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SUMMARY 

The objective of this research is to develop a procedure for generating 

pseudo-random processes with specified probability density function and auto­

correlation for use in digital simulation. As part of the work, typical random 

sequences are generated and their properties subjected to statistical tests to 

study the accuracy of the method,. 

The technique that is developed, referred to as the Predistorted Trans­

formed Gaussian Method, produces the required output sequence from a given 

input sequence with two operations, namely a linear memory filter and a non­

linear zero-memory filter. The input sequence has a Gaussian distribution 

function with non-orthogonal values. This technique forms the desired density 

and autocorrelation from the input sequence using a linear memory filter to 

introduce the autocorrelation and a zero-memory filter to transform the prob­

ability density function. 

To generate a sequence having the desired probability density function 

and autocorrelation, the design is carried out in three steps, namely, (1) design 

of the nonlinear zero-memory filter, (2) calculation of the autocorrelation 

required as input to the zero-memory filter, and (3) design of the linear memory 

filter. The nonlinear zero-memory filter is designed using the cumulative dis­

tribution functions of the input Gaussian sequence and the specified output sequence. 

The autocorrelation of the Gaussian sequence used as input to the nonlinear zero-

memory filter is obtained by deriving an input/output autocorrelation relationship 



x i i 

for the zero memory filter using the design equation for the filter and an expres­

sion for the joint probability density function for the input sequences. The 

linear memory filter is designed using a Modified Pakov Method which employs 

optimization techniques. 

This method for generating pseudo-random sequences having a specified 

probability density function and autocorrelation is applicable to all density functions 

for which an inverse cumulative distribution function can be obtained explicitly. 

The accuracy of the design is dependent upon the ability to design the linear mem­

ory filter. 

The method was tested for ten specific design cases. The cases include 

specified output probability densities of the Uniform Density, the Random Telegraph 

Signal Density, the Chi-square Density with one degree of freedom, and the 

Rayleigh Density. Specified autocorrelations included exponential autocorrelations, 

triangular autocorrelations, and sin(x)/x autocorrelations. All cases passed the 

autocorrelation tests at a y = . 95 level of significance. The best results for the 

probability density tests occurred at a y= .06 level of significance. The least 

accurate results for which the probability density tests passed occurred at a 

y= .95 level of significance. Eight cases gave results in this region of significance. 

All ten cases gave results within a y = .99 level of significance. 



CHAPTER! 

INTRODUCTION 

Definition of the Problem 

Digital computer simulation of a system requires a mathematical 

algorithm for modeling the system and an algorithm to generate the required 

system inputs. Many systems of interest have inputs modeled as stationary 

random processes with both the probability density function and the auto­

correlation specified. 

The objective of this thesis research is to develop a procedure for gene­

rating pseudo-random processes with specified probability density function and 

autocorrelation for use in digital simulation. As part of the work, typical random 

processes are generated and their properties subjected to statistical tests to 

study the accuracy of the method. 

Origin and History 

In his tutorial paper on pseudo-random number generators, Chambers (1) 

indicated that significant interest in the generation of random numbers on digital 

computers began over twenty years ago. This work, which has for the most part 

been based upon recurrence relations involving integers, deals with a number of 

interrelated problems. 

A basic problem is the construction of pseudo-random number generators 
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which produce sequences of independent variables uniform on the interval 

[0,1]. The generation is usually based upon one of two methods: the 

mixed congruential method or the multiplicative congruential method. The 

principle involved is to generate each value of the variable in turn by an 

operation involving the previously generated value. A typical algorithm is 

given by 

X. = aX. + c (moludo m). (1.1) 

where X. is the newly generated valued X_ is the previously generated 

value, and a,c , and m are scalar constants. If c = 0, the method is called 

the multiplicative congruential method. If c ^ 0, the method is called the 

mixed congruential method. The relative advantages and disadvantages of 

these two methods have been thoroughly explored by Chambers and Hull, et al 

(1,2). Tests have been developed to check the sequence of numbers for random­

ness (1,3) and independence (1,5,6). 

A second problem area, discussed by Muller (7), includes several tech­

niques which produce sequences of numbers having independent Gaussian 

distributions. Of these, three are found in common usage. They are the direct 

approach, which transforms two sequences of numbers uniform on the interval 

[0,1] into two Gaussian number sequences by use of trighometric and loga­

rithmic functions; the inverse approach, which transforms a sequence of num­

bers uniform on the interval [0,1] by use of the error function integral; and 
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the central limit approach, which sums 12 or more independent uniform values 

from a sequence on the interval [-1,1]. 

Correlated Gaussian sequences are developed by Levin, Gevy, and 

Pakov (8,9,10,11). These methods make use of the fact that linear operations 

on Gaussian processes do not change the nature of the probability density 

function. Independent sequences of numbers N[0,1] are weighted and summed 

as 

y. = a„x. + a„x. , + a -x. rt +. . . . + a x. + . . . (1.2) 
Ji 1 l 2 l - l 3 i-2 n l-n v ' 

to produce the desired correlated Gaussian sequence of numbers. 

Marsaglia et al and Bankovi (13,14,15,16) discuss the construction of 

pseudo-random number generators having an exponential distribution. Sequences 

of numbers are obtained by performing a discrimination action on values from a 

distribution uniform on the interval [0,1] . At this time, this method has not 

been investigated with respect to autocorrelation. 

Curtis (17) designs pseudo-random number generators which possess an 

exponential autocorrelation. A random sequence {y } is generated such that 

,-kr 
y = y e .+ z (1.3) 
*n+T n r 

-kr where e is the desired autocorrelation and z is a random variable whose 
- T 
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moment generating function, <£(s), is related to the moment generating function 
z 

of y, $ (s), by the relation 

* (s) 

%w=fr*r : (1-4) 
T $(se ) 

Two methods have been devised for the generation of pseudo-random 

sequences of numbers having a specified autocorrelation which is the specific 

problem treated by this thesis. These methods pertain to (1) the generation of 

correlated Gaussian sequences and (2) the generation of densities having exponen­

tial autocorrelations. A s a means of approximating autocorrelations other than 

exponential and densities other than Gaussian, Gujar and Kavanagh (18) propose 

that a system for generating correlated Gaussian sequences be modified by attach­

ing a zero-memory device. As shown in Figure 1, the linear memory filter is 

designed to give the desired autocorrelation at its output. The Gaussian sequence 

is then transformed by means of the zero-memory device to give an output 

sequence having the required probability density but with no further attention to 

the autocorrelation. 

Broste (19) in a letter to the editor suggests that the method of Gujar and 

Kavanagh be modified by predi storting the autocorrelation of the Gaussian sequence 

so as to control the output autocorrelation as well as the output probability density. 

In a separate study Nuttal (20) attempts to achieve a desired autocorrelation 

using only nonlinear zero-memory networks with an input having specified first 

and second-order statistics. In general, it is impossible to design the zero-memory 
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Figure 1. Transformed Gaussian Method. 

network to realize the specified output when the input second order statistics is 

fixed. 

Results of the studies by Gujar and Kavanagh, Broste, and Nuttal on the 

specific thesis problem of generating sequences of pseudo-random numbers with 

prescribed probability density and autocorrelation can be summarized as follows: 

sequences of numbers having specified probability density and autocorrelation may 

be generated from independent Gaussian sequences by alternately controlling the 

autocorrelation and the probability density characteristics through the use of mem­

ory and zero-memory filters in a manner that allows each operation to compensate 

for the inadequacies of the other operations on the input sequence of numbers. 

Applications of Pseudo-Random Sequences with Specified 

Probability Density Function and Autocorrelation 

A significant need for improved techniques in random number generation 
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* 
is in the area of radar system simulation. A current area of research relates 

to the development of radar systems to be used in the tracking, identifying, and 

destroying of enemy aircraft flying at ground level. In simulating angle data, 

correlated uniform sequences of numbers are needed. A variety of combinations 

of specified density and autocorrelation functions arise in simulating the radar 

cross^section data and the ground clutter data. Examples are the Rayleigh density 

function (21) for the former application and the Weibull density function (22) for 

the latter application. 

Other applications for which simulation studies make use of correlated 

pseudo-random sequences are: 

a) life testing of products where wear-out failure is involved; 

b) Monte Carlo analysis of systems where the system components and/or dis­

turbance inputs are random; 

c) systems which analyze human responses to new situations based upon previous 

pattern behavior; and 

d) process control such as paper mills, tire factories, or any production line 

control. 

A particularly intriguing application deals with learning systems which must recog­

nize input trends and adapt accordingly. 

The author was made aware of this problem during recent employment by the 
RF Technology Group of the Advanced Sensors Directorate of the U. S. Army 
Missile Command in Redstone, Alabama. 
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Overview of Thesis 

The research results presented in this thesis deal with the development 

and testing of a design procedure for digital generation of pseudo-random number 

sequences with a specified probability density and specified autocorrelation. 

Chapter II presents the preliminary design considerations. Chapter III presents a 

detailed discussion of the design considerations required for implementing the 

Predistorted Transformed Gaussian Method. Chapter IV gives a specific design 

procedure along with a discussion of the properties and limitations of the proce­

dure. 

In order to adequately test the variables generated by the method, conside­

ration must be given to statistical tests and the manner in which they are performed 

on the random number generator. Such topics are discussed in Chapter V. A 

summary of the results of the statistical tests as applied to the variables generated 

in a number of cases studied is given in Chapter VI. Finally, the conclusions 

derived from the study are presented in Chapter VII. 
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CHAPTER II 

PRELIMINARY DESIGN CONSIDERATIONS 

This chapter presents the preliminary approaches considered for the ran­

dom number generation; formulatesr the problem mathematically in view of the most 

favorable approach, the Predistorted Transformed Gaussian Method; and considers 

the digital simulation of a continuous system when discrete random number sequen­

ces are used as inputs. 

Preliminary Approaches 

This section describes the preliminary design schemes considered for digi­

tal generation of pseudo-random numbers with specified probability density and 

specified autocorrelation. The schemes considered are the Moment Generating 

Function Method, the Rejection Method, the Transformed Gaussian Method, the 

Ordering Method, and the Predistorted Transformed Gaussian Method. 

Moment Generating Function Method 

The moment generating function method, developed by Curtis (17) and 

discussed in some detail in Chapter I, generates sequences with the aid of a second 

random variable z which is formed by using the moment generating function of 
T 

the density being generated. To develop z , the desired density must either have 

a tractable moment generating function or be Laplace transformable. The latter 

constraint permits only density functions with positive values to be used. In general, 
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this method is limited to a few continuous density functions, e .g. Gaussian (which 

can be obtained by other means), exponential, and gamma. 

Rejection Method 

* 

This method is similar to the method used for generating exponential dis­

tributions discussed in Chapter I. A sampling element is used that possesses a 

control on the input, as illustrated in Figure 2. The output value resulting from 

each input value is examined to determine if it is acceptable for the desired output 

density function; if not, the associated inp>ut value is rejected, and a new input 

value is generated. The objective of the sampler is to prevent the output sequence 

from having a Gaussian distribution by selecting from the output of the linear mem­

ory filter a collection of values having the desired distribution. This technique is 

unacceptable because (1) the input and output sequences are forced to be nonstation-

ary and (2) the output values near zero are not usually obtainable. 

Transformed Gaussian Method 

As illustrated in Chapter I in Figure i, this method (18) produces a Gaussian 

distributed sequence with the desired autocorrelation and then generates the desired 

density by passing the sequence through a zero-memory filter. The non-linear 

zero-memory device degrades the autocorrelation of the Gaussian sequence in pro­

portion to the amount of the nonlinearity. The less similarity the desired density 

has with a Gaussian distribution, the more corrupted the autocorrelation. As an 

example, only marginally acceptable results are obtained for the autocorrelation 

* 
The Rejection Method was initially proposed as a solution by B. F. Pope of the 
U. S. Army Missile Command in Redstone, Alabama. 
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Generator 
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Figure 2. Rejection Method. 

of the uniform density. The results are completely unsatisfactory for the auto­

correlation of distributions such as the exponential density or the chi-square density 

having one degree of freedom. 

Ordering Method * 

* 
The ordering method replaces the nonlinear zero-memory element in the 

Transformed Gaussian Method by an ordering scheme, as shown in Figure 3. The 

entire sequence of correlated Gaussian values is first generated. Once the Gaussian 

sequence has been produced, the values of the sequence are ordered from minimum 

to maximum. During the ordering process, information concerning the location of 

the value in the original sequence is retained. A sequence having the same number 

of values is then generated for the desired distribution, ordered from minimum to 

* 
This technique was suggested by F. M. Holliday of the U. S. Army Missile 
Command and tested jointly with him. The results were later incorporated, in 
part, in Mr. Holliday's MasterTs Thesis (23). 

Desired 
Correlations 

Desired 
Outputs 

Correlator Sampler 
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Figure 3. Ordering Method. 

maximum. These new values are compared with the ordered Gaussian sequence 

so that each value from the desired distribution replaces its counterpart in the 

Gaussian distribution as it appeared in the original sequence. 

Evaluation of this method showed that its results were no better, and in 

fact, essentially the same as for the Transformed Gaussian Method. 

Predistorted Transformed Gaussian Method 

* 
This method, as presented by Broste (19), makes use of two effects 

observed in the Transformed Gaussian Method. First , linear memory filters are 

used to introduce autocorrelation-, but in so doing, the output sequence of the filter 

is forced to have a Gaussian distribution. Second, zero-memory filters are used 

to transform probability density functions, with the autocorrelation being corrupted 

in the process. The interaction of these two effects must be considered if improve­

ment is to be made. The autocorrelation of the output sequence of the linear 

The work by Broste was done concurrently with this research. Since the author 
served for a time as consultant to the group that Broste worked with, Broste had 
access to the preliminary results of this research. 
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memory filter must be distorted to compensate for the corruption introduced by 

the zero-memory element. Figure 4 illustrates this modification. 

The Gaussian input is produced using standard techniques (7). The linear 

memory filter introduces a portion of the autocorrelation needed to obtain the 

desired output autocorrelation. This correlated Gaussian sequence is passed 

through the nonlinear zero-memory device to achieve the specified probability 

density function and the specified autocorrelation function. 

The Predistorted Transformed Gaussian Method is chosen for implemen­

tation and refinement since it seems to present the least shortcomings and has 

the capability of producing the largest class of random sequences having specified 

probability densities and specified autocorrelations. 

Mathematical Formulation 

This section presents a mathematical description of the system for imple­

menting the Predistorted Transformed Gaussian Method. The input and output 

sequences are described, and the method by which the sequences are transformed 

is characterized. A class of applications for which the procedure may be used 

is also discussed. 

Method of Transformation 

Using Figure 4 as a reference, the input to the Predistorted Transformed 

Gaussian Method is a stationary sequence §c ] of Gaussian random variables. Thus, 

the joint density is given by (12) 

_ - ^ 7 r r A.X.X. 
1. 0 2 | K l i = l j = 1 U U 

P(x1»xo X J = n/9 hr" P (2-1) 
1 2 n (2^nAV|K| V 
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Figure 4. Predistorted Transformed Gaussian Method. 

where | K | is the determinant of the covariance matrix K and A. is the cofactor of 
i ] 

the element K . Since the process is Gaussian, the first and second-order moments, 
J 

E[x.] and E[x x.] completely describe the process (12) and are ideally given by 
J 

E [ x . ] = 0 , (2.2) 

and E'[x.x..] = 
1 i = j 

0 i .^j 
(2.3) 

Practically, these parameters can have values other than those given by 

equations (2.2) and(2.3). If the mean is non-zero, a linear zero-memory operation 

may be performed on the sequence to adjust the mean to zero. If the second-order 

moments are non-ideal, the system design can include sufficient compensation to 

overcome these deficiencies. 

The required output is a stationary sequence [z } with a specified marginal 
n 

density p(z ) and a specified autocorrelation E[z.z.]. Thus, a choice of the linear 
J 
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memory filter and the nonlinear zero-memory filter must be made to produce this 

result. 

The linear memory filter, which transforms the sequence §c )into the 

sequence jy ], can be represented by the equation 

y. = G.,(x.,x. " , x . . 0 , . . . , x . . ). (2.4) 
J] 1V J J - l J-2* j - k ' 

A special choice of G can be made to relate the correlated sequence jy }to the 

input sequence £c } by 

y. = T, a.x. (2.5) 
J i=l * J 

where the a f s are constants. If the transformation of (2.5) is used, jy l i s a 
l • n 

Gaussian random sequence since linear operations on Gaussian processes do not 

change the nature of the probability density function. 

The correlated Gaussian sequence jy }is next processed through a non­

linear zero-memory operation to produce the desired output sequence {z }. Thus 

the output is given by 

«j = Qa&j^ G 2 [ G I V M xJ-k)]- ( 2 '6 ) 

For the choice of G- given in equation (2.5), 

z, = G J y ] = G £ a x . . J 2 j 2 _ i = 1 i j- i+1 

,-k 
(2.7) 
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The autocorrelation of the output sequence {z } can be given by 

<VlJ-E^2Si^V+ l]Q2[|lVH*lJ} = EK(y
J)

G2W}.. ( 2-8 ) 

Application in the Simulation of Continuous Systems 

The research discussed in this thesis pertains to the generation of sequences 

of random numbers which can be used as inputs in simulations. These discrete 

sequences can be used (in a more or less standard manner) in the simulation of 

continuous systems. For any given application specific problems arise when 

selecting the proper number of values for the sequence. 

The number of values in the sequence must be chosen to properly describe 

the significant information in the high frequency region. This choice must be 

made prudently so that too many samples are not chosen making the data redundant. 

The selection of the number of samples should be based upon the system cutoff 

frequency or Nyquist frequency and the length of the time record desired. 

If the continuous system being simulated produces output information based 

upon key random properties of the sequence, the sequence should have a sufficient 

number of values to allow estimates of these random properties to be made that are 

within the desired error bounds. The desired error bound, the type of estimator, 

and the specific random property being estimated will aid in the determination of 

the length of time record required. 

In simulating a continuous white noise process, with an autocorrelation 

function given by 
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R (T) = CT 6(7), (2.9) 
Cs I s 

the discrete white noise case is of the triangular form given by 

M 1 T J f 0 r l T ^ T 

R j t t m. < . (2.10) 
0 elsewhere 

Rowland (24) indicates that for a good simulation the equation 

. 2 

* d
2 = ^ - ( » • « ) 

will hold provided the higher order frequency effects may be neglected. This will 

be true if 

T < . 1 ~ (2.12) 
n 

where f is the highest frequency which the system will pass. 

The mathematical formulation of the Predistorted Transformed Gaussian 

Method for generating random number sequences having specified probability 

densities and specified autocorrelations will be used as a basis for the design con­

siderations presented in the next two chapters. 
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CHAPTER m 

DETAILED DESIGN CONSIDERATIONS 

Based upon the preliminary analysis just completed on the Predistorted 

Transformed Gaussian Method, design of a system to generate stationary discrete 

random sequences requires three steps: determination of the nonlinear zero-

memory filter, which transforms a correlated Gaussian input sequence into the 

sequence having the desired output density; determination of the autocorrelation 

of the correlated Gaussian sequence, given the desired autocorrelation of the out­

put sequence; and determination of the linear memory filter, restricted to 

y j = Gi (xj )=!iaixj-i+i- ( 3 a ) 

Each step of the system design is discussed in detail in this chapter. 

Design of Nonlinear Zero-Memory Filter 

Although the input sequence to the filter may have any mean and variance, 

the sequence is specified to have a Gaussian density with a zero mean and unity 

variance. This specification permits the greatest ease in the design of the non­

linear zero-memory filter and can be achieved by restricting the input sequence 

of the system to have a zero mean and unity variance. The output sequence has 

a specified probability density and autocorrelation. The nonlinear zero-memory 

filter can be designed by first transforming the Gaussian sequence jy } into an 
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intermediate uniform sequence {w ] , and then transforming this uniform sequence 

into the desired output sequence. This operation can be characterized in terms 

of cumulative distribution functions as illustrated in Figure 5. The random 

sequence {w ] has values given by 

2 
1 y. -f-

1 e d y = P ( y ) . (3.2) 
-o> y 1 . 

1 J2" 

The output sequence {z }may also be related to the uniform sequence by means of 

a cumulative distribution notation 

w. = P [z.] . (3.3) 
1 Z 1 

Taking the inverse, 

-1 
z. = P [w.] (3.4) 

l z i 

which allows the output sequence to be related directly to the input sequence by 

z. =' P" [P (y.)l (3.5) 
I z L y r x 

Since |y ] is Gaussian, its cumulative distribution can be written as an error 
n 

function 

i 2 

— 1 — ^i - . Y -
Erf(y.)= ffi f e 2 dy (3.6) 1' • N 

- 0 0 

so that 
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W = Py(y) w = P (z) 

Figure 5. Design of Nonlinear Zero-Memory Filter. 

z. = P^pErf 
1 z L 

(y.)] • (3.7) 

Several examples of output densities can be considered to illustrate the 

performance of this design step. The uniform density requires that p (z.) = -
z i a 

for 0 £ z. < a so that 

z. = aCErf^ ) ] . . (3.8) 

The random telegraph signal density requires that all positive input values be 

transformed to an output value of +1 and that all negative input values be transformed 

to output value of - 1 . The random telegraph signal distribution is given by 

i z.= 1 

z ' r 
(3.9) 

so that each value of the sequence is given by 
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- 1 I - 1 W i < ' 5 

z. = P (w.)= < 0 w. = .5 (3.10) 
i z i' 1 i 

+ 1 w. > .5 

Using the notation 
1 ; U ,>0 

l 
Sgn u. = < 0 u. = 0 (3.11) 

-1 u. .<o . 
i 

\ 

equation (3.10) becomes 

or 

z^SgnCErfCy.)- . 5 ] , (3.12) 

z. = Sgn(y.), (3.13) 

The chi-square density with one degree of freedom has a cumulative distribution 

of the form 

1__ 
z 

0 

z i - z / 2 
p

z<
zi>= ^7i^~J e dz* (3-14) 

The inverse distribution is thus given by 

z. = {£rf"1[Erf(y.)]}2 = y i
2 . (3.15) 

An exponential density having a cumulative distribution of the form of 

P (z.) = 1 - e"Z i z .^ 0 (3.16) 
zv r i 

requires, for example, a zero-memory element of the form of 
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z. = - log[ l - Erf(y.)] . (3.17) 

In the formulation of the problem in Chapter ri it is pointed out that the 

nonlinear zero-memory filter might not always exist and can be a possible res t r ic­

tion on the problem. The method for designing the zero-memory filter as shown 

here is achievable for any specified output marginal density. It is instructive to 

point out that a table can always be constructed that relates z. to y.. 

Calculation of Input Autocorrelation to Zero-Memory Filter 

The most difficult problem in the system design is the determination of the 

input correlation function to the zero memory device. A significant amount of work 

has been performed by Deutsch, Thomas, Thomson, Bonet, and Baum (25-29) in 

the area of how to determine the relationship between input and output autocorrelation 

in applications using the assumption that the input sequence has a Gaussian distri­

bution. 

Three methods of determining the input/output autocorrelation relationship 

have been developed. The discussion of these methods which follows makes use of 

the notation of Figure 6 where the notations R (j) and R (r) will represent the collec-
y z 

tions of second-order statistics E fv v 1 and E (z z ] respectively. Each collection 
j j+ r j J+T J p J 

of second-order statistics can also be written in the form 

R(T)=CT2P(T) + m2 (3.18) 

2 

where 0(7) is the collection of the normalized second-order statistics, or is the vari­

ance, and m is the mean. In each method g(y) is a single-valued transformation of 
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M 
R (r) = E[y.y. } 

g(y) M 
R (7) = E{z.z. } 

Figure 6. Nonlinear Zero-memory Filter Notation. 

|y }to {z }. 
n n 

The direct method, sometimes called the density function method, allows 

the determination of the output autocorrelation in terms of the joint density of the 

input and the transformation g(y). The result (26) is given by 

R (T) zx ' 
2 i r , / l - P y t t 

oo a) 

•GO - a ) 

g(y1)g(y2) 

exp 
yx '2Py(T)y1y2+y2 

2(1-Py (T)) 
dyxdy, (3.19) 

where y and y are dummy variables of integration. The only unknown in the 

right-hand side of equation (3.19) is the input normalized autocorrelation p (i). 

Equation (3.19) relates R (r) as a function of p (?) To obtain p (i) as a 
z y y 

function of R (7) using a direct method, a knowledge of the joint density of the 
z 

output sequence would be required. As the joint density is not specified, equa­

tion (3.19) must be used. In many instances, the relationship of the 
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inverse of the result of equation (3.19) may be found explicitly. As an example, 

a specified uniform density as output requires an input/output normalized auto­

correlation relationship of the form (26) 

p z ( 7 ) = - a r c s i n ^ — (3.20) 

which yields 
p(7) = 2 sinl S*»] (3.21) 

A specified random telegraph signal density as output requires an input/output 

normalized autocorrelation relationship of the form (26) 

z 77 y 
(3.22) 

which yields 

py(T) = sin| i".«] (3.23) 

A specified output of a chi-square density with one degree of freedom requires an 

input/output autocorrelation relationship of the form (26) 

R (7) = R 2(0) + 2R V ) 
z y y 

which yields 

R W H i 

1 
2 1^ 

R z (T) -R y (0) 

(3.24) 

(3.25) 
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In some cases it is easier to obtain p(i) by expressing equation (3.19) in 

terms of a joint characteristic function g;iven by 

00 CO 

R Z ( T ) = ~ 1 ^ J J i I-(v iyJ |(v 2)*(v. 1 ,v 2)avdV 2 (3.26) 
(2IT) -CO -CO 

where 

J$ (w)=^[g (y ) ] (3.27) 

and ••; 
$ ( v , v ) = E . | e ; i l V i y i V 2 y 2 | . (3.28) 

This method is called the characteristic function method. 

A case which illustrates this point is the class of non-linear zero-memory 
J.-L. 

filters known as Full-wave Even v— Law Devices. This class possesses a zero-

memory filter which transforms the Gaussian sequence in the manner of (26) 

\ = g f r ^ c l y / . , (3.29) 

For equation (3.28) 3> (v ,v ) can be approximated by a series so that the integral 
y 1 2 

can be evaluated to give 

k 

R
a « = 4r vir- (3-30) 

even 

v-k 
where 

v-2rr<1^B]a'1"f?)- (3-31) 
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The series form of equation (3.30) prohibits the determination of the inverse 

relationship. To circumvent this problem, values may be assigned to p {t) and 

the expression for equation (3.30) tabulated numerically. The result is a table 

of input second-order statistics with corresponding output second-order statistics, 

For each specified output second-order {statistic, the corresponding input second-

order statistic may be determined from the table. 

A third method, the series method, allows the determination of the output 

autocorrelation when the forms of equations (3.19) and (3.26) yield a tractable 

relationship to integrate. A series expansion (of the Gram-Charlier form) of the 

input density is developed such that (26) 

oo 

^yj^p^^WW 0.32) 

where ® ' ® 

" p v (y ry 2 )9 n (yi> W 1 ^ ( 3 - 3 3 ) A = 
n 

- 0 0 - 0 0 

and 8 ( y j and Y (y ) are polynomials of order n. Then when p (y , y )• is symmetric 

00 

R Z W = ^ Cn K <3 '3 4) 
z n =o n n 

where ^ 

c = 
n 

g(y)P](y)en(y)dy (3.35) 

- 0 0 
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where 

Pn(y) = 

2 
-y 

Lg2? 27TCT 
(3.36) 

with p being the normalized correla t ion coefficient. 

* 
A special case of the se r i e s method makes use of Hermetian polynomials 

(27). When the input Gaussian signal has a mean of ze ro and variance of unity, 

0 (r) = R (T) 
y y 

(3.37) 

The approximate output i s given by 

co R
Ẑ

 = £0
 ck V « (3.38) 

where 
co 

c k = (k! )"* \ pv(y)Hk(y)pv(y)dy 
-co y y 

(3.39) 

where H ( y ) is the Hermite Polynomial of order k given by the recurs ive relat ion 

H f c t » = x H k W - S H k « . (3.40) 

The f i rs t three polynomials a r e 

H . = • 1 

H / = x (3.41) 

H„ = x 2 - l 

The work by Broste (19) makes use of \his method. 
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The use of the series method yields an approximate result the quality of 

which is dependent on a large number of te rms . 

Experience in using this design step indicates that the zero-memory filter 

tends to decorrelate the random sequence. As a result, this design step will 

usually result in the second-order statistics for the input sequence having a 

larger amplitude than the corresponding second-order statistics for the output 

sequence. 

Design of Linear Memory Filter 

This section presents a detailed discussion of the design of the linear 

memory filter. Three design procedures are discussed, namely Levin*s Method, 

Geryfs Method, and Pakovfs Method. In addition, a modification of Pakovfs 

Method is presented. A discussion follows on the implementation of the latter 

method which is the best design approach. 

Design Methods 

Levin1 s Method. This method (9) makes use of a simple recursive formula 

to generate Gaussian sequences, having either a specified autocorrelation function 

or power spectrum function, from an independent Gaussian sequence. An inherent 

advantage of the method is that initial conditions are so chosen that no transient 

accompanies the starting of the output sequence. 

The method develops the recursion formula by making use of certain z-

transform concepts. The principle involves the solution of the convolution 

relationship 
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R (7) = h(T)*h(-T> (3.42) 

which has a z-transform given by 

* (z) = HtzJHCz"1) . (3.43) 

H(z) is found by factoring equation (3.43). Since 

oo 
H(z) = £ h(n) z" n , (3.44) 

n=0 

h(n) may be obtained by long division. The recursive formula for generating the 

first K-l output values of the sequence is given by 

n 
y(n) = i: h(m) x(n-m) + £ n < K-l (3.45) 

m=0 n " 

where £ is a random variable representing the influence of all x(n) for n <0. All 

values for n > K are given by the recursive relationship 

y(n) = - b ^ n - 1 ) - . . . - I^ (n-K) + aQ x(n) 

+ a x(n-l) + . . . + a x(n-K) (3.46) 
A. .K 

where the coefficients are taken from the z-transfer function when written in the 

form 
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Gery's Method. This method (10) develops a transformation matrix G 

which transforms independent Gaussian sequences represented by X into 

Gaussian sequences represented by Y having the desired autocorrelation. Thus, 

Y = GX . (3.48) 

The Yariance-covariance matrix R is given by 

R = GG'. (3.49) 

The required design is the solution of equation (3.49) for G. It should be noted 

that the first few values generated are transient in nature and must be discarded. 

If the solution of G is assumed to be a triangular form G (g..), the speci­

fied covariance matrix R is of the former. .) . Then 
4 i.l 

hi= V r i i 

B i i 

g. 
i j 

*11 

r . - E g 
v ii m=l mi for i > 1 

L r _nnjni_ farj<'l 
v iJ m=l g.. J 

n 

for i > j ^ 

(3.50) 

so that 
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yl = gllXl 

y2 = g12Xl + g22X2 

> 
(3.51) 

y k = g i k x i + g 2 k x 2 + - - - + g k k V 

Without modification this method is only suited to generating a sequence of finite 

(and practically very short) length. 

Pakov's Method. This method (11) characterizes the design problem in 

terms of the N equations which result from the expression of equation (3.42). The 

filter is characterized by N filter weights, a. t OL, OL, . . . , a , . . . , CL,.. The 

relationship of these weights to the normalized autocorrelation is given by the N 

equations 

"\ 
fi = « 1

2 + « 2
2 + . . . + a N

2 - i = o 

f2 ' « f t + %+-+Vi%-'w = 0 

f3 V^V°2V'--+0k-20k-<3<2 '> = <> 

> 

N_1 = ai°k-i+ a 2°k" PHn-2)^ = ° 
fN = «iaN-p[(-N-i)T] = o 

J 

(3.52) 
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The filter is designed by solving these N equations simultaneously. The desired 

output values are given in terms of the filter weights as 

N 

^SxlVn <3.53) 

It should be noted that the first N values of y. are transient in nature and must be 

discarded. 

Pakov outlines three approaches for solution of the equation. The first, 

the "simplified method of direct solution," consists of a simple method for calcu­

lating filter weights when the desired output sequence has an exponential auto­

correlation. This method yields suitable accuracy for engineering purposes. It 

is obvious that a method of direct solution can also be developed for output sequence 

having triangular autocorrelations. The limitation with this approach is that the 

required autocorrelation for the linear memory filter output is rarely ever expo­

nential or triangular. When an exponential or a triangular autocorrelation is 

specified for the output sequence, the resulting autocorrelations at the output of 

the linear memory filter is usually a perturbed form of the output autocorrelation. 

As a result, a "direct method" would give only approximate results. The second 

approach, the "iteration method, " solves the nonlinear equations describing the 

relationship of the filter weights to the autocorrelation in an iterative fashion until 

the change in the filter weights is within the desired accuracy. The third approach, 

the "Newton!s Method of successive approximations," reduces the nonlinear system 

of equations to a corresponding linear system of equations which can be solved by 
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ordinary methods. The implementation of this method is tedious and time 

consuming. 

Modified Pakov Method 

A solution is required which will give-real values to a for each autocorre­

lation specified. Nakamura (30) gives a necessary, but not sufficient, condition 

that equation (3.52) has an exact solution for real a. of 

N- l 
1+ 2E P(T)>0 . (3.54) 

T=l 

An empirical study indicated that additional restrictions exist. Con­

sider, for example, the two weight case for which p(l) is specified (p(0) is required 

to be 1). In this case equation (3.52) reduces to 

t = O L
2 + 0 ^ 2 - 1 = 0 (3.55) 

and f2 = fli0fe"'P(1) = ° '• (3'56) 

A plot of these equations is given in Figure 7 for /CL = 0.5 showing the solution to 

* 
be QL = CL = . 707. Note that for p(l) > . 5 there will be no real solution. 

* Experience has indicated that the triangular autocorrelation serves as a good 
rule of thumb for indicating whether or not a given autocorrelation will yield a 
realizable linear memory filter. Let p(f) represent a given autocorrelation 
function where R(r) = m for r > T. There will be a good likelihood that the 
linear memory filter will not have an exact design if 

0(T)> 1 - ^ 

for any discrete r < T . It should be reemphasized that this is only a rule of 
thumb. 
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p ( l ) < 0 / ' •. 

1 ^P(l)<.5\SN^^_ 

P(l)<.5 V A 

p ( l ) > 0 

-°iV-a2 J 
0(1) < 0 

P ( l ) > . 5 

= .5 P(l) 

Figure 7. Linear Memory Filter Design Example. 
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To circumvent the inability to solve the filter equations exactly in certain 

cases, an optimization approach can be used to select real filter weights which 

come as close as possible to satisfying the N equations specified in (3.52). This 

approach can be carried out by minimizing a functional F defined as (31) 

N 2 
Z i. = F (3.57) 

i = i J 

where the f. have the significance given in equation (3.52). Standard minimiza­

tion schemes, such as the Fletcher-Powell Technique (31), can be employed to 

obtain a solution. 

Four cases were tested for which the equations had a solution. The opti­

mization approach yielded results that compared favorably with the iteration 

approach as illustrated in Tables 16 through 19 of Appendix n . It is concluded 

that the optimization approach may be used in all cases with confidence. The 

value of the functional minimum for the final solution can be used as an indicator 

as to whether or not the equations could have been solved by the iterative method. 

Experience indicates that, in general, for thirty filter weights, a "minimum" 

—fi 
F <10 corresponds to a set of equations that could be solved by PakovTs Method 

in an iterative manner or using Newton* s Method of successive approximations. 

—fi 
A "minimum" F > 10 corresponds to a set of equations which could not be solved 

—fi 
directly. Again, it should be emphasized that the use of the value of 10 is merely 

a rule-of-thumb. 

An empirical study was performed on the effect that increasing the number 
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of filter weights has on the functional minimum. Four cases were studied that 

could not be solved using Newton1 s Method of Successive Approximation. The 

results are given in Tables 27 and 28 of Appendix II. In all four cases two ques­

tions were raised. First , what effect does an increase in the number of filter 

weights have on the total value of the functional minimum 7 Second, what effect 

does an increase in the number .pf filter weights have on the error introduced by 

particular equations? The initial minimization for each case used N filter weights. 

Each minimization effected thereafter increased the number of weights, and hence 

the number of equations, by N. The functional minimums for each minimization 

are denoted in the Tables by F. To determine the effect that the number of filter 

weights had upon the error introduced by particular equations, the error intro­

duced by the original N equations in each case was tabulated for each minimization. 

This error is denoted in the Tables by A. For each case of the triangular auto­

correlation in Table 27, the value of A decreases as the number of filter weights 

increases until the optimization approach ceases to converge when the number of 

filter weights is on the order of 30. For the case of the sin (x)/xautocorrelation in 

Table 28, A gradually increases as the number of filter weights increases. It was 

concluded that for the triangular case, optimization can be improved by increasing 

the number of filter weights to the order of 25. 

Determination of Filter Weights for Modified Pakovfs Method 

Pakov's Method uses the assumption that the input sequence is orthogonal, 

that is 
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fl i = j 
E[x.x.] =\ (3.58) 

1 ] |o i ^ j , . 

In practice, the input sequence is not exactly orthogonal and the modified method 

is developed without this assumption. 

Let 

y. = .£• a .x. , J ] i^L i j - i + 1 

represent the output of the linear memory filter. Then 

(3.59) 

r 1 r N - NA -I 
E y.y. = E £ ax . _ n S ax. . n . (3.60) 

L V J - T J L £ I i j - i+ l ^ i 1 ! j - i+ i - rJ l ' 

Expanding and collecting terms for the case where §c } has a zero mean and unity 
n 

variance yields 
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E ^ y . 
LTJ-T. 

= p (r-N+l) 
A. «iV + p (T-N+2) 

X 

r- ^ A A 

_i=l i i+N-2. 

+ ' • • + <>x<'-2> I J x <Vi+2_ + <>x ^ fel «ft+.i 

+ P *x 
r N A 9 n . P ^ T - I A A n 

Wfel«i-+"x(T+1)[|iaiVlJ 

N-2 
p (f+2) [~L a.a. „ 
*V ' U=l i i+2- + . .+p (r+n-2) |~E i a . ^ , o 

*V ' l_i=i i i+N-2. 

p x (7+N-l) [ a ^ (3.61) 

It should be noted that the summation terms are the same as those of equation 

(3.52). It is convenient to introduce the notation 
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N A 2 

art = L a. 0 i=i u i 

N A A 
ai = .£.^-^i 1 i=i l l+l 

N-2 
ao = - ^ i OL.QL. n 2 i= l *̂i i+2 

V 2 = & «iai+N-2 

aN-l = S A y 

Now equation (3.61) can be writ ten in the form 

(3.62) 

E[y.y. 1 = V x ( r ) + a M < n l > + / ° x
( r " 1 ) ] 

+ a2[px(r+2)+px(T-2)]+ . . . 

+ a
N . 2 [ ^ ( n N ' 2 ) + Px < T " N + 2 ^ (3.63) 

+ a
N _irP x (T+N-l) + ^(T-N+l) ] . 
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Equation (3.63) can be expressed compactly in matrix notation where P is an 

N valued column matrix given by 

P = 

E [ y 2 ] 
J 

E & ] y . + 1 ] 

E[y.y.+ 2] 

E [ y iYN-i ] 

(3.64) 

R is a 3N-3 valued column matrix given by 



R = 

Ej x.x. 
L j J - N + I . 

El x.x 
j j-N+2-

E[X..X. 
L J J-2. 

EJi.x. 

E x. 
j J 

EPX.X. „ 
L ;i -j+i. 

Efx.x. rt 
L j j+2. 

Efx.x. 
L j j+N-2-

ETX.X. 
L J j+N-1.^ 

EFX.X 
L'J J+2N-&-

E x.x. ' _ 
L j J+2N-2. 

and Q is a (N) x (3N-3) matr ix given by 



Q = 

a a a . . . a a a a a a 
N-1 N-2 N-3 2 1 0 1 2 3 

0 V l a N - 2 / ' - a 3 a 2 a i % a i a 2 

° ° a N - r - - a 4 a 3 a 2 a 2 a 0 a i 

° ° •••° V l V 2 aN-3 aN-4 aN-5' 

0 0 0 . . . 0 0 a N - l a N-2 a N-3 aN-4" 

a a 0 . . . 0 0 
N-2 N-1 

a a a . . . 0 0 
N-3 N-2 N-1 

a a a . . . 0 0 
N-4 N-3 N-2 

a a a . . . a 0 
0 1 2 N-1 

a a a . . . a a 
1 0 1 N-2 N-1 

(3.66) 

^ 
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Equation (3.54) becomes 

P = QR (3.67) 

Solution of equation (3.67) for a. allows the modified Pakov Method to be expressed 

as 
A 2 A 2 A 2 

f i = « i + « 2 + - - + « & - a 6 = 0 

V = ¥ 2
+ ¥3 + - - - + V i a k - a i = 0 

fN-l = a i a N - l + C ¥*N- a N-2 = ° 

N 
= tfl°N-Vl = 0 

(3.68) 

This chapter has discussed in detail the design considerations for the 

Predistorted Transformed Gaussian Method for the generation of stationary dis­

crete random sequences. The next chapter will survey the concepts presented in 

this chapter by giving a specific approach to follow in making the design along with 

a means of assessing the error of the method for generating the desired output 

sequence. 
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CHAPTER IV 

FINAL DESIGN PROCEDURE 

This chapter presents the final design procedure along with an assess­

ment of the error of the method for generating the desired output sequence. 

Design Method 

The final design procedure consists of the following steps. 

Step 1. Determination of the nonlinear zero-memory filter: The zero-

memory filter is designed by using the relationship 

* • - p - 1 

i z 
Erf(y.) (4.1) 

where P is the inverse of the cumulative distribution function, P (z) is specified 
z z 

for the output sequence. This design can be achieved for all density functions for 

which an inverse function P exists. 
z 

Step 2. Determination of the autocorrelation of the Gaussian sequence (y ]: 

Determination of the input second-order statistics to the zero-memory filter can 

be illustrated in principle as follows. The general input-output autocorrelation 

relationship for the zero-memory filter is derived using the Direct Method given by 

R s W = 2 f f O n 7 J J S(yi>g(y2)exp[- 1 ° - _ 1 y i d y 2 . (4-2) 2 I T / 1 - P (7) „ „ - - 9nn-M\ 
y -oo -oo Aii-pAW) 
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Since this equation is in the form 

R W=#fc>(T)]> (4.3) 
z y 

the inverse can be taken in principle to yield 

- 1 
Py(r) =7/CRz.(i)]. (4.4) 

To implement this approach in practice, three alternative methods can be 

used, namely analytic implementation, characteristic function implementation, or 

brute force implementation using series or a tabular method. The direct method 

for calculating the input/output autocorrelation can prove to be an untractable 

mathematical step. In such cases, the Characteristic Function Method described 

in Chapter III can be substituted. If this atpproach also proves to be untractable 

mathematically, the Series Method can be used using Hermetian polynomials or 

some other series of the Gram-Charlier Form. The series approach is used at 

the sacrifice of having to calculate a large number of terms to gain satisfactory 

accuracy. When input/output autocorrelations, of the form of equation (4.3), 

result that do not have an inverse form that can be readily found, a table of input/ 

output autocorrelation values can be developed. Each input second-order statistic 

can be found by entering the table for each output second-order statistic and read­

ing off the corresponding input second-order statistic. 

This design step can be achieved for all zero-memory devices and all 

output autocorrelations. For example, the brute force approach would seem to 

always be possible. Deutsch, Thomas, and Baum (25,26,29) have catalogued 
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a large group of zero-memory devices for which the input/output autocorrelations 

have been determined. 

Step 3. Determination of the linear memory filter: The determination of 

the linear memory filter requires seven steps. 

1. Determine the number of filter coefficients a to be used in the 

design. Call this number N. 

2. Calculate the normalized second-order statistics of the input sequence. 

The second-order statistics from r = l - N t o r = 2 N - 2 are used to 

form a matrix R given by 

R T =[p( l -N) p(2-N) . . . p.(0) . . . p(2N-2)] . (4.5) 
X X A A 

3. Form a matrix P representing the desired output second-order 

statistics given by 

P = [py(0) py(l) . . . Py(N-l)l (4.6) 

4. Form a matrix Q which will be composed of the correlation values 

for which the linear memory filter will be designed given by 

Q = 

a a . . . a 
N-l N-2 0 

V a2 • • •Vi° •••° ° 
a . . . a a a . . . a a . . . 0 

N- l 1 0 1 " N - 2 N- l 
0 0 . . . a 2 & 1 a 0 • • • a N - 3 a N - 2 - - - ° ° 

0 0 . . . a a a . . . a a . . . a 0 
•** N-2 N-3 N-4 1 2 N- l 

0 0 . . . a N- l ^ - 2 ^ - S ' - ^ o a i ' " ' • N-2 a N - l 

(4.7) 
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5. The resulting relationship between matrices P, Q, and R is given by 

P = QR (4.8) 

This equation relates a set of N equations having N unknown a. ' s . 

Solve this set of equations for the a. 's . 

6. Form a set of filter design equations given by 

*2 * 2 A 2 n . *\ 
f l = Oi + a 2 + - - - + 0 k - a 0 = ° 

f2 = % + « 2 ° b + - - - + S ( N - i a ( N - a i = 0 

fN-r%-i+%-V2 = 0 

^%:Vf° 

(4.9) 

7. These equations can now be combined to give a composite functional 

F = 

N 

I f - 2 
Z- i 

i=l 

which can be optimized to yield the values of a to be used as the 

filter coefficients. 

This design procedure will yield a design for the linear memory filter for all 

specified output autocorrelations. For some specified output autocorrelations 

the filter design will be approximate as the solutions of the equations of (4.9) 

obtained by minimization do not intersect for the resulting values of a.. 
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Assessment of Error for Design Method 

The accuracy of the design method is dependent upon the ability to mini­

mize the functional F in the design of the linear memory filter. An assessment 

of the error of the design method can be based upon the value of F with the design 

—fi 
procedure being considered to be exact for functional minimums less than 10 . 

—fi 
As the functional minimum increases above 10 , the design method has a degree 

of er ror introduced by the linear memory filter design. Satisfactory design r e ­

sults can be obtained up to a value of functional minimum on the order of 10 . 

Designs having values of the functional minimum above 10 should be judged on 

an individual basis as to the accuracy of the output autocorrelation. 

An additional error may be introduced if a proper choice of input sequence 

is not made. Some sequences require a large number of values in a localized 

region of the probability density curve. Such sequences require a prudent choice 

of the input sequence to insure that the sequence is distributed properly to give 

the specified output sequence. 

This chapter has presented a detailed outline of the design procedure along 

with an error assessment of the design method., The next chapter will present 

the statistical tests used to evaluate the performance of this design method when 

used for several interesting cases. 
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CHAPTER V: , , 

STATISTICAL TESTS FOR EVALUATING PERFORMANCE 

The objective of the research discussed in this thesis is to develop a 

technique for generating stationary discrete random sequences. The design tech­

nique, discussed in Chapters III and IV, has been implemented for several inter­

esting cases. This chapter presents a discussion of the statistical tests used to 

evaluate the performance of the designs for these cases by first identifying the 

critical statistics to be tested and then discussing the tests to be used. 

Classification of Critical Statistics 

The Predistorted Transformed Gaussian Method for generating stationary 

discrete random sequences uses an input Gaussian sequence jx } to produce an 
n 

intermediate correlated Gaussian sequence jy } and the desired output sequence 

[z ]. Three properties describe the sequences (32). The first property, the mean 

square property, is characterized by two statistics, the mean which gives a static 

description of the sequence and the variance which gives a dynamic description of 

the sequence. The second property, the probability density function property, 

relates the probability that a value of the sequence will be within some defined 

range. The third property, autocorrelation, describes the dependence of each 

value in the sequence on all other values in the sequence. In addition, the charac­

teristic of stationarity is used to characterize the sequence. The characteristic 
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of a sequence being stationary implies i;hatthe:«random properties of the sequence 

do not vary significantly due to translation in position within the sequence. 

The random, properties of each sequence are calculated using the values 

of the sequence. The mean square statistics are calculated by averaging N values 

of the sequence such that the mean of the sequence [u } is given by 

u = < u n > N , (5.1) 

and the variance is given by 

s2
 = < ( U n _ u )

2 > N . (5.2) 

The probability density property is determined by calculating either the density 

function or the cumulative distribution function for N values of the sequence. The 

autocorrelation property is determined by using N-+ rvalues of the sequence to cal­

culate the second-order statistics given by 

1 N 

E[u .u . ] = - £ u.u. . (5.3) 
J ] V N 3 J+T * 

Standard statistical tests can be used to study some of the properties of the 

sequences produced by the Predistorted Transformed Gaussian Method. The mean 

of a Gaussian sequence can be tested using the Student-t Test for Means (32). The 

variance of a Gaussian sequence can be tested using the Chi-square test for Vari­

ances (32). The probability density property can be tested for most sequences 

using either the Pearson Chi-square Goodness-of-Fit Test (32,33) or the Kolmogorov 
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Test (33,34). The chi-square goodness-of-fit test compares the density function 

of the generated sequence with the required density function. The Kolomogorov 

Test compares the cumulative distribution function of the generated sequence with 

the required cumulative distribution function. 

Two newly developed statistical tests can be used to study the autocorre­

lation property. The first test, developed by Patel (35), tests the second-order 

statistics without using information concerning the variance. The second test, 

presented for the first time in this thesis, tests the second-order statistics of 

Gaussian sequences. This latter test can be extended to test the autocorrelation 

property of the output sequence for the design method being tested. 

Statistical Tests 

Because the calculated statistics for each sequence are determined using 

a finite number of values from the sequence, the calculated statistics will vary 

from the theoretical values by a small amount. Each statistical test cited in the 

previous section compares calculated statistics with the theoretical values by 

developing a random variable which describes the degree of agreement or dis­

agreement. A rational basis is used to determine from this random variable 

whether or not the sequence being tested possesses the theoretical value required. 

The decision as to whether or not the test sequence possesses the specified 

theoretical statistic is based upon a consideration of the probability density func­

tion of the random variable describing the degree of agreement or disagreement. 

Figure 8 is used to illustrate the mechanics of this decision. $ is the calculated 
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Region 
Area =-'1_ 

Rejection 
Region 

^ * 

Figure 8. Probability Density of Random Variable Comparing 

Calculated Statistic arid Theoretical Statistic. 

random variable with a probability density of p(<l). A region of significance (called 

a level of significance, y) is chosen for the density curve . When the sequence pos ­

s e s s e s the specified theoretical s ta t is t ic , the random variable <$ will be within the 

region of significance with probability of y and outside of the region with probability 

of 1 - y. By choosing y l a rge , 3> will fall outside of the region of significance only 

a small portion of the t ime. When <Hs outside the region of significance, an 

assumption can be made that the sequence being tested does not possess the speci ­

fied theoret ical s ta t i s t ic . The smal ler that y i s made, the more stringent the tes t 

becomes . Typical values for y a r e .80 (or 80%), .90 (or 90%), and .95 (or 95%). 

The t es t s then possess an inherent e r r o r . When the tested sequence 

posses ses the specified theoretical s ta t is t ic , the tes t will fail (1 - >)% of the t ime . 

When the tested sequence does not possess the specified theoret ical s ta t is t ic , the 

tes t will pass only a small portion of the t ime . On the whole, however, the t e s t s 
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give a useful measure of the statistics being tested. 

Mean Square Value Tests 

The tests of this section apply to sequences {u }that are normal with mean 

• " 2 m and variance u . 
u 

Mean. Consider a random sequence having N values. The mean u is 

given by (32) 

1 N 

u = ^ L u (5.4) 
i=l 

•f"Vi 

where u. is the i— value of the sequence. The mean of the sequence has a mean 
I 

of 

and a variance of 

E [ u ] = m u , (5.5) 

2 
Var[u] = ^ . (5.6) 

A statistic showing the degree of disagreement between the calculated 

mean and the theoretical mean is given by the relationship 

A • (u - m ) \ / N 
t n

 = — , u (5.7) 

where s is the calculated standard deviation given by 
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The statistic t has a Student-t distribution with n = N-1 degrees of freedom. (The 
n 

loss of one degree of freedom results from the lack of knowledge of the true stand­

ard deviation.) The theoretical mean can be tested by comparing the t statistic 

with a Student-t distribution having N-1 degrees of freedom where (32) 

t <u-muK/N 
Prob t . t z < " - A - < t -^y 

1 n : -^ - s - n,-J2L 
= y . (5.9) 

If t falls outside of these limits, it can be concluded that the true mean of the 
n 

sequence is not m . 

The variance of the mean u is a measure of the precision of the calculation 

of u. Hansen, et al (36) suggests that the variation of the calculation not exceed 

4%, or 

2 
Var[u] = — £ .04. (5.10) 

Then, for a N(0,1) process, N > 2 5 . 

2 
Variance. Consider a random sequence having N values. The variance s 

is given by (32) 

2 1 N 2 
s = 3 p - E ( u . - u) (5.11) 

i=l 

W\ — 

where u. is the i— value of the sequence and u is the mean given by equation (5.4), 

The variance of the sequence has a mean of 

E[s 2]=cT 2 , (5.12) 
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and variance of 

Var[s2] «+ {E(u*)- E 2 ( / ) + ^ u ^ E * ^ ) - E(u >£(,£) | (5.13) 

2 3 
For a N(0, ex ) p rocess E(u ) = E(u ) = 0, 

n n 

2 2 4 4 
E(u ) = CT , and E(u ) = 3CT . N n n 

T h u s , 

T , r 2 n 2 4 

V a r [ S > ^ * ' 
(5.14) 

The variance of the variance s is a measure of the precision of the cal-

2 
culation of s . Using the suggested 4% maximum variat ion, 

Var[s •]= TT-3-CT < .04 ,. 
N - l 

(5.15) 

For a N(0,1) p roces s , N_> 51 . 

A stat is t ic indicating the degree of disagreement between the calculated 

var iance and the theoret ical variance is given by 

x = ( N - 1 ) 8 

2 
CT 

2 
(5.16) 

where the stat is t ic x has a chi -square distribution with n=N-l degrees of freedom. 

(The loss of one degree of freedom, resu l t s from the lack of knowledge of the t rue 

2 
mean . ) The theoret ical var iance can be tested by comparing thex stat ist ic with a 

ch i -square distribution having N - l degrees of freedom where (32) 

Prob 
2 , (N-l) 

X \r-y_ < x , ' 
< X 

n;-
izZ y (5.17) 

file:///r-y_
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2 
If X falls outside of these limits, it can be concluded that the true variance is 

- 2 not a . 

Probability Density Tests 

Pearson Chi-square Goodness-of-Fit Test. This test compares the theo­

retical probability density function with the probability density function of a sequence 

• 2 
composed of N values u , u 9 , . . . ,uM . A statistic X , is generated based upon the 

2 
discrepancy between the two curves. To determine the value of X , the N values 

are first ordered from minimum to maximum to form a sequence u' , u ' , . . . , u ' . 

The range of values that u. can take on is divided into k intervals. Two numbers 

are determined for each interval, namely the actual number of observed values 

1. and the number of values L. that should appear for the theoretical density func­

tion. A normalized discrepancy figure is calculated in the form of 

(1. - L.)2 

- ~ J — v (5.18) 
i 

for each interval to give 

9. 

2 k (VV 
X = £ - T ^ — . (5.19) 

i=l L,. 

2 
The statistic X will be approximately chi-square with k -3 degrees of 

freedom for Gaussian distributions and k-4 degrees of freedom for nbn-Gaussian 

2 
distributions. (The loss of degrees of freedom result from (1) X being composed 

2 
of only k-1 independent random variables (1. - L.) /L . , (2) the mean of the 
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underlying distribution being unknown, (3) the variance of the underlying distribution 

being unknown, and (4) the density being non-Gaussian.) 

2 
The X statistic is calculated and compared with a chi-square distribution 

having n=k-4 (or n=k-3) degrees of freedom. For a y region of significance and n 

degrees of freedom (32) 

P r o b [ x 2 < . X2 ] = y . . • ' (5.20) 

2 ! 

If X falls outside of this limit, it can be concluded that the sequence does not have 

the specified theoretical probability density. 

Slakter (37) indicates that the Pearson Ghi-square Goodness-of-Fit Test 

gives acceptable results for as low as N=10 and for k=5 intervals. 

Kolmogorov Test. The Kolmogorov Test (33,34) (sometimes referred to as 

the Kolmogorov-Smirnov Goodness-of-Fit Test) measures the quality of the cumu­

lative distribution of a sequence having N values using a statistic which represents 

the maximum deviation between the theoretical cumulative distribution function 

P(u.^ and the calculated cumulative distribution function P^T(u/). The statistic is 
: r N I 

given by 

DN = Supremum | P^u.') - P(u.') | (5.21) 

for all u. 
I 

where 

P (u') = - (5.22) 
Nl i ' N v • ; 

where u.' represents the i— value of the sequence of {u } ordered from minimum 
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to maximum. Since the absolute difference of P(u/) and PXT(u.') is used, the statistic 

is a "two-sided" statistic. 

2 
Unlike the statistic X of the Pearson Chi-square Test, the statictic D> is 

not dependent on the underlying distribution. Thus, one density function exists for 

D for all possible cumulative distributions. The density of D is discussed by 

Lindgren (34). For a sequence of N values and a level of significance ythe maximum 

allowable value for D can be determined. If DM is greater than this constant, it 

is concluded that the sequence does not possess the specified theoretical cumulative 

distribution. 

The effect of the Kolmogorov Test is to place confidence bounds about the 

theoretical cumulative distribution as illustrated by Figure 9. The calculated cumu­

lative distribution must stay between these bounds at all points for the specified 

theoretical cumulative distribution to pass the test. It should be noted that this test 

is best applied to distributions having a continuous range of possible outcomes. 

Slakter (37) indicates that the Kolmogorov Test does not give results that 

are as acceptable as the Pearson Chi-square Goodness-of-Fit Test for N< 50. The 

Kolmogorov Test is best used for sequences having N>50. 

Tests on Second-order Statistics 

For discrete sequences the autocorrelation function becomes a grouping of 

second-order statistics. For a sequence containing N+T values, the second order 

statistics are given by 

1 N 
R u ( 7 ) = N . 5 1 y j + T f o r T = 0 , l , : . . , T (5.23) 
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upper bound^ 
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Theoretical Cumulative 
Distribution 

^ u 

Figure 9. Confidence Bounds on Kolmogorov Test. 

where Tis the separation between values of the sequence and T is the maximum 

separation considered. Normalized second-order statistics are given by 

Pu(r) = 
R (T) - u u 

(5.24) 

Two tests have been developed for comparing the calculated second-order 

statistics of the sequence with the specified theoretical second-order statistics. 

One test requires no knowledge of the variance of the sequence. The other test is 

for Gaussian sequences and uses a knowledge of the variance. This latter test can 

be extended for use with the output sequence of the Predistorted Transformed 

Gaussian Method by means of the input/output autocorrelation relationships developed 

for the nonlinear zero-memory filters of Chapter HI. 
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Sequences Having Unknown Variance (35). Most attempts to place confi­

dence bounds about second-order statistics have been based upon the assumption 

that the distribution of the autocorrelation R (T) (for a particular i) is Gaussian. 

For cases in which N is large, a Gaussian approximation is valid. For a sequence 

2 
of size N having a variance of a the calculated autocorrelation R (7) is related to 

the theoretical autocorrelation R (T) for a 95% level of significance by (35) 

Prob -1.96 < 
$ R (7)rR ( 
_ i r u 

N 
< 1.96 = y= .95 (5.25) 

This results in 

Prob RJj) - 1 / 9 6 - = < _ R(T)<_R(T) + 1.96 ^=_ 
u N ^̂ N~ 

= .95 (5.26) 

The Fisher Ts z statist ic (37) (a stat is t ic that i s asymptotically Gaussian) 
A 

offers a method for characterizing the calculated distribution R (r) based upon the 

theoretical distribution R (r). A statistic z can be formed, based upon a knowledge 

of the normalized autocorrelation p (r), using the relationship 

1+P(T) 

T = 2 l 0gei: 
u 

PUW 
for r ^ 0. (5.27) 

The ideas described in this section were developed by Dady T. Patel of the School 
of Mechanical Engineering at the Georgia Institute of Technology and by Dr. J . J . 
Goode of the School of Mathematics at the Georgia Institute of Technology. 
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Then for the calculated normalized autocorrelation 6 (T), a new statistic z is 

given by 

1+/6 (T) 
u Z = o log 1 „ , , 

T 2 e 1-p (T) 
u 

for r ^ 0. (5.28) 

Now the statistic V N (z - z ) is asymptotically Gaussian with mean zero and vari-
T T 

ance of unity if N > 24. This results in the probability statement 

^ -Pr^-1 .96< /N-2.'!z -z 
'V L T T-

<1.96^= .95. (5.29) 

The confidence region for N > 24 then becomes 

tanh(z -1.96/VN-2)>p(T)>tanh(z + 1.96/VN-2 ) , (5.30) 

This confidence region statement implies that the specified theoretical autocorre­

lation will be rejected if p (T) exceeds the bounds of the confidence region. 

It should be noted that in the development of equation (5.30) a knowledge of 

the variance was not required. 

Gaussian Sequences Having Known Variance. The method for calculating 

the second-order statistics of the calculated autocorrelation was given by equation 

(5.23). The mean of the autocorrelation is 

Efe (T) 
Lu . 

I N r 
— £ E u.u N i = i L i i+T-

= a o (1) - m = R (i) . u u u (5.31) 

The variance of the calculated autocorrelation is 
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Var R (r) 
L u . 

E^ R ( r ) - R - (r) 
" u u \ 

= E|R-;(r) - R (r) u 
(5.32) 

where E [*>>{ ri N - 2 

—T E u . u . . 
. N i = i i i+T }• (5.33) 

Expanding equation (5.33) and collecting terms yields 

E 
r~2 • 
R (T) U 

n r N r o 9 -i 

= — -j E E u. u -
N2 l i=l L l 1+T-

N- l N 
+ 2 E E E[U.U. U.U. 

i-1 j=i+l L 1 1 + r 3 ^ 
(5.34) 

Consider now the case that occurs when the underlying distribution is 

2 
normal with a mean of zero and a variance of cr . In this case (39) 

E[u.u J = a p (T): 
1 l+ 'T U 

(5.35) 

2 2 4 9 

E I u . u . ^ J = c r + 2cr> (T)S 
1 l+T U 

(5.36) 

and 4 
E[u.u. u.u. ] = a o (t) 

1 l+T j J+T Ux 
(5.37) 

Substitution of the results of equations (5.35), (5.36), and (5.37) into equation 

(5.34) yields 
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p* 2 "! 1 r -N r 4 9 
E R ^ r > i = ~ 2 l L i ^ + 2 a o ( 7 ) 

L U _> ^ L j = i L U 

N - 1 N 4 2 . 
+ 2 £ £ a p (7) k 

i=l j=i+l ' u w J 
(5.38) 

which reduces to 

E[Ru {f> ] = i s M0-4+2cr2'°u (T)J+ N ( N _ I A 2 ( I ) } 

1 f 4 2 4 2 
- |GT +2a pu(x) + ( N - ^ a pu (?) (- , (5.39) 

or 

P* "I 1 f 4 2 4 2 
R (7) = ~ i a + 2 a p ( T ) - a p (T) 

L u w J N L • u u 

Var R (?) 
L ux J 

1 f 2 4 r 2 " 
N { 2 ^ P U ( 7 - ) + C T | i - P u (T) 

(5.40) 

An acceptable region of significance is y- .95. The limits set by this region 

of significance offer a convenient basis for rejecting or not rejecting the specified 

theoretical autocorrelation since 

R (T) - 2s.d. R (T) 
u I- u 

.d.fR (7)1 < R (T) < R (T) .+ 2s. d. [R (T)1 
I. u ... — u — u L u J 

(5.41) 

where s.d. | R (r) 
L U 

is the standard deviation of R (T) and is found by taking the square 

root of the variance of R IT). 
u 

An autocorrelation test for Gaussian sequences having a mean of zero and a 

variance of a may now be stated. A specified autocorrelation R (r) (second-order 
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statistics) for a Gaussian sequence having a mean of zero and a variance of <? 

will be rejected if 

\(f)< -RU(T) - 2 [ ^ { 2 ^ 2 P U ( T ) + a4[l - P U
2 ( T ) ] } ] \ (5.42) 

or if 
-i-> - i s 

i y i ) > Ru(T) + 2[^{2a2pu(T) + a4[l -p u
2 ( r ) ]} ' (5.43) 

The Predistorted Transformed Gaussian Method for generating pseudo­

random sequences having a specified probability density and a specified auto­

correlation transforms a correlated Gaussian sequence into the desired output 

sequence by a nonlinear zero-memory filter. Since the zero-memory filter has 

a one-to-one autocorrelation relationship between input and output sequences, this 

autocorrelation test may be applied to the output sequence. Each output second-

order statistic may be transformed to give the corresponding input second-order 

statistic. The limits for the autocorrelation test may be set for a chosen level of 

significance in terms of the Gaussian sequence. The output equivalent of these 

limits may be determined by transforming these Gaussian limits back through the 

zero-memory element. 

In conclusion, this chapter has discussed the statistical tests used to evalu­

ate the performance of the designs for several interesting cases. The next chapter 

will present an evaluation of these designs., 



CHAPTER VI 

EVALUATION STUDIES 

The design procedure of Chapter IV was implemented and tested for ten 

specified probability densities and autocorrelations as follows: 

1. Uniform Density—Exponential Autocorrelation 

2. Uniform Density—Triangular Autocorrelation 

3. Uniform Density— Sin(x)/x Autocorrelation 

4. Random Telegraph Signal Density—Exponential Autocorrelation 

5. Random Telegraph Signal Density—Triangular Autocorrelation 

6. Random Telegraph Signal Density—Sin(x)/x Autocorrelation 

7. Chi-square Deneity with one degree of freedom—Exponential 

Autocorrelation 

8. Chi-square Density with one degree of freedom—Triangular 

Autocorrelation 

* 
9. Rayleigh Density—Exponential Autocorrelation 

10. Rayleigh Density—Triangular Autocorrelation 

The purpose of this chapter is to report the evaluation studies on the sequences 

produced for these cases. These specified probability densities and autocor­

relations are representative of the general class of random number sequences 

* 
The Rayleigh Density cases were produced by applying Envelope Detection (40) 
concepts to the Predistorted Transformed Gaussian Method. 
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to which the method applies and illustrates the properties of the method. 

Introduction 

* 
The implemented cases make use of a portion of the design procedure 

discussed in Chapter IV. A non-orthogonal sequence {x } was used as input 
n 

without correction being introduced in the design of the linear memory filter. 

The output autocorrelations that were specified were "distorted" from the auto­

correlations which would be specified when "correction" for {x } was included 

in the linear memory filter design. 

The raw data for the design of the specified output sequences is presented 

in the Appendices. The specified output autocorrelation and the autocorrelation 

required as input to the nonlinear zero-memory filter are given in Appendix I. 

The filter coefficients for the linear memory filter for each design are given in 

Appendix n . 

The random number sequence used as input was produced by a generator 

developed by Brown and Rowland (39). The generator was selected for its ability 

to produce sequences having stationary mean and variance properties. A dis­

cussion of the tests performed on this generator and a second generator, the 

UNIVAC 1108 standard MATHPACK generator RANDN, is given in Appendix IE. 

* 
The implementation and testing of the preliminary design study was performed 
on the IBM 7094 computer located at the U. S. Army Missile Command 
Computation Center at the Redstone Arsenal, Alabama. The implementation 
and testing of the final design procedure was performed on the UNIVAC 1108 
and the Burroughs 5500 computers located at the Rich Electronic Computer 
Center on the Georgia Institute of Technology campus in Atlanta, Georgia. 
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Statistical Tests on Output Sequences 

of the Linear Memory Filter 

The correlated Gaussian sequences produced as output from the linear 

memory filter in each of the ten design cases were tested with respect to 

stationarity and the basic random properties of the sequences, namely the mean 

square property, the probability density property, and the autocorrelation 

property. 

Mean Square Property 

For each design case 100 Gaussian sequences, containing 80 values each, 

were generated and tested using the mean and variance tests discussed in 

Chapter V. The results of these tests are summarized in Table 1. Each sequence 

2 
was tested against a theoretical mean of m = 0 and variance of CT = 1 at a 95% 

y 

level of significance. For 100 sequences having the theoretical mean and theoret­

ical variance, there is a probability that five sequences will fail the test on mean 

and five sequences will fail the test on variance. No design case had more than 

five sequences for which the theoretical value of the mean or the theoretical value 

of the variance was rejected. No significant variations in the calculated values 

of the mean or variance were observed to indicate that the process was nonstationary. 

Probability Density Property 

For each design case a sequence containing 10,000 values was generated 

and tested using the Pearson Chi-square Goodness-of-Fit Test and the Kolmogorov 

Test. For the test results shown in Tables 2 and 3, all tests passed at a 95% level 

of significance with the exception of the Pearson Chi-square Test on the sequence 
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Table 1. Mean Square Property of the Output Sequences 

from the Linear Memory Filter Output 

Specified 
Output 
Autocorrelation 
for fz } 

n 

Specified 
Output 
Density 
for fz } 

n 

Exponential Uniform 

Exponential Random Telegraph 
Signal 

Exponential Chi-square 

Exponential Rayleigh 

Triangular Uniform 

Triangular Random Telegraph 
Signal 

Triangular Chi-square 

Triangular Rayleigh 

Sin(x)/x Uniform 

Sin(x)/x Random Telegraph 
Signal 

F o r 100 T e s t s a t y ..= . 9 5 
Number of Tests Number of Tests 
which fail for which fail for 
Theoretical Mean Theoretical Variance 

required for the design case specified to have an output sequence having a 

Rayleigh density and exponential autocorrelation. Since the sequence passes 

the Kolmogorov Test, the sequence is assumed to have the required theoretical 

density. Failure of the Pearson Chi-square Test indicates that the sequence 

values do not appear in sufficient numbers to satisfy the theoretical requirements 
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Table 2. Results of Kolmogdrov Test on Output Sequences 

from the Linear Memory Filter 

Specified Specified 
Output Output 
Autocorrelation Density 

N u m b e r of S e q u e n c e V a l u e s 
V i o l a t i n g L i m i t s fo r R e g i o n 

sk 

of Significance of y 
for {z ] 

n 
for fz ] 

n 
80% 85% 90% 95% 99% 

Exponential Uniform 0 0 0 0 0 

Exponential Random Telegraph 
Signal 

0 0 0 0 0 

Exponential Chi-square 17 0 0 0 0 

Exponential Rayleigh 123 15 0 0 0 

Triangular Uniform 0 0 0 0 0 

Triangular Random Telegraph 
Signal 

0 0 0 0 0 

Triangular Chi-square 0 0 0 0 0 

Triangular Rayleigh 0 0 0 0 0 

Sin(x)/x Uniform 0 0 0 0 0 

Sin(x)/x Random Telegraph 
Signal 

0 0 0 0 0 

As the region of significance increases, the limits of the test increase making 
the test less rigid. 
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Table 3. Results of Pearson Chi-square Test on Output Sequences 

from the Linear Memory Filter 

Specified 
Output 
Autocorrelation 
for fz } 

n 

Specified 
Output 
Density 
for [z ] 

n 

For 397 Degrees of Freedom 

Value of y which Corresponds 
2 * 

to Calculated x 

Exponential Uniform . 3 1 

Exponential Random Telegraph 
Signal 

.18 

Exponential Chi-square .64 

Exponential Rayleigh .98 

Triangular Uniform .35 

Triangular Random Telegraph 
Signal 

.35 

Triangular Chi-square .39 

Triangular Rayleigh .76 

Sin(x)/x Uniform .73 

Sin(x)/x Random Telegraph 
Signal 

.79 

* 
The test will pass for any region of significance larger than this value. 
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for strategic regions of the density curve. 

For each design case; the sequence of 10,000 values was subdivided 

into sequences of 500 values to study the stationarity of the probability density 

function. No significant variations caused by nonstationarity were noted in the 

results . 

Autocorrelation Property 

For each design case a sequence containing 10,000 values was generated 

and tested for the autocorrelation property using the tests of Chapter V for 

sequences having unknown variance and for Gaussian sequences having known 

variance. The autocorrelation required for each sequence is shown graphically 

* 
in Figures 10 through 19. (These figures also include the autocorrelation 

specified for the output sequence for each design case.) Of the ten design cases 

four design cases, namely the cases with output sequences specified to have 

exponential autocorrelations, had linear memory filters designed directly. The 

remaining six design cases possessed autocorrelation requirements which r e ­

quired design of the linear memory filter by the Modified Pakov Method using 

optimization techniques. In all ten design cases, the second-order statistics 

passed both tests . 

It should be noted that the nonlinear zero-memory filter tends to 

decorrelate sequences. The input normalized autocorrelation is consistently 

* 
The difference between the autocorrelations specified for these design cases 
and the autocorrelation that would be specified if the non-orthogonality of the 
input sequence had been considered in the design of the linear memory filter 
is so small that the curves would not be able to distinguish between the two. 
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higher than the output normalized autocorrelation. This point contributes 

significantly to the design problems of the linear memory filter. The additional 

required input autocorrelation often results in the requirement for a linear mem­

ory filter than cannot be designed directly. 

Statistical Tests on Output Sequences 

Output sequences for the ten design cases were tested with respect to 

stationarity and two random properties, namely the probability density property 

and the autocorrelation property. 

Probability Density Property 

For each design case a sequence containing 10,000 values was generated 

and tested using the Pearson Chi-square Goodness-of-Fit Test and the Kolmogorov 

Test. For the results presented in Tables 4 and 5, eight of the sequences passed 

both tests at a 95% level of significance. Each of the two sequences specified to 

have a chi-square density with one degree of freedom failed at least one of the 

tests . A sequence having a chi-square density with one degree of freedom must 

contain a large number of values near zero. The tests on these two sequences 

emphasize a difficulty in generating large numbers of values in a sequence near 

zero while maintaining the correct emphasis in all strategic areas of the density 

curve. The failure of these tests indicates the need to make a prudent choice of 

an input sequence to insure that the values of the input sequence are distributed 

properly to give the specified output sequence. 

The output sequence for eaich of the design cases was subdivided into 
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Table 4. Results of Kolmogorov Test on Output Sequences 

Specified 
Output 

Specified 
Output 
Density 

Numberof Sequence Values Violating ^ 
Limits for Region of Significance of y 

Autocorrelation 

Specified 
Output 
Density 80% 85% 90% .95% 99% 

Exponential Uniform 0 , o '. 0 0 0 

Exponential Random Telegraph 
Signal 

— N o t a p p l i e d t o t h i s c a s e - -

Exponential Chi-square 2958 2440 2091 1727 26 

Exponential Rayleigh 227 38 0 0 0 

Triangular Uniform 0 0 0 0 0 

Triangular Random Telegraph 
Signal 

— N o t a p p l i e d t o t h i s c a s e - -

Triangular Chi-square 635 . 273 35 0 0 

Triangular Rayleigh 0 0 0 0 0 

Sin(x)/x Uniform 0 0 0 0 0 

Sin(x)/x Random Telegraph 
Signal 

— N o t a p p l i e d t o t h i s c a s e - -

As the region of significance increases, the limits of the test increase making 
the test less rigid. 



Table 5. Results of Pearson Chi-square Test on Output Sequences 

Specified 
Output 
Autocorrelation 

Specified 
Output 
Density 

Value of y 
which Correspond 
to Calculated x 

Number of 
Degrees of 
Freedom 

Exponential Uniform .06 396 

Exponential Random Telegraph 
Signal 

.19 1 

Exponential Chi-square Off Scale 396 

Exponential Rayleigh .44 396 

Triangular Uniform .62 396 

Triangular Random Telegraph 
Signal 

.95 1 

Triangular Chi-square Off Scale 396 

Triangular Rayleigh .54 396 

Sin(x)/x Uniform .89 396 

Sin(x)/x Random Telegraph 
Signal 

. 2 1 1 

* 
The test will pass for any region of signilficance larger than this value. 
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sequences of 500 values to study the stationarity of the probability density function. 

No significant variations due to non-stationarity were noticed in the results. 

Autocorrelation Property 

For each design case a sequence containing 10,000 values was generated 

and tested for the autocorrelation property using the test for sequences having 

unknown variance and the modified test for Gaussian sequences having known 

variance discussed in Chapter V. The autocorrelation required for each sequence 

is shown graphically in Figures 10 through 19. In all ten design cases the output 

sequence possessed values having the specified autocorrelation functions within 

the mathematical limits as prescribed by the tests for a 95% region of significance. 

The results were equally satisfactory for linear memory filters designed directly 

and designed by the Modified Pakov Method employing optimization techniques. 

Conclusions 

The evaluation studies of the ten design cases indicate that the design 

procedure discussed in Chapter IV will produce random sequences having a 

specified probability density and specified autocorrelation. The output sequences 

generated by the design cases possessed the required output autocorrelation when 

tested at a 95% level of significance. The output sequences required to have 

Uniform densities, Random Telegraph Signal densities, and Rayleigh densities 

possessed the required probability density when tested at a 95% level of signifi­

cance. As indicated in the probability density tests on the sequences having a 

chi-square density with one degree of freedom, a sequence having a high con­

centration of values in a localized region of the probability density curve will 
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require special attention to be given to the probability density property of the 

input sequence in order to be able to pass the probability density tests. 

The test results were equally satisfactory for the design cases having a 

linear memory filter designed directly and for the design cases having a linear 

memory filter designed using the Modified Pakov Method employing optimization 

techniques. 
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CHAPTER VH 

CONCLUSIONS 

Design Method 

It is concluded from the evaluation studies of Chapter VI that a large 

class of sequences of pseudo-random numbers -fz } having a specified probability 
* n 

density function p(z) and a specified autocorrelation R (T) can be generated using 
z 

the Predistorted Transformed Gaussian Method., illustrated in Figure 4, from 

non-orthogonal input sequences [x ] . The design procedure for implementing 
n 

this technique includes the following steps, 

(1) Design the nonlinear zero-memory filter to transform a Gaussian 

sequence {y ] having a mean of zero and a variance of unity into a sequence {z ] 

having the desired probability density. The relation which must be implemented 

is 

z i = g(y.)=Pl1[Erf(yi)']t (4.1) 

and this step can be carried out for any cumulative distribution P (z) for which 
z 

an inverse P exists. 
z 

(2) Calculate the normalized autocorrelation o (T) required for the input 

sequence to the zero-memory filter to produce the desired output autocorrelation 

R (T). The autocorrelation can be determined in general from the relation 
z 
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00 00 

Rr )= 2Wl-^(r) 
y 

g(y1)g(y2) exp 
- 0 0 - 0 0 

r y^2^(r)y 

L ^i-Py (D) 

2-1 
iy2-y2 . :. -—J ^1%- (4.2) 

In equation (4.2) it should be noted that g(y) is determined by step (1) and R (r) 

is a specified parameter. Thus, p (T) is the only unknown in equation (4.2), and 

it can always be determined numerically hy the brute force technique of fixing 

rand tabulating the double integral as a function'of #7). Two examples of the 

brute force approach, namely the Rayleigh Density design cases, were worked 

out using series to approximate the integral. 

In many cases of interest, g(y) has a tractable form such that the double 

integral of equation (4.2) can be evaluated anatytically. Eight design cases of 

this type are tabulated in the thesis. 

When implementing the design step to calculate the normalized autocorre­

lation p (T), the solution of equation (4.2) could prove to be an untractable mathe-

matical problem. This problem can be circumvented by using either the 

Characteristic Function Method or the Series Method. 

(3) Design the linear memory filter using the Modified Pakov Method. 

Three major steps are involved in this design,. 

Step .1; Measure the second-order statistics of the input sequence. 

Step 2: Set up design equations by determining the second-order statis­

tics that must be introduced by the linear memory filter. The design 

equations are given by 
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A 2 A2 
f l = a i + a 2 + " - + Q N - a 0 = 0 

A A 

f2 = aiV<W-'-+'aN-lV'ai = 0 

f = a GK - a . = 0 
N I N N- l -/ 

(4.9) 

where the a. are the filter coefficients and the a. are the second-order 
. x ' • * • . \ i 

statistics to be introduced by the linear memory filter. 

Step 3: Solve equation (4.9) for the Si. by minimizing the functional 

F = 
N 

i = l 
(4.10) 

using conventional optimization methods. 

The accuracy is dependent upon the ability to minimize the functional 

produced in equation (4.10). An assessment of the error of the design method 

can be based upon the value of F. The design procedure is considered to be 

—fi 
exact for functional minimums less than 10 . As the functional minimum in-

—fi 
creases above 10 , the design has a degree of error introduced by the design 

of the linear memory filter. For the sequences specified for evaluating the 

design method the largest functional minimum, F = . 156, occurred for the 

sequence specified to have a Rayleigh Density and triangular autocorrelation 

with nine filter coefficients. The output sequence generated in this case possessed 

the specified probability density and autocorrelation within acceptable mathematical 
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limits for a region of significance of y = .95 for both parameters. 

The design was implemented to produce ten sequences having specified 

probability densities and autocorrelations that are representative of the general 

class of random number sequences to which the method applies. The design 

cases included (1) both continuous and discrete probability densities, (2) auto­

correlations having both positive and negative effects, (3) autocorrelations for 

which the double integral of equation (4.2) was evaluated both analytically and 

numerically, and (4) linear memory filters having both an exact design and no 

exact design. 

Statistical tests were performed on the results of the ten design cases 

to establish (1) the stationarity and the basic random properties of the sequences, 

namely, (2) the mean square value property, (3) the probability density property, 

and (4) the autocorrelation property. The sequences proved to be stationary 

and produce the specified autocorrelation for a region of significance of y= .95. 

The sequences produced the required probability density when tested at a y= .95 

region of significance, in all design cases except those requiring a high concen­

tration of sequence values in a localized region of the probability density curve. 

These design cases require that special attention be given to the probability 

density properties of the input sequence to insure that the values of the sequence 

have good Gaussian characteristics., Iii all of the ten cases examined the procedure 

could be carried through with acceptable error . 

Recommendations for Future Work 

This research indicates the need for further work in several areas. The 
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equations of (4.9) were solved directly for only four of the ten design studies. 

Clearly, the restriction for direct solution developed by Nakamura (30) is not 

sufficient. Additional investigation is needed upon the boundaries placed upon a. 

for direct solution of equation (4.9). 

Additional study is needed for the number of filter coefficients required 

to optimize the linear memory filter design. The empirical study cited in 

Chapter in showed that an improvement in filter design could be achieved for 

output sequences specified to have a triangular autocorrelation when the number 

of filter coefficients were increased to the order of 30 coefficients. On the other 

hand, no improvement was achieved when the number of coefficients were increased 

for the output sequences having sin(x)/x autocorrelation. 

In summary, this thesis has presented a technique for generating pseudo­

random sequences having specified probability density and specified autocor­

relation and illustrated the technique for ten design cases. The statistical tests 

performed on these cases have shown, that the technique gives results that are 

mathematically acceptable. 
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APPENDIX! 

INPUT/OUTPUT AUTOCORRELATION DATA 

FOR ZERO-MEMORY FILTER 

The atuocorrelations (second-order statistics) specified for the ten 

implemented output sequences are given in Tables 6 through 15. The corres­

ponding autocorrelations (second-order statistics) required as input to the 

nonlinear zero-memory filters for each ease are also given in Tables 6 through 

15. 
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Table 6. Input/Output Autocorrelation for Zero-memory Filter for 
Sequence Specified to have Uniform Density 

and Exponential Autocorrelation 

Lag 
Coefficient 

Input 
Autocorrelation 

Normalized Output 
Autocorrelation 

1.0000000 

.6245346 

.3828646 

.2331302 

.1416042 

.0859328 

.0521310 

.0316213 

.0191798 

.0116332 

1.0000000 

.6065307 

.3678794 

.2231302 

.1353353 

.0820850 

.0497871 

.0301974 

.0183156 

.0111090 

Table 7. Input/Output Autocorrelation for Zero-memory Filter for 
Sequence Specified to have Random Telegraph 
Signal Density and Exponential Autocorrelation 

Lag 
Coefficient 

Input 
Autocorrelation 

Output 
Autocorrelation 

1.0000000 

.8150040 

.5462357 

.3433600 

.2109866 

.1285818 

.0781256 

.0474162 

.0287662 

.0174491 

1.0000000 

.6065307 

.3678794 

.2231302 

.1353353 

.0820850 

.0497871 

.0301974 

.0183156 

.0111090 
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Table 8. Input/Output Autocorrelation for Zero-memory Filter for 
Sequence Specified to have Chi-square Density with One 
Degree of Freedom and Ejcponential Autocorrelation 

Lag Input Output 
Coefficient Autocorrelation Autocorrelation 

0 1.0000000 3.0000000 

1 .7788008 2.2130613 

2 .6065307 1.7357589 

3 .4723665 1.4462603 

4 .3678794 1.2706706 

5 .2865048 1.1641700 

6 .2231302 1.0995741 

7 .1737739 1.0603948 

8 .1353353 1.0366313 

9 .1053992 1.0222180 

10 .0000000 ' 1.0000000 

11 .0000000 1.0000000 

Table 9. Input/Output Autocorrelation for Zero-memory Filter for 
Sequence Specified to have Rayleigh Density 

and Exponential Autocorrelation 

Lag 
Coefficient 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Input 
Autocorrelation 

Normalized Output 
Autocorrelation 

1.0000 1.0000000 

.7947 .6065307 

. 6251 .3678794 

. 4895 .2231302 

.3825 .1353353 

.2984 .0820850 

.2327 .0497871 

.1813 .0301974 

. 1413 .0183156 

.1101 .0111090 



Table 10. Input/Output Autocorrelation for Zero-memory Filter for 
Sequence Specified to have Uniform Density 

and Triangular Autocorrelation 

Lag Input Normalized Output 
Coefficient Autocorrelation Autocorrelation 

0 1.0000000 1.0000000 

1 .8975984 .8888889 

2 .7921596 .7777778 

3 .6840403 .6666667 

4 .5736065 .5555556 

5 .4612318 .4444444 

6 .3472964 .3333333 

7 .2321858 .2222222 

8 ' .1162897 .1111111 

Table 11. Input/Output Autocorrelation for Zero-memory Filter for 
Sequence Specified to have Ra.ndom Telegraph 
Signal Density and Triangular Autocorrelation 

Lag Input Output 
Coefficient Autocorrelation Autocorrelation 

0 1.0000000 1.0000000 

1 .9848078 .8888889 

2 .9396926 .7777778 

3 .8660254 .6666667 

4 .7660444 .5555556 

5 .6427876 .4444444 

6 .5000000 .3333333 

7 .3420201 .2222222 

8 .1736482 .1111111 



Table 12. Input/Output Autocorrelation for Zero-memory Filter for 
Sequence Specified to have Chi-square Density with One 
Degree of Freedom and Triangular Autocorrelation 

Lag 
Coefficient 

Input 
Autocorrelation 

Output 
Autocorrelation 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.0000000 

.9428090 

.8819171 

.8164966 

.7453560 

.6666667 

.5773503 

.4714045 

.3333333 

.0000000 

.0000000 

3.0000000 

2.7777778 

1.5555556 

2.3333333 

2.1111111 

1.8888889 

1.666666.7 

1.4444444 

1.2222222 

1.0000000 

1.0000000 

Table 13. Input/Output Autocorrelation for Zero-memory Filter for 
Sequence Specified to have Rayleigh Density 

and Triangular Autocorrelation 

Lag 
Coefficient 

Input 
Autocorrelation 

Normalized Output 
Autocorrelation 

1.0000 1.0000000 

. 9488 .8888889 

. 8926 .7777778 

. 8308 .6666667 

.7622 .5555556 

.6850 .4444444 

.5958 .3333333 

.4885 .2222222 

.3468 .1111111 
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Table 14. Input/Output Autocorrelation for Zero-memory Fi l te r for 
Sequence Specified to have Uniform Density 

and Sin(x)/x Autocorrelation 

Lag 
Coefficient 

Input 
Autocorrelation 

Normalized Output 
Autocorrelation 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1.0000000 

.9082762 

. 6543894 

.3129780 

.0000000 

-.1882856 

-.2217653 

-.1345852 

.0000000 

.1047087 

.1332346 

.0856837 

1.0000000 

.9003163 

.6366198 

.3001054 

.0000000 

-.1800643 

-.2122066 

-.1286166 

.0000000 

.1000352 

.1273240 

V(J8i8469 



Table 15. Input/Output Autocorrelation for Zero-memory F i l te r for 
Sequence Specified to have Random Telegraph 

Signal Density and Sin(x)/x Autocorrelation 

Lag 
Coefficient 

Input 
Autocorrelation 

Output 
Autocorrelation 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1.0000000 

.9877659 

.8414710 

.4541380 

.0000000 

-.2790865 

-.3271947 

-.2006589 

.0000000 

.1564890 

.1986693 

.1282110 

1.0000000 

.9003163 

.6366198 

.3001054 

.0000000 

-.1800643 

-.2122066 

-.1286166 

.0000000 

.1000352 

.1273240 

.0818469 
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APPENDIX H 

FILTER COEFFICIENTS FOR LINEAR MEMORY FILTER 

To calculate the filter coefficients for the linear memory filter, the 

equations of (4.9) were solved using two techniques. For the first technique, 

used in four design cases, the filter coefficients were obtained by linearizing 

the equations and using Newton's Method of Successive Approximations. For 

the second technique, used in all ten design cases, the filter coefficients were 

obtained using the Fletcher-Powell Method of optimization to minimize the 

equations expressed in the form of equation (4.10). These results are given 

in Tables 16 through 25. A tabulation of the functional minimums for the latter 

technique is given in Table 26 for all ten design cases. 

Tables 27 and 28 present a tabulation of the results of an empirical study 

performed to determine the effect that the number of filter weights has on the 

value of the functional minimum. A discussion of the conclusions drawn from 

this study is given in Chapter HI. 
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Table 16. Linear Memory Filter Coefficients for Sequence Specified 
to have Uniform Density and 
Exponential .Autocorrelation 

Coefficients Using Coefficients Using 
Posit ion Linear ized Equations Minimization Scheme 

1 .780866 .780866 

2 .493465 .493465 

3 .303772 .303772 

4 .185250 .185250 

5 .112583 .112583 

6 .068335 .068335 

7 .041455 .041454 

8 .025127 .025127 

9 .015148 .015148 

10 .014898 .014898 

Table 17. Linear Memory Filter Coefficients for Sequence Specified 
to have Random Telegraph Signal Density and 

Exponential Autocorrelation 

Coefficients Us tag Coefficients Using 
Position Linearized Equs itions Minimization Scheme 

1 .537757 .537760 

2 .615072 .615069 

3 .445693 .445694 

4 .287620 .287619 

5 .178231 .178232 

6 .109199 .109199 

7 .065687 .065687 

8 .042546 .042546 

9 .016380 .016383 

10 .032448 .032448 
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Table 18. Linear Memory Filter Coefficients for Sequence Specified 
to have Chi-square Densitjr with One Degree of Freedom 

and Exponential Autocorrelation 

Coefficients Us:ing Coefficients Using 

Position Linearized Equations Minimization Scheme 
1 .601227 .601243 

2 .494790 .494362 

3 .384052 .384839 

4 .299225 .298533 

5 .233021 .233655 

6 .181487 .180938 

7 .141283 .141825 

8 .110530 .110028 

9 .080828 .081016 

10 .175306 .175219 

Table 19. Linear Memory Filter Coefficients for Sequence Specified 
to have Rayleigh Density and 
Exponential Autocorrelation 

Coefficients Using Coefficients Using 
Posit ion Linearized Equations Minimization Scheme 

1 .570300 .570294 

2 .500896 .500901 

3 .393494 .393490 

4 .309552 .309554 

5 .242587 .242580 

6 .189167 .189174 

7 .147390 .147385 

8 .116013 .116017 

9 .078203 .078198 

10 .193056 .193061 



Table 20. Linear Memory Filter Goefficients for Sequence Specified 
to have Uniform Density and Triangular Autocorrelation 

Coefficients Using 
Position Minimization Scheme 

1 .342851 

2 .333225 

3 .334323 

4 .335042 

5 .335208 

6 .334895 

7 i334021 

8 .333554 

9. .342611 

Table 21. Linear Memory Filter Cdefficients for Sequence Specified 
to have Random Telegraph Signal Density and 

Triangular Autocorrelation 

Coefficients Using 
Position Minimization Scheme 

1 .404002 

2 .354174 

3 .350228 

4 .352499 

5 .353693 

6 .352499 

7 .350228 

8 .354174 

9 .404002 



Table 22. Linear Memory Filter Coefficients for Sequence Specified 
to have Chi-square Density with One Degree of Freedom 

and Triangular Autocorrelation 

Coefficients Using 
Position Minimization Scheme 

1 .477675 

2 .364979 

3 .329714 

4 .315889 

5 .312037 

6 .315889 

7 .329714 

8 .364979 

9 .477675 

Table 23. Linear Memory Filter Coefficients for Sequence Specified 
to have Rayleigh Density and Triangular Autocorrelation 

Coefficients Using 
Position Minimization Scheme 

1 .482834 

2 .367610 

3 .331250 

4 .316992 

5 .312977 

6 ' .316995 

7 .331250 

8 .367610 

9 .482834 



Table 24. Linear Memory Filter Coefficients for Sequence Specified 

to have Uniform Density and Sin(x)/x Autocorrelation 

* 

Coefficients Using 
Position . Minimization Scheme 

1 .364992 

2 .468521 

3 .517433 

4 .467438 

5 .325323 

6 .137229 

7 -.037811 

8 -.148436 

9 -.168114 

10 -.105895 

11 .013116 

12 .195998 



Table 25. Linear Memory Filter Coefficients for Sequence Specified 
to have Random Telegraph Signal Density and 

Sin(x)/x Autocorrelation 

Coefficients Using 
Position Minimization Scheme 

1 .395707 

2 ' • ' • ' . . 4 7 3 4 1 3 

3 .538830 

4 .502416 

5 .349128 

6 .148005 

.7 -.041153 

8 -.161509 

9 -.175676 

10 -.122402 

11 -.023127 

12 .203795 
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Table 26. Optimization Functional Minimums for Linear 

Memory Filter Design 

Value of 
Autocorrelation Density Minimized Function 
Exponential Uniform 1.31x10"-^ 

Exponential Random Telegraph Signal 8 . 1 3 x l 0 " 1 3 

Exponential b h i - square 1 .39xl0" 7 

Exponential Rayleigh 5 .66xl0~ 1 2 

Triangular Uniform 5 .88x l0" 4 

Triangular Random Telegraph Signal ; 8.42x10" 

Triangular Chi-square 1.36x10 

Triangular Rayleigh 1.56x10" 

Sin(x)/x Uniform 1.31xl0~2 

Sin(x)/x Random Telegraph Signal 1 .26x l0 _ 1 

Table 27. Optimization Functional Minimum vs. the Number of Filter 

Weights for Triangular Autocorrelation 

Density 

n = 

-2 
FxlO 

= 10 

Axio"2 

n = 

-2 
FxlO 

20 

-2 
AxlO 

n = 

-2 
FxlO 

: 30 

-2 
AxlO 

n = 

-2 
FxlO 

= 40 

-2 
AxlO 

Uniform 
Random 

Telegraph 
Signal 

2.57 

19.3 

2.57 

19.3 

1.02 

21.0 

. 591 

13.4 

.661 

25.3 

.379 

12.6 

.530* 

30 .1 

.299* 

12.4 

Notations: 

F = Value of functional minimum for all n filter weights 

A = Value of error introduced by ten specified equations 

* = Convergence was not obtained 
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Table 28. Optimization Functional Minimum vs. the Number of Filter 

Weights for Sin(x)/x Autocorrelation 

n = • 9 ' n = 18 n = 27 n = = 36 

Density 
-2 

FxlO 
-2 AxlO FxK)" ' 

-2 
AxlO 

-2 
FxlO 

-2 
AxlO 

-2 
FxlO 

-2 
AxlO 

Uniform .997 .997 .340 .0201 .532 .213 .965 .416 

Random 
Telegraph 
Signal 3.20 3.20 8.24 4 .97 14.7 7.07 21.5 8.45 

Notations: 

F = Value of functional minimum for all n filter weights 

A = Value of error introduced by nine specified equations 
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APPENDIX HI 

RESULTS OF STATISTICAL TESTS ON INPUT 

RANDOM NUMBER SEQUENCE 

It is the purpose of this appendix to discuss the tests performed on two 

different pseudo-random sequences considered for use as input to the Predis-

torted Transformed Gaussian Method. The sequences were Gaussian with zero 

mean and unity variance. The sequences were produced by the RANDN generator 

of the UNIVAC 1108 standard software package called MATHPACK and the Brown-

Rowland Generator (41) where multiplicative uniform values were generated using 

the relationship 

X = 19971X. (molulo 2 °) (A3.1) 

with twelve uniform values being summed to create each Gaussian sequence value. 

Each sequence was tested for its mean square property and probability density 

property as well as for stationarity. 

Mean Square Property 

The mean square property was tested using the tests on the mean and 

variance of Chapter V. Twenty sequences of 500 values were tested. As sum­

marized in Table 29, both generators produced sequences having well behaved 

means. The sequences from the UNIVAC RANDN generator, however, proved 
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to be unstationary with the tests for the theoretical variance failing three times. 

The Brown-Rowland generator gave no indication of being unstationary. 

Table 29. Independent Gaussian Generator Mean Square 

Property Tests 

Gaussian Rejections of Theoretical Rejections of Theoretical 
Generators Mean for y- .95 Variance for y= .95 

UNIVAC RANDN 0 3 

Brown-Rowland 0 1 

Probability Density Property 

The probability density property was tested for both generators for 

sequences of 10, 000 values and 20 subgroupings of 500 values. Both generators 

gave acceptable results for both the Pearson Ghi-square and Kolmogorov Goodness-

of-Fit Tests on the total sequence and the 20 subgroupings. The sequence of 

10, 000 values from the Brown-Rowland generator passed the Kolmogorov Test 

at better than an 80 percent level pi significance while passing the Pearson Chi-

square Test at a 57 percent level of significance. The sequence of 10, 000 values 

from the UNIVAC RANDN generator passed the Kolmogorov Test at better than 

an 80 percent level of significance while passing the Pearson Chi-square Test at 

a 22 percent level of significance. Neither set of tests gave indications of the 

sequences being unstationary. 
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In conclusion, of the tests performed on the two Gaussian pseudo-random 

number generators, the Brown-Rowland generator is preferred because of the 

stationarity of the variance of the sequences. 
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