifying IP addresses

and URLs of scam sites.

Previous work has studied the rates at which fast-flux networks change DNS A-record

mappings (i.e., name to IP address mappings) and the rate at which new IP addresses are

accumulated [33]; this chapter presents many new classes of findings. First, we study fast-

flux networks by campaign to determine whether dynamics differ across campaigns, and

whether distinct spam campaigns share fast-flux service infrastructure. Second, we perform
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Table 1: Summary of results.
Finding Table/Figure Implications

Dynamics
Rates of change. DNS records change more quickly than
TTL values. NS records are more stable than A records or
IPs of NS records. DNS records for fast flux domains change
more quickly than those from “legitimate” popular domains.

Fig. 5, Fig. 6 Blacklisting authoritative name server names may
help with fast-flux mitigation.

Rates of accumulation. Different scam campaigns (and
URLs for those campaigns) recruit new IP addresses at dif-
ferent rates

Fig. 8 The rate at which a URL “accumulates” new IP ad-
dresses may help detect fast flux networks and also
identify scam campaigns.

Location of change in DNS hierarchy. Different fast-flux
domains change at different locations in the DNS hierarchy
(i.e., A records, IP of NS record, NS record).

Tab. 3.4.2

Roles

Sharing. Different scam campaigns share fast-flux infras-
tructure

Tab. 3, Tab. 4,
Tab. 9 Identifying fast-flux infrastructure may help with

early detection of scam campaigns.
Distribution across /24s. Fast flux domains return A
records that are distributed over a far larger set of /24s than
legitimate popular Web sites (as seen when queried from a
single DNS location).

Fig. 11 The distribution of query results across IP address
space may be useful for detecting fast-flux activity.

Distribution in IP address space. A and NS records are
distributed across IP address space, but some regions have a
high density of both fast-flux agents and spammers.

Fig. 9 Detection of spammers might also help detect fast-
flux networks, and vice versa.

Blacklists. Some IP addresses that appear as flux agents
appear in spam and exploit blacklists weeks later.

Fig. 12, Tab. 10,
Tab. 11 Identification of FF infrastructures can help towards

earlier blacklisting of spam/exploit IPs and vice
versa.

continual and iterative DNS monitoring to discover the locations in the DNS hierarchy

where fast-flux networks dynamically redirect clients. Finally, we study the roles of fast-

flux nodes in hosting different parts of the infrastructure (e.g., authoritative name server,

Web server, or spammer) and how these roles evolve over time.

Table 3.1 summarizes the findings of our study and possible implications for these

findings. We present findings regarding the following aspects of fast-flux networks:

• Rate of change. We examine the rates at which fast-flux networks redirect clients

to different authoritative name servers (either by changing the authoritative name-

server’s name or IP address), or to different Web sites entirely. We find that, while

the DNS TTL values do not differ fundamentally from other sites that do DNS-based

load balancing, the rates of change (1) differ fundamentally from legitimate load

balancing activities; (2) differ across individual scam campaigns.

• Rate of accumulation (“recruit”). We study the extent to which individual fast-flux

networks “recruit” new IP addresses and how the rate of growth varies across differ-

ent scam campaigns. We find that, while there is a considerable amount of sharing of

IP addresses across different scam campaigns, different campaigns accumulate new

IP addresses at different rates.

• Location of change. We study the extent to which fast-flux networks change the Web

servers to which clients are redirected. We infer the location of change by monitoring

15



any changes of (1) the authoritative nameservers for the domains that clients resolve

(the NS record, or the IP address associated with an NS record) or of (2) the mapping

of the domain name to the IP address itself (the A record for the name). We find

that behavior differs by campaign, but that many scam campaigns redirect clients

by changing all three types of mappings, whereas most legitimate load-balancing

activities only involve changes to A records.

• Use and sharing of infrastructure. We study the geographical and topological loca-

tions of fast-flux hosts (both authoritative nameservers and Web servers), as well as

how fast-flux infrastructure is shared over time, across scam campaigns, and between

spamming and hosting infrastructure. We find that different scam campaigns share

fast-flux infrastructure; we also find overlap between spamming infrastructure and

online scam hosting infrastructure.

Our findings lend insights into the operation of fast-flux networks that may ultimately lead

to more effective mitigation techniques: Although scam campaigns are short-lived, the

infrastructure that hosts these scams (i.e., the fast-flux network or networks) appears to

have relatively invariant features that may prove useful for identifying scams and the spam

messages that advertise them.

The rest of this chapter is organized as follows. Section 3.2 describes background on

fast-flux networks, current understanding about their roles in hosting online scams, and re-

lated work in studying fast-flux networks. Section 3.3 describes our data collection meth-

ods, as well as various limitations of our dataset. Section 3.4 describes the dynamics of

fast-flux service networks that we observed hosting 21 different spam campaigns over the

course of a month. Section 3.5 describes the roles that we observed each IP address playing

in the fast flux networks, the locations of spammers and fast flux infrastructure in the IP

address space, and the sharing of infrastructure across different roles. Section 3.6 describes

the relationships between when various blacklists listed IP addresses and when these IP

addresses were seen in the fast-flux hosting infrastructure that we observed in our data.

Section 3.7 concludes with a summary and discussion of future work.

3.2 Background

We describe main redirection techniques commonly employed by fast flux service networks

and show an example illustrating how this technique can be observed from DNS responses.

We then discuss related work.
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3.2.1 Fast-Flux Mechanics

Fast flux is a DNS-based method that cybercriminals use in order to organise, sustain and

protect their service infrastructures such as illegal web hosting and spamming [102]. Mul-

tiple cybercriminal families have been observed to use the fast flux techniques for illegal

or fake online businesses, phishing sites, adult content sites [91]. Somewhat similar to a

technique used by content distribution networks (CDNs) such as Akamai, a fast-flux do-

main is served by many distributed machines and short time-to-live (TTL) values are used

to quickly change a mapping between a domain and an IP address. However, the hosts

involved for serving a fast-flux domain are botnet zombie drones and instead of hosting

actual content, these zombies often act as front-end proxies that relay messages between

a client and a “mothership” node [102]. Consequently, using this fast flux technique, cy-

bercriminals can easily throw in and out a large number of compromised hosts as needed

while effectively hiding their mothership node.

Variations of the technique also exist [102]. In addition to fluctuating address records

(A records), a fast-flux domain can have changing name servers records (NS records or IP

addresses of NS records). In practice, any combinations of DNS record fluctuations can be

used for flexible and resilient operations. Moreover, as we will show in Section 3.4.3, many

hosts exploited by fast-flux service networks are found to play the role of both a hosting

server (or a front end proxy of it) and an authoritative name server (or a front end proxy of

it).

The dynamics of fast-flux service networks make ineffective the existing mitigation

scheme that relies on blacklisting offending hosts. Operators of such networks can simply

swap out blacklisted hosts. Moreover, by constantly monitoring the “health” of individual

hosts, the operators can increase service availability from likely unstable compromised

machines. To demonstrate how quickly fast-flux service networks change, we show an

example of a fast-flux domain that we monitored on January 20, 2008 at 20:51:52 GMT.

The fast-flux domain is called pathsouth.com and at that time it was pointing to one

of illegal pharmaceutical companies called Canadian Pharmacy [95]. Table 3.2.1 shows

the DNS records resulted from two lookups with seven minutes apart. The first column

shows the IP addresses of spam sources, from which our spamtrap received copies of spam

containing the fast-flux domain. The ten records in bold show that the domain swapped in

nine new hosts for serving content and one new name server.
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Table 2: DNS lookup results of the pathsouth.com fluxing domain: The IP addresses
in bold highlight changes between the two lookups six minutes apart.

Domain name: pathsouth.com & responding authoritative nameserver: 218.236.53.11
Time: 20:51:52 (GMT)

Spam sent by
IPs

A records TTL NS records TTL IP addresses of NS
records

TTL

88.234.185.68,
88.229.212.225,
212.156.205.188,
189.4.136.197,
89.132.220.6,
125.27.211.201,
85.109.43.187,
83.27.32.75,
80.94.175.76,
84.115.175.16,
88.65.174.73,
195.8.27.96,
124.28.82.112

77.178.224.156,
79.120.37.38, 79.120.63.225,
79.120.72.0, 79.120.101.244,
79.120.107.25,
85.216.198.225,
87.228.106.92,
89.20.146.249,
89.20.159.226, 89.176.63.78,
89.208.2.199, 89.208.5.106,
213.141.146.83,
220.208.7.115

300 ns0.nameedns.com,
ns0.nameedns1.com,
ns0.renewwdns.com,
ns0.renewwdns1.com

172800 218.236.53.11,
89.29.35.218,
78.107.123.140,
79.120.86.168

172800

Time: 20:57:49 (GMT)

A records TTL NS records TTL IP addresses of NS
records

TTL

61.105.185.90,
69.228.33.128, 79.120.37.38,
79.120.108.136,
85.216.198.225,
87.228.106.92,
89.20.146.249,
89.20.159.178,
89.29.35.218, 91.122.121.88,
213.220.251.97,
218.254.157.62,
218.255.10.103,
220.208.7.115, 222.5.114.183

300 ns0.nameedns.com,
ns0.nameedns1.com,
ns0.renewwdns.com,
ns0.renewwdns1.com

172800 218.236.53.11,
89.29.35.218,
78.107.123.140,
213.248.28.235

172800

3.3 Data

Accordingly, our data collection and processing involves three steps: (1) passive collection

of spam data; (2) active DNS monitoring of domains for scams contained in those spam

messages; (3) clustering of spam and DNS data by campaign. This section describes our

method for collecting spam data and monitoring DNS record changes associated with the

associated scam campaigns. We also describe how we monitor the DNS dynamics of popu-

lar Web sites to use as a baseline for comparison. We then explain how we postprocess the

data to group spam email messages (and the associated DNS data) according to common

campaigns. Finally, we discuss potential limitations of our data collection and analysis

methods.

3.3.1 Data Collection

To amass a collection of domains to monitor for fast-flux behavior, we collected 3,360

distinct domain names that appeared at spam email messages which were collected at a
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Figure 3: Diagram of the data collection; a fixed location iterative resolver is set up. The
resolver starts the queries from a randomly selected root server, every 300 sec for every
domain. Here we feature the same fluxing domain pathsouth.com as in Table 3.2.1.
Our iterative resolver logs all referrals and the DNS records that are returned for every
query, at each level of the DNS hierarchy.

large spam sink hole. To obtain this list of URLs, we used a simple URL pattern matcher

to extract URLs from the bodies of the messages received at the spam trap. We collected

these domains over a period of three months, from October 1, 2007 to December 31, 2007.

Next, we implemented an iterative resolver (at a fixed location) to resolve every do-

main name from this set once every five minutes. Figure 3 shows the method by which

our resolver recorded DNS mappings at each level of DNS resolution, which allows us to

monitor fast-flux networks for DNS changes at three distinct locations in the hierarchy:

(1) the A record; (2) the NS record; and (3) the IP addresses corresponding to the names

in the NS record. To avoid possible caching effects, the resolver randomly selected a DNS

root server at which to start the DNS query. The iterative resolver recorded the answers

received at every level of the DNS hierarchy; we recorded all the referrals and the answers

by the queried DNS servers for every domain.

Due to the sheer number of DNS lookups required to monitor the domains arriving at

the spam trap, the resolver proceeded through the list of domains sequentially: We began by
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resolving the first 120 domains received at the spam trap each day. Every day the resolver

began resolving the next 120 domains on the list. After each domain had been resolved

continously for three weeks, we removed the domain from the list. The resolver operated

from January 14, 2008 to February 9, 2008.

To compare the dynamics of the domains received at the spam trap as part of online

scam campaigns to the DNS dynamics of “legitimate” domains, we used the same iterative

resolution process to study the dynamics of the 500 most popular domains, according to

Alexa [4].

3.3.2 Postprocessing: Scam Campaigns

After collecting spam and DNS data, we restricted our analysis to the domains that had

reachable Web sites and for which we had observed at least one change in any DNS record.

We then clustered the spam messages into scam campaigns. To perform this clustering,

we retrieve content from the URLs in the email messages and cluster emails whose URLs

retrieve common content:

• Snapshots and Web page sources. We used AutoIT [11] to sequentially open each

URL on a browser, wait until the page is loaded, and take a snapshot of the current

page1. While doing so, HTTP Analyzer [41] captures all the HTTP requests and

responses for further analysis.

• Clustering by snapshots. We manually went through snapshot images and cluster

URLs if the site is selling the same products under the same brand name using a sim-

ilar page layout. The clustering is manual and subjective but fairly straightforward.

• Clustering supplemented with file comparison. The image comparison fails in the

case of partially download pages. For example, pathsouth.com, one of the Cana-

dian Pharmacy [95] sites downloads 88 files, of which 85 are jpeg and gif image

files. Slow response, which is often observed from fast flux service networks, al-

lows only a few small none image files to be received until the somewhat gener-

ous 30 second timeout expires, generating an empty looking page when a snapshot

is taken. To make up this shortcoming, for the URLs that are not classified, we

check to see whether the downloaded file names of each URL is a subset of those

of already identified campaign. We find that most of partially downloaded pages

1We used a 30 second timeout value to move on to a next URL if the current site is not reachable. The
AutoIT script was executed on a virtual machine running Windows XP to avoid possible drive-by infection.
We also disabled most security features that display warnings or prompt for approvals as these interfere with
automation.
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are caused by the Canadian Pharmacy campaign sites and that all of them request

canadian pharmacy 2 style.css in common.

Table 3 shows the summary data of 21 campaigns. We denote each campaign with a

category-ID.2 The second column is the number of domain names that we found changing

during our one month measurement period (fluxing domain). The following two columns

show the number of total spam emails containing the fluxing domains that we received at

our spam trap and the total number of sender IPs of those spam emails. The last three

columns summarize our measurement data: the first two numbers are the total distinct

number of IPs returned as A records of domains (IPdomains) and that of IPs returned as A

records of name servers (IPnameservers). the last number is the total distinct number of IPs

from the combined sets (IPdomains ∪ IPnameservers) . For comparison, Table 4 summarizes the

Alexa dataset.

Top campaigns. The top campaign, by the number of hosting servers, is Pharmacy-A. We

believe that it is one of Canadian Pharmacy scam campaigns [95]. The campaign swapped

in at least of 9,448 distinct IP addresses as hosting servers (or front end proxies of them)

for 149 domains over one month. The next two followers are Watch-A [94] and Watch-

B [93], both of which offer replica watches. We note that for these top three campaigns,

the average ratio of A records associated with a domain name is over 50, allowing the

scammers to freely move around among available hosting servers. However, the remaining

campaigns are rather modest and we even see the sharing of a few hosting servers by

multiple domains (e.g., Pharmacy-D and Links-B appear to have only 5 hosting servers for

50 and 35 domains respectively). Nonetheless, all 21 campaigns exhibited fluxing behavior

in their DNS records to some extent during the measurement period.

Registrars. The fast-flux domains in our dataset are mostly .com (348, or 90.6%). The rest

8.4% are .net (32), .ph (3) and .su (1). However, over 99% of these domains are unique (e.g.,

a.com, b.com)3, requiring separate registrations with the corresponding top-level domains.

Table 5 shows registrar information of the 384 fast-flux domains that we found on May 7,

2008 via jwhois queries. 70% of the domains are still marked as active and registered

with eight registrars in China, India, and US. Among these, the three registrars in China are

responsible for 257 fast-flux domains (66% of total or 95% of the active ones). Surprisingly,

all but paycenter.com.cn are ICANN-accredited registrars [38].

2We looked at each Web page snapshot and assigned a category based on offered products.
3Only 4 out of 384 fast-flux domains have the same second-level domain name.
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Table 3: Statistics for fast-flux networks hosting scam campaigns. Campaigns are sorted
by the total number of IP addresses returned from A records as the number indicates the
size of the underlying infrastructure.

Campaign Spam emails Spamvertising
IPs

Domains in
campaigns

Fluxing
domains

IPs of A rec IPs of NS rec IPs of both
A+NS rec

Pharmacy-A 18459 11670 149 149 9448 2340 9705
Watch-A 40681 30411 34 30 1516 225 1572
Watch-B 454 427 43 19 1204 219 1267

Pharmacy-B 371 223 86 52 15 13 22
Casino-A 317 226 6 6 12 12 16

Pharmacy-C 30 4 6 6 12 11 12
Casino-B 15 8 2 1 11 10 17
Links-A 15 8 2 2 10 14 22
Casino-C 4652 4150 9 5 10 14 18

E-Marketing-A 32 4 6 4 8 2 10
Pharmacy-D 37472 28340 52 50 5 5 6
Pharmacy-E 32 25 4 4 5 7 12

Links-B 5663 4573 38 35 5 5 6
Pharmacy-F 2 1 2 2 4 6 10
Pharmacy-G 208 205 2 2 3 8 8

Links-B 4 2 4 2 3 8 11
Service-A 9 1 3 1 2 4 4

Software-A 950 463 5 5 2 4 5
Watch-C 6226 4154 7 5 2 2 2

DomainNames-A 3 3 3 3 2 4 6
Service-B 26 2 2 1 1 3 4

All campaigns 115198 77030 465 384 9521 2421 9821

Table 4: Alexa dataset.
Domains IPs of A rec IPs of NS rec IPs of A+NS rec

Total 500 1048 852 1877

Figure 4 shows the month when these domains were registered. Because our data col-

lection was done before February 2008, all the domains were registered before then. In-

terestingly, however, over 40% were registered in January 2008 and immediately put in

use for serving scams. Further, these domains are still active even after four months and

the 2% of the domains had been active for over 7 months at the time of our measurement.

Unfortunately, our WHOIS lookup is after the fact and thus we are unable to tell whether

the 30% inactive domains as of May 2008 are due to registration expiration or some other

reasons.

3.3.3 Limitations

Our data is derived from spam collected at a single spam trap; different spam traps might

receive different distributions of spam emails from different locations. The relatively high

volume of emails received at our spam trap (6,247,937 messages from the period of Oc-

tober 2007 through February 2008) suggests that the data we have collected may be rep-

resentative of spam and scam campaigns seen at other networks, although our trap may

certainly induce some geogprahic bias (for example, spam traps located in other countries
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Figure 4: Record creation date for the 384 fast-flux domains: Y-axis is the percentage of
the fast-flux domains that were registered on the particular month.

Table 5: Registrars of the 384 fast-flux domains as of May 7, 2008.
Registrar Country Domains

dns.com.cn China 180 ( 46.9%)
paycenter.com.cn China 65 ( 16.9%)

todaynic.com China 12 ( 3.1%)
signdomains.com India 7 ( 1.8%)
leadnetworks.com India 3 ( 0.8%)
coolhandle.com US 2 ( 0.5%)

webair.com US 1 ( 0.3%)
stargateinc.com US 1 ( 0.3%)

total active domains 271 ( 70.6%)

may receive different scams). We sampled our dataset further by only actively monitoring

a subset of the domains contained in URLs received in spam messages at the spam trap;

in particular, we did not analyze domain names that we could not explicitly group into a

scam campaign. Many of the domains that we could not group into a campaign also exhib-

ited highly dynamic behavior, but we omitted these domains from the analysis because we

could not confirm their participation in an online scam.

Unlike a legitimate site, a scam campaign operates under many different domain names
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(e.g., pathsouth.com, yesself.com), possibly to avoid URL blacklisting and perhaps to

spread the risk of being detected and terminated by vigilant registrars. Our dataset may

cover only a subset of these names for each campaign and we are unaware of any clear way

to find out the true number of registered domain names for each scam campaign. However,

in most cases, each domain within a campaign appears to show similar behavior.

In some cases, our DNS resolution process occurred months after the spam message

corresponding to the scam was received at the spam trap. It is possible that the dynamics of

fast-flux networks may differ close to the time of the receipt of the actual spam; however,

our measurements suggest that the dynamics of fast-flux networks for each scam campaign

(i.e., the rate of change of DNS records, the rate of accumulation of new IP addresses)

remain stable over the course of a month, so it may be reasonable to expect similar dynamic

behavior closer to the original receipt of the mail. We were surprised that most domains

remained not only resolvable, but also reachable, even months after receipt of the original

spam email associated with the campaign. This behavior differs from the dynamics of scam

hosting sites observed in previous studies [6], which observed that many scam sites remain

active for only a week; the difference may be due to the rise of fast-flux networks.

Our clustering technique assigns a URL to a single campaign based on snapshots of the

Web site’s content for a single snapshot. It is possible that, over time, a single domain could

be used to host multiple campaigns; in these cases, our analysis would attribute behavior to

a single campaign (i.e., the one corresponding to our snapshot) when, in fact, the domain

was hosting multiple campaigns over the course of our analysis. We did not collect frequent

enough snapshots to detect such behavior.

3.4 Dynamics

This section presents our findings concerning the dynamics of fast-flux service networks.

We study three aspects of dynamics: (1) the rate at which DNS records change at each level

of the hierarchy; (2) the rate at which fast flux networks accumulate new IP addresses (both

overall, and by campaign); and (3) the location in the DNS hierarchy where dynamics are

taking place. To understand the nature of these features with respect to “legitimate” load

balancing behavior, we also analyze the same set of features for 500 popular sites listed

by Alexa [4] as a baseline. We find many aspects of dynamics that are distinct to fast flux

service networks.
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Figure 5: Cumulative distribution of TTLs values of A, NS, and IP of NS records.
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Figure 6: Cumulative distribution of the average time between changes of A, NS, and IP
of NS records.

3.4.1 Rate of Change

We studied the rates at which domains for online scams changed DNS record mappings and

the corresponding TTL values for these records. We expected that fast-flux domains would

both have short TTL values and exhibit frequent changes in name-to-IP address mappings.

Figure 5 compares the distributions of TTLs between the fluxing domains and the do-

mains in the Alexa data set. The disritubiotn of A record TTLs shows that scam sites have

slightly shorter TTL values than popular Web sites; however, both classes of Web sites have

A records with a wide range TTL values. Even more surprisingly, about 30% of popular

Web sites maintain NS records with TTL values of less than a day, but almost all fast-flux

domains we analyzed had TTL values for NS records of longer than a day. In hindsight,

these results do make sense: many clients visiting scam sites will visit a particular domain

infrequently, and only a small number of times, so the TTL value is less important than the

rate at which the mapping itself is changing (i.e., for new clients that attempt to resolve the

domain).

To detect changes that may be related to fast-flux behavior, we record both the A records
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Figure 7: Cumulative distributions of the average time between changes of A, NS, and IP
of NS records for Pharmacy-A, Watch-A, Watch-B, and Pharmacy-B.

that are returned at Step 6 in Figure 3, and NS names and IP addresses of NS names that

are returned at Step 4. The reason why we record these two separate pieces of information

is because NS names and IP addresses of NS names are not always returned with the A

records of the answer at Step 6; the lack of complete information about the sequence of

lookups in the DNS hierarchy will make it difficult to observe all aspects of the dynamics.

To account for possible load-balancing mechanisms at a higher level of the DNS hi-

erarhcy, we group the responses according to the authoritative server that provided them.

We then perform pairwise comparisons across each group of records. In the case of A

records responses and NS record responses, we consider response as a change if at least

one new record appears since last answer, or if the number of records returned has oth-

erwise changed since the last response. (We do not consider reordering the records as a

change.) In the case ofIP addresses of NS records, we consider the response to be a change

if either NS names appear with different IPs or a new NS name shows up since last reply.

Fast-flux domains change on shorter time intervals than their TTL values. Figure 6

shows a distribution of the average time between changes for each domain across all 21

scam campaigns; each point on the line represents the average time between changes for a

particular domain that we monitored. The distribution shows that fast-flux domains change

hosting servers (A records) and name servers (IP addresses of NS records) more frequently

than popular Web servers do. In particular, the rate of change of IP of NS records is much

more frequent than TTL values of these records, causing possible service disruption for

returning clients. In some cases, for example the IP addresses of NS records, the changes

are significantly more frequent than the TTL values would suggest. The incongruence of

DNS TTL values with the rates at which these records are actually changing could also

prove to be a useful feature for detecting fast-flux behavior.

Domains in the same campaign tend to show similar rates of change. We also
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analyzed the rate of change of DNS records after clustering the fast-flux domains according

to campaign. Figure 7 shows these results for the top 4 campaigns (ranked by the number

of distinct IPs returned in A records for domains hosting the campaigns). The results are

striking: different scam campaigns rotate DNS record mappings at distinct rates, and the

rates at which DNS records for a particular campaign are remapped are similar across all

domains for a particular scam. This finding suggests that it may be possible to use rates of

flux at different levels in the DNS hierarchy as a type of signature for a scam campaign.

3.4.2 Rate of Accumulation

Ideally, we wish to know the size of a fast flux service network at a given moment and to

measure the rate at which the network grows over time. However, in practice, our mea-

surement is limited by the rate at which a flux domain updates its DNS records and what

we present in this section is the rate at which a previously unseen host becomes an active

hosting server (A records of a domain) or a name server (IP addresses of names returned

by NS records).

Using a method similar to the one used by Holz et al. [33], we determine the rate of

“flux” by repeatedly resolving each domain and assigning an increasing sequential ID to

each previously unseen IP address. Figures 8(a) and 8(b) show the total number of distinct

IPs for each fast-flux domain (the y-value of the end of each line) over the first week of

our data collection period (first 2,000 iterations, 300 seconds apart from each other) and

how fast each domain accumulated new hosts (slope). A steeper slope incidates more

rapid accumulation of new IP addresses for that domain. Figure 8(a) shows this statistic

for A records and Figure 8(b) shows the same statistic for IP addresses of NS records of

the domains that belong to campaign Pharmacy-A (top campaign). Interestingly, the rate

of accumulation is much slower (almost an order of magnitude) for hosts used as name

servers, as shown in Figure 8(b).

Many domains in the same campaign have similar accumulation rates. We see

many domains with similar slopes throughout the month. These domains tend to belong to

a same campaign. However, not all the fluxing domains belonging to the same campaign

have similar slops (See Figure 8(c)). One reasonable explanation is that a scam campaign

runs on multiple fast flux networks, each of which has a different rate of recruiting and

swapping in a new host. In any case, it is alarming to see that many fluxing domains can

easily throw in thousands of hosting servers and hundreds of name servers over a month.

Some domains only begin accumulating IP addresses after some period of dor-
mancy. Some domains appear to exhaust available hosts for a while (days to weeks) before
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Figure 8: Cumulative number of distinct IPs for the A records and IP addresses of NS
records, for the first week (first 2,000 iterations of data collection) for the Pharmacy-A
domains, and for the top 4 campaigns across the four weeks of data collection.

accumulating new IP addresses. We examined two campaigns that exhibited rapid accumu-

lation of IP addresses after some dormancy. In both cases, only one domain per campaign

begins accumulating IP addresses. These two domains shared exactly the same set of NS

names. These 8 NS names are doing all the work for those two campaigns. We observed

other scams (e.g., the canadian pharmacy as well) where a few domains accumulate IP

addresses faster than others. In addition to accumulation, we also saw attrition: 10% of

fluxing domains became unreachable in the while we were monitoring them. These do-

mains may have been blacklisted and so removed by registrars or by scammers themselves.

Rates of accumulation differ across campaigns. Figures 8(c) and 8(d) show the rate

of accumulation of IP addresses for the top four campaigns for the IP addresses of A records
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Table 6: Location of change for all campaigns, sorted by the total number of distinct IPs
of A records.

Campaign Fluxing domains Location of change
A [IP of

NS]
NS A+ [IP

of NS]
A+ NS NS+ [IP

of NS]
A+NS
+[IP of
NS]

Pharmacy-A 149 77 72
Watch-A 30 4 1 24 1
Watch-B 19 18 1
Pharmacy-B 52 5 13 19 15
Casino-A 6 1 5
Pharmacy-C 6 6
Casino-B 1 1
Links-A 2 1 1
Casino-C 5 5
E-Marketing-A 4 4
Pharmacy-D 50 2 3 45
Pharmacy-E 4 4
Links-B 35 1 34
Pharmacy-F 2 2
Pharmacy-G 2 1 1
Links-B 2 2
Service-A 1 1
Software-A 5 5
Watch-C 5 4 1
DomainNames-A 3 3
Service-B 1 1
Total 384 18 52 3 219 1 91

Alexa 500 (domains) 37 5 15 4 1 1

and NS records, respectively. The rate of accumulation for each campaign is higher than

that of each fluxing domain. Because of resource sharing across the domains in a campaign,

the total number of distinct IP addresses for a campaign is fewer than the sum of that of

an individual domain. Section 3.5 will discuss how infrastructure is shared across domains

and across campaigns in more detail.

3.4.3 Location of Change in DNS hierarchy

While it is possible to change any record of your own domain in DNS hierarchy (A, NS,

and IP addresses of NS records), it is substantially more difficult to change NS records or

A records of name server names as this requires updating a parent domain’s (often a top

level domain such as .com) zone file. However, we see many fast-flux domains that freely

change NS records or IP of NS records separately or in combination of other records.

Campaigns change DNS record mappings at different levels of the DNS hierarchy.
Table 3.4.2 shows the type of change for each campaign. In contrast to previous studies [40,

102], we observe many different types of changes in addition to single flux (A records) and

double flux (A + IP of NS). Another notable point is that each campaign tends to use mixes

of techniques (e.g., For Pharmacy-A, 52% of domains are double flux and 48% change all

three types of records). We believe that this is another indication that a campaign operates

29



0.0.0.0 30.0.0.0 60.0.0.0 90.0.0.0 120.0.0.0 150.0.0.0 180.0.0.0 210.0.0.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IPs binned by /24

C
D

F

Spamvertizing IPs
Fluxing domains − IPs of A rec
Alexa − IPs of A rec

(a) A records

0.0.0.0 30.0.0.0 60.0.0.0 90.0.0.0 120.0.0.0 150.0.0.0 180.0.0.0 210.0.0.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IPs binned by /24

C
D

F

Spamvertizing IPs
Fluxing domains − IPs of NS rec
Alexa − IPs of NS rec

(b) IP of NS records

Figure 9: Distribution of the IPs of A rec, of autoritative servers and the IPs that sent the
originating spam.

on multiple fast flux service networks.

Table 7: Top 10 ASes by number of IPs.
Top ASes by A Rec Top ASes by IP of NS Rec Top ASes by Spamming IPs
8402 - CORBINA-AS (1232) 12714 TI-AS NetByNet Holding (365) 9121 TTNET (6566)
12714 - TI-AS NetByNet Holding (1127) 3904 - HUTCHISON-AS-AP (260) 6147 Telefonica del Peru (3173)
9304 - HUTCHISON-AS-AP (951) 8402 - CORBINA-AS (224) 22927 Telefonica de Argentina (2726)
7132 - AT& T (511) 7132 - AT& T (121) 5617 TPNET Polish Telecom (2356)
6855 - SK SLOVAK TELECOM (345) 9908 - HKCABLE2-HK-AP (91) 19262 VZGNI-TRANSIT Verizon (2107)
13184 - HANSENET (332) 12695 - DINET-AS (81) 4837 CHINA169-BACKBONE (1697)
12695 - DINET-AS (307) 20597 - ELTEL-AS (72) 7738 Telecomunicacoes da Bahia (1524)
3209 - Arcor IP-Network (270) 13184 - HANSENET(66) 8359 COMSTAR (1436)
8615 - CNT-AS (252) 4766 - KIXS-AS-KR Korea Tel. (60) 4134 CHINANET-BACKBONE (1344)
3320 - DTAG (203) 30784 - ISKRATELECOM-AS(59) 9829 BSNL-NIB (1340)

3.5 Roles

This section describes the roles (e.g., content hosting, name service, spamming) played by

hosts in fast flux service networks and how these roles evolve over time. We first examine

the geographic and topological locations of fast-flux nodes; we also compare these loca-

tions to the spamming hosts that mount the messages in the scam campagins. We then

explore how the roles of fast-flux nodes evolve over time, and how the fast-flux infrastruc-

ture is shared across different scam campaigns.

3.5.1 Location

In this section, we examine the network and geographic location of fast flux hosts and

compare them to both legitimate Web sites and the spammers who advertise the scams.
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Figure 10: Distribution of unique /24s that appeared as the first record in a reply.
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Figure 11: Distribution of unique /24s that appeared for all records in a reply.

3.5.1.1 Network Location

This section describes how fast-flux IP addressess are spread across IP address space. To

examime whether fast-flux service networks use different portions of the IP space than

the top 500 domains, we plotted the distribution of the IPs across the whole IP range.

Figure 9 shows that fast-flux networks use a different portion of the IP space than sites that

host popular legitimate content: The IPs that host legitimate sites are considerably more

distributed: and more than 30% of these sites are hosted in the 30/8-60/8 IP address range,

which hosted almost none of the scam sites observed in our study.

Fast-flux hosts are concentrated in small regions of IP address space; some spam-
mers are concentrated in slightly different regions. Interestingly, the IP address space
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that hosts fast-flux domains is even more concentrated than that which sends spam adver-

tising the scam campaigns. Although the distributions are ismilarly concentrated in the

80/8 - 90/8 range, there is a much higher concentration of spammers in the 200/8 - 210/8

range (ranges allocated to Latin America and Asia, respectively). These differing distribu-

tions suggest that hosts in different regions of the IP address space do in fact play different

“roles” in spam campaigns.

DNS lookups for fast-flux domains often return much more widely distributed IP
addresses than lookups for legitimate Web sites. Our intuition was that fast-flux net-

works that hosted scame sites would be more distributed across the network than legit-

imate Web hosting sites, particularly from the perspective of DNS queries from a sin-

gle client (even in the case of a distributed content distribution network, DNS queries

would tend to map a single client to nearby Web cache). Figures 10 and 11 show the

distribution of distinct /24s that appear at the answer section of the DNS replies) for

the first record in the reply and for all records in the reply, respectively. It turns out

that a few legitimate domains that are hosted by content distribution networks appear to

have the largest number of distinct /24s contained in a single DNS reply. In particu-

lar, www.runescape.com, www.statcounter.com, www.yahoo.co.jp, www.

monografias.com returns IP addresses in 12, 8, 7, and 6 distinct /24s respectively. We

also observed several legitimate domains which showed a large number of distinct /24s

for their IPs of NS records (which actually reflects good network design because it in-

troduces redundancy). Examples include www.altavista.com, www.geocities.

com, www.runescape.com, www.php.net which had 11, 9, 8, and 7 distinct /24s in

IPs of NS records.

Fast flux domains tend to return IP addresses that are distributed across a larger number

of distinct /24s than legitimate domains. Indeed, roughly 40% of all A records returned

for fast-flux domains were distributed across at least 300 distinct /24s, and many were dis-

tributed across thousands of /24s. In contrast, domains for popular Web sites were never

distributed across more than 12 distinct /24s (when queried from a single location). Thus,

overly widespread distribution of query replies may serve as a strong indicator that a do-

main is indeed hosted by a fast-flux network.

The predominant networks that host fast-flux infrastructure differ from those that
host spammers for the corresponding scam campaigns. Table 7 shows the top ten ASes

by the number of IP addresses for A records (i.e., hosting sites), NS records (i.e., name-

servers), and spammers (as observed in the spam trap). Interestingly, although there is some

overlap between the ASes that host the scam sites and those that host authoritative name-

servers, there is almost no overlap between the ASes that host the sites and nameservers
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for the scams do not overlap much with the ASes hosting the spamming IP addresses. In-

deed, Figure 9 also shows that spammers for the campaigns we observed are more heavily

concentrated in Latin America, Turkey, and the United States, whereas fast-flux hosts are

more concentrated in Asia. The fact that significant differences exist between networks that

host fast-flux infrastructure and those that host spammers suggest that scammers may have

divided the infrastructure into different roles (in Section 3.6, we see that many fast-flux

hosts are not listed on spam blacklists, which is consistent with this observation).

3.5.1.2 Geographic location

Hosting servers and name servers are widely distributed. Table 8 lists country names in

which fast flux nodes are hosted, according to the country of the AS in which they are

hosted. In total, we observed IP addresses for A records in 283 ASes across 50 countries, IP

addresses for NS records in 191 ASes across 40 countries, and IP addresses for spammers

for the corresponding scam campaigns across 2,976 IP addresses across 157 countries.

Although many fast flux nodes appear to be in Russia, Germany, and the US, the long

list of ASes and countries shows that fast flux service networks are truly distributed; this

kind of geographical distribution may be necessary to accommodate the diurnal pattern of

compromised hosts’ uptime [23]. Interestingly, the countries that are referred to by the

most A records are not the same set of countries that host authoritative nameservers for

those domains (as indicated by IP addresses of NS records). In particular, Slovakia, Israel,

and Romania appear to host relatively more nameservers than sites, and China appears to

host relatively more nameservers. This difference in distribution deserves further study;

one possible explanation is that nameserver infrastructure for fast-flux networks must be

more robust than the sites that host scams (which might be relatively transient). countries

3.5.2 Sharing Across Campaigns

In this section, we describe our findings regarding the sharing of the same fast-flux infras-

tructure across multiple scam campaigns.

Many fast-flux machines have dual roles, and different campaigns share hosting
infrastructure. Referring back to Table 3, the last three columns indicate that many host-

ing servers double as name servers (and vice versa). 16 out of 21 campaigns (76%) show

such sharing. On the contrary, we see a clear role separation of the hosts associated with

the domains of the popular Web sites listed by Alexa. We also find significant overlaps

among the hosts involved for the top four campaigns. Table 9 shows that Watch-A and

Watch-B are likely to share the underlying infrastructure—99% of hosting servers, 80% of
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Table 8: Top 10 countries by number of IPs.
Top Countries by
A Rec

Top Countries by
IP of NS Rec

Top Countries by
Spamvertising IPs

Russia (4025) Russia (982) US (6972)
Germany (1207) Hong Kong (425) Turkey (6580)
Hong Kong
(1207)

Germany (216) Russia (5914)

US (606) US (168) Brazil (4606)
Slovakia (391) Korea (154) Argentina (4268)
Korea (350) China (77) China (4041)
Israel (337) Japan (64) Poland (3424)
Japan (248) Taiwan (48) India (3302)
Ukraine (247) Ukraine (40) Peru (3214)
Romania (131) Slovakia (39) Germany (3122)

NS records, and 98% of name servers of Watch-B are common with those used for Watch-

A. Moreover, both campaigns share many of the servers and NS records with Pharmacy-A.

This overlap strongly suggests that the all three campaigns involve same fast-flux service

networks. Interestingly, our observation is consistent with Spam Trackers [91], which at-

tributes all the three scam campaigns to Yambo Financials [92].

3.6 Relationship to Blacklists

In this section, we evaluate whether the IPs that show up as part of the fast-flux net-

work hosting infrastructure appear on various blacklists: (1) the Spamhaus spam blacklist

(SBL/PBL) [98]; (2) the Spamhaus exploit blacklist (XBL) [99]; and (3) the URI black-

list (URIBL) [105]. We find, generally, that the time to blacklisting varies significantly by

blacklist, and that many fast-flux IP addresses are not listed in the SBL; those that are tend

to be listed both before and after we observed fast-flux activity.

Method. To determine whether the IP addresses in our dataset are blacklisted at the

time that we witness them as part of fast-flux infrastructure, or whether they become black-

listed at some later point, we query each blacklists database for historical information about

listing. Georgia Tech actively runs mirrors for SpamHaus SBL/PBL/XBL and for URIBL,

which gives us access to precise information about when each IP address or domain is listed

in the database. We query the following databases:

• XBL, a real-time database of IP addresses of infected machines including open prox-

ies worms/viruses with built-in spam engines, and other types exploits.

• SBL, a realtime database of IP addresses of verified spam sources and spam opera-

tions.
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Table 9: Sharing among the top 4 campaigns.
Sharing of A records

Pharmacy-A Watch-A Watch-B Pharmacy-B
Total per campaign 9448 1516 1204 15

Pharmacy-A - 1510 1203 1
Watch-A 1510 - 1203 1
Watch-B 1203 1203 - 1

Pharmacy-B 1 1 1 -
Sharing of NS records

Pharmacy-A Watch-A Watch-B Pharmacy-B
Total per campaign 52 14 10 10

Pharmacy-A - 8 8 0
Watch-A 8 - 8 0
Watch-B 8 8 - 0

Pharmacy-B 0 0 0 -
Sharing of IPs of NS records
Pharmacy-A Watch-A Watch-B Pharmacy-B

Total per campaign 2340 225 219 13
Pharmacy-A - 220 215 9

Watch-A 220 - 215 9
Watch-B 215 215 - 6

Pharmacy-B 9 9 6 -
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Figure 12: CDF of time elapsed between the appearance of an IP address in our dataset,
either as IP of A record or IP of NS record of a fluxing domain and the timestamp of
appearance at Spamhaus BL. Also the same for the fluxing domains and the elapsed time
before they were blacklisted at URIBL.

• PBL, a database of end-user IP address ranges that should not be delivering unauthen-

ticated SMTP email to any Internet mail server except those provided for specifically

by an ISP for that customer’s use.

• URIBL, a realtime blacklist that lists domains that appear in spam and are likely

phishing or scam sites.
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Figure 13: CDF of time elapsed between the appearance of an IP address, either as IP
of A record or IP of NS record of a fluxing domain at a blacklist, and the timestamp of
appearance in our dataset (The “opposite” from Figure 12).)

Table 10: IPs of A records, IPs of NS records and domains which were blacklisted be-
fore (B), after (A) or before and after (B+A) when they appeared at our collection of DNS
records.

SBL/PBL XBL
Never B A B+A Never B A B+A Total

A 1692 29 283 7517 265 244 2648 6364 9521
NS 547 7 80 1787 183 98 481 1659 2421

URIBL
Never B A B+A Total

Domains 113 0 138 133 384

Many fast-flux IP addresses and domains do not appear in blacklists at the time
when their activity is first observed. We queried the blacklist data at the end of April

2008 for historical information (back to February 2007) for each IP address and domain

from our dataset. Table 10 shows the number of IPs that were already blacklisted before

we observed them at our dataset, IPs that were blacklisted after we observed them in our

dataset, IPs that were blacklisted as active before and after we observed, and finally IPs

that were never blacklisted (by the time we querried the BLs database). Table 10 shows

that a significant fraction of IP addresses hosting scam infrastructure (more than 17%) were

never listed in the SBL; considerably higher fractions were listed in the XBL and URIBL,

although many of the IP addresses and domains listed in the XBL and URIBL respectively

were only listed after we observed activity from those IP addresses and domains. The lack

of these IP addresses in the SBL could suggest one of two things: (1) the SpamHaus SBL

is incomplete; or (2) the SBL may simply not list this fraction of IP addresses because it

was never used to spam (i.e., it only hosted scam infrastructure).
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Table 11: IPs of A records, IPs of NS records and domains which appeared at our spamtrap
as spam relays before (B), after (A) or before and after (B+A) their time of appearance at
our collection of DNS records.

Not appeared Before After Bef.+After Total
IPs of A rec 9417 11 92 1 9521

IPs of NS rec 2420 5 16 0 2421

Time to listing after activity is observed can vary from hours to weeks, depending
on the blacklist. IP addresses tend to take longer to show up in the Spamhaus SBL.
To determine how long it takes for IP addresses to appear in various blacklists after we

observed their activity, we measured the time between when we observed the IP addresses

participating in fast-flux activity and the time when they were first blacklisted. Figure 12

shows the distribution of these delays. We plot the CDFs of the elapsed times between

appearance and listing for XBL, SBL/PBL, and URIBL.

Most IP addresses are listed relatively quickly (if they are not already listed when we

observe either activity), but for some IP addresses and domains, the time that elapses be-

tween the time we first observe activity and the time an IP address or domain is listed is on

the order of weeks. These delays in listing IP addresses in the SBL suggests that there are

parts of fast-flux networks that are used first as flux agents and later as spam relays. In these

cases, monitoring hosts for fast-flux activity may be useful for predicting future spamming

activity. Figure 13 shows the same distribution, but for IP addresses that were listed before

we observed activity from them in our dataset. Interestingly, most IP addresses that were

listed before we observed their activity were listed in the XBL weeks to months before we

observed them (IP addresses for A records were listed sooner).

We observe a small amount of overlap between IP address that host fast-flux in-
frastructure and those that send spam to our spam trap. To further understand the

relationship between spamming infrastructure and the scam hosting infrastructure, we ex-

amined the overlap between IP addresses that spam and those that host infrastructure: For

each IP address that we observed (IPs of A records and IPs of NS records), we checked

to see whether the IP had sent any spam emails to the same spam trap from which we ex-

tracted the fluxing domains over the period of October 2007 through February 2008 (i.e.,

from nearly three months before the start of our collection of fast flux data until 1 month

after our data collection). Table 11 shows that a very small fraction of IP addresses (about

1%) sent spam to our spam trap either before or after the time when we observed them

as part of the scam hosting infrastructure. The small overlap may simply reflect the fact
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that our trap only sees a fraction of all spam (and spammers). These spamming IPs ad-

vertise the same fast-flux domains that they are hosting, which suggests that the spamming

infrastructure and the hosting infrastructure may be shared.

3.7 Conclusion

This chapter has presented an empirical study of the dynamics and roles of fast-flux net-

works in mounting scam campaigns. We actively monitored the DNS records for URLs

for scam campaigns received at a large spam sinkhole over a one-month period to study

the rates of change in fast-flux networks, the locations in the DNS hierarchy that change,

and the extent to which the fast-flux network infrastructure is shared across different cam-

paigns. We also contrast the dynamics observed in these networks to that used for load

balancing for popular Web sites. Our findings suggest that monitoring the infrastructure

for unusual changes in DNS mappings may be helpful for detecting scams hosted on fast-

flux networks. In future work, we plan to use these features design a detection scheme

that can automatically identify scam campaigns based on invariant properties of the infras-

tructure. We expect that doing so may allow us to detect online scams automatically, and

considerably faster than today’s manual blacklisting mechanisms.
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CHAPTER IV

RE-WIRING ACTIVITY OF MALICIOUS NETWORKS

4.1 Introduction

Securing the Internet’s routing system has been a concern for both network operators and

protocol designers for nearly fifteen years. One of the frequently stated reasons for se-

curing the Internet’s interdomain routing protocol, the Border Gateway Protocol (BGP), is

that attackers may use BGP to launch their attacks and hide their traces. Previous work

has exposed some specific techniques that attackers use; for example, Ramachandran et

al. observed that some attackers send spam from short-lived prefixes [80]. Nevertheless,

little is known about how ASes that host these attackers exploit BGP to provide them with

further protection. There have been some publicized cases of malicious ASes—major hubs

of illegal activity—namely Atrivo/Intercage and VolgaHost, that were observed to get fre-

quently de-peered. Eventually they were officially reported and cut off by all providers

in September 2008 and January 2011, respectively. This practice of frequent change in

upstream connectivity and eventual cut-off may constitute a feature that potentially char-

acterizes malicious ASes, regardless of the type of attacks they launch which varies across

time. We refer to the activity that is related with change of connectivity of an AS as re-

wiring activity of this AS.

This chapter presents the first systematic study of the re-wiring activity of malicious

ASes, with the goal of improving our understanding of how malicious networks exploit in-

terconnection through different upstream ASes to cover their tracks. Rather than attempting

to detect any individual type of attack (e.g., spam, denial of service), we characterize the

re-wiring activity of malicious networks that are primarily responsible for attacker activ-

ities. We identify features of the re-wiring behavior that may be more stable across time

than the characteristics of any single attack. We believe that ultimately certain aspects of

routing behavior may serve as invariants for detecting malicious infrastructure, even as the

attacks themselves evolve.

We draw the following conclusions from our study:

• Malicious Enterprise Customers (ECs) on average change their upstream connectiv-

ity more aggressively than non reported ECs. We offer a new class of observations

on the AS-level re-wiring activity of malicious ECs. ECs are typically stub networks
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(Section 4.2). We find that, on average, malicious ECs change their upstream connec-

tivity more frequently and link with a larger set of providers throughout their lifetime

than non-reported ECs. We observe that malicious ECs link on average with a total

of twelve providers from 1998–2010, whereas the rest of ECs link with only about

four providers on average. Also, malicious ECs’ peering sessions last for less time;

the top 5% of CP links formed by malicious ECs are observed for 14–31 consecutive

snapshots of the AS graph, whereas the top 5% of the CP links formed by the rest of

ECs are observed for 27–51 consecutive snapshots.

• Malicious ECs prefer to attach to popular providers as non reported ECs do when

they first appear, but they attach to less popular providers when they re-wire later in

their lifetime. In 2009–2010, all malicious ECs that were observed for the first time

used the most-preferred providers (the providers that are responsible for the most CP

links generated by non-reported ECs at that snapshot) for transit, as the rest of the

ECs did (Section 4.3). During the same time period, the malicious ECs that were

observed to re-wire, attached to providers from which only a fraction of 30–50%

were among the top providers preferred by non-reported ECs.

Our results highlight some findings that have implications for the design of more ef-

fective defense mechanisms against Internet attacks, which we discuss in more detail in

Section 4.4. Even though an AS may be acting maliciously, network administrators in

other networks may not be aware of it. Instead, if AS rewiring activity is monitored and

potential malfeasance is reported, then this information may be useful to network adminis-

trators. For example, in the case of AS-Atrivo, even if not all network administrators knew

that AS-Atrivo was acting maliciously or the details of the attacks, it may have been help-

ful to know that its re-wiring activity was suspicious, in case they receive suspicious traffic

originating from that AS or if AS-Atrivo tries to connect directly with them. The re-wiring

features are independent of the evolving nature of the attacks and also more difficult for the

attackers to tamper, incorporating them may provide significant gains over existing defense

mechanisms or complement them.

The rest of this chapter is organized as follows. In Section 4.2, we describe the datasets

we used in our analysis. Section 4.3 presents our findings and Section 4.4 offers some

observations about the implications of our findings with regard to existing defense mecha-

nisms. We conclude in Section 4.5.
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4.2 Data

Our primary dataset consists of a list of networks that are reported as top in Internet criminal

activities, in a period of three years (2009–2011) according to Hostexploit. There are a total

of 129 distinct ASes. We hypothesize that malicious ASes have different business functions

and incentives than most ASes, which may be reflected on the links they form with other

ASes in the Internet. To understand the re-wiring behavior of these networks we obtain a

publicly available dataset of customer-provider links formed among ASes over ten years

(available here [25]), over which we track them. We considerASes that have not ever been

reported by Hostexploit to be legitimate.

Hostexploit reports. To study the behavior of malicious networks that are mostly en-

gaged in Internet nefarious activities, we collected the list of ASes reported as most ma-

licious networks by Hostexploit in global Internet activity reports issued in quarters of

2009–2011. Hostexploit is an open organization of international volunteers who are In-

ternet professionals within the areas of web hosting, server management, DNS, Internet

security, and intrusion detection systems, with a focus on creating awareness of cyber-

crime activity. Hostexploit integrates and correlates data from multiple sources such as

spam, malware, malicious URLs, spam bots, botnet command and control servers, phish-

ing servers, exploit servers, and cyber-warfare intelligence provided by industry partners.

To provide a list of the worst networks, they rate each AS with a Hostexploit Index (HE),

based on the activity of the AS weighted by the size of its allocated address space. HE

is a proportional rather than an absolute index of AS maliciousness. Hostexploit has been

issuing reports on top networks by their HE index periodically since 2009.

Figure 14 shows an example Hostexploit report for the first quarter of 2011. The report

is accompanied by an analysis of the quarterly results. For example, they compare the new

ranking results with the previous quarterly ranking, show the top worst networks by sector

(spam, botnet hosting, etc.), show an analysis by country, etc.

Historic AS relationships. To understand the re-wiring behavior of malicious networks,

we tracked these ASes’ rewiring activity over a ten years. Dhamdhere et al. [25] collected

BGP AS paths from BGP table dumps obtained from repositories at RouteViews and RIPE.

They collected snapshots of AS paths; a snapshot refers to a period of 21 days (not an in-

stant). During each snapshot, they collected at five different times the unique AS paths

from all active monitors. Then, to obtain the primary Internet links (used most of the time)

and to filter out the backup links (used during failures or overload conditions), they kept
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Figure 14: A quarterly report from Hostexploit from the 1st quarter of 2011. The report
ranks ASes by an index (HE) based on the activity of the AS, weighted by the size of its
allocated address space.

only the AS paths that appeared in the majority of the samples and ignored the rest (ma-

jority filtering algorithm). Then, they used the AS paths in each snapshot (those that had

passed the majority filtering process) to infer the underlying AS topology and the relation-

ships between adjacent ASes. Finally, they used the well-known algorithm proposed by

Gao [32]. Gao’s algorithm resulted in four types of AS relationships: Customer-Provider

(CP), peering, sibling, and unknown. To understand the evolution of the Internet ecosys-

tem they classified ASes into types depending on their function and business type, based

on their observable topological properties. They classified ASes into Enterprise Customers

(ECs), small transit provider, large transit provider, content access and hosting provider.

In this study, we focus only on the CP links of ECs (62 in total). We note that based

on the method that the classes were derived, ASes of the same class are close in terms of

the number of customers and peers they link with at each snapshot. As far as the number

of providers they link with at each snapshot there is larger variability among the ASes, but

our analysis is not relying on this metric. Instead, we are looking at the accumulation of

distinct providers across time, the CP link duration and other features (see Section 4.3).

Dataset limitations. Our data has the following limitations: (1) The Hostexploit data

may be inaccurate. (2) The methods that were used to infer the AS graph [25] have been

shown to to be inadequate. Most ASes are detected but a significant fraction of peering and

backup links at the edges of the Internet are missed. (3) Dhamdhere et al.’s AS classifica-

tion algorithm may introduce errors.
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Figure 15: Malicious ECs on average attach to more providers and change their providers
more frequently than legitimate ECs.

4.3 Results

We hypothesize that malicious ASes have different business functions and incentives than

the rest of the ASes, and that these differences may be reflected on their re-wiring activity.

For example, we suspect that malicious ASes may get frequently de-peered from their

providers and that they need to re-wire more frequently than legitimate ASes. To test our

hypothesis, we survey the wiring trends of malicious networks; (1) re-wiring frequency

and (2) attachment preference. To determine whether our findings may be suitable for

characterizing network re-wiring activity, we compare the behavior of malicious ASes to

that of non-reported ASes over a ten-year period. We present the results of our analysis for

Enterprise Customers (ECs) only.

4.3.1 Re-Wiring Frequency

To understand the re-wiring dynamics of malicious networks and, more specifically, how

these networks change their upstream connectivity, we examine three features; (1) the num-

ber of providers they link with throughout their lifetime, (2) how frequently they change

providers and (3) how long their CP links last. To determine whether these features may be

suitable for characterizing the re-wiring activity of malicious ECs, we compare the behav-

ior of malicious ECs to that of the rest of the ECs over ten years.

Malicious ECs on average connect to more providers than legitimate ECs do. To

investigate how malicious ECs link with their providers we first look at the total number of

providers they link with throughout their lifetime. To compute the cumulative number of
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providers that an EC has, on average, first we track each EC for the duration of its lifetime;

we add the total number of providers it links with to the total number of providers for

its group (malicious or rest of EC). Then, for every snapshot, we compute the average by

dividing the cumulative total number of providers of the EC group with the number of ASes

in the EC class. We note that across time the size of the group increases as new ECs appear,

and as does the cumulative number of providers for the group of EC. The rate with which

the two numbers increase does not stay the same across time, so some snapshots exhibit

a small decrease in the average cumulative number of providers. Figure 15(a) shows the

cumulative number of providers that ECs attach to, on average, for two cases: malicious

ECs and the rest of ECs. On average, malicious ECs link with more providers throughout

their lifetime than the rest of the ECs do.

Malicious ECs link on average with a total of twelve providers during the period 1998–

2010, whereas the rest of ECs link on average with only about four providers. The top

ECs by the total number of providers are AS 3, which connected to 83 distinct providers;

AS 26415, which linked with a total of 68 providers; and the private AS 65000, linked to

20 different providers. On the other hand, the malicious EC that we observed to link with

the most providers (a total of 83) through its lifetime was AS 23456. We note that this

AS is reserved by IANA and is used for backward compatibility between old (2-byte AS

support) and new (4-byte AS support) BGP speakers. Because it is reserved for backwards

compatibility, this AS is likely not a single AS, but rather a group of ASes; we must inves-

tigate this further to better understand the individual ASes that are perpetrating suspicious

activity.

Malicious ECs on average change upstream providers more frequently than legit-
imate ECs. To quantify the aggressiveness of an EC in changing its upstream connectivity,

we consider the distance between the set of the AS’s providers for two consecutive snap-

shots. We use the Jaccard distance as a metric of distance between the set of providers of

two consecutive snapshots. For example, a Jaccard distance of 0.8 indicates that 80% of the

links seen in the two snapshots are observed in one of the two snapshots but not in both. We

calculated the Jaccard distance between two consecutive snapshots for each AS throughout

its lifetime. Figure 15(b) shows the distribution of the Jaccard distance values for malicious

ECs and the rest of the ECs throughout their lifetime. We observe that malicious ECs are

more aggressive on average in changing their upstream connectivity than the rest of ECs.

The fact that malicious ECs change their upstream connectivity more frequently than

legitimate ECs may be a reflection of the following: (1) malicious ECs are noticed by

their providers regarding their attacker activities, they get de-peered and they are forced

to change upstream connectivity more frequently than legitimate ECs, (2) malicious ECs
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Figure 16: Distribution of the average duration of CP links formed by ECs with their
providers. Malicious ECs on average form shorter duration links than the rest of the ECs.

attempt to find providers with less strict restrictions, which may make it easier for them

to launch their attacks, (3) malicious ECs attempt to avoid accountability or legal conse-

quences of their activities.

Malicious ECs on average form shorter duration CP links than legitimate ECs.
To better understand the behavior of malicious ECs, we consider the duration of the links

they form with their providers. To compute the CP link duration, we proceed as follows:

First, for every snapshot, we determine the links that are present. Second, for each link,

we determine whether it is present in the previous snapshot. Finally, for each link, we

measure the total number of consecutive snapshots it was present. In cases where a link

appears multiple times throughout 1998–2010 we consider the average duration of that

link. Figure 16 shows the distribution of average CP link duration of malicious ECs and

the rest of ECs. We observe that malicious ECs on average form CP links that are shorter

in duration than the CP links that legitimate ECs form.

Figure 16 shows that approximately 22% of the CP links formed by malicious EC and

about 10% of CP links formed by the rest of ECs were observed for only one snapshot.

For example ASes in AS 23456, which linked with the largest number of providers, formed

CP links with ASes 30083, 5617, and 7643, which appeared for only one snapshot. Ex-

amples of short-lived CP links formed by non-malicious ECs include AS 20195–AS 6395,

AS 39709–AS 28870, and AS 3748–AS 4554. These links were observed for only one

snapshot. On the other hand, as far as long-lived CP links, the top 5% of CP links formed

by malicious ECs are observed for 14–31 consecutive snapshots, whereas the top 5% of

the CP links formed by non-malicious ECs are observed for 27–51 consecutive snapshots.

The most long-lived CP links by malicious ECs are links AS 14280–AS 6327 which was
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(a) First attachment.
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(b) Re-wiring.

Figure 17: Fraction of malicious ASes providers’ that belong to the most preferred
providers of all ECs for each snapshot. Malicious ECs in some cases attach to the most
popular providers when they first appear, but not when they rewire. This is especially true
for the more recent years.

observed for 33 consecutive snapshots, AS 17974–AS 7713 for 31 consecutive snapshots

and AS 13174-AS 1299 for 30 consecutive snapshots. The most long-lived CP links by le-

gitimate ECs were observed for 51 consecutive snapshots (i.e., the entire period from 1998

to 2010); some examples are: AS 8581–AS 5408, AS 2508–AS 2907, AS 7065–AS 701,

AS 10357–AS 7066, and AS 1104–AS 1103.

4.3.2 Attachment Preference

In this section, we study the providers that malicious ECs connect to. Our goal is to de-

termine whether malicious ECs have different attachment preferences than the rest of the

ECs. We define the most preferred providers as the providers that are responsible for the

most CP links generated by non-reported ECs at that snapshot. We find that malicious ECs

do not connect to the most preferred providers as non-reported ECs do.

First, at each snapshot, we determine the most preferred providers as follows: we cal-

culate the total number of CP links generated by non-reported ECs at each snapshot and we

extract the providers that are responsible for at least 60% of the total at that snapshot. This

set comprises the most preferred providers of non-reported ECs at each snapshot. Second,

for each snapshot, we determine the providers that malicious ECs link with and whether

those links are first-time attachments or re-wirings. Finally, at each snapshot, we calculate

the fraction of the providers that malicious ECs link with that also belong to the most pre-

ferred providers of non-reported ECs. We calculate this fraction separately for the cases

of first-attachment (when an EC is observed for the first time) and re-wiring (when an EC
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re-wires).

Figure 17 shows the fractions of the providers of malicious ECs that belong to the

most preferred providers of non-reported ECs, for the cases of first attachment and re-

wiring across time. We observe that for the case of first attachment, all or almost all of the

providers they link with are also among the most preferred providers of non-reported ECs.

In contrast, for the case of re-wiring, only a percentage of the providers that malicious ECs

link with are also among the most preferred providers of non-reported ECs. We observe

that for the years 2009–2010, approximately 30–50% of the providers that malicious ECs

link with are also among the most preferred providers of non-reported ECs.

4.4 Recommendations and Future Work

Although we have focused on characterization of re-wiring activity, we believe that routing

behavior associated with malicious networks has properties that can lead to both better

protection against Internet attacks and more efficient detection of the networks that host the

attackers. Specifically, because it is independent of any particular attack, routing behavior

may serve as invariant behavior that can help identify networks that perpetrate a wider

variety of attacks. Routing data is also publicly available and can complement other types

of detection mechanisms. In the remainder of this section, first we discuss various lessons

from this characterization study that may ultimately inform detection methods and second

we discuss future work.

We first note that networks that consistently host malicious activity have re-wiring be-

haviors that are distinct from other networks. This may point to possibilities for stemming

the tide of attack traffic in the future. In the past, we have seen dramatic de-peering events

of a single AS (e.g., Atrivo/Intercage), which have resulted in a precipitous drop in spam

traffic, which returned at a later date, likely as the spammers re-established upstream con-

nectivity with other upstream ASes. Our analysis shows that the stub ASes that tend to

originate a significant amount of attack traffic tend to re-wire with upstream ASes that are

not “preferred” upstream ASes. In the future, more effective AS reputation systems might

incorporate information not only about the AS itself that originates the traffic, but also the

upstream ASes to which the network connects. Given the aggressive re-wiring in which ma-

licious ASes participate, another possible way forward might be to encourage some type of

registration or verification process by which an AS (or its upstream) is vetted as a reputable

provider.

In future work, we plan to evaluate (1) the possibility to classify malicious ASes using

re-wiring activity features we observed in this study and (2) the efficacy of using routing
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information as input to an AS reputation system. We also plan to investigate the re-wiring

activity of malicious ASes by class (e.g., small transit providers, large transit providers and

content providers) and also by the type of attack they appear to be engaged with (e.g., some

malicious ASes may appear mostly to send spam during a specific period of time whereas

other ASes may appear to be hosting command-and-control infrastructure). It remains to be

seen whether a blacklisting system that is based on re-wiring behavior would be sufficiently

different than one that uses observations of the attacks themselves as input.

4.5 Conclusion

Although limited empirical studies have suggested that attackers exploit BGP routing to

help cloak their attacks, there has been no detailed longitudinal study of how malicious

networks may interconnect differently from other ASes. In this chapter, we have analyzed

more than ten years of BGP data in conjunction with reports of malicious ASes from Hos-

texploit and found that ASes that are known to host malicious traffic consistently exhibit

different re-wiring behavior than other ASes. We believe that our findings may ultimately

serve as useful features for other reputation or attack detection mechanisms. The fact that

routing dynamics are a property of the network hosting the attack, rather than of any spe-

cific attack, may ultimately prove advantageous in this regard. In particular, using BGP

routing data as an input to such an AS-based reputation system is a promising area for

future work.
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CHAPTER V

ASWATCH: AN AS REPUTATION SYSTEM TO EXPOSE
BULLETPROOF HOSTING ASES

5.1 Introduction

Today’s cyber-criminals must carefully manage their network resources to evade detection

and maintain profitable illicit businesses. For example, botmasters need to protect their

botnet command-and-control (C&C) servers from takedowns, spammers need to rotate IP

addresses to evade trivial blacklisting, and rogue online businesses need to set up proxies

to mask scam hosting servers. Often, cyber-criminals accomplish these goals by hosting

their services within a malicious autonomous system (AS) owned by an Internet service

provider that willingly hosts and protects illicit activities. Such service providers are usu-

ally referred to as bulletproof hosting [16], due to their reluctance to address repeated abuse

complaints regarding their customers and the illegal services they run. Notorious cases of

malicious ASes include McColo [54], Intercage [47], Troyak [68], and Vline [2] (these

ASes were taken down by law enforcement between 2008 and 2011). According to Host-

exploit’s reports [35], these types of ASes continue to appear in many regions around the

world—mostly in smaller countries with lower levels of regulation, but also in the United

States—to support activities ranging from hosting botnet command-and-control to phishing

attacks [36]. For example, the Russian Business Network [83], one of the most notorious

and still active cybercrime organizations, have decentralized their operations across multi-

ple ASes. In most cases, nobody notices bulletproof hosting ASes until they have become

hubs of illegal activities, at which point they are de-peered from their upstream providers.

For example, Intercage [47] was de-peered more than ten times before it reached notoriety

and was cut off from all upstream providers.

To defend against these crime-friendly ASes, the community has developed several

AS reputation systems that monitor data-plane traffic for illicit activities. Existing AS

reputation systems typically monitor network traffic from different vantage points to detect

the presence of either malware-infected machines that contact their C&C servers, send

spam, host phishing or scam websites, or perform other illicit activities. These systems

establish AS reputation by measuring the “density” of malicious network activities hosted

within an AS. For instance, FIRE [101] tracks the number of botnet C&C and drive-by
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malware download servers within an AS. ASes that host a large concentration of malware-

related servers are then assigned a low reputation. Similarly, Hostexploit [35] and BGP

Ranking [12] compute the reputation of an AS based on data collected from sources such

as DShield [26] and a variety of IP and domain name blacklists.

Unfortunately, these existing AS reputation systems have a number of limitations:

(1) They cannot distinguish between malicious and legitimate but abused ASes. Legitimate

ASes often unwillingly host malicious network activities (e.g., C&C servers, phishing sites)

simply because the machines that they host are abused. For example, AS 26496 (GoDaddy)

and AS 15169 (Google) repeatedly appeared for years among the ASes with lowest reputa-

tion, as reported by Hostexploit. Although these ASes are legitimate and typically respond

to abuse complaints with corrective actions, they may simply be unable to keep pace with

the level of abuse within their network. On the other hand, malicious ASes are typically

unresponsive to security complaints and subject to law-enforcement takedown. (2) Because

of the inability to distinguish between malicious and legitimate but abused ASes, it is not

clear how to use the existing AS rankings to defend against malicious ASes. (3) Existing

AS reputation systems require direct observation of malicious activity from many different

vantage points and for an extended period of time, thus delaying detection.

We present a fundamentally different approach to establishing AS reputation. We de-

sign a system, ASwatch, that aims to identify malicious ASes using exclusively control-

plane data (i.e., the BGP routing control messages exchanged between ASes using BGP).

Unlike existing data-plane based reputation systems, ASwatch explicitly aims to identify

malicious ASes, rather than assigning low reputation to legitimate ASes that have unfortu-

nately been abused.

Our work is motivated by the practical help that an AS reputation system, which ac-

curately identifies malicious ASes, may offer: (1) Network administrators may handle

traffic appropriately from ASes that are likely operated by cyber criminals. (2) Upstream

providers may use reliable AS reputation in the peering decision process (e.g. charge higher

a low reputation customer, or even de-peer early). (3) Law enforcement practitioners may

prioritize their investigations and start early monitoring on ASes, which will likely need

remediation steps.

The main intuition behind ASwatch is that malicious ASes may manipulate the Internet

routing system, in ways that legitimate ASes do not, in an attempt to evade current detection

and remediation efforts. For example, malicious ASes “rewire” with one another, forming

groups of ASes, often for a relatively short period of time [49]. Only one AS from the group

connects to a legitimate upstream provider, to ensure connectivity and protection for the

group. Alternatively, they may connect directly to a legitimate upstream provider, in which
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case they may need to change upstream providers frequently, to avoid being de-peered and

isolated from the rest of the internet. Changing providers is necessary because a legitimate

upstream provider typically responds (albeit often slowly) to repeated abuse complaints

concerning its customer ASes. Another example is that a malicious AS may advertise and

use small blocks of its IP address space, so that as soon as one small block of IP addresses

is blocked or blacklisted, a new block can be advertised and used to support malicious

activities. To capture this intuition, we derive a collection of control-plane features that is

evident solely from BGP traffic observed via Routeviews [86]. We then incorporate these

features into a supervised learning algorithm, that automatically distinguishes malicious

ASes from legitimate ones.

We offer the following contributions:

• We present ASwatch, an AS reputation system that aims to identify malicious ASes

by monitoring their control plane behavior.

• We identify three families of features that aim to capture different aspects of the

“agile” control plane behavior typical of malicious ASes. (1) AS rewiring captures

aggressive changes in AS connectivity; (2) BGP routing dynamics capture routing

behavior that may reflect criminal illicit operations; and (3) Fragmentation and churn

of the advertised IP address space capture the partition and rotation of the advertised

IP address space.

• We evaluate ASwatch on real cases of malicious ASes. We collect ground truth infor-

mation about numerous malicious and legitimate ASes, and we show that ASwatch

can achieve high true positive rates with reasonably low false positives. We evaluate

our statistical features and find that the rewiring features are the most important.

• We compare the performance of ASwatch with BGP Ranking, a state-of-the-art AS

reputation system that relies on data-plane information. Our analysis over nearly

three years shows that ASwatch detects about 72% of the malicious ASes that were

observable over this time period, whereas BGP Ranking detects only about 34%.

The rest of the chapter is organized as follows. Section 5.2 offers background informa-

tion about bulletproof hosting ASes. Section 5.3 describes the features we devised and an

overview of our system. Section 5.4 discusses the evaluation of the system. Section 5.5

discusses various limitations of our work and Section 5.6 concludes.
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5.2 Background

In this section, we describe more precisely the differences between malicious (bulletproof

hosting) and legitimate ASes. We provide background information, with an emphasis on

characteristics that are common across most confirmed cases of malicious ASes. We also

discuss how malicious ASes tend to connect with one another, and how some ISPs (some of

which are themselves malicious) provide these ASes with upstream connectivity and pro-

tection. To illustrate this behavior, we explore a case study that shows how malicious ASes

may be established and “rewired” in an attempt to evade current detection and takedown

efforts.

Malicious vs. Legitimate ASes: We call an AS malicious, if it is managed and oper-

ated by cyber-criminals, and if its main purpose is to support illicit network activities (e.g.,

phishing, malware distribution, botnets). In contrast, we refer to an AS as legitimate, if its

main purpose is to provide legitimate Internet services. In some cases, a legitimate AS’s IP

address space may be abused by cyber-criminals to host malicious activities (e.g., sending

spam, hosting a botnet command-and-control server). Such abuse is distinct from those

cases where cyber-criminals operate and manage the AS. ASwatch focuses on distinguish-

ing between malicious and legitimate ASes; we aim to label legitimate but abused ASes

as legitimate. Our approach is thus a significant departure from existing data-plane based

AS reputation systems, which are limited to computing reputation by primarily focusing

on data-plane abuse, rather than establishing if an AS is actually malicious.

Malicious AS Relationships: Bulletproof hosting ASes provide cyber-criminals with a

safe environment to operate. Sometimes, malicious ASes form business relationships with

one another to ensure upstream connectivity and protection. For example, they may con-

nect to upstream providers that are themselves operated in part with criminal intent. In turn,

these upstream ASes connect to legitimate ISPs, effectively providing cover for the bullet-

proof hosting ASes [2]. These “masking” upstream providers may not be actively engaged

in cyber-criminal activity themselves (as observed from the data-plane). Consequently, net-

work operators at legitimate ISPs may be unaware of the partnership among these “shady”

upstream providers and bulletproof hosting ASes, making detection and remediation efforts

more difficult.

Efforts to take down bulletproof hosting ASes have been ongoing since at least 2007,

when upstream ISPs of the Russian Business Network (RBN) refused to route its traf-

fic [53]. Many organizations track rogue ASes and report tens to hundreds of new rogue

52



AS44050 
PIN 

AS25478 
IHOME 

AS48172 
OVERSUN-

MERCURY 

AS5577 
ROOT 

AS8342 
RTCOMM 

AS25189 
NLINE 

AS29632 
NASSIST 

AS28917 
FIORD 

AS12993 
DEAC 

AS29632 
NASSIST 

AS12604 
CITYGAME 

AS50215 
TROYAK 

AS12383 
PROFITLAN 

AS8287 
TABA 

AS31366 
SMALLSHOP 

AS44051 
YA 

AS50369  
VISHCLUB 

AS50390  
SMILA 

AS47821  
BOGONET 

AS42229  
MARIAM 

AS47560  
VESTEH 

AS49934  
VVPN 

AS44107  
PROM- 

BUDDETAL 

Legitimate 

Masking 

Bulletproof 

Figure 18: The AS-TROYAK infrastructure (malicious ASes identified by blogs.rsa.
com). The core of the infrastructure comprises eight bulletproof networks, which connect
to legitimate ASes via a set of intermediate ”masking” providers.

ASes every year [36]. Takedown efforts often result in a malicious AS moving to new

upstream ISPs; for example, RBN now operates on many different ISP networks.

Case Study - Behavior of Malicious ASes: Figure 18 shows an example of a real net-

work of eight bulletproof hosting ASes that connect to legitimate ASes via a set of inter-

mediate “masking” providers. Notice that while we label the malicious ASes in this case

study, based on ground truth provided by blogs.rsa.com, we independently derive and

analyze the relationships between the ASes from routing information. At the time they

were reported by blogs.rsa.com (March 2010), the eight bulletproof ASes hosted a

range of malware, including Zeus Trojans, RockPhish JabberZeus servers, and Gozi Trojan

servers. We chose this as a case study because it represents one of the most well docu-

mented cases of known bulletproof hosting ASes, and is representative of other less well

known incidents.

The bulletproof hosting ASes switched between five upstream providers, which served
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Figure 19: Connectivity snapshots of three cases of ASes which are operated by cyber-
criminals. All connected to a “masking” upstream provider. Directed edges represent
customer-provider relationships; undirected edges represent peering relationships.

as intermediaries to connect to the legitimate ASes. In turn, the upstream “masking”

providers were customers of nine different legitimate ISPs.
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Figure 20: ASwatch system architecture.

To understand how malicious ASes form business relationships and how these rela-

tionships evolve over time, we tracked the upstream and downstream connectivity of the

malicious ASes, as shown in Figures 18 and 19 (the figures show an activity period from

January to April 2010; the malicious ASes went offline in March 2010).

We tracked the connectivity of one “masking” AS, Troyak (AS 50215), and two bul-

letproof hosting ASes, Bogonet (AS 47821) and Prombuddetal (AS 44107), that belong to

the Troyak infrastructure. To track their upstream and downstream connectivity, we used a

publicly available dataset from CAIDA, which provides snapshots of the AS graph, anno-

tated with business relationships [65]. Figure 19 shows snapshots of the connectivity for

the reported ASes.

All of these malicious ASes connected to a “masking” upstream provider, thus avoiding

direct connectivity with legitimate ISPs, and also they change their connectivity between

one another. For example, before takedown, Troyak had three upstream providers: Root,

Ihome, and Oversun-Mercury. After the blog report on March 2010, Troyak lost all of

its upstream providers and relied on a peering relationship with Ya for connectivity. Af-

ter April 2010, Troyak and its customers went offline. Bogonet switched from Taba to

Smallshop, and Prombuddetal switched from Profitlan to Smallshop, before going offline.

5.3 ASwatch

ASwatch monitors globally visible BGP routing activity and AS relationships, to determine

which ASes exhibit control plane behavior typical of malicious ASes. Because of the na-

ture of their operations (criminal activity) and their need to fend off detection and possible

take-down efforts, malicious ASes tend to exhibit control-plane behavior that is different

from that of legitimate ASes. We now discuss how ASwatch works, including a detailed
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description of the features we used to differentiate between malicious and legitimate ASes,

and our intuition for choosing each feature.

5.3.1 System Overview

Figure 20 presents an overview of ASwatch. The system has a training phase (Section 5.3.3.1)

and an operational phase (Section 5.3.3.2). During the training phase, ASwatch learns the

control-plane behavior of malicious and legitimate ASes. We provide the system with ¬ a

list of known malicious and legitimate ASes (Section 5.4.1 describes this dataset). ASwatch

tracks the control-plane behavior of the legitimate and malicious ASes over time using two

sources of information:  business relationships between ASes, and ® BGP updates (from

RouteViews). ASwatch then computes statistical features (Section 5.3.2 describes this pro-

cess) from the previous inputs. Each AS is represented by a feature vector based on these

statistical features ¯. ASwatch uses these labeled feature vectors and a supervised learning

algorithm to ° train a statistical model. During the operational phase, we provide ASwatch

with a list of new (not yet labeled) ASes ± to be classified as legitimate or malicious using

the same statistical features over the given time period. Then, ASwatch ² computes the

new AS feature vectors and ° tests them against the previously trained statistical model.

Finally, ³ the system assigns a reputation score to each AS.

5.3.2 Statistical Features

In this section, we describe the features we compute and the intuition for choosing them.

Table 12 gives an overview of our feature families, and the most important group of fea-

tures for each family. Given an AS,A, and time window, T , ASwatch monitorsA’s control-

plane behavior and translates it into a feature vector consisting of three groups of features:

rewiring activity, IP fragmentation and churn, and BGP routing dynamics.

Some of the behavioral characteristics we measure can be naturally described by a

probability distribution, rather than a single numerical feature. In these cases, to capture

the behavioral characteristics in a way that is more suitable for input to a statistical clas-

sifier, we translate each probability distribution into three numerical features that approx-

imately describe the shape of the distribution. Specifically, we compute its 5th percentile,

95th percentile, and median. In the following, we refer to such features as distribution

characteristics. We include these three values as features in the overall feature vector, and

repeat this process for all behavioral characteristics that can be described as a probability

distribution.
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Notice that even though more values may more accurately summarize a distribution’s

shape, such a representation would significantly increase the overall size of the feature

vector used to describe an AS. For this reason, we chose to only use three representative

values, which we found to work well in practice.

We now explain in detail the features that ASwatch uses to establish AS reputation and

motivate how we selected them.

5.3.2.1 Rewiring Activity

This group of features aims to capture the changes in A’s connectivity. Our intuition is that

malicious ASes have different connectivity behavior than legitimate ASes, because they

tend to: (1) change providers more frequently to make detection and remediation more

difficult; (2) connect with less popular providers, which may have less strict security pro-

cedures and may respond less promptly to abuse complaints, (3) have longer periods of

downtime, possibly due to short-duration contracts or even de-peering from a legitimate

upstream provider. In contrast, legitimate ASes tend to change their connectivity less fre-

quently, typically due to business considerations (e.g., a less expensive contract with a new

provider).

To capture rewiring activity, ASwatch tracks changes to AS relationships (Step 2 in

Figure 20). We use periodic snapshots of historic AS relationships, with one snapshot per

month (Section 5.4.1 describes the data sets in more detail). A snapshot Si contains the

AS links annotated with the type of relationships, as observed at a given time ti (e.g., one

snapshot is produced on the first day of each month).

AS presence and overall activity. Let A be the AS for which we want to compute our

features. Given a sequence of N consecutive snapshots {Si}Ni=1, we capture the presence

of an AS by measuring the total number of snapshots, C, and the maximum number of

contiguous snapshots, M , in which A was present, the fraction C/N , and M/N (four

features in total). To capture the overall activity of A, we measure the distribution (over

time) of the number of customers, providers, and peers A links with for each snapshot.

To summarize each of these distributions, we extract the distribution characteristics (5th

percentile, 95th percentile, and median), as described earlier. This yields a total of nine

features (three for each of the three types of AS relationships). We also count the total

number and fraction (i.e., normalized by C) of distinct customers, providers, and peers that

A has linked with across all C snapshots when it was present, yielding another six features.

Link stability. We capture the stability of different types of relationships that an AS forms

over time. For each of the C snapshots where A was present, we track all relationships
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Table 12: Overview of ASwatch feature families and the most important feature for each
family.

Feature Family Description
Most Important
Feature

Rewiring
Activity

Changes in AS’s connectivity (e.g., fre-
quent change of providers, customers or
peers)

Link stability

IP Space
Fragmentation &
Churn

IP space partitioning in small prefixes &
rotation of advertised prefixes

IP space frag-
mentation

BGP Routing
Dynamics

BGP announcements patters (e.g., short
prefix announcements)

Prefix reachabil-
ity

between A and any other AS. Assuming A appeared as an upstream provider for another

AS, say Ak, in v out of C snapshots, we compute the fraction F k = v/C. We repeat

this for all ASes where A appears as a provider at least once within C snapshots, thus

obtaining a distribution of the F k values. Finally, we summarize this distribution of the

F k values, computing the distribution characteristics as described above. We repeat this

process, considering all ASes that appear as the upstream provider for A (i.e., A is their

customer), and for all ASes that have peering relationships with A. Overall, we compute

nine features that summarize three different distributions (three features for each type of

relationship).

Upstream connectivity. We attempt to capture change in the set of providers. Assume

that from the i-th snapshot Si we observed a total of Mi upstream providers for A, and call

{Ak
i }

Mi
k=1 the set of upstream provider ASes. Then, for each pair of contiguous snapshots,

Si and Si+1, we measure the Jaccard similarity coefficient Ji,i+1 between the sets {Ak
i } and

{Ak
i+1}. We repeat for all available (N−1) pairs of consecutive snapshots, thus obtaining a

distribution of Jaccard similarity coefficients. To summarize this distribution, we compute

the distribution characteristics as described above, yielding three features. Figure 21 shows

the CDF of the minimum Jaccard similarity, for the malicious and the legitimate ASes.

Overall, the legitimate ASes tend to have higher values of the Jaccard similarity metric,

which indicates fewer changes in their upstream providers.

Attachment to popular providers. We aim to capture an AS’s preference for “popular”

providers. As previous work has shown [49], malicious ASes tend to connect more often
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with less prominent providers, which may have less strict security procedures and may

respond less promptly to abuse complaints.

We compute the popularity of each provider per snapshot and across all snapshots.

To this end, we first empirically derive the distribution of the number of customers per

provider. We then consider a provider to be (a) very popular, if it belongs to the top 1% of

all providers overall; (b) popular, if it belongs to the top 5%; (c) very popular with respect

to a snapshot Si, if it belongs to the top 1% in Si, and (d) popular with respect to a snapshot

Si, if it belongs to the top 5% in Si.

We then gather all upstream providers that A has used and compute the fraction of

these providers that fall into each of the four categories described above (thus yielding four

features). Finally, we compute the fraction of snapshots in which A has linked to at least

one provider falling into one of the above categories; we do this for each category, thus

obtaining four more features.

We capture the overall rewiring behavior of an AS with a total number of thirty five

features.

5.3.2.2 IP Space Fragmentation and Churn

Malicious ASes tend to partition their IP address space into small BGP prefixes and to

advertise only some of these prefixes at any given time. One possible explanation for this

behavior may be that they attempt to avoid having their entire IP address space blacklisted

at once. For example, if a number of IP addresses within a given BGP prefix are detected

as hosting malicious activities, a blacklist operator (e.g., Spamhaus [96]) may decide to

blacklist the entire prefix where the IP addresses reside. By fragmenting the IP address

space and advertising only a subset of their BGP prefixes, the operators of a malicious AS

may be able to quickly move malicious activities to a “fresh” space. They perform this

maneuver by leveraging not-yet-blacklisted IP addresses within newly advertised prefixes.

On the other hand, legitimate ASes tend to consistently advertise their available IP address

space in less fragmented prefixes, as they do not need to attempt to evade blacklisting.

IP Space Fragmentation and Churn Features. We attempt to capture IP address frag-

mentation with the following features. Given a snapshot, we group the advertised BGP

prefixes into contiguous IP blocks. For each, AS we count the number of BGP prefixes

and the number of distinct /8, /16, and /24 prefixes within each IP block. To capture

the churn in the advertisement of the IP address space, we proceed as follows. Given a

pair of adjacent snapshots for an AS, we measure the Jaccard similarity among the sets of
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Figure 22: Malicious ASes withdraw prefixes for longer periods. The distribution of
the median interval between a prefix withdrawal and re-announcement across 15 contigu-
ous epochs.

BGP prefixes advertised by the AS in the two snapshots. Similarly, we compute the Jac-

card index among the sets of /8, /16, and /24 prefixes. We summarize the above four

distributions using the distribution characteristics that we described earlier, thus obtaining

a total of twelve features.

5.3.2.3 BGP Routing Dynamics

These features attempt to capture abnormal BGP announcement and withdrawal patterns.

For example, to support aggressive IP address space fragmentation and churn and avoid

easy blacklisting, malicious ASes may periodically announce certain prefixes for short pe-

riods of time. On the contrary, the pattern of BGP announcements and withdrawals for
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legitimate ASes is mainly driven by normal network operations (e.g., traffic load balanc-

ing, local policy changes), and should thus exhibit BGP routing dynamics that are different

to those of malicious ASes.

Prefix reachability. We aim to capture the fraction of time that prefixes advertised by

A remain reachable, which we define as reachability. First, we measure the time that

elapses between an announcement and a withdrawal for every advertised prefix. Given the

distribution of these time intervals, we extract the distribution characteristics as described

above. Second, we track the time for a prefix to become reachable again after a withdrawal.

Third, we measure the inter-arrival time (IAT) between withdrawals, for each of the prefixes

that A announces, and compute the IAT distribution. As before, we extract the distribution

characteristics for each of the three distributions, yielding a total of nine features. Figure

22 shows the CDF of the median reachability value for the malicious and the legitimate

ASes over the course of one day, and over 15 days. Higher values of this feature suggest

that malicious ASes tend to re-advertise their prefixes after longer delays.

Topology and policy changes. We track the topology and policy changes, defined as in

Li et al. [63], that are associated with each prefix. We define a policy change as follows:

after a path to a destination is announced, a second BGP announcement is observed with

the same AS path and next-hop, yet one or more of the other attributes (such as MED or

community) is different. Similarly, we define a topology change event as follows: after a

path to a destination is announced, a second announcement follows with an alternate route

(implicit withdrawal) or after a route to a destination is explicitly withdrawn, a different

route (with different AS path or next-hop attributes) to the same destination is announced

(explicit withdrawal).

To capture and summarize the topology and policy changes per AS, we group the pre-

fixes per origin AS (the origin AS appears as the last AS in the AS path). We track the

policy change events for each prefix, and we measure the inter-arrival time between the

events per prefix. Then, we analyze the collection of inter-arrival times of the policy events

for all prefixes advertised by the same AS. For each AS, we form the distribution of such

intervals, and we extract the distribution characteristics as described above. We also com-

pute the total number of events and the total number of events divided by the total prefixes

advertised by the AS. We repeat this process for the topology change events. We compute

a total of ten features.

5.3.3 System Operation

We now describe ASwatch’s training and operation.
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5.3.3.1 Training Phase

To train the classifier (Steps 6 and 7 in Figure 20), we first prepare a training dataset with

labeled feature vectors related to known malicious and legitimate ASes. We start with a

ground truth dataset that includes confirmed cases of malicious ASes, and legitimate ASes

(described in more details is Section 5.4.1).

We compute the statistical features for each labeled AS using two sources of data: BGP

announcements and withdrawals from Routeviews [86], and information from a publicly

available dataset [65] about the relationships between ASes. We compute the feature

vectors over m contiguous epochs (in our experiments, each epoch is one day). More

specifically, we maintain a sliding window of size m epochs, which advances one epoch

at a time. Using this sliding window, we can compute multiple feature vectors for each

AS (one per window). Then, we associate a label to each feature vector, according to the

ground truth related to the AS from which a vector was computed.

Finally, to build the statistical classifier, we use the Random Forest (RF) algorithm.

We experimented with different algorithms, but we chose RF because it can be trained

efficiently and has been shown to perform competitively with respect to other algorithms

for a variety of problems [15].

5.3.3.2 Operational Phase

Once the statistical classifier has been trained, ASwatch can assign a reputation score to new

ASes (i.e., ASes for which no ground truth is yet available). ASwatch computes a reputation

score for each new AS observed in the BGP messages from Routeviews. Suppose that

we want to compute the reputation of an AS, A, over some time period, T . First, we

compute A’s features (as explained in Section 5.3.2) over period T , using a sliding window

procedure as in the training phase. Namely, a feature vector is computed for each window

within T . Second, we classify an AS as malicious, if ASwatch consistently assigns it a low

reputation score for several days in a row.

More specifically, let Ti be the current day of observations, fA,Ti
be the corresponding

feature vector for A, and s(fA,Ti
) be the bad reputation score output by the classifier at the

end of Ti. Also let Wi = (Ti, Ti+1, . . . , T(i+m−1)) be a period of m consecutive days. We

report A as malicious if: (a) score s(fA,Ti
) > θ for 90% of the days in period Wi, where θ

is a predefined threshold that can be learned during the training period; and (b) condition

(a) holds for at least l consecutive periods Wi,Wi+1, . . . ,Wi+l.

We note that we have experimented with multiple values for m and l (see Section 5.4.3

for detailed discussion on parameter selection).
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5.4 Evaluation

We now describe the data we collected and the setup for our evaluation of ASwatch, where

we evaluate the system’s accuracy. Our results show that ASwatch achieves a high detection

rate for a reasonably low false positive rate, can detect malicious ASes before they are

publicly reported by others, and can complement existing AS reputation systems that rely

solely on data-plane observations. Furthermore, we find that ASwatch detects nearly double

the fraction of confirmed cases of malicious ASes compared to BGP Ranking, a data-plane

based AS reputation system.

5.4.1 Data

Labeling malicious ASes. Collecting reliable ground truth about malicious ASes is ex-

tremely challenging, due to the utter lack of public information available about such cases.

Nonetheless, through extensive manual search and review efforts, we managed to collect a

set of ASes for which there exists publicly available evidence of malicious behavior. For

example, we identified a reasonable set of malicious ASes that were at some point seized

by law enforcement or disconnected by other network operators.

To obtain our dataset of malicious ASes, we searched through websites that are operated

by cyber-security professionals (e.g., www.abuse.ch, blogs.rsa.com [1,2,21,34,37,

55]) and carefully reviewed articles about ASes known to be operated by cyber-criminals.

We observed the following common characteristics across all articles and blog reports

we considered: (1) the reported ASes hosted a variety of cyber-criminal activities (e.g.,

botnet C&C hosting, malware domains, phishing), (2) several ASes were associated with

each other, either directly (e.g., customer-provider relationship) or indirectly (e.g., they

shared the same upstream provider), (3) the operators of these ASes were uncooperative

and unresponsive (e.g., would not respond to abuse complaints or attempts by other AS

operators to communicate with them), (4) some ASes were prosecuted by law enforcement

and taken down, (5) many of these disappeared only for a relatively short time before

resurfacing. From each blog report, we extracted the ASes involved and the dates when

they were active. Overall, we collected forty one known malicious ASes. We provide our

list of ASes in Figure 23.

Labeling legitimate ASes. To collect a set of legitimate ASes, we proceeded as fol-

lows. Every day for one year, we collected the list of top one million domain names from

alexa.com. For each of these domains, we calculated the average daily ranking; we

selected the domain names that had an average ranking above 10,000. In other words, we
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Informex, AS20564 
Ecatel, AS29073 

Volgahost, AS29106 
RapidSwitch, AS29131 

Riccom, AS29550 
Naukanet, AS31445 

PromiraNet, AS31478 

Ys-IX, AS31506  
Vakushan, AS34229  

Euroaccess, AS34305  

SunNetwork, AS38197  
Vline, AS39150 

Realhosts, AS39458  
UninetMd, AS39858   

Infium, AS40965  
Egis, AS40989  

K2KContel, AS43181  
Phorm, AS48214  

IT-Outsource, AS48280  
Vlaf, AS48984  

Moviement, AS49073  

Interactive-3D, AS49544  
Vvpn, AS49934  

Softnet, AS50073 

Onlinenet, AS50722  
Digernet, AS50818  

Proxiez, AS50896  
Gorby, AS51303  

Vpnme, AS51354  
Lyahov, AS51554  

Taba, AS8287  
Retn, AS9002   

Vesteh, AS47560  
Prombuddetal, AS44107  

Citygame, AS12604  

Bogonet, AS47821  
Troyak, AS50215  

Vishclub, AS50369  

Gaxtranz/Info, AS29371   
Group3, AS50033  

Smila, AS50390  
 

Figure 23: Malicious ASes we collected from blogs.

selected only those domains that were consistently very popular. Finally, we mapped each

domain name to its resolved IP addresses and mapped those IP addresses to the AS that

hosted them. Overall, we collected a total of 389 ASes, which we label as legitimate.

Although we cannot be absolutely certain that our labeling of legitimate ASes contains

no noise, we rely on two reasonable assumptions. First, we assume that websites that are

consistently popular are unlikely to be offering malicious services. Intuitively, a malicious

site that becomes highly popular would also have a high number of victims, and would

rapidly attract attention for take-down. As a result, the site would be quickly blocked

or taken down and would thus not remain consistently popular. Second, we assume that

the administrators of the most popular websites are unlikely to host their services within

malicious ASes. Intuitively, if they relied on malicious ASes, they would risk damaging

their own reputation, not to mention extended downtimes if the hosting ASes were taken

down due to abuse complaints.

Finally, to ensure that our set of legitimate ASes consists of ASes that are similar in

size to the malicious ASes, we keep only those legitimate ASes that have no customers, or

whose customers are all stub ASes.

AS rewiring and relationships data (CAIDA). To track how malicious ASes change

their connectivity, we use a publicly available dataset that reports AS business relationships.

The dataset reports one snapshot of the AS graph per month, from 1998 to 2013.

Luckie et al. [65] provide an AS graph built by inferring business relationships among

ASes, based on AS customer cones. Although this dataset has its own limitations (see
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Section 5.5), it provides a reasonably accurate view of AS relationships, allowing us to

estimate our rewiring features that we presented in Section 5.3.2.

BGP routing dynamics (Routeviews). To further capture the control-plane behavior of

malicious and legitimate ASes, we monitored the BGP messages that originate from these

ASes using the Routeviews dataset. We use this dataset to measure both the dynamics of

BGP updates and the IP fragmentation and churn features.

5.4.2 Experiment Setup

In the following section, we describe the training and the evaluation of our system. The

training period extends from January 2010 to March 2010, while the evaluation experiments

extend from January 2011 to December 2013.

Computing AS feature vectors. Given a period of time (i.e., m contiguous epochs) over

which we want to capture the behavior of an AS, we construct the AS feature vector as

follows: (1) Rewiring activity: We compute the rewiring features over the most recent k

snapshots of the AS relationships dataset, prior to the period of interest. Our source of

AS relationships provides only one snapshot per month. Given this limitation, we select a

reasonable number of snapshots to capture the most recent rewiring activity of an AS. For

our experiments we set k = 4 (see Section 5.4.3 on parameter selection); (2) BGP routing

activity: To compute BGP routing dynamics features, IP address space fragmentation and

churn, we collect the BGP announcements and withdrawals originating from the AS during

the period of interest. We note that BGP Routeviews offers a large number of monitors. Our

pilot experiments over a number of different monitors indicated that changing the monitor

selection did not significantly affect the overall performance of our classifier. Therefore,

to compute our routing activity features, we select one monitor and consistently use it,

throughout all the experiments.

Training the AS reputation model. Because our data is derived from cases of malicious

ASes publicly reported by others, we rely on the report dates for an approximate period of

time when the ASes were likely to be actively used by the attackers. For example, if an AS

was reported as malicious on a given day d, we assume the AS was operated by criminals

for at least a few months before d (in fact, it typically takes time for security operators

to detect, track, confirm, and take down a malicious AS). For the purpose of computing

our labeled feature vectors and training our system, we selected a period of time with the

highest concentration of active malicious ASes. This period extends from January–March
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2010, during which we identified a total of 15 active malicious ASes. Even though this

period may appear somewhat dated, it allows us to capture the agile behavior of several

known malicious ASes within one consistent time frame, enabling a “clean” evaluation

setup. Our evaluation detects a large fraction of malicious ASes that we have observed

over a longer, more recent time period (2011–2013). In the future, we plan to investigate

more sources of ground truth and identify additional periods of time that can be used to

train our model (see Section 5.5 for further discussion).

Performing cross-validation tests. During the three-month training period mentioned

above, we maintain a sliding window of fifteen contiguous days (epochs), sliding the win-

dow one day at a time (i.e., two consecutive windows overlap by 14 days). For each sliding

window, we compute the feature vector for each AS and we perform three-fold cross-

validation as follows: (1) We separate the ASes into three subsets, using two subsets to

train our reputation model, and one for testing. (2) For each training subset, we balance the

two classes by oversampling from the underrepresented class. After balancing, the number

of feature vectors of the two classes are equal. (3) We train the model using a Random For-

est classifier [15]. (4) Finally, we test all feature vectors that belong to the third fold against

the model, as we described in Section 5.3.3. Cross-validation yields the scores from the

testing phase and the true label for each AS feature vector. We plot the receiver operating

characteristic (ROC), which illustrates the performance of the classifier for different values

of the detection threshold. Because we perform our testing once for each sliding window,

we plot a similar ROC for each sliding window. The results are reported in Section 5.4.3.

Evaluating ASwatch across a nearly three-year period. After the cross-validation ex-

periments, we use our model to test new ASes whose BGP behavior was observed outside

the training period over nearly three years, from 2011 to 2013. We perform this evalua-

tion for two reasons: a) to test how well ASwatch performs to detect new malicious ASes

(outside of the training period), and b) to compare the performance of ASwatch with other

AS reputation systems (e.g., BGP Ranking) over an extended period of time. For each

(previously unseen) AS we want to test against ASwatch, we classify it as malicious if it

has multiple feature vectors that are consistently assigned a “bad reputation” score (see

Section 5.3.3). The results are reported in Section 5.4.3.

5.4.3 Results

How accurate is ASwatch? Evaluation with cross-validation: Figure 24 shows the

detection and false positive rates for one cross-validation run. The detection rate and false
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Figure 24: The cross-validation detection and false positive rates of ASwatch.

positives reported on the ROC correspond to the fraction of malicious feature vectors that

are correctly classified and legitimate feature vectors that are incorrectly classified, respec-

tively. As shown by the ROC curve, ASwatch can achieve a detection rate of 93.33% (cor-

rectly classifying 14 out of 15 ASes as malicious), with a reasonably low false positive rate

of 5.25% (20 falsely detected ASes). In practice, we believe this false positive rate is man-

ageable, as it represents 20 falsely detected ASes over a three-month period, or one every

few days. Although this false positive rate is clearly too high to automate critical decisions

such as take-down efforts, ASwatch can still be used to significantly narrow down the set of

ASes for further investigation considerably, and can thus help both law enforcement focus

their investigation efforts, and network administrators make decisions on who to peer with

or which abuse complaints to prioritize.

Evaluation outside the training period, over nearly three years: As described in Sec-

tion 5.4.1, we use our model to test new ASes observed after the training period, over nearly

three years, from 2011 to 2013. It is important to notice that, from a control-plane point of

view, malicious ASes may not always be behaving maliciously across a three year period

of time. Our ground truth information does not allow us to distinguish between the periods

of activity and periods of “dormancy”. Nonetheless, over time an AS operated by cyber-

criminals will likely behave in a noticeably different way, compared to legitimate ASes,

allowing us to detect it. Figure 27 shows the cumulative true positive rate of detected ASes

over the testing period. At the end of this nearly three years period, ASwatch reached a true

positive rate of 72% (21 out of 29 ASes correctly flagged as malicious).

To compute the false positives, for each month we count the number of distinct ASes

that were detected as malicious. The false positives reach at most ten to fifteen ASes
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per month, which we believe is a manageable number, because these cases can be further

reviewed by network operators and law enforcement. For instance, the upstream providers

of an AS that is flagged as malicious by ASwatch may take a closer look at its customer’s

activities and time-to-response for abuse complaints. Furthermore, the output of ASwatch

could be combined with the reputation score assigned by existing data-plane based AS

reputation systems. The intuition is that if an AS behaves maliciously both at the control

plane (as detected by ASwatch) and at the data plane (as detected by existing reputation

systems), it is more likely that the AS is in fact operated by cyber-criminals.

How early can ASwatch detect malicious ASes before they are widely noticed? We

want to evaluate if ASwatch can detect malicious ASes before they were reported by blog ar-

ticles. For each of the 14 malicious ASes that ASwatch detected during the cross-validation

experiments discussed earlier, we took note of the day that ASwatch first detected the mali-

cious AS, and we measured the number of days between the time ASwatch detected the AS

and the day the blog story was published. About 85% of the detected malicious ASes were

detected by ASwatch 50 to 60 days before their story became public.

Which features are the most important? We evaluate the strength of each family of fea-

tures that ASwatch uses. To understand which features are most important for ASwatch, we

evaluate each family’s contribution to the overall true and false positive rates. In particular,

we want to study the effect of each family of features on the detection of malicious ASes,

independently from the other families, and the effect of each family on the false positives

when those features are excluded. To this end, we repeated the experiment described previ-

ously by excluding one family of features at a time. We repeated the experiment four times,

once for each family of features, and we calculated the overall detection and false positive

rates. Figure 25 shows the results of our experiments, which suggest that the rewiring fea-

tures are very important, because excluding them significantly lowers the detection rate.

The BGP dynamics and IP address space churn and fragmentation features help reduce the

false positives slightly (the “Only Rewiring” ROC in Figure 25(a) is slightly shifted to the

right). We followed a similar procedure to identify which features are most important for

each family of features. Table 12 shows the most important features for each family.

Is ASwatch sensitive to parameter tuning? As explained in Sections 5.3.3.2, 5.4.2 we

use the following parameters to classify an AS as malicious: (1) feature vectors window

size: we compute feature vectors for an AS for a window of m consecutive days (one

feature vector per day), and we repeat the feature computation over l consecutive sliding
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(a) Considering each feature family separately.
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(b) Excluding one feature family at a time.

Figure 25: Relative importance of different types of features. The rewiring features
contribute the most to the overall detection rate; other features contribute to lower false
positive rates.
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Figure 26: The detection and false positive rates for ASwatch, if we vary the size of the
sliding window. Our experiments show that the performance is not greatly affected.
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windows of size m. (2) recent snapshots: we compute the rewiring features for an AS over

the k most recent snapshots of AS relationships.

To tune our parameters, we performed several pilot experiments, rather than an exhaus-

tive search over the entire parameter space. Our pilot experiments showed that ASwatch’s

performance is robust to both parameters m and l. Due to space limitations, we only show

our experiments for the parameter m. Figure 26 shows the performance for window sizes

of 5, 10, 15, and 20 days. Our results show that the accuracy of ASwatch is not overly sen-

sitive to the choice of window size m. The ROC plots in Figure 26 show that m = 15 gives

a higher true positive rate with a reasonable false positive rate. We therefore set m = 15.

Using a similar approach, we set l = 5. We classify an AS as malicious, if it scores lower

than the detection threshold over five consecutive periods of 15 days.

After we have selected parameters m and l, we proceed to set parameter k. Suppose

that we want to compute the reputation of an ASA, over period T . Then, parameter k is the

number of most recent AS relationship snapshots, prior to T , over which we compute the

rewiring features forA (notice that our AS relationships dataset consists of one snapshot per

month, as mentioned in Section 5.4.1). In other words, k denotes “how much” history we

consider, to capture the rewiring behavior for A. Ideally, we want to accurately capture A’s

rewiring behavior while using a small number of snapshots. We performed experiments

using different values of k (i.e., 1, 2, 3, 4). We then selected k = 4, because further

increasing its value did not produce a significant increase in classification accuracy.

5.4.4 Comparison to BGP Ranking

We now compare ASwatch with BGP Ranking. In contrast to ASwatch, BGP Ranking is

an AS reputation system based on data-plane features (e.g., observations of attack traffic

enabled by machines hosted within an AS). Clearly, BGP Ranking is an AS reputation

system that is designed differently from ASwatch, because it aims to report ASes that are

most heavily abused by cyber-criminals, but not necessarily operated by cyber-criminals.

We compare the two systems for two reasons: (1) to test how many of the malicious ASes

that are operated by cyber-criminals show enough data-plane evidence of maliciousness

and get detected by existing data-plane based AS reputation systems; and (2) to evaluate

whether the control-plane based approach can effectively complement data-plane based AS

reputation systems.

Results summary. We found that ASwatch detected 72% of our set of malicious ASes

over a three year period, and BGP Ranking detected about 34%. Both systems reported

the same rate of false positives (on average 2.5% per month, which is ten to fifteen ASes
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per month). Combining the two systems we were able to detect only 14% of the malicious

ASes, but we were able to reduce the false positives to 0.08% per month (12 ASes in total

across the three year period).

BGP Ranking reports. BGP Ranking [13] has been making its AS reputation scores

publicly available since 2011, along with a description of the approach used to compute the

scores. BGP Ranking currently has information for a total of 14k ASes, and they announce

a daily list of the worst 100 ASes by reputation score. The BGP Ranking score has a

minimum value of 1 (which indicates that the AS hosts benign activity) but no maximum

value (the more malicious traffic hosted by the AS, the higher the score).

Using our list of confirmed cases of malicious ASes (Section 5.4.1), we checked which

ASes are visible from BGP Routeviews starting from 2011. We found a total of 29 ASes.

We chose to check which ASes are active since January 2011, because this is the oldest date

for which BGP Ranking has data available. Then, we tracked these ASes until November

2013, because the historic AS relationships dataset from CAIDA has a gap from November

2013 to August 2014. Therefore, we collected the historical scores for each active known

malicious AS from BGP Ranking, from January 2011 until the end of 2013.

ASwatch setup. Using ASwatch, we generate the feature vectors for each AS in our list,

starting from January 2011 until November 2013. To generate the feature vectors, we

follow the same procedure as described in Section 5.3.3.2. We train ASwatch as previously

described (on training data collected in 2010) and test the ASes observed from 2011 to

2013 against the model.

Comparing BGP Ranking with ASwatch. As mentioned earlier, BGP Ranking is not

a detection system per se, in that it aims to report ASes that host a high concentration

of malicious activities, and does not focus on distinguishing between abused ASes and

ASes that are instead owned and operated by cyber-criminals. Nonetheless, for the sake of

comparison it is possible to obtain a detection system by setting a threshold on the score

output by BGP Ranking. BGP Ranking publishes the set of “worst” 100 ASes and their

scores, which are updated daily (to obtain the historic scores for any other non-top-100

AS, one has to make explicit queries through the web portal). It also reports the average

AS score per country or region, and ranks the countries that host the ASes with the lowest

reputation. The four top (“worst”) countries are Russia, Ukraine, Hong Kong, and the

US. Using the above information we consider five distinct detection thresholds as follows:

(1) average score for ASes in Russia (BGP Ranking Russia cut-off), (2) average score for
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Figure 27: True positive rates for ASwatch and BGP Ranking. Accumulation of detected
ASes over nearly three years.

ASes in Ukraine (BGP Ranking Ukraine cut-off), (3) average score for Hong Kong (BGP

Ranking Hong Kong cut-off), and (4) average score for ASes in the US (BGP Ranking US

cut-off). We also set a threshold based on the average score of the 100th worst AS (BGP

Ranking top 100) collected from the daily reports. Figure 27 shows the detection results

using these thresholds.

We then compared BGP Ranking’s detection with that of ASwatch. Figure 27 shows

the fraction of ASes that ASwatch and BGP Ranking detected. We show the cumulative

fraction of detected ASes, from January 2011 to November 2013. At the end of the 35-

month period, ASwatch detected about 72% of the set of ASes we tracked, while BGP

Ranking detected about 34%. We found that 72% of the malicious ASes were detected

by monitoring their control-plane behavior, but only 34% of the malicious ASes showed

enough data-plane activity to be detected by BGP Ranking. BGP Ranking may have only

limited visibility of malicious activities in the data plane across the entire Internet, and thus

may completely miss the malicious activities of certain ASes. Naturally, it is challenging to

deploy a large number of sensors dedicated to detecting malicious network communications

over the entire Internet. On the other hand, ASwatch monitors BGP behavior, and may

therefore compensate the limited visibility of data-plane based approaches.

We also compared the false positive rates of BGP Ranking and ASwatch. Our moti-

vation is to see if the false positives are manageable within a reasonable period of time

(e.g.one month). We collected the ASwatch scores and the BGP Ranking scores for our set

of legitimate ASes (see Section 5.4.1). For each system, we counted the number of legiti-

mate ASes that ASwatch detected per month. We found that both systems produce only ten
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to fifteen false positives per month on average over the total of 389 known legitimate ASes

in our dataset. As we have mentioned earlier, BGP Ranking is designed differently from

ASwatch. Although the rate we calculated does not represent the actual false positive rate

for BGP ranking, it does provide an estimate of the false positive that an operator would

need to deal with, if BGP Ranking were used to detect malicious ASes.

Combining control-plane with data-plane. Finally, we evaluated how the two systems

would perform if we used them together. To this end, we label an AS as malicious if it

was reported by both systems, with each two report dates to be at most six months apart

from each other. For BGP Ranking we used the BGP Ranking top 100 threshold. We

found that combining the two systems, we were able to detect 14% of our malicious ASes.

This means that of 14% of the known malicious ASes exhibited both control plane and

data plane malicious behavior within six months. The fraction of legitimate ASes that both

systems detected as malicious is only 3% (i.e., 12 ASes out of 389) for the whole three year

period (which is on average 0.08% per month). Finally, five out of the 29 known malicious

ASes that were active in the three year observation period were missed by both systems.

For example, AS 49544 (Interactive 3D) and AS 39858 (UninetMd, now Comstar Volga

Arzamas) are among the top worst ASes that both systems detected.

5.5 Discussion

ASwatch reputation scores in practice . ASwatch may help the work of network oper-

ators and security practitioners as follows: (1) Prioritize traffic: knowing what ASes have

suspicious (low reputation) control-plane behavior may help administrators to appropri-

ately handle traffic originating from such ASes; (2) Peering decisions: Upstream providers

could use AS reputation scores as an additional source of information to make peering de-

cisions, for example by charging higher costs to compensate for the risk of having a low

reputation customer or even de-peer early if reputation scores drop significantly; (3) Prior-

itize investigations: law enforcement and security practitioners may prioritize their inves-

tigations and start early monitoring on low reputation ASes; (4) Complement data-plane

based systems: ASwatch could be used in combination with data-plane based reputation

systems, so that ASes that exhibit malicious behavior both from the control-and data-plane

points of view can be prioritized first; (5) Strengthen existing defenses: furthermore, repu-

tation could be used as input to other network defenses (e.g., spam filters, botnet detection

systems) to improve their detection accuracy.
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Working with limited ground truth. We briefly summarize the challenges that we faced

due to limited ground truth, and how we mitigated them. (1) Highly unbalanced dataset:

The ratio of malicious ASes to legitimate ASes produced a highly unbalanced dataset.

Before training we used well-known data mining approaches to balance the dataset, by

oversampling the underrepresented class of malicious ASes (Section 5.4.1). (2) Limited

time period for training: We relied on the date of the ground truth reports to estimate the

period of time in which the ASes were likely to be actively used by the attackers. We were

not able to obtain additional information about the activity periods (or dormancy periods)

outside the report dates. Therefore, we designed AS ASwatch so that it does not make a

final decision for an AS based on a single observation (i.e., a single feature vector). Instead,

we introduced parameters to ensure that we label an AS as malicious only if it is assigned

consistently low scores for an extended period of time. (3) Model update with adaptive

training: Because of the lack of information on the activity periods (or dormancy periods)

outside the report dates, we were not able to periodically update our model. Therefore,

we performed a one-time training on our model using a period of time (January–March

2010) for which we had “clean” data. Even though ASwatch uses observations of cases of

malicious ASes in 2010, we believe that it effectively models fundamental characteristics

of malicious ASes that are still reflected on today’s cases. This belief is supported in

part by the results of correlating ASwatch’s output with recent BGP Ranking reports (see

Section 5.4). In our future work, we plan to investigate more sources of ground truth and

identify other periods of time that could be included in our training.

Limitations of the AS relationships dataset. To measure our rewiring features, we re-

lied on a dataset that provides snapshots of AS relationships over years (see Section 5.4.1).

The relationship inference algorithm is based on the idea of customer cones—the set of

ASes an AS can reach through its customer links. This dataset has its own set of limita-

tions. For example, each pair of ASes is assigned only a single relationship, and visibility

is limited to the monitoring points publicly available via Routeviews. It is possible that

some business relationships may be missing, or that some false relationships are reported.

Moreover, since the dataset is provided in snapshots (one snapshot per month), we are not

able to observe rewiring activity that may be happening at a finer time scales. Nevertheless,

this AS relationships dataset has the largest validated collection of AS relationships gath-

ered to date, with about 44,000 (34.6%) of the inferences validated, and it reports the AS

relationships over years, which allowed us to track our ground truth ASes over an extended

period of time.
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Evasion. Naturally, as for any other detection system, ASwatch may face the challenge

of sophisticated attackers who attempt to evade it. For example, an attacker may attempt

to manage her AS to mimic the BGP behavior of legitimate ASes. However, we should

notice that ASwatch relies heavily on rewiring features, which capture how an AS connects

with other ASes, including upstream providers. Mimicking legitimate behavior to evade

ASwatch would mean that the malicious AS has to become “less agile”. In turn, being

less agile may expose the AS to de-peering by its upstream providers as a consequence of

accumulating abuse complaints. For example, if McColo (which was taken down in 2008)

had not changed ten upstream providers before it was taken down, it might have been taken

down much sooner.

Future work. We plan to expand our set of features to capture other types of behavior,

such as making peering arrangements for specific prefixes. We intend to expand our sources

of bullet-proof hosting ASes, so that we test ASwatch over larger datasets and longer peri-

ods of time. We also plan to explore how we may combine our set of control plane features

with data plane features.

5.6 Conclusion

This chapter presented ASwatch, the first system to derive AS reputation based on control-

plane behavior. ASwatch is based on the intuition that malicious ASes exhibit “agile”

control-plane behavior (e.g., short-lived routes, aggressive rewiring). We evaluated ASwatch

on known malicious ASes and found that it detected 93% of malicious ASes with a 5% false

positive rate. When comparing to BGP Ranking, the current state-of-the-art AS reputation

system, we found that ASwatch detected 72% of reported malicious ASes, whereas BGP

ranking detected only 34%. These results suggest that ASwatch can better help network op-

erators and law enforcement take swifter action against these ASes that continue to remain

sources of malicious activities. Possible remediations could be assessing the risk of peering

with a particular AS, prioritizing investigations, and complementing existing defenses that

incorporate other datasets.
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CHAPTER VI

CONCLUSION

6.1 Summary of contributions

This thesis has demonstrated that it is possible to counteract internet infrastructures that

support cybercrime, by designing an AS reputation system that, unlike existing approaches,

monitors the control-plane behavior of ASes. Below we summarize our contributions:

• Empirical study of the dynamics of fast-flux service networks. We studied a rep-

resentative DNS based infrastructure, as it was used to host point-of-sale sites for

email scam campaigns. We actively monitored the DNS records for URLs for spam

advertised scam campaigns. We studied the rates of change in fast-flux networks,

the locations in the DNS hierarchy that change, and the extent to which the fast-flux

network infrastructure is shared across different campaigns.

• We presented the first systematic study of the re-wiring dynamics of malicious ASes.

We tracked Hostexploit-listed ASes, and compared their AS-level re-wiring dynam-

ics with non-listed ASes. We used a publicly available dataset of Customer-Provider

(CP) relations in the Internets AS graph, we studied how interconnection between

autonomous systems evolves, both for reported and non-reported ASes.

• We presented a fundamentally different approach to establishing AS reputation. We

designed and implemented a system, ASwatch, that aims to identify malicious ASes

using exclusively control-plane data (i.e., the BGP routing control messages ex-

changed between ASes using BGP). Unlike existing data-plane based reputation sys-

tems, ASwatch explicitly aims to identify malicious ASes, rather than assigning low

reputation to legitimate ASes that have unfortunately been abused.

6.2 Lessons learned and future work

Below we list some lessons we have learned, that may be useful for designing systems to

defend against cybercriminal infrastructures:

Defenses against victim engagement. This thesis focused on counteracting cyber-

crime infrastructures. Even though it is important to design systems that help towards this

goal, it is also important to design defenses to help against victim engagement. An impor-

tant part of cybercriminals’ efforts is to engage end users into various activities, with the
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ultimate goal to make profit: (1) either directly, for example engage users to buy products

from illicit businesses, or (2) indirectly, for example engage a user to install malware that

compromises his machine and operate as a spam. It would help to design early warning

systems, to warn the end users in a timely manner when such operations are under the way.

Need for systems that target cybercrime monetization operations and infrastruc-
ture. Leontiadis et al. [57–61] empirically identified the following common components

across these different types of criminal businesses. To defend against cybercriminal in-

frastructures, it would help to design defense systems that target to identify components of

cybercriminal infrastructures that play an important role for monetization purposes.

Bringing together complementary defense systems. The research community has

developed multiple defense approaches that operate on different, often non-overlapping,

areas. For example, significant research effort has focused on critical parts of DNS-based

infrastructures [8, 71, 75, 77]. Other efforts have focused on identifying evidence of mali-

ciousness [12,90,101], or mismanaged networks [113]. Even though each approach is very

effective in targeting specific aspects of cybercrime operations, it may be useful, if we bring

those systems together. For example, it may be useful to design an approach that attempts

to counteract cybercriminal infrastructures on multiple levels by: (1) monitoring evidence

of maliciousness on the routing level, (2) collecting evidence of maliciousness on the data-

plane level (traffic monitoring evidence), (3) collecting indications of mismanagement, and

(4) identifying parts of cybercrime infrastructures that are critical for monetization pur-

poses.
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