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SUMMARY 

Although building information modeling (BIM) has been widely used in entire 

construction projects for data exchange between stakeholders, it sometimes rarely 

represents the current state of the construction sites because most of the information models 

are built at the design phase. For this reason, several studies have implemented a process 

to generate as-built BIM by leveraging laser-scanned point cloud data, referred to as Scan-

to-BIM. However, the conventional Scan-to-BIM process is usually performed manually 

or semi-manually, which is time-consuming and labor-intensive. Moreover, captured 

reality and measurements such as actual dimensions, shapes, colors, and damages of the 

target subjects that the original point cloud retains can be disregarded during the solid 

modeling process in Scan-to-BIM. To address this issue, this research proposes an object-

oriented information modeling framework for point cloud data, named point cloud 

information modeling (PCIM).  

The main objective of this dissertation is to develop artificial intelligence (AI)-

driven information modeling framework for point cloud data. To this end, this study 1) 

presents methods of classifying construction objects and their properties and 2) proposes a 

data schema to represent the classified information with an object-based hierarchy 

structure. At this time, the scope of this research is limited to building construction area, 

but the data schema can be extended to other jobs such as mechanical, electrical, and 

plumbing (MEP) engineering. The findings of this research may rebound to the benefit of 

stakeholders of construction projects considering that point clouds play an essential role in 

the construction management phase. Since this research will provide an automated 



 xii 

information modeling solution for point cloud data, stakeholders that apply the proposed 

approach will save time to generate an as-is construction site model. Moreover, this 

research may fill the gaps in current studies on object classification in 3D by leveraging 

extended input channels such as laser intensity and material index. As this paper presents 

the concept of PCIM, various follow-up studies are expected to be additionally derived. 
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CHAPTER 1. INTRODUCTION 

CHAPTER 1 introduces limitations of current as-built modeling and related current 

practices and previous studies that have presented advanced technology to develop 

applications for point cloud data processing. This chapter also identifies existing challenges 

and drawbacks of current practices and prior research and then derives research/knowledge 

gaps for this dissertation's basis. 

1.1 Building Information Modeling (BIM) 

In the Architecture, Engineering, and Construction (AEC) industries, building 

information model (BIM) has been widely used throughout construction projects, from pre-

construction to post-construction, for information exchange between stakeholders. In the 

planning and designing phases, BIM enables designers and engineers to record 

comprehensive information of individual building objects and their relationships as well as 

to visualize them (Eastman et al. 2008; Miettinen and Paavola 2014). For the built 

environments, BIM applications have potential advantages in quality control (Boukamp 

and Akinci 2007), heritage documentation (Eastman et al. 2008), as-built visualization 

(Pătrăucean et al. 2015), and monitoring and maintenance (Motawa and Almarshad 2013). 

 Despite the advantages of utilizing BIM, the use of BIM in practice for contractors 

and field mangers is relatively low compared to architects and engineers due to several 

technical reasons (Moreno, Olbina, and Issa 2019). One of the reasons is that as-designed 

BIM, has limitations in characterizing the as-is status of the actual construction sites (Anil, 

Akinci, and Huber 2011). For example, conventional BIMs omit temporary structures such 
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as scaffolding, formwork, and shoring (Hyunjoo and Hongseob 2011; Kyungki, Yong, and 

Kinam 2018) and stored construction materials (Yu, Li, and Luo 2016) that commonly 

exist at the construction sites. Besides, BIM barely reflects reality, such as true color, 

shading, and the actual dimension of building components (Tan Qu and Wei Sun 2015). 

To address these limitations, the use of laser-scanned point clouds has been emerging 

(Adán et al. 2018; Bosché, Ahmed, Turkan, Carl T. Haas, et al. 2015; Hamledari, 

Rezazadeh Azar, and McCabe 2018).  

1.2 Laser Scanned Point Cloud 

As a means of representing reality measurements, laser scanned-point clouds have 

been used for various purposes in the AEC industry. (Mukupa et al. 2017) demonstrated 

the use of terrestrial laser scanning (TLS) for change detection and deformation monitoring 

in construction sites. They stated that the use of TLS has increased in change detection and 

deformation monitoring of structures as a surveying technique necessitated by 

advancements in modern technology. (Zhang and Arditi 2020) presented an application of 

laser-scanned point clouds for progress control of infrastructure construction. They argued 

that laser scanning technology could monitor the project’s progress in a real construction 

environment with limited human input. Currently, not only ground laser scanning but also 

mobile laser scanning (MLS) and airborne laser scanning (ALS) methods have been 

introduced. (Wang et al. 2020) reviewed the applications of MLS for urban 3D modeling. 

(Vo, Laefer, and Bertolotto 2016) described the availability of airborne laser scanning data 

for urban surveying and monitoring. More recently, (Kim et al. 2019; Park et al. 2019) 

presented as-built 3D modeling frameworks using a mobile laser scanning robot for 

construction progress monitoring. To sum up, the advancement of automated scanning 
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technology has led to an increase in the use of point clouds in AEC industry because the 

point cloud can represent the as-is 3D geometry of objects. However, these point clouds do 

not contain semantic information such as type, material, and location of the objects. For 

this reason, additional processes are needed for point clouds to achieve semantic 

enrichment. 

1.3 Scan-to-BIM 

Several researchers have developed a method for converting the point cloud into a 

semantic-rich 3D solid model by detecting and classifying the objects in the point clouds 

called Scan–to-BIM. (Tang et al. 2010) introduced methods for automated geometric 

modeling, object recognition and object relationship modeling from laser-scanned point 

clouds. (Bosché, Ahmed, Turkan, Carl T Haas, et al. 2015) proposed a way of converting 

the laser-scanned data into BIM by aligning the point clouds to CAD models.  (Macher, 

Landes, and Grussenmeyer 2017) presented a semi-automatic 3D reconstruction method 

for a building inside from point clouds. (Chen, Kira, and Cho 2019) proposed an automated 

Scan-to-3D reconstruction pipeline using a multi-layer perception (MLP). Nonetheless, 

conventional Scan-to-BIM may cause a loss of reality and details that the original point 

clouds had during the geometric modeling process, as shown in Figure 1. Moreover, 

implementing the Scan-to-BIM in dynamically changing construction sites is challenging 

because it requires a significant amount of time and intensive labor for the classification 

and modeling process (Chen and Cho 2018), which is not feasible during construction. 
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Figure 1. The loss of reality and details during the solidifying process in automated 
Scan-to-BIM. (a): the original point cloud, and (b): the solid model from automatic 
Scan-to-BIM 

 

1.4 Semantic Segmentation 

To mitigate these challenges in the Scan-to-BIM process, a few studies have 

presented methods for automatically segmenting objects and labeling the detected 

information to the point cloud data itself, called semantic segmentation (Dimitrov and 

Golparvar-Fard 2014a; Fehr et al. 2016). The semantic segmentation technologies have 

advanced with the development of machine learning and deep learning algorithms. Qi et 

al. (2017) presented a hierarchical neural network, named PointNet, using each point 

directly as input data for learning both local and global-level features (Qi, Su, et al. 2017). 

Chen et al. (2019) suggested an automated building element detection algorithm using a 

data-driven deep learning framework. They trained the model with 3D CAD objects 

collected from Google 3D Warehouse. 
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Regarding construction material classification, Han and Golparvar-Fard (2015) 

presented a construction material classification method using two separate histograms of 

texture and color in images (Kevin K Han and Golparvar-Fard 2015). This approach uses 

a support vector machine (SVM) based on a new construction material library (CML), 

including 20 types of construction materials. However, most existing segmentation 

methods just labeled the detected objects and their properties to each point without a 

specific data structure. The lack of data structure for the point clouds has limited their 

interoperability in construction projects.  

1.5 Research Needs/Knowledge Gaps 

Despite many efforts in the as-built modeling domains in construction, the current 

practices still have limitations. For establishing the research goal and objectives to develop 

an automated information modeling framework from laser-scanned point cloud data, 

research gaps are identified as follows: 

1. Lack of comprehensive point cloud segmentation methods for construction 

objects recognition. Past research has not overcome one or more of the 

following: 

a. Ability to hierarchically classify construction components and their 

properties simultaneously  

b. Training datasets including various types of construction object and 

material 

2) Lack of reliable and effective data structure for point cloud data to manage and 

represent the semantic information  
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3) Lack of a framework that integrates all necessary processes (from point cloud 

classification to information representation and visualization) for as-built 

construction scene understanding 
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CHAPTER 2. RESEARCH GOAL AND OBJECTIVES 

2.1 Research Goal 

This research aims to design an object-oriented information modeling framework 

for raw point cloud data, named PCIM. The PCIM is defined herein as an entire process, 

including recognizing construction objects and their properties from point cloud data and 

representing the information with a well-organized data structure. To achieve this, the 

following research questions need to be answered:  

1. How can the construction objects and their properties be automatically 

extracted from the point cloud data? 

2. How can the classified semantic data be effectively managed and represented 

in terms of data interoperability? 

To answer these research questions, this research consists of two topics: 1) to 

present appropriate classification methods for point cloud data and 2) to develop a data 

schema to represent the classified information with a hierarchical structure.  

2.2 Research Objectives and Scopes 

To answer the research questions, this research establishes two primary research 

objectives as follows: 

 The first objective, which is discussed in CHAPTER 5, is to presents 

methodological approaches to classify multiple construction objects and their 

properties in large scale point cloud data 
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  The second objective, which is discussed in CHAPTER 6, is to create a data 

schema to manage and represent the classified information with an object-

oriented hierarchical format 

2.2.1 Objective 1: Point Cloud Classification 

The first objective of this research is to develop a methodological approach to 

classify the type of objects and their properties in point cloud data. In this research, the 

classification process is divided into three categories: 1) material classification, 2) object 

classification, and 3) spatial reasoning. This research employs hierarchical deep learning 

approaches for the material and object classification and assesses their classification 

performance. To improve the material classification performance, this study proposes 

leveraging laser intensity values for training the neural network architecture. The classified 

material information is also used as a feature for object classification. In addition, this 

research presents a point-density histogram-based spatial reasoning method to recognize 

the objects’ location. In this way, the semantic information is sequentially labeled in the 

point cloud data.  

In this study, the classification is limited to objects that exist at the building 

construction sites such as building elements (e.g., beams, columns, slabs, and walls), 

temporary structures (e.g., formworks, scaffoldings, and steel frames), and construction 

equipment (e.g., excavators and boom lifts). This study used its own dataset for the deep 

learning architecture training instead of using public datasets to enhance classification 

performance by using additional input parameters. The datasets are obtained from actual 
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building construction sites. The validation is also performed with laser-scanned point cloud 

data collected from a live building construction site. 

2.2.2 Objective 2: Data Schema Development for PCIM 

The second objective of this research is to create a new data schema to represent 

the classified information in point cloud data with an object-oriented hierarchical manner. 

For this purpose, this research investigates the Industry Foundation Classes (IFC) data 

schema to understand the basic data structure for information exchange in construction 

projects and identify the proper information representation methods for PCIM. Since PCIM 

is an automated information modeling framework, only detectable objects in point clouds 

are considered as entities of the PCIM data schema. In PCIM data schema each object 

entity has a list of pointIds to represent their geometry. This study also develops a data 

parser to convert labeled point clouds through the classification process to a human-

readable format such as Extensible Markup Language (XML) and a PCIM viewer to 

visualize the hierarchically classified point cloud data.  

The first version of PCIM focuses on the building construction domain. 

Accordingly, the scope of the PCIM data schema in this study is limited to defining entities 

found in building construction sites. As aforementioned, PCIM data schema only defines 

automatically recognizable entities such as type of object, material and location. The 

entities for parametric modeling and relationship declaration by users are not considered 

in PCIM data schema. The validation of the integrated PCIM framework from 

classification to data parsing and visualization is performed with a full-scale field 
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experiment at a building construction site. To identify the effectiveness of PCIM, a 

comparative analysis between PCIM and other Scan-to-BIM processes is conducted.  
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CHAPTER 3. LITERATURE REVIEW 

This chapter presents a comprehensive review of previous research associated with 

the identified research topics: 1) semantic segmentation and 2) data structure for 3D point 

cloud data. Based on the literature review, the point of departure for two specific research 

objectives, addressed in CHAPTER 5 and CHAPTER 6, are identified. 

3.1 Point Cloud Segmentation 

3.1.1 Object segmentation  

Conventional methods for building object recognition in the 3D point cloud can be 

divided into two approaches: feature extraction algorithms or the relationship of building 

objects. The first approach, one of the most widely used methods for building object 

classification, uses feature extraction algorithms such as Random Sample Consensus 

(RANSAC) (Fischler and Bolles 1981), Principal Component Analysis (PCA) (Jolliffe and 

Cadima 2016), or Fast Point Feature Histograms (FPFH) (Rusu et al., 2009). These 

algorithms have been presented in several studies. Notably, (Tarsha-Kurdi, Landes, and 

Grussenmeyer 2007) employed the Hough-transform and RANSAC algorithm to detect 

roof planes in airborne laser-scanned point clouds. (Wang, Cho, and Kim 2015) adopted a 

region growing plane segmentation algorithm to classify building components. More 

recently, (Li et al. 2017) proposed an improved RANSAC using Normal Distribution 

Transformation (NDT) cells to improve plane surface classification accuracy. The second 

approach involves methods of leveraging objects' contexts, such as the spatial relationships 

and ontological principles between the building components. For example, (Pu and 
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Vosselman 2009) proposed a knowledge-based object classification approach to 

reconstruct building façade models. They utilized observation regarding the size, location, 

and topology of building elements in a segmented 3D point cloud. 

The recent works on semantic segmentation in 3D point cloud have adopted 

specifically designed neural network architectures. They can be mainly divided into three 

types, multi-view projection-based methods, voxelization-based methods, and point-based 

methods. (Boulch, Saux, and Audebert 2017) used projected RGBD images generated from 

3D point cloud data for the semantic segmentation. The prediction scores from RGBD 

images could be improved by residual correction (Järemo Lawin et al. 2017). However, 

these methods have limitations in losing geometrical information during the projection 

steps (Guo et al. 2019). (Tchapmi et al. 2017) presented SEGCloud, which used 3D-FCNN 

(Long, Shelhamer, and Darrell 2014) for coarse voxel predictions and fully connected 

conditional random fields (FC-CRF) to enforce global consistency.  

Although the volumetric representation methods preserve point clouds' 

neighborhood structure, the voxelization step can cause information loss. To this end, (Qi, 

Su, et al. 2017) introduced point-wise feature learning based on MLP, called PointNet. 

PointNet extracted a global feature vector from a point cloud data and performed prediction 

with max-pooling. (Qi, Yi, et al. 2017) also presented PointNet++ employing a hierarchical 

network, which remedies PointNet’s disadvantage of not addressing geometric structures 

from the neighborhood of each point. However, the existing PointNet++ used only 3D 

coordinates as input parameters, which can be inefficient to classify the construction 

objects that are mostly large and have an ordinary shape. Therefore, this study employs 

modified PointNet++ for construction object classification, which uses additional input 



 13

parameters such as laser intensity and material information. Table 1 compares existing deep 

learning-based semantic segmentation algorithms.  

 

Table 1. Deep learning-based object segmentation algorithms 
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Methods 
Projection-

based 
Projection-

based 
Voxel-
based 

Voxel-
based 

Point-based Point-based 

Classifier SnapNet 
Tangent-

Conv 
SEGCloud 

Sparse-
ConvNet 

PointNet++ 
Modified 

PointNet++ 

Input 
parameters 

RGBD RGBD XYZRGB XYZ XYZ 
XYZRGB+

material 
index 

 

Currently, several studies have provided full-scale 3D benchmark datasets for 3D 

point cloud segmentation, such as ScanNet (Dai et al. 2017), S3DIS (Armeni et al. 2016), 

Semantic3D (Hackel et al. 2017), and SemanticKITTI (Ioannidou et al. 2017). Those 

datasets contain multiple classes in each point cloud. However, since those datasets include 

only ordinary objects in daily use (e.g., cups, sofas, beds, cars, bicycles, etc.), it can be 

inefficient to detect structural elements in building construction sites (e.g., beams, walls, 
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floors, and stairs). Additionally, the current public datasets only include 3D coordinates 

(XYZ) or plus color codes (RGB), which can be insufficient for construction material and 

object recognition. This study, therefore, builds a self-constructed point cloud dataset 

collected from actual construction sites. The dataset consists of a hierarchical class 

including temporary structures and construction equipment as well as building elements 

and contains laser intensity values for material classification and material index for object 

classification.  

 

Table 2. 3D benchmark datasets for point cloud segmentation 

Datasets ScanNet S3DIS Semantic3D 
Semantic-

KITTI 
proposed 

# Points - 273M 4000M 4549M 115M 

# Classes 
(for eval.) 

20(20) 13(13) 9(8) 28(25) 11(7) 

# Scans 151 272 15 23201 23 

Sensors RGB-D Matterport TLS MLS TLS 

Construction 
objects 

Δ* Δ* X X O  

Channel RGBD XYZRGB XYZ XYZ 
XYZRGB+ 

intensity 
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* ScanNet and S3DIS include only a few building elements such as columns, walls, and 
floors 

 

3.1.2 Material segmentation  

The current state-of-the-art in construction material classification is to leverage 

machine learning approaches with material image datasets. (Dimitrov and Golparvar-Fard 

2014a) suggested a material appearance-based construction material recognition method 

using a support vector machine (SVM) with χ2 and radial basis function (RBF) kernel as 

classifiers. For training and validating the classifier, they developed a Construction 

Materials Library (CML) consisting of 20 primary construction materials with more than 

150 images. (Son et al. 2014) presented a heterogeneous voting-based ensemble classifier. 

They examined the detection performance by comparing six types of single classifiers, 

which include SVM, artificial neural network (ANN), Naïve Bayes (NB), logistic 

regression (LR), k-Nearest Neighbors (KNN), and a modified decision tree algorithm 

referred to as C4.5.  

More recently, in the field of computer science, various studies have been published 

on material detection. These studies are based on convolutional neural networks (CNN) 

with several network architectures, including AlexNet (Krizhevsky, Sutskever, and Hinton 

2017), VGG-16 (Sharan et al. 2013), GoogLeNet (Szegedy et al. 2015), and ResNet (He et 

al. 2016). With the deep learning-based classification approaches, (Park, Chen, and Cho 

2020) presented a CNN-based construction material classification method. Moreover, 
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material databases have been developed to train network architecture, e.g., FMD (Sharan 

et al. 2013), MINC-2500 (Bell et al. 2015), and ImageNet7 (Hu, Bo, and Ren 2011). These 

contain thousands of material image samples. However, existing deep-learning-based 

material detection algorithms may not be suitable for detecting materials in 3D point cloud 

data because they are trained on high-resolution 2D images. Furthermore, since typical 

CNN-based algorithms classify materials with only RGB colors, the classification accuracy 

decreases in low-light areas or discolored materials; these conditions are typical on 

construction sites. This study, therefore, aims to reduce the impact of such obstacles by 

applying a point-based 3D neural network algorithm with additional intensity values. Table 

3 shows the description of existing approaches for the construction material classification.  
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3.2 Point Cloud Data Schema 

This study first reviewed the most recent version of IFC to establish the basis for 

the PCIM data schema. The studies on the development of point cloud data schema are 

then demonstrated.  

3.2.1 Data schema of IFC  

As a standard of information exchange format, IFC has steadily developed by 

‘buildingSmart – International Alliance for Interoperability (IAI)’ with the consent of 

numerous researchers and engineers in AEC. The physical representation of IFC is 

expressed in the standard for the exchange of product (STEP) or Extensible Markup 

Language (XML) format, and this standard is registered to ISO 16739. Generally, the IFC 

has an object-oriented structure, and the data schema architecture of IFC defines four 

conceptual layers (buildingSMART 2018). Because the IFC was developed to support 

interoperability between stakeholders throughout the entire construction project, the IFC 

data schemas include an enormous amount of information that may not be necessary at the 

construction stage. This study, therefore, more focused on the IFC data schemas associated 

with the construction phase.  

IFC defines an entity-relationship of building elements with an object-oriented 

hierarchy architecture. Figure 2 shows a simplified example of the entity inheritance of 

building elements. At the most abstract level, which is associated with Kernel schema, IFC 

classifies the entities into rooted and non-rooted entities. Rooted entities derive from 

IfcRoot, and IfcRoot is subdivided into three abstract entities: object definitions, 
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relationships, property sets. IfcPropertyDefinition represents extensible properties’ 

definition.  

IfcRelationship represents relationships between building objects based on five 

fundamental relationship types: composition, assignment, connectivity, association, and 

definition. IfcObjectDefinition is composed of object occurrences and object types. 

IfcObject embodies location information such as a product installation having a serial 

number and physical placement. IfcTypeObject describes type definitions (or templates) 

such as a product type having a specific model number and typical shape. The entities of 

the occurrences and classes are also subdivided into six key entities: actors, controls, 

groups, products, processes, and resources.  

IFC defines the building elements in the IfcProduct entity, which is the base class 

for all tangible building elements, and it is also separated into spatial elements, physical 

elements, structural analysis items, and others. IfcProducts have materials, shape 

representations, and location. The IfcSpatial elements consist of IfcSite, IfcBuilding, 

IfcBuildingStorey, and IfcSpace. Physical elements are divided into Building elements and 

Civil elements, and the Building elements entity includes Slab, Stair, Door, Wall, etc. 
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Figure 2. A simplified example of the entity inheritance of building elements in IFC 

 

To date, the latest version of IFC schemas has pre-defined most of the entities that 

are occurred in actual construction, and the entities have a hierarchical structure, including 

the relationship between the entities. However, many of the IFC elements have many 

entities for parametric modeling and type declaration as shown in , which may be redundant 

for representing the as-is condition of construction sites with laser-scanned field data. Since 

the PCIM is a framework for automated as-is information modeling with field scanned 

point cloud, the parametric modeling entities are not required. Besides, some attributes in 

the IFC entities cannot be expressed automatically with only point cloud data. This study, 
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therefore, needs to identify the necessary entities of PCIM among the entities pre-defined 

in IFC and to build a new PCIM unique information schema based on that of IFC. 

 

 

Figure 3. Entity-relationship diagram for representing ‘IfcBeam’ element 

 

3.2.2 Data schema to represent point cloud data 

To date, few studies on approaches to storing information on building elements in 

point cloud data have been presented. (Krijnen and Beetz 2017) proposed an Industry 

Foundation Classes (IFC) schema extension to represent point cloud data. They first 

overlaid the point cloud data onto BIM and found points that corresponded to elements in 



 21

the BIM. The associated points were then clustered with a building element level. The 

geometric information, such as 3D cartesian coordinates and surface normals, were stored 

with an extended author-defined IFC format. One drawback of their research is their 

framework only works if a BIM model exists. Also, there would be many mismatches 

between as-is onsite point clouds and as-designed BIM if design changes were not 

frequently updated. (Armeni et al. 2017) presented a semantic segmentation method of 

point cloud data using a machine learning approach. Although their approach could 

automatically segment point clouds with object levels, the data schema only represented 

object types in the point cloud data. To complement the limitations of previous research 

efforts, PCIM is designed to automatically detects objects and their properties such as 

material, locations, and shapes in the point cloud and expresses them in a hierarchical data 

structure. 

3.2.3 Point cloud data structure 

The computer vision and computational geometry communities have produced 

hundreds of available file formats to describe the 3D geometry of laser-scanned point 

cloud. Some of these formats include:  

1. PLY – a polygon file format 

The concept of PLY was derived from OBJ and purposed to store 3D data and 

uses lists of nominally flat polygons to represent objects. The purpose of PLY 

was to add extensibility capabilities and store a huge number of physical 

elements. The file format can depict color, transparency, surface normals, 

texture, coordinates, and data confidence values. 
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2. XYZ – a non-standardized set of files based on Cartesian coordinates  

 XYZ is an archetypal ASCII file type, conveying data in lines of text. There 

are no unit standardizations for XYZ files. Although this format has wide 

compatibility across data processing programs for this type of file, the lack of 

standardization surrounding units and specifications makes it a fundamentally 

faulty method of data transfer unless additional information is supplied. 

3. PCD – a native file format in PCL 

PCD, which is a standard format in Point Cloud Library (PCL), was developed 

by Radu B. Rusu. PCD has the ability to store and process organized point cloud 

datasets. This is of extreme importance for real-time applications, and research 

areas such as augmented reality and robotics. PCD also provides the 

information for n-D histograms for feature descriptors.  

4. E57 – a vendor-neutral file format for point cloud storage.  

E57 was developed to store images and meta point cloud data generated by laser 

scanners and other 3D imaging systems. E57 has been used for the visualization 

of classified point cloud data at the object level. E57 can represent normals, 

colors, and laser intensity values. 

5. LAS – an industry standard for lidar data 

LAS is an open, binary format specified by the American Society for 

Photogrammetry and Remote Sensing (ASPRS). A LAS file consists of a public 

header block, variable-length records (VLR), point data records that include 

global positioning system (GPS) time, RGB and near infrared image (NIR) 

color and wave packet information.  
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6. Potree – a native format for a web-based point cloud renderer 

The Institute of Computer Graphics and Algorithms developed a free open-

source WebGL based point cloud renderer and their own file format, named 

“Potree”. The Potree visualizes point clouds in a web-based environment and 

provides tools for editing. The Potree can export the edited point clouds that 

include manually classified object annotations with JSON, DXF, or Potree file 

format.  

Additionally, the manufacturers of point cloud data processing software created 

their own unique file formats such as PTX (Leica), FLS (Faro), and RCP (ReCap) and their 

renderers. However, no existing point cloud file format organizes the points in the objects 

unit. Only short descriptions of the entire point cloud are described in the header lines. On 

the other hand, BIM file formats represent the information on an object basis. Especially, 

IFC applied various object-oriented information representation methods with XML or 

OWL formats. PCIM, therefore, requires a new point cloud file format implemented with 

object-based data modeling language such as XML to represent the object information 

detected in point clouds. 

3.3 Point of departure 

Relevant literatures are reviewed in the previous sections. Although various studies 

and practices related to the as-built modeling and information management using point 

cloud data have been presented, the knowledge and research gap still exist. This section 

summarizes the knowledge gaps found through the literature review and states the point of 

departure for each research objective.  
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1. Objective 1: Point Cloud Classification 

The state-of-the-art in 3D point cloud semantic segmentation is leveraging 

point-based deep learning approaches, such as PointNet and PointNet++. 

However, the existing point-based classification methods only uses 3D 

coordinates as input parameters for feature learning. This study, therefore, 

proposes a modified PointNet++ leveraging additional input parameters such as 

laser intensity and material index. Moreover, since existing public benchmark 

datasets for the point cloud scene segmentation rarely include construction 

objects and do not have laser intensity values, this study also produces self-

developed benchmark datasets obtained from actual construction sites.  

 

2. Objective 2: Data Schema Development for PCIM 

The latest version of IFC defines almost all entities that occurred in construction 

projects. However, many of the entities are for parametric modeling and data 

exchange between stakeholders. Besides, several attributes in IFC cannot be 

automatically classified with point cloud data. Therefore, even if the PCIM data 

schema follows IFC’s entity definitions for building elements and material, it 

may contain only recognizable entities that can be detected in point cloud data. 

Moreover, additional entities to represent the point cloud’s attributes are also 

defined in PCIM data schema. The labeled point cloud data through the 

segmentation process is converted to a human-readable data format with PCIM 

data parser. Furthermore, the existing point cloud viewers cannot visualize the 
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points with an object-oriented hierarchical structure. Thus, this study also 

presents PCIM viewer, which have a hierarchical database (DB) tree.  
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CHAPTER 4. RESEARCH FRAMEWORK 

This chapter presents the overall PCIM framework from classification to 

visualization. The integrated PCIM framework to facilitate the automated point cloud 

information detection and representation is proposed, as shown in Figure 4. This 

framework consists of three main modules, pre-processing, classification, and data parsing. 

The details of classification and data parsing modules are described in CHAPTER 5 and 

CHAPTER 6, respectively.  

 

 

Figure 4. Overall PCIM framework 
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Given the framework, laser-scanned point clouds are first filtered by a radius 

distance and down-sampled with an octree-based balanced density down-sampling 

technique (El-Sayed et al., 2018). After that, the pre-processed point clouds are labeled 

through three classification processes, material, object, and location classification, 

sequentially. Then, the labeled point cloud data is parsed into a human-readable file format 

with a pre-defined PCIM data schema. In this step, the labeled point cloud data is clustered 

in object units, and the clustered data is organized with an object-oriented hierarchical 

structure. Finally, the visualization tool highlights the selected objects in an entity tree and 

exports a PCIM.xml file containing all semantic information.  

To make the PCIM feasible, a research framework is established as described in 

Table 4. This framework consists of four layers for each of the modules that describe the 

sequential steps of the module implementation. The first three steps are independently 

performed for each module. Each module is evaluated in a different way. Then, the 

modules are integrated into the PCIM framework. At the end of this research, the integrated 

PCIM framework is compared to a Scan-to-BIM framework by a case study at the actual 

building construction site.  

 

Table 4. A research framework for PCIM implementation 

 
Material 

classification 
Object 

Classification 
Spatial 

Reasoning 
PCIM Data 

Parsing 

Methodology 
Intensity-

assisted deep 
learning 

Material-
assisted deep 

learning 

XY-, Z-
histogram 

XSD-based 
schema 

development 
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Output 
Material 

labeled PCD* 
Object labeled 

PCD 
Location 

labeled PCD 
PCIM.xml 

Evaluation 
Classification 
performance 

Classification 
performance 

Spatial 
reasoning 
Accuracy 

Effectiveness 

Analysis Comparison between PCIM and Scan-to-BIM 

*PCD: Point Cloud Data 
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CHAPTER 5. POINT CLOUD CLASSIFICATION 

This chapter proposes a sequential classification approaches in three categories as 

follows:  

1. Construction material classification 

a. Laser intensity normalization 

b. Dataset for deep network architecture training  

c. Performance evaluation 

2. Construction object classification 

a. Deep learning-based construction material classification using material 

index 

b. Performance evaluation 

3. Spatial reasoning 

a. XY-histogram-based building boundary prediction 

b. Z-histogram-based building level prediction  

Figure 5 depicts the hierarchical classification process in PCIM. Given the classification 

process, outputs at each step are used as input parameters at the next step. Each of these 

steps is discussed in the following sections. 



 30

 

Figure 5. Hierarchical classification process in PCIM 

 

5.1 Construction Material Classification 

5.1.1 Laser intensity normalization  

The intensity value is a measure of the electronic signal strength obtained from the 

backscattered optical. The intensity value is currently used for many purposes such as 

damage detection (Guldur and Hajjar 2014; Kashani and Graettinger 2015) and surface 

classification (Barnea and Filin 2012; Wing et al. 2015) because the returning strength of 

the laser pulse is influenced by material properties, incidence angles, and distance (Gross, 

Jutzi, and Thoennessen 2008). Equation 1 represents the received energy function based 

on the principle of energy conservation. 

 
𝐸௥ ൌ  𝐸௧

𝐶௧𝐶௥𝑇ଶሺ𝑅ሻ cos𝜃
𝑅ଶ

 𝑓ሺ𝑐௦ሻ (1) 
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where  and 𝐶௧ and 𝐶௥ are the constant values of the transmitter and the receiver, 𝑅 and 𝜃 

are the distance and incident angle to the object surface, respectively, and 𝑓ሺ𝑐௦ሻ  is a 

function of all other influences such as surface material and geometry. That is, the laser 

intensity value can be varied by the type of surface material, as shown in Figure 6.  

 

 

Figure 6. Intensity histograms of various types of surface material. (a): soil, (b): 
concrete, (c): steel, and (d): wood 
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For this reason, this study establishes Hypothesis 1 as follow: 

 

 Hypothesis 1: material classification performance can be improved by 

leveraging laser intensity values for training neural network architecture.  

 

To mitigate the impact of ray distance and incident angle, this study normalizes the 

intensity by Equation 2. 

 

 
𝐼௡௢௥௠ ൌ 𝐼௥௔௪ ቆ

𝑅௔௖௧
𝑅௥௘௙

ቇ
ଶ

൬
1

𝑐𝑜𝑠 ሺ𝜃ሻ
൰ (2) 

 

where 𝑅௥௘௙ is set to 10 m in this study, which means the corrected intensities are equal to 

the intensity measured at 10 m. 

5.1.2 PointNet++  

According to (Qi, Yi, et al. 2017), PointNet++ complements the weakness of 

PointNet, which does not properly learn local structure by composing a hierarchical 

network with density adaptive PointNet layers. The hierarchical neural network applies 

PointNet recursively on a nested partitioning of the input dataset. That is, PointNet++ 

repeatedly performs PointNet in a partitioned area to learn local features to extract global 
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features from the hierarchical structure. In this way, the classification performance in large 

scale point clouds can be improved. For this reason, this study employs PointNet++ as a 

baseline architecture. Figure 7 is the PointNet++ architecture.  

 

 

Figure 7. PointNet++ architecture (Qi, Yi, et al. 2017) 

 

The PointNet++ architecture consists of three primary layers as follows: 

 Sampling layer: selects a set of points from input points, which defines the 

centroid of local regions 

 Grouping layer: constructs local region sets by finding neighboring points 

around the centroids 

 PointNet layer: uses a mini-PointNet to encode local region patterns into 

feature vectors 
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To be sure of the validity of using PointNet++ as a baseline network architecture, 

this study conducted a performance comparison between PointNet and PointNet++. The 

comparative analysis is conducted with a material dataset containing three types of 

material, concrete, steel, and masonry. As shown in Table 5. Classification performance 

comparison between PointNet and PointNet++Table 5, PointNet++ showed about 1.5% 

higher classification performance than PointNet. Based on the result, this study employs 

PointNet++ as the baseline architecture for the material and object classification.  

 

Table 5. Classification performance comparison between PointNet and PointNet++ 

PointNet PointNet++ 

Precision Recall F1 Precision Recall F1 

0.90141 0.88215 0.89168 0.92581 0.88846 0.90675 

 

5.1.3 Dataset for architecture training  

As aforementioned, this study additionally feeds the laser intensity values and 

material indexes for the deep learning-based material classification and object 

classification, respectively, so that the n-point input for the PointNet++ architecture has (n 

× 7) dimensions (XYZ+RGB+Intensity). The point cloud data was collected from a 

commercial terrestrial laser scanner.  
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Table 6. The laser scanner’s specification 

Categories Specs. 

Beamwidth 2.25 mm + 2 × 0.011° 

Ranging error ± 2 mm (10 – 25 m) 

Maximum range 
330 m 

(used in this study: 100m) 

Field-of-view (vertic./horiz.) 300° / 360° 

Horizontal resolution 0.035° (6mm @ 10m) 

Vertical resolution 0.035° (6mm @ 10m) 

 

 For training the network architecture for material and object classification, the 

ground truth-labeled datasets were constructed based on the point clouds collected from 

two actual construction sites (Sites 1 and 2) and an artificially built concrete building (Site 

3). The point cloud data was collected additional laser-scanned point cloud data at a 

different location (Site 4), which was then used for validation of the proposed approach. 

Table 7 shows the description of the datasets, and Figure 8 depicts the categories of the 

material and object datasets.  
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Table 7. The description of the material and object datasets 

Purpose Training Validation 

Data collection location Site 1 Site 2 Site 3 Site 4 

# scans 6 5 7 3 

# points per scan 1,400,000 1,100,000 1,400,000 1,400,000 

# material types 6 5 5 5 

# object types 12 10 8 8 

Maximum raidus 100 m 100 m 100 m 100 m 

Point Distance 
(mm/10m) 

6.136 7.670 6.136 6.136 

Parameters 
- Material: x, y, z, R, G, B, intensity, mtr label 

- Object: x, y, z, R, G, B, mtr label, obj label 
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Figure 8. The categories of the material and object datasets 

 

5.1.4 Material classification performance evaluation  

The performance of the proposed is evaluated by the F1 score. The F1 score is the 

harmonic mean between precision and recall. It tells how precise, robust the classifier is. 

The range for the F1 score is [0, 1]. Mathematically, it can be expressed by Equation 3.  
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where, the precision is the number of correct positive results divided by the number of 

positive results predicted by the classifier, and the recall is the number of correct positive 

results divided by the number of all relevant samples.  
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 TP: correctly labeled points 

 TN: correctly unlabeled points 

 FP: incorrectly labeled points 

 FN: incorrectly unlabeled points  

To test classification performance for all materials defined in PCIM, the evaluation 

is conducted with three outdoor point clouds from construction sites and one indoor point 

cloud from an existing building. Figure 9 shows the results of material classification from 

laser-scanned point cloud data using laser intensity.  
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Figure 9. Material classification results. (a): the original point cloud, (b): the ground 
truth labeled point cloud, and (c): segmentation results 

 

In most cases, the material was well segmented with the proposed classification 

approach using laser intensity. However, some wet surfaces caused classification errors, as 

shown in Figure 10. It is because the reflective strength of the laser can be reduced in wet 

areas. This errorcan be reduced by intensity correction with the surface condition (Lichti 
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and Harvey 2002). In addition, classification errors existed in places such as exposed steel 

plates where diffraction of light occurs. 

 

 

Figure 10. The classification errors in wet surfaces 

 

To validate Hypothesis 1, “material classification performance can be improved by 

adding laser intensity values to feature learning input parameters,” this study compared the 

performance of material classification in point cloud data with and without laser intensity 

values. The comparative analysis is conducted by comparing the F1 score, and the F1 

scores are calculated in point level. Table 3 shows the results of the comparative analysis. 

The F1 score increased by up to 15% to 3% for all material types except soil. Based on 

these results, the hypothesis that adding laser intensity to input parameters of deep neural 

network architecture training can improve the material classification in point cloud data is 

verified.  
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Table 8. Comparison of the material classification performance 

 Without Intensity With Intensity 

Material 
type 

Precision Recall F1 Precision Recall F1 

soil 0.92494 0.88865 0.90643 0.95988 0.85846 0.90634 

concrete 0.70982 0.74015 0.72397 0.92388 0.84046 0.87499 

steel 0.90742 0.84574 0.87284 0.93574 0.91219 0.92327 

wood 0.96882 0.71628 0.79921 0.80222 0.93177 0.86209 

drywall 0.88888 0.82131 0.85376 0.86518 0.90542 0.88484 

masonry 0.70809 0.90818 0.79575 0.86500 0.80053 0.83152 

Average 0.85133 0.82005 0.82533 0.89198 0.87481 0.88051 

 

 

5.2 Construction Object Classification 

5.2.1 Hierarchical deep learning-based object   

Similar to the material classification process, object classification also utilizes 

PointNet++ with expanded input channels. The object classification process feeds material 
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information labeled in the material classification process rather than intensity values. The 

indexed material information can provide useful contextual clues for classifying 

construction objects because particular building objects have specific or unique materials; 

for example, an H-beam is mostly composed of steel. This study, therefore, establishes 

Hypothesis 2 as follow: 

 

 Hypothesis 2: construction object classification performance can be 

improved by adding material information to input parameters for feature 

learning.  

 

By adding the material information to the input, the n-point input for the 

PointNet++ architecture has (n × 7) dimensions (XYZ+RGB+Material index #), as seen in 

Figure 11. With the seven channels of input data, PointNet++ performs semantic 

segmentation, and the segmented points are then clustered into individual object units with 

the Euclidean-distance based clustering method (Rusu and Cousins 2011). The Euclidean 

cluster extraction method clusters neighboring points with an individual object level based 

on the Euclidean geometry, similar to the region growing segmentation method. The steps 

of the algorithm are as follows: 

1.  generate a kd-tree interpretation for the input dataset 𝑃; 

2. set up a blank list of clusters 𝐶, and a queue of the points that need to be verified 

𝑄; 
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3. conduct the following steps with every point 𝑝௜ ∈ 𝑃,: 

a. add 𝑝௜ to the current queue 𝑄; 

b. for all points 𝑝௜ ∈ 𝑄 perform: 

i. find for the set 𝑃௜
௞ of neighbor points of 𝑝௜ in a sphere of radius 

𝑟 ൏ 𝑑௧௛; 

ii. for all neighbor points 𝑝௜
௞ ∈ 𝑃௜

௞ , check if the point has been 

processed and if it is not processed, add it to 𝑄; 

c. if the all point lists in 𝑄 has been processed, add 𝑄 to the list of the 

cluster 𝐶, and change 𝑄 to a blank list 

4. If all points satisfying 𝑝௜ ∈ 𝑃 have been processed and are part of the list of 

point clusters 𝐶, the roof is closed. 

 After the clustering process, the module assigns a unique index, ‘objId,’ to each 

clustered object. The training and validation datasets for the object classification include 

seven types of building objects, as shown in Table 7. 
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Figure 11. Hierarchical deep learning-based object classification 

 

5.2.2 Object classification performance evaluation  

To test construction object classification performance, the evaluation is conducted 

with three outdoor point clouds from construction sites. Figure 12 shows the construction 

object classification results from laser-scanned point cloud data using material information. 

A total of eight construction objects were detected in the evaluation datasets.  
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Figure 12. Construction object classification results. (a): the original point cloud, (b): 
the ground truth labeled point cloud, and (c): segmentation results 

 

To validate Hypothesis 2, “using material information as an input parameter for 

architecture learning can improve the construction object classification performance,” this 

study compared the performance of construction object classification in point cloud data 

with and without material information. Similar to material classification, the comparative 

analysis is conducted by comparing the F1 score, and the F1 scores are calculated in point 
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level. Table 9 shows the results of the comparative analysis. The F1 score increased by up 

to 7% when using the material index. Based on these results, the hypothesis that using 

material information for an input parameter of neural network architecture training can 

improve the object classification in point cloud data is verified.  

 

Table 9. Comparison of the construction object classification performance 

 Without material With material 

Material 
type 

Precision Recall F1 Precision Recall F1 

Wall 85.5481 86.7940 86.16655 84.17940 92.55000 88.16647 

Slab 86.1007 86.1111 86.10590 88.87360 89.26340 89.06807 

Cuboid 
column 

80.5099 88.8421 84.47103 91.37080 90.88510 91.12730 

Circle 
column 

81.4085 85.2744 83.29662 84.09450 88.38290 86.18539 

Cuboid 
beam 

80.8764 83.0203 81.93433 87.10920 87.80620 87.45631 

H-beam 89.8702 89.4426 89.65589 86.22500 88.83930 87.51263 

Ground 82.4527 91.6011 86.78648 86.94260 85.15620 86.04013 

Boomlift 90.0274 81.9480 85.79791 91.36100 88.74080 90.03184 

Average 84.5992 86.6292 85.5268 87.5195 88.9530 88.1985 
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5.3 Spatial Reasoning 

After the point cloud segmentation processes, the PCIM framework carries out 

spatial reasoning with point density histogram approaches. The spatial reasoning module 

first determines building boundary proposal with XY-histogram and then finds main floor 

proposals with Z-histogram. Figure 13 is a flowchart representing the spatial reasoning 

module. 

 

 

Figure 13. Flowchart of the spatial reasoning module in PCIM 
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5.3.1 XY-histogram based building boundary prediction  

This method is derived from the premise that the building boundary is made of 

vertical components such as walls and columns, causing a high density of points in the x-

y plane. The module determines building boundary proposals from the XY-histogram by 

searching the outermost peaks with a peak finding algorithm, as seen in Figure 14.  

 

 

Figure 14. XY-histogram-based building boundary recognition 
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To find the multiple peaks in bivariate data, this research employs the kernel density 

estimator. The kernel estimator for the cumulative distribution function (cdf), for any real 

values of x, is given by Equation 6 and 7. 
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where,  𝑥ଵ, 𝑥ଶ,⋯ , 𝑥௡ are random samples from an unknown distribution, 𝑛 is the sample 

size, ℎ is the bandwidth, and 𝐾ሺ𝑡ሻ is the kernel smoothing fuction. Once the peaks are 

estimated, the module finds objects in the peaks. If walls and columns classified at the 

classification module exist in the building boundary proposal, the module makes a 

bounding box with the walls and columns. And then, if the objects are not in the boundary 

line, this framework labels ‘Site (#10)’ to the objects.  

5.3.2 Z-histogram based building level prediction  

Regarding the points in the building boundary line, this framework finds the main 

floor proposal with a z-histogram method. Similar to the x-y histogram, the z-histogram 

method determines the main floor proposal based on the base concept that the point density 

in the z-axis where the main floor is located should be higher than elsewhere, as shown in 
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Figure 15. Based on the main floor proposals, the spatial reasoning module assigned 

building level indexes to each object, e.g., ‘11’ or ’12,’ which means 1F and 2F, 

respectively. 

 

 

Figure 15. Z-histogram-based building level (floors) recognition 

 

5.3.3 Point Cloud labeling 

At the end of all the classification processes, a point cloud data finally generated 

with all the information labeled, as shown in Figure 16. The classified information is stored 
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in each column at an object unit with an integer format, and individual objects are given its 

own IDs to distinguish and count them. The intensity values were used only for material 

classification, and it is eliminated after the material classification to reduce the file size of 

the point cloud data because it is no longer meaningful data for object classification and 

spatial reasoning.  With the labeled point cloud data, PCIM parser organizes the data with 

an object-oriented data structure based on pre-defined PCIM data schema. The PCIM data 

schema and data parsing processes are demonstrated in CHAPTER 6.  

 

Figure 16. Information labeled point cloud after classification processes 
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CHAPTER 6. PCIM DATA SCHEMA 

This chapter presents a prototypical design of PCIM data schema and validates the 

integrated PCIM framework as follows: 

1. Data Schema Development 

a. Entity inheritance 

b. Data parser and viewer 

2. Validation of PCIM framework from a Case Study 

a. Test set-up 

b. Classification module 

c. Data parsing module 

d. PCIM viewer 

e. Comparison between Scan-to-BIM and PCIM 

Each of these steps is discussed in the following sections. 

 

6.1 Data schema development 

6.1.1 Entity inheritance 

The PCIM data schema is designed to be compatible with IFC in terms of 

expressing building information by inheriting major data structures from IFC. However, 

since the primary purpose of PCIM is to represent the as-is condition of construction sites 

with reality measurements, the entities related to parametric modeling in IFC are excluded. 
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In addition, as PCIM is an automated information modeling framework in the current scope 

of the study, it only represents automatically detectable and recognizable entities. Figure 

17 depicts the inheritance, relationship, and cardinality between entities in the PCIM data 

schema.  

 

 

Figure 17. Entity-relationship diagram (ERD) of the PCIM data schema 
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PCIM data schema begins with PCIM_root describing the general information of 

the PCIM file. In the entity hierarchy, the ‘Location’ entity has one or more ‘Object’ 

entities. The ‘Object’ entity is composed of ‘Building element,’ ‘Equipment,’ and 

‘Temporary structure,’ and among them, only the ‘Building element’ entity has a ‘Material’ 

entity. Moreover, one ‘Point cloud’ entity has millions of ‘Point’ entities containing all 

labeled information, and the ‘Object’ entity only brings the ‘pointId’ attribute from the 

‘Point’ entities. The PCIM data schema also defines object and material label numbers as 

‘Objlabel Enum’ and ‘Material Enum.’ The PCIM data schema is encoded by XSD (XML 

Schema Definition). 

6.1.1.1 Elements in PCIM.xsd 

As aforementioned, the first version of PCIM data schema is encoded by XSD, 

named PCIM.xsd. Figure 18 shows the ‘object’ element in PCIM.xsd. The ‘object’ element 

is similar to ‘IfcElement’ entity in terms of representing a tangible object. However, the 

‘object’ element does not have child entities for parametric modeling and type declaration 

by the user because the element reflects the as-is status of objects. The types and shapes of 

the objects in PCIM are determined as detected in the raw point cloud data. Therefore, 

PCIM data schema just stores the ‘pointId’ from the segmented point cloud data rather than 

representing the surface shapes of the object. In this way, the PCIM data schema can be 

much lighter and simpler than IFC. Figure 19 is the definition of ‘IfcElement’ in IFC4.3 

RC1. The definition of other elements are listed in APPENDIX A 
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Figure 18. Definition of ‘object’ element in PCIM.xsd 
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Figure 19. Definition of ‘IfcElement’ element in IFC4.3 RC1 
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6.1.2 PCIM data parser and viewer 

This study implements a PCIM parser with the xml.etree.ElementTree module in 

Python providing functions to convert data sheets to XML files with a hierarchical 

structure. The PCIM parser categorizes raw data into object levels and generates bounding 

boxes. After that, the sub-modules of the PCIM parser compute the box-dimension and 

centroid of the bounding boxes and represent them with a 3D coordinate (x, y, z). The data 

parser finally converts the segmented point cloud data to an XML file based on the PCIM 

data schema. This study also develops a point cloud data viewer, named PCIM_viewer, 

implemented with the Point Processing Toolkit (pptk), an open-source Python library for 

visualizing and processing point cloud data with a simple user interface. The PCIM viewer 

enables to highlight only selected objects in the database (DB) tree. The viewer can also 

present the chosen object’s properties, such as material, box dimensions, centroids, and 

color.  

6.2 Validation of the Integrated PCIM Framework from a Case Study 

6.2.1 Test set-up 

To validate the feasibility of PCIM, this study conducted a case study with an actual 

building construction project on the campus of Georgia Institute of Technology. Figure 20 

shows the field test site. The building consisted of various types of materials and building 

elements. There were two types of construction equipment, excavators and boom lifts, in 

the site. A total of six point clouds were collected by a terrestrial laser scanner (TLS) from 

the site. With the obtained point clouds, this study verified the feasibility of the integrated  

PCIM framework from the classification to the data parsing.  
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Figure 20. A registered point cloud model of a building under construction for PCIM 
framework validation 

 

6.2.2 Classification module 

The proposed PCIM framework conducted material classification first with the 

individual point cloud. Since the description of the classification processes and their 

classification performance is described in CHAPTER 5, this chapter only mentions the 

classification results and overall accuracy.  Figure 21 depicts the material classification 

results using laser intensity. After the material classification process, the material labeled 

point clouds were registered, and with the registered point cloud, construction object 

classification was conducted.  
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Figure 21. Material classification results for the test site 

 

With the labeled material indexes, the PCIM framework performed object 

classification with a registered point cloud. Figure 22 and Table 10 describes the object 

classification results using the material index. The overall classification accuracy was 

about 88.71%. The accuracy was calculated for each point using Equation 8.  

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  

𝑇𝑃 ൅ 𝑇𝑁
𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁

 (8) 

 

Figure 22. The results of the object classification using the material indexes 
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Table 10. Confusion matrix of the construction object classification for the case study 
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Wall 0.909 0.051 0.000 0.026 0.015 0.000 0.909 0.998 

Slab 0.000 0.991 0.000 0.000 0.009 0.000 0.991 0.922 

Cuboid 
Column 

0.000 0.000 0.610 0.367 0.000 0.023 0.610 0.837 

H-Beam 0.001 0.017 0.035 0.947 0.000 0.000 0.947 0.882 

Ground 0.000 0.004 0.000 0.000 0.993 0.002 0.993 0.993 

Boom lift 0.000 0.000 0.000 0.000 0.016 0.984 0.984 0.963 

 

After the sequential deep learning-based material and object classification, PCIM 

framework conducted the spatial reasoning process. Figure 23 and Figure 24 show the XY-

histogram and Z-histogram, respectively. The module search columns and walls in the peak 

grids in XY-histogram and labeled “10”, which means “site,” to the objects found outside 

of the bounding box. Only “ground” and “boom lift” were found at the out of boundary 

line in this test. With the Z-histogram, the module found peak points with a kernel density 

estimator and determined building levels with the slabs and beams located in the peak 

points. The objects on the first floor were labeled “11” and objects on the second floor were 

labeled “12”.  
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Figure 23. XY-histogram of the field test site 

 

 

Figure 24. Z-histogram of the field test site 
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6.2.3 Data Parsing module 

With the labeled point cloud data, PCIM parser clustered the semantically 

segmented point cloud into object levels and stored their properties such as location, 

material, box dimension, and centroid, and exported a human-readable XML file based on 

PCIM data schema (PCIM.xsd). Figure 26 and Figure 26 show a part of the XML file 

representing a wall at the test site.  

 

 

Figure 25. A part of the sample XML file generated by the PCIM framework for test 
site  (Text view @ OxygenXML Viewer) 
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Figure 26. A part of the sample XML file generated by the PCIM framework for the 
test site  (Grid view @ OxygenXML Viewer) 

 

6.2.4 PCIM viewer 

The PCIM viewer implemented with the point processing tool kit (PPTK) library 

in Python visualizes the segmented point cloud with a DB tree that can choose 

hierarchically classified objects and highlight the selected items. Figure 27 depicts the 

PCIM viewer showing a chosen wall in the DB tree. The viewer also described the 

properties of the selected objects. The viewer not only visualizes the segmented point 
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clouds but also is capable of adding a function to export the selected objects with .xml or 

other formats. 

 

 

Figure 27. The PCIM viewer highlighting a selected wall in a DB tree 
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6.2.5 Comparison between Scan-to-BIM and PCIM 

In this chapter, this study compares the PCIM framework to existing Scan-to-BIM 

practices. The comparison results are described in Table 11. Most of the currently 

commercialized Scan-to-BIM programs are implemented as semi-automation. In those 

programs, users find planar or cylindrical objects manually; then, the programs generate 

3D models of the selected objects as seen in Figure 28. In most cases, region-growing-

based plane detection algorithms were used to extract surfaces. Moreover, all the Scan-to-

BIM softwares that are currently in service could not automatically classify the object’s 

material and location, although some offer the ability to select material. Because of the 

manual processes in the commercial Scan-to-BIM programs, the processing time for as-

built modeling depends on the user’s expertise.  

On the other hand, since the proposed PCIM framework is fully automated from 

classification to data parsing, users do not need to find the objects and input their properties 

manually. With the proposed hierarchical classification approach, PCIM can automatically 

detect objects, material, and locations and represent them in a human-readable format. 

Furthermore, since PCIM does not solidify the point cloud data, it can maintain the original 

point clouds' reality, such as true color, actual dimensions, or damages. As a result, the 

PCIM can be a more useful tool than Scan-to-BIM to understand and monitor the as-is 

conditions of construction sites. 
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Table 11. Comparison between PCIM and Scan-to-BIM 

Category PCIM 

Scan-to-BIM 

Scan to 
BIM 

(Revit Add-
in) 

As-Built 
Modeler 
(Faro) 

Automation Fully automatic 
Semi-

automatic 
Semi-

automatic 

Solid modeling X O O 

Classification method Deep learning 
Region 
growing 

N/A 

Classification 

Building 
elements 

O (8 types) 
Δ 

(only wall) 
Δ 

(only wall) 

Temporary 
structure 

O X X 

Equipment O X X 

MEP X O O 

Material O 
Manual 

declaration  
X 

Location O 
Manual 

declaration  
X 

Processing Time 
classification: 8 min 

Spatial reasoning: 2 min 
Data parsing: 2 min 

Depend on 
user’s 

expertise 

Depend on 
user’s 

expertise 

Final product XML file Revit model CAD model 
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Figure 28. 3D model of a wall generated by Scan-to-BIM @ Revit 
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CHAPTER 7. CONCLUSION AND DISCUSSION 

This chapter summarizes the research findings and discusses their potential 

contribution. The discussion of the limitations of the current research and future research 

follows. 

7.1 Summary 

The main goal of this dissertation is to develop artificial intelligence (AI)-driven 

information modeling framework for point cloud data. To achieve this goal, this study 

established two research questions and conducted several tasks to answer the questions as 

follows: 

 

Research Question 1:  How can the construction objects and their properties be 

automatically extracted from the point cloud data? 

 

To seek the answer to the question, PointNet++, a state of the art approach for point 

cloud segmentation, was applied in this research. In addition, this study used laser intensity 

as an additional input parameter for training the deep neural network to improve the 

material classification. With the classified material information, the proposed framework 

performed object classification. The classification performance for both material and object 

could be enhanced by leveraging additional input parameters. Finally, the framework 

carried out spatial reasoning to identify the classified objects’ location. For the spatial 
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reasoning, this study proposed density histogram-based approaches. Consequently, the 

proposed hierarchical methods could classify construction objects and their properties 

simultaneously.  

 

Research Question 2:  How can the classified semantic data be effectively managed 

and represented in terms of data interoperability? 

 

To manage the detected semantic information from the classification processes, this 

study developed an object-oriented data schema for point cloud data, named PCIM schema. 

In the PCIM data schema, all recognizable entities in point cloud data are pre-defined. 

Several definitions and relationships of entities in the PCIM data schema was derived from 

that of IFC to promote interoperability, but PCIM data schema included an entity to store 

point cloud data. This study also implemented PCIM data parser to convert the labeled 

point cloud data to a human-readable XML format and PCIM viewer to visualize the PCIM 

data with a hierarchical structure. The integrated PCIM framework was validated by a case 

study conducted at an actual building construction site. The proposed framework could 

classify the semantic information from point cloud data and store the data based on the pre-

defined PCIM data schema automatically. To evaluate the effectiveness, this study 

compared the proposed PCIM framework to existing Scan-to-BIM software. As a result, 

this study identified that PCIM could be a more useful tool than Scan-to-BIM to understand 

and monitor the as-is conditions of construction sites. 
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7.2 Research Contribution and Impact 

In the construction industry, PCIM contributes to increasing the utilization of point 

clouds by providing a PCIM data schema to store and represent the semantic information 

of point cloud data with an object-oriented data structure. Based on the advantage of point 

cloud, which represent the current state of construction sites, PCIM will be able to replace 

BIM in some construction tasks such as construction quality management and construction 

inspection. Moreover, this research can fill the gaps in current studies on semantic 

segmentation of 3D point cloud by presenting a sequential deep learning method leveraging 

additional input parameters. This methodological approach may be able to answer the 

question of simultaneously detecting the object type and its property information that could 

not be solved. As this research presents the prototype of PCIM, various studies related to 

this are expected to be additionally derived. Thus, new approaches to bring technical 

advances of PCIM may be invented. 

7.3 Limitations and Future Research 

Under the PCIM framework, the information on construction objects and their 

properties were automatically classified and stored with a hierarchical data structure. In 

this way, PCIM can enrich the information of point cloud data while maintaining the real 

measurements. However, since the research on PCIM is in its early phase, several 

limitations are found as follows: 

1. The current classification module in PCIM extracted limited semantic 

information because of the lack of training datasets. To classify non-structural 
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elements such as temporary structure or MEP, more diverse learning datasets 

collected from construction sites are required.  

2. Current PCIM schema only represent general information, therefore, in the 

future work, PCIM schema extension is needed to represent other specific 

information such as defects or openings in the surface  

3.  Since the point clouds collected from real construction sites have some noise 

data derived from moving objects and wet surfaces, additional data pre-

processing techniques to remove the noise data are required. This additional 

information and functionalities will be implemented in the next version of 

PCIM.  
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