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SUMMARY -

The objective of this research is to .develoli a procedure'fer. generating
pseudo-random processes with specified probability _clensity function and _auto-
correlation for use in digital simulation. As part of the work, typical random
sequences are.-'genei_:ated and their prcperties subjected to statistical tests to
~ study the accuracy oi the method.

The technique that is 'developed', 'i:eferneci to as the Predistorted Trans-
- formeéd Gaussian Method, produces the requ1red output sequence from a given.
input sequence with two operations, namely a linear memory filter and a non-
-linear zero-memory filter. The input sequence has a Gaussian distribution
function with non-orthogonal values. This technique forms t-he'desi'red density
and autocorrelation from the input sequenee using a linear memory filter to
introduce the autocoi'relation and-a.'zero-me_mor.y i‘:iIter to transferm the prob-
ability density function. .. |

To generate a sequence having the desired prebability density function
and autocorrelatmn, the design is carried out in three steps, namely, (1) design
of the non]mear ZeTro-memory’ filter (2) calculation of the autocorrelation
required as input te the zer.o-memcr_y__ filter,. and (_3-}_tiesign of the linear memcry

filter. The nonlinear zer‘o—m‘emory' Hiiter is de"isigned using the cumulative dis-

tribution funct:ions of the input Gaussmn sequence and the speciﬁed output sequence.

The autocorrelation of the Gaussian sequence used as input to the nonlinear zero-

memory filter' is ob_tained by deriiring an input/ output autocorrelation relationship




xit

for the zero meiimry filter using the dési'éﬁ eqﬁation for the filter and_- an expres-
sion for the joint' probability density function 'fc_n_- the inpuf_ seciuenceé. The
linear memory filter is designed using a. Mddiﬁ'ed Pakov Method which. employs
optimizaﬁon_techniciﬁé-s. |

“This method for generating pseudo-random sequences having 2 specifi.ed

probability density function and autocorrelation is appliClee to é,ll denaity.functi'ons -

for which an inverse cumulative distribution function can be obtained explicitly.
The accuracy of the design is dependent upon the ability to design the linear mem-

ory filter.

‘The method was tested for ten specific design cases. The cases include

specified output probability densities of the ‘Uniform Density, the Random Telegraph

Signal Density, the Chi-square Density with one degrée of freedom, and the
Rayleigh Density. Specified autoc_orrelations- included e;;-ponential autocorrelations,
triahgular autocorrel'ations, and s’in(x)/lx éﬁtdcorrelaﬁons. All cases passed the
autocorrelation tests at a v= 95 level of significance. The best results for the

~ probability density te-sts ocourred at a -y.= .06 level of significance. The lealst.

accurate results for which the probability density tests passed occurred at a

y= .95 level of significance. Eight cases gave results in'this region of significance.

_All ten cases gave results within a ¥ = .99 level of significance.




CHAPTER1

INTRODUCTION

D,efiﬁition of thie' Problem
Digital COmputér siniulation of a 'sjrStem requires a matheniatical_
~ algorithm for modeliﬁg ﬁe systéﬁ andan algOrit_hm tq generaté the réqwired'
system inputs. Many -,systems of intefésit‘-hs;ve'inputs modéled as. stationary
random procesées W1th both the probabilif?_ fde__l:@sityf i_:'upcﬁbn and the auto-
correlation sﬁéciﬁed.
The ob'j._e_ctive of this thesis research is to develop a procedure for gene-

rating pseudo-random processes with specified probability density function and -

~ autocorrelation for use in d_igital simulation. As part of the work, typical random .

processes are generated and their prOper_tiés subjected to statistical tests to

study the accuracy of the method.

| Origin and History

In his tutoﬁal'- iJaper ¢;n i)seudo-random nﬁmbe:ilgiéne:rators, Chﬁmbers -(1)
indiclated' that significant interest in thé generaﬁon. of random numbers on digital
computers began over twenty years_'a:go.. This work, which has for the most part
been based upon recurrence relations invoiving' i_'ntegers',. deals Wlth a number of

interrelated problems.

A basic problem is the construction of pseudo-random number genérators

S




t;\rliich pfoduce sequénces of.indepeﬁdént variables uniform on the interval _
[0,1], The generation is usually based upon one of tﬁo methods: the |
mixed congruential method or the multiplicative congruential method. The
principle i’nvolved.is to génerate eacﬁ value of the variable in turn by an
operation involving the previotiély "generﬁted value. A typical algorithm is
given by o

Xi+1 = aXi +°¢ (moludo m). {1.1)

~where X, s the ﬁewly generated vglué’;_' Xi-_j;s: thé ‘previously generated
value, and a, ¢, and m are scalar'cdnstant-s. I:E ¢ = 0, the method is éalled
the multiplicative congruential .method. If ¢ # 0, the method is called the
mixéd- congfuential method. The relative advantages and.disadvantages of
these two methods have been thoroughly explored by Chambers and Hull, et al
(1,.2). Tests have been develr;ped to check the sequence of mimbers for random-
ness (1,3) and independence (1,5, 6)..
| A second problem area, discussed by Muller (7), _inciudes sevei'al tech-
niques which produce sequences of numbers having independent Gaussian
_distributions. Of these,..'th.rge are found in common -usage. They are the direct
approach, which transforms two sequ'enc.es of numbers uniform on the .interval
[0, 1] into two Gaussian number SeQuencéé by use of trigi_iorﬁéti’ic and loga-
rithmic functions; the inverse approach, which transforms a sequence of num-

bers uniform on the interval fo,1] by use of the error function integral; and




the cenfral limit applf'o'ach, _which sums 12 _oi? more indei)endent uniform values.
from a sequencé on the interval [-1,1%

Correlated Gaussian sequences are d_evélopéd by Levin, Gevy, and
Pakov (8,9, 10,11). These methods make use of the fact that linear opéraﬁ-éns :
on Gaussian processes do not change tl-;e. ﬁﬁre of the probability density
funcﬁon.. Indepe'ndent sequences of n_umber"s N[0, 1] are.'weighted and summed.

as

+a3—x1_2+_,....+ax + ... (1.2)

¥y = a2 ni-n

2%5-1
B ) prodﬁ_ce the &esired correlated Gaussian .sequence of nﬁmberé.
| Marsaglia et al and Bankovi (13, 14, 15, 16) discuss the ‘construction of

péeudo—ra:ﬂom' number-generators having an exponential distribution. Sequenées
of numbers are obi:a.ihed'by performing a discrimination action on values from a
distribution uniform on the 'intervai fo,1]. At this time, this method has not
been investigated with reépect to autocorrelation. |

Curtis (17) designs pseudo-random number generators which possess an

exponential autocorrelation. A random sequence [yn} is generated such that

=yné +2 - | (1.3)




moment generating fu_nction, cg(s), is related to the moment generating function
of y, d:y(s), by the relation |
B8

& ()=
T ¢ (se
¥

k‘r)- - (1.4)
Two methods have been dé-vised-"fof th'_e. generation of pseudo-random
sequences of numbefs having a speci‘ﬁé_d éutocér_z-elatibn which is the sp’eciﬁé
problem tfeat.gd by this thesi's.- These metho&é Ilperﬁain to (1) the gleneration' of
correlated Gauséiap sequences and (2) the generation of densities having exponen- B
tial é.utpcorrelaﬁons. Asa means of aplﬁrbximatihg autocofrelaﬁ;)ns other than
exponential and densities other than .Gausslian, Gujar and Kavanagh (18) propose
that a syster;n for generating correlated Gaussian sequencés be ﬁzodiﬁed by attach-
ing a zero-memory device. | As shown in Figure 1, .the linear memory filter is
desig‘ned- to give thé-de'sired autocorrelétion at its output. - The Gaussian éeﬁuence_
is then transformed by .means' of the zero-memory device to give an output
sequence having the required probability density but vﬁth no fufthef attention to
| the autdco;‘relation. | | |
_B;:oste ( 1I9): in a letter to the editor _suggésts that the method a;.if Gujar and
Kavanagh be modified by\prédistorting the autocorrelation of the Gaussian seqjuence
so as to control the output-autocorrelati_on as we'l_l as thé.-' output probability:d'ensity.
In ﬁ se_para_te study Nuttal (20) attempts to achieve é &esired autocorrelation

using only nonlinear zero-memory networks with an input having specified first

and second-order statistics. In general, it is impossible to design the 'zero-me:mory

S i1
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Linear . . Zero '
) ol Memory | Bl | Memory nl
- Filter Nonlinear ' :
Device
Independent - Gaussian '~ . Output Sequence
Gaussian ' Sequence _ -with Desired
Sequence o . with desired” : o Density and
~ Autocorrelation = Approximate
o — R " . Autocorrelation

Figure _1:. i‘faﬁﬁfﬁi‘ﬁed' Gaussian ﬁethod. '

network to realizé the Iépecified- 'output when the input_ slecmd order statistics is
ﬁxeci. | |

Results of the studies by _dujar and Kavanagh, Broste, and Nuttal on the
specific thesis problem of generating seﬁuen'ces of péeudo-l:ahdqm nﬁmbers with
prescribed probability density and autocorrelation can be sﬁmmarized ﬁs follows:

sequences of numbers having specified pr'oba_bility density and autecorrelation may

be generated from indépendent Gaussian seqﬁences by alternately controlling the

autocorrelation and the probabﬂity density characteriatics through the use of mem- _
ory and. zero-memory filters in a manner that allows edach operation to compensate

for the inadequacies of the other operations on the input sequence of numbers.

Applications of Pseudo-Random Sequences with Specified

Probability Density Fu_hcﬁon and Autocorrelation - - .:s

A significant need for improved techniques in random number generation




is in the area'_df radar system simulation. “a current area of reSéarch. relates

fo the. development of radar .syste.ms to be used in the trhcking, ‘identifying, and
destroying of enemy aircraft flymg at ground level. | In simulating angle data, |
cdrreléted uniform éequences of numbers aré needed. A variety of combinations
of specified density and autocorrelation flméfi'ons arise in simulating the radar
cross.-sectidn.data and thé ground clutter data. Examples are the Rayleigh density
function (21) for ihe former applicaﬂon and the Weibull density function (22) for |

the latter application.

Other applications for which aimula_tidn gmdies make use of céffelé.ted

pséudo—rﬁndom sequences aré:

la) life testing of products where weaf-out failure is involved;

b) | Monte Carlo analysis of aysteﬁs where the syétem cdmponents and/or dis-
turbance inputs are random; |

c) sysfem's which analyze huﬁan responses to new situations based upon previous
pattern behavior; and

d) process control such as paper mills, tire facfoﬁes, or ény produétion line
control. |

A particularly intriguing applicat;ion deals w1th learning éystems_ ﬁvhich must fecog-

nize input trends and adapt accordingly.

* ' N '
The author was made aware of this problem during recent.employment by the
RF Technology Group of the Advanced Sensors Directorate of the U. 8. Army
Missile Command in Redstone, Alabama. '




O\}erview' of -Thésis

The regearch results presented in this thesis deal with the developmept -
and testing of a deisign. procedure for digltal 'g;aneration of pseudo-random number
sequences with a specified proba‘bﬂity density and speéiﬂed autocorrelation.
Chapter II presents the prelim.inarj desigﬁ -c_onéiderations. _ Ché.ptef IIT presents a
detailed discussion of .the‘design considerations required for impleme;ltihg' the
Predistorted Transformed Gaussian Method_. Chapte:_c W g'lves.a\ specific design
procedure along with a discussion of the broperties_ and iimﬁétidns of the proce-
duré. : ‘

In order to adéquately test the variables ge'nefé.ted: by the method, conside-
ration must be given to statistical tests and the man'ner_in which they are performed
on the raﬁdom number genef;tor:.' Such tb’pics. are discussed in Chapter V. A -
summé.ry of the results of the statistical tgsts as applied to the 'var_iable's generated
in a number of cases stut::lied is given in Chapter VI Fihally, the conclusions

derived from the study are presented in Chapter VII..




. CHAPTER Il
 PRELIMINARY DESIGN CONSIDERATIONS

This cﬁapter presenté 'tﬁe preliiﬂ_inazfy approachés considered for'the.ran-
dom number generaﬁon’;_:forﬁ;ﬁlglteﬁ? the problem mathematically in view of the most
favorable approach, the_Predis_tortéd- -‘I’rgns:fprme.d Gaussian Me'thod;.and considérs
the digital simulation of a contiqutisb"sy_éteﬁ: when diécrete random number sequen~

ces are used as inputs.

- Preliminary Apﬁ_ros;chle:s
This section deséribe_s the préliminary désign sch_emes- considered for aigi-
tal generatloﬁ'of pseudo-random numbers with specified probability density and
speCifiéd autoéﬁrrelation. The s_ch’emes considcere'd are the Moment Generating
Function Method, the Rejection Method, the Transformed Gaussian Me_thbd, the

Ordering Method, and the Predistorted Transformed Gaussian Method,

‘Moment Generating Function Method

The moment g‘enéfating function method, 'de'veloped_.' by Curtis {17) and
discussed in some detail in Chapter I, geﬂerates sequences with the aid of a second
random variable zT'which is formed by li'sing the 'momeni generating function of "
the density bging generated. To develop z 2 the desired deri'sitjr must ..ei-t'hér have
a tractable moment generating function or be Laplace _trariéformaﬁle. The latter

constraint permits only density fuhcti_ons'with positive values to be used. In general,




this method is limited to a few continu_pus"ﬁensifi;y-_functions, e.g. Gausgian (which

can be obtained by other means), exponential, and gamma,

Rejection ,Me'thod

__Tﬁis method*_ is -'simil’ar-fo the method used for gemraﬁng exponential dis-
tributions discussed 1n Chapter I, A sampl-i_ng'.' élement is used that'possesses a
control on the input, ao illustrated in F_"iguro 2. The output.value resulting from
each input"valué'is examined to determine if it is acooptable for the desire_d' output
density function; if not, the associated input valoe is rejected, and a new input
valﬁe' is generated. The objecﬁve of the sampler.is to prevent tho-. output sequence
from havihg a Gaussian distribution by seleoting from the outpﬁt of the lineor mem-
ory filter a collection of values having the desired distribution. This technique is

unacceptable because (1) the input and output sequences are forced to be nonstation-

ary and (2) the output values near zero are not usually obtainable.

Transformed Gaussi_an Method

As illustrated in Chapter I in Figure 1, this method (18) produces a Gaussian

distributed sequence with the desired autocorrelation and then generates the desired
density by passing the sequence through a zero-mémory filter. The non-linear
zero-memory device degrades the autocorrelation of the'Gaussié._n sequence in pro-

portion to the amount of the nonlinearity. The loos 'similority the desired density

has with a Gaussian distribution, the more corrupted the autocorrelation. As an

example, only marginally acceptable results are obtained for the autocorrelation

The Rejection Method was initially proposed as a solution by B. F. Pope of the
U. 8. Army Missile Command in Redstone, Alabama.
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t

Figure 2. Rejection Method.

of the uniform density. The feéﬁifsr'aféﬁﬁéiﬁbléiéijruﬁsaﬂ.sfaC-tOry for the auto-
correlation of distributions such_ as the exponential density or'the chi-square density
having one degree of freedom.

Ordering Method T

of jirall_ies is then generated fdr the .desire_d distribution, ordered from minimum to -

- The ordering method replaces the nonlinear zero-memory element in the
Transformed Gaussian Meﬁhod by an ordering scheme, ‘as shown in Figure 3. The

entire sequence of correlated Gaussian values is first generated. Once the Gaussian

sequence has been produced, the values of the sequence are ordered from minimum
to maximum, During the ordering process, information coli'cerning the location of

the value in the original seduence is retained. A sequence having the same number

This technique was suggested by F. M. Holliday of the U. 8. Army Missile
Command and tested jointly with him. The results were later incorporated, in .
part, in Mr. Holliday's Master's Thesis (23). : _
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_Correlated Desired

: - Gaussian S Output
Independent . Lineax Sequence : _
Pseudo-Random [—® Memory [—¥ —  Order [ "
Number Filter Scheme
Generator : :

~ Figure 3. Ordering Méthod.

maximum,. These new yalués;-are_ :c-:q_'mpgred': with the qrd.qr-gd (Gaussian sequence
so that each value from the -'de'aimled diistribuﬁgt_;' _fepls;éeé its coﬁnterpart in the
Gaussian distribution as it ap_pearét_l_ inthe original sequence.

Evaluation o_f this meﬁhod showed thaf. its results we-re no better; and in

fact, essentjally the same as for the Transformed Gaussian Method.

Predistorted Transformed Gaussian Method-
This method, as presénted by Brosﬁe* (19), makes ﬁse. of two effects
observed in the _Trahsforméd Gaussian Method. | First, linear memory filters are
used to introduce autocorrelation; but in so doing, the output sequence of the filter
is forced to have a Gaussian distfibutiop. Second, zero-memory filters are used
to transform probability density funcfions, with the autocorrelation being corrupted
in the procéss. The interaction of these two effects must be considered if improve-

ment is to be made. The autocorrelation of the output sequence of the linear

The work by Broste wag done concurrently with this research. Since the author
served for a time as consultant to the group that Broste worked with, Broste had
access to the preliminary results of this research.
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memory filter must be distorted to coiilpéhéate for the corruption introduced by
the zero-memory element. Figure 4 illustrates this modification.
The Gaussian input is pi:'odﬁcéd using standard techniques (7). The linear

memory filter introduces a portion of the autocorrelation needed to obtain the

~desired output autocorrelation. _This correlated Gaussian sequence is passed

through the nonlineas zero-memory device to achieve the apeciﬁed probability
denéity function and .the specified .autdéoffelaﬁon fﬁnc’tion.

The Predistorted Transformed Gaussian Method is chosen for implemen—l
tation and refinement éince it seems to present the least shortcomings and has
the cap#'bility of producing the l;argeZSt cl_ass.of ifa\.ndmn sequences having specified

probability densities and specified autoc.orrelations.

" Mathematical Formulation

This section presents a mathematical description of'the gystem for imple-
menting the Predistorted Transformed Gaussian Method. The input and output '

sequences are described, and the method by which the sequences are transfornied

is characterized. A class of applications for which the procedure may be used

is aléodiscussed.

Method of Transformation

Using Figure 4 as a reference, the input to the Predistorted Transformed

~ Gaussian Method is a stationary sequence {xn} of Gaussian random variables. Thus,

the joint density is given by (12) " n n
1
r X XX,

p(xl,xz,. X )= We 2.2)

[ ad
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X Linear - ~ Nonlinear 2 -
—-[-ﬂ}—_'-. Memory i —a Zero-Memory —-—{-“-]—-.
Filter | ' _ Filter
Independent Gaussian . Output Sequence
Gaussian . Sequence o with Desired
Sequence o with Predistorted  Density and
.Autocorrelation ' Desired
: Autocorrelation

Figure 4. Predistorted Transforded Gaussian Method.

whére |K| is the determinant of the covariance matrix K and 4 1s the cofactor of
~ the element Kij' Since the process is Gaussian, the first and second-order moments,

E[xi] and E[xixj] completely describe the process (12) and are ideally given by

E[x]=0 o (2.2)

and | U ERx1={ (2.3)

iy

Practically, these parameters can have values -o'ther'thal_l those given by
equétions (2.2) and{2.3). If the mean is non-zero, a linear zefo—memory pperaﬁon
may be performed on the éequence to adjust the mean to zero. If the second-order
moments are non-ideal, the éy’sftem design can include él._tfficient .c.ompens_aﬁdn to
overcome-thése deficiencies. | |

The re‘quireﬂ output is a sté.tionary.fséquence {zn} with a 'spé'ci'fiéﬁ marginal -

density p(zn) and .a specified autdcorrelatioh E[ziz i 1 Thlis, a choice of the linear
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memory filter and the nonlinear zero-memory filter must be made to produce this
result.
The linear memory filter, which transforms the sequencé_ {xn} into the

sequence [vn}, ‘can be represented by the equation

j 1( J 1! J 2’ ; j_k')' (2'4)
A special choice of G1 can be made to relate the correlated sequence {yn} to the

input sequence {xn} by

k
¥. = I?oe

© (2.5)
L |

]—i +1

where the g's are constants, If the tranéfgfn;atibn of (2.5) is used, -&n} is a

Gaussian random sequénce since linear operations- on Ga'uss.ian processes do not
change the nature of the probahility dehsii:y function. —

The correlateQ'Gaussian sequence: {yn} is next prbéqsgs'ed-. thr.oug:'h-a non-
_linear zero-memory operation to pr._oducé the desired output sequence {zn]. T]i_rus

the output is given by - |

zj = Gz['yj]= Gz[Gl(xj,xj_l, “ee ;xj-k)]' | | (2..3_)

For the choice of Gl given in equation (2.5), |

7 = o= 6, : osx-m} | @
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The autocorrelation of the outpui;"-séquence::‘“{’zn}' can be given by

.E[zjzjﬁ'-] E{GZLP 11 ] 1+1] [ ®; ] 1+1+1:| }.= E{Gz(yj)GZ(yjﬂ)}._ 2.8) _

Application m the Simulation of C-nnt_il_lqoue Syste-ms :

The research diseuseed‘-in tlns thesis pertains to the generaﬁon' of sequences
of random numbers which can be u'eed as innlits in simulations. These discrete
sequences can be used .(in a more or less standard manner) in the simulation of
COnﬁnnous systems. ..For any given eppl‘icaﬁon. specific problems a:r.ise.when
selecting the proper number of values for. the sequence.

The number of values in the sequence 1_nust be chosen to properly describe
the gignificant informatien in the high frequency region. ;I‘his choice must be
made prudently so that too many samples are not chosen making the data redundant
The selection of the number of samples should be based upon the system cutoff
frequency or Nydquist frequency and the. length of the time record desired.

If the continuous system being simulated p.I"odn'ces output information based
upon key random pr‘opert:ies .of the .sequence, the sequence should have .a anf_ﬁcient
number of values to allow estimates of these random properties to be made that are
: w:lthin the desired error bounds. The desired error bound, the type of estimator,
and the specific random property being estimated will aid in the determination of
the length of t:lme record requu'ed

| In simulating a continuous white noise process, With an autocorrelation

functlon given by

Ty
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30(-.;;)=_oq_-.6(7?,” | _ - (2.9)

the discrete white noise case is of the triangular form given by

2(1 - Jﬂ-) .fior-l'lrlf T

o 'Rd(_‘n = 4V T o (2. 10)
I 0 - elsewhere '
Rowland (24) indicates that for a good Si}ﬁulatz_[oﬁ the equation
J 2 i
2 o . C _
o =7 - (2.1

will hold provided the higher order frequency effects may be neglected. This will
be true if | |

(2.12)

where fn is the highest frequency which the system will pass.

The mathematical formulation of the Predistorted Transformed Gaussian

‘Method for geheratilig random number sequences having spéciﬁed pi'obability'

densities and sﬁeciﬁed autocorrelations will be used as a basis for the design con--

siderations presented. in the next two chapters.

[,
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CHAPTER I
DETAILED DESIGN CONSIDERATIONS

Based upon the: prelimihar.y analysis juét completéd on the Predistorted
.Transformed'Gal.ls'sian Method, design of a system to generate stationary clli.screte
r_Landom sequenées réqhires three steps: defermination of the nonlinear zero-
memory.ﬁ.'lter. which transforms a corréiatEd Gaussian input sequence into the
sequence having the desired output density; jdeterming;tion of the autocorrelation
of the correlated Gaussian sefuence, gi#én the aesi'red aui:ocorrelaﬁon of the out-
put sequence; and determination of the linear memory filter, restricted to

k

v = Gy6)=F ax,

i=1 i j-i+1’ 3.1)

Each step of the system design is discussed in detail in this chapter.

Design of Nonlinear Zero-Memory Filter
-Although the i_-nfmt“séqqence to the ﬁlter may have ‘any mean and variance,
the sequence is specified to have al Gaussian dénsity with a zero mean and unity
variance, This sﬁeéiﬁcatipﬁ permits the gt;ea.test ease in the design of the non-
linear zero-memory filter and can be achieved by re.st:ricl:ing the input sequence
of the system.to. have a zero rﬁean and unity variance. The cutput sequence has
a specified probability density and _autéeorreiation. The nonlinear ierq-inemdry

filter can be designed by first transforming the Gaussian sequence fyn} into an
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intermediate uniform sequence [wn'}, and then transforming this uniform sequence

into the desired output seqﬁence. This operation can be characterized in tei-ms
of cumulative di_stfibution functions as‘illustrated in Figure 5. The random
sequeilce fwn} has values given by

w, = \/ﬁi e " &= Ry | (3.2)

The_ output sequence {zn} may also be related to the uniform sequence by means of

a cumulative distribution nétation.

w, = Pz [zi]. | . (3.3)

Taking the inverse, |
-1
2, =P, [wi] - | (3.4)

which allows the output sequence to be related directly to the input sequence by

5= P )l 3.5
zi - 2 [Py(Yi)l . ( . )

‘Since ﬁrn} is Gaussian, its cumulative distribution can be written as an error

function
2
Erf(y,) =, E}__f e 2 gy . (3.6)
i o _
—m .
so that
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Figure 5. Design of Nonlinear Zero-M'emory Filter.

2, = P [jﬂrf @l (3.7)
Several examples of output densities can be considered to illustrate the

performance of this design step. The uniform density requires that pz(Zi) = ji

for 0 < z, < aso0 that
oz = alErf(y)] . | (3.8)

The random telegraph signal density requires that all positive input values be
transformed to an oixtput value of +1 and that all negative input values be transformed

to output value of -1, The random telegraph signal distribution is given by

_%'zi-: 1 o | |
P, (2y) = 3 z, = -1 | (3.9)

50 that each value of the sequence is given by




_ -1 wi<.5
zi = Pz (wi)_= { 0 Wi =.,b
+1 Wi>.5

'Using the notation . '
1.
u, =
‘u,.<0
'

equation (3. 10) becomes
or

oz, = Sgn (yi].

20

(3. 10)

(3.11)

(3.12)

(3.13)

The chi-squére density with one degree of freedom has a cumulative distribution

of the form

1 A -z/2

Pz(zi)= ‘%J‘ e dz .
0

. The inverse distribution is thus given by

S|
z, = {Erf [Erf(yi)]]2=yiz._

An exponential density having a cumulative distribution of the form of

. .-zi >
=1- z 0
P(z)=1-¢ z 2 ¢

requires, for example, a zero-memory element of the form of

(3.14)

(3. 15)

(3.16)
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7, =-logll - Exf(y)] . | @

In the formﬁiatidn of tﬁé j:-rdblen; ?‘iri Chapter :'Ifit ié pointed out that the
nonlinear zero-menﬁbry filter _might not always eE;dSi; and‘féén be a possgible restric.-
tion on the problem.  The metﬁdd for designing the zei‘o-_memor.y filter as shown
here is achievable for any specified oafpﬁt"'iﬁargiﬁal density. It is instructive to

point out that a table can aiway_s be constructed that relates z, to y,.

Calculation of Input Autocorrelation to Zero—Memory: Filter

The most difficult problem in the aystem design is the determination of the

input correlation function to the zero nﬁemory device. A significant amount of work

has been performed by Deutsch, Thomas, Thbmson,: chef, and Baum (25~29) in
‘the area of how to determine the relationship between input and output autocorrelation

. in applications using the assumption that the input sequence has a Gaussian distri-

bution.

.Th'-ree methods of determining the input/out;sut autocdrrelation relationshjp
have been developed. The discussion of these methods which follow_s makes use of |
the notatidn of Figure § Wherg the 'nots;ttions'Ry(-r) and Rz(r) 'ﬁll represent the éblleé-
tions of second-order statjétics E B’jyjﬂ} and .E {zjzj;k"r} re.Spectively. Each collection

of second-ordér statistics can also be written in the form
2 2 :
R =gp(d+m o _ ' {3.18)

where o(f) is the collection of the normalized second-order statistics, o is the vari-

ance, and m is the mean. In each method g(y) is a single-valued transformation of
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Ry =By bl R (M =Efzz, ]

+T
Figure 6. Nonlinear Zero—mem_or.y Filter Notation.

b o & )

The direct method, sometimes called the density function method, allows

- the determination of the output autocorrelation in terms of the joint density of the

input and the transformation g(y). The result (26) is given by

| . o j’n o
R M = ————~ 8(y)8(y,)
Comfi-p o ”[.o o |

2 . 2

Y1 20,1y Y.,
exp | - 5 -:lyldy2 - (3.19)
2(1-py M)

where ¥y and y, are dummy variables of integration. The only unknown in the

right«hand side of equation (3. 19) is the input normalized autoéorrelation py('r).
Equation (3. 19) relates Rz(-r) as a function of py(‘r) To obtain 'py(-r) as'a

function of Rz('n using a direct method, a kn_owl'edge of the joini; -density of the

output s‘equénce would be required. As the joint density is not specified, equa-

tion (3.19) must be used. In many instances, the relationship of the
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inverse of the result of equation (3, 19) may be found explicitly. As an example,
a speciﬁed uniform dehsity as output requires an inplxt/outwt normalized auto-

“correlation relationship of the form (26)

s . RM : |
pz(-r) = arcsin 5 ' : (3.20)
which yields o _ - | :
g m = 2 einfg p™]. - (a2

A specified random telegraph signal density as output requires an input/output

normalized autocorrelation relationship of the form (26)

o= arsinlgm] . G
which yields - |
- py(-n= singpz('r)]. | - - (3.23)

A specified output of a chi-square density with one degree of freedom requires an

input/output autocorrelation relationship of the form (26)
R (1) -® %) 2R 2(!1-') - - '(3. 2.4).
Z y y : ‘

which ylelds 3

R (1 e{g'[hz(ﬂ '-I.Ry'z(ﬂ)]}a’. B (3.255
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In some cases it is easier to obtain p(1 by expressing equation (3. 19) in

terms of a joint characteristic function given by

™ . _ _
R (1') ‘“(’2"';—2 f J (vl)n (vz)d:»(vl, 1ir2)c:lv1dv2 . (3.26)
=0 -Q) )
where _
Hw=-Femr o
and g e . | o
8 (vy,v,) = E_.{e](vlyf‘.’zyz} . (3.28)

This method is called the characteristic function method.

A case which illustrates this point is the class of non-linear zero-memory

' ﬁlters known as Full-wave Even vt'£ Law Devices., This class possesses a zero-

memory filter which transforms the Gaussian sequence in the manner of (26)

o |
z, = gly) =eclyl . | . 6.29)

- For equation (3.28) cby(vl, vz) can be approximai:ed by a series so that the integral

can be evaluated to give

k
RM=4T a_ —Yl;—-— | : (3. 30)
even :

whetre

S . _ | V-k:' . ' |
a = r(1+v)r@‘—) ] smw(kz - (3.31)

j—
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The series form of equation (.3.'30) prohibits the:-deténﬁi_nation of the inverse
relationship. 'fd dircumvent this prbblen_i-, values may be assigned to p-y(ﬂ and
the expreésion for equation {3.30) t‘alnﬂated' numeric_:ally. 'Th'e. result_ié a table
of input second-drder swﬁstiéa Wlﬂl 'corresﬁonding output Iseco_nd—qrder statistics.
: f‘or each specified output secdnd‘-"-cirder"stéti'étic, the corresponding input second-
order statistic may be determined frdix;a the table. |

A third method," the seﬁés 'xﬁefliod, a.ilows-' the déterminati&n of the output
' autoporrelétiﬁn whéﬁ the formis of eqﬁ:iﬁ;ns (3.19) and(3 26) yield a tractable
relationship to integrate. A series_éxpé.nsion_ (of the Gram-Charlier form) of the

input density is developed such that (26)

_ © N |
Py(yy¥y) _= P (v )P, (7,5} nEO A 6. (y )Y (v,) (3.32)

where _ w _ _ | |
A= -OJ; _L P71 ¥,)6,07) ¥ (,)dy d, | (3.39)

| and-en(yl) and ‘fn(yz) are polynomials of order n., Then when py(y ) is symmetric

1Yz
' o1 2 . .
R, =T e A N o 3.39
where ' ’ o0 .
c,= [ swp ey . 3.3

-
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where

- pyn= (3.36)

fzm

- with pbeing the normalized corrélaﬁon éoefﬁcient
A special case of the series method makes use of Hermetlan polynormals_

(27) When the input Gaussian sxg:na:l has a mean of zero and variance of umty,
Ty =R _(r . | L ' 3.37
A =R r) R e

The approximate output is given by

™ 8

2 k.
R xR M |  (3:38)
where :
2 - - '
=)? [ p WE G MYy 339

where Hk(y) is the Hermite -Polyhomié.l of order k given.by: the recursive relation

H, 1) =xH, () - éi; Hk(x)'._ - o (3.40)

The first three polynomisals are

'_HO = 1

Hl' = X {3.41)
: 9

H2 =x -1
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The use of tl-mé' séries_ method ﬁeldﬁ an :aﬁprdximate result the cjuality of
which is dependent on a Jarge mumber of terms

Experience in using this design step indicates that tlie_‘ ze.ro-memorylﬁlter
tends to.decorrelate the'. random sﬁuénce. ‘Ag a result, this d_ésign stép will
usually result in the seqond-ordef statistics for the input sequence having a
larger amplimde than the 'corresﬁdnd-ing second-order statistics for the output

sequence.

‘Desiga of Linear Memory Filter

This section PréSe_ntS a detailed discussion of the design of the linear
.memory. filter Three design procedures .a.re dis_cussed; namely Levin's Méthod,
Gery's_ Method, .and Pakov's Method. In ﬁddition, a inodification of Pakov's
 Method is presented. A discussion follows on the implementation of the latte_r
method which is the best design approach. |

Design Methods

Levin's Mel_:hod. This methﬁd (9 make.s use of a Qimple '-r'emréive for]hula
to generaté Gaussian sequences, hsiving’ either a speeifiéd autocorrelaﬁon funetion
oT power spe_ct_rum mncﬁoﬁ, ‘from an indepemi_ent Gaussian sequence. An inherent
‘advantage of the method is that initial conditions are sﬁ chosen that no transi_eﬁt'
' acgompaniés the starting of the output sequence.
| | The method develops the recursion formula by making ﬁse of certain z- _
transfc_nrm éoncépts. The principle involves the solution of the convolution

relationship
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R () = hryhe-m) o @y

which has a z-transform given by

d:y(z_)= HEz)HE Y . D | ) (3.43)

" H(z) is found by factoring equation (3.43). Since

@ - . | . |
Hiz)= £ hmz ", | (3.44)
n=0

h{n) may be obtained by long division. The recursive formula for generating the

first K-1 output values of the sequence is given by

n _
ym) =T h(m)x(m-m) + £ . n< K-1 - (3.45)
m=0 °n

where ‘gn is a random variable representing the inﬂuencé of all x(n) for n <0. All

values for n > K are given by the récursive relationship
y(n) = -bly(n41)--. - -bky(n-K) *a, %x(n) .
taxm-1) 4.+ akx(n—K) - _ o (3.46)

where the coefficients are taken from the z-n‘anSfer functioh when written in the

form

| -1 K-
T e R .
T X

(3.47)

-1 )
1+blz +.. .+sz
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Gery's Method. This method (10) develops a transformation matrix G

which transforms independent Gaussian sequences represented by X into

Gaussian sequencés represented by Y having the desired aut_ocorrelation. Thus,

¥=aX. {3.48)
The variance-covariance matrix ﬁ is given by
R=GG. - (3.49)

The required design is the solution of equation (3. 49) for é i’ should be noted

that the first few values generated are transient in nature and must be discarded.

If the solution of G is assumed to be a triangular form é_(gij), the speci-

fied covariance matrix R is of the form fr;;)- Then

1
8117 ¥
g = A
i 8y
i-1 : ' _
_ 2 . :
8 ~ j("ﬁ- nz:;l B i ) fori>1 ) (3.50)

( ];_. - E _;_-——J.-."l for ] < 1
] m=l ii

ij

o fori>j

so that
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v = o N
Y1 7 8115
Yo = BpoXy T Byo%y. |
} ' (3.51)
Yk 81151 * Soy - gkkxk

' Without_ modification this method is only-su'ited to generati:ig a sequence of finite
(and practically very short) length,

Pakov's Method. This method (11) cha!fadterizes the design problem in

terms of the N eqﬁations which result from the expression of .equat:[on (3.42)., The
filter is characterized by N filter weights, o, _a‘z’ Ggs ++es Gy +vey Qe The

relationship of these weights to the normalized autocorrelation is given by the N

equations
f. = 2+ 2+ .+ v 2 \
g T Oy eyt oy -
f, = 0, + oo+ o o - dn =0
T3 = oyt oty ¥ ooe O gy~ A2 =0
. > (3.52)
N1z + e, - Pl -
fy = oo -plM-1 1] =
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The filter is designed by solving these N equations aimultaﬁeously. The desired

output values are given in terms of the filter weights as

y, =

= &1 %% - (3.53)

‘It should be noted that the first N values of yj are transient in nature and must be

discarded. .

Pakmr outlines three approaches for solution of the equation, The first,

the "simplified method of direct solution, " consists of a simple method for calcu-

lating filier weights when the desired oﬁt];mt sequence has an exponential-auto-

correlation. This method yields suitable accuracy for engineering purposes. It.

is obvious that a method of direct solution can also'be developed for output sequence _

having triangular autocorrelations. The limitation with this approach is that the

| required autocofrelaﬁon- for the linear memory filter dutput is rarely ever expo- .

nential or triangular. When an exponential or a triangular autocorrelation is

: specified for the output sequence, the resulting wtocerrelaﬁons at the output of -

the linear memory filter is usually a pert_urbed form of the output autocorrelation,
As a result, a "direct method“ woulii' give only approxim"ate results, The second

approach the "1terat|on method " solves the nonlmear equat:ons describing the

~ relationship of the ﬁlter welghts to the autocorrelatlon in an iterative fashion until

the change in the filtex weights is w1thm the desired accuracy. The third approach

the "Newton's Method of successive approximations," reduc_es the nonlinear system

of equaﬁons to a corresponding linear system of equations which can be solved by -
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ordinary methods. The ﬁﬁplementatidn of this method is tedious and time

consuming,

Modified Pakov Method

A solution is required which will give-réal values to 'ui for each autocorre-
lation specified. Nakamur;a. (30.) give's a necessary, but not sufﬁbient, condition
that equation (3.52) has an exact solution for real o of

| N-1 -
1+ 2 P20 . B . (3.54)
T =1 - _

An empirical study indicated that éddiﬁonél-restﬂctiohs exist. Con-

sider, for example, the {wo weight case for which p(1) is specified {g{0) is required

tb be 1). In this case equation (3.52) reduces to

L, | - |
EU TR Tk - e

‘and f, = ag-p) =0 . | . (3.56)

A plot of these equatibn_s is given in Figure 7 for. R, = 0.5 showing the solution to

be == .707. . Note that for p(1) > .5 there will be no real solution.

* Experience has indicated that the triangular autocorrelation serves as a good
rule of thumb for indicating whether or not a given autocorrelation will yield a
realizable linear memory filter. Let p(r) represent a given autocorrelation
function where R(r) = m for 7 > T. There will be a good likelihood that the
linear memory filter will not have an exact design if

Ll
- o> 1-7 o
for any discrete T<T. It should be reemphasized that this is only a rule of
. thumb. .
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(1> 0 B o(l) < 0

Figure 7. Linear Memory Filter Design Example.
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To circumvent the inability to solve the filter equations exactly in certain

| cases, an optimization approach can be uéed to select real filter weights which

come as close as possible to satisfying the N equations Speciﬁed in (3.52). This
approach can bhe carried out by miniiﬁizing a functional F*defined as (31)

N o, |

zf =TF : o (3.57)

R - _

ji=1 : .
where the fi have the significance given .ir_l _equation (3._52). Standard minimiza-
tion sche'mes, such as the Fletcher-Powell Tedimique'(s 1), can be emﬁloyed to -
obtain a solution.

Four cases were tested for which the equé.tioﬁs had a solution. The opti-

' 'x_n.ization approach yielded results that compared favorably with the iteration

approach as {llustrated in Tables 16 through 19 of Appendix Il. It is concluded
that the optimization approach may be used in all cases with confidence. The

value of the functional niinimum for the fmal solution can be used as an indicator

as to whether or not the equations could have been solved by the iterative method.

Experiencé _indicates that, in general, for thirty filter wéights, a "xﬁinimum"

F <1t2|-6 corresponds to a set of equations that could be solved by Pakov's Method
in an iterative manner or using Név_vton's Method of sucCess_ive approximations.

A "minimuni" F > 10#6 corresi)onds to a set of equations which could not be solved
djrectly. Again, it should be emphasized that the use 6f the value of 1'0-6 fs merely.
2 rule-bf-thumb. _

An empirieal study was performed on the effect that increasing the number

L2y
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of filter weights has on the functional minimum. Four cases wer_e studied that

could not be solved using Newton's Meth@d of Successive Approximation. The

‘results are given in Tables 27 and 28 of _Appéndix 1I. In all four cases fWo 'qhes.—

tions were raised. First, what effect does an increase in the number of filter
weights have on the total value of the functional minimum? Second, what effect

does an mcrease in the number of filter weights have on the error introduced by

partlcular equationa? The 1mﬁal mlmmlzatlon for each case used N filter welghts.

Each minimzaﬁon effected thereafter':-‘increased the number of weights, and hence

the number of equatlons, by N. The funchonal mmmums for each m:mmlzahon

are denoted inthe Tables, by F, To determine the eﬂect that the number of fllter

weights had upon the error introduced by partlcular equaﬁons, the error intro-

duced by the original N equations in edach case was tabulated for each minimization.

This error is denoted in the Tables by A. For each case of the triangular auto-
correlation in Table 27, the value of A decreases as the number -of filter weights
increases until the optimization approach ceases to converge when the number of.

filter weights is on the order of 30. For the case of the sin (x)/xautocorrelation in

Table 28, A gradually increases as the number of filter weights increases. It was

conéluded that for the triangular case, optimization can be improved by increasing

the number of filter weights to the order of 25.

Determination of Filter Weights for Modified Pakov's Method
Pakov's Method uses the assumption that the input sequence is orthogonal,

that is
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(3.58)

In practice, the 1nput sequence 1is not exactly orthogonal and the modified method
is developed without this aasumption
Let

NA.' |
= I ij1+1 - (3.59)

rep'resent the output of the linear memory filter. Then

N a . .
[1 J T] [P1°i ]-1-!-1 l_loiX] 1+1_] | (3.60)

Expanding and collecting terms for the case where {xn} has a zero mean and unity

variance yields
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El_y —l p(r-N+1y [alaN]+p (T-N"z) 5135 1+.N-2]

1,”'

'...+p(r-z)[z: aa+2]+p 1) );1 1 ]

m[gS 2 1+p(r+1)sz +1]

I..],'—

+PxI(T+N-1) o] - o - (3.61)

It should be noted that the summation terms are the same as those of equation

(3. 52).. It is convenient to introduce the notation
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NI a9 ™
3 T 151 & '
N ..
a4 = i§1ai°i+1
N-2
2 "1 %%,
} (3.62)
: 2 ~n
N2 T Z1 %%aN-2
N-1 T %% y
Now equation (3.61)can be written in the form
= - r '
Elyy, 1= ap oy+a (o +om1)]
+aylp (r2) + g (r-2)]+ ...
+ aN_zfpx(ﬂN—Z) +8, (=-N+2)] (3.63)

*ayg P (r+N-1) + g (-N+1) ).
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Equation (3. 63) can he expressed é'ompac.tly in matrix nqﬁation where P is ari
N valued column matrix given bj

E[yj ]

o
0

Ely¥y,s] . - (3.64)

ELYY. o)

R is a 3N-3 valued column matrix given by




-
Ei_xjxj-N;rl]'

Eil}jxj-N+2:|

EOW

U2

.Erxxj 1:|
| E[sz:l R

E[x-jx.j+1:[ .

El_xx :’ o

L oJ j+2

fxx, ]
ELXJ J+N-2-

L j jiN=-1

L ij+2N..3._

Erx x 2-|

and Q1s a (N) x (3N-3) matrix given by

- .40

(3. 65)




N-1 *N-2 N-3

0
00
o 0
0 0

a

.'..az

N-1 *N-2° 3 By 1 % *

0 ... 0. a

0 e 0 0

r o 1 2

N-1 *N-2 ®N-3 ®N-4

-1 ®N-2 ®N-3

(3. 66)

¥
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Equation (3.54) becomes

P =R ' | . (3.67)

Solution of equation (3. 67) for a, allows the modified Pakov Method to be expressed

as .
f N +ﬂ:2 a =0 )
1 %ty % 3"
f - MG rOE .. +R &-a. =0
2 1% * %% N-1N T *

(3.68)

fN =mlmN-9’1~1.]L.=."5"- B N J "

' This chapter has discussed in detail the design considerations for the

Predistorted Transformed Gaussian Method for the generation of stationary dis-
~crete random sequences. The next chapter will survey the concepts presented in

this c_:.h'apter by giving a specific approach to follow iﬁ making the design along with .

a means of assessing. the error of the method for generating the desired output

sequence.




CHAPTER IV
FINAL DESIGN PROCEDURE

This chapte_r.pré:sents the final design procedure along with an assess-

. ment of the error 6f thé method fqr- gene-féting the desired output seriuence.

Design Method '
The final design procedure consists of the following steps.
Step 1. Determination of the nonlinear zero-memory filter: The zero-

memory filter is degigned by using the relationship

z = Pz-l[Eff(yi)] S 3 (4.1)

where Pz'l is the inverse of the cumulative distribution function, g(Z) is specified
for the cutput sequent:g. “This design can be achieved for all density ﬁlncﬁons for
‘which an inverse function Pz_l exists.

Step 2. Detern:lninati'on of the autocorrelation of the Gaussian sequence {yn]:
Determination éf the input second-order sfatist_ics’ to the zéro;memory filter can.
be illﬁstrated in principle as follows. The generai inlilt-.mtp.it autocorrelation

‘relationship for the zero-memory filter is derived using the Direct Method given by

_ 2, - | |
(ﬂ 2 )‘1 _ g(yl)g(yz)em[ _idyldyz {4.2)
R mlj I 2(16.4n) -
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Sincé this equation is in the form
R, =Nk nl - (4.3)
y _
- the inverse can be taken in principle to yield
o .
gm=H®m. | (4.4)

To implement this approach in prgcﬁée; threé alternative methods can be
used, @e'ly gnalytic imﬁlementat_:i.on,.. é‘hafabferisﬁc fuﬁction implementation, or
: bruté force imple:ﬁehtatioﬁ us'-i_ilg_ éerié's ora ;ta,fbula-_i_' ?method. Tﬁe direct méthod
for calculating the iﬁput/output autocorrelation can prove to .be an untractable
‘mathematical step. In such casea:, the Characteristic 'F'uﬁction Methcﬁ described

iﬁ Chapter I can be substituted. If_-this aﬁproach also ﬁroves to be un_traétable

_ mdﬂwma_tical_ly‘, ‘the Series.Method can be used uéing Hermetian p_oly'nomials or
some other .seriejs of the Gram-Charlier Form. The series approach is used at
'_the. éacrifice of-hﬁving_ to calculate a large number of terms to ggin'satisfactory
acc_'uracy. When input/output autwonelaﬁons, 'of. the form of equation (4.3),
result that do not have an inverse form that can be readily found, a table of input/
output autécor.rélation va.lue:s can be developed. | Each input secoﬁd—order statistic
can be found by entering the table for éach output second-order statistic 'and read-
.. ing off the corresponding input second-ordér statistic. |

This desigh step can be achieved for all ze.ro—memor-y cie_vices aﬁd all
output autocorrelaﬁons._ For example, the brute force approach w.c-)uld éeem to

always be possible. Deutsch, Thomas, and Baum (25, 26, 29) have catalogued
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a large group of zero—memory devices for which the input/output autocorrelations

have been determined. -

Step 3. Determination of the linear memory filter: The determination of

the linear memory filter requ'ires seven sféps.

1.

0

0

| aN-l a_'N—z" oaD al ) 3.2 . .-3N~'1

Determine the number of filter coefficients 35 to be used in the

design. Call this number N,

Calculate the normalized second-order Staﬁst_ics of the input Sequence.
The second-order statistics from 7= 1- Nto 7= 2N - 2 are used to

form a matrix R given by
=T _ | _ ' _ :
R'=[g (1-N) px(sz) cee PAO) ... pU2N-2)]. : (4.5)

Form a matrix P r_epresenﬁng the desired output second-order
staﬁéﬁcs given by

D = . s N"l . o . ' - .
P =D py(§) py(_ Y] B | (4.6)

. F'orm a matnx Q which will be composed of the correlation values

for which the linear memory filter will be designed given by

A1ty a.0 R aN_l..,Q 0.-

(4.7)
...aN_z a-N_3 aN_4...a1 8.2 '...aN_l.O

O oByorfnop gty PN U
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5. The resulting relationship between matrices _P_, Q, and R is given by

P = QR - (4.8)

This equation relates a set of N equations ‘having N unknown ai's.

Solve this set of equations for the a's.

6_. Form a set of _fi.lte'x" design equations given by'
_ _- A2 A2 A 2 _ . W
'fl = 0’1+_c_‘2 Tt -a,0~-,0

fp = Qo0+ oy B -8y =0

. ) | (4.9)
R R R A | |
B Rl Y - J

7. These equations can now be combinéd to give a composite functioné.l

which can be optiniized to yield the values offf')}i to b’é used as the
_ ﬁlter coefficients. |
This design procedure will yield a design for thé linear memory filter fof all
Specifield output autocorrelations. For some specified output autoborrélations
the filter design will be approximate as the solutions pf the equations of (4.9)

obta.ined by minimization do not intersect for the resulting values of &1
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Assgessment of Exror for Design Method

‘The accuracy 6f the design ﬁaethod is dependent'upo;l the'. abiiity to mini-~
mizé the functional F in the design of the linear memory filter. An agsessment
: of the erfor of the désig‘n method can be based :upo'n the value of F with the design
' procedure being considered to be exact for functional minimums less than 10°°.
As the functional minimum increases above 1078, the design method has a deg'z.'ee.
of error introdiced by the lin_ea-r mem’o‘ry_ filter design. Satisfactory design re-
sults can be obtained up to a value of functional minimum on the order of 1072,
Designs having values of the functional minimum above 10~ should be judged on
an individual basis as tothe accuracjr of_ the output autocorrelation.
An additional error may be inti‘oduced if a pro'pér. choiée of input sequence
.is not made, SOh:le sequences require a large nuﬁber of valués in a _loca.l_i_zed
region of the probabilily density curve, Such sequeﬁces require a prudent choice
| of the inpuf sequence to insure that .the sequence is-distributed properly to give
the specified output sequence.
This chapter has "prese'ntéd a- detailed outline of the design prdcedurg along
with an error assessment of the design method. T_hé next chapter will present
the étaﬁsﬁcal tests useéd to evaluate 't.hé performance of this design method when

used for several interesting cases.
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CHAPTER V .
STATISTICAL TESTS FOR EVALUATING PERFORMANCE

" The object.ive of the research discussed in this thesis is to develop a
techmque for generatmg statlonary dlscrete random sequences. The design tech-
nique, discussed in Chapters III and v, has been 1mp1emented for several inter-

esting cases. This chapter presents a dlscussmn of the stat:lstmal tests used to

evaluate the performance of t.he designs for these cases by ﬂrst idenufymg the

critical statistics to be tested and then discussing the tests to be used.

Classmcat:lon of Critical Statlstms

'I'he Predistorted Transformed Gaussian Method for generaiing stationary
discrete random sequences uses an input Gaussian sequence fxn] to produce an
intermediate correlated Gaussian sequence {yn] and the desired output sequence

[zn]. Three properties describe the sequences (32). The first property, the mean

description of the s'equence and the variance which giires a dynamic description of
the sequence. The second property, the probability density function property,
relates the probability that a value of the sequence will be within some defined

range. The third property, autocorrelation, describes the dependence of each

~ square property, is characterized by two statistics, the mean which gives a static |

value in the sequence on all other values in the sequence. In addition, the charac- -

teristic of stationarity is used to characterize the sequence. The characteristic
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of a sequence Ibeing stationary implies*jt___ha.‘fofthes _ra-_,ii_dﬁm properties of the sequence
do not vary significantly due to translqtiaﬁ in position wi_t_l'nin.the séqueﬁée.

The random. prdp.erii_es of each s_éltjueh_cj:t:_a are calculated using the values
of the. sequence. The mean square. stgtisl_:iés are calculated by averaging N values

of the sequence such that the mean of the.-ise'quence {h'n} is given by

a= <u >, | (5. 1)

8= < (u -I'_'u)z"s--".' o ey

The probébility density property is determined by calculating either the density
function or the cumulative distribution function for N values of the sequence. The
autocorrelation property is determined by using N+ values of the sequence to cal-

culate the second-order Statis tics given by
_ . N

; =— u . 5.3

E[uj u, ] N Z uu, . _ (5.3)

Standard statistical tests can be used to study some of .the propei'ties of the
sequences prodﬁced by the Predistorted Transformed Gaussian Method. The mean
of a Gaussian sequence can be tested using the Swd'ent-t.Test for Means (32). The
variance of a Gaussian sequence can be tested ulsing the Chi-square test for Vari-
ances (32). The probability density property can be tésted for most sequences

using either the Pearson Chi-square Goodness-of-Fit Test (32, 33) or the Kolmogorov
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Test (33,34). The chi-square goodﬁess-_oféﬁ'f' test CQmpafes the densifj? function
of the; generated sequence with the requi-réd density function. The Kolomogorov
Test compares the cumulative. distributioq_ function of the geﬁerated sequence with
the required cumulative distribution funetion.

- Two newly developed statistical 'tesfé can be used to study the autocorre-
lation property. The first test, de‘veloped‘ti_y Pé.t;el (35),_ tests the 'seéond-order
statistics without using infbrmatioﬁ concerning the variance, The second test, |
presented for the first time in this thesis, tests the second-order statistics of
. Gaussian sequences, This latter test can be exténdéd to test the autocorrelation

property of the oui:put sequence for the désign method being tested.

Statistical Tests |

Because the calcﬁlated statistics for each sequencé are determined usihg
a finite number of .valu'eg from.ﬂle__ seq_uencé, the c-alculated statistics will vary |
from the theoretical values by a small améﬁnt. Each statistical test cited in the
: previoué section c-ompal,res'.c'alc;la_t'fed S.,taﬁs’tics with the theoretical values by
developing a randbm variable wﬁich 'describéa the degree of agreement or dis-
" agreement, A rationél basis is used to determine from this random variable
whether or not the sequence being tesmd'ipossesses the ﬂleoretical_. vaiue reqmred
The decision as to whether'or"nﬁt the test sei;uencé possesées the specified
theoretical statistic is based upon a considé'ration of the. probability density func-
tion of the random variable describing the degree of agreément or -disé.greément.'

Figure 8 is used to illustrate the mechanics of this decision, & is the calculated
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Figure 8. Probability Density of Random"Variable Comparing

Calculated Statistic and Theoretical Statistic.

random variable with a probability density of p(@. A region of significance (called

a level of significanée, v) is chosen for the density curve. When the séquence pos-

sesses the _spéciﬁed theoretical statistic, fhe random variable & will be within the

region of significance with probability of v and outside of the region with probability

of 1- v. By choosing ylarge, $ will fall outside of the region of significance only

‘a small portion of the time. When ®is outside the region of significance, an

assumption can be made that the sequence being tested does not possess the speci-

fied theoretical statistic. The smaller that yis made, the more stringent the test

becomes. Typical values for yare .80 (or 80%), .90 (or 920%), and .95 (or 95%).

The tests then possess an inherent error. When the tested seﬁuence

possesses the specified theoretical statistic, the test will fail (1 - ¥ % of the time.

When the tested sequence does not possess the specified theoretical statistic, the

test will bass only a sinall portion of the time. On the whole, howevér,, the tests
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give a useful measure of the..staitistics being tested

Mean Square Value Tests

The tést_s of this section apply to sequences [u‘n]‘ that are normal with mean
m, and variance o .
Mean, Congider a random sequénce having N values. The mean 4 is

given by (32) -

- N , | _
iy oy e (5.4)
R
wher‘e u 1 is the 1-';E w}alue of the sequenc_e. The mean of the sequéne.e-has' a mean
of
E[u)=m_, - o (5.5)
and a variance of .
) . _ 2 .
Var[u]= % : : (5.86)

A statistic s_howing the degree of disdgreement between the calculated -

" mean and the theoretical mean is given by'the relationship

’ ) —'_ fﬁ:— ' .
t = (u. mu.)'\ o . _ (5_._7)

where s is the calculated standard deviatibn given by

N 2 -
= 1 - :
8= \/N—l .151 (ug-u) (5-8)
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The statistic t_ hé.s a Student-t distnbutionmthn = N-1 degrées. of freedom. (The |
loss of one degree of freedom results from the lack of knowledgg' of the true stand-
ard deviét;ion.) The theoretical megn can be tesf,ed by comparing .the tnr statistic
with a Student-_—"c'distributiorl havin_g N—l_degreés of fréedom .where (32)
Prob-t.l_-z <.(u'm)J_< t Lyl =v. |  (5.9)
B i P -

If ¢ falls éutsidé of tﬁe'se limits, it can be -c@nelﬁded thé.t the tfﬁe ‘mean of the
”sequem.:'e is not m . |

o . The varia'.nce-of the meaﬁ G i.s a. measure of the precision 6f the calculation
of ﬁ Hansen, et al (36) .suggest's- that the variafion of thé calculation not exceed
4%, or -

2

varfa]= T < .04, _ (5.10)

Then, for a N{0, 1) process, N > 95,

Variance. Consider a random sequence having N values. The variance 8

is given by (32)

N S |
s =47 T (u-uw (5.11)

where u, is the 1m value of the sejuence and 1 is the mean given by equation (5. 4).
The variance of the sequence has a mean of

2 2 ' ,
E[s]=¢g v ' ‘ _ {5.12)
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and variance of

Var[s- Jar {E ( 2\+4]E( )E @)~ E(u )E( )]}  (5.13)
For a N(0, 0'2) process E(u ) ='E‘(ui) ~0, ' E(uﬁ) = 0'2, and E(u:) = 30
Thus,

Var[s2]= ﬁz_l . S (5.14)

The variance of the variances is a measure of the precision of the cal-

2 ' ' . .
culation of 8 . - Using the suggested 4% maximum variation,

2 2 4 . '
Var(s ].— 1 ¢ <. 04 | (5. 15)

For a N(0, 1) process, N > 51,

A statistic indicating the degree of disagreement between the calculated

variance and the theoretical variance is given by

X =_-(N—"%)S— o (5.16)
T ' '

) - . 2 i
where the statistic X has a chi-square distribution with n=N-1 degrees of freedon:_l.

.(The 1oss of one degree of 'freedm'n results from the lack of knowledge of the true

2
mean.) The theoretleal variance can be tested by comparmg thex - statistic with a
chi-square distr1but10n havmg N~1 degrees of freedom where (32)
Prob | x -(N—)—z S (5.17)

=X < < Xpx|l =7
‘!2 U ’2
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If xz falls outside of these limits, it can be concluded that the true variance is
not 0'2 .

Probability Density Tests

composed of N values u

'Peétrson Chi-square Goodness'—'of-]i‘it Test, This test compares the theo-
retical probability density function with the probabﬂity density function of a sequence

pUpr e . ,.uﬁ'. A statistic X2, is generated based upon the |

-discrepancy betiveen the two curves. To determine the value of Xz, the N values

are first ordered from minimum to max:mum to form a sequence ul, 2, sea ’UI:T'
The range of values that u, can take on is divided into k intervals. Two immbers
are determined for each interval, namely the actual number of observed values

l and the number of values L that should appear for the theoreuca:l density func-

~ tion. A normalized diacrepailcy figure is calculated'in the form of

a, - L)°

L —— (5.18)

‘L

i

for each.interva;l' to give
2 .
s k @-L) - . _

X =z —/— . (5.19)

The statistic Xz will be approximately chi-square with k-3 degrees of
freedom for Gaussian distributions and k-4 degrees of freedom for non-Gaussian
distribuﬂoné. (The loss of degrees of freedom result from (1) X2 being composed

of only k-1 independent random variables (O Li)z/ L., (2) the mean of the




56

CF

. underlying distribution being uﬂmowﬁ, 3). thé variance of the underlying dist-ribution

being unknown, and (4) the density being non-Gaussian. )
The )@Z2 statistic is calculated and compared with a Chi—squafe- distribution
having n=k-4 {or n=k-3) dég‘rees of freedom. For a yregion of significance and n
degrees of freedom (32)
Probrxz <2 - ‘y | R (5.20)
= gy ] ) . _ -
2 S ' " : :
If X falls outside of this limit, it can be concluded that the sequence does not have
the speciﬁed theoretical probability density. .
Slakter (37) indicates that the .Pe"arsoil Chi-square Goodness-of-Fit Test

gives acdéptable results for as low as N=10 and for k=5 intervals.

Kolmogorov Tést. The Kolmogorov Test (33, 34) (sdmetim’es referred to as
the Kolmogorov-Smirnov Goodnegs-of-Fit Test) fnéasures the quality of the cumu-
lative distribution of a sequence having N vglués’ uSing a statistic which represénfs "
the ma.ximum deviation betweén the theoretical cumulative distribution function

_P(ui') and the calculated cumulative distribution function Py (u)). The statistic is

given by .
D, = Supremum]PN(ui') - P(ui')l | (6.21)
for all ui -
where _
N (5.22)

where ui' represents the i&'value of the sequence of [un} ordered from minimum
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to maximuﬁl. Since the absolute difference of I?(ui‘) and PN{uij is uséd, thle.statiatic '
is a ""fwo-sided" statistic.

'Uﬁlﬂfe the statistic X2 of the Pear'soﬁ-Chi'-square Test, the staticﬁc n, is
not depehdent on the underlying :distribuﬁioh.- ‘Thus, _oﬁe density function exists for |
DN for all pbs'ssible cumulative distrii:_utiqns’. 'Th_e denﬁity of DN is discussed by
Lindgren (34). For a sequence of N values and a level 6f significance ythe maximum
N ean be determin'ed.. _ ¥ D_ﬁ is greater than this constant, it

allowable value for D
is concluded that the sequence does not possess the specified theoretical cumulative

distribution, \
- The effect of the Kolmogorov 'Tesfj'is-to placé confidence bounds :'about the
theoréﬁcal cumulative distribﬁtion ag illustrated by Figure 9. The calculated cumu-
lative distribution niust stay between these bounds at all points for the specified
theoretical cumulative distribution to pass the test. It should be noted that this teét '
is best applied to distributions ﬁaving é. continuous range of possible outcomes.
Slaicter (37) indicates that the Kolmogorov Test does not give'reéults .t.hat'
are as a.cceptﬁble as the Pearson Chi-square Goodness-'of—Fit Test for N< 50, The
Kolmogoro{* Test is best used fér seqﬁéﬁceé haﬁng N=>50,

Tests on Second-order Statistics

For discrete sequences the autocorrelation function becomes a grouping of
second-order statistics. For a sequence containing N+T values, the second order

statistics are given by

ujujﬂ_for r=0,1,...,T - (5.23)
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- Tower bound

: Theoretical Cumulative

upper bound _. <.~ Distribution

. . Figure 9.. Confidence Bounds on Kolmogorov Test.

where tis the separation between values of the sequence and T is the maximum
separation considered. Normalized second-order statistics are given by
2

~ Ru(‘r) -u

P, (M) = -————Sz . | - B.29)

| Two tests have been developed for comparing the calculated second-order
statistics of the sequence with the specified theoretical second-order statistics.
One test requires no knowledge of thé variance of the.seq.uence. The other test is
for Gaussian sequences and uses a knowledge of the variance, This latter test can
be extendeci for use with the output seqﬁence of the Predistorted Ti'ansfprmed
Gaussian Methﬁd by means of the ipput/outwt autocorrelation relationships developed

for the nonlinear zero-memory filters of Chapter TiI.
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Sequences Iiaving_Unknown farianc:e' (35). * Mﬁst attempis to p_lace'éonﬁ-
dence bounds. ahout second-order statistics héwe been based upon the éé;émﬁpﬁon
that the distributiqn of the autocorfelaﬁo_ﬁ Ru(ﬂ (for a particﬁlar 7 is Gaussian,
For cases in which .N is large, a Gaussiah approximation is valid. For a sequence
of size N having a variance of o* the calculated autocofrelat:lon. flu(ﬂ is related to

the theoretical autocorrelation Ru("r) for a';95_% level of significance by (35)

o L Tﬁucn.-—l;ium]j? o | -
Prob| -1.96< = T <1.96| =y=.95. (5. 25)
This results in -
Prob | R @) - 1.96 —Z < Rim< R + 196 -3 | = .95. (5.26)
ob. R () - 1.96 T~ < R(M< R +1 96—

The Fisher's z statistic (37) (a statistic that is asymptotically Gaussian)
offers a method for characterizing the calculated distribution Ru('r) based upon the
theoretical distribution R (1). A statistic z_can be formed, based upon a knowledge
of the normalized autocorrelation pu(r), using the relationship

1 I+ @

Z = =
r = 7 198, 1-p ()

for r# 0. (5.27).

The ideas described in this section were developed by Dady T. Patel of the School
of Mechanical Engineering at the Georgia Instituté of Technology and by Dr.J. dJ.
Goode of the School of Mathematics at the Georgia Institute of Technology.
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~ Then for the caleulated normalized autdéo;x__‘relation 5u(r), a new statistic E‘r is

given by

- for 7#°0. -  (5.28)

Now the statistic VN (zT- E‘r) is asymptotically Gaussian with mean zero and vari-

ance of unity if N > 24, This results in the probability statement

Pr -1.96<',\;'N.2'.?f'zf-“z'1_-|<1.gs}=_.95.' o (5.29)

—

The confidence region for N > 24  then becomes

tanh(z =196/ VN-2) >p(r>tanh(z_+ 1.96/4N-2 ) (5.30)

This con.fid%n_ce region statement implies that the specified tﬁeofetical autocorre-
lation will be rejected if bu(ﬂ exceeds the bounds of the conﬁdence region, |

It should be noted that in the development of equation (5. 30) a knbwl’edgé of
the variance was not required.

Gaussian Sequences Having Known Variance. The method for calculating

the second-order statistics of the calculated autocorrelation was given by equation

(5.23). The mean of the autocorrelation is

§E|' =0 (@-m =R R
£, u.u -crpu('r) m = u""” | (5.31)

sRm]- L 2, s, ]

Lu

The variance of the calculated autocorrelation is




vl o] -5 {ffn 5,07}
]

where EE{ ("')] {[er i 1+*r~’2}

Expanding equation (5.33) and collecting terms yields

N-1 N

+2 % X E|_uu u.u
i1 b1 L ET +-r-ﬂ

Consider now the case that occurs when the underlying distribution is

‘normal with a mean of zero and 2 variance of dz. In this case (39)

| 2
Euu =00 (1),

2- 2 : 4 ’ ) ..2 : . . .‘. :.- R ._.. -
E[_’ui ui+1_] =q +20 pu('r),

and

E[uu 1= Uo{t) .

B0
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. (5.32)

(5.33)

(5.34)

(5.35)

(5. 36)

'(5.37)

Substitution of the results of equations (5.35), (5.36), and (5.37) into equation

(5.34) yields

R

Fo=ot e




which reduces to

or

A
N-1 N 4 o _
+2  zZ X ¢ , ' 5.38
=1 =1 P ™ } (%.38)
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E[ﬁuzm ] =i2: {N [04. + 2'cr'zpu'.(7)]+ N(N; 1)04%2(-1? } |

1¢4 : _
=5 {o 20 n + m—-ma“pu? o}, (5.39)

var/R (| == {o% 2 a2y
(5.40)

- 1 faun ot fi- 0 2]}

An acceptable region of significance is y= ,95. The limits set by this region

of significance offer a convenient basis for rejecting or not rejecting the specified

theoretical autocorrelation since
Fs .
(5.41)

R () -'és?d.liﬁu(ﬂ] < f{u(ﬁ 5.Ru(ﬂ' + 2s.d. [ﬁu(ﬂ] |

L

where s.d. [Ru(f)_l is the standard deviation of Ru(-r)- and is found by taking the square

root of the variance of Ru('r).
An autocorrelation test for Gaussian sequences having a mean of zero a.nd a

varian_ce of 0 may now be stated. A specified autocorrelation Rn (1) (second-order
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_ o - : 2
statistics) for a Gaussian sequence having a mean of zero and a variance of ¢

will be rejected if

)
Ro<mo-flegmedi-g’o]}]. e

or if . _ % _
N L R LR Y | O P R

The Predistbrted Trahsforﬁled G_aqséian M.ethod'fm.: generating pseudo-
random sequences having a specified prqbability dénSity and a specified auto-
correlation ti*ansforms a.correlated Gaussian sequence into 'the desired outp‘ﬁt
sequence by a nonlinear zeronembry filter. Since the zero-memory filter has
a one-to-one autocorrelation relationship between input and output sequences, this
autocorrelation test may. be applied to the output seduence. Each output .second-
order sﬁﬁStic may be transformed to give the coffeSponding input second-order |
statistlc.. The limits for the autocorrelation test may be set for a chosen level of
significance in ternris of the Ganssian sequence. The output equivalént of these
limits may be determined by transforming these Gaussian limits back through the |
Zero-memory elément;

In cdnclusion, this chapter has discuss ed the statistical tests used fo evalu-
ate the performance of thel designs for several mterest_ing__ cases. The next c_hapter

will present an evaluation of these designs.
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' CHAPTER VI

. EVALUATION STUDIES

The des'ign procedure of Chapter IV wag implemented and tested for ten

specified probability densities and autocorrelations as follows:

1.

2.‘

Uniform Density—-Exponential Autocbrrelafion

Uniform .Density--Tria-ngular- Autocorrélation

Un:lfofm Dengity-— éin(x)/:; Autocorrelation

Random Telegraph Signal Density--Exponential_Autocori‘élati&n
Ra-ndofn Telegraph Signal Density—-Triangiﬂar Autocorrelation
Random Telegraph Signal Density-;-Siﬁ‘(x)'/x Autbcorrelaﬁon
Ch_i-square Dénaity with one d'egree.of freedom-- Exponential
Autocorrelation . | |
Chi-square Density with one degree of freedom-~Triangular

Autocorrelation

- 9. Rayleigh Density--Exponential Autocorrel_aﬁon

110, Rayleigh Density--Triangular Autocorrelation

The purpose of this chapter is to report the evaluation studies on the sequences

produced for these cases. These specified ﬁrobabﬂit_y densities and autocor-

relations are representative of the general class of random number sequences

* . : ) ’ - .
The Rayleigh Density cases were produced by applying Envelope Detection (40)
concepts to the Predistorted Transformed Gaussian Method.
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to which the method applies and illustrates the .properties of the method.

mﬁodﬁpﬁon_
The imblemented caée-é* make use of a.portion of the design procédure
"diacusséd in Chapter IV, A nc;n-orthogonal sequence [xn}_was used as input
without correction being introduced in the design of the linear m’embi‘y filter.

The output autocorrelations that were _spepiﬁed: were "distorted" from the auto-

correlations which would be spéciﬁed when _"correction" for [xn} was included

in the linear memory filter design.

The raw data for the des.ig'r'i. of _fhe s;eciﬁ;d output sequeﬁces is presented
in the Appendices. The specified outfﬁt autdcox_'relatibﬁ and the autbéprrelation
required as input to the nonlinea'f zero-memory filter are given in Appendix L
The filter coefﬁcienté for the linear me:ﬁqr’y filter foi' each design are given in
Appendix 1I.

The random number sequence used as iﬁﬁut was produced by a generator

developed by Browh and Rowland (39). The geﬁerator was selected for its ability

_ to produce sequences having stationary mean and variance properties., A dis-

cussion of the tests performed on this generator and a second generator, the

UNIVAC 1108 standard MATHPACK generator RANDN, is given in Appendix III.

*The implementation and testing of the preliminary design study was performed
on the IBM 7094 computer located at the U. S, Army Missile Command

- Computation Center at the Redstone Arsenal, Alabama, The implementation
and testing of the final design procedure was performed on the UNIVAC 1108
and the Burroughs 5500 computers located at the Rich Electronic Computer
Center on the Georgia Institute of Technology campus in Atlanta, Georgia,

TP
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Statistical Tests on OQutput Sequences

of the Linear Memory Filter

The correlated Gaussian sequences produced as output from the linear
memory filter in each of the ten design cases were tested with resﬁect to
stationarity and the basic random prop‘erties of the-éeq_ueneea, namely the mean

" square propérty, the probability denéity property, and the autocorrelation
property. . |

Mean Square Property

For each design case 100 Gaussisn sequehces, containing 80 values each, -
“were generated and tested using the mean and variance tests discussed in

Chapter V. The resulis of these tests are. summarized in Table 1. Each sequence

was tested against a theoretical mean of my = 0 and variance of 02 = 1at a 95%

level of Bigniﬁcance. For 100 sequences having tine theofeﬁc‘al mean and theoret-
ical variangé, there is a probability that five sequences will fail the test on mean
and five sequences will fail 'the test on variance, ﬁo_ design case had more than

 five sequences fof which the theoretical value of the mean of the theoretical value -
of the variance was rejected, No._ sigr‘l.iﬁcani;. variations._in the calculated values

of the mean or variance were observed to indicate that the process was nonstationary.

Probability Density Property

For each design case a sequence containing 10, 000 values was generated
and tested using the Pearson Chi-square Goodness-of-Fit.Te_st and the 'Kdlmogorov
Test. For the test results shown in Tables 2 and 3, all tests passed at a 95% level

of significance with the exception of the Pearson Chi-square Test on the sequence
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Table 1. Mean Square Property of the Qutput Sequences

from the Linear Merﬁory_Filter Output

Specified Specified . For 100 Tesﬁs at v = ,95

Output Output Number of Tests Number of Tests
Autocorrelation: Density .~ which fail for which fail for
forl{zn} for {zn} _ Theoretical Mean Theoretical Variance
Exponential Uniform 5 - 3
Exponential " Random __Tele'graph 5 - | 4
Exponential Chi-square ) 2 4
Exponential _Rayleigh_ o " _ 2 - 3
Triangular - Uniform | EE S 4
Triangular Random Telegraph 5 N

o Signal _
Triangular . Chi-square c 0 : 2
Triangular Rayleigh o 4
Sin(x)/x ~ Uniform 0 | 4

. Sin(x)/x Random Telegraph 0 0
: - Signal ' '

T

requiz;-ed for the design case Speéified to have an output sequence having a
Ra&leigh density and exponenttai autocorrelation. _Since. the seque‘nc_é passes

| the Kolmogérov Test, thé sequence is assumed to have the .required theoretical
density. Failuré of the Pearson Chi-square Test indicates that the sequence

values do not éppear in sufficient numbers to satisfy the theoretical requirements




Table 2.
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Results of Kolmogoi'ov %gst on Output Sequences

from the Linear Memory Filter

Specified

‘Number of S_equende Values

Bignal

Specified

Output Output Violating Limits 1‘0'1;'= Region

Autocorrelation Density of Significance of ¥

for {zn} - for {zn} 80% 85% @ 90% 95% 99%

- EXponential Uniform 0 0 0 0 0

Exponential  Random Telegraph 0 0 0 0 0
s _

Exponential Chi-square 7 0 -0 0 0

Exponential = Rayleigh 123 15 0 0 0

Triangular Uniform 0 0 0 0 0

Trianguiar Random Telegraph 0 0 0 0 0
Signal o

Triangulay Chi-square 0 0 0 0 0

Triangular Rayleigh 0 0 0 0 0

Sin(x)/x Uniform 0 0 0 0 0

Sin(x)/x Random Telegraph 0 0 0 0 0

* . :
Ap the region of significance increases, the limits of the test increase making
the test less rigid. :




Table 3, Results of Pearson Chi-square Test on Output Sequences

from the Linear Memory Filter
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Specified _ = Specified For 397 Degrees of Freedom
Output ' Output R
Autocorrelation ~ Density Value of ¥ which Corresponds
for z_} for {z } : : 2%

n n to Calculated x

Exponential Uniform | .31

Exponential Random Telegraph ' L 18
Signal R
Exponential . Chi-square’ _ ' .64
‘Exponential : Rayleigh ' .98
Triangular | Uniform | C .35
Triangular ~ Random Telegraph - .35
Signal _ '
Triangular = ' Chi-square - ' .39
Triangular Rayleigh . .78
Sin(x)/x Uniform o .73
Sin(x)/x ~ Random Telegraph .79
Signal

* ' '
The test will pass for any region of significance larger than this value.
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for strategic 'r"eé;loﬁs of t]iee’dexisii;&"cui*we._ SRR

| For each design case';'_the squleﬁée of 10,000 values was sﬁbdivided "
into sequences of 500 values to sf:ugly the étaﬁoﬁarity of the ﬁrobabilitf déﬂsity
function. No significant variations caused by nonstaﬁonafity_were noted in the
resulfs. |

Autocorrelation Property

For each design case a sequence containing 10, 000 valueg was generated

and tested for the autocorrelation proﬁefty-using the tests of Chapter V for
sequences having unknown variancg gn_d for Gaussian e.:etmenc'e-s having known
variance. The autocorrelation requii'ed for each sequence is shown -g'raphica;lly
in Figures 10 through 19. * (These figures also include the autocorrelation
specified for the outﬁut seduénce for each design case.) Of tﬁe ten design cases
four design cases, namely the cases with output sequences specified to h'afre N
exponential autocorrelations, had lineér memory filters designed directly. The
remaining six design cases possessed autocorrelation requirements ;rhich re-
‘quired deéign of the linear memory filter by the Modified Pakov Method using

| 'ppﬁmization techniqugs. In all ten design cases, the second-order statistics
passed both tests.

It should be noted that the nonlinear zero-memory filter tends to

decorrelate sequences. The input normalized autocorrelation is consistenﬂy-

* . . .
The difference between the autocorrelations specified for these design cases
and the autocorrelation that would be specified if the non-orthogonality of the
input sequence had been considered in the design of the linear memory filter
is so small that the curves would not be able to distinguish between the two.
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higher than the out'put'norm_alize_d autocqrrel_ati.-on. This point contributes
significantly to the design j)robléms of the linear memory filter. The additionﬂ
required input autocorrelation often resulis in the requirement for a linear mem-

ory filter than cannot be designed'directly.

Statistical _'Tests on Qutput Séquences

Output sequences for the ten design cases were tested with respect to
‘stationarity and two random properties, namely the probability denéity property
and the autocorrelation property.

Probability Density Property

For each design case a Sequence coﬁtaining 10, 0_010 values was generated
and tested using the Pearson. Chi-sq_ﬁé.re Goodness-of-Fit Test and the Kolmogorov.
Test.. For the results _preaented in Tables 4 a.nc_l 5, eight 'o_f __the sequences passed
both tests at a 95% level of significence. Each of the two sequences specified to
have a chi-sqtiare density with one degree of freedom failed at_ le.sltst one .of- the |
tests. A sequence having a chi-—s;:luare density with one degree of freedom must
contain a large number of values near zero. The tests on these two sequences
~ emphasize a difficulty in generating large 'nﬁmbers of values in a sequence near
- zero while maintéining the correct emphasis in all strategic areas of the density
' .curve. The failure of these tests indicates -t'he need to make a prudent choice of
an input sequence to insure that the values of the input sequénce are distributed
properly to give the specified output séquence.I

The output sequence for each of the design cases was subdivided into
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®

| Table 4. Results bf_ Kolmogorov Test on Output Sequenceé

Specified . ‘Specified © .~ Number, of Sequence Values Violating

i
.i
Output Output B Limits for Region of Significance of y I
Autocorrelation  Density ' 80% 85%  90%  95% 99% J
. I
Exponential “Uniform o0, 0 0 0 0 I
Exponential Random Telegraph —-,N!ot' applied to this case-- '|
Signal - : _
Exponential Chi-square . 2958 2440 2091 1727 26 |j
Exponential Rayleigh R 38 0 0 )
Triangular Uniform 0 0 0 0 0
Triangular Random Telegraph --Not applied to this case--
| Signal _
Triangular Chi-square 635 273 35 0 0
Triangular Rayleigh 0 0 0 0 0
Sin(x)/x Uniform o 0 0 0 0
Sin(ﬁ:)/x R'ahdom Telegraph ~~Not applied to this case--
Signal ' o

* o _ o
As the region of significance increases, the limits of the test increase making
the; test less rigid.
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Table 5. Results of Pearson Chi-squiare Test on Output Sequences

Value of v

Number of

Signal

Specified Specified _ _
Output Output - which Correspopds Degrees of
Autocorrelation  Density -to Calculated % Freedom
Exponential Uniform - .08 - 396
Exponential Random Telegraph .19 1

- Bignal '
‘Exponential Chi-square Off Scale 396
-Exponential Rayleigh .44 396
Triangular Uniform .62 396
Triangular Random Telegraph .95 1

Signal

Triangular Chi-square Off Scale '396
Triangular Rayleigh .54 396
Singx)/x Uniform .89 396
Sin(x)/x Random 'Teleg'raph .21 1

* ' o '
The test will pass for any region of significance larger than this value,
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sequences of 500 values to study the etat_ienarity of the probability density function.

No signiﬁcant variations due to non-stationarity were noticed in the results.

Autocorrelation Property

For each de81gn cagse a sequence conta.imng 10, 000 values was generated
and tested for the autocorrelation prOperty using the test for sequences having
unknown variance and the modified test for Gaussian sequences having known
variance discussed in Chapttﬁ' V The autocorrelation required for each sequence
is shown graphically in Figures.10 threugh 19. In all ten design cases the output
sequence possessed values having the _ speciﬁed _autocorrlelation fthti'oue within
the mathematical limits as prescribed by the tests for a 95% region of significance.
The results were equally satlsfactor_v for linear memory filters designed directly

and designed by the Modified Pakov Method employing optimization technigques.

Couclueions

The evaluation studies of the ten desig:n cases indicate that the.design

procedure discussed in Chapter IV will produce random Sequences having a
- specified probability d.ensity and specified autocorrelation. The output sequences.
geherated by the design cases possessed the required outﬁui: autocorrelation virhen '
tested at ; 95% level of significance, The_ outp‘ui sequences required to have
Uniform densities, Random Telegraph Signal densities, and Rayleigh densities
possessed the reduired probability deusity virhen tested .at a 95% level of signifi-
cance. Ag indicated in the probability density tests en the sequences. having a
chi-square density with one degree of freedom, a gseguence liavilig a high con-

centration of values in a localized region of the probability density curve will
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require special attention to be given to the probability density prOpertf of the
input sequence in order to be able to pass the probability density teésts.

The test results were 'equaily saﬁsfﬁctory for the design cases having a
linear memory filter desiéxled directly and for the design cases having a linear
memory filter dééigned using'the Modi.ﬁed _Pékov Method employing opti'miz'ation

techhiques.
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' CHAPTER VI
CONCLUSIONS

Desgign Method

It is éonéluded from the evalu'ation studies of 'Chapt.ér VI thét a large
class of sequences of p.seudo—._rando_m- nﬁmbefs'-{zn} Hﬁving a s'peciﬁ.ed probability
density funcﬁon p(z) and a specified. autoderréiation R.z('r) can he generated using:
the Predistorted Tranéformed Gaussian Method, ﬂlu.strated in Figure 4; from
non-orthogonal input sequences {xn]. The d'esign' procedure for implementing
this technique includes the following ‘sﬁepg.

{ lj Design the- nonlinear zero-memory filter to transform a Gaﬁssian
sequence {yn} having a mean of zero and a varianée of unity into a sequence {Zﬁ}
having the desired probability denﬁity. The relation which must be implemented

is

1

o |
2 = gup=P [Eip], 0 @an

and this step can be c.arried out fqr ahy cumulative distribution 'Pz(z) fpr which
an inverse P;l existé.

(2) Calculate the normalized autocorfelaﬁon oy(ﬂ required for the ii-lput
sequence to the zero-—-mémory filter to produce fhe-desireld output autqcofrelation

RZ('r). ‘The autocorrelation can be determined in general from the relation
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® o

el f()(hw HmKMH% dydy,. 4.2
- 8y, )E(Y,) exp |- [TV ™
% 2m41 Fi(‘r) o -® 1 2., 2(1-py(1*))' e

In equatmn (4 2) it should be noted that g(y) is determmed by step { 1) and R (-r)
isa specified parameter Thus, p (-n 1s the only unknown in equat:lon (4.2), and
it can always-'be determmed numerically by the brute fo_rce thhnique of fixing
Tand tabulatinérthe double integral as a function of A(7). Two examples ef the
brute force approach, namely -the Rayleigh Density design caeea, were worked
. out ueing series to approximate the inte_grel; _

* In many cases of interest, g(y) has a tractable fo_rnct such that the douhl-e-
integral of equaﬁen (4.2) can he evaluated'analyticall_y. Eight design cases. of

~ this type are tabulated in the thesis.

‘When implementing the design step te calculate the normalized autocorre--

lat:to'n_py(n, the solution of equation (4.2) could prove to be an untrapteble mathe-
matieal pi*oblem. . This problem can 'be. cirecumvented by using either the
Characteristic Function Method or the Series Method.
(3) Design the linear memory filter using the Modified Pakov Method.
' Tln‘ee ma;or steps are involved in this design.
: _ng: :Measure the second-order statistics of the input sequence.
.. _St_ep_z Set up design equatlo:ns by determmmg the second-order stans-
t:cs that must be introduced by the linear memory filter. The design

equations are given by
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f. = 62+A + + 2 a =0 --"

1= % e N %"

f, = @ +e,a ... toy 08, =0 o
S e

Iy = yag, =0 o o y

o

where the o are the filter coefﬁi’:ién_}ts- and the a, are the second-order
statistics to be introduced by the linear memory filter.
Step 3: ‘Solve equation (4.9) for the &i by minimizing the functional

N o
F= 3% f . (4.10)

j=1 1 .
_ using conventional optimization methods.

The accuracy is dependent upon the abﬂity_to minimize the functional
produceci in eqﬁa'tioﬁ (4.10). An ass@s-sment of the errof of the des’iéﬁ l;iethod
¥ .can"bé_ba'.s;ed upon the value of F. The design_procedure is considered to be -
exact for func_tjoh’al miniinuins less than 105, "As the funcﬁohal"'3mi'nii#um in-

' creaées abové 10-6, ‘the design haé a degree of error intrc.)duce.c.l. Iby .th.é'.des.i_g"n
of i;he linear memory filter. For the séquences specified for evaii._la_,ti#g the
Idesign method the large'Sf mnctioﬁal: minimum, F = .156, occurred for the
sequence specified to havé a Rayleigh Density and ﬁ'iang'ulaf autoc_orreiation_

with nine filter coefficients. The oufput éequence generated in this case possessed

the specified probability density and autocorrelation within acceptable mathe_matiéé.l
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limits for a regitsn of significance of y = .95 for both paraméters.

The design was implemented to ﬁroduce ten sequences having specified
probability densities and autocorrelatiops. that are repfesentétilve of the genei-al
class of random number seﬁuéﬁces to which the method applies. 'The design
cases included (1) both contihudus and discrete probabﬂity densities, (2) alitb-
correlations having both positive and negatlve effects, (3) autocorrelations for -
which the double integral of equanon (4. 2) was evaluated both analytwally and
numerically, and (4) linear memory fﬂters .having both an exact design and no
| exact design. | _

Statistical tests were berfdrméd on the results of. ;:he ten design -cases
to establish (1) the stationarity and the basic random properties of the sequences,
nameljr,' {2) the mean square value pi'_Operty, (3) the probability density property,
and (4) the autocorrelation property. The Sequences proved to be statiqnary
and produce the specified autocorrelation for a region of significance ._of y= .95,
The sequences produced the required probability density'whm tested at a y= .95
fegion of significance, in all deszién.caes except those requiring a high concen~
| trat:ldn of sequence values in a ldcalized region of '.1_;-he 'p.r‘obab_ility density curve.
These design cases require that ‘special attention.be given fo-_the probabﬂity

density properties of tile-'ihput 'seque'nce to insure that the values of the sequ.ience

have good Gaussian characteristics. In a_lllof the ten cases examined the procedure

could be carried through with acceptable error.

Recommendations for Futufe Work

This research indicates the need for further work in several areas. The
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equations of (4.9) were solved directly fe_r enly four of the ten design studies.
Clearly, .the restl_'ic.tion' for direct solution develoeed by Nakemura (30) is.no.t
sufficient. Additional investigation is needed"upo'n the boundaries placed upon-lai
_for direct solutien of equati.on 4.9).

Additional study is needed for the mimber of ﬁlter coefficients required
to optimlze the 11near memory filter des1g‘n The emp1r10a1 study cited in
Chapter m showed that an improvement in hlter design could be achieved for
output sequences Spec1fied to have. a tr1angular autocorrelation_ when the number
of filter coefficients were increased to th'e.- okder of 30 coeffictents. On the other
hand, no improvement wag achieved when f,he number of eeeﬁicients were iliereased
for the output sequences having sin(x)/x autocorreletion.

In summary, this.thesis has Ipresented a technique for generating pe'eude-
random eequences heiring specified probability density and specified autocor-
relation and illustrated the techniqde for ten design.cases_. The statistical tests
perfdrmed on these cases have shown that the technique gives resﬁlte fhat are

mathematically acceptable.

S
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 APPENDIX I

- INPUT/OUTPUT AUTOCORRELATION DATA

FOR ZERO-MEMORY FILTER

The atuoqorfe__latiops (second-ofd‘_ef statistics) specified for the ten
implemented output séquences are given in Tables 6'_through 15. The corres-
ponding 'autocbz;relatidns (second-order -st#tié-ﬁcs) required .as input to the
nonlinear zero-memory filters for each ¢ase are also given in Tables 6 through

'15.

e e ]




Table 6. Input/Output Autocorrelation for Zero-memory. Filter for
Sequence Specified to have Uniform Density '
and Exponential Autocarrelation

\

Lag Input = Normalized Output

Coefficient " Autocorrelation _ Autocorrelation
0 ©1.0000000 | 1.0000000
1 6245346 .. . 6065307
2 .3828646 . ,3678794

3 .2331302 - . ,2231302
4 1416042 - . .1353353
5 .0859328 | . 0820850 .
6 0821810 © - Lo4978m
7 .0316213 0301974
8 0191798 .0183156
9 . 0116332 5 .0111090

- Table 7, Input/Qutput Autocorrelation for Zero-memory Filter for
: Sequence Specified to have Random Telegraph
Signal Density and Exponential Autocorrelation

Lag ' Input ' Output

Coefficient Autocorrelation . Autocorrelation _
0 1. 0000000 1. 0000000
1 .8150040 | . 6065307

2 . 5462357 - . 3678794
3 . 3433600 , 2231302
4 .2109866  ,1353353
5 .1285818 | . 0820850
6 .0781256 - . 0497871
7 . 0474162 _ .0301974
8 , 0287662 - | .0183156
9 . 0174491 .0111090

93
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Table 8. Input/Output Autoéorréla-ti@ti for Zero-memory Filter for
Sequence Specified to have Chi-square Density with One
Degree of Freedom and Exponential Autocorrelation

. Input

Output

coefIgfient Autocorrelation " Autocorrelation

0 1.0000000 - 3.0000000
1 . 7788008 . 2,2130613
2 . 6065307 1. 7357589
3 . 4723665 1. 4462603
4 .3678794 1.2706706
5 . 2865048 1.1641700
6 . 2231302 1.0995741

7 1737739 1.0603948

8 .1353353 1.0366313
9 .1053992 1. 0222180

10 . 0000000 1. 0000000

11 . 0000000 1. 0000000
Table 9, Input/Output Autocorrelation for Zero-memory Filter for

Sequence Specified to have Rayleigh Density
and Exponential Autocorrelation
Lag - Input Normalized Output |
LCoefficient Autocorrelation Autocorrelation

0 1. 0000 1. 0000000
1 . 7947 . 6065307
2 .6251 . 3678794

.3 . 4895 . 2231302
4. .3825 .1353353
5 2984 0820850
6 .2327 . ,0497871
7 .1813 .0301974
8 . 1413 .0183156
9 .1101




Table 10, Input/Oufput Autocorrelatioﬁ for Zero-inemory Filter for
: Sequence Specified to have Uniform Density
and Triangular Autocorrelation

Tag mput ' Normalized Output

Coefficient ' Autocoerrelation Aupcorrelation
0 1.0000000 1. 0000000
1 | | .8975984 . 8888889
2 7921596 1777778
3 .6840403 | . 6666667
4 5736065 . 5555556
5 .4612318 ' . 4444444
6 . 3472964 : .3333333
7 . 2321858 | . 2222222
8 . 1162897 .11

Table 11, _Input/Output A.utocorrélatioﬁ for Zero~memory Filter for
Sequence Specified to have Random Telegraph
‘Signal Density and Triangular Autocorrelation

Lag. _ Input - _ o - 6utpui:
Coefficient . - Autocorrelation Autocorrelation
o - | 1.0000000 . - 1.0000000

1 . 9848078 . 8888889
2 . 9396926 - 1777778
3 . 8660254 | . 6666667
4 7660444 5555556
5 . 6427876 . 4444444
6 . 5000000 . ©.3333333

7 . 3420201 2222222

8

. 1736482 ' 1111111




Table 12, Input/Output Autocorrelation for Zero-memory Filter for
Sequence Specified to have Chi~square Density with One
Degree of Freedom and Triangular Autocorrelation

Lag input . ' - Output

C ogfﬁcient _ Autocorrelation . Autocorrelation
0 ©1.0000000 . 3.0000000
1 . 9428090 S 2,7777778
2 8810171 . "1.5556556

3 ,8164966 2,3333333
4 . 7453560 - 2.1111111
5 . 6666667 . 1. 8888889
6 .5773503 1.6666667
T . 4714045 . 1.4444444
8 .3333333 1,2222222
9 .0000000 1. 0000000

10 . 0000000 __1.0000000

Table 13. Input/Outlaut Autocorrelation for Zero-memory Filter for |
‘Sequence Specified to have Rayleigh Density
and Triangular Autocorrelation

Lag ~ Toput ~Normalized Output
Coefficient Autocorrelation _ Autocorrelation
0 | 1. 0000 | 1.0000000
1 | 9488 | .B8888BY
2 . 8926 L1778
3 . 8308 . 6666667
4 L7622 . 5555556
5 . 6850 | 4444444
6 .5958 .3333333
7 . 4885 . 2222222
8 . 3468 1111111
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nput/Output A'utocorrelatibn for Zero-memory Filter for

Table 14,
Sequence Specified to have Uniform Density
and Sin(x)/x Autocorrelation
Lag Input Norﬁalized Qutput
Coefficient Autocorrelation e Autocorrelation

0 1.0000000 - 1.0000000
1 .9082762 . 9003163
2 6543894 . 6366198

3 .3129780 ' .3001054
4 . 0000000 -{' B . 0000000
5 -. 1882856 | © -.1800643

6 -. 2217653 | -. 2122066

7 -.1345852 B -. 1286166

8 0000000 . .0000000
9 1047087 ' ©.1000352
10 ;1332346 ' .1273240
11 ,0856837 - . obisaso




Table 15, Input/Output Autocorrelation for Zero-lﬁemory Fiiter for
-~ Bequence Specified to have Random Telegraph
Signal Density and Sin(x)/x Autocorrelation
Lag _Inpﬁt ' = . Output
Coefficient Autocorrelation | Autocorrelation
0 1. 0000000  1.0000000
1 .9877659 | .9003163
2 '.8414%19 S . .6366198
3 4541380 o .3001054
4 0000000 | 0000000
5 -. 2790865 o -. 1800643
6 -. 3271947 . -. 2122066
7 -. 2006589 ~ -.1286166
8 . 0000000 . , 0000000
9 . 1564890 | 1000352
10 . 1986693 1273240
11

. .1282110 . 0818469
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' APPENDIX I
FILTER COEFFICIENTS FOR LINEAR MEMORY FILTER

To caléﬁla:te the filter cpef;ficignts -fdr the ."linear memory filter, the
equation_s of (4.9) were. solved using two-te_'ch:ﬁquesl. For the first technique,
used in four design CRSe's-,_ the filter coeffteients were obtained by linearizing
the equations and us ing Newton's Métlmci.of Sﬁcbess'ive Appr'm:ima_ticms. For
the éec_:ond technique, used in all tén design cases, the filter coefficients were
obtained using the Fletcher- Powell Method of. optimization o minimize the
equatibns expressed in 'tl_ie form of equatioﬁ_ (4.10), These results are given
in Tables 16 through 25. A tabulation pf the functional minimu’ins for the latter
technigue is given in Table 26 for all ten deéign cases.

Tables 27 and 28 present a tabulation of the results of an empirical study
- performed to determine the effect that the number of filter weights has on the
- value of the'mnéﬁonal minimﬁm«. A discussion of the conclusions drawn from

‘this study is given in IChaptef .
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Table 16, Linear Memory Filter Coefficients for Sequence Specified
to have Uniform Density and .
Exponential Autocorrelation

Coefficients Using -~  Coefficients Using

Position B . Linearized Equations . - Mihimization Scheme
1 . 780866 . 780866
2 .493465 - . 493465
3 303772 | 303772
4 .185250 185250
5 112583 ' .112583
6 . 068335 - ' .068335
7T .041455 ' . 041454
8 .025127 | | . 025127
9 , 015148 o ) ,015148
10 . - .014898 014898

Table 17. Linear Memoxry Filter Coefficients for Sequence Specified
to have Random Telegraph Signal Density and
Exponential Autocorrelation

Coefficients Using Coefficients Using

Position Linearized Equations Minimization Scheme
1 .537757 . 537760
2 | . 615072 .615069
3 . 445693 " . 445694
4 . 287620 - . .287619
5 .178231 : .178232

6 .109199 . .109199

7 065687 - - . 065687
8 . 042546 : - .042546
9 . 016380 ' ,016383
10 . 032448 ' . 032448
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Table 18. Linear Memory Filter Coéff_iciehts--for_,Sequence Specified
to have Chi-square Density with One Degree of Freedom
' and Exponential Autocorrelation

~Coelficients Using Coctficionts Using

Position _ Linearized Equations Minimization Scheme
1 | . 601227 . . 601243
2 . 494790 . ,494362
3 .384052 . 384839
4 209225 | 298533
5 .233021 233655
8 .181487 | 180938
7 141288 - . . .141825
8 . 110530 | 110028
9 . 080828 .081016

10 .175306 .175219

Table 19. Linear Memory Filter Coefficieuts for Sequence Specified
to have Rayleigh Density-and
Exponential Autocorrelation

Coefficients Using ~Coelticients Using

Position Linearized Equations Minimization Scheme
1 . 570300 . 570294
2 . 500896 - . 500901
3 . 393494 . 393490
4 . 309552 '  .509554
5 . 242587 _ . 242580

6 .189167 | S .189174

7 .147390 C 147385
8 .116013 116017
9, . 078203 | .078198
10 193056 N . 193061




Table 20, Linear Melhory Filter Coefficients for_.Sequence Specified

to have Uniform Density and Triangular Autocorrelation

Coefficients Using

Position Minimization Scheme
1 . 342851
2. .333225
3 . 334323
4 .335042
5 ©,835208
6 . 334895
7 ;334021
8 333554
9. 342611

Table 21. Linear Memory Filter Coefficients for Sequence Specified

to have Random Telegraph Signal Density and
Triangular Autocorrelation '

Position

" Coefficients Using

Minimization Scheme

[y

I R T T R

. 404002
. 354174
. 350228
. 352499
.353693
352499
. 350228
. 354174
. 404002

102
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Table 22, Linear Memory Filter Coefficients for Sequence Specified
to have Chi-gquare Density with One Degree of Freedom
and Triangular Autocorrelation

_ " Coefficients Using -
Position _ Minimization Scheme

.477675
. 364979
. .329714
315889
.312037
.315889
329714
. 364979
. 477675

-

© @ -1 & o R W N

Table 23, Linear Memory Filter Coefficients for Sequencé Specified
to have Rayleigh Density and Triangular Autocorrelation

_ 3 _ Coefficients Using
Position ' - Minimization Scheme

482834
.367610
. 331250
.316992
.312977
. 316995
. 331250
367610
482834

ot
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Table 24, Linear Memory Filter Coefficients for Sequence Specified '

to have Uniform Density and Sin(x)/x Autocorrelation

Coefficients Using

Position _  ‘Minimization Scheme
1 | . . 364992
z |  ‘..468521' '
3 | " . 517433
4 | R .467438
5 | . 325323
6 : ' .137229
7 | | | | -~.037811
8 | -.148436
9 | . 168114
10 ' | -.105895
11 | | - .013116

12 | ,195998
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Tahble 25. Linear Memory Filter Coefficients for Sequence Specified
" to have Random Telegraph Signal Density and '
Sin(x)/x Autocorrelation

' Coéfficients Using

Position | ' Minimization Scheme .
- o 395707
2 I o .473413.
3 | ) . .538830
4 - o 502416

5 - - 349128
6 | o . .148005
T o S -, 041153,
8 . |  -.161509
9 o ~. 175676

DR - | —. 122402

11 | -,023127

12 | . 203795




Table 26, Optimization Functional Minimums for Linear

Memory Filter-Design

. 106

. : - Value .of
Autocorrelation Density Minimized Function
Exponential Uniform 1.31x10°1°
Exponential Random Telegraph Signal 8. 13x10" 2
Exponential Chi-square 1.39x107"
Exponential Rayleigh 5. 66)_{10-12

Triangular Unifoi'.m‘ 5._88x10'4-
Triangular Random Telegraph S1g'nal 8. 42x10-2
Triangular  Chi-square 1.36x10 1
- Triangular | -Rayleigh 1.56x10 -
Sin(x)/x Uniform 1.31x102
Sin(x) /;f Random Telegraph Signal 1.26x10"1

Table 27,

Optlmlzation Functional Minimum vs, the Number of F11ter

Welghts for Triangular Autocorrelation

10 n

n= 20 n = 3'0 n = 40'-

. =2 1 -9 ~2 =21 Y -2 -2
Density - Fx10 Ax10 Fx10 Ax10 Fx10 Ax10 Fx10 AxlO_
Uniform 2.57 2.57 1.02] ,.591 .661 | .379 |.530% . 299%
Random :

Telegraph _
Signal 19.3 - | 19.3 21.0 |13.4 25,3 12,6 |30.1 12.4
Notations: '

F = Value of functional minimum'_for all n filter weights

A = Value of error introduced by ten specified équations

* = Convergence was not obtained




Table 28, Optimization Functional Minimum vs, the Number of Filter

Weights for Sin(x)/x Autocorrelation

107

‘n=9 n=18 = 27 n = 36
en=d | R = -2 - -2
Density | Fx10 | Ax10 | Fx10 | Ax10 Fx10 | Ax10 Fx10 | Ax10
Uniform .997 | .997 .340 | .0201 .532 | .218 |.965 | .416
Random '
Telegraph| . _ T : _
Signal -~ | 3,20 | 3.20 | 8.24 [4.97 |14.7 7.07 |21.5 8,45
Notations:

F = Value .of functional minimum for all n filter v#eights

A = Value of error introduced by nine specified equations
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APPENDIX IH

RESULTS OF STATISTICAL TESTS ON INPUT

RANDOM NUMBER SEQUENCE

It is the purpose 6f this appendix ';‘.-o discuss thé tests performed oh two
different pseudo-random sequences coﬁsidered for use as input to the Predis-
torted Transformed Gaussian Method. The sequences were Gaussian with Zero
mean and unity variance. The sequénces were ﬁrociuced by the RANDN 'g'eneraltor
of the UNIVAC 1108 standard software package called MATHPACK and the Brown-
Rowland Generator (41) where multiplicative uniform values were génerated using =

the relationship

| 20 - - |
Xi+1 = 199'?1Xi {molulo 2 ) - {A3.1)

with twelve uniform values being summed to create each Gaussian sequence value.
. Fach sequence was tested for its mean square property and probability density

property as well as for stationarity.

Mean Square Property

The meadn square property was tesfed using the tests on the mean and
variance of Chapter V., Twenty sequences of 500 v-al'ues were tested. As sum-
marized in Table 29, both generators produced sequehces having well behaved

means. The sequences fr'om the UNIVAC RANDN generator, however, proved
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to be unstatiohary with the tests for the -thedretical- variance failing three times.
The Brown-Rowland generator gave 1"_10 indication. of being unstatlbnary-.

Table 29. Independent Gaussiah_ Generator Mean Square

Pr_operty' Tests’

Gaussian - 'Rejections of "-I‘-he'orét:ical Rejections of Theoretical

Generators B . Mean for y=.95 ~ Variance for y= .95
UNIVAC RANDN o o -3

Brown-Rowland : 0 1

Probability Density Property

The probability density pfoperty was tested for both generators for
seduences of 10, 000 values and 20 éhbgrouping's_ of 500 values. Both g_énerators

gave acceptable results for both the Pearson Chi-square and Kolmogorov Goodness-

of- Fit Tests on the total sequence and the 20 subgroupings. The sequence of

10, 000 _values' from the Brown-Rowland generator passed the Kolmogo'rov ‘Test
at better than an 80 percent level of significance while pagsing the Pearson Chi-

square Test at a 57 percent level of significance. The seqﬁence of 10, 000 values - -

from the UNIVAC RANDN generator passed the Kolmogorov Test at better than

an 80 percent level of significance while passing the Pearson Chi-square Test at

a 22 percent level of significance: Neither set of tests gave indications of the

‘sequences being unstationary.
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In conclusion, of the tests perfozjmed on the two Gaussian pseudo-random
number generators, the Brown-Rowland generator is preferred because of the

stationarity of the variance of the sequences.
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