Interactors: Capturing Tradeoffs in Bandwidth versus
CPU Usage for Quality of Service Constrained Objects *

Richard West and Karsten Schwan

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332

Abstract

Complex distributed applications, including virtual environments, and real-time multimedia require
performance guarantees in the end-to-end transfer of information across a network. To make such
guarantees requires the management of processing, memory, and network resources. This paper
describes the Dionisys end-system quality of service (QoS) approach to specifying, translating,
and enforcing end-to-end, object-level QoS constraints. Dionisys differs from previous work on
QoS architectures by supporting QQoS constraints on distributed shared objects, as well as multi-
media streams. Consequently, we introduce ‘interactors’, which capture the QoS constraints and
resource requirements al each stage in the generation, processing, and transfer of information be-
tween multiple cooperating objects. Using interactors, Dionisys is able to coordinate both thread
and packet-level scheduling, so that information is processed and transmitted at matching rates.
However, there are tradeoffs in the use of CPU cycles for scheduling and the need to meet QQoS
constraints on the information transferred between interacting objects. We show, empirically, the

packetl scheduling frequency to minimize CPU overheads while mazximizing bandwidth usage.

*This work is supported in part by DARPA contract #B09332478, and by the British Engineering and Physical
Sciences Research Council with grant #92600699.

1 Introduction

Researchers are currently investigating system support for complex distributed applications, in-
cluding groupware applications [1], virtual environments (e.g. DIVE[2]), and distributed inter-
active simulations (DIS) [3]. A DIS, for example, provides a group of users with the illusion of
a single, coherent virtual world, although its computations may actually execute on distributed,
heterogeneous hosts, and its data sources may be derived from physically separated real-time
sensors. Simulation entities, or objects, such as vehicles, virtual sensors, or obstacles may be gen-
erated dynamically or exist as stored state jointly defining the virtual world and participating in
the simulation. Each user is exposed to a potentially unique ‘view’ of this virtual world, unaware
of the physical location of other users and computers physically controlling and modeling various
entities.

Quality of service constraints in a DIS application are formulated at the level of simulation
objects. Moreover, these constraints tend to be highly dynamic. Namely, they may change from
one object invocation to the next, they may change at intervals determined by simulation speed,
by reaction rates of human participants, or by the possible rates of change in input behavior.
For example, a virtual flight navigation system might require one user piloting a plane to be
updated frequently with complete, detailed (loss-free) state information about other planes in the
nearby air-space, to avoid collision. When two plane entities are sufficiently far apart, their state-
changes with respect to position, orientation and graphical detail may not need to be updated
as frequently. Furthermore, as two objects move apart in the virtual world, each user controlling
one of the entities might only require approximate detail (rather than highest resolution graphical
detail) about the other entity. Similarly, when viewing continuous sensors in this virtual world,
certain sensors might be important at some particular time (e.g., a radar sensor when targeting
an enemy plane) whereas other sensors might be irrelevant (e.g., a GPS location indicator during
enemy engagement). Moreover, sensor visibility changes over time, depending on pilot viewpoint,
for example.

It has become apparent, not only from DIS applications but also our own work on shared virtual
worlds[4], distributed games[5], and battlefield simulations, that most such applications exhibit
dynamic QoS constraints. These dynamic QoS constraints must be utilized to attain necessary
levels of end-to-end performance. For instance, it is neither reasonable nor viable to display

continuously all possible sensor readings to all participants in a virtual world simulating rooms in

a Navy vessel described in [4]. In addition, given the complexity of future battlefield simulations
in which terrain, participating actors (like tanks), and sensors must be simulated realistically, it
will not remain viable to replicate completely all objects across all participating machines. This
is especially true when such objects arrive and depart dynamically or when participating hosts
are situated in the field (ie., they are ‘thin’ hosts) and/or must communicate across relatively
‘weak’ communication links. In summary, it must be assumed that each host maintains a cached
(or shadow) copy of the state information about an entity modeled at a remote host. These
facts also imply a linkage between information consistency and QoS constraints: (1) a suitable
consistency protocol must be used to maintain the correct level of consistency between replicated
state information, and (2) timing or quality-of-service (QoS) constraints must be placed on the
update and access to distributed shared objects whose state has been partially replicated[5]. This
linkage has been recognized by other researchers, as well, including work by Yavatkar et al[6].

The interactor abstraction offered by Dionisys captures the end-to-end QoS constraints ex-
perienced in the highly dynamic distributed applications targeted by our work. An interactor
is an association between cooperating shared objects spanning a network and all the resources,
both communication and computation bound, that support object exchanges. Interactors capture
the QoS constraints and resource requirements at each stage in the generation, processing, and
transfer of information between multiple cooperating objects. Using interactors, Dionisys is able
to coordinate both thread and packet-level scheduling, necessary to maintain service constraints
on information exchanged between application-level objects. In an end-to-end QoS system like
Dionisys, it is often necessary to invoke the packet scheduler at the correct rate to a) meet the ser-
vice constraints on multiple objects sharing the same network link, and b) keep the network pipe
as full as possible when there is information to transmit. The problem is that by executing the
packet scheduler too frequently, CPU cycles are wasted due to executing the scheduling algorithm,
which reduces the number of CPU cycles in any time interval that are available to other threads.
This is an example of one of the resource tradeoffs experienced in complex applications, where
multiple resource types must be allocated and managed to maximize the service level granted to
all activities.

Traditional QoS research has focussed almost exclusively on the network level (e.g., the Tenet
work[7]), without also providing support for end-to-end constraints. Recent work in end-to-
end QoS support, such as QoS-A (Campbell et al[8]), and the End System QoS Framework at
Washington University [9] supports application-specific QoS constraints, and the mapping of these

constraints to the network level. However, these architectures are tailored to multimedia video and
audio applications. In comparison, we are interested in complex applications like those described
above, which exhibit dynamic generation of information, and require updates to information
exchanged between cooperating, distributed shared objects in real-time.

Applications such as those described earlier are not fully addressed by current research on real-
time object-based systems, which have focussed on 1) how to associate real-time constraints with
a single object or a single invocation [10, 11], 2) how to translate or support some object-level
constraint on a single invocation to some thread/communication constraints, and then use conven-
tional scheduling techniques to deal with real-time constraints [11, 12], or 3) how to model/control
some entire object-based real-time system ‘from the outside’[12, 13]. In contrast, Dionisys is a
runtime infrastructure that provides the necessary abstractions to maintain QoS constraints in
synchrony with each application’s execution. Furthermore, Dionisys provides control over both
CPU and network resources required by cooperating objects.

In the next section, we characterize the QoS constraints on objects in applications like those
described above. We then show, in section 3, the necessary stages in the translation of object-level
constraints down to the network-level. Section 4 describes the Dionisys system and related issues
in the support of end-to-end QoS constraints. An experimental evaluation of the system is given

in section 5, while conclusions and future work are described in section 6.

2 QoS Constraints on Objects in Distributed
Real-Time Applications

Applications like distributed interactive simulations and virtual environments have the following

object-level characteristics:

o Dynamic exchanges between objects - information exchanged between objects interacting
across a network is generated dynamically, as a result of changes in the working environment
of the application. For example, information is exchanged between cooperating objects as a

result of two entities moving within range of each other in a virtual environment application.

o Variable rates of exchanges between objects - object exchanges are often bursty. Namely,
there are periods of time when very few exchanges take place, whereas at other times,

many exchanges may occur between objects. Factors affecting exchange rates include the

proximity of entities in virtual environments, such that the frequency of updates about the

location of such entities increases as entities move closer together.

o Variable resolution of exchanges between objects - the information exchanged between ob-
jects may vary in detail, depending on the importance of detail at the time information is
exchanged, for instance. If two entities in a virtual environment or DIS application are se-
mantically ‘closer’, it might be necessary to increase the resolution of information exchanged

between the objects corresponding to each entity.

QQoS constraints on information exchanged between objects in applications like those described

earlier include:

o Delay - this specifies the total tolerable end-to-end delay on information exchanged between

objects, before the information is no longer valuable.

o Loss-tolerance/fidelity - at the object-level, this constraint specifies the level of detail of
information that must be exchanged. Consider a system that maintains consistency of shared
objects to some degree. It may not always be necessary to exchange the most up-to-date
copy of a shared object. Instead, it may be acceptable to exchange object information that
was known to be up-to-date x time units in the past. Furthermore, it may not be necessary
to ensure complete coherence between multiple copies of an object. Fidelity constraints

bound the degree of loss or detail of information exchanged between objects.

o Throughput - it is necessary to specify the amount of information to be communicated
amongst hosts per unit of time. Throughput is bounded by the maximum and minimum

frequency of updates to shared objects of known granularity (size).

o Consistency constraints - these constraints bound the degree of coherence between shared
objects. Strict coherence of objects limits scalability in terms of the total number of objects
that can be replicated, since more object exchanges are required as the number of replicas
increases. The actual format of these constraints could be in terms of some semantic function
[5], which specifies the conditions about when and with which objects updates should occur.
The specification of these semantic-based consistency requirements can only be made in the
context of the application. For virtual environment applications, we can impose not only

‘temporal’ constraints (which specify when updates should be applied) but also ‘spatial’

constraints on consistency. Spatial consistency constraints ensure that updates are applied
to a copy of a shared object only when that object is within a certain range of another
process’s (user’s) object. For example, one user (pl) manipulating one object might not
care to know about another user’s (p2) object but p2 might want to know about pl’s object

in shared space because it is within a range of interest to p2.

Information exchanged between objects is carried in invocations, which are ultimately scheduled
and then marshalled into messages. At the network-level, messages are fragmented into packets
and scheduled for transmission with packets carrying information for other object interactions.
The following section describes the mapping of object-level constraints to the network level in the

context of Dionisys.

3 Mapping Object-Level Constraints to the Network Level

Dionisys supports a layered hierarchy, where three layers of abstraction are used for shared object
applications like those described in sections 1 and 3. Namely, the layers are the application/object
layer, consistency management layer and then the network layer. Within each layer, there are
‘modules’ of code that generate and process messages to exchange information between objects.
For example, in a virtual environment application, a user maneuvers her vehicle ‘object’ across
virtual terrain which causes the consistency management layer to exchange the modified state
about this object with appropriate objects in other processes. The consistency management layer
must perform certain operations, such as executing a user’s semantic function to determine ‘when’
and ‘with whom’ to exchange, as well as generating messages that hold the state information, or-
dering and buffering messages not yet ready for transmission, dispatching messages that are ready
to be transmitted, and buffering/delivering messages received from the network layer. Similarly,
the network layer has to perform fragmentation and reassembly of messages, as well as various
traffic management functions. Aurrecoechea et al [14], give an excellent summary of the key traffic
management mechanisms. Some of these will be described later, in the context of Dionisys.

At each level in the system, QoS constraints on the information exchanged between objects
are translated to a form suitable for the next layer. We begin by describing the translation of

object-level constraints to consistency-level constraints.

3.1 Mapping Object-Level Constraints to Consistency-Level Constraints

Consider a virtual environment application, as described earlier, in which QoS constraints consist

of:

o throughpul, (T') - defined as T' = **mez where np,,, is the maximum number of updates over

some time, ¢, and s is the size of each shared object (assumed constant for simplicity);
e maximum allowable end-to-end (application-level) delay, (§); and

e fidelity, (f) - expressed as the minimum fraction of information exchanged during updates.
For simple ‘memory’ objects, this will be the minimum fraction of replicated object state

information.

For the throughput specification, the application-level attributes are (n4.,t) and s. From

these two attributes, the actual throughput 7' is derived as shown. The consistency protocol

need never exchange more than “*2e= update messages per unit time with each remote object.
Whenever the consistency protocol decides it is time to exchange information, it must ensure each
message carries at least the fraction of information specified by the fidelity constraint, i.e. the
minimum information conveyed in each update message is fs. Finally, the consistency protocol
must subtract the time it spends preprocessing messages for transmission (i.e. header insertion and
extraction into the outgoing and out of incoming messages, respectively), and buffering message
updates from the total end-to-end delay parameter.

Note that at any point in time, an application process may dynamically change any of its QoS
constraints in terms of f, 0, n,. and s. Changes to s could be conveyed to the underlying
consistency protocol to allow updates to be aggregated for multiple objects into one message. In
this way, the actual objects themselves remain the same size, but multiple object exchanges are
transmitted together. Alternatively, s could be increased or decreased to vary the amount of
information associated with an object e.g. more or less graphical information about an object in
a 3D virtual environment.

We now extend this example to include specification of when updates to shared objects should
be exchanged between which objects in remote processes. The application-level processes specify
a semantic function that describes to the underlying consistency management system exactly the
‘when’ and ‘with whom’ constraints. This function can also be used to dynamically adjust the

four parameters described above: f, 4, n,,,, and s.

e e e

Exchange Time Process ID

Figure 1: A sample exchange-list. Each list-member is an (exchange_time, process_id) pair. Only
those objects requiring future exchanges need their corresponding (exchange_time, process_id) pairs

in the list. The list is ordered by earliest exchange-time first and not process id.

State update info

. i

o =T G 0T —
G - -
Kl -

P

i ([(] (])

n process slots

Figure 2: A sample slotted-buffer at process 2. Fach slot may have a unique set of object updates to
eventually send to the corresponding process. In this example, process 3 is not in the exchange-list
so the consistency management system does not need to buffer and, hence, send updates to process

3. Similarly, we never buffer updates for the local process, shown here as process 2.

The consistency management system maintains an exchange-list, which is a time-ordered list
of (exchange_time, process_id) pairs (for example, as shown in Figure 1). Note that the ‘when’
constraints specified in the application-level semantic function place a lower bound on the time
between successive updates sent between objects in pairs of processes. The upper bound on
updates sent between processes depends on the value of n,,,,. In fact, the minimum time between

successive (exchange_time, process_id) pairs for the same process_id in the exchange-list must be

t

Nmaz

. Associated with the exchange-list is another structure: a queue of update messages that are

destined for each remote process (i.e a slotted-buffer with one slot for every system-wide process
as shown in Figure 2).
These two structures enable the consistency management system to control when and with

whom updates occur, based on semantic information provided by the application in the form of

a semantic function. This is exactly the approach taken in the S-DSO system [5]. The buffered
update information destined for each process depends on the fidelity constraint f applicable at
the time the exchange is due to take place.

In summary, the attributes specified at the application level are: (nqz,t), s, 0 and f, as well
as implicit ‘when’ and ‘with whom’ constraints derived from a user-defined semantic function. At
the consistency management level, n,,,,., s and f are unchanged, but s and f are used to calculate
the minimum state information to be carried in update messages. (Note that the maximum infor-
mation in any one message is s). 4 is translated into §., (where d. < §) since we need to consider
the worst-case overhead (which we shall call d._,..) of executing the consistency management
protocol and possibly buffering update messages before they are eligible for transmission. The
‘when’ constraints define exactly when a message is ready to be exchanged, and 4. is used to place
an upper bound on the valid interval from when the object is modified at the local process to
when the destination process must see the updated copy. As far as the consistency management
layer is concerned, a messaged is exchanged when there is at least one buffered object for a remote
process, and the exchange time with that process has been reached. By exchanging a message,

the consistency management layer passes the message down to the network layer.

3.2 Mapping QoS Constraints from the Consistency Management Level
to the Network Level

The update messages passed down from the consistency management layer to the network layer
might be very large, comprising kilo- and even megabytes of information. These messages will
be fragmented into smaller (fixed-size) packets at the network level!, and each fragment must be
assigned a QoS constraint representative of the QoS constraints across the whole message.

We now address the issue of translating constraints from the consistency management level to
the network level.
Translating delay requirements: Ferrari [15] states that the method for translating delay
bounds has to deal with the effects of delays in the individual layers, and the effects of message
fragmentation on the requirements. Let d,,_,,» be the maximum processing delay in the network-

level code, due to message fragmentation/reassembly, packet-header generation and removal, and

IThe term ‘network layer’ is used loosely to describe the communication-oriented layer underneath the consis-
tency management layer and might better be described as the transport layer. This work is not confined to one

particular network protocol.

packet scheduling. 4, is the maximum tolerable network delay i.e. latency to communicate a
complete message across a communication link between two network-level endpoints. Let d._qx

be the maximum delay incurred by a message in the consistency management layer. Thus:

5n ~ 5 - 2 * (dc_max —I' dn_mar.)

(Sn ~ 5c - dc_maz - 2 * dn_maa;

Process 1 Process 2
Application level Application level
Consistency management Consistency management
Network management Network management
Message Transfer
T
Fragmentable
message dn
Process 1
Process 2
Process1 | 1 [1 [T 1711
Process 2 11Tl
| =l
3 x

Figure 3: Relationship between message delay bound at the network level and delay bound ¢! of

the first fragment in a message.

The formulation of 4,, assumes that the worst-case overhead of processing at the network and
consistency management levels at both endpoints is the same, which is probably a reasonable
approximation. Figure 3 shows the relationship between §, and the delay bound of the first (and
hence subsequent fragments) of a message. If z is the maximum inter-fragment time (assumed

constant) and p is the number of fragments (or packets) in a message, then:
8, =06, —z(p—1)

Each subsequent fragment in the same message has a delay bound of x time units after its
predecessor. We can think of this delay bound for each packet as a relative deadline after which

the packet is useless.

Translating throughput requirements: At the network level, throughput constraints are
converted to bandwidth requirements. For a given link-bandwidth B, T" < B. More precisely,
for each of the p packets in a message, let the packet headers comprise a fraction A of the packet
payload length. Let each packet have a payload of [bytes. If the worst-case message size is s bytes

then the total number of bytes for all packets in a message is [(1 4+ Ah)[7]), where p = [7] and the

{
nmaﬂﬁ(l(l-}'h)(l—fs-'))
t

throughput requirements at the network level are at most bytes per second, for an
upper limit of n,,,, updates to a shared objects over some interval of ¢ seconds.

Translating fidelity requirements to packet-level loss constraints: As stated above, fi-
delity requirements specify the fraction f of shared state information that must be exchanged.
The consistency manager can inform the network resource manager of the actual fraction of state
information (as a proportion of the size of each shared object) inside each message. If the message
contains all s bytes (i.e. 100%) of the shared state information and f < 1.0 then the packet
scheduler in the network manager has the flexibility of discarding or scheduling | (1 — f)p]| packets
later than their delay constraints allow. If the message actually contains f’ fraction of total state
s, where f' > f then the loss constraint on packets for this message allows f' — f fraction of
all p packets to be lost? or late. That is, |(f' — f)p] packets can be lost. Note that we have
made no assumptions about which packets can or cannot be lost. In reality we would not want to
have consecutive packet losses but would prefer packet losses to be evenly dispersed throughout

the message. More informative constraints would be required for this, such as the allowance of z

packet-losses for every y packets to be sent.

4 QoS and Resource Management for Multiple Processes

on the Same Host

We now consider the situation when multiple application processes on the same host each require
that their own QoS constraints on shared objects must be met. We start by defining some key

terms, relevant to the Dionisys system.

2We use the term ‘loss’ to mean any packet that fails to be delivered to the destination within its maximum

delay bound, §.

4.1 Paths, Modules and Interactors

As stated earlier, an interactor is an association between cooperating shared objects spanning a
network and all relevant resources, both communication- and computation-bound, that support
object exchanges. Interactors capture the QoS constraints and resource requirements at each stage
in the generation, processing, and transfer of information between multiple cooperating objects.
Interactors extend the notion of a ‘path’[16, 17, 18] by capturing associations between multiple
interacting objects and their resource requirements. In contrast, a path is a point-to-point logical
connection, along which messages flow through a set of processing modules and resources.

—® = Interactor between objects

object

Process 1

i
i
Application Layer 1 1
.

Consistency

I
I
I
I
I
|
i
I
I
I
I
Management '

Network Layer |, v |________

Network Pipe

Figure 4: An example showing interactors between objects in different processes. Interactors
are the end-to-end associations between cooperating objects and all resources along the path
between those objects. Interactors also capture the QoS constraints at all stages of information

flow between objects.

The modules of a path and, hence, an interactor must be scheduled on available processors
to generate and process the messages that carry shared information. Note that two or more
application processes executing on the same host might require some or all the same processing
modules. Likewise, two or more processes executing on two different processors in a multiprocessor
host might actually use the same code module at the same time. In this case, two copies of the
code must execute simultaneously on each processor.

An example of interactors is given in Figure 4. Two processes access different consistency pro-

tocol modules in the consistency management layer but use the same error control, fragmentation

and packet scheduling modules in the network layer of the sending host.

4.2 Dionisys: Runtime Support for End-to-End QoS

Admission Control/
Usage Parameter Control/

idth/ KEY:
ager —= Message path
Ul

- -+ Auribute path

etwo
uffe n:
or rror/rate | |
control Physical network
. ‘ Feedback path from
remote sites

{ Buffer Management/reassembly }

Remote Site

Figure 5: Dionisys: Runtime Support for End-to-End QoS

Dionisys (see Figure 5) is a runtime system to support end-to-end QoS in distributed applications.
It can support multimedia applications, such as video-on-demand and also shared object applica-
tions, such as distributed virtual environments with real-time state-sharing constraints. Dionisys
will meet the needs of such applications, comprising multiple processes executing on the same
host.

As discussed earlier, the QoS constraints specified at the application/object level are passed
down between layers in the system. These constraints take the form of attributes which follow a
logical path along with the messages through the modules. At each module, the constraints are
mapped to a form semantically meaningful to that module.

In Dionisys, the CPU resource manager is responsible for binding modules to threads (or pro-
cesses) and scheduling threads on processors. The network manager is responsible for fragmenting
and reassembling messages, packet scheduling, and policing/flow /error control. The feedback path
passes quality of service attributes back to the application so that they may be dynamically ad-

justed to maximize available resources. Usage control (or policing) ensures that individual message

or interactor-level service constraints are maintained while message-processing is taking place.

4.2.1 CPU Resource Management in Dionisys

CPU resource management specifically involves the allocation of CPU cycles to the servicing of
protocol processing modules. When a process wishes to send a message across the network, via a
given interactor, the CPU resource manager knows all the protocol modules associated with that
interactor®. Hence, the CPU resource manager must schedule for execution a sequence of modules
on the available processors. A sequence of modules is like a single task with multiple phases, such
that one phase cannot start until the previous (dependent) phase has completed.

There are two specific operations the CPU resource manager must perform in controlling the

usage of CPU resources:

e Binding protocol processing modules to threads: Ivan-Rosu and Schwan [19], and Hutchinson
and Peterson[18] showed that by ‘shepherding” modules together to run in a single thread,
message latency is reduced, since a message that has been processed by one module can be

immediately processed in the next module, executing within the same thread.

o Scheduling threads on available CPUs: At every level in the end-system, the service con-
straints on messages must be mapped to a meaningful form for the lower layers. In terms
of modules, this means that we must also consider the computation time of each module
when mapping attributes from one module to the next. That is, for delay constraints, the

overhead of scheduling and executing modules in threads must be taken into consideration.

CPU resource management is complicated by the existence of multiple interactors, each re-
quiring protocol-module processing®, and each having different service constraints. The resource
manager can exist on uni- and multiprocessor machines and must make the best use of available
resources at all times.

A number of well-known scheduling policies can be used for thread scheduling. Mercer [20]

has investigated the use of both earliest-deadline first and rate-monotonic scheduling in his work

3Tn Dionisys, interactors are specified by a processing signature at the object-level, which describes all the
modules in that interactor. For state-based applications, we need only worry about specification of the correct

consistency and real-time constraints and the management layers invoke the correct modules.
4The protocol modules can each have different computation times.

on processor capacity reserves, which focuses on CPU resource management to reserve processor

cycles for end-to-end service guarantees.

4.2.2 Packet Scheduling and Network Resource Management in Dionisys

The network manager consists of the message fragmenter /reassembler, packet scheduler, and var-
ious modules for usage parameter control (UPC), and flow/error/rate control. To multiplex mes-
sages associated with different interactors efficiently, arbitrary-length application-level messages
can be fragmented into packets of fixed length, by enabling the fragmenter module.

The header of each packet carries a sequence number identifying the position of the fragment
in the message and a length-indicator, to indicate the length of the useful part of the fragment
payload. The message header is also included in every packet. Replication allows meaningful
interpretation of the packets at the destination even when some packets of a message may be lost.

The network resource manager supports user-configurable packet scheduling policies. Based
upon the policy enforced, it may be necessary to have additional admission control and usage
parameter control functionality, to ensure that service constraints on messages are maintained for
the duration of a connection i.e., the lifetime of a path or interactor.

Service attributes may be specified for an interactor when the interactor is first established,
or they may be dynamically set by a message transmitted across an interactor. Interactors can
either be established before data transfer begins or at the same time as data transfer commences.
The latter approach would be most applicable for short, infrequent message-exchanges. In the
extreme case, a message traveling across an interactor may specify its own unique service param-
eters, allowing each individual message traveling along the same interactor to have its own QoS
parameters. If admission control/negotiation is in effect, the network manager feeds back to the
application layer the optimum level of service it can provide, given the desired service level the
application requires and the maximum service the system can supply in the presence of other
messages requiring service.

DWCS Packet Scheduling: As part of the Dionisys system, we have implemented a packet-
scheduling algorithm, called Dynamic Window-Constrained Scheduling (DWCS). The algorithm
accepts two attributes per packet. At any time, an attribute-pair applies to all packets in the

same class. The attributes are:

e Deadline - this is the latest time a packet can commence service. Any packet that cannot

be scheduled for transmission by its deadline can be dropped if the attribute-specification
for the logical connection (i.e., interactor) allows some packets to be lost. If a packet cannot
be lost it must be transmitted late.

o Loss-lolerance specified as a value z;/y;, where z; is the number of packets that can be lost
or transmitted late for every window, y;, of consecutive packet arrivals in the same stream, 1.
For every y; packet arrivals in stream 2, a minimum of y; — x; packets must be scheduled on
time, while at most x; packets can miss their deadlines and be either dropped or transmitted

late.

DWCS orders packets for transmission based on the current values of their loss-tolerances and
deadlines. Precedence is given to the packet at the head of the stream with the lowest loss-
tolerance®. Packets in the same traffic class (for example, those packets forming part of a larger
message) all have the same original and current loss-tolerances. Packets in the same message are
scheduled in their message order. Whenever a packet misses its deadline, the loss-tolerance for all
packets in the same message, m, is adjusted to reflect the increased importance of transmitting
a packet from m. This approach avoids starving the service granted to a given packet stream,
and attempts to increase the importance of servicing any packet in a message likely to violate
its original loss constraints. Conversely, any packet serviced before its deadline causes the loss-
tolerance of other packets (yet to be serviced) in the same traffic class to be increased, thereby

reducing their priority.

Lower
loss-tolerance

Higher e,

priority \
. =
_ " D

) Network pipe
—_—

EDF-ordered queues

NOTE: EDF-ordered queues are dynamically created and destroyed

Figure 6: DWCS packet scheduling.

The DWCS algorithm actually works as follows: it places packets into logically-distinct priority
queues, with packets in the same queue ordered earliest-deadline first (see Figure 6). Priorities are

assigned to queues based on the current loss-tolerances of all buffered packets. Thus, all packets

5The exact rules for ordering packets for transmission will be described later.

in the same queue have the same current loss-tolerance. Packets are scheduled for transmission
from the head of the highest-priority queue, where the highest priority queue is the one holding
the lowest loss-tolerant packets®. The number of logically-active queues depends on the number
of distinct packet loss-tolerances among all buffered packets. This means new queues may be
dynamically created while existing queues are destroyed when they are empty. The loss-tolerance
of a packet changes over time, depending on whether or not another (earlier) packet from the same
message has been scheduled for transmission by its deadline. If a packet cannot be scheduled by
its deadline, it is either transmitted late (with adjusted loss-tolerance) or it is dropped and the
deadline of the next packet in the message is adjusted to compensate for the latest time it could
be transmitted, assuming the dropped packet. A more detailed description of DWCS scheduling
is out of the scope of this paper.

4.2.3 Trade-offs Between Bandwidth Utilization and Scheduling Overhead

The Dionisys system is implemented as a library on Solaris 2.5.1. Processes place information
for packetization and scheduling in Dionisys in a shared memory region. This region is guarded
by semaphores, so that queue data structures are updated atomically. If the packet scheduler,
or higher level entities such as the fragmenter/packetizer run too frequently, they will force other
threads to block while trying to acquire semaphores for the shared memory segment. Hence, not
only does the scheduler steal cycles from other threads, it also forces executing threads to block
and there are context-switch penalties for such behavior. Hence, it may be impractical and too
expensive to run the scheduler in a work-conserving manner.

If the scheduler is invoked periodically, and at most one maximum size packet is serviced each
invocation, we can bound the overhead of packet scheduling. The problem is, deciding on a
suitable scheduling period for packets of different sizes, each demanding different transmission
delays. Furthermore, execution of a periodic scheduler may result in unnecessary overhead when
there is nothing to service.

In the next section, we show, empirically, the packet scheduling frequency to minimize CPU

overheads while maximizing network bandwidth usage.

6There can be more than one logical priority queue with a loss-tolerance of zero, depending on the value of the

loss-denominator for packets in the corresponding queue. However, such details are out the scope of this paper.

5 Experimental Evaluation

The experiments were performed on a pair of Sparc Ultra I, 140 MHz machines, connected via an
ATM/OC3 link, with a 155 Mbps capacity. Figure 7(a) shows the bit service rate per interactor,
as the number of simultaneously active interactors increases from 1 to 16, and the scheduler period
(between executions) increases from 1 to 500 milliseconds. As the scheduler period is increased,
the scheduler consumes fewer CPU cycles per second, at the cost of potentially lower bit service
rates into the network for each interactor. (Note that the minimum overhead per invocation of
the packet scheduler, when the input queue is empty, is 26us). In these experiments, the nominal
data rate input at the application/object-level of each interactor is set to 1Mbps. Each interactor
conveys video (MPEG-1) data between objects. The sample MPEG-1 data is encoded at a rate
of 24 frames per second, but each message is at the granularity of a group of pictures (that is, 12
frames) and averaged 62.5 KBytes. Fragmentation is disabled, so each message is encapsulated
in a separate packet.

From Figure 7(a), the bit service rate peaks when the scheduler executes once every 10 millisec-
onds. (Note that the scheduler services at most one packet per invocation, depending on whether
the input queue is empty or not). At lower frequencies, the scheduler overhead is less but the
interactor bit rate drops. When only one interactor is active, the scheduler frequency has little
effect on the bit service rate. However, it becomes increasingly necessary to increase the scheduler
frequency as the number of active interactors increases. Observe that below 10 millisecond periods
between scheduler executions, the bit rates of each interactor actually drop a small amount. This
is probably due to increased lock-accesses to the shared memory data structures in Dionisys by
each interactor and the packet-level scheduler threads.

Figure 7(b) shows the bit service rate for a single active interactor, when the packet granularity
is at the level of one MPEG-1 frame. That is, the average packet size is % the size of packets
in the first experiments. To maintain the same arrival rate of 1 Mbps for the interactor, packet
arrivals for scheduling occur once every is. This has the effect of increasing the lock-access
frequency in Dionisys 12-fold from the previous experiments, thereby limiting the peak bit service
rate. Observe that even when the scheduler executes once every 10 milliseconds, the bit service
rate of the interactor is less than 800 Kbps. In the previous experiments, the courser-grained
packets meant that the packet arrival rate could be reduced, thereby reducing lock-accesses while

maintaining a 1 Mbps bit arrival rate per interactor. Figure 7(a) shows the bit service rate for

one active interactor when the packet scheduler period is 10 milliseconds is equal to the full 1
Mbps arrival rate. It appears that if too many lock-accesses are made, then the scheduler can be
blocked by application threads holding locks and executing on behalf of each interactor, which
causes a form of priority inversion in Dionisys”.

From these experiments, there is clearly a need for packet-level scheduling to occur at a rate
proportional to the aggregate arrival rate of packetized information across multiple interactors.
That is, a system like Dionisys must adjust the packet scheduling rate to compensate for CPU
overheads when it is necessary to meet specific bit service rates across the network. In designing a
runtime system like Dionisys, we must be careful of limiting factors such as lock-access frequency.
Hence, we cannot simply increase the scheduler frequency, even when we have spare CPU cycles,
to always guarantee an increase in bit service rates for interactors.

An adaptive system which adjusts the packet scheduling rate, p, to match the aggregate arrival
rate, 3" | A;, where n is the number of simultaneous interactors and A; is the arrival rate for
interactor ¢, will maximize bit service rate and, hence, bandwidth resources, without wasting
CPU cycles. This assumes that blocking delays due to lock acquisition are either negligible or

infrequent.

1.1e+06

T T T T T T T T T 800000 T T T T T T T T T

1 interactor o— 1 interactor +—
2interactors -+- |

1e+06

g--
8 interactors -x 750000 |-

900000 16 interactors -4~ |

800000 |1 * 700000

=
!

700000 N

T
!

650000 |

600000

T
x
!

600000
500000

T
!

Bit Service Rate (bits/s)
Bit Service Rate (bits/s)

400000 550000 -

T
!

300000 - el] 500000 -

200000 T b

Tl 450000 |-
100000

T

T

0 L L L L L L L L L 400000 L L L L L L L L L
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Scheduler Period (microseconds) Scheduler Period (microseconds)

Figure 7: Bit service rate versus scheduler frequency: (a) Effects of servicing multiple simultaneous
interactors with course-grained packet sizes; (b) Bit service rate for one interactor on finer-grained

packets.

"The Dionisys packet scheduler runs as a real-time (RT) class kernel-thread in Solaris.

6 Conclusions and Future Work

This paper describes the Dionisys end-system quality of service (QoS) approach to specifying,
translating, and enforcing end-to-end, object-level QoS constraints. Dionisys differs from previous
work on QoS architectures by supporting QoS constraints on distributed shared objects, as well as
multimedia streams. The key concept in Dionisys is the notion of an ‘interactor’, which captures
the QoS constraints and resource requirements at each stage in the generation, processing, and
transfer of information between multiple cooperating objects. Using interactors, Dionisys is able
to coordinate both thread and packet-level scheduling, so that information is processed and trans-
mitted at matching rates. However, there are tradeofls in the use of CPU cycles for scheduling and
the need to meet QoS constraints on the information transferred between interacting objects. We
show, empirically, the packet scheduling frequency to minimize CPU overheads while maximizing
bandwidth usage for simple interactions between objects exchanging video information.

We are currently evaluating the Dynamic Window Constrained Scheduling (DWCS) policy for
packet-level scheduling. We intend to show that DWCS has the ability to meet weighted-fair
bandwidth allocation in the same way that fair-queueing algorithms can, except that DWCS can
coordinate the allocation of bandwidth amongst various interactors without prior knowledge of
the maximum number of interactors that may coexist. By contrast, fair queueing algorithms need
a-priori knowledge of all traffic classes that will communicate over a link, so that weights can
be allocated to each class in a hierarchical partition tree. DWCS uses constraint information on
a per-interactor basis, which is semantically-independent of the constraints on other interactors.
Fair-queueing algorithms use weights which are meaningless without relation to other traffic-class
weights.

Dionisys is still in its early stages of development and we hope to evaluate the completed
system on the complex distributed applications we mentioned earlier, such as highly-dynamic,

richly-detailed virtual environments, and tele-medicine applications.

References

[1] S. Greenberg and D. Marwood, “Real-time groupware as a distributed system: Concurrency
control and its effect on the interface,” in Proceedings of the ACM Conference on Cooperative

Support for Cooperative Work, ACM press, pp. 207-217, ACM, 1994.

2]

[12]

C. Carlsson and O. Hagsand, “Dive-a platform for multi-user virtual environments,” Com-

puters and Graphics, vol. 17, pp. 663-669, November-December 1993.

S. Singhal, Effective Remote Modeling in Large-Scale Distributed Simulation and Visualiza-
tion Environments. PhD thesis, Stanford University, August 1996.

R. Kravets, K. Calvert, P. Krishnan, and K. Schwan, “Adaptive variation of reliability,” in
HPN-97, IEEE, April 1997.

R. West, K. Schwan, 1. Tacic, and M. Ahamad, “Exploiting temporal and spatial constraints
on distributed shared objects,” in Proc. 17th IEFEE [CDCS, TEEE, 1997.

R. Yavatkar, “MCP: A protocol for coordination and temporal synchronization in multimedia

collaborative applications,” in Proc. 12th IEEE ICDCS, pp. 606-613, IEEE, 1992.

D. Ferrari, A. Banerjea, and H. Zhang, “Network support for multimedia - a discussion of

the tenet approach,” Computer Networks and ISDN Systems, vol. 26, pp. 12671280, 1993.

A. Campbell, “A quality of service architecture,” in ACM SIGCOMM Computer Communi-
cation Review, ACM, April 1994.

G. Gopalakrishna and G. Parulkar, “Efficient quality of service in multimedia computer oper-
ating systems,” Tech. Rep. WUCS-TM-94-04, Department of Computer Science, Washington
University, August 1994.

D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar, “A high-performance endsystem

architecture for real-time corba,” IFEKE Communications Magazine, vol. 14, February 1997.

A. Gheith and K. Schwan, “Chaos-arc — kernel support for multi-weight objects, invocations,

and atomicity in real-time applications,” ACM Transactions on Computer Systems, vol. 11,

pp- 33-72, April 1993.

D. I. Rosu, K. Schwan, S. Yalamanchili, and R. Jha, “On adaptive resource allocation for
complex real-time applications,” in 18th I[EFFE Real-Time Systems Symposium, San Fran-
cisco, CA, IEEE, Dec. 1997.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

P. Gopinath, T. Bihari, and K. Schwan, “Object-oriented design of real-time software,” in
10th International Real-time Systems Symposium, Los Angeles, pp. 194-201, IEEE, Dec.
1989.

C. Aurrecoechea, A. Campbell, and L. Hauw, “A survey of qos architectures,” Multimedia

Systems Journal, Special Issue on QoS Architecture, 1997.

D. Ferrari, “Client requirements for real-time communication services,” IKKFE Communica-

tions Magazine, vol. 28, pp. 76-90, November 1990.

A. Montz, D. Mosberger, S. O’Malley, L. Peterson, T. Proebsting, and J. Hartman, “Scout:
A communications-oriented operating system,” Tech. Rep. TR-94-20, The University of Ari-

zona, Department of Computer Science, June 1994.

D. Clark, “The structuring of systems using upcalls,” in Proceeedings of Tenth ACM Sympo-
stum on Operating Systems Principles, pp. 171-180, ACM, December 1995.

N. Hutchinson and L. Peterson, “The x-kernel: An architecture for implementing network

protocols,” IEEFE Transactions on Software FEngineering, vol. 17, pp. 64-76, January 1991.

D. Ivan-Rosu and K. Schwan, “Improving protocol performance by dynamic control of com-
munication resources,” Tech. Rep. GIT-CC-96-04, Georgia Institute of Technology, College
of Computing, February 1996.

C. Mercer, S. Savage, and H. Tokuda, “Processor capacity reservation for multimedia oper-
ating systems,” in IEFFE International Conference on Multimedia Computing and Systems,
IEEE, May 1994.

