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Abstract 

The incremental reactivity (IR) and relative incremental reactivity (RIR) of carbon monox­

ide and 30 individual volatile organic compounds (VOC) were estimated for the South Coast 

Air Basin using two photochemical air quality models: a 3-D, grid-based model and a vertically-

resolved trajectory model. Both models include an extended version of the SAPRC99 chemical 

mechanism. For the 3-D modeling, the decoupled direct method (DDM-3D) was used to assess 

reactivities. The trajectory model was applied to estimate uncertainties in reactivities due 

to uncertainties in chemical rate parameters, deposition parameters, and emission rates using 

Monte Carlo analysis with Latin hypercube sampling. For most VOC, RIRs were found to 

be consistent in rankings with those produced by Carter using a box model. However, 3-D 

simulations show that coastal regions, upwind of most of the emissions, have comparatively low 
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IR but higher RIR than predicted by box models for C4-C5 alkenes and carbonyls that initiate 

the production of HOx radicals. Biogenic VOC emissions were found to have a lower RIR than 

predicted by box model estimates, because emissions of these VOC were mostly downwind of 

the areas of primary ozone production. Uncertainties in RIR. of individual VOC were found to 

be dominated by uncertainties in the rate parameters of their primary oxidation reactions. The 

coefficient of variation (COV) of most RIR values ranged from 20% to 30%; whereas, the COV 

of absolute incremental reactivity ranged from about 30% to 40%. In general, uncertainty and 

variability both decreased when relative rather than absolute reactivity metrics were used. 

1. Introduction 

Volatile organic compounds (VOC) and oxides of nitrogen (NOx) are the main reactants 

in the photochemical reactions that produce ozone in the troposphere. Individual VOC are 

known to differ significantly in both the rates and in the products of their oxidation reactions 

[1]. These differences can have a significant effect on ozone formation [2]. Consequently, in 

developing strategies to reduce the formation of ozone, ignoring the reactivity of emissions 

may lead to ineffective and inefficient controls, while consideration of reactivity focuses control 

efforts on those VOC with the greatest impacts on ozone. 

Carter [2] used a box model with a detailed chemical mechanism to quantify the ozone 

formed from 180 different VOC in 39 cities across the United States. Eighteen different reac­

tivity scales were developed from those model calculations. The incremental reactivity (IR) of 

a VOC is operationally defined as the change in peak ozone produced by a small increase in 

emissions of that VOC. IR scales can differ with different assumptions about the levels of NO^ 

and the method used to measure the ozone impact; some measures examined the effects on 
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peak ozone and others examined the integrated impacts over a period of time. The Maximum 

Incremental Reactivity (MIR) scale is determined by adjusting the input ratio of VOC to NOx 

to maximize the incremental reactivity of a base VOC mixture. MIR of an individual VOC 

species is most commonly defined as 

MIR, = •• **p at VOC/NOs for maximum IR of base mix (1) 
oEi 

where [O3] represents the peak ozone concentration and E\ represents emissions of the VOC 

species. The MIR scale has been used to compare the reactivity of exhaust emissions from alter­

natively fueled vehicles to the reactivity of exhaust emissions from a vehicle using conventional 

gasoline [3]. 

MIR conditions occur at relatively low VOC/NOx ratios (4-6 ppmC : 1 ppm NOx), as 

might be found in many urban areas. At lower NO« levels, the absolute incremental reactivity 

of individual VOC is expected to be less than under MIR conditions. To investigate this effect, 

Carter [2] developed several alternative scales, including maximum ozone incremental reactivity 

(MOIR). MOIR is evaluated at higher VOC/NOz ratios of about 8:1, conditions that lead to 

maximum ozone (in contrast, MIR conditions correspond to maximum sensitivity of ozone to 

VOC). Nevertheless, the ranking of VOC species based on MOIR is similar to that derived 

using the MIR scale. 

Since Carter developed reactivity scales using a 0-D box model, an issue of concern is 

how applicable VOC rankings based on such scales are to a real, three-dimensional air basin. 

For example, the spatial distribution of the emissions of a VOC could influence its reactivity. 

Furthermore, the MIR scale was developed based on 10-hour simulations, whereas some organic 
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compounds may remain in an urban airshed for 2 to 3 days. Previous investigators [4, 5, 3, 6] 

applied 3-D air quality models to California's South Coast Air Basin (SoCAB) and compared 

their results to box-model results. In general, these studies found that if VOC reactivities are 

compared on a relative basis, the 0-D and 3-D results are similar for most of the compounds 

investigated. However, for some species, notable differences in reactivity were reported. 

Another concern is that quantification of VOC reactivities is limited by uncertainties in our 

knowledge of atmospheric chemistry. Measurement errors in laboratory kinetic and product 

studies contribute to uncertainty in the chemical mechanisms used to calculate incremental 

reactivities. Moreover, the reactions of many of the organic compounds emitted into urban at­

mospheres have never been studied in controlled experiments. Their representation in chemical 

mechanisms is based on analogy to compounds of similar structure, creating added uncertainty. 

At issue is whether the uncertainties in the chemistry significantly affect the calculation of the 

reactivities for organic compounds. Previous studies using a box model [7, 8] and an airshed 

model [3, 9] have explored to what degree uncertainties in chemical reaction parameters af­

fect calculated reactivities. These studies suggested that control strategies based on relative 

reactivity were robust with respect to uncertainty in the chemistry. 

In this study, recently developed techniques are applied to examine incremental reactivity, 

its spatial variability, and its sources of uncertainty in a real air basin. As in the study by 

Kahn et al. [6], this study uses the decoupled direct method to estimate reactivities. We 

use an updated chemical mechanism and look specifically at the effects of spatial distribution 

of emissions (including biogenic emissions) and compare the reactivity rankings of 30 VOC 

species and CO at individual sites. The objectives of this study are to (1) apply a 3-D model to 

assess the reactivity of individual VOC with respect to ozone formation; (2) compare relative 
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incremental reactivities computed using the 3-D model with Carter's reactivity scales computed 

using a box model; and (3) conduct a formal sensitivity and uncertainty analysis of incremental 

reactivity for the same time and location using a photochemical trajectory model to identify 

the most important factors contributing to uncertainty in reactivity assessments. 

2. Methodology 

a. Chemical Mechanism 

The chemical mechanism used in this study is an extended version of the SAPRC99 mech­

anism [10]. SAPRC99 incorporates rate coefficients, absorption cross sections, quantum yields 

and mechanistic parameters that were updated based on reviews conducted over the past decade 

(see Carter [10] for details). Compared to previous versions of the mechanism [11, 12], the most 

significant change made to the inorganic chemistry was reducing the OH + NO2 rate constant 

by approximately 30%, as recommended by DeMore et al. [13], 

In this research, 31 chemical species were identified for detailed incremental reactivity cal­

culations (Table 1). These species represent most of the important classes of VOC, including 

compounds of anthropogenic and biogenic origin. The base SAPRC99 mechanism was extended 

to represent each of these species explicitly, using reactions provided by Carter [10]. 

The extended mechanism contains 104 species and 246 reactions (see Martien et al. [14] for 

a complete listing of the extended mechanism). Of the 104 species, eight are lumped primary 

organic species: ALKl, ALK2, and ALK3 representing alkanes; AROl and AR02 representing 

aromatics; OLE1 and OLE2 representing alkenes; and TRP1 representing terpenes. We use 

fixed oxidation product yields for all lumped organic species. 

5 



b. The Decoupled Direct Method 

Most previous studies of incremental reactivity used a finite-difference approximation method 

(also known as the "brute force" method) to estimate IR from calculated 0 3 concentrations at 

known emission levels: 

d[Oz]P „ [03]p(^ + A ^ ) - [ 0 3 ] p ( £ , ) 
dEi ~ AEi [ ' 

To improve efficiency for 3-D assessments of IR in this study, we applied the decoupled direct 

method or DDM [15], as demonstrated by Yang et al. [16]. In DDM-3D, a set of sensitivity 

equations is derived from the atmospheric diffusion equation: 

dc 
~ + V • (ucz) - V • {KVa) + Hi{cu • • •,c/v) + &(x , t) (3) 

In eq 3, Q is the concentration of species i, u is the wind velocity vector, K is the diffusivity 

tensor, Rt is the net rate of formation of compound i due to chemical reactions, Qi is the source 

term for compound i due to emissions, and N is the number of species being tracked in the 

model. This coupled system of equations is solved numerically subject to initial and boundary 

conditions [17]. 

To obtain the semi-normalized sensitivity, s*j = Ejdci/dEj, of the concentration of species i 

to the emissions of species j , the governing equations and boundary conditions are differentiated 

with respect to a multiplicative emissions scaling factor, e3\ 

^ + v • ( „ a y = v • (/cv.y + J ^ + g + ^ ^ (4) 
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Factor €j has a nominal value of 1 and is applied uniformly throughout the spatial domain 

and time period of the simulation. For the present study c% represents the concentration of ozone 

and Cj are scaling factors applied to the emissions of individual VOC. Sensitivity coefficients are 

calculated during the same model run used to calculate species concentrations, by alternating 

the solution of eqs 3 and 4. 

c. Incremental Reactivity Scales 

Absolute incremental reactivity (AIR) was derived from s*j values predicted at the time of 

peak observed ozone at receptor locations of interest: 

AIR> = MWE, <5> 

where s*^ is the semi-normalized sensitivity of ozone (ppm O3) with respect to a dimensionless 

multiplier t3 applied to emissions of species j at all locations and times. MWj is the molecular 

weight and Ej is the molar emissions rate of species j throughout the modeling domain. 

Differences in the chemical environment of individual receptor locations, including differ­

ences in the amount and timing of upwind VOC and NO^ emissions, are expected to affect 

AIR values calculated from eq 5. Previous studies have suggested that normalizing reactivities 

to the reactivity of a base mixture of compounds should decrease their variability [5]. In this 

study, relative incremental reactivities (RIRs) are calculated as 

RiRj = — A I R i r n (6) 
3 Ek wk AIRk

 y ) 

where AIRk is the absolute reactivity of the kth compound and wk is its mass fraction in 
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the mixture. The compounds included in the mixture and their assumed mass fractions were 

2% formaldehyde, 14% MEK, 37% n-butane, 26% 2,2,4-trimethylpentane, 2% propene, 17% 

ethanol, and 2% m-xylene. The mass fractions were set such that compounds would contribute 

equally to the reactivity of the mixture based on trajectory model calculations for a trajectory 

ending at Claremont. Note that this weighting is specific to this study, so that the RIR values 

are only comparable within the study. 

d. Application to the South Coast Air Basin 

The model was applied to a historical air pollution episode, 23-25 June 1987. An extensive 

meteorological and air-quality-monitoring network that exists in Southern California was used 

to specify meteorological inputs and initial conditions for the air quality models. Supplemental 

upper air soundings were conducted during the Southern California Air Quality Study (SCAQS) 

for the 24-25 June 1987 intensive monitoring period. These soundings were performed every 4 

hours at a network of 8 sites located along the coast and inland. Mixing depths were determined 

as the height to the base of the inversion layer in plots of potential temperature versus altitude. 

Mixing depths, temperatures, surface winds, and winds aloft were interpolated using objective 

analysis procedures [18, 19] to derive spatially and temporally complete meteorological fields. 

Similar interpolation procedures were applied to observed concentrations of CO, NO, NO2, O3, 

and NMHC to derive initial conditions for these pollutants. By starting model simulations at 

1600 PST on 23 June 1987, observed pollutant concentrations at the surface could be used to 

estimate pollutant levels throughout the mixed layer. These input data were developed and 

used in a previous photochemical modeling study of the same episode [20]. Inflow boundary 

conditions were based on a review of measurements of pollutant concentrations at San Nicolas 
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Island and in aircraft studies conducted offshore of southern California [21]. 

Figure 1 shows the study domain and the boundary of the computational region. It also 

shows 8 sites at which IR was evaluated. The coastal sites at Hawthorne and Long Beach 

are characterized by coastal breezes and relatively clean air. Further inland, the Central Los 

Angeles and Anaheim sites are located in a region of high emissions and increased levels of air 

pollution. The inland sites Burbank, Azusa, Claremont, and Rubidoux are downwind of the 

core urban areas in the computational domain and downwind of most of the emissions. The 

inland sites experienced the highest levels of ozone during the study period. 

Emission inventory estimates used in this research were provided by the California Air 

Resources Board [22]. Estimates of mobile, area, and point source emissions are for summer 

1987 typical weekday conditions. Emissions from motor vehicles were revised using a fuel-based 

inventory approach [23]. CO emissions were based on fuel sales and an on-road infrared remote 

sensing study of vehicle CO emissions conducted in southern California shortly after the 1987 

SCAQS field experiment [23]. Ratios of NMOC/CO and NOx/CO in vehicle emissions were 

calculated via regression analysis of ambient pollutant concentrations measured during SCAQS 

for morning commuter peak periods. The product of these ratios and the CO emissions yielded 

VOC and NO^ emissions estimates. 

The spatial distribution of daily total emissions of selected VOC are shown in Figure 2. 

Propene emissions, the primary source of which is automobile exhaust, are heavily concentrated 

in the central urbanized portion of the modeling domain. Likewise, isopropanol emissions 

due mostly to evaporating solvents, are also concentrated in the central region. Emissions 

of isoprene, which are almost all biogenic, are distributed mostly to the north and east and 

downwind of the urbanized region. 
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All 3-D model simulations started at 1600 PST on 23 June 1987 and continued until 2400 

PST on 25 June. Calculations of VOC reactivity were made for 25 June in order to minimize 

the influence of uncertainties in initial conditions on the results. 

e. Uncertainty Analysis 

Monte Carlo analysis with Latin hypercube sampling [24] was used to estimate uncertainties 

in base case ozone concentrations and in incremental reactivity estimates. The uncertainty 

analysis was conducted using a 1-D trajectory version of the air quality model [25]. Multi-

day back-trajectories were computed so that air parcels arrived at each of the receptor air 

monitoring sites of interest at the time of maximum observed ozone. A total of 33 uncertain 

input parameters were treated as random variables, as listed in Table 2. These parameters 

include rate coefficients, product yields, emissions rates and deposition parameters determined 

previously to be influential for box model reactivity calculations [26], or for the response of 

ozone concentrations to VOC emissions reductions [25]. Unless indicated otherwise in Table 

2, all of the uncertainties were incorporated in the model as multiplicative factors, drawn 

from independent lognormal distributions with a mean of 1.0. The derivations or sources for 

uncertainty estimates are given in Bergin et aJL [25] unless otherwise noted. Multivariate linear 

regression analysis was applied to the Monte Carlo results to identify the influence of input 

variables on incremental reactivity estimates. 

Motor vehicle emissions and associated uncertainty estimates were defined using results of 

previous research [23, 25]. The EMCO variable listed in Table 2 represents the uncertainty 

common to motor vehicle emissions of all pollutants (i.e. CO, NMOC, and NOx), and was es­

timated from site-to-site variability in on-road remote sensing measurements for CO emissions. 
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This uncertainty applies not only to CO, but also to the other pollutants, because NMOC and 

NOx emissions were estimated as the product of CO emissions and ambient pollutant ratios, as 

described in the previous section. Additional, independent uncertainties in NMOC and NOx 

emissions from motor vehicles are represented by the parameters EMHC and EMNX. These ad­

ditional uncertainties, which are relatively small, arise from the uncertainties in the regression 

analysis of ambient concentrations of NMOC and NO^ versus CO. 

3. Results and Discussion 

a. Performance Evaluation 

Model performance statistics for ozone indicate that the 3-D model simulated observed 

surface-level ozone in this episode with a low bias and a moderate amount of error. Performance 

statistics on 24 and 25 June were similar: normalized bias was +7% and the normalized gross 

error was 42% on both days for surface-level ozone above 60 ppb. Time series plots (Figure 

3) show consistency between observed and simulated ozone at the 8 sites where AIR and RIR 

were calculated. At coastal sites Hawthorne and Long Beach, observed and predicted maximum 

ozone was about 70 ppb on both 24 and 25 June. Nighttime simulated ozone was predicted to 

be near zero, whereas the observed ozone concentration was about 40 ppb at this time. At the 

central and inland sites, the magnitudes of the daily ozone peaks were usually within about 30 

ppb of the observations, and the times of the predicted peaks were within about an hour of the 

observed peak. Observed nighttime ozone values at the central and inland sites were near zero; 

nighttime model predictions matched these observations. 

b. Incremental Reactivity 
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Absolute reactivity was found to vary significantly within the domain. Figure 4 shows AIR 

values at the time of maximum observed ozone at two locations. Figure 4 indicates that AIR at 

the coastal Hawthorne site is nearly an order of magnitude smaller than at the inland Claremont 

site. Hawthorne and other coastal sites are upwind of most emissions, so ozone at these sites is 

only slightly reduced by VOC emission reductions. In contrast, at Claremont and other inland 

sites, VOC reductions significantly reduce ozone. 

Simulated AIR is low at the coastal sites, increases near the central sites, and then decreases 

again at the furthest inland (downwind) sites. The highest AIR values occur near Azusa. The 

spatial distribution of AIR suggests an analogy between the variation in VOC/NOx ratio at 

different locations and the adjustments made by Carter [2] to VOC/NOx ratios to create either 

MIR or MOIR conditions. By this analogy, maximum ozone conditions on both 24 and 25 June 

are achieved near Claremont; while maximum incremental reactivity conditions are achieved 

near Azusa on both days. However, this analogy is not perfect because the VOC/NOx ratio 

is not the only quantity varying: the reactivity of the VOC mix and the concentration of 

precursors vary at different locations as well. 

Measures of relative reactivity (RIR from eq 6) at 8 sites are presented in Figure 5 for 25 

of the 30 VOC. Relative MIR (R_MIR) values are shown for comparison, based on MIR values 

from Carter [27] and again using eq 6 to compute re ative values. In these figures, sites are 

ordered from coastal to inland. Note that the scaling of the vertical axis varies. 

The alkanes were not found to be particularly reactive. Most of the alkanes have RIR values 

calculated from 3-D modeling that are consistent with Carter's R_MIR. Notable exceptions are 

n-butane and n-pentane at Long Beach. This site is characterized by high concentrations of 

these compounds due to nearby refinery emissions; thus, ozone at this site is relatively more 
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affected by changes in emissions of these n-alkanes. 

Alkenes are generally more reactive than the alkanes, as shown in Figure 5. There are 

notable differences in the comparison to the R_MIR values. At the coastal and central sites for 

many of the alkenes, the estimated values of RIR from DDM-3D tend to be larger than the 

corresponding R_MIR values. At these locations, concentrations of radical species tend to be 

relatively low and alkenes, whose direct reactions with ozone initiate the production of HOx 

radicals, therefore have a larger effect on ozone than they would at locations with a rich supply 

of radicals. 

Important exceptions to the tendency for alkene RIR to be greater than R_MIR are the 

biogenic species isoprene and a-pinene. R_MIR values for both isoprene and a-pinene are 

higher than the corresponding DDM-3D estimates at all 8 sites. This difference is due to the 

spatial distribution of the biogenic emissions. As noted in the discussion of Figure 2 above, 

the distribution of biogenic emissions places most of the isoprene and a-pinene downwind of 

these sites. Therefore, the effect of these species on ozone is reduced relative to what would be 

predicted if the spatial distribution of emissions matched that of anthropogenic VOC. 

Across the 8 sites, the estimated RIR values for aromatic species shown in Figure 5 are close 

to, but generally lower than RJV1IR values. There is a trend of increasing RIR from Hawthorne 

to Anaheim and a trend of decreasing RIR from Anaheim to Rubidoux. Apparently conditions 

at the Anaheim site are near the conditions for maximum incremental reactivity of aromatics. 

RIR values at Anaheim agree most closely with R_MIR values. 

The values of RIR for most of the carbonyls shown in Figure 5 are consistent for a given 

species across sites. For some species, RIR, and R_MIR values also agree. There are several 

notable exceptions where significant variations are evident. The reactivity of formaldehyde 
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varies widely from site to site and generally decreases from coastal to inland sites. Formaldehyde 

photolysis can initiate the formation of radicals (HCHO + hv —» 2HO* + CO). At sites where 

low radical concentrations limit production of ozone, formaldehyde has particularly high RIR 

values. Interestingly, benzaldehyde RIR values at all sites and the R_MIR value are negative. 

This is because there is a NOx sink in the reaction mechanism for benzaldehyde, which results 

in an overall reduction in ozone formation [28]. At the Hawthorne site only, acetaldehyde 

has a negative RIR value. Propionaldehyde and benzaldehyde also show decreases in RIR 

at Hawthorne relative to other sites. These aldehydes are precursors to peroxyacetyl nitrate 

(PAN) and its analogs; formation of PAN competes with N0 2 photolysis that would otherwise 

form ozone. Other species showed no exceptional trends and are not shown in Figure 5, but 

are discussed in the context of Figure 6 below. 

Figure 6 plots the 8-site average RIR for each species ranked in order of the RJVIIR values 

from the box model. Figure 6 plots the 8-site average RIR ranked in MIR order for each species. 

For comparison, the corresponding R_MIR values (mean of 39 scenarios) are also plotted. Error 

bars show ± 1 standard deviation, indicating variability across locations for each case. For most 

species the sort order for DDM-3D RIR does not shift by many positions relative to R_MIR from 

the box model. An exception to this is formaldehyde, which, as noted above, is an important 

chain initiator for radical species. For coastal and central locations, formaldehyde moves up 

in the rank order. While the rankings of anthropogenic alkenes such as 2-methyl-2-butene are 

high in all cases, the reactivity of these alkenes is much higher, on a relative basis, at coastal 

sites compared to inland sites. RIR for these species has a large site-to-site variation. The 

biogenic species isoprene and a-pinene stand out in Figure 6; these compounds would move 

down in sort order if ranked by DDM-3D RIR values. The reason for this, as noted above, is 
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that the spatial distribution of the biogenic emissions is such that most of the emissions occur 

downwind of the sites examined here. 

Other species (defined in Table 1) all have mean RIR values of 0.5 or less. While there is 

fair agreement with R_MIR values, the RJVIIR values are larger than the 8-site mean of the 

RIR values. There is a tendency for increasing RIR values of these other species with distance 

from the coast. This trend is probably due to the increase in radical availability at inland sites 

and the fact that alkenes and formaldehyde are relatively high at the coastal and central sites. 

The RIR at inland sites follow more closely the rankings based on MIR. At the inland sites. 

formaldehyde falls more nearly into the MIR ranking. However, note that the RIR values of 

the biogenic species are still greatly reduced and would drop in rank order even at the inland 

sites. 

c. Uncertainty and Variability 

Figure 7 shows absolute incremental reactivities (AIR) for eight compounds and the base 

mixture, calculated from the ozone concentrations at the endpoints of four trajectories. Average 

AIR values from the Monte Carlo simulations are shown, with associated error bars indicating 

standard deviations from the Monte Carlo analysis. For HCHO, n-butane, propene, m-xylene 

and the base mixture, incremental reactivities are lowest for the Rubidoux trajectory, while 

those for ethanol and MEK are lowest for the Anaheim trajectory. The coefficients of variation 

(COV = standard deviation divided by the mean) for the eight compounds and base mixture 

range from 0.16 for m-xylene at Anaheim to 0.63 for HCHO at Rubidoux, with most of the 

COV values falling in the range of 0.3 to 0.4. Uncertainty in the AIRs is generally highest at 

Rubidoux. 
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Relative incremental reactivities (RIR) for eight compounds are also shown in Figure 7. 

Accounting for uncertainties in the inputs for a given trajectory, COVs for the RIRs range 

from 0.08 for propene at Anaheim and Azusa to 0.49 for CO at Rubidoux. COVs for most of 

the RIRs range from 0.2 to 0.35. With few exceptions, uncertainties in RIRs are lower than 

those in AIRs. In general, normalizing reactivities also reduces variability across locations. 

Comparing Figures 7a and 7b, RIRs for all compounds except CO and ethanol are less variable 

across trajectories than AIRs. For the eight compounds shown, the coefficients of variation 

across trajectories in the average AIRs range from 8% for CO and 2,2,4-trimethylpentane to 

37% for MEK and 39% for HCHO (Figure 7a). The coefficients of variation in the RIRs across 

trajectories range from 7% for propene to 35% for both ethanol and MEK. 

Table 3 shows the average and GOV of AIR for the base mixture calculated at the end-

points of each trajectory. It also shows regression results, indicating which model parameters 

contribute the most to uncertainty in AIR values. The eight uncertain input parameters with 

the greatest influence on uncertainty in the AIR estimates are shown for the base mixture. A 

total of 16 parameters are included in the top eight for one or more of the trajectories. Six of 

them, the rate parameters for NO2 + hi/, HCHO + hi/, 0 3 + hi/, OH + NO2 and PAN decompo­

sition, and the emissions rates for non-mobile NOx emissions, appear in the top eight for three 

locations. 

The sign of the standardized regression coefficients indicates the sign of the response of the 

mixture incremental reactivity to an increase in the value of each parameter. Parameters with 

positive regression coefficients in Table 3 are shown in bold text; those with negative coefficients 

are shown in normal text. These signs differ across the trajectories for parameters that control 

the amount of NOx or radicals in the air parcel. For Claremont and Rubidoux, the incremental 
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reactivity of the mixture increases with increased NOx emissions or a reduced NO2 deposition 

rate. For Azusa, the sensitivity of the mixture AIR to increased NOx emissions or reduced 

NO2 deposition is negative. The mixture AIR for Anaheim is relatively insensitive to these 

parameters. The incremental reactivity of the base mixture for Rubidoux displays negative 

sensitivity to parameters that would increase the supply of radicals (e.g., O3 + /W, HCHO + /^) 

while the opposite is true for Anaheim and Azusa. 

Regression results for RIRs of individual compounds are shown in Table 4. Representative 

results from this table are discussed below, beginning with those for the less reactive compounds 

such as n-butane. 

For all four trajectory endpoints, the RIR of n-butane is sensitive to the rate constant for its 

reaction with OH, and to parameters that control the availability of OH radicals. Regression 

results for CO and 2,2,4-trimethylpentane are similar, showing high positive sensitivity to their 

OH reaction rates and to reaction rates for 0 3 + hv and OxD + H 2 0, and negative sensitivity 

to reaction rates for OH + NO2, and 0*D + M. As shown in Table 4, regression results for 

the ethanol are different from those of other slowly reacting compounds, due to the influence of 

uncertainties in PAN chemistry. Results for ethanol are relatively consistent across trajectories. 

In contrast to those compounds that react only with OH, the primary oxidation pathway for 

MEK is its photolysis reaction. At all four locations, the RIR for MEK is most sensitive to the 

rate of this reaction. In contrast to the low-reactivity compounds that are oxidized by OH, the 

RIR for MEK is also strongly negatively influenced by parameters that increase the rate of OH 

production or reduce its consumption rate (e.g., OH + N02) . 

Among the more reactive species, the RIR for HCHO is generally sensitive to parameters 

that affect other sources and sinks of radicals such as O3 + hv, and displays negative sensitivity 
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to parameters that increase the AIR of other components of the base mixture, including the 

rate constants for N0 2 + hv and CCO-02 + NO. Uncertainty in the HCHO photolysis rate 

is highly influential for the HCHO RIR value of the Anaheim and Azusa trajectories but not 

for the relatively NO^-limited trajectories ending at Claremont and Rubidoux. The results 

shown in Table 4 for m-xylene are typical of those for other rapidly reacting compounds such 

as propene, which react primarily with OH. Parameters of the m-xylene reaction mechanism 

that directly affect its absolute reactivity, such as the rate constant for its reaction with OH 

and its dicarbonyl (DCB2) yield, are influential. Otherwise, the m-xylene RIR shows strong 

negative sensitivity to parameters that increase the reactivity of other compounds in the base 

mixture, including the rate constants for their primary oxidation reaction steps and rates of 

reactions that produce hydroxyl or peroxy radicals. Although the order changes, the set of 

parameters that are most influential for m-xylene is relatively consistent across trajectories. 

RIRs for several compounds show relatively high sensitivity to uncertainty in emissions 

rates. The responses are mixed, with the sign of the RIR sensitivities determined by whether 

the AIR of the compound is more or less sensitive to the emissions parameter than the in­

cremental reactivity of the base mixture. For example, at Claremont and Rubidoux, the AIR 

of the base mixture displays a positive sensitivity to the non-motor vehicle NOx emissions 

(EONX) parameter, as do formaldehyde and CO. However, the absolute reactivity of CO and 

HCHO, respectively, are less and more sensitive to EONX than the AIR of the base mixture. 

Correspondingly, sensitivity coefficients for CO RIR values are negative and those for HCHO 

RIR values are positive. 

Calculated incremental reactivities for organic compounds are subject to both variability due 

to environmental conditions, including the magnitude and timing of emissions, and uncertainty 
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due to model inputs and parameter values. The results of this study suggest that for this 

air pollution episode, variability in RIR estimates across locations within the South Coast Air 

Basin is comparable in magnitude to the uncertainty in RIR that is attributable to chemical 

and deposition parameters and emissions inputs. A distinction that is often made between 

variability and uncertainty is that the former is irreducible, for a given metric, whereas the 

latter may be reduced through research. This study supports previous studies [5, 29] that 

suggest that using relative rather than absolute reactivity metrics can reduce both variability 

and uncertainty. 
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Table 1: Chemical species represented explicitly. 

MW 
Category Code Species Name (g mol~l) MIR* MOIR* 

Alkane CH4 methane 16.0 0.01 0.01 
C2H6 ethane 30.1 0.31 0.20 
N-C4 n-butane 58.1 1.33 0.83 
N-C5 n-pentane 72.1 1.54 0.95 
IPNT isopentane 72.1 1.68 1.02 
MCPT methyl cyclopentane 84.2 2.42 1.33 
224P 2,2,4-trimethylpentane 114.2 1.44 0.81 

Alkene ETHE ethene 28.1 9.08 3.70 
PRPE propene 42.1 11.58 4.43 
2MBT 2-methyl-2-butene 70.1 14.45 4.65 
BUTD 1,3-butadicne 54.0 13.58 4.83 
ISOP isoprene 68.1 10.69 3.95 
APIN a-pinene 136.2 4.29 1.56 
OLEl lumped terminal olefins 70.1 7.79 3.11 

Aromatic C6H6 benzene 78.1 0.81 0.34 
TOLU toluene 92.1 3.97 1.17 
XYLM m-xylene 106.2 10.61 3.19 
XYLP p-xylene 106.2 4.25 1.36 
124B 1,2,4-trimethylbenzene 120.2 7.18 2.32 

Carbonyl ACET acetone 58.1 0.43 0.17 
MEK methyl ethyl ketone 72.1 1.49 0.66 
HCHO formaldehyde 30.0 8.97 2.56 
CCHO acetaldehyde 44.1 6.84 2.56 
RCHO propionaldehyde 58.1 7.89 2.97 
BALD benzaldehyde 106.1 -0.61 -1.64 

Other C2H2 acetylene 26.0 1.25 0.49 
ETOH ethanol 46.1 1.69 0.93 
IPOH isopropanol 60.1 0.71 0.39 
MTBE methyl tert-butyl ether 88.1 0.78 0.47 
BACT n-butyl acetate 116.2 0.89 0.54 
CO carbon monoxide 28.0 0.06 0.04 

'MIR and MOIR values shown are from Carter [27]. 
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Table 2: Inputs and parameters treated as random variables in the Monte Carlo with Latin 
hypercube sampling calculations 

Parameter cov Notes Parameter COV Notes 
N02 + hv 0.18 1 AR02+HO 0.27 I 
03 + N0 0.1 1 PRPE+HO 0.14 1 
03 + hv 0.27 1 N-C4+HO 0.18 1 
01D2+H20 0.18 1 224P+HO 0.18 1 
01D2+M 0.18 1 XYLM+HO 0.2 1,5,8 
H0+N02 0.27 1,6 ETOH+HO 0.18 1 
HO+CO 0.27 1 DCB2,XYLM 0.3 2,5 
H 0 2 + N 0 0.18 1 DCB3,XYLM 0.3 2,5 
CC0-02+N02 0.16 1,7 MGLY,XYLM 0.3 2,5 
PAN 0.4 1 EMCO 0.25 3 
C C 0 - 0 2 + N 0 0.34 1 EMNX 0.06 3 
PAN2 0.66 1 EMHC 0.06 3 
R C 0 - 0 2 + N 0 0.75 1 EONX 0.15 3 
HCHO+Zw 0.34 1,9 EOHC 0.29 3 
MEK+hv 0.42 1 DP03 0.29 4 
CRES+N03 0.75 1 DPN2 0.29 4 

1 Rate parameter of the indicated reaction treated as uncertain. 

2 Dicarbonyl yield of the indicated product (DCB2, DCB3, or MGLY) from the reaction 
XYLM + HO treated as uncertain. 

3 Uncertainty factors for emissions rates. EMCO is an uncertainty factor for general motor 
vehicle emissions, applied to CO, NO^ and NMOC (non-methane organic compounds). EMHC 
and EMNX are separate uncertainty factors for NMOC and NOx emissions from motor vehicles, 
respectively. EOHC and EONX are uncertainty factors applied to other anthropogenic sources 
of NMOC and NOx. 

4 Deposition affinity for O3 or NO2 treated as random variable from a uniform distribution. 

5 Uncertainty estimates for dicarbonyl yields (DCB2, DCB3, and MGLY) adapted from Wang 
et al. [26]. 

6 Correlated with DCB2, XYLM (p = 0.5); DCB3, XYLM (p = 0.5); and MGLY, XYLM (p 
= 0.5) based on Wang et al. [26]. 

7 Correlated with CCO-02 + NO (p = 0.7). 

8 Correlated with DCB2, XYLM (p = -0.6); DCB3, XYLM (p - -0.6); and MGLY, XYLM (p 
= -0.5) based on Wang et al. [26]. 

9 Applied to both HCHO + hv -> 2H02 + CO and HCHO + hv -> H2 + CO. 
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Table 3: Uncertainty Contributions (UC, in %) of parameters contributing the most uncertainty 

in Absolute Incremental Reactivity (AIR; mean and COV) for the base mixture*. 

Anaheim Azusa Claremont Rubidoux 
AIR = 0.11 (0.18) AIR = 0.13 (0.20) AIR = 0.13 (0.29) AIR = 0.10 (0.39) 
R2 = 0.92 R2 = 0.85 R2 == 0.78 R2 = 0.95 
Parameter UC Parameter UC Parameter UC Parameter UC 

N 0 2 + hv 22.8 HCHO 4- hv 20.1 HO + N 0 2 16.8 EONX 33.7 

HCHO + hv 18.5 CCO-02 + NO 12.7 DPN2 10.3 EOHC 18.2 

DP03 10.6 NO 2 + hv 10.9 EONX 9.8 DPN2 16.6 

CCO-02 + NO 8.5 PAN 6.6 EMHC 5.5 0 3 + hv 16.4 

0 3 4- hv 7.2 EONX 4.4 N 0 2 + hv 5.5 01D2 + H20 5.5 

PAN 3.8 HO + N02 3.9 EM CO 4.8 01D2 + M 5.1 

HO + N02 3.6 RCO-02 + NO 3.4 EOHC 4.1 HCHO + hv 3.5 

H02 + NO 3.4 0 3 + hv 3.1 PAN 3.8 EMHC 3.4 

*Parameters in bold text have a positive regression coefficient; parameters in normal text have a negative 

regression coefficient. 
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Table 4: Uncertainty Contributions (UC, in 
in Relative Incremental Reactivity (MR)*'* 

of parameters contributing the most uncertainty 

Anaheim Azusa Claremont Rubidoux 
Parameter UC Parameter UC Parameter UC Parameter UC 

CO RIR = 0.04-0.07 (COV = 0.29-0.49) 
HO + CO 86.5 HO + CO 73.8 HO + CO 38.9 HO -f- CO 27.5 
HO + N02 6.2 HO + N02 12.8 HO + N02 33.2 0 3 + hv 15.5 
0 3 + hv 4.5 DCB2,XYLM 3.5 O3 + hv 6.6 0 1 D 2 + H 2 0 11.1 
HCHO + hv 3.6 EONX 2.6 D P N 2 4.6 HO + N02 6.8 

< 2thanol (ETOH) RIR = ( 129-0.73 (COV = 0.22-0.34) 
ETOH + HO 26.5 ETOH + HO 49.6 ETOH + HO 28.7 ETOH + HO 18.8 
C C O - 0 2 + NO 11.9 C C O - 0 2 + NO 15.2 C C O - 0 2 4- NO 19.7 P A N 17.1 
P A N 3.7 P A N 5.9 P A N 10.6 C C O - 0 2 + NO 16.0 
RCO-02 + NO 3.5 RCO-02 + NO 3.3 RCO-02 + NO 5.8 RCO-02 + NO 11.3 

H C H O RIR = = 5.18-11.54 (COV= 0.14-0.35) 
HCHO + hv 27.5 HO -f N 0 2 26.8 HO -f N 0 2 44.2 0 3 + hv 29.2 
0 3 + hv 20.5 H C H O + hv 20.9 0 3 4- hv 11.3 E O N X 11.0 
EMCO 11.0 N02 + hv 12.8 N02 + hv 9.4 0 1 D 2 + M 8.9 
0 1 D 2 + M 8.8 MEK + hv 7.5 E O N X 5.8 01D2 + H20 7.5 

M E K RIR = = 0.30-0.80 (COV = 0.32-0.37) 
MEK + hv 71.6 MEK + hv 75.0 MEK + hv 53.9 MEK + hv 44.8 
HO + N 0 2 7.0 HCHO + hv 13.4 HO + N 0 2 22.0 HO 4- N 0 2 14.8 
HCHO + hv 5.5 HO + N 0 2 10.9 HCHO + hv 12.7 0 3 + hv 6.6 
0 3 + hv 3.4 E O N X 2.1 DPN2 3.2 HCHO + hv 6.3 

n-butane (N-C4) RIR = 1 3.31-0.53 (COV = 0. 18-0.26) 
N-C4 + HO 48.7 N-C4 + HO 59.2 HO + N02 42.3 O3 + hv 25.6 
O3 + hv 11.3 HO + N02 14.7 N-C4 + HO 25.3 N-C4 + HO 20.7 
EMCO 6.0 O3 + hv 4.6 EOHC 11.0 HO + N02 13.3 
HCHO + hv 5.8 N 0 2 + hv 2.5 0 3 + hv 9.6 0 1 D 2 4- H 2 0 11.1 

propene ( P R P E ) RIR = 7.17-8.45 (COV = 0.08-0.09) 
P R P E + HO 27.0 P R P E + HO 38.1 EMCO 18.1 MEK + hv 18.6 
224P + HO 19.2 MEK + hv 18.0 224P + HO 15.6 P R P E + HO 15.2 
N-C4 + HO 15.3 224P + HO 11.8 MEK + hv 14.1 224P + HO 12.4 
RCO-02 + NO 8.0 N-C4 + HO 4.3 P R P E 4- HO 13.5 PAN2 8.0 

2,2,4-trimethylpentane (224P) RIR = 0.60-0.91 (COV = 0.18-0.29) 
224P + HO 47.5 224P + HO 39.6 HO + N02 39.2 224P 4- HO 15.4 
HO + N02 14.5 HO + N02 31.0 224P 4- HO 19.2 O3 + hv 12.4 
0 3 + hv 9.6 H C H O + hv 13.9 HCHO + hv 13.1 HO + N02 7.4 
R C O - 0 2 + N O 4.4 EONX 3.8 EOHC 9.2 O l D 2 + H 2 0 6.8 

m-xylene (XYLM] 1 RIR = 6.82-8.30 (COV = 0.14-0.34) 
HCHO + hv 27.6 HCHO 4 hv 39.1 HCHO + hv 27.3 0 3 + hv 18.2 
D C B 2 , X Y L M 17.7 D C B 2 , X Y L M 21.3 HO + N 0 2 24.0 HCHO + hv 15.1 
XYLM + HO 13.8 X Y L M + HO 19.8 D C B 2 , X Y L M 5.8 HO 4- N 0 2 12.5 
HO + N 0 2 8.9 MEK + hv 5.8 0 3 + hv 4.8 D C B 2 , X Y L M 9.1 

^Parameters in bold text have a positive correlation coefficient; parameters in normal text have a negative 

correlation coefficient. 

**R2 values for the uncertainty analysis range from 0.81 - 0.98. 
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Figure 1: Modeling domain with selected measurement sites and the boundary of the compu­

tational region. 
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Figure 5; Relative incremental reactivities calculated at the time of maximum ozone on 25 June 

1987 at all sites for (a) alkalies, (b) alkenes, (c) aromatics. and (d) carbonyls. 11 MIR values 

from Carter [27] are included for comparison. 
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Figure Captions 

Figure 1 Modeling domain with selected measurement sites and the boundary of the com­

putational region. 

Figure 2 Estimated emissions in kg/day per grid cell on 25 June 1987 for (a) propene, (b) 

isopropanol, and (c) isoprene. 

Figure 3 Ozone time series plots comparing observed (circles) and predicted (line) surface-

level ozone at coastal sites Hawthorne and Long Beach, at central sites Central LA and Ana­

heim, and at inland sites Burbank, Azusa, Claremont, and Rubidoux. 

Figure 4 Absolute incremental reactivities calculated at the time of maximum observed 

ozone on 25 June 1987 at (a) coastal site Hawthorne and (b) inland site Claremont. 

Figure 5 Relative incremental reactivities calculated at the time of maximum ozone on 25 

June 1987 at all sites for (a) alkanes, (b) alkenes, (c) aromatics, and (d) carbonyls. R_MIR 

values from Carter [27] are included for comparison. 

Figure 6 Sorted average Relative Incremental Reactivity (RIR; ±1<7, 8 sites) calculated at 

the time of maximum ozone on 25 June 1987 and RJVIIR (±lcr, 39 cities) for (a) the most 

reactive species and (b) the least reactive species. The sort order is based on R_MIR. 

Figure 7 (a) Absolute incremental reactivities and associated uncertainties for selected com­

pounds and the base mixture, and (b) relative incremental reactivities and associated uncer­

tainties for selected compounds. Note 224-TMP is 2,2,4-trimethylpentane. 
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Table Captions 

Table 1 Chemical species represented explicitly. 

Table 2 Inputs and parameters treated as random variables in the Monte Carlo with Latin 

hypercube sampling calculations 

Table 3 Uncertainty Contributions (UC, in %) of parameters contributing the most uncer­

tainty in Absolute Incremental Reactivity (AIR; mean and GOV) for the base mixture*. 

Table 4 Uncertainty Contributions (UC, in %) of parameters contributing the most uncer­

tainty in Relative Incremental Reactivity (RIR)*'**. 
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