Date: August 22, 1973

Project Title: Determination of the Effects of Nozzle Nonlinearities Upon Nonlinear Stability of Liquid Propellant Rocket Motors
Project No: \quad E-16-635
Principal Investigator Dr. B. T. Din
Sponsor:_ NASA - Lewis Research Center; Cleveland, Ohio

\qquad

Reports Required:
Semi-Annual Status Report; Final Technical Report

Sponsor Contact Person (s): Technical Matters
R. J. Priem, Code 9523

NASA Technical Officer
Chemical Propulsion Division
Lewis Research Center
2100 Brookpark Road
Cleveland, Ohio 44135
Phone: (216) 433-4000 Ext. 259

Administrative Matters
(thru ORA)
Jack Lerner, MS500-313 NASA Grants Specialist Lewis Research Center 2100 Brookpark Road Cleveland, Ohio 44135

Phone: (216) 433-4000, Ext. 580

Assigned to: School of Aerospace Engineering
COPIES TO:

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION
RESEARCH PROJECT TERMINATION

Principal Investigator:
Dr. 3. T. 31 mm

Sponsor
MASA - Law ls Research Center enevelare oz
Effective Termination Date: \qquad ,

Clearance of Accounting Charges: 811 execs.

Grant/Contract Closeout Actions Remaining
TLns1 Elseal Report
(Find
covet. frog. Inv. P Ra l. Curt. (Aus)

Assigned to School of \qquad
Marospeca englaparing
COPIES TO:

Principal Investigator
School Director
Dean of the College
Office of Financial Affairs (2)
Patent and Inventions Coordinator
Research Services/Photo Lab

Library, Technical Reports Section
Office of Computing Services
Terminated Project File No. \qquad
Other \qquad

File: $\quad E-16-635$

Research Conducted Under

NASA GRANT NO. MGP 11-002-179

DETERMINATION OF THE EFFECTS OF NOZZLE NONLINEARITIES UPON NONLINEAR STABILITY OF LIQUID PROPEITANT ROCKET MOTORS

SEMI-ANNUAL REPORT COVERING PERIOD August 1, 1973 - January 31, 1974

Prepared by

Ben T. Kin, Professor
Eugene A. Powell, Assistant Professor
M. S. Padmanabhan, Graduate Research Assistant

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF AEROSPACE ENGINEERING
ATLANTA, GEORGIA

Project Monitor: Dr. Richard J. Priem

INTRODUCTION

This report is a summary of work completed under NASA grant NGR 11-002-179 entitled "Determination of the Effects of Nozzle Nonlinearities Upon the Nonlinear Stability of Liquid Propellant Rocket Motors". Research activities supported by this grant were begun in August 1973, and satisfactory progress has been made toward meeting the research objectives during the first six months of effort. Before giving a description of this progress, the motivations and objectives of this research project will be briefly reviewed.

Various aerospace propulsion devices, such as liquid and solid propellant rocket motors and air breathing jet engines, are often subject to combustion instabilities which are detrimental to the performance and safety of operation of these devices. In order to design stable engines, capabilities for a priori determination of the linear and nonlinear characteristics of the instability and the range of operating conditions for which these engines are dynamically stable must be acquired. In order to perform such an analysis, the behavior of the exhaust nozzle under oscillatory flow conditions must be understood. In particular, it is necessary to know how a wave generated in the combustion chamber is partially transmitted and partially reflected at the nozzle entrance. This information is usually expressed as a boundary condition (usually referred to as a Nozzle Admittance Relation) that must be satisfied at the nozzle entrance.

Before such a boundary condition can be derived, the nature of the wave motion inside the nozzle must be investigated. The behavior of oscillations in a converging-diverging supercritical nozzle was first treated by Tsien ${ }^{l}$ who considered the case in which the oscillation of the incoming flow is one-dimensional and isothermal. Crocco ${ }^{2,3}$ extended Tsien's work to cover the more general cases of non-isothermal oneand three-dimensional oscillations. The analyses of Tsien and Crocco are both restricted to small-amplitude (i.e., linear) oscillations. More recently, a nonlinear nozzle theory has been developed by Zinn and Crocco $4,5,6$ who extended the previous linear theories to the
investigation of the behavior of finite-amplitude waves.
In recent studies (supported under NASA grant NGL 11-002-083) conducted by Zinn, Powell, and Lores, theories were developed which describe the nonlinear behavior of longitudinal ${ }^{7,8}$ and transverse 9,10 instabilities in liquid-propellant rocket chambers with quasi-steady nozzles. These theories have now been extended to situations in which the instabilities are three-dimensional and the rocket combustors are attached to conventional nozzles ${ }^{1 l}$. All of these theories have successfully predicted the transient behavior, nonlinear waveforms, and limit-cycle amplitudes of longitudinal and tangential instabilities in unstable motors.

A new nonlinear nozzle theory is needed for the following reasons. First, the nonlinear analysis of Zinn 5,6 is mathematically complicated and requires considerable computer time. For this reason, Zinn's analysis has never been used to perform actual computations of the wave structure in the nozzle or the nonlinear nozzle response. Secondly, the nonlinear nozzle admittance relation developed by Zinn is not compatible with the recently developed nonlinear combustion theories (see References 7 through 11). Consequently, a linear nozzle boundary condition or a short nozzle (quasi-steady) assumption had to be used in all of the combustion instability theories developed to date. With the exception of a few special cases, where the amplitude of the instability is assumed to be moderate and the mean flow Mach number is small (e.g., see Reference 9), the use of a linear nozzle admittance relation in a nonlinear stability analysis is obviously inconsistent. Furthermore, in the case of transverse instabilities the "linear" nozzle has been known to exert a destabilizing effect; in these cases it is especially important to know how nonlinearities affect the nozzle behavior.

The objective of this research program is to develop a threedimensional, nonlinear nozzle admittance relation to be used as a boundary condition in the recently-developed nonlinear combustion instability theories. This objective will be accomplished by performing the following four tasks:

Task I: Development of the theory
Task II: Calculation of the nozzle response
Task III: Application of the nozzle theory to combustion instability problems

Task IV: Preparation of the final technical report

During the first six months of this project, considerable progress was made toward completing the first of the above tasks. However, unforeseen difficulties in the mathematical formulation of the problem arose in December, and it was found that the remainder of the first year will be needed to complete Task I. Thus a second year will be needed to complete the remaining tasks, and a proposal for a one-year extension for this grant was submitted to NASA. A summary of the work completed on Task I and a description of the mathematical difficulties are given in the remainder of this report.

TASK I: DEVEIOPMENI OF THEORY

Research Completed

As in the Zinn-Crocco analysis, 5,6 finite-amplitude, periodic oscillations inside the slowly corvergent, subsonic portion of an axisymmetric nozzle operating in the supercritical range were investigated. The flow in the nozzle was assumed to be adiabatic and inviscid and to have no body forces or chemical reactions. The fluid was also assumed to be calorically perfect.

The nondimensional equations describing the gas motion in the nozzle were written in the following form:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbb{V})=0 \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial V}{\partial t}+\frac{1}{2} \nabla \underset{\rightarrow}{V} \cdot \underset{\rightarrow}{V}+(\nabla x V) \underset{\rightarrow}{x V}+\frac{1}{Y p} \nabla p=0 \tag{2}\\
\frac{\partial S}{\partial t}+V \cdot \nabla S=0 \tag{3}\\
S=\frac{1}{Y} \ln p-\ln p+\text { constant } \tag{4}
\end{gather*}
$$

where Y is the specific heat ratio; V, p, ρ, and S are the dimensionless velocity, pressure, density and entropy respectively and t is the dimensionless time.

It was also assumed that the nozzle flow is isentropic and irrotational. Under these conditions the energy equation (i.e., Equation (3)) is no longer needed, the state equation (i.e., Equation (4)) reduces to the isentropic flow relation, $p=\rho^{\gamma}$, and a velocity potential exists such that $\nabla \Phi=\underset{\rightarrow}{V}$. The continuity and momentum equations were combined, with the aid of the isentropic relation, to yield the following equation which describes the behavior of the velocity potential:

$$
\begin{align*}
& \nabla^{2} \Phi-\Phi_{t t}=2 \nabla \Phi \cdot \nabla \Phi_{t}+(\gamma-1) \Phi_{t} \nabla^{2} \Phi \tag{5}\\
& +\frac{\gamma-1}{2}(\nabla \Phi \cdot \nabla \Phi) \nabla^{2} \Phi+\frac{1}{2} \nabla \Phi \cdot \nabla(\nabla \Phi \cdot \nabla \Phi)
\end{align*}
$$

while the pressure is related to © by:

$$
\begin{equation*}
1-p^{\frac{\gamma-1}{Y}}=(\gamma-1)\left[\Phi_{t}+\frac{1}{2} \nabla \Phi \cdot \nabla \Phi\right] \tag{6}
\end{equation*}
$$

These equations are consistent with those used in the second-order nonlinear combustion instability theory developed by Powell, Zinn, and Lores (see References 7 and 10).

In the nonlinear combustion instability theories developed by Powell and Zinn, each variable was expressed as the sum of a spacedependent steady state quantity and a time- and space-dependent perturbation quantity. In order to obtain a nozzle admittance relation compatible with these theories, the velocity potential was expressed as follows:

$$
\begin{equation*}
\bar{\Phi}=\bar{\Phi}+\underline{\sigma}^{\prime} \tag{7}
\end{equation*}
$$

where the prime denotes the perturbation quantity and the bar denotes the steady-state quantity. Using the relation $\nabla \bar{\Phi}=\overline{\mathrm{Y}}$, Equation (7) was substituted into Equation (5) to obtain the following wave equation for the nozzle:

$$
\begin{align*}
& {\left[1-\frac{\gamma-1}{2} \overline{\mathrm{~V}}^{2}\right] \nabla^{2} \Phi^{\prime}-\bar{\Phi}_{t t}^{\prime}=2 \overline{\mathrm{Y}} \cdot\left[\nabla \Phi_{t}^{\prime}+\frac{1}{2} \nabla\left(\overline{\mathrm{~V}} \cdot \nabla \Phi^{\prime}\right)\right]} \tag{8}\\
& +(\gamma-1)(\nabla \cdot \overline{\mathrm{V}})\left[\Phi_{t}^{\prime}+\overline{\mathrm{V}} \cdot \nabla \bar{\Phi}^{\prime}\right]+\frac{1}{2} \nabla\left(\bar{V}^{2}\right) \cdot \nabla \Phi^{\prime}+2 \nabla \Phi^{\prime} \\
& +\left[\nabla \Phi_{t}^{\prime}+\frac{1}{2} \nabla\left(\overline{\mathrm{~V}} \cdot \nabla \Phi^{\prime}\right)\right]+\frac{1}{2} \overrightarrow{\mathrm{~V}} \cdot \nabla\left(\nabla \Phi^{\prime} \cdot \nabla \Phi^{\prime}\right) \\
& +(\gamma-1) \nabla^{2} \Phi^{\prime}\left[\Phi_{t}^{\prime}+\overline{\mathrm{V}} \cdot \nabla \Phi^{\prime}\right]+\frac{\gamma-1}{2}\left(\nabla^{\prime} \cdot \overline{\mathrm{V}}\right)\left(\nabla \Phi^{\prime} \cdot \nabla \Phi^{\prime}\right) \\
& + \\
& +\left\{\frac{\gamma-1}{2} \nabla^{2} \Phi^{\prime}\left(\nabla \Phi^{\prime} \cdot \nabla \Phi^{\prime}\right)+\frac{1}{2} \nabla \Phi^{\prime} \cdot \nabla\left(\nabla \Phi^{\prime} \cdot \nabla \Phi^{\prime}\right)\right\}
\end{align*}
$$

Before proceeding with the analysis, a coordinate system, appropriate for the introduction of the boundary condition at the nozzle walls, was chosen. Following the approach used by Zinn and Crocco 5,6 for an axi-symmetric nozzle, the axial variable z was replaced by the steady-state potential function φ, and the radial variable r was replaced by the steady-state stream function Ψ. The potential and stream functions are defined by:

$$
\begin{equation*}
r \bar{\rho} \bar{u}=\frac{d \Psi}{\delta n} \quad ; \quad \bar{u}=\frac{d \varphi}{\delta S} \tag{9}
\end{equation*}
$$

where δs and δn respectively represent elementary (non-dimensional) lengths in the directions of the unperturbed streamlines and of their normals on the meridional planes (see Figure 1) and \bar{u} is the steadystate velocity. A third independent variable, θ, measures the azimuthal variation. In the new coordinate system, the perturbation velocity is expressed in terms of its components along the coordinate directions as:

$$
\begin{equation*}
V^{\prime}=u^{\prime} \stackrel{e}{\rightarrow} \varphi+v^{\prime} \stackrel{e}{\rightarrow} \Psi+w^{\prime} \stackrel{e}{\rightarrow} \theta \tag{10}
\end{equation*}
$$

where the e^{\prime} s are unit vectors.
The transformation of Equation (8) to ($\varphi, \Psi, \theta)$ coordinates was greatly simplified by assuming that the steady-state flow is one-dimensional, which is a good approximation for slowly convergent nozzles. Under these conditions the dependence of $\bar{\rho}$ and \bar{u} on Ψ and θ can be neglected, so that they are considered to be practically uniform on each surface $\varphi=$ constant. Also the angle of obliquity of the streamlines to the axis of symmetry is sufficiently small so that its cosine is practically 1 and the element of normal on along the surface $\varphi=$ constant can be identified with dr. Hence the first of Equations (9) was integrated to obtain:

Fleure 1. Coordinate System Used for the Solution of the Oscillatory Nozzle Flow.

$$
\begin{equation*}
r^{2}=\frac{2}{\overline{p u}} \Psi \tag{II}
\end{equation*}
$$

In addition the mean flow velocity vector appearing in Equation (8) is given by:

$$
\begin{equation*}
\overline{\mathrm{v}}=\overline{\mathrm{u}}(\varphi) \mathrm{e}_{\varphi} \tag{12}
\end{equation*}
$$

With the aid of Equations (11) and (12) and the expressions for the Laplacian, divergence, and gradient in a (φ, Ψ, θ) coordinate system, Equation (8) was transformed to the following equation:

$$
\begin{align*}
& f_{1}(\varphi) \Phi_{\varphi \varphi}^{\prime}-f_{2}(\varphi) \Phi_{\varphi}^{\prime}+f_{3}(\varphi)\left[2\left(\Psi \Phi_{\Psi \Psi}^{\prime}+\Phi_{\Psi}^{\prime}\right)+\frac{1}{2 \Psi} \Phi_{\theta \theta}^{\prime}\right] \tag{13}\\
& -2 \Phi_{\varphi t}^{\prime}+f_{4}(\varphi) \Phi_{t}^{\prime}-\frac{1}{u^{2}} \Phi_{t t}^{\prime} \\
& =2 \Phi_{\varphi}^{\prime} \Phi_{\varphi t}^{\prime}+\frac{4 \bar{\rho}}{\bar{u}} \Psi_{\Psi_{\Psi}}^{\prime} \Phi_{\Psi t}^{\prime}+\frac{\bar{\rho}}{\bar{u} \Psi} \Phi_{\theta}^{\prime} \Phi_{\theta t}^{\prime} \\
& +(\gamma+1) \bar{u}^{2} \Phi_{\varphi}^{\prime} \Phi_{\varphi \varphi}^{\prime}+2 \bar{\rho} \bar{u} \Psi \Phi_{\Psi}^{\prime} \Phi_{\Psi \varphi}^{\prime} \\
& +\frac{\overline{\rho u}}{2 \Psi} \Phi_{\theta}^{\prime} \Phi_{\theta \varphi}^{\prime}+f_{5}(\varphi)\left(\Phi_{\varphi}^{\prime}\right)^{2} \\
& +f_{6}(\varphi) \Psi\left(\Phi_{\Psi}^{\prime}\right)^{2}+f_{6}(\varphi) \frac{1}{4 \Psi}\left(\Phi_{\theta}^{\prime}\right)^{2}+(\gamma-1) \Phi_{\varphi \varphi}^{\prime} \Phi_{t}^{\prime} \\
& -f_{4}(\varphi) \Phi_{\varphi^{\prime} \Phi_{t}^{\prime}}+(\gamma-1) \frac{\bar{\rho}}{\bar{u}}\left[2\left(\Psi \Phi_{\Psi \Psi}^{\prime}+\Phi_{\Psi}^{\prime}\right)\right. \\
& \left.+\frac{1}{2 \Psi} \Phi_{\theta \theta}^{\prime}\right] \Phi_{t}^{\prime}+(Y-1) \overline{\rho u}\left[2\left(\Psi \Phi_{\Psi \Psi}^{\prime}+\Phi_{\Psi}^{\prime}\right)+\frac{1}{2 \Psi} \Phi_{\theta \theta}^{\prime}\right] \Phi_{\varphi}^{\prime}
\end{align*}
$$

where

$$
\begin{align*}
& f_{1}(\varphi)=\bar{c}^{-2}-\bar{u}^{-2} \\
& f_{2}(\varphi)=\frac{1}{c^{2}} \frac{d u^{2}}{d \varphi} \\
& f_{3}(\varphi)=\frac{\bar{\rho}^{2}}{\bar{u}} \tag{14}\\
& f_{4}(\varphi)=\frac{-(\gamma-1)}{2 \bar{c}^{-2}} \frac{d u^{2}}{d \varphi} \\
& f_{5}(\varphi)=\frac{3}{2}\left[1+\frac{\gamma-1}{2} \frac{\bar{u}^{2}}{\bar{c}^{2}}\right] \frac{d \bar{u}^{2}}{d \varphi} \\
& f_{6}(\varphi)=\frac{\rho}{2 \bar{u}}\left[1-(2-\gamma) \frac{u^{2}}{c^{2}}\right] \frac{d \bar{u}^{2}}{d \varphi}
\end{align*}
$$

In Equations (14) \bar{c} is the steady-state sonic velocity given by:

$$
\begin{equation*}
c^{-2}=1-\frac{\gamma-1}{2} \bar{u}^{-2} \tag{15}
\end{equation*}
$$

In deriving Equation (13) the third-order terms in Equation (8) (i.e., the last two terms on the right-hand side) have been neglected, thus Equation (13) is correct to second order.

The equations obtained by the above procedure have no known closed-form mathematical solutions. Consequently, it is necessary to resort to the use of either numerical solution techniques or approximate analytical techniques. Since the numerical solution techniques generally require excessive computer time, the latter approach was used. In the nonlinear combustion instability theories developed by Powell and Zinn (see References 7-11) the governing equations were solved by means of an approximate solution technique known as the Galerkin Method, which
is a special case of the Method of Weighted Residuals 12,13 . In these investigations it was shown that the Galerkin Method could be successfully applied in the solution of nonlinear combustion instability problems; its application was straightforward and it required relatively little computation time. Thus the Galerkin Method was also used in the analysis to determine the nonlinear nozzle admittance relation.

In order to employ the Galerkin Method in the solution of the wave equation (i.e., Equation (13)), it was first necessary to express the velocity potential, Φ^{\prime}, as an approximating series expansion. The structure of this series expansion was guided by the experience gained in the nonlinear nozzle admittance studies performed by Zinn and Crocco (see Reference 5) as well as in the nonlinear combustion instability analyses of Powell and Zinn (see Reference 10). Thus the velocity potential was expressed as follows:

$$
\begin{equation*}
\tilde{\Phi}^{\prime}=\sum_{m=0}^{M} \sum_{n=1}^{\mathbb{N}}\left\{A_{m n}(\varphi) \cos m \theta J_{m}\left[S_{m n}\left(\frac{\Psi}{\Psi}\right)^{\frac{1}{2}}\right] e^{i k} m n{ }^{\omega t}\right\} \tag{16}
\end{equation*}
$$

In Equation (16), the functions $A_{m n}(\varphi)$ are unknown complex functions of the axial variable φ. The θ - and Ψ-dependent eigenfunctions were determined from the first-order (i.e., linear) solutions by Zinn ${ }^{5}$. In these functions m is the transverse mode number, n is the radial mode number, J_{m} is a Bessel function of order m, Ψ_{w} is the value of the steady-state stream function evaluated at the nozzle wall, and $S_{m n}$ is a root of the equation $d J_{m}(x) / d x=0$. The expansions given above describe standing wave motion; they can be easily modified to describe spinning wave motion. In the time-dependence, ω is the fundamental frequency which must be specified and the integer $k_{m n}$ gives the frequency of the higher harmonics. The values of $k_{m n}$ for the various modes appearing in Equation (16) must be determined from the results of the nonlinear combustion instability analysis of Powell and Zinn 10. For example it was found that, due to nonlinear coupling
between modes, the second tangential ($m=2, n=1$) and first radial ($m=0, n=1$) modes oscillated with twice the frequency of the first tangential ($m=1, n=1$) mode. Thus in Equation (16) $k_{11}=1$ for the first tangential mode and $k_{m n}=2$ for the second tangential and the first radial modes. The amplitudes and phases of the various modes depend on the axial location (i.e., φ) in the nozzle through the unknown functions $A_{m n}(\varphi)$.

In order to obtain a solution, the unknown φ-dependent functions (i.e., the $A_{m n}(\varphi)$) were determined by the Galerkin Method as follows. The assumed series expansion for the velocity potential (i.e., Equation (16)) was substituted into the wave equation to form the residual, $\mathrm{E}\left(\widetilde{\Phi}^{\prime}\right)$. In the event that this residual is identically zero, the assumed solution is an exact solution. The residual, therefore, represents the error incurred by using the approximate solution given by Equation (16). The Galerkin Method determines the amplitudes $A_{m n}(\varphi)$ that minimize the residual $E\left(\widetilde{\Phi}^{\prime}\right)$.

Applying the Galerkin Method, the residual $E\left(\tilde{\Phi}^{\prime}\right)$ was required to satisfy the following Galerkin orthogonality conditions:

$$
\begin{array}{r}
\int_{0}^{T} \int_{S} E\left(\Phi^{\prime}\right) T_{j}(t) \oplus_{j}(\theta) \psi_{j}(\Psi) d S d t=0 \tag{17}\\
j=1,2, \ldots L
\end{array}
$$

where L is the number of terms in the series expansions of the dependent variables. The weighting functions, $T_{j}(t), \Theta_{j}(\theta)$, and $\psi_{j}(\Psi)$ correspond to the terms that appear in the assumed series expansions. The temporal weighting function, $T_{j}(t)$, is the complex conjugate of the assumed time dependence, thus:

$$
\begin{equation*}
T_{j}(t)=e^{-i k_{m n} \omega t} \tag{18}
\end{equation*}
$$

The azimuthal weighting functions, $\Theta_{j}(\theta)$, are given by:

$$
\begin{equation*}
\Theta_{j}(\theta)=\cos m \theta \tag{19}
\end{equation*}
$$

while the radial weighting functions, $\Psi_{j}(\Psi)$, are given by :

$$
\begin{equation*}
\psi_{j}(\Psi)=J_{m}\left[S_{m n}\left(\frac{\Psi}{Y}\right)^{\frac{1}{2}}\right] \tag{20}
\end{equation*}
$$

The time integration is performed over one period of oscillation, $T=2 \pi / \omega$, while the spatial integration is performed over any surface of $\varphi=$ constant in the nozzle (in Equations (17) dS indicates an incremental area on this surface).

Evaluating the spatial and temporal integrals in Equation (17) yields a system of L nonlinear, second order (in derivatives) ordinary differential equations to be solved for the $A_{m n}(\varphi)$. These equations are complex and are equivalent to a system of $2 I$ real equations. Using the notation

$$
\begin{align*}
B_{2 p-1}(\varphi) & =\operatorname{Re}\left\{A_{p}(\varphi)\right\} \tag{21}\\
B_{2 p}(\varphi) & =\operatorname{Im}\left\{A_{p}(\varphi)\right\}
\end{align*}
$$

where each term in Equation (16) is assigned an index p, the corresponding set of ordinary differential equations becomes:

$$
\begin{equation*}
\sum_{p=1}^{2 L}\left\{C_{1}(\varphi) \frac{d^{2} B_{p}}{d \varphi^{2}}+C_{2}(\varphi) \frac{d B_{p}}{d \varphi}+C_{3}(\varphi) B_{p}\right\} \tag{22}
\end{equation*}
$$

$$
+\sum_{p=1}^{2 L} \sum_{q=1}^{2 L}\left\{D_{1}(\varphi) \frac{d^{2} B_{p}}{d \varphi^{2}} B_{q}+D_{2}(\varphi) \frac{d^{2} B_{p}}{d \varphi^{2}} \frac{d B_{q}}{d \varphi}\right.
$$

$$
\left.+D_{3}(\varphi) \frac{d B_{p}}{d \varphi} \frac{d B_{q}}{d \varphi}+D_{4}(\varphi) B_{p} \frac{d B_{q}}{d \varphi}+D_{5}(\varphi) B_{p} B_{q}\right\}=0
$$

$$
j=1,2, \ldots 2 L
$$

The coefficients C_{k} and D_{k} in Equations (22) are functions of the axial variable φ as well as the indices j, p, and q. Considerable time and effort was required to derive the analytical expressions for these coefficients, which were obtained by evaluating integrals involving trigonometric and Bessel functions. In the absence of closedform expressions for the integrals of Bessel functions, these integrals were computed numerically.

As a check on the above analysis, a single mode series consisting of the first tangential mode ($m=1, n=1$) was used in deriving Equations (22). For this case all of the coefficients of the nonlinear terms vanish, and the resulting linear equation (in complex form) becomes:

$$
\begin{align*}
& \bar{u}^{2}\left(\bar{c}^{2}-\bar{u}^{-2}\right) \frac{d^{2} A}{d \varphi^{2}}-\bar{u}^{-2}\left[\frac{1}{c^{2}} \frac{d \bar{u}^{2}}{d \varphi}+2 i \omega\right] \frac{d A}{d \varphi} \tag{23}\\
& +\left\{\frac{-S 1}{2 \psi} \bar{q}_{w}^{2} \bar{u} c^{2}-\frac{\gamma-1}{2} i \omega \frac{\bar{u}^{2}}{c^{2}} \frac{d \bar{u}^{2}}{d \varphi}+\omega^{2}\right\} A(\varphi)=0
\end{align*}
$$

Which is identical to Croceo and Sirignano's equation ${ }^{3}$ for the isentropic and irrotational case.

Summarizing the work completed to date, the wave equation (i.e., Equation (5)) has been perturbed and written in a (φ, Ψ, \oplus) coordinate system. A second-order wave equation has been derived by neglecting third-order terms (i.e., products of three perturbation quantities) in this equation. The velocity potential was then expanded in the series given by Equation (16) and this series was substituted into the second-order wave equation to form a residual. This residual was then required to satisfy Equation (17) giving a system of nonlinear ordinary differential equations (i.e., Equations (22) which must satisfy certain boundary conditions at the nozzle entrance and at the nozzle throat. Expressions for the coefficients in Equations (22) were derived by evaluating the spatial and temporal integrals in Equation (17).

Mathematical Difficulties

The part of Task I that remains to be completed is the development of a computer program to solve the nonlinear equations (i.e., Equations (22)) for the unknown functions of φ. In order to do this, the boundary conditions that the solutions must satisfy must be formulated. It is in the treatment of these boundary conditions that difficulties have been encountered which have delayed completion of Task I. The nature of these difficulties will now be described.

In the linear analyses of Crocco and Sirignano ${ }^{3}$ and Bell and Zinn ${ }^{14}$ the differential equation, that had to be solved was singular at the nozzle throat; that is, the coefficient of the highest order derivative vanished there. Thus one of the boundary conditions that the solutions had to satisfy was a regularity condition at the throat. This enabled the differential equations to be numerically integrated, beginning a short distance upstream of the throat and proceeding upstream to the nozzle entrance plane. The starting values were obtained from a Taylor's Series'expansion about the throat. In the nonlinear case difficulties were encountered when applying the above procedure because the corresponding nonlinear equations (i.e., Equations (22)) are not quasi-linear; that is, the coefficients of the highest
derivatives depend on the unknown functions, $B_{p}(\varphi)$. Thus the location of the singular point is not known a priori. It is also not clear how the regularity conditions should be applied in the nonlinear case even if the location of the singular point were known. Thus additional study was needed in order to resolve this problem.

Most of the effort expended during December and January was aimed at resolving these mathematical difficulties. Once the proper form of the boundary condition at the throat is established, a computer program will be developed to integrate Equations (22) and determine the complex functions $A_{m n}(\varphi)$. These in turn will be used to obtain nonlinear nozzle admittance relations for use in the Powell-Zinn nonlinear combustion instability theories.

REFERETSCES

1. Tsien, H. S., "The Transfer Functions of Rocket Nozzles," American Rocket Society Journal, Vol. 22, 1952, pp. 139-143.
2. Crocco, L. and Cheng, S. I., Theory of Combustion Instability in Liquid Propellant Rocket Motors, Appendix B. AGARD Monograph No. 8, Butterworths, Iondon, 1956.
3. Crocco, L. and Sirignano, W. A., "Behavior of Supercritical Nozzles Under Three Dimensional Oscillatory Conditions, " Princeton University, Department of Aerospace and Mechanical Sciences, Report No. 790, April 1967.
4. Zinn, B. T., "A Theoretical Study of Nonlinear Transverse Combustion Instability in Liquid Propellant Rocket Motors," Princeton University Department of Aerospace and Mechanical Sciences, Report No. 732, May 1966.
5. Zinn, B. T. and Crocco, L., "Periodic Finite-Amplitude Oscillations in Slowly Converging Nozzles," Astronautica Acta, Vol. 13, 1968, pp. 481-488.
6. Zinn, B. T. and Crocco, L., "The Nozzle Boundary Condition in the Nonlinear Rocket Instability Problem," Astronautica Acta, Vol. 13, 1968, pp. 489-496.
7. Iores, M. E. and Zinn, B. T., "The Prediction of Nonlinear Iongitudinal Combustion Instability in Liquid Propellant Rockets," NASA CR-120904, April 1972.
8. Lores, M. E. and Zinn, B. T., "Nonlinear Longitudinal Combustion Instability in Rocket Motors," presented at the AIAA 1lth Aerospace Sciences Meeting, January 1973.
9. Zinn, B. T. and Powell, E. A., "Nonlinear Combustion Instability in Liquid Propellant Rocket Engines," Proceedings of the 13 th Symposium (International) on Combustion, The Combustion Institute, pp. 491-503.
10. Powe11, E. A. and Zinn, B. T., "The Prediction of the Nonlinear Behavior of Unstable Liquid Rockets," NASA CR-72902, July 1971.
11. Powell, E. A. and Zinn, B. T., "The Prediction of Nonlinear ThreeDimensional Combustion Instability in Liquid Rockets with Conventional Nozzles," NASA CR-121279, October 1973.
12. Finlayson, B. A. and Scriven, L. E., "The Method of Weighted Residuals -- A Review," Applied Mechanics Reviews, Vol. 19, No. 9, September 1966, pp. 735-744.
13. Ames, W. F., Nonlinear Partial Differential Equations in Engineering, Academic Press, New York, 1965, pp. 243-262.
14. Bell, W. A. and Zinn, B. T., "The Prediction of Three-Dimensional Liquid-Propellant Rocket Nozzle Admittances," NASA CR-121129, February 1973.

Research Conducted Under
NJASA GRANT NO. INGR 11-002-179

DETERMLNATION OF THE EFFECIS OF NOZZIE NONLINEARITIES UPON NONLINIAR STABILITY OF LIQUID PROPELIANT ROCKET MOTORS

ANNJAL REPORT COVERING PERIOD
August 1, 1973 - Ju1y 31, 1974

Prepared by

Ben T. Zinn, Regents' Professor
Eugene A. Powell, Assistant Professor
M. S. Padmanabhan, Graduate Research Assistant

> GEORGIA INSTITUTE OF TECHNOIOGY SCHOOL OF AEROSPACE EIVGINEERING ATTANTA, GEORGIA

INTRODUCTION

This report is a summary of work completed under NASA grant NGR 11-002-179 entitled "Determination of the Effects or Nozzle Nonlinearities Upon the Nonlinear Stability of Liquid Propellant Rocket Motors". Research activities supported by this grant were begun in August 1973, and satisfactory progress has been made toward meeting the research objectives during the first year of effort. Before giving a description of this progress, the motivations and objectives of this research project will be briefly reviewed.

Various aerospace propulsion devices, such as liquid and solid propellant rocket motors and air breathing jet engines, are often subject to combustion instabilities which are detrimental to the performance and safety of operation of these devices. In order to design stable engines, capabilities for a priori determination of the linear and nonlinear characteristics of the instability and the range of operating conditions for which these engines are dynamically stable must be acquired. In order to perform such an analysis, the behavior of the exhaust nozzle under oscillatory flow conditions must be understood. In particular, it is necessary to know how a wave generated in the combustion chamber is partially transmitted and partially reflected at the nozzle entrance. This information is usually expressed as a boundary condition (usually referred to as a Nozzle Admittance Relation) that must be satisfied at the nozzle entrance.

Before such a boundary condition can be derived, the nature of the wave motion inside the nozzle must be investigated. The behavior of oscillations in a converging-diverging supercritical nozzle was first treated by Tsien ${ }^{1}$ who considered the case in which the oscillation of the incoming flow is one-dimensional and isothermal. Crocco ${ }^{2,3}$ extended Tsien's work to cover the more general cases of non-isothermal one- and three-dimensional oscillations. The analyses of Tsien and Crocco are both restricted to small-amplitude (i.e., linear) oscillations. More recently, a nonlinear nozzle theory has been developed by Zinn and Crocco $4,5,6$ who extended the previous linear theories to the investigation of the
behavior of finite-amplitude waves.
In recent studies (supported under NASA grant NGL 11-002-083) conducted by Zinn, Powell, and Lores, theories were developed which describe the nonlinear behavior of Iongitudina1, ${ }^{7,8}$ and transverse 9,10 instabilities in liquid-propellant rocket chambers with quasi-steady nozzles. These theories have now been extended to situations in which the instaikitues are three-dimensional and the rocket combustors are attached to conventional nozzles ${ }^{11}$. All of these theories have successfully predicted the transient behavior, nonlinear waveforms, and limit-cycle amplitudes of longitudinal and tangential instabilities in unstable motors.

A new nonlinear nozzle theory is needed for the following reasons. First, the nonlinear analysis of $\operatorname{Zinn}^{5,6}$ is mathematically complicated and requires considerable computer time. For this reason, Zinn's analysis has never been used to perform actual computations of the wave structure in the nozzle or the nonlinear nozzle response. Secondly, the nonlinear nozzle admittance relation developed by Zinn is not compatible with the recently developed nonlinear combustion theories (see References 7 through ll). Consequently, a linear nozzle boundary condition or short nozzle (quasi-steady) assumption had to be used in all of the combustion instability theories developed to date. With the exception of a few special cases, where the amplitude of the instability is assumed to be moderate and the mean flow Mach number is small (e.g., see Reference 9), the use of a linear nozzle admittance relation in a nonlinear stability analysis is obviously inconsistent. Furthermore, in the case of transverse instabilities the "linear" nozzle has been known to exert a destabilizing effect; in these cases it is especially important to know how nonlinearities affect the nozzle behavior.

The objective of this research program is to develop a threedimensional, nonlinear nozzle admittance relation to be used as a boundary condition in the recently-developed nonlinear combustion instability theories: This objective will be accomplished by performing the following four tasks:

Task I: Development of the theory
Task II: Calculation of the nozzle response
Task III: Application of the nozzle theory to combustion instability problems

Task IV: Preparation of the final technical report

During the first six months of this project, considerable progress was made toward completing the first of the above tasks. However, unforesendifficulties in the mathematical formulation of the problem arose in Decernber, and most of the first year was needed to complete Task I. Once the theory and computer programs were developed, Task II was completed during the remaining time. A one-year extension of support has been granted by NASA to complete Tasks III and IV. A summary of the work completed on Tasks I and II is given in the remainder of this report.

TASK I: DEVEIOPMENT OF THEORY

Derivation of the Nozzle Wave Equation
As in the Zinn-Crocco analysis, 5,6 finite-amplitude, periodic oscilLations inside the slowly convergent, subsonic portion of an axisymmetric nozzle operating in the supercritical range were investigated. The flow in the nozzle was assumed to be adiabatic and inviscid and to have no body forces or chemical reactions. The fluid was also assumed to be calorically perfect.

The nondimensional equations describing the gas motion in the nozzle were written in the following form:

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho V)=0 \\
\frac{\partial V}{\partial t}+\frac{1}{2} \nabla(\underset{\rightarrow}{V} \cdot V)+(\nabla \times V) \times V+\frac{1}{\gamma \rho} \nabla p=0 \\
 \tag{3}\\
\quad \frac{\partial S}{\partial t}+V \rightarrow \nabla S=0 \tag{4}\\
\\
\\
\\
\\
\end{gather*}
$$

were γ is the specific heat ratio; $\underset{G}{ }, p, p$, and S are the dimensioniess velocity, pressure, density and entropy respectively and t is the dimensiorless time.

It was also assumed that the nozzle flow is isentropic and irrotational. Under these conditions the energy equation (i.e., Equation (3)) is no longer needed, the state equation (i.e., Equation (4)) reduces to the isentropic flow relation, $p=\rho^{\gamma}$, and a velocity potential exists such that $\nabla \Phi=\underset{\sim}{V}$. The continuity and momentum equations were combined, with the aid of the isentropic relation, to yield the following equation which describes the behavior of the velocity potential:

$$
\begin{align*}
& \nabla^{2} \Phi-\Phi_{t t}=2 \nabla \Phi \cdot \nabla \Phi_{t}+(\gamma-1) \Phi_{t} \nabla^{2} \Phi \tag{5}\\
& +\frac{\gamma-1}{2}(\nabla \Phi \cdot \nabla \Phi) \nabla^{2} \Phi+\frac{1}{2} \nabla \Phi \cdot \nabla(\nabla \Phi \cdot \nabla \Phi)
\end{align*}
$$

Tiis equation is consistent with the wave equation used in the second-order nonlinear combustion instability theory developed by Powell, Zinn, and Iores (see References 7 and 10).

In the nonlinear combustion instability theories developed by Powell and Zinn, each variable was expressed as the sum of a space-dependent steady state quantity and a time- and space-dependent perturbation quantity. In order to obtain a nozzle admittance relation compatible with these theories, the velocity potential was expressed as follows:

$$
\begin{equation*}
\Phi=\bar{\Phi}+\Phi^{\prime} \tag{6}
\end{equation*}
$$

where the prime denotes the perturbation quantity and the bar denotes the steady-state quantity. Using the relation $\nabla \bar{\Phi}=\overline{\mathrm{V}}$, Equation (6) was substituted into Equation (5) to obtain the following wave equation for the nozzle:

$$
\begin{equation*}
\left[1-\frac{y-1}{2} \bar{v}^{2}\right] \nabla^{2} \Phi^{\prime}-\Phi_{t t}^{\prime}=2 \overline{\mathrm{~V}} \cdot\left[\nabla \Phi_{t}^{\prime}+\frac{1}{2} \nabla\left(\overrightarrow{\vec{V}} \cdot \nabla \Phi^{\prime}\right)\right]+ \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
& +(y-1)(\nabla \cdot \overline{\mathrm{V}})\left[\Phi_{\mathrm{t}}^{\prime}+\overrightarrow{\mathrm{V}} \cdot \nabla \Phi^{\prime}\right]+\frac{1}{2} \nabla\left(\bar{V}^{2}\right) \cdot \nabla \Phi^{\prime} \\
& +2 \nabla \Phi^{\prime} \cdot\left[\nabla^{\prime} \Phi_{t}^{\prime}+\frac{1}{2} \nabla\left(\overline{\mathrm{~V}} \cdot \nabla \Phi^{\prime}\right)\right]+\frac{1}{2} \overline{\mathrm{~V}} \cdot \nabla^{\prime}\left(\nabla \Phi^{\prime} \cdot \nabla \Phi^{\prime}\right) \\
& +(Y-1) \nabla^{2} \Phi^{\prime}\left[\Phi_{t}^{\prime}+\overline{\mathrm{V}} \cdot \nabla \Phi^{\prime}\right]+\frac{Y-1}{2}\left(\nabla^{\prime} \cdot \overline{\mathrm{V}}\right)\left(\nabla \Phi^{\prime} \cdot \nabla \Phi^{\prime}\right) \\
& +\left\{\frac{Y-1}{2} \nabla^{2} \Phi^{\prime}\left(\nabla \Phi^{\prime} \cdot \nabla \Phi^{\prime}\right)+\frac{1}{2} \nabla \Phi^{\prime} \cdot \nabla\left(\nabla \Phi^{\prime} \cdot \nabla \Phi^{\prime}\right)\right\}
\end{aligned}
$$

Before proceeding with the analysis, a coordinate system, appropriate for the introduction of the boundary condition at the nozzle walls, was chosen. Following the approach used by Zinn and Crocco 5,6 for an axi-symmetric nozzle, the axial variable z was replaced by the steady-state potential function φ, and the radial variable r was replaced by the steady-state stream function ψ. The potential and stream Iunctions are defined by:

$$
\begin{equation*}
r \bar{p} \bar{u}=\frac{d \psi}{\delta n} \quad ; \quad \bar{u}=\frac{d \varphi}{\delta s} \tag{8}
\end{equation*}
$$

where $\delta \mathrm{s}$ and $\delta \mathrm{n}$ respectively represent elementary (non-dimensional) lengths in the directions of the unperturbed streamlines and of their normals on the meridional planes (see Figure 1) and \bar{u} is the steadystate velocity. A third independent variable, θ, measures the azimuthal variation. In the new coordinate system, the perturbation velocity is expressed in terms of its components along the coordinate directions as:

$$
\begin{equation*}
v^{\prime}=u^{\prime}{ }_{\rightarrow} \varphi^{+} v^{\prime} e \psi+w^{\prime} e \theta \tag{9}
\end{equation*}
$$

where the e's are unit vectors.
The transformation of Equation (7) to ($\varphi ; \psi, \theta$) coordinates was greatly simplified by assuming that the steady-state flow is one-dimensional, which

Figure 1 . Coordinate System used for the Solution of the Oscillatory Nozzle Flow.
is a good approximation for slowly convergent nozzles. Under these conditions the dependence of $\bar{\rho}$ and \bar{u} on $\dot{\psi}$ and θ can be neglected, so that they are considered to be practically uniform on each surface $\varphi=$ constant.

Also the angle of obliquity of the stream-lines to the axis of symmetry *is sufficiently small so that its cosine is practically 1 and the element of normal on along the surface $\varphi=$ constant can be identified with dr. Hence the first of Equations" (8) was integrated to obtain:

$$
\begin{equation*}
r^{2}=\frac{2}{-\bar{u}} \psi \tag{10}
\end{equation*}
$$

mumbelnaddition the mean flow velocity vector appearing in Equation (7) is given by:

$$
\begin{equation*}
\underset{\underline{\mathrm{V}}}{\mathrm{u}}(\varphi) \mathrm{e} \varphi \tag{li}
\end{equation*}
$$

With the aid of Equations (10) and (11) and the expressions for the Laplacian, divergence, and gradient in a (φ, ψ, θ) coordinate system, Equation (7) was transformed to the following equation:

$$
\begin{align*}
f_{1}(\varphi) \Phi_{\varphi \varphi}^{\prime} & -f_{2}(\varphi) \Phi_{\varphi}^{\prime}+f_{3}(\varphi)\left[2\left(\psi \Phi_{\psi \psi}^{\prime}+\Phi_{\psi}^{\prime}\right)+\frac{1}{2 \psi} \Phi_{\theta \theta}^{\prime}\right] \tag{12}\\
& -2 \Phi_{\varphi t}^{\prime}+f_{4}(\varphi) \Phi_{t}^{\prime}-\frac{1}{\bar{u}^{2} \Phi^{\prime}}{ }_{t t} \\
= & 2 \Phi_{\varphi}^{\prime} \Phi_{\varphi t}^{\prime}+\frac{4 \rho}{\bar{u}} \psi \Phi_{\psi}^{\prime} \Phi_{\psi t}^{\prime}+\frac{\bar{\rho}}{\bar{u} \psi} \Phi_{\theta}^{\prime} \Phi_{\theta t}^{\prime} \\
& +(\gamma+1) \bar{u}^{2} \Phi_{\varphi}^{\prime} \Phi_{\varphi \varphi}^{\prime}+2 \overline{\rho u} \psi \Phi_{\psi}^{\prime} \Phi_{\psi \varphi}^{\prime} \\
& +\frac{-\bar{u}}{2 \psi} \Phi_{\theta}^{\prime} \Phi_{\theta \varphi}^{\prime}+f_{5}(\varphi)\left(\Phi_{\varphi}^{\prime}\right)^{2} \\
& +f_{6}(\varphi) \psi\left(\Phi_{\psi}^{\prime}\right)^{2}+f_{6}(\varphi) \frac{1}{4 \psi}\left(\Phi_{\theta}^{\prime}\right)^{2}+(\gamma-1) \Phi_{\varphi \varphi^{\prime} \Phi_{t}^{\prime}}
\end{align*}
$$

$$
\begin{aligned}
& -\Psi_{4}(\varphi) \bar{\Phi}_{\varphi}^{\prime} \Phi_{t}^{\prime}+(\gamma-1) \frac{\bar{\rho}}{\bar{u}}\left[2\left(\psi \Phi_{\psi \psi}^{\prime}+\Phi_{\psi}^{\prime}\right)\right. \\
& \left.+\frac{1}{2 \psi} \Phi_{\theta \theta}^{\prime}\right] \Phi_{t}^{\prime}+(\gamma-1) \bar{\rho} \overline{[}\left[2\left(\psi \Phi_{\psi \psi}^{\prime}+\bar{\Phi}_{\psi}^{\prime}\right)+\frac{1}{2 \psi} \Phi_{\theta \theta}^{\prime}\right] \Phi_{\varphi}^{\prime}
\end{aligned}
$$

where

$$
\begin{align*}
& f_{1}(\varphi)=\bar{c}^{-2}-\bar{u}^{2} \\
& f_{2}(\varphi)=\frac{1}{c^{2}} \frac{d \bar{u}^{2}}{d \varphi} \\
& f_{3}(\varphi)=\frac{\bar{\rho} c^{2}}{\bar{u}} \tag{13}\\
& f_{4}(\varphi)=\frac{-(\gamma-1)}{2 c^{-2}} \frac{d \bar{u}^{2}}{d \varphi} \\
& f_{5}(\varphi)=\frac{3}{2}\left[1+\frac{\nu-1}{2} \frac{\bar{u}^{2}}{\bar{c}^{2}}\right] \frac{d u^{2}}{d \varphi} \\
& f_{6}(\varphi)=\frac{\rho}{2 \bar{u}}\left[1-(2-\gamma) \frac{\bar{u}^{2}}{c^{2}}\right] \frac{d u^{2}}{d \varphi}
\end{align*}
$$

In Equations (13) \bar{c} is the steady-state sonic velocity given by:

$$
\begin{equation*}
\bar{c}^{2}=1-\frac{y-1}{2} \bar{u}^{2} \tag{14}
\end{equation*}
$$

In deriving Equation (12) the third-order terms in Equation (7) (ie., the last two terms on the right-hand side) have been neglected, thus Equation (12) is correct to second order.

Application of the Galerkin Method
The equations obtained by the above procedure have no known closedform mathematical solutions. Consequently, it is necessary to resort to
the use of either nuraerical solution techniques or approximate analytical techniques. Since the numerical solution techniques generally require excessive computer time, the latter approach was used. In the nonlinear combustion instability theories developed by Powell and Zinn (see References 7 - 11) the governing equations were solved by means of an approximate solution technique known as the Galerkin Method, which is a special case of the Method of Weighted Residuals ${ }^{12,13}$. In these investigations it was show that the Galerkin Method could be successfully applied in the solution of nonlinear combustion instability problems; its application was straightforward and it required relatively little computation time. Thus the Galerkin Method was also used in the present analysis to determine the nonlinear nozzle admittance relation.

In order to employ the Galerkin Method in the solution of the wave equation (i.e., Equation (12), it was first necessary to express the velocity potential, Φ^{\prime}, as an approximating series expansion. The structure of this series expansion was guided by the experience gained in the nonlinear nozzle admittance studies performed by Zinn and Crocco (see Reference 5) as well as in the nonlinear combustion instability analyses of Powell and Zinn (see Reference 10). Thus the velocity potential was expressed as follows:

$$
\begin{equation*}
\tilde{\Phi}^{\prime}=\sum_{m=0}^{M} \sum_{n=1}^{N}\left\{A_{m n}(\varphi) \cos m J_{m}\left[S_{m n}\left(\frac{\psi}{\psi_{\tilde{W}}}\right)^{\frac{1}{2}}\right] e^{i k_{m n} \omega t}\right\} \tag{15}
\end{equation*}
$$

In Equation (15), the functions $A_{m n}(\varphi)$ are unknown complex functions of the axial variable φ. The θ - and ψ-dependent eigenfunctions were determined from the first-order (i.e., linear) solutions by Zinn ${ }^{5}$. In these functions m is the transverse mode number, n is the radial mode number, J_{m} is a Bessel function of order m, ψ_{W} is the value of the steady-state stream function evaluated at the nozzle wall, and $S_{m n}$ is a root of the equation $d J_{m}(x) / d x=0$. The expansions given above describe standing wave motion; they can be easily modified to describe spinning wave motion. In the timedependence, w is the fundamental frequency which must be specified and the integer $k_{m n}$ gives the frequency of the higher harmonics. The values of $k_{m n}$ for the various modes appearing in Equation (15) must be determined from
the results of the nonlinear combustion instability analysis of Powell and Zinn ${ }^{\text {Jo }}$. For example it was found that, due to nonlinear coupling between moles, the second tangential ($m=2, n=1$) and first radial ($m=0$, $n=1)$ modes oscillated with twice the frequency of the first tangential ($n=1, \mathrm{n}=1$) mode. Thus in Equation (15) $K_{I I}=1$ for the first tansential mode and $k_{m n}=2$ for the second tangential and the first radial modes. The amplitudes and phases of the various modes depend on the axial location (i.e., φ) in the nozzle through the unknown functions $A_{\operatorname{mn}}(\varphi)$.

In order to simplify the algebra involved in the application of the Galerkin Method, the approximating series expansion for Φ^{\prime} 'is written as a single summation as follows:

$$
\begin{equation*}
\widetilde{\Phi}^{\prime}=\sum_{p=1}^{N} A_{p}(\varphi) \Theta_{p}(\theta) \Psi_{p}(\psi) e^{i k} p^{\omega t} \tag{16}
\end{equation*}
$$

where to each value of the index p, there corresponds the mode numbers $m(p)$ and $n(p)$, which determine the value of k_{p}. In Eq. (16) @ $\Theta_{p}(\theta)$ and $\Psi_{p}(\psi)$ are the θ-and ψ-dependent functions while N is the number of terms in the series expansion. In the present analysis, a three-term expansion consisting of the first tangential $(p=1 ; m=1, n=1)$, second tangential ($\mathrm{p}=2 ; \mathrm{m}=2, \mathrm{n}=1$) and first radial $(\mathrm{p}=3 ; m=0, \mathrm{n}=1$) modes Was used, but the theory is applicable to any number of modes.

In order to obtain the solution, the unknown φ-dependent functions, $A_{p}(\varphi)$, were determined by the Galerkin Method as follows. The assumed series expansion for the velocity potential (i.e., Eq. (16)) was substituted into the wave equation to form the residual, $\mathrm{E}\left(\tilde{\Phi}^{\prime}\right)$. In the event that this residual is identically zero, the assumed solution is an exact solution. The residual, therefore, represents the error incurred by using the approximate solutions given by Eq. (16). The GalerKin Method determines the amplitudes $A_{p}(\varphi)$ that minimizes the residual E($\widetilde{\Phi}^{\prime}$).

Applying the Galerkin Method, the residual $E\left(\widetilde{\Phi}^{\prime}\right)$ was required to satisfy the following Galerkin orthogonality conditions:

$$
\begin{equation*}
\int_{0}^{T} E\left(W_{S}\right) T_{j}(t) \Theta_{j}(\theta) \Psi_{j}(\psi) d S d t=0 \quad, \quad j=1,2, \ldots N \tag{17}
\end{equation*}
$$

The roictug functions $T_{j}(t), \Theta_{j}(\theta)$ and $\Psi_{j}(\psi)$ correspond to the terms that appear in the assumed series expansion. The temporal weighting
 thus

$$
\begin{equation*}
T_{j}(t)=e^{-i k k^{\omega t}} \tag{18}
\end{equation*}
$$

The azimuthal weighting functions, ${ }_{j}(\theta)$, are given by

$$
\begin{equation*}
\Theta_{j}(\theta)=\cos m \theta \tag{19}
\end{equation*}
$$

while the radial weighting functions, $\Psi_{j}(\psi)$, are given by

$$
\begin{equation*}
\Psi_{j}(\psi)=J_{m}\left[s_{j}\left(\frac{\psi}{\psi_{w}}\right)^{\frac{1}{2}}\right] \tag{20}
\end{equation*}
$$

The time integration is performed over one period of oscillation, $T=\frac{2 \pi}{\omega}$, while the spatial integration is performed over any surface of $\varphi=$ constant in the nozzle (in Eq. (17) αS indicates an incremental area on this surface).

Evaluating the spatial and temporal integrals in Eq. (17) yields the following system of \mathbb{N} nonlinear, second order, coupled, complex ordinary differential equations to be solved for the complex amplitude Iunctions, $A_{p}(\varphi)$:

$$
\begin{align*}
& \sum_{p=1}^{\mathbb{N}}\left\{C_{1} \frac{d^{2} A_{p}(\varphi)}{d \varphi}+C_{2} \frac{d A_{p}(\varphi)}{d \varphi}+C_{3} A_{p}(\varphi)\right. \\
& +\sum_{p=1}^{N} \sum_{q=1}^{N}\left\{D_{1} \frac{d^{2} A_{p}(\varphi)}{d \varphi^{2}} A_{q}(\varphi)+D_{2} \frac{d^{2} A_{p}(\varphi)}{d \varphi^{2}} \frac{d A_{q}(\varphi)}{d \varphi}\right. \\
& \left.+D_{3} \frac{d A_{p}(\varphi)}{d \varphi} \frac{d A_{q}(\varphi)}{d \varphi}+D_{4} A_{p}(\varphi) \frac{d A_{q}(\varphi)}{d \varphi}+D_{5} A_{p}(\varphi) A_{q}(\varphi)\right\} \\
& +Q=0, j=I, 2, \ldots \mathbb{N} \tag{21}
\end{align*}
$$

In the above equations, Q represents the addituc, nonlincer vana that arise when a complex solution (i.e. Eq. (16)) is used to solve the nonlinear wave equation (i.e. Eq. (12)). These terms are similar in form to the nonlinear terms shown, but they involve the complex conjugates of the amplitude functions. The procedure for deriving these terms is given in Appendix B of Ref. 11. The coefficients C_{k} and D_{k} are functions of the axial variable φ as well as the indices j, p and q. Analytical expressions for these coefficients contain integrals involving trigonometric and Bessel functions. In the absence of closedform expressions for the integrals of Bessel functions, these integrals were computed numerically.

As a check on the above analysis, a single mode series consisting of the first tangential mode was used in deriving Eq. (21). For this case, all the coefficients of the nonlinear terms vanish and the resulting linear equation is:

$$
\begin{aligned}
& \bar{u}^{2}\left(\bar{c}^{2}-\bar{u}^{2}\right) \frac{d^{2} A}{d \varphi^{2}}-\bar{u}^{2}\left[\frac{1}{c^{2}} \frac{d \bar{u}^{2}}{d \varphi}+2 i \omega\right] \frac{d A}{d \varphi} \\
& +\left\{-\frac{S_{11}^{2}}{2 \psi_{w}} \overline{\rho u c^{2}}-\frac{\gamma-1}{2} i \omega \frac{\bar{u}^{2}}{c^{2}} \frac{d \bar{u}^{2}}{d \varphi}+\omega^{2}\right\} A(\varphi)=0
\end{aligned}
$$

which is identical to Crocco and Sirignano's equation ${ }^{3}$ for the isentropic and irrotational case.

Dominance of the $1 T$ Mode

The well known fact that most transverse instâbilities behave like the first tangential (IT) mode was used to further simplify Eq. (21). Based on the results of the recent combustion instability theory, 11 it was assumed that the amplitude of the $1 T$ mode was considerably larger than the amplitudes of the remaining modes in the series solution. Through an order of magnitude analysis, correct to the second order, Eq. (21) reduced to the following system of equations:

$$
\begin{align*}
& \bar{u}^{2}\left(\bar{c}^{2}-\bar{u}^{2}\right) \frac{d^{2} A_{1}}{d \varphi}-\bar{u}^{2}\left[\frac{1}{-c^{2}} \frac{d u^{2}}{d \varphi}+2 i \omega\right] \frac{d A_{1}}{d \varphi} \\
& +\left[-\frac{S_{1}^{2}}{2 \psi_{W}}-\bar{u} \bar{c}^{2}-\frac{v-1}{2} i \omega \frac{\bar{u}^{2}}{\bar{c}^{2}} \frac{d \bar{u}^{2}}{d \varphi}+\omega^{2}\right] A_{1}(\varphi)=0 \tag{23a}\\
& \bar{u}^{2}\left(\bar{c}^{2}-\bar{u}^{2}\right) \frac{d^{2} A_{p}}{d \varphi}-\bar{u}^{2}\left[\frac{1}{\bar{c}^{2}} \frac{d \bar{u}^{2}}{d \varphi}+2 i k_{p} \omega\right] \frac{d A_{p}}{d \varphi} \\
& +\left[-\frac{S_{p}^{2}}{2 \psi_{w}}-\bar{u} \bar{c}^{2}-\frac{y-1}{2} i k_{p} \omega \frac{\bar{u}^{2}}{\bar{c}^{2}} \frac{d u^{2}}{d \varphi}+k_{p}^{2} \omega^{2}\right] A_{p}(\varphi) \\
& =-D_{1}(\varphi, p) \frac{d^{2} A_{1}}{d{ }^{2}} A_{1}-D_{2}(\varphi, p) \frac{d^{2} A_{1}}{d d_{1}} \frac{d A_{1}}{d \varphi} \\
& -D_{3}(\varphi, p)\left(\frac{d A_{1}}{d \varphi}\right)^{2}-D_{4}(\varphi, p) \frac{d A_{1}}{d \varphi} A_{1}-D_{5}(\varphi, p) A_{1}^{2} \\
& -\dot{Q}_{p}=0, \tag{23b}\\
& p=2,3, \ldots N .
\end{align*}
$$

The above equations can be written concisely as follows:

$$
\begin{array}{r}
H_{p}(\varphi) \frac{d^{2} A_{p}(\varphi)}{d \varphi}+M_{p}(\varphi) \frac{d A_{p}(\varphi)}{d \varphi}+N_{p}(\varphi) A_{p}(\varphi)=I_{p}(\varphi) \tag{24}\\
p=1,2, \ldots N
\end{array}
$$

where $I_{1}(\varphi)=0$.
It can be seen that the above equations are decoupled with respect to the 17 mode; that is, the solution for A_{1} can be obtained independently of the amplitudes of the other modes. Thus, to second order, the nonlinearities of the problem do not affect the $1 T$ mode. On the other hand the norlinearities influence the amplitudes of the higher modes
(i.e., $A_{2}, A_{3} \ldots$) by means of the inhompgeneous terms in the equations for the other modes.

Homogeneous and Particular Solvtions

Equation (24) is a second order, linear ordinary differential equation and its general solution is a combination of the homogeneous solution that satisfies the homogeneous part of Eq. (24), i.e.,

$$
\begin{equation*}
L\left\{A_{p}^{(h)}\right\}=H_{p} \frac{d^{2} A_{p}^{(h)}}{d \varphi}+M_{p} \frac{d A_{p}^{(h)}}{d \varphi}+N_{p} A_{k}^{(h)}=0 \tag{25}
\end{equation*}
$$

and the particular solution that satisfies Eq. (24). The general solution can be written in the following form:

$$
A_{p}(\varphi)=K_{1} A_{p}^{(h)}+K_{2} \widetilde{A}_{p}^{(h)}+A_{p}^{(i)}
$$

where $A_{p}^{(h)}$ and $\widetilde{A}_{p}^{(h)}$ are two independent solutions of Eq. (25), K_{\perp} and K_{2} are arbitrary constants, and $A_{p}^{(i)}$ is a particular solution of the inhomogeneous equation.

Examination of the coefficients of Eq. (24) show that this equation has the following singular points:

$$
\begin{aligned}
& \bar{u}=0 \\
& \bar{u}=\bar{c}=\left(\frac{2}{\gamma+1}\right)^{\frac{1}{2}}=\bar{c}_{\text {throat }} \\
& \bar{u}=\infty
\end{aligned}
$$

For a supercritical nozzle with a finite area entrance, only the singularity at the throat is of concern to us. Assuming that the singularity of the solution appears in $\widetilde{A}_{p}^{(h)}$, the condition requiring the regularity of the solution at the throat can be expressed by requiring $K_{2}=0$. Consequently, the required solution of Eq. (24) is of the form

$$
\begin{equation*}
A_{p}(\varphi)=K_{1} A_{p}^{(h)}(\varphi)+A_{p}^{(i)}(\varphi) \tag{26}
\end{equation*}
$$

Derivation of Admittance Relations

Using the above result, a nonlinear admittance relation to be used as a boundayy condition in nônlinear combustion instability analyses can be derived. Denoting the terms of Eq. (16) by

$$
\begin{equation*}
\Phi_{p}^{\prime}=A_{p}(\omega) \Theta_{p}(\theta) \Psi_{p}(\psi) e^{i k_{p} \omega t} \tag{27}
\end{equation*}
$$

taking partial derivatives with respect to z and t, and using Eq. (26) gives

$$
\begin{align*}
& \frac{\partial \Phi_{p}^{\prime}}{\partial z}-\bar{u} \Theta_{p}(\theta) \psi_{p}(\psi) e^{i k_{p} \omega t} \frac{\partial A_{p}(i)}{d \varphi} \\
& =K_{1} \bar{u} \Theta_{p}(\theta) \Psi_{p}(\psi) e^{i k_{p} \omega t} \frac{\partial A_{p}(h)}{d \varphi} . \tag{28}\\
& \frac{\partial \Phi_{p}^{\prime}}{\partial t}-i k_{p} \omega \Theta_{p}(\theta) \psi_{p}(\psi) e^{i k_{p} \omega t} A_{p}^{(i)} \\
& =K_{1} i k_{p} \omega \Theta_{p}(\theta) \Psi_{p}(\psi) e^{i k_{p} \omega t} A_{p}(h) . \tag{29}
\end{align*}
$$

Eliminating K_{1} between Eqs. (28) and (29) and defining

$$
\begin{align*}
& \zeta_{p}=\frac{\partial A_{p}^{(h)} / d c p}{A_{p}^{(h)}} \tag{30}\\
& \Gamma_{p}=\frac{1}{c^{2} A_{p}^{(h)}}\left[A_{p}^{(i)} \frac{d A_{p}^{(h)}}{d \varphi}-A_{p}^{(h)} \frac{d A_{p}^{(i)}}{d \varphi}\right] \tag{31}\\
& Y_{p}=\frac{i \bar{u} \zeta_{p}}{\gamma K_{p}^{\omega}} \tag{32}
\end{align*}
$$

yields

$$
\begin{array}{r}
\frac{\partial \Phi_{p}^{\prime}}{\partial z}+\gamma Y_{p} \frac{\partial \Phi_{p}^{\prime}}{\partial t}=-\bar{u} c^{2} \Theta_{p}(\theta) \Psi_{p}(\psi) e^{i k_{p} \omega t} \Gamma_{p}, \tag{33}\\
p=1,2, \ldots I N
\end{array}
$$

Equation (33) is the nonlinear nozzle admittance relation, to be used as the boundary condition at the nozzle entrance in nonlinear combustion instability analyses. The right-hand-side of this equation Erises from the nonlinear terms in the nozzle wave equation. The quantities X_{p} and Γ_{p} are respectively the linear and nonlinear admittance coefficients for the p th mode. The nonlinear admittance, Γ_{p}, represents the effect of nozzle nonlinearities upon the nozzle admittance and it is identically zero when nonilinearities are not present.

It can easily be shown that Eq. (33) can be written in terms of the pressure and axial velocity perturbations as:

$$
\begin{equation*}
U_{p}-Y_{p} P_{p}=-\bar{u} c^{-2} \Gamma_{p}, \quad p=I, 2, \ldots N \tag{34}
\end{equation*}
$$

where U_{p} and P_{p} are the amplitudes of the axial velocity and pressure perturbations respectively as given by:

$$
\begin{align*}
& p^{\prime}=\sum_{p=1}^{N} P_{p}(\varphi) \Theta_{p}(\theta) \Psi_{p}(\psi) e^{i k_{p} \omega t} \tag{35}\\
& u^{\prime}=\sum_{p=1}^{N} U_{p}(\varphi) \Theta_{p}(\theta) \Psi_{p}(\psi) e^{i k_{p} \omega t}
\end{align*}
$$

Equation (34) is equivalent to Eq. (33) to second order only when the Mach number at the nozzle entrance, \bar{u}_{e}, is small.

In order to use the admittance relation (Eq. (33) or (34)) in the combustion instability theories, the admittance coefficients Y_{p} (or ζ_{p}) and Γ_{p} must be determined for a given nozzle. The equations governing these quantities are readily derived from Eq. (24) using the definitions For ζ_{p} (i.e., Eqs. (30) and (3I)). The resulting equations are:

$$
\begin{equation*}
H_{p} \frac{d \zeta_{p}}{d \varphi}=-M_{p} S_{p}-N_{p}-H_{p} \zeta_{p}^{2} \tag{37}
\end{equation*}
$$

$$
\begin{array}{r}
H_{p} \frac{d \Gamma_{p}}{d \varphi}=\left(-H_{p} \zeta_{p}+H_{p} \frac{\gamma-1}{2 c^{-2}} \frac{d \bar{u}^{2}}{d \varphi}-M_{p}\right) \Gamma_{p}-\frac{I_{p}}{c^{2}}, \tag{38}\\
p=1,2, \ldots N .
\end{array}
$$

TASK II: CALCUIATION OF THE NOZZIE RESPONSE

To obtain the nozzle response for any specified nozzle, Eqs. (37) and (38) are solved in the following manner. As pointed out earlier, the nonlinear terms vanish for the $1 T$ mode (i.e., $\Gamma_{1}=0, I_{1}=0$) and i.t is only necessary to solve Eq. (37) to obtain ζ_{1} (and hence Y_{1}) at the nozzle entrance. Since Eq. (37) does not depend on the higher modes, it can be solved independently for ζ_{1}. Once ζ_{1} has been determined, both Eqs. (37) and (38) must be solved for the other modes. In order to do this, the amplitude $A_{I}(\varphi)$ must be determined since Eq. (38) depends on $A_{1}(\varphi)$ and its derivatives through $I_{p}(\varphi)$. Once $\zeta_{I}(\varphi)$ is known, $A_{1}(\varphi)$ is determined by numerically integrating Eq. (30) where the constant of integration is determined by the specified value of the pressure amplitude P_{1} (of the $1 T$ mode) at the nozzle entrance. The value of A_{1} thus found is introduced into $\mathrm{Eq} .(38)$ which is then solved for Γ_{p}.

It may be observed that Eq. (37) and (38) have singularities at the same points as Eq. (24) - As before, the only singularity of interest is the throat. Since Eqs. (37) and (38) are first order ordinary differential equations, the numerical integration of these equations must start at some initial point where the initial conditions are known, and terminate at the nozzle entrance where the admittance coefficients Y_{p} and Γ_{p} are needed. Since the equations are singular at the throat, the integration is initiated at a point that is located a short distance upstream of the throat. The needed initial conditions are obtained by expanding the dependent variables in a Taylor series about the throat ($\varphi=0$) ; thus,

$$
\begin{align*}
& \zeta_{p}(\varphi)=\zeta_{p}(0)+\varphi \zeta_{p}^{\prime}(0)+\cdots \tag{39a}\\
& \Gamma_{p}(\varphi)=\Gamma_{p}(0)+\varphi \Gamma_{p}^{\prime}(0)+\cdots \tag{39b}
\end{align*}
$$

The coefficients $\zeta_{p}(0)$ and $\zeta_{p}^{\prime}(0)$ can be determined by substituting Eq. (39a) in Eq. (37), and taking the limit as $\varphi \rightarrow 0$. The results are:

$$
\begin{align*}
& \zeta_{p}(0)=-\frac{N_{p}(0)}{M_{p}(0)} \tag{40a}\\
& \zeta_{p}^{\prime}(0)=\frac{-M_{p}^{\prime}(0) \zeta_{p}(0)-H_{p}^{\prime}(0) \zeta_{p}^{2}(0)-N_{k}^{\prime}(0)}{H_{p}^{\prime}(0)+M_{p}(0)} \tag{400}\\
& p=1,2, \ldots N
\end{align*}
$$

Similarly, $\Gamma_{k}(0)$ and $\Gamma_{k}^{\prime}(0)$ can be determined by substituting Eq. (39b) in Eq. (38), and taking the limit as $\varphi \rightarrow 0$. The results are:

$$
\begin{align*}
\Gamma_{p}(0)= & -\frac{I_{p}(0)}{\bar{c}^{2}(0) M_{p}(0)} \tag{41a}\\
\Gamma_{p}^{\prime}(0)= & \left\{-\bar{c}^{2}(0) H_{p}^{\prime}(0) \zeta_{p}(0) \Gamma_{p}(0)+\frac{\gamma-1}{2} \frac{d \bar{u}^{2}}{d \varphi}(0) H_{p}^{\prime}(0) \Gamma_{p}(0)\right. \\
& -\bar{c}^{2}(0) M_{p}^{\prime}(0) \Gamma_{p}(0)+\frac{\gamma-1}{2} \frac{d \bar{u}^{2}}{d \varphi}(0) M_{p}(0) \Gamma_{p}(0) \\
& \left.-I_{p}^{\prime}(0)\right\} /\left\{\bar{c}^{2}(0) H_{p}^{\prime}(0)+\bar{c}^{2}(0) M_{p}(0)\right\} \tag{416}
\end{align*}
$$

In Eqs. (37) and (38), the quantities H_{p}, M_{p}, N_{p} and I_{p} are functions of the steady-state flow variables in the nozzle and these must be computed before performing the numerical integration to obtain ζ_{p} and Γ_{p}. For a specified nozzle profile, the steady-state quantities are computed by solving the quasi-one-dimensional isentropic steady-state equations for nozzle flow. Figure 2 shows the nozzle profile used in our computations. All of the length variables have been non-dimensionalized with respect to the radius of the combustion chamber, to which the nozzle is attached, and hence $r_{c}=1$. At the throat $r_{t h}$ is fixed by the Mach number at the nozzle entrance plane. The nozzle profile is smooth and is

Figure 2. Nozzle Profile Used in Calculating Admittances.
completely specified by $r_{c c}, r_{c t}$ and θ_{1}, which are respectively the radius oi curvature at the chamber, radius of curvature at the throat and slope of the central conical section. The steady-state equations are integrated using equal steps in steady-state potential φ by beginning at the throat and continuing to the nozzle entrance where the radius of the wall equals 1 .

Computations of the admittance coefficients have been performed using a three-term series expansion consisting of the first tangential, second tangential and first radial modes. An Adam-Bashforth predictor-corrector scheme was used to perform the numerical integration, while the starting values needed to apply this method were obtained using a fourth order Runge-Kutta integration scheme. The integration computer program has been written so that the integration can be performed up to the nozzle entrance and also inside the combustion chamber for any desired distance. Thus, the admittance relation is obtained at the nozzle entrance section or at any station inside the chamber. Computations have been performed for several nozzles, at different frequencies and pressure amplitudes of the first tangential mode.

Figures 3 and 4 show the frequency dependence of the linear admittance coefficients for the $1 T, 2 T$, and $1 R$ modes for a typical nozzle $\left(\theta=20^{\circ}, r_{c c}=1.0, r_{c t}=0.9234 ; M=0.2\right)$. Here, ω is the frequency of the $1 T$ mode, while the frequency of the $2 T$ and $1 R$ modes is 2ω due to nonlinear coupling. Hence the real parts of the linear admittance coefficients for the $2 T$ and $1 R$ modes attain their peak values at a higher frequency than that for the $1 T$ mode. The linear admittance coefficients for the $I T$ mode are in complete agreement with those calculated previously by Bell and Zinn ${ }^{14}$ as expected from Eq. (22).

The frequency dependence of the nonlinear admittance coefficient for the 2 T mode is plotted in Fig. 5 with pressure amplitude of the IT mode as a parameter. While the behavior of the linear admittance coefficient depends only upon the frequency of oscillations, the behavior of the nonlinear admittance coefficient is seen to depend on the amplitude of the 1 T mode. This result is expected, since in Eq. (38), I_{p} is a function of the amplitude of the $1 T$ mode. As expected the absolute values of both Γ_{r} and Γ_{i} increase with increasing pressure amplitude of
the IT mode, which acts as a driving force. It is observed that the absolute values of Γ_{r} and Γ_{i} vary similarly with frequency as the absolute values of Y_{r} and Y_{i}. The frequency dependence of the nonlinear admittance coefficient for the IR mode is plotted in Fig. 6 with pressure amplitude of the $I T$ mode as a parameter.

Figures 7 and 8 show the effect of pressure amplitude upon the magnitude of the ratio of nonlinear admittance coefficient to the linear admittance coefficient for the $2 T$ and $I R$ modes respectively. These results clearly indicate that the nonlinear contribution to the nozzle admittance is significant and should be included in nonlinear combustion stability analyses.

Figure 3. Iinear Admittances for the $I T, 2 T$, and $I R$ Modes

Figure 4. Linear Admittances for the 1T, 2T, and IR Modes

Figure 5. Nonlinear Admittances for the $2 T$ Mode

Frequency, ω

Figure 6. Nonlinear Admittances for the IR Mode

Figure 7. Relative Magnitudes of Linear and Nonlinear Admittances for $2 T$ Mode.

Figure 8. Relative Magnitudes of Linear and Nonlinear Admittances for $1 R$ Mode.

1. Tsien, H. S., "The Transfer Functions of Rocket Nozzles," Anerican Rocket Society Journal, Vol. 22, 1952, pp. 139-143.
2. Crocco, L. and Cheng, S. I., Theory of Combustion Instability in Liquid Propellant Rocket Motors, Appendix B. AGARD Monograph No. 8, Butterworths, Iondon, 1956.
3. Crocco, L. and Sirignano, W. A., "Behavior of Supercritical Nozzles Under Three Dimensional Oscillatory Conditions, "Princeton University, Department of Aerospace and Mechanical Sciences, Report No. 790, April 1967.
4. Zinn, B. T., "A Theoretical Study of Nonlinear Transverse Combustion Instability in Liquid Propellant Rocket Motors, " Princeton University Department of Aerospace and Mechanical Sciences, Report No. 732, May 1966.
5. Zinn, B. T. and Crocco, L., "Periodic Finite-Amplitude Oscillations in Slowly Converging Nozzles," Astronautica Acta, Vol. 13, 1968, pp. 481-488.
6. Zinn, B. T. and Crocco, L., "The Nozzle Boundary Condition in the Nonlinear Rocket Instability Problem," Astronautica Acta, Vol. 13, 1968 pp. 489-496.
7. Lores, M. E. and Zinn, B. T., "The Prediction of Nonlinear Iongitudinal Combustion Instability in Liquid Propellant Rockets," NASA CR-120904, April 1972.
8. Iores, M. E. and Zinn, B. T., "Nonlinear Iongitudinal Combustion Instebility in Rocket Motors," presented at the AIAA 1lth Aerospace Sciences Meeting, January 1973.
9. Zinn, B. T. and Powell, E. A., "Nonlinear Combustion Instability in Liquid Propellant Rocket Engines," Proceedings of the 13th Symposium (International) on Combustion, The Combustion Institute, pp. 491-503.
10. Powell, E. A. and Zinn, B. T., "The Prediction of the Nonlinear Behavior of Unstable Liquid Rockets, " NASA CR-72902, July 1971.
11. Powell, E. A. and Zinn, B. T., "The Prediction of Nonlinear ThreeDimensional Combustion Instability in Liquid Rockets with Conventional Nozzles," NASA CR-121279, October 1973.
12. Finlayson, B. A. and Scriven, L. E., "The Method of Weighted Residuals -- A Revĩew," Applied Mechanics Reviews, Vol. 19, No. 9, September 1966, pp. 735-744.:
13. Anes, W. F., Nonlinear Partial Differential Equations in Engineering, Academic Press, New York, 1965, pp. 243-262.
14. Bell, W. A. and Zinn, B. T., "The Prediction of Three-Dimensional Liquid-Propellant Rocket Mozzle Admittances," NASA CR-121129, February 1973.

Research Conducted Under
NASA GRANT NO. NGR 11-002-179

DETERMINATION OF THE EFFECIS OF NOZZLE NONLINEARITIES UPON

 . NONLINEAR STABILITY OF LIQUID PROPELIANT ROCKET MOTORSSEMI-ANIUAL REPORT COVERTIVG PERIOD

- August 1, 1974 - January 31, 1975

Prepared by

Ben T. Zinn, Regents' Professor
Eugene A. Powell, Assistant Professor
M. S. Padmanabhan, Graduate Research Assistant

> GEORGIA INSTITUTEE OF TECHNOLOGY SCHOOL OF AEROSPACE ENGINEERING ATIANTA, GEORGIA

IVTRODUCTION

This report is a summary of work completed under INASA grant NGR 11-002-179 entitled "Determination of the Effects of Nozzle NonIinearities Upon the Nonlinear Stability of Liquid Propellant Rocket Motors" during the period August 1, 1974 to January 31, 1975. During the first year of this project, Task I (Development of the Theory) and most of Task II (Calculation of the Nozzle Response) were completed and the results were presented in Ref. (1). During this report period additional Task II calculations were made, and work was begun on Task III Application of the Nozzle Theory to Combustion Instability Problems. In this task the nonlinear nozzle response developed under Tasks I and II is incorporated into the nonlinear combustion instability analysis developed under NASA grant NGL 11-002-083 in Ref. (2).

A paper, entitled "Application of the Galerkin Method in the Prediction of Nonlinear Nozzle Admittances", was prepared during this report period. This paper is based upon research conducted under this grant and it is co-authored by M. S. Padmanabhan, E. A. Powell, and B. T. Zinn. This paper was presented at the Ilth JAMMAF Combustion Meeting in Pasadena, California.

A brief summary of the additional Task II calculations and the progress made in the Task III investigations is provided in the following sections.

ADDITIONAL TASK II CALCULATIONS

The nonlinear nozzle admittance data presented in Ref. (1) was obtained for only one set of nozzle parameters. Additional calculations were subsequently made to determine the influence of entrance Mach number (M_{e}) and nozzle half-angle (θ_{1}) on the nonlinear nozzle admittance coefficients.

The effect of Mach number is shown in Figures 1 and 2 for the $2 T$ and $I R$ modes respectively. Here the relative magnitudes of the
linear and nonlinear admittances (i.e., $|\Gamma / Y|$ are plotted as a function of amplitude of the $1 T$ mode. In each case there is a significant decrease in $|\Gamma / Y|$ with increasing Mach number, thus it appears that the importance of nozzle nonlinearities will be smaller at higher Mach numbers.

The effect of nozzle half-angle on $|\Gamma / Y|$ for the $2 T$ mode is shown in Figure 3. It is readily seen that for θ_{1} between 15 and 45 degrees there is only a slight effect of nozzle half-angle on the relative magnitudes of the linear and nonlinear admittances. For the larger half-angles it should be noted that both the linear and nonlinear theories are restricted to slowly convergent nozzles (i.e., small $\left.\theta_{1}\right)^{l}$. Similar results are also obtained for the 1 R mode.

TASK III TIVESTIGATIONS

This section describes the application of the nonlinear nozzle admittance theory developed under Task I to the analysis of combustion instability in a liquid-propellant rocket combustor. A cylindrical combustor with uniform injection of propellants at one end and a slowly-convergent nozzle at the other end is considered. The liquid propellant rocket motor to be analyzed is shown in Figure 4. The analysis of such a motor for a linear nozzle response is given in Ref. (2).

The oscillatory flow in the combustion chamber is described by the three-dimensional, second-order, potential theory developed under NASA grant NGG 11-002-083 in Ref. (2). In this theory the velocity potential Φ must satisfy the following nonlinear partial differential equation:

$$
\begin{align*}
\Phi_{r r} & +\frac{1}{r} \Phi_{r}+\frac{1}{2} \Phi_{\theta \theta}+\Phi_{z z}-\Phi_{t t} \tag{1}\\
& -2 \Phi_{r} \Phi_{r t}-\frac{2}{r^{2}} \Phi_{\theta} \Phi_{\theta t}-2 \Phi_{z} \Phi_{z t} \\
& -(\gamma-1) \Phi_{t}\left(\Phi_{r r}+\frac{1}{r} \Phi_{r}+\frac{1}{\left.r^{2} \Phi_{\theta \theta}+\Phi_{z z}\right)}\right. \\
& -2 \bar{u}_{z t}-\gamma \Phi_{t} \frac{d \bar{u}}{d z} \\
& +\gamma n \frac{d \bar{u}}{d z}\left[\Phi_{t}(r, \theta, z, t)-\Phi_{t}(r, \theta, z, t-\bar{T})\right]=0
\end{align*}
$$

where Crocco's time-lag ($n-T$) model is used to describe the distributed unsteady combustion process. Assuming a series expansion of the form (see Ref. (2)) :

$$
\begin{equation*}
\Phi=\sum_{p=1}^{N} \Phi_{p}=\sum_{p=1}^{N} A_{p}(t) z_{p}(z) \Theta_{p}(\theta) R_{p}(r) \tag{2}
\end{equation*}
$$

the Galerkin method is used to obtain approximate solutions to Eq. (1). Unlike the nozzle analysis where the unknown coefficients were functions of axial location in the nozzle, the unknown coefficients in Eq. (2) are functions of time.

In the present analysis the linear nozzle boundary condition used in the previous analysis (see Eq. (2) of Ref. (2)) is replaced by the nonlinear nozzle admittance condition developed in Task I. This relation is given by:

$$
\begin{equation*}
\frac{\partial \Phi_{p}}{\partial z}+\gamma Y_{p} \frac{\partial \Phi_{p}}{\partial t}=-\bar{u} \bar{c}^{2} \oplus_{p}(\theta) \psi_{p}(\psi) e^{i k_{p}} \omega{ }_{p} \Gamma_{p} \tag{3}
\end{equation*}
$$

where Y_{p} and Γ_{p} are, respectively, the linear and nonlinear admittance coefficients for the $p^{\text {th }}$ mode. Applying the Galerkin orthogonality conditions given by Eq. (11) of Ref. (2) for each mode gives the following system of nonlinear equations to be solved for the \qquad amplitude functions, $A_{p}(t)$:

$$
\begin{aligned}
& \sum_{p=1}^{N}\left\{C_{0}(j, p) \frac{d^{2} A_{p}}{d t^{2}}+C_{1}(j, p) A_{p}(t)+\left[c_{2}(j, p)-n C_{3}(j, p)\right]^{d A} \frac{d t}{d t}\right. \\
& \left.+n C_{3}(j, p) \frac{d\left[A_{p}(t-\widetilde{\tau})\right]}{d t}+C_{4}(j, p) e^{i k_{p} \omega t}\right\} \\
& +\sum_{p=1}^{N} \sum_{q=1}^{N}\left\{D_{1}(j, p, q) A_{p} \frac{d A_{q}}{d t}+D_{2}(j, p, q) A_{p} \frac{d A_{q}^{*}}{d t}\right.
\end{aligned}
$$

$$
\begin{array}{r}
\left.+D_{3}(j, p, q) A_{p}^{*} \frac{d A_{q}}{d t}+D_{4}(j, p, q) A_{p}^{*} \frac{d A_{q}^{*}}{d t}\right\}=0 \\
j=1,2, \ldots N
\end{array}
$$

In the above equation, the term $C_{4}(j, p) e^{i k} p^{\omega t}$ results from the presence of nozzle nonlinearities (i.e. the right-hand-side of Eq. (3)).

The coefficients appearing in Eq. (4) are determined by evaluating the various integrals of hyperbolic, trigonometric, and Bessel functions that arise from the spatial integrations indicated in the Galerkin orthogonality conditions. These are calculated by the computer program COEFFS3D (see Appendix C of Ref. (2)). During this report period the program COEFFS3D was modified to include the coefficient $C_{4}(j, p)$ which arises from the nozzle nonlinearities. A further modification was necessary to enable the program to evaluate the coefficients correctly for realistic linear admittances (i.e., the $Y_{p}{ }^{2} s$) which are an order of magnitude larger than the admittances for which the program was
previously run successfully. Both modifications have been checked out and have been found to be functioning properly.

Work is now in progress on modifying the program LCYC3D (see Appendix D of Ref. 2) to obtain numerical solutions of Eqs. (4) for the amplitude functions. This involves incorporating the additional terms arising from the nozzle nonlinearities into the computer calculations performed by LCYC3D. In accordance with the work of Task I, a three-mode series expansion consisting of the $1 T, 2 T$, and $1 R$ modes will be used in developing the modified program.

Since the amplitudes, frequencies, and phases of the above modes, upon which the nonlinear nozzle admittances depend, are not known a priori, an iterative solution technique must be used. In this procedure the limit-cycle amplitudes are first calculated using the linear nozzle admittances. From this solution the frequency, amplitude, and phase of each of the three modes at the nozzle entrance is determined. This information is then used in the nozzle theory to determine the nonlinear nozzle admittances which are used in the chamber analysis to calculate new limit-cycle frequencies, amplitudes, and phases. If the limit-cycle amplitude obtained with the nonlinear nozzle boundary condition is significantly different from the limitcycle amplitude obtained with the linear nozzle admittances, new values of the non-linear admittances are calculated and the process is repeated until the change in limit-cycle amplitude is sufficiently small.

The modifications necessaxy to include the nonlinear nozzle admittances and the iterative solution technique into Program ICYC3D are nearly complete. After check-out of the program, combustion instability calculations will be made for different values of the following parameters: (1) time-lag, $\bar{\top}$, (2) interaction index, n, (3) steady state Mach number at the nozzle entrance, \bar{u}_{e}, and (4) chamber length-to-diameter ratio, I/D. In each case limit-cycle amplitude, pressure waveforms, and frequencies will be calculated and the results will be compared with those computed using a linear nozzle response. This information will determine the importance of nozzle nonlinearities in combustion instability calculations.

REFERENCES

1. Padmanabhan, M. S., Powell, E. A., and Zinn B. T., "Determination of the Effects of Nozzle Nonlinearities Upon Nonlinear Stability of Liquid Propellant Rocket Motors", Annual Report for August 1, 1973-July 31, 1974 for research conducted under NASA Grant No. NGR 11-002-179.
2. Powell, E. A., and Zinn, B. T., "The Prediction of Nonlinear Ihree-Dimensional Combustion Instability in Iiquid Rockets with Conventional Nozzles," NASA CR-121279, October 1973.

Figure 1. Effect of Entrance Mach Number on the Relative Magnitudes of Linear and Nonlinear Admittances for $2 T$ Mode.

Figure 2. Effect of Entrance Mach Number on the Relative Magnitudes of Linear and Nonlinear Admittances for $1 R$ Mode.

Figure 3. Effect of Nozzle Half-angle on the Relative Magnitudes of Linear and Nonlinear Admittances of $2 T$ Mode.
$z=$ Constant

Figure 4. Typical Mathematical Model of a Liquid Rocket Engine

1. Report No. INASA CR-134880	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Effect of Nozzle Nonlinearities Upon Nonlinear Stability of Liquid Propellant Rocket Motors		5. Report Date October, 1975
		6. Performing Organization Code
7. Author(s) M. S. Pedmanabhan, E. A. Powell, and B. T. Zinn		B. Performing Organization Report No.
		10. Work Unit No.
9. Performing Organization Name and Address Georgia Institute of Technology Atlanta, Georgia 30332		11. Contract or Grant No. NGR 11-002-179
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546		13. Type of Report and Period Covered Contractor Report
		14. Sponsoring Agency Code
15. Supplementary Notes Project Manager, Richard J. Priem, Chemical Propulsion Division, NASA Lewis Research Center, Cleveland, Ohio.		
16. Abstract A three-dimensional, nonlinear nozzle admittance relation is developed by solving the wave equation describing finite-amplitude oscillatory flow inside the subsonic portion of a choked, slowly-convergent axisymmetric nozzle. This nonlinear nozzle admittance relation is then used as a boundary condition in the analysis of nonlinear combustion instability in a cylindrical liquid rocket combustor. In both nozzle and chamber analyses solutions are obtained using the Galerkin method with a series expansion consisting of the first tangential, second tangential, and first radial modes. Using Crocco's timelag model to describe the distributed unsteady combustion process, combustion instability calculations are presented for different values of the following parameters: (1) timelag, (2) interaction index, (3) steady-state Mach number at the nozzle entrance, and (4) chamber length-to-diameter ratio. In each case, limit-cycle pressure amplitudes and waveforms are shown for both linear and nonlinear nozzle admittance conditions. These results show that when the amplitudes of the second tangential and first radial modes are considerably smaller than the amplitude of the first tangential mode the inclusion of nozzle nonlinearities has no significant effect on the limiting amplitude and pressure waveforms.		
17. Key Words (Suggested by Author(s)) Combustion Instability Iiquid Rockets Exhaust Nozzles Method of Weighted Residuals		18. Distribution Statement Unclassified - unlimited
19. Security Classif. (of this report) Unclessified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price* 141 $\$ 3.00$

*For sale by the National Technical Information Service, Springfield, Virginia 22151

FOREWORD

The research described herein, which was conducted at Georgia Institute of Technology, was supported by NASA Grant No. NGR-11-002-179. The work was done under the management of the INASA Project Manager, Dr. Richard J. Priem, Chemical Rockets Division, NASA-Lewis Research Center

ABSTRACT

A three-dimensional, nonlinear nozzle admittance relation is developed by solving the wave equation describing finite-amplitude oscillatory flow inside the subsonic portion of a choked, slowly-convergent axisymmetric nozzle. This nonlinear nozzle admittance relation is then used as a boundary condition in the analysis of nonlinear combustion instability in a cylindrical liquid rocket combustor. In both nozzle and chamber analyses solutions are obtained using the Galerkin method with a series expansion consisting of the first tangential, second tangential, and first radial modes. Using Crocco's time-lag model to describe the distributed unsteady combustion process, combustion instability calculations are presented for different values of the following parameters: (1) time-lag, (2) interaction index, (3) steady-state Mach number at the nozzle entrance, and (4) chamber length-to-diameter ratio. In each case, limit-cycle pressure amplitudes and waveforms are shown for both linear and nonlinear nozzle admittance conditions. These results show that when the amplitudes of the second tangential and first radial modes are considerably smaller than the amplitude of the first tangential mode the inclusion of nozzle nonlinearities has no significant effect on the limiting amplitude and pressure waveforms.

TABLE OF CONTENTS

Page
SUMMARY 1
INNRODUCTION 2
SYMBOIS 3
NOZZLE ANALYSIS 5
Development of the Nozzle Wave Equation 6
Method of Solution 9
Derivation of Admittance Relations 12
Calculation of the Nozzle Response 14
COMBUSTION INSTABILITY ANALYSIS 17
Combustion Chamber Model 17
Application of Galerkin Method 19
Numerical Solution Procedure 21
RESUITS AND DISCUSSION 22
Admittance Coefficients 22
Stability Calculations 27
CONCLUDING REMARKS 31
APPENDIX A - PROGRAM NOZADM: A USER'S MANUAL 40
General Description 40
Program Structure 40
Input Data 42

TABLE OF CONTENIS (Continued)

PageSteady-State Quantities 43
Coefficients 44
Integrals 44
Integration of the Differential Equations 46
Output 46
FORTRAN Listing 48
APPENDIX B - PROGRAM COEFFS3D: A USER'S MANUAL 78
FORTRAN Jisting 81
APPENDIX C - PROGRAM LCYC3D: A USER'S MANUAL 108
FORTRAN Listing 112
REFFRENCES 140

LIST OF ILLUSTRATIONS

Figure Page

1. Coordinate System Used for the Solution of the Oscilla- tory Nozzle Flow 8
2. Nozzle Profile Used in Calculating Admittances 16
3. Typical Mathematical Model of a Liquid Rocket Motor 18
4. Linear Admittances for the $1 T, 2 T$, and $1 R$ Modes 23
5. Nonlinear Admittances for the $2 T$ Mode 24
6. Nonlinear Admittances for the 1 R Mode 25
7. Relative Magnitudes of Linear and Nonlinear Admittances 26
8. Effect of Entrance Mach Number on the Relative Magnitudes of Linear and Nonlinear Admittances 28
9. Effect of Nozzle Half-Angle on the Relative Magnitudes of Linear and Nonlinear Admittances 29
10. Effect of Nozzle Radii of Curvature on the Relative Magni- tudes of Linear and Nonlinear Admittances for the $2 T$ Mode. 30
11. Linear Stability Limit 32
12. Comparison of Pressure Waveforms for a Mildly Unstable Motor 33
13. Comparison of Pressure Waveforms for a Strongly Unstable Motor 34
14. Comparison of Limit-Cycle Amplitudes for Different Values of n. 35
15. Comparison_of Limit-Cycle Pressure Amplitudes for Different Values of τ 36
16. Comparison of Limit-Cycle Amplitudes for Different Values of M_{e} 37

LIST OF ILLUSTRATIONS (Continued)

Figure Page
17. Comparison of Limit-Cycle Amplitudes for Different Values of L / D. 38
A-1. Flow Chart 41

Recently, a three-dimensional, nonlinear nozzle admittance relation has been developed. In this analysis, the wave equation for an axisymmetric, choked nozzle was solved using the Galerkin method with an approximating series solution for the velocity potential perturbation which was compatible with recent nonlinear combustion instability theories. Assuming that the amplitude of the fundamental mode is considerably larger than the amplitudes of the remaining modes in the series expansion, nonlinear admittance coefficients were determined as a function of the frequency and amplitude of the fundamental mode.

The nonlinear nozzle theory was then applied in the analysis of nonlinear combustion instability in a cylindrical combustor with uniform injection of propellants at one end and a slowly converging nozzle at the other end. The distributed unsteady combustion process was described by means of Crocco's timelag model. The Galerkin method was used to determine the behavior of the pressure perturbation in the rocket combustor, where the nonlinear nozzle admittance relation was used as the boundary condition at the nozzle end of the chamber. In these computations, a three-mode series expansion consisting of the first tangential (1T), second tangential ($2 T$), and first radial (1R) modes was used. Since the amplitude and frequency of the $1 T$ mode upon which the nonlinear nozzle admittances depend are not known a priori, an iterative solution technique was used.

Combustion instability calculations have been made for different values of the following parameters: (1) time-lag, (2) interaction index, (3) steady state Mach number at the nozzle entrance, and (4) chamber length-to-diameter ratio. In each case limit-cycle pressure amplitudes and waveforms were obtained with both the linear and nonlinear nozzle admittances. These results show that under the assumptions of the analysis the effect of nozzle nonlinearities can be safely neglected in nonlinear stability calculations.

INTTRODUCTION

Various aerospace propulsion devices, such as liquid and solid propellant rocket motors and air breathing jet engines, are often subject to combustion instabilities which are detrimental to the performance and safety of operation of these devices. In order to design stable engines, capabilities for a priori determination of the linear and nonlinear characteristics of the instability and the range of operating conditions for which these engines are dynamically stable must be acquired. In order to perform such an analysis, the behavior of the exhaust nozzle under oscillatory flow conditions must be understood. In particular, it is necessary to know how a wave generated in the combustion chamber is partially transmitted and partially reflected at the nozzle entrance. The information is usually expressed as a boundary condition (usually referred to as a Nozzle Admittance Relation) that must be satisfied at the nozzle entrance.

Before such a boundary condition can be derived, the nature of the wave motion inside the nozzle must be investigated. The behavior of oscillations in a converging-diverging supercritical nozzle was first treated by Tsien ${ }^{1}$ who considered the case in which the oscillation of the incoming flow is onedimensional and isothermal. Crocco ${ }^{2,3}$ extended Tsien's work to cover the more general cases of non-isothermal one- and three-dimensional oscillations. The analyses of Tsien and Crocco are both restricted to small-amplitude (i.e., linear) oscillations. More recently, a nonlinear nozzle theory has been developed by Zinn and Crocco $4,5,6$ who extended the previous linear theories to the investigation of the behavior of finite-amplitude waves.

In recent studies conducted by Zinn, Powell, and Lores, theories were developed which describe the nonlinear behavior of longitudinal 7,8 and transverse 9,10 instabilities in liquid-propellant rocket chambers with quasisteady nozzles. These theories have now been extended to situations in which the instabilities are three-dimensional and the rocket combustors are attached to conventional nozzles ${ }^{11}$. All of these theories have successfully predicted the transient behavior, nonlinear waveforms, and limit-cycle amplitudes of longitudinal and tangential instabilities in unstable motors.

In order to assess the importance of nozzle nonlinearities upon the
nonlinear stability characteristics of various propulsion devices, a new nonlinear nozzle theory is needed for the following reasons. First, the nonlinear analysis of $Z i n n^{5,6}$ is mathematically complicated and requires considerable computer time. For this reason, Zinn's analysis has never been used to perform actual computations of the wave structure in the nozzle or the nonlinear nozzle response. Secondly, the nonlinear nozzle admittance relation developed by Zinn is not compatible with the recently developed nonlinear combustion theories (see References 7 through 1l). Consequently, a linear nozzle boundary condition or a short nozzle (quasi-steady) assumption had to be used in all of the nonlinear combustion instability theories developed to date. The use of a linear nozzle boundary condition in these nonlinear theories was justified by assuming that under the conditions of moderate amplitude oscillations and small mean flow Mach number the effect of nozzle nonlinearities is of higher order and can be neglected. Thus a nonlinear nozzle analysis is needed to determine the validity of this assumption. Furthermore, in the case of transverse instabilities the "linear" nozzle has been known to exert a destabilizing effect; in these cases it is especially important to know how nonlinearities affect the nozzle behavior.

Thus a nonlinear nozzle admittance relation has been developed and has been applied as a boundary condition in the recently-developed nonlinear combustion instability theories. The development of this theory, its application in the chamber stability analysis, and typical results for liquidpropellant rockets will be described in the following sections.

SYMBOLS

$A_{p}(\varphi) \quad$ axially dependent amplitude functions in Eq. (4)

$\mathrm{B}_{\mathrm{p}}(\mathrm{t})$	time dependent amplitude functions in Eq. (18)
$\mathrm{B}_{\mathrm{N}}\left(\widetilde{\Phi}^{\prime}\right)$	nozzle boundary residual (see Eq. (10))
b_{p}	complex axial acoustic eigenvalue
c	dimensionless sonic velocity, $\mathrm{c}^{*} / \mathrm{c}_{0}^{*}$

$\mathrm{E}_{\mathrm{N}}\left(\widetilde{\Phi}^{\prime}{ }^{\prime}\right)$	residual of Eq. (2)
$\mathrm{E}_{\mathrm{c}}\left(\widetilde{\Phi}^{\prime}\right)$	residual of Eq. (17)
i	$\text { imaginary unit, } \sqrt{-1}$
$J_{\text {m }}$	Bessel function of the first kind; order m
k_{p}	multiple of fundamental frequency
m	azimuthal mode number
n	pressure interaction index
p	dimensionless pressure, $\gamma p^{*} / \rho_{0}^{*} c_{o}^{*^{2}}$
r	dimensionless radial coordinate, r^{*} / r_{c}^{*}
r_{c}^{*}	chamber radius
$S_{m n}$	dimensionless transverse mode acoustic frequency
t	dimensionless time, $\frac{t}{\left(r_{c}^{*} / c_{0}^{*}\right)}$
u	dimensionless axial velocity, u^{*} / c_{0}^{*}
Y_{p}	linear admittance for the $\mathrm{p}^{\text {th }}$ mode
z	dimensionless axial coordinate, $z^{*} / \mathrm{r}_{\mathrm{c}}^{*}$
Y	specific heat ratio
Γ_{p}	nonlinear admittance for the $p^{\text {th }}$ mode
δ_{p}	linear admittance function
θ	azimuthal coordinate
ρ	dimensionless density, ρ^{*} / ρ_{o}^{*}
τ	dimensionless pressure sensitive time lag, $\frac{\tau^{*}}{\left(r_{c}^{*} / c_{0}^{*}\right)}$

ω

Subscripts:
e
n
r, i

W

0
$\varphi, \psi, r, \theta, z, t$
steady state potential function
velocity potential
steady state stream function
dimensionless frequency
e evaluated at the nozzle entrance

Superscripts:

()$^{\prime}$	perturbation quantity
()*	steady state quantity
()*	dimensional quantity, complex conjugate
()$\left.^{(}\right)$	approximate solution

NOZZIE ANAIYSIS

The development of the nonlinear nozzle theory is described in detail in Refs. (12) and (13), therefore only a brief summary will be given in this section.

As in the Zinn-Crocco analysis, ${ }^{5,6}$ finite-amplitude, periodic oscillations were assumed to occur inside the slowly convergent, subsonic portion of an axisymmetric nozzle operating in the supercritical range. The flow in the nozzle was assumed to be adiabatic and inviscid and to have no body forces or chemical reactions. The fluid was also assumed to be calorically perfect. Under the further assumption of isentropic and irrotational flow the continuity and momentum equations were combined to obtain the following equation which describes the behavior of the velocity potential:

$$
\begin{align*}
& \nabla^{2} \Phi-\Phi_{t t}=2 \nabla \Phi \cdot \nabla \Phi_{t}+(\gamma-1) \Phi_{t} \nabla^{2} \Phi \tag{1}\\
& +\frac{\gamma-1}{2}(\nabla \Phi \cdot \nabla \Phi) \nabla^{2} \Phi+\frac{1}{2} \nabla \Phi \cdot \nabla(\nabla \Phi \cdot \nabla \Phi)
\end{align*}
$$

These equations are consistent with those used in the second-order nonlinear combustion instability theory developed by Powell, Zinn, and Lores (see References 7 and 10).

A nozzle wave equation was obtained from Eq. (1) by expressing the velocity potential as the sum of a steady state and a perturbation (i.e. $\Phi=\bar{\Phi}+\Phi^{\prime}$), introducing the (φ, ψ, θ) coordinate system used by Zinn and Crocco ${ }^{5,6}$ (see Figure 1), assuming a slowly convergent nozzle and onedimensional mean flow, and neglecting third order nonlinear terms. This wave equation is given by:

$$
\begin{align*}
E_{N}\left(\Phi^{\prime}\right)=f_{1}(\varphi) \Phi_{\varphi \varphi}^{\prime} & -f_{2}(\varphi) \Phi_{\varphi}^{\prime}+f_{3}(\varphi)\left[2\left(\psi \Phi_{\psi \psi}^{\prime}+\Phi_{\psi}^{\prime}\right)+\frac{1}{2 \psi} \Phi_{\theta \theta}^{\prime}\right] \tag{2}\\
& -2 \Phi_{\varphi t}^{\prime}+f_{4}(\varphi) \Phi_{t}^{\prime}-\frac{1}{\bar{u}^{2}} \Phi_{t t}^{\prime} \\
& -\left\{2 \Phi_{\varphi}^{\prime} \Phi_{\varphi t}^{\prime}+\frac{4 \rho}{\bar{u}} \psi \Phi_{\psi}^{\prime} \Phi_{\psi t}^{\prime}+\frac{\bar{\rho}}{\bar{u} \psi} \Phi_{\theta}^{\prime} \Phi_{\theta t}^{\prime}\right.
\end{align*}
$$

$$
\begin{aligned}
& +(\gamma+1) \bar{u}^{2} \Phi_{\varphi}^{\prime} \Phi_{\varphi \varphi}^{\prime}+2 \bar{\rho} \bar{u} \Psi_{\psi}^{\prime} \Phi_{\psi \varphi}^{\prime}+\frac{\overline{\rho u}}{2 \psi} \Phi_{\theta}^{\prime} \Phi_{\theta \varphi}^{\prime} \\
& +f_{5}(\varphi)\left(\Phi_{\varphi}^{\prime}\right)^{2}+\Phi_{6}(\varphi) \psi\left(\Phi_{\psi}^{\prime}\right)^{2}+\Phi_{6}^{\prime}(\varphi) \frac{1}{4 \psi}\left(\Phi_{\theta}^{\prime}\right)^{2} \\
& +(Y-1) \Phi_{\varphi \varphi}^{\prime} \Phi_{t}^{\prime}-f_{4}(\varphi) \Phi_{\varphi}^{\prime} \Phi_{t}^{\prime} \\
& +(\gamma-1) \frac{\bar{\rho}}{\bar{u}}\left[2\left(\psi \Phi_{\psi \psi}^{\prime}+\Phi_{\psi}^{\prime}\right)+\frac{1}{2 \psi} \Phi_{\theta \theta}^{\prime}\right] \Phi_{t}^{\prime} \\
& \left.+(Y-1) \overline{\rho u}\left[2\left(\psi \Phi_{\psi \psi}^{\prime}+\Phi_{\psi}^{\prime}\right)+\frac{1}{2 \psi} \Phi_{\theta \theta}^{\prime}\right] \Phi_{\varphi}^{\prime}\right\}=0
\end{aligned}
$$

where

$$
\begin{align*}
& f_{1}(\varphi)=\bar{c}^{-2}-\bar{u}^{-2} \tag{3}\\
& f_{2}(\varphi)=\frac{1}{c^{2}} \frac{d \bar{u}^{-2}}{d \varphi} \\
& f_{3}(\varphi)=\frac{\rho \bar{c}^{-2}}{\bar{u}} \\
& f_{4}(\varphi)=-\frac{(\gamma-1)}{2 \bar{c}^{-2}} \frac{d u^{-2}}{d \varphi} \\
& f_{5}(\varphi)=\frac{3}{2}\left[1+\frac{\gamma-1}{2} \frac{\bar{u}^{-2}}{c^{2}}\right] \frac{d \bar{u}^{2}}{d \varphi} \\
& f_{6}(\varphi)=\frac{p}{2 \bar{u}}\left[1-(2-\gamma) \frac{\bar{u}^{2}}{c^{2}}\right] \frac{d \bar{u}^{2}}{d \varphi}
\end{align*}
$$

∞

Figure 1. Cocrdinate System used for the Solution of the Oscillatory Nozzle Flow.

In the nonlinear combustion instability theories developed by Powell and Zinn (see Refs. 7 - 11) the governing equations were solved by means of an approximate solution technique known as the Galerkin Method, which is a special case of the Method of Weighted Residuals ${ }^{14,15}$. In these investigations it was shown that the Galerkin Method could be successfully applied in the solution of nonlinear combustion instability problems; its application was straightforward and it required relatively little computation time. Thus the Galerkin Method was also used in the nozzle analysis to determine the nonlinear nozzle admittance relation.

The first step in using the Galerkin Method in the solution of the wave equation (i.e., Eq. (2)) was to express the velocity potential, Φ^{\prime}, as an approximating series expansion. The structure of this series expansion was guided by the experience gained in the nonlinear nozzle admittance studies performed by Zinn and Crocco (see Ref. 5) as well as in the nonlinear combustion instability analyses of Powell and Zinn (see Ref. 10). Thus the velocity potential was expressed as follows:

$$
\begin{equation*}
\widetilde{\Phi}^{\prime}=\sum_{p=1}^{N}\left\{A_{p}(\varphi) \cos (m \theta) J_{m}\left[S_{m n}\left(\frac{\psi}{\psi_{W}}\right)^{\frac{1}{2}}\right] e^{i k_{p} \omega t}\right\} \tag{4}
\end{equation*}
$$

where the functions $A_{p}(\varphi)$ are unknown complex functions of the axial variable φ, and $\theta-$ and ψ-dependent eigenfunctions were determined from the first-order (i.e., linear) solutions by Zinn ${ }^{5}$. For each value of the index p, there corresponds the mode numbers $m(p)$ and $n(p)$ as well as the number k_{p}. This correspondence is illustrated in the table below for a three-term expansion consisting of the first tangential (1 T), second tangential (2T), and first radial (IR) modes.

Table 1. Three-Mode Expansion

p	$m(p)$	$n(p)$	k_{p}	Mode
1	1	1	1	$1 T$
2	2	1	2	$2 T$
3	0	1	2	$1 R$

In the time-dependence, ω is the fundamental frequency which must be specified and the integer k_{p} gives the frequency of the higher harmonics. The values of k_{p} for the various modes appearing in Eq. (4) were determined from the results of the nonlinear combustion instability analysis of Powell and $Z_{i n n}{ }^{10}$. For example it was found that, due to nonlinear coupling between modes, the $2 T$ and $I R$ modes oscillated with twice the frequency of the $1 T$ mode. Thus in Eq. (4) $k_{1}=1$ and $k_{2}=k_{3}=2$. The amplitudes and phases of the various modes depend on the axial location (i.e., φ) in the nozzle through the unknown functions $A_{p}(\varphi)$.

Next the assumed series expansion for Φ^{\prime} (i.e., Eq. (4)) was substituted into the wave equation (i.e., Eq. (2)) to form the residual, $E_{N}\left(\widetilde{\Phi}^{\prime}\right)$. According to the Galerkin method, the residual $F_{N}\left(\widetilde{\Phi}^{\prime}\right)$ was required to satisfy the following orthogonality conditions:

$$
\begin{equation*}
\int_{0}^{T} \int_{S} E_{M}\left(\widetilde{\Phi}^{\prime}\right) e^{-i k_{j} \omega t} \cos m \theta J_{m}\left[S_{m n}\left(\frac{\psi}{\psi_{W}}\right)^{\frac{1}{2}}\right] d S d t=0 \tag{5}
\end{equation*}
$$

$$
j=1,2, \ldots \mathbb{N}
$$

where \mathbb{N} is the number of terms in the series expansions of the dependent variables. The weighting functions in Eq. (5) correspond to the assumed time and space dependences of the terms that appear in the series expansion.

The time integration is performed over one period of oscillation, $T=2 \pi / \omega$, while the spatial integration is performed over any surface of $\varphi=$ constant in the nozzle (in Eq. (5) dS indicates an incremental area on this surface).

Evaluating the spatial and temporal integrals in Eq. (5) yielded a system of \mathbb{N} nonlinear, second order, coupled, complex ordinary differential equations to be solved for the complex amplitude functions $A_{p}(\varphi)$. Unfortunately these equations were not quasi-linear; that is, the highest order derivatives appeared in the nonlinear terms. This greatly complicated the numerical solution of these equations, thus an additional approximation was made to obtain a quasi-linear system of equations.

This additional approximation was based on the well-known fact that most transverse instabilities behave like the first tangential (li) mode. Based on the results of the recent nonlinear combustion instability theory 11 , it was assumed that the amplitude of the $1 T$ mode was considerably larger than the amplitudes of the remaining modes in the series solution. Through an order of magnitude analysis correct to second order, the original non-quasilinear system of equations was reduced to the following linear inhomogeneous system of equations:

$$
\begin{gathered}
H_{1}(\varphi) \frac{d^{2} A_{1}}{d \varphi^{2}}+M_{1}(\varphi) \frac{d A_{1}}{d \varphi}+N_{1}(\varphi) A_{1}(\varphi)=0 \\
H_{p}(\varphi) \frac{d^{2} A_{p}}{d \varphi^{2}}+M_{p}(\varphi) \frac{d A_{p}}{d \varphi}+\mathbb{N}_{p}(\varphi) A_{p}(\varphi)=I_{p}\left\{A_{1}, \frac{d A_{1}}{d \varphi}, \frac{d^{2} A_{1}}{d \varphi^{2}}\right\} \\
p=2,3, \ldots N
\end{gathered}
$$

where

$$
\begin{gather*}
H_{p}(\varphi)=\bar{u}^{-2}\left(\bar{c}^{-2}-\bar{u}^{-2}\right) \tag{7}\\
M_{p}(\varphi)=-\bar{u}^{2}\left[\frac{1}{\bar{c}^{2}} \frac{d \bar{u}^{2}}{d \varphi}+2 i k_{p} \omega\right] \\
N_{p}(\varphi)=\left[-\frac{S_{p}^{2}}{2 \psi_{w}} \bar{\rho} \bar{u} \bar{c}^{2}-\frac{\gamma-1}{2} i k_{p} \omega \frac{\bar{u}^{2}}{\bar{c}^{2}} \frac{d \bar{u}^{-2}}{d \varphi}+k_{p}^{2} \omega^{2}\right]
\end{gather*}
$$

and I_{p} are inhomogeneous terms which are functions of φ and the amplitude of the $1 T$ mode, $A_{1}(\varphi)$.

It can be seen that the above equations are decoupled with respect to the $1 T$ mode; that is, the solution for A_{1} can be obtained independently of the amplitudes of the other modes. Thus to second order the nozzle nonlinearities do not affect the $1 T$ mode. On the other hand, the nozzle nonlinearities influence the amplitudes of the higher modes (i.e., A_{2} and A_{3}) by means of the inhomogeneous terms in the equations for the higher modes.

Derivation of Admittance Relations

It has been shown (see Refs. (12) and (13)) that the solution of Eq. (6) can be expressed as the sum of a homogeneous solution $A_{p}^{(h)}$ and a particular solution of the inhomogeneous equation $A_{p}^{(i)}$ as follows:

$$
\begin{equation*}
A_{p}(\varphi)=K_{1} A_{p}^{(h)}(\varphi)+A_{p}^{(i)}(\varphi) \tag{8}
\end{equation*}
$$

Using this result a nonlinear admittance relation to be used as a boundary condition in nonlinear combustion instability analyses was derived. Noting that the velocity potential $\tilde{\Phi}^{\prime}$ given by Eq. (5) is a summation of partial potentials Φ_{p}^{\prime} where

$$
\begin{equation*}
\Phi_{p}^{\prime}=A_{p}(\varphi) \cos (m \theta) J_{m}\left[S_{m n}\left(\frac{\psi}{\psi_{w}}\right)^{\frac{1}{2}}\right] e^{i k_{p} \omega t} \tag{9}
\end{equation*}
$$

a nozzle admittance relation can be written for each of the partiai potentials. This is done by introducing Eq. (8) into Eq. (9), taking partial derivatives with respect to z and t and eliminating K_{1} between the resulting equations. The resulting admittance relations are given by:

$$
\begin{gather*}
B_{N}\left(\Phi^{\prime}\right)=\frac{\partial \Phi_{p}^{\prime}}{\partial z}+\gamma Y_{p} \frac{\partial \Phi^{\prime}}{\partial t} p \tag{10}\\
+\bar{u}_{e} \bar{e}_{e}^{-2}\left\{\cos (m \theta) J_{m}\left[S_{m n}\left(\frac{\psi}{\psi_{W}}\right)^{\frac{1}{2}}\right] e^{i k} p^{\omega t}\right\} \Gamma_{p}=0
\end{gather*}
$$

where

$$
\begin{array}{cc}
Y_{p}=\left(\frac{i \bar{u}_{e}}{Y K_{p}^{\omega}}\right) \frac{1}{A_{p}^{(h)}} \frac{d A_{p}^{(h)}}{d \varphi} & p=1,2, \ldots N \\
\Gamma_{p}=\frac{l}{c^{2} A_{p}^{(h)}}\left[A_{p}^{(i)} \frac{d A_{p}^{(h)}}{d \varphi}-A_{p}^{(h)} \frac{d A_{p}^{(i)}}{d \varphi}\right] & p=2,3, \ldots N \tag{12}
\end{array}
$$

Equation (10) is the nonlinear nozzle admittance relation to be used as the boundary condition at the nozzle entrance plane in nonlinear stability analyses of rocket combustors. The quantities $Y p$ and Γp are, respectively, the linear and nonlinear admittance coefficients for the pth mode. The nonlinear admittance, Γ_{p}, represents the effect of nozzle nonlinearities upon the nozzle response, and it is zero when nonlinearities are absent (i.e., for the 1 r mode).

It can easily be shown that when the Mach number at the nozzle entrance is small, Eq. (10) can be expressed, correct to second order, as:

$$
\begin{equation*}
U_{p}-Y_{p} P_{p}=-\bar{u}_{e} \bar{c}_{e}^{2} \Gamma_{p} \tag{13}
\end{equation*}
$$

where U_{p} and P_{p} are the φ-dependent amplitudes of the axial velocity and pressure perturbations respectively.

In order to use the admittance relation (Eq. (10) or Eq. (13)) in combustion instability analysis, the admittance coefficients Y_{p} and Γ_{p} must be determined for the nozzle under consideration. The equations governing these quantities are readily derived from Eqs. (6) using the definition of Γ_{p} (i.e., Eq. (12) to obtain:

$$
\begin{gather*}
H_{p} \frac{d \zeta_{p}}{d \varphi}=-M_{p} \zeta_{p}-N_{p}-H_{p} \zeta_{p}^{2} \tag{14}\\
H_{p} \frac{d \Gamma_{p}}{d \varphi}=\left(-H_{p} \zeta_{p}+\frac{\gamma-1}{2 \bar{c}^{2}} \frac{d \bar{u}^{2}}{d \varphi} H_{p}-M_{p}\right) \Gamma_{p}-\frac{I_{p}}{c^{2}} \tag{15}
\end{gather*}
$$

where

$$
\begin{equation*}
\zeta_{p}=\frac{1}{A_{p}^{(h)}} \frac{d A_{p}^{(h)}}{d \varphi} \tag{16}
\end{equation*}
$$

Calculation of the Nozzle Response

To obtain the nozzle response for any specific nozzle, Eqs. (14) and (15) are solved in the following manner. As pointed out earlier, the nonlinear terms vanish for the $1 T$ mode (i.e., $\Gamma_{I}=0, I_{I}=0$) and it is only necessary to solve Eq. (14) to obtain ζ_{1} (and hence Y_{1}) at the nozzle entrance. Since Eq. (14) does not depend on the higher modes, it can be solved independently for ζ_{1}. Once ζ_{1} has been determined both Eqs. (14)
and (15) must be solved for the other modes. In order to do this, the amplitude $A_{1}(\varphi)$ must be determined since Eq. (15) depends on $A_{1}(\varphi)$ and its derivatives through $I_{p}(\varphi)$. Once $\zeta_{1}(\varphi)$ is known, $A_{l}(\varphi)$ is determined by numerically integrating Eq. (16) where the constant of integration is determined by the specified value of the pressure amplitude $\left|p_{1}\right|$ (of the $1 T$ mode) at the nozzle entrance. The value of A_{1} thus found is introduced into Eq. (15) which is then solved for Γ_{p}.

Since Eqs.(14) and (15) are first order ordinary differential equations, the numerical integration of these equations must start at some initial point where the initial conditions are known, and terminate at the nozzle entrance where the admittance coefficients Y_{p} and Γ_{p} are needed. Since the equations are singular at the throat, the integration is initiated at a point that is located a short distance upstream of the throat. The needed initial conditions are obtained by expanding the dependent variables in a Taylor series about the throat ($\varphi=0$).

In Eqs. (14) and (15), the quantities H_{p}, M_{p}, N_{p} and I_{p} are functions of the steady-state flow variables in the nozzle and these must be computed before performing the numerical integration to obtain ζ_{p} and Γ_{p}. For a specified nozzle profile, the steady-state quantities are computed by solving the quasi-one-dimensional isentropic steady-state equations for the nozzle flow. Figure 2 shows the nozzle profile used in these computations. All of the length variables have been non-dimensionalized with respect to the radius of the combustion chamber to which the nozzle is attached, and hence $r_{c}=1$. At the throat $r_{t h}$ is fixed by the Mach number at the nozzle entrance plane. The nozzle profile is smooth and is completely specified by $r_{c c}, r_{c t}$ and θ_{1}, which are respectively the radius of curvature at the chamber, radius of curvature at the throat and slope of the central conical section. The steady-state equations are integrated using equal steps in steady-state potential φ by beginning at the throat and continuing to the nozzle entrance where the radius of the wall equals 1.

A computer program, NOZADM, has been developed to numerically solve Eqs. (14) - (16) and calculate the linear and nonlinear nozzle admittances. A computer code and description of this program is given in Appendix A.

Figure 2. Nozzle Profile Used in Calculating Admittances.

Combustion Chamber Model
This section describes the application of the nonlinear nozzle admittance theory developed in the previous section to the analysis of combustion instability in a liquid-propellant rocket combustor. A cylindrical combustor with uniform injection of propellants at one end and a slowly-convergent nozzle at the other end was considered. The liquid propellant rocket motor that was analyzed is shown in Figure 3. The analysis of such a motor for a linear nozzle response is given in Ref. (11).

The oscillatory flow in the combustion chamber is described by the three-dimensional, second-order, potential theory developed in Ref. (11). In this theory the velocity potential Φ must satisfy the following nonlinear partial differential equation:

$$
\begin{align*}
E_{c}\left(\Phi^{\prime}\right)= & \Phi_{r r}^{\prime}
\end{aligned}+\frac{1}{r} \Phi_{r}^{\prime}+\frac{1}{r^{2} \Phi_{\theta \theta}^{\prime}+\Phi_{z z}^{\prime}-\Phi_{t t}^{\prime}} \begin{aligned}
& -2 \Phi_{r}^{\prime} \Phi_{r t}^{\prime}-\frac{2}{r^{2}} \Phi_{\theta}^{\prime} \Phi_{\theta t}^{\prime}-2 \Phi_{z}^{\prime} \Phi_{z t}^{\prime} \tag{17}\\
& -(\gamma-1) \Phi_{t}^{\prime}\left(\Phi_{r r}^{\prime}+\frac{1}{r} \Phi_{r}^{\prime}+\frac{1}{\left.r^{2} \Phi_{\theta \theta}^{\prime}+\Phi_{z z}^{\prime}\right)}\right. \\
& -2 \bar{u} \Phi_{z t}^{\prime}-(\gamma+1) \Phi_{t}^{\prime} \frac{d \bar{u}}{d z} \\
& +\gamma_{n} \frac{d \bar{u}}{d z}\left[\Phi_{t}^{\prime}(r, \theta, z, t)-\Phi_{t}^{\prime}(r, \theta, z, t-\bar{\tau})\right]=0
\end{align*}
$$

where Crocco's time-lag ($n-\tau$) model is used to describe the distributed unsteady combustion process. In the present analysis the linear nozzle boundary condition used in the previous analysis (see Eq. (2) of Ref. 11) was replaced by the nonlinear admittance condition given by Eq. (10).

Figure 3. Typical Mathematical Model of a Liquid Rocket Motor.

Assuming a series expansion of the form (see Ref. 그):

$$
\begin{equation*}
\widetilde{\Phi}^{\prime}=\sum_{p=1}^{N} \Phi_{p}=\sum_{p=1}^{N} B_{p}(t) \cos (m \theta) J_{m}\left(S_{m n} r\right) \cosh \left(i b_{p} z\right) \tag{18}
\end{equation*}
$$

the Galerkin method was used to obtain approximate solutions to Eq. (17). In Eq. (18) the radial and azimuthal eigenfunctions are the same as those used in the nozzle analysis (see Eq. 4). Unlike the nozzle analysis where the unknown coefficients $A_{p}(\varphi)$ were functions of axial location in the nozzle, the unknown coefficients $\mathrm{B}_{\mathrm{p}}(\mathrm{t})$ in Eq. (18) are functions of time. The b_{p} appearing in the axial dependence are the axial acoustic eigervalues for a chamber with a solid wall boundary condition at the injector end and a linear nozzle admittance condition at the other end.

The unknown amplitudes $B_{p}(t)$ were determined by substituting the assumed series expansion (i.e., Eq. (18)) into the wave equation (i.e., Eq. (17)) to form the residual $\mathrm{E}_{\mathrm{c}}\left(\widetilde{\Phi}^{\prime}\right)$. Similarly, the series expansion was substituted into the nozzle boundary condition (i.e., Eq. (10)) to obtain the boundary residual $B_{N}\left(\tilde{\Phi}^{\prime}\right)$. The residuals $E_{c}\left(\tilde{\Phi}^{\prime}\right)$ and $B_{N}\left(\tilde{\Phi}^{\prime}\right)$ were required to satisfy the following orthogonality condition (see Ref. 11):

$$
\begin{aligned}
& \int_{0}^{z} \int_{0}^{2 \pi} \int_{0}^{l} E_{c}\left(\Psi^{\prime}\right) Z_{j}^{*}(z) \Theta_{j}(\theta) R_{j}(r) r d r d \theta d z \\
& -\int_{0}^{2 \pi} \int_{0}^{l} B_{N}\left(\Phi^{\prime}\right) Z_{j}^{*}\left(z_{e}\right) \Theta_{j}(\theta) R_{j}(r) r d r d \theta=0 \\
& \\
& j=1,2, \cdots \mathbb{N}
\end{aligned}
$$

where the Z_{j}^{*} are the complex conjugates of the axial acoustic eigenfunctions appearing in Eq. (18), and Θ_{j} and R_{j} are the azimuthal and radial eigenfunctions respectively.

Evaluating the spatial integrals in Eqs. (19) gave the following system of \mathbb{N} complex nonlinear equations to be solved for the amplitude functions, $B_{p}(t)$:

$$
\begin{equation*}
\sum_{p=1}^{N}\left\{c_{0}(j, p) \frac{d^{2} B_{p}}{d t^{2}}+C_{1}(j, p) B_{p}(t)+\left[c_{2}(j, p)-n C_{3}(j, p)\right] \frac{d B_{p}}{d t}\right. \tag{20}
\end{equation*}
$$

$$
\begin{aligned}
& \left.+n C_{3}(j, p) \frac{d\left[B_{p}(t-\bar{\tau})\right]}{d t}+C_{4}(j, p) e^{i k} p^{\omega t}\right\} \\
& +\sum_{p=1}^{N} \sum_{q=l}^{N}\left\{D_{1}(j, p, q) B_{p} \frac{d B_{q}}{d t}+D_{2}(j, p, q) B_{p} \frac{d B_{q}^{*}}{d t}\right.
\end{aligned}
$$

$$
\left.+D_{3}(j, p, q) B_{p}^{*} \frac{d B_{q}^{*}}{d t}+D_{4}(j, p, q) B_{p}^{*} \frac{d B_{q}^{*}}{d t}\right\}=0
$$

$$
j=1,2, \ldots \mathrm{~N}
$$

In the above equation, the term $C_{4}(j, p) e^{i k} p$ th results from the presence of nozzle nonlinearities (i.e. the term involving Γ_{p} in Eq. (10)).

The coefficients appearing in Eq. (20) were determined by evaluating the various integrals of hyperbolic, trigonometric, and Bessel functions that arise from the spatial integrations indicated in the Galerkin orthogonality conditions. These were calculated by the computer program COEFFS3D (Appendix B).

The time-dependent behavior of an engine following the introduction of a disturbance is determined by specifying the form of the initial disturbance and then following the subsequent behavior of the individual modes by numerically integrating Eqs. (20). Once the time-dependence of the individual modes is known, the velocity potential, $\widetilde{\Phi}$, is calculated from Eq. (18). The pressure perturbation at any location within the chamber is related to
Φ^{\prime} by the following second-order momentum equation (see Ref. 11):

$$
\begin{equation*}
p^{\prime}=-\gamma\left[\widetilde{\Phi}_{t}^{\prime}+{\widetilde{u} \Phi_{z}^{\prime}}_{z}^{\prime}+\frac{1}{2}\left(\widetilde{\Phi}_{r}^{\prime}\right)^{2}+\frac{1}{2 r^{2}}\left(\widetilde{\Phi}_{\theta}^{\prime}\right)^{2}+\frac{1}{2}\left(\widetilde{\Phi}_{z}^{\prime}\right)^{2}-\frac{1}{2}\left(\tilde{\Phi}_{t}^{\prime}\right)^{2}\right] \tag{21}
\end{equation*}
$$

Numerical Solution Procedure

Equation (20) is a system of N ordinary differential equations which describes the behavior of the N complex time-dependent functions, $B_{p}(t)$. Beginning with a sinusoidal initial disturbance, a fourth order Runge-Kutta scheme was employed for the mumerical integration of this system of equations. In the present calculations, a three-mode series expansion consisting of the first tangential (1T), second tangential (2T) and first radial mode (1R) was used. This is the same series expansion used in the stability calculations presented in Refs. (10) and (11). The numerical integration of Eqs. (20) is performed by the computer program, LCYC3D, which is described in Appendix C.

The oscillatory flow in the combustor and nozzle are mutually dependent on each other; that is, the combustion chamber analysis requires knowledge of the nozzle admittances, but these nozzle admittances depend on the frequency of oscillation and the pressure amplitude, which can only be determined by the combustion chamber analysis. Thus an iterative solution technique is used. In this procedure, linear nozzle admittances are first calculated for the specified nozzle geometry. Next, the combustion chamber analysis is carried out using these linear nozzle admittances ($\Gamma_{p}=0$), and limit-cycle frequency and pressure amplitude of the $1 T$ mode at the nozzle entrance are determined. This information is then used in the nozzle theory to determine the nonlinear nozzle admittances which are used in the chamber analysis to calculate new limit-cycle frequencies and pressure amplitude. If the limit-cycle amplitude obtained with the nonlinear nozzle boundary condition is significantly different from the limit-cycle amplitude obtained with the linear nozzle admittances, new values of the nonlinear admittances are calculated and the process is repeated until the change in limit-cycle amplitude is sufficiently small.

Admittance Coefficients

Computations of the admittance coefficients have been performed using a three-term series expansion consisting of the first tangential, second tangential and first radial modes. An Adam-Bashforth predictor-corrector scheme was used to perform the numerical integration, while the starting values needed to apply this method were obtained using a fourth order Runge-Kutta integration scheme. Computations have been performed for several nozzles, at different frequencies and pressure anplitudes of the first tangential mode.

Figure 4 shows the frequency dependence of the linear admittance coefficients for the $1 T, 2 T$, and $1 R$ modes for a typical nozzle $\left(\theta_{1}=20^{\circ}, r_{c c}=1.0\right.$, $r_{c t}=0.9234 ; M=0.2$). Here, ω is the frequency of the $1 T$ mode, while the frequency of the $2 T$ and $I R$ modes is 2ω due to nonlinear coupling. Hence the real parts of the linear admittance coefficients for the $2 T$ and $I R$ modes actually attain their peak values at a higher frequency than that for the $1 T$ mode. The linear admittance coefficients for the $1 T$ mode are in complete agreement with those calculated previously by Bell and Zinn ${ }^{16}$.

The frequency dependence of the nonlinear admittance coefficient for the $2 T$ mode is shown in Figure 5 with pressure amplitude of the $1 T$ mode as a parameter. While the behavior of the linear admittance coefficient depends only upon the frequency of oscillations, the behavior of the nonlinear admittance coefficient is seen to depend also on the amplitude of the $1 T$ mode. The absolute values of both Γ_{r} and Γ_{i} increase with increasing pressure amplitude of the $1 T$ mode, which acts as a driving force. It is observed that the absolute values of Γ_{r} and Γ_{i} vary with frequency in a manner similar to the absolute values of Y_{r} and Y_{i}. The frequency dependence of the nonlinear admittance coefficient for the $1 R$ mode is shown in Figure 6 with pressure amplitude of the $1 T$ mode as a parameter.

Figure 7 shows the effect of pressure amplitude upon the magnitude of the ratio of nonlinear admittance coefficient to the linear admittance coefficient for the $2 T$ and $I R$ modes respectively. This ratio, $|\Gamma / Y|$, increases with increasing pressure amplitude. In the limiting case of $\left|p_{1}\right|=0$, the nonlinear admittance coefficient is zero for all frequencies as expected.

Figure 4. Linear Admittances for the $1 T, 2 T$, and $1 R$ Modes.

Figure 5. Nonlinear Admittances for the 2T Mode.

Frequency, ω

Figure 6. Nonlinear Admittances for the 1R Mode.

Figure 7. Relative Magnitudes of Linear and Nonlinear Admittances.

Figure 8 shows the influence of entrance Mach number M_{e} on the nonlinear nozzle admittance coefficients for the $2 T$ and $1 R$ modes respectively. Here the relative magnitudes of the linear and nonlinear admittances (i.e., $|\Gamma / Y|$) are plotted as a function of amplitude of the $1 T$ mode. In each case there is a significant decrease in $|\Gamma / Y|$ with increasing Mach number, thus it appears that the importance of nozzle nonlinearities will be smaller at higher Mach numbers.

The effect of nozzle half-angle on $|\Gamma / Y|$ for the $2 T$ and $I R$ modes is shown in Figure 9. It is readily seen that for θ_{1} between 15 and 45 degrees there is only a slight effect of nozzle half-angle on the relative magnitudes of the linear and nonlinear admittances. However, it should be noted that both the linear and nonlinear theories are restricted to slowly convergent nozzles (i.e., small θ_{1}).

Figure 10 shows the effect of the nozzle radii of curvature upon the quantity $|\Gamma / Y|$ for the $2 T$ mode. It is observed that a change in the radius of curvature of the nozzle at the throat has an insignificant effect on the relative magnitude of the linear and nonlinear admittances. On the other hand, a similar change in the radius of curvature of the nozzle at the entrance section has considerable effect on the relative magnitude of the linear and nonlinear admittances. Similar results were obtained for the $I R$ mode.

In summary, the results obtained in the admittance calculations indicate that the magnitude of the nonlinear admittance coefficient is comparable to that of the linear admittance coefficient, especially at large pressure amplitudes. To determine if this result has a significant effect upon combustor stability, calculations were made for typical liquid rocket combustors using the nonlinear admittances. These results were compared with similar calculations using linear admittances. The results of this investigation are discussed in the remainder of this report.

Stability Calculations

Combustion instability calculations have been made using the three mode series consisting of the $1 T, 2 T$, and $I R$ modes. These calculations have been made for different values of the following parameters: (1) time lag $\bar{\tau}$, (2) interaction index n, (3) steady state Mach number at the nozzle entrance M_{e}, and (4) chamber length-to-diameter ratio L/D. All of the combustors that

Figure 8. Effect of Entrance Mach Number on the Relative Magnitudes of Linear and Nonlinear Admittances.

Figure 9. Effect of Nozzle Half-Angle on the Relative Magnitudes of Linear and Nonlinear Admittances.

Figure 10. Effect of Nozzle Radii of Curvature on the Relative Magnitudes of Linear and Nonlinear Admittances for the 2 T Mode.
have been analyzed are attached to nozzles with the following specifications: radius of curvature of nozzle at the combustion chamber, $r_{c c}=1.0$, radius of curvature of nozzle at the throat, $r_{c t}=1.0$; and nozzle half-angle, $\theta_{1}=20^{\circ}$. In each case, solutions have been obtained with both the linear and nonlinear nozzle admittances.

A typical neutral stability curve is shown in the $n-T$ plane in Figure 11. Since it was desired to study the limit-cycle behavior of the motor, the values of n and $\bar{\tau}$ considered were chosen from the unstable region of this stability diagram.

Limit-cycle amplitudes and waveforms were calculated for $\bar{\tau}=1.6$ (resonant conditions) for several values of n as shown in Figure 11. Wall pressure waveforms (antinode) are shown for a mildly unstable case (Point A, $\mathrm{n}=0.52$) and a strongly unstable case (Point $\mathrm{B}, \mathrm{n}=0.70$) in Figures 12 and 13. Figure 14 shows limit-cycle amplitude as a function of n for $\bar{\tau}=1.6$. In each case both linear and nonlinear nozzle admittances were used in the calculations. These results show that the nozzle nonlinearities have only a small effect on the limit-cycle amplitude and waveform even for fairly large amplitude instabilities.

Similar comparisons were made for the off-resonant values of n and \bar{T} shown in Figure 11 (see points C, D, E, F). These results also show very little effect of nozzle nonlinearities on the limit-cycle amplitudes for offresonant oscillations as seen in Figure 15.

Finally, comparisons of limit-cycle amplitudes are shown for various exit Mach numbers in Figure 16 and for various length-to-diameter ratios in Figure 17. Again, limit-cycle amplitudes obtained using the nonlinear nozzle boundary condition agree closely with those obtained using the linear nozzle boundary condition.

CONCIJDIIVG REMARKS

A second-order theory and computer program have been developed for calculating three-dimensionail, nonlinear nozzle admittance coefficients to be used in the analysis of nonlinear combustion instability problems. This theory is applicable to slowly convergent, supercritical nozzles under isentropic, irrotational conditions when the combustion chamber oscillations are dominated

Figure 1l. Linear Stability Limit.

NOZZLE PRESSURE PERTURBATION. THETA = 0

Figure 13. Comparison of Pressure Waveforms for a Strongly Unstable Motor.

Figure 14. Comparison of Limit-Cycle Amplitudes for Different Values of n.

Figure 15. Comparison of Limit-Cycle Pressure Amplitudes for Different Values of $\bar{\tau}$.

Figure 16. Comparison of Limit-Cycle Amplitudes for Different Values of M_{e}.

Figure 17. Comparison of Limit-Cycle Amplitudes for Different Values of L/D.
by the $1 T$ mode. Nozzle admittances have been computed for typical nozzle geometries, and results have been shown as a function of the frequency and amplitude of the $1 T$ mode.

The nonlinear nozzle admittances have been incorporated into the previously developed nonlinear combustion instability theory, and calculations of limit-cycle amplitudes and pressure waveforms have been made to assess the importance of the nonlinear contribution to the nozzle admittance. These results show that nozzle nonlinearities can be safely neglected in nonlinear combustion instability calculations if the following conditions are satisfied: (1) the amplitude of the oscillations are moderate, (2) the mean flow Mach number is small, and (3) the instability is dominated by the first tangential mode. Therefore, the linear nozzle boundary condition used in the previous nonlinear combustion instability analyses is adequate for most cases involving IT mode instability.

APPENDIX A

PROGRAM NOZADM: A USER'S MANUAL

General Description

Program NOZADM calculates both the linear and the nonlinear admittance coefficients for a specified nozzle. These admittance coefficients are required as input for Program COEFFS3D (see Appendix B) which calculates the coefficients of both the linear and nonlinear terms in the combustor amplitude equation (i.e., Eq. (20)). The output of Program NOZADM is either punched onto cards or stored on disk or drum for input to Program COEFFS3D.

Program Structure

A flow chart for Program NOZADM is shown in Fig. (A-l). The program performs the following operations: (1) reads the input data, (2) calculates the steady-state flow quantities in the nozzle, (3) obtains the starting values needed to numerically integrate Eqs. (14) and (15), (4) performs the numerical integration of Eqs. (14) and (15) to obtain the desired admittance coefficients, and (5) provides the desired output.

The inputs to the program include parameters describing the nozzle, the frequency and pressure amplitude of the fundamental mode, and the various control numbers.

After reading the input, the program obtains the steady-state flow quantities at every station in the nozzle by calling the subroutine STEADY. This subroutine also calculates the number of station points (NPLAST) in the nozzle.

The evaluation of the admittance coefficients is carried out in stages. The work performed in each step depends upon whether or not the nonlinear admittances are to be evaluated. If only the linear admittances are required, only the equation for ζ_{p} needs to be solved. Thus, the equations govering ζ_{p} are solved individually for each of the modes in the series expansion. On the other hand, if the nonlinear admittances are also required the equations governing the linear admittance for the fundamental mode (ζ_{1}) and the amplitude of the fundamental mode (A_{1}) are first solved to obtain these quantities at

Figure A-1. Flow Chart.
every station in the nozzle. In the subsequent steps; the equations for ζ and Γ for each of the remaining modes are solved.

Input Data
A precise definition of the input data required to run the computer program is given below. The input is given through three data cards. In the description of the cards below, the location number refers to the columns of the card. "I" indicates integers and " F " indicates real numbers with a decimal point. For the I formats, the values are placed in fields of five locations while a field of ten locations is used with the " F " formats. In either case, the numbers must be placed in the rightmost locations of the allocated field.

No. of
Cards
1
Iocation
$1-10$
$11-20$
$21-30$
$31-40$
$41-50$
$1-5$

No of Cards	Iocation	Type	Input Item	Comments
	11-15	I	EXTIN	If 0 : no extension section If 1 : an extension section is present.
	16-25	F	EXTINSN	Length of the extension section; omit if IEXTN $=0$
1	1-10	F	WC	Frequency of oscillation
	11-20	F	PIAMPL	Pressure amplitude of the fundamental mode. Omit if only linear admittances are needed.

The nozzle parameters ANGLE, RCC and RCT correspond to $\theta_{1}, r_{c c}$ and $r_{c t}$ in Fig. 2. For IFXIN $=1$, the integration of Eqs. (14) and (15) is continued beyond the nozzle entrance plane to a length EXTNSN within the combustion chamber. When NOUT $=1$, the values of the necessary admittance coefficients are stored on disk or drum (device number 7) in a format suitable for input to program COEFFS3D. If, instead of providing this data to program COEFFS3D through data file 7, it is desirable to provide punched cards only, NOUT should be 2. Again the format is such that these cards can be fed to program COEFFS3D directly. .

Steady-State Quantities

The subroutine STEADY is called to evaluate the steady-state quantities in the nozzle. This subroutine first calculates the radius of the nozzle at the throat necessary to obtain the specified Mach number at the nozzle entrance. The steady-state flow quantities at the throat are determined by the choking conditions. Starting with these values, the steady-state flow quantities at the other stations in the nozzle are calculated by numerically integrating the steady-state equations starting from the throat. The subroutine RKSTDY determines the values of the steady-state velocity near the throat using the Runge-Kutta scheme. These values are needed to start the Adam's predictorcorrector scheme for integrating the steady-state flow equation. The numerical integration is performed by the subroutine UADAMS. Starting slightly upstream
of the throat, the mumerical integration is continued till the nozzle entrance is reached (radius of the nozzle $R=1$). The arrays U and C contain the steady-state velocity and speed of sound respectively.

Coefficients

The complex coefficients that appear in the nozzle admittance equations are evaluated in the program by calling the subroutine COEFFS. These coefficients contain certain integrals involving trigonometric and Bessel functions. The subroutine INTGRL sets up arrays for these integrals.

Integrals
The necessary trigonometric integrals are determined by the subroutine InfIGRL itself. Denoting

$$
\Theta_{p}(\theta)=\cos \left(m_{p} \theta\right),
$$

the integrals are as follows:

$$
\begin{aligned}
& \text { AIPHA }(1, p)=\int_{0}^{2 \pi}\left[\Theta_{p}(\theta)\right]^{2} \Theta_{1}(\theta) d \theta \\
& \text { AIPHA }(2, p)=\int_{0}^{2 \pi}\left[\Theta_{p}^{\prime}(\theta)\right]^{2} \Theta_{1}(\theta) d \theta \\
& A I P H A(3, p)= \\
& \int_{0}^{2 \pi} \Theta_{p}^{\prime \prime}(\theta) \Theta_{p}(\theta) \Theta_{1}(\theta) d \theta \\
& A I P H A(4, p)= \\
& \int_{0}^{2 \pi}\left[\Theta_{p}(\theta)\right]^{2} d \theta \\
& \text { ALPHA }(5, p)=\int_{p}^{2 \pi} \Theta_{p}^{\prime \prime}(\theta) \Theta_{p}(\theta) d \theta
\end{aligned}
$$

The integrals involving Bessel functions are as follows:
$\operatorname{BETA}(1, p)=\int_{0}^{1}\left[R_{1}(r)\right]^{2} R_{1}(r) r d r$
$\operatorname{BETA}(2, p)=\int_{0}^{1}\left[R_{p}(r)\right]^{2} R_{1}(r) \frac{1}{r} d r$
$\operatorname{BETA}(3, p)=\int_{0}^{1}\left[R_{p}^{\prime}(r)\right]^{2} R_{1}(r) r d r$
$\operatorname{BETA}(4, p)=\int_{0}^{l} R_{p}^{\prime \prime}(r) R_{p}(r) R_{1}(r) r d r$
$\operatorname{BETA}(5, p)=\int_{0}^{1} R_{p}^{\prime}(r) R_{p}(r) R_{1}(r) d r$
$\operatorname{BETA}(6, p)=\int_{0}^{1}\left[R_{p}(r)\right]^{2} r d r$
$\operatorname{BETA}(7, p)=\int_{0}^{I} R_{p}^{\prime}(r) R_{p}(r) d r$
$\operatorname{BETA}(8, p)=\int_{0}^{1} R_{p}^{\prime \prime}(r) R_{p}(r) r d r$
$\operatorname{BETA}(9, p)=\int_{0}^{1}\left[R_{p}(r)\right]^{2} \frac{1}{r} d r$
Here $R_{p}(r)=J_{m}\left[S_{m n}^{r}\right]$ where m and n are the transverse mode numbers for the pth mode.

These integrals of Bessel functions are obtained from the functions RADl and RAD2. RAD2 provides the first five integrals while RADl provides the last four integrals. Simpson's integration scheme is used in these function subprograms to evaluate these integrals. The values of the Bessel functions of the first kind are obtained using the subroutine JBES (see Ref. 17)

Integration of the Differential Equations

For the numerical integration of the differential equations, a fourthorder Adam-Bashforth predictor-corrector scheme is employed. The necessary initial values are obtained by using a fourth-order Runge-Kutta scheme near the throat. The Runge-Kutta integration is performed by subroutine RKTZ. The predictor-corrector integration is performed by subroutines TADAMS and ZADAMS. The values of the dependent variables are stored in the array Y and their derivatives are stored in the array DY. The integration is continued in steps of DP in the axial variable (steady-state velocity potential) till the combustion chamber is reached.

After the numerical integration of all the differential equations is completed, the admittance coefficients are evaluated. AMPL (J) and $\operatorname{PHASE}(J)$ are the amplitude and phase of the linear admittance coefficient for mode J. $G N O Z(J)$ is the complex, nonlinear admittance coefficient for mode J.

Output

The output of the program NOZADM contains two sections.
In Section l, the parameters of the nozzle being analyzed are printed out. The output of this section occupies only one page and is essentislly a print out of the input data. The parameters, which are printed are: the Mach number at the nozzle entrance (CM), the specific heat ratio (GAM), the nozzle half-angle (ANGIF), the length of the extension section, if any (EXINSN), the radius of curvature of the nozzle at the throat (RCT), the radius of curvature of the nozzle at the entrance ($R C C$), and the number of stations in the nozzle (NPIAST). Section 1 is printed for any value of the control number NOUT.

Section 2 contains the nozzle admittance coefficients. Depending on the value of the control number NOUT, Section 2 is printed, stored on disk or drum or punched onto cards. These three modes of output will now be discussed individually.

Printed output: The control number NOUT for this mode is 0 . The printed output appears on one page and contains both the linear and nonlinear admittance coefficients. For each coefficient, the real and imaginary parts as well as the magnitude and phase are printed out. If nonlinear admittance coefficients are not calculated by the program (NOZNLI $=0$), zeros are entered in the spaces for the nonlinear coefficients.

This mode of output is inconvenient to use for instability analysis since it would then be necessary to manually punch all the input cards for the program COEFFSS3D.

Disk or Drum Storage: The control number NOUT for this mode is 1 . When disk or drum storage (like the FASTRAND System on the INIVAC 1108) is available, this is the most convenient means of storing the output of Section 2. The necessary admittance coefficients are stored in a format suitable for input to the program COEFFS3D. The device number for this output is 7. The control statement needed to request the disk or drum storage on the computer depends on the computer facilities being used.

Punched Cards: NOUT for this mode is 2. This mode of output is the simplest way to run the instability program. The cards containing the necessary admittance coefficients are punched by the computer in a format suitable for use with program COEFFS3D, which is the next program to be executed.
c
C


```
C ISTEF: &: INTEGFATE FOF ZETA & AH.
C ISTEF = 3: INTEGRATE FOF ZETA & GAMMA.
    IF (NOZNLI.EQ. 1) GO TO 10
    ISTEF(1)=1
    ISTEF(2) = 1
    ISTEF(3) = 1
    GO TO 15
    1STEF(1)=2
    ISTEF(2)=3
    ISTEP(3)=3
    CONTINUE
    KF(1)=1
    KF(2)=2
    KP(3)=2
C OBTAIN STEADY-STATE GUANTITIES IN IHE NOZZLE.
    CALL STEACY
C
C PFINT OUT THE NOZZLE FARAMETEFS.
    WRITE (6,1005)
    WRITE (6,1010) CM
    WEITE (6.1015) GAM
    WF1TE (6.1020) ANGLE
    WRITE (6,1025) EXTNSN
    WHITE (6,1030) RCT
    WRITE (6.1035) RCC
    WEITE (6.1040) NFLAST
C
    NEND = NFLAST
    |F(IEXTN -NE. 1) GO TO 25
    DETERMINE NUMEER OF STATIONS IN THE EXTENSION FEGION. AND
    DEFINE STEACY-STATE QUANTITIES IN THAT REGION.
    UEXT = U(NELAST)
    NENL = NFLAST - (EXTNSN * UEXT ** 5) / DF
    LO 20 NF = NPLAST,NEND
    U(NP) = U(NFLAST)
    C(NF) = C(NPLAST)
    DU(NF) = LU(NPLAST)
    FW(NF) = FW(NFLAST)
    CONTINUE
    CONTI NUE
    IF (NENL .GT. 1000) GO TO 550
C
CALL INTGFL
    SRTF=(RT*RCT)***5
C
    ACHMEF = CMPLY (FIANPL / (WC*GAM), O.)
    IF (NGUT .EQ. O) WFITE (6.1050) WC.FIAMFL
    IF (NOUT .EQ. O) WFITE (6.1055)
C
    DO 500 MODE=1:3
    IP=ISTEF(MOLE)
    SVNE SNN(MODE)
```

```
C
```



```
C
    p=0.
    AHR = 1.
    AHI = 0.
    AH = CMFLX (AHR,AHI)
    UP = U(1)
    CP = C(1)
    DUF = DU(1)
    RWF= RW(1)
    CALL COEFFS (UE,DUF,CF,FWF,CC)
    CFH = CC(1)
    CFM = CC(2) + CC(6)
    CFN = CC(3) + CC(4) + CC(5) + CC(7) + CC(8)
c
C **************DEHIVATIUES OF THE COEFFICIENTS AT THE THROAT*********
C
C EVALUATE DERIUATIUES OF LINEAR COEFFICIENTS.
XH=-40/(GPL1 * SRTHJ
CFH1 = CMFLX (XR,O.)
XR=-(24. + 4. * GAN) / (GPLI * 3. * RT * RCT)
XI = B. *WC * KF(MODE) / (GFLI * SRTF)
CFMI = CNFLX (XR,XI)
XH = - 2.*GNIN1 * (EETA (8.MODE) + EETA (7,MOEE) + EETA (9.MODE)
l
                    * ALPHA (5,NOLE) / ALFHA (4.MOLE)) / (GFLl * FT * FT
                                * SRTR * BETA (6,MOLE))
XI = -(12 + 2*GAM) * WC * KP(MODE) * GMIN1 / (3.*GFLI * FT*RCT)
CFN1 = CMPLX (XF,XI)
C
C
C
    SET UP VALUES AT THE THROAT EY TAYLOFS EXFANSION
    STARTING VALUES FOF ZETA
    ZTHR = CFN / CFM
    ZTHR1 = (CFM1 * ZTHF + CFH1 * ZTHF * ZTHR + CFN1) (CFH1 + CFM)
    ZFK(1) = ZTHR
C
    IF (MODE.NE.1) GO TC 110
    AFN(1) = AH
    AFN1(1) = AFN(1) * ZTHA
    AFNE(1)=AFNI(1)*ZTHR + AFN(1)* 2THRI
110 CONTINUE
    G(1) = FEAL (ZTHR)
    G(2) = AIMAG (ZTHH)
    DY (1,1) E REAL (ZTHN1)
    DY (2,1) = AIMAE (ZTHR1)
    GO TO (120,130,140), IP
    G(3) = AHR
    G(4) = AHI
    AH) = AH * ZTHR
    DY (3,1) = FEAL (AH1)
    DY(4,1) = AIMAG (AH1)
    GO TO 120
140
CONTINUE
```

```
        CGRP1 = CC(13) + CC(14) + CC(19) + CC(23) + CC(24) + CC(25)
    CGRPE = CC(10) + CC(11) + CC(17) + CC(20) + CC(21) + CC(22)
    INHMG = -CC(18) # AFN(1) * AFN2(1) = CC(12) * AFN1(1) # AFN2(1)
1 - (CC(9) + CC(15))* AFN1(1)* AFN1(1) - CGFP1 * AFN(1)*
E AFNIC1) = CGRFR * AFNCIS & AFNC1)
```

```
    EVALUATE DERIVATIUES OF NON-LINEAR COEFFICIENTS.
    AIB1 = ALPHA(1OMODE) # BETAC1,MODE)
    ARER = ALPHA(R,MODES * EETA(Q,MODE)
    A!E3 = ALFHA(1,MODE) * BETAR3,MCEE)
    A4B6 = ALEHA(4,MODE) # EETA(GOMODE)
    LO 26 J = 1.25
    CCI(J) CMFLX (0.00.)
    XR - (2.*A1B! * WC) (A&B6 * GFLl * SRTR)
    XI XR
    CC1(9) = CNPLX (XR,X1)
    XR= (4. * A&B1) (3.1415927 * GFL\ * SRTR * A486)
    XI=-XR
    CC! (12) = CMPLX (XFsXI)
    XR = - A1E3 (GFL1 * RT * FT * SRTK * A4B6)
    XI - XR
    CC1 (13) = CMFLX (XFinXI)
    XR= - ARBR (GFL| * FT * FT * A4E6 * SFTR)
    XI = - XR
    CC: (14) CMFLX (XK&XI)
    XR = - A1G1 * (3.*GFL1 SRTR + GMIN1 * (12.*GAM)3)
1(20* RT * RCT * GFLI * GFL1 * A4E8)
    XI = - XR
    CC1 (15) = CMFLX (XRoXI)
    XR=A1B3 * (9: 2.&GAM - GAM*GAM) ( <120* KT**3* RCT # GFLI
1 * A4B6)
    XI = - XR
    CC& (16) = CMPLX (XRsXI)
    XR=ARER * (9. - 2**GAM - GAM*GAM) / (I2. * RT**3 * FCT * GFLI
1 * A&E6)
    KI = - XR
    CC& (17) = CMPLX (XF,X1)
    XR= (GMINI*WC*A|BI) (GFLI * SFTF* A4B6)
    XI=XF
    CC& (1B) = CMFLK (XR,XI)
    XR= (GMINI # (60+GAM) * WC # AlEI) / (30* GFLI = RT * RCT
1 * A4B6)
    XI=XR
    CC1 (19)= CMPLX (XR,XI)
    XR = (GMIN1 % ALFHA (1,MODE) * (EETA (4,MODE) - EETA(5,MOLE)))
1 (GFLI * RT * RT * SRTR * AaBG)
    XI= - XR
    CC1 (23) = CMFLX (XR,XI)
    KR = (GMIN1 * ALPHA (1OMODE) * BETA (5&MODE) * 2.)
1 (GFL| * RT % KT * SFTE: A4E6)
    XI = XR
    CC1 (24) = CMPLX (XB.XI)
    XR = - (GMINI * ALFHA (3.MODE) * EETA (2.MODE))
1 (GPL1 * RT * RT # SRTF * A4E6)
    XI=-XR
```

runge-kutta integration to frovide initial values
FOF FREDICTOR-COFRECTOR INTEGFATION

DO $301 \mathrm{FK}=2,4$
CALL RKTZ(DP,F,G,GP,IEK)
$\mathrm{P}=\mathrm{P}+\mathrm{DP}$
ZREG(1)
ZI=G(8)
$Z \operatorname{FK}(I R K)=\operatorname{CMFLX}(Z R, Z I)$
DY(1,IFK) $=$ GP(1)
DY(2.IRK)=GP(8)
GO TO (150, 160,170), IP
$A H R=G(3)$
AHI = G(4)
DY(3.1RK) $=\operatorname{GF}(3)$
DY(4.1RK) $=$ GP(4)
IF (MODE•NE.1) GO TO 162
AFN (IRK) $=$ CMPLX (G(3),G(4))
AFN1 (1FK) $=$ CMFLX (GP(3), GP(4))
$A H R=G(1) * G P(3)-G(2) * G P(4)+G F(1) * G(3)-G P(2) * G(4)$
AI $2=G(2) * G F(3)+G(1) * G F(4)+G F(2) * G(3)+G F(1) * G(4)$ AFN2(IRK) = CMPLX (AF2, AIE)
GC TO 150
CONTI NUE
GAMF = G(3)
GAMI $=G(4)$
DY(3.1RK) $=G F(3)$
DY(4.1FK) = GP(4)
CONTINUE
30 CONTINUE
$Y(1)=28$

```
        Y(2)=ZI
        GO TO (180,190,200), IP
        Y(3)=AHF
        Y(4)=AHI
        GO TO 180
        CONTINUE
        Y(3) = GAMF
        Y(4) = GAMI
        CONTINUE
C
C FREDICTOE- CORRECTOR INTEGHATION
    CALL. ZADAMS (DP;F;Y&EY,ITOFZ)
C
C
C CALCULATE LINEAR ALMITTANCE CCEFFICIENTS.
    UE = U(NENL)
    CE = C(NENL)
    RHOE = CE ** (1./GMIN1)
    FR = WC * KF(MODE)
    F=UE * * . / < <FR*GAM)
    IF (ITOFZ .EQ. 1) GO TO 35
    2R=Y(1)
    ZIEY(2)
    ZETA CMFLX (ZFEZI)
    LINALM =F* CMFLX(0.,10) # ZETA
    GO TO 40
35 TF= Y(1)
    TI = Y(2)
    TAU = CMPLX (TH;TI)
    LINAIM =F* CMPLX(O., 1.)/ TAU
40 CONTINUE
    YR = REAL (LINALM)
    YI = AIMAG (LINADM)
    YMAG = CABS (LINADM)
    YFHASE = ATAN2 (YI YF) % 180. / 3.1415927
    ANFL(MODE) = YMAG
    PHASE(MODE) = YFHASE
C
220
    G0 TO (210,220,230). IF
    220 AHE = Y(3)
    AHI =Y(4)
    IF (MODE .NE. 1) GO TO 210
    CONST = ACHMRR / AFN(NEND)
    DO 50 NF : 1,NEND
    AFN(NF) = CONST * AFN(NP)
    AFN1(NF) = CONST * AFNI(NE)
    AFNE(NF) = CONST * AFN2(NF)
    CONTINUE
C
C NONLINEAR ADMITTANCE CGEFFICIENT IS ZEFO FOF 1T MODE.
GANE = O.
GAMI = 0.
GNAG = 0.
GFHASE = 0.
GEYY = 0.0
```

```
    GNOZ(1) = (0.0.0.0)
C
230
    GONTINU
C
C CALCULATE NONLINEAR ADMITTANCE COEFFICI ENTS.
        GAMF = Y(3)
        GAMI = Y(4)
        GMAG = (GAMR # GPMR + GAM1 * GAM1) ** . 5
        GFHASE = ATANZ (GAM1,GAMF) * 1B0. (3.1415927
        GBYY = CAES (CMFLX (GAMF,GAMI)/ LINADM)
        GNOZ(MOLE) = CMFLX(GAMF,GAMI)
C
210
    CONTINUE
    IF (NOUT .EQ 0) WRITE (6,1060) NAME(NODE), YH. YI.
    1 YMAG, YFHASE, GAMF, GAMI, GMAG, GFHASE, GEYY
    CONTI NUE
510 CONTINUE
520 CONTINUE
550 CONTINUE
    IF CNOUT - EQ. O) GO TO 560
    LO 570 J = 1. 3
    IF (NOUT EQ. 1) WEITE (7.7005) J. AMFL(J), FHASE(J)
    IF (NOUT -EC. 2) PUNCH 7005 J. AMFL(J), PHASECJ)
    CONTINUE
    IF (NOZNL1 - EQ. O) GO TO }56
    DO 580 J = 1, 3
    IF (NOUT .EQ. 1) WRITE (7.7005) J. GNOZ(J)
    IF (NOUT.EQ. 2) PUNCH 7005 J, GNOZ(J)
    CONTINUE
    VRITE (6,1065)
560
C
C
C
5005 FOHMAT (6F10.0)
5010 FORMAT (3I5,F10.0)
5015 FOFMAT (2F10.0)
C
C
C
C
1005
    FOPMAT (1H1,///////////, 45X,17H*****************,/, 45K.
    l
1010 FOFNAT
1015 FORMAT
1020 FORMAT
1025 FORMAT
1030 FGRMAT
1035 FOFMAT
    1
1040 FOFNAT
1050 FOFIMAT
    1
    2
1055 FORMMAT
    17HNOZZLE FAFAMETERS&/= 45X&17H******************&////////)
    (1HO,25X,"MACH NUNBER = ",F4.2)
    (1HO,25X,"GAMMA = ",F4.2)
    (1HO,25X,"NOZZLE ANGLE = ",F5.2)
    (1HO,25X,"LENGTH OF EXTENSION SECTION = ",F4.8)
    (1HO,25X,"FALIUS OF CUKVATURE AT THE THHOAT = ",F7.5)
    (IHO,25X,"RADIUS OF CUFVATUKE AT THE NOZZLE ENTRANCE = ",
    F7.5)
    (1HO,25K,"NUMBER OF STATIONS IN THE NOZZLE: ",14)
    (1H1,/////, 46X,18H*******************/,46X,
        18HNOZZLE ADMITTANCES&/, 46X,18H*******************,////1//,
    20X,"FREGUENCY = ",F8.6,40X,"FRESSURE AMPLITUDE = *,F6.4)
    /////////, 5X,"MOLE", 10X, 2HY F, 9X, 2HYI , 9X, "YMAG", 9X, "YFHASE'",
```

1060
1065
FO FMAT
FORmAT
FORTIAT (I5.2F10.5)

C
C
C
STOP
END

SUBROUTINE STEADY

C

THIS SUBROUTINE EVALUATES STEADY-STATE OUANTITIES IN THE NOZZLE.
NOZZLE PHOFILE AND FLOW PARAMETEFS ARE PASSED TO THE SUEFOUTINE THEOUGH THE COMMON ELOCKS $\times 1$ AND XZ. THE SUBPROGRAM PEOUIDES THE OUTPUT THFOUGH COMMON ELOCK X5. U 15 THE SQUARE OF THE STEADY-STATE VELOCI TY:
DU IS THE DEFIUATIUE OF U WI TH EESFECT TO STEADY-STATE FOTENTIAL; C IS THE SQUAFE OF THE SFEEL OF SOUND RW IS THE RADIUS OF THE NOZZLE. THESE OUTPUT QUANTITIES ARE STORED IN THE RESPECTIVE ARRAYS AT INTERU育 OF DF IN F (STEADY-STATE FOTENTIAL).

COMKION /XI/ CM, ANGLE,RCC,RCT,GAM, Q, RT, DP
COMMON /X2/ T, RI, K2,NFLAST,NENE,IEXTN
COMMON /X4/ RU(7), RDU(7), ZTHK1, GTHF1
COMMON /X5/ U(1000), DU(1000),C(1000), RW(1000)
$T=3 \cdot 1415927 * A N G L E / 180$.
FT $=(C M * * \cdot 5) *((1-+(G A M-1) * C M * * .2 / 2 \cdot) * *((-G A M-1) /$.
$1(4 *(G A M-1)))) *((2 /(G A M+1)) \neq *((-G A M-1) /(4 * *(G A M-1))))$
SRTR $=$ (RT*RCT) ***5
$\theta=(.25 * R T) *((2 \cdot /(G A M+1 \cdot)) * *((G A M+1-) /(4 * *(G A M-1))))$
Ri $=\mathrm{FT}+\mathrm{RCT}(\mathrm{F}(1--\cos (T))$
R2 = 1.-RCC * (1.-COS(T))
$\mathrm{H}=\mathrm{FT}$
$P=0$.
Hk(1) E KT
$U(1)=2.1($ GAM +1.$)$
RU(1) $=$ U(1)
C(1) $=U(1)$
DU(1$)=4 \cdot /((G A M+1 \cdot) *$ SRTR)
KEU(1) = DU(1)
$G=U(1)$
DO $30 \quad 1=2,7$
CALL FKSTDY (P,G,GF)
$F=P+D P / Z$.
RU(1) = G
RDU(I) $=G P$
IF (I EQ. 2* (I/2)) GO TO 30
$N F=(1+1) / 2$
U(NP) $=$ KU(1)
$\operatorname{DU}(N F)=$ FDU(I)
C(NP) 1*-(GAM-1)*U(NF)**S
RW(NP) $=0 * *((C(N F)) * *(-1 . /(2 \cdot *(G A M-1)))$.
1 *(U(NP)**--25)*4.
CONTINUE
CALL UADAMS (F)
FETURN
END

SUBROUTINE RKSTDY(P,G,DUM)

THIS SUBFOUTINE FERFOFMS A FOUKTH OKLER FUNGE-KUTTA INTEGFATI ON TO OBTAIN STARTING VALUES OF STEADY-STATE VELOCITY FOK THE FREDICTOR-COFRECTOK METHOL. P IS THE CUFRENT UALUE OF THE STEADY-STATE FOTENTIAL: INFUT• G IS THE SQUAKE THE STEADY-STATE VELOCITY: INFUT AND OUTPUT. AS OUTPUT, G IS THE VALUE AT THE NEXT STEP. DUM IS DERIVATIVE OF THE SQUAKE OF STEADY-STATE VELOCITY: OUTPUT. DUM IS OBTAINED BY CALLING SUBFOUTINE FKUDIF.

COMMON /X1/ CM, ANGLE, RCC, RCT,GAM, O,RT; DP DIMENSION A(4),FZ(4)
$A(1)=0$.
$A(2)=0.5$
$A(3)=0.5$
$A(4)=1$.
$H=\mathrm{DP} / 2$. FR=F
GK=G
CALL FKUDIF(FF,GF. DLM)
FZ(1) = DUM
DO $30 \quad I=2,4$
$P R=P+A(1) * H$
$G R=G+A(1) * H * F Z(I-1)$
CALL RKUDIF (PR,GR, DUM)
FZ(I) = LUM
CONTI NUE
G = G + H* (FZ(1) + 2\# (FZ(2)+FZ(3)) + FZ(4))/6. CALL RKUDIF(PF, G, DUM)
RETURN
END

SUBFOUTINE RKUDIF(F,G,GF)

 THIS SUEHOUTINE EVALUATES THE DIFFERENTIAL ELEMENT IN THE
 RUNGE-KUTTA INTEGFATION SCHEME FOR SOLUING THE EQUATIGN FOF SQUAFE
 OF STEADY-STATE UELOCITY.
 PIS THE VALUE OF STEADY-STATE FOTENTIAL AT THE STATION.
 WHEFE DIFFERENTIAL ELEMENT IS SOUGHT; INFUT.
 \(G\) IS THE UALUE OF THE FUNCTION AT F: INFUT.
 GP IS THE KEQUIFED DIFFEFENTIAL ELEMENT.
 COMMON /XI/ CM, ANCLEFFCC. BCT, GAM, G:HT, DF
 COMMION /X2, T,R1, FR,NFLAST,NEND,IEXTN
 COMMON /A3/ WC, SUN, IF, MOLE,NU,KF(3)
 1F (F) \(15,10,15\)
 GF \(=4 . /((G A N+1) *.((F C T * F T) * * \cdot 5))\)
 GO TO 20
 \(C=1-(G A M-1.) \neq G * \cdot 5\)
 \(R=6 *((C) * *(-1 * /(20 *(G A M-1-)))) *(G * *-25) * 4\).
 \(1 F(R-1-) 22,22,50\)
 IF (R-R1) \(25,30,30\)
 DF \(=-(2 * * R C T *(R-R T)-(K-R T) *(F-R T)) * * \cdot 5) /(E T+F C T-F)\)
 GO \(50 \quad 45\)
 IF (R-FL) \(35,40,40\)
 LF \(=-\) TAN(T)
 GO TO 45
 \(D F=(2 \cdot * \mathrm{FCC}(1-\mathrm{F})-(\mathrm{F}-1) *(\mathrm{R}-1)) * * \cdot 5) /(1-\mathrm{R}-\mathrm{KCC})\)

1 (1 * (1.-(GAN+1.) * G*-5))
$G F=D U * E F$
GO TO 20
GP $=0$.
GETUFN
END

SUEROUTINE UADAMS(P)

C

THIS SUBROUTINE CARRIES OUT A MODIFIED ADAMS PFEDICTOK-CORRECTOK INTEGRATION SCHEME TO SOLUE THE EIFFERENTIAL EQUATI ON FOR THE STEADY-STATE VELOCITY.

P $1 S$ THE VALUE OF THE STEADY-STATE POTENTIAL AT THE STATI ON. WHERE PREDICTOR-COKKECTOR INTEGRATI ON COMMENCES; INFUT. DURING THE PROGKAM. F $1 S$ CHANGED TO THE VALUE AT CUFRENT STATION. H IS THE STEP-SIZE: INFUT THEOUGH COMMON ELOCK XI. COMMON BLOCKS XI AND X2 PFOUIDE DETAILS OF NOZZLE FROFILE:

THE STEALY-STATE QUANTITIES ARE THE OUTPUT: AND ARE PROVI LED BY NEANS OF CCMMON BLOCK X5.

COMMON /X1/ CM, ANGLE, FCC, RCT, GAM, O, ET,H
COMMON /X2/ T.RI,R2,NFLAST, NEND, IEXTN COMMON /X5/ U(1000), DU(1000),C(1000), RW(1000)

$N P=4$

CONTINUE
PRED $=$ U(NF) + H* (55.*DU(NP) - 59.*DU(NF-1) + 37**DUCNF-2)
1
$-9 \cdot * \operatorname{DU}(N P-3)) / 24 \cdot 0$
$P * P+H$
$N F=N P+1$
$U P=P R E D$
$C P=10-(G A M-1) * U F *-$.

IF R. 1. THE NOZZLE ENTFANCE HAS EEEN HEACHED.
1F(R-1.) 17.17,100
$1 F(\mathrm{R}-\mathrm{FI}) 20,25,25$
$D R=-(2 \cdot * R C T *(F-K T)-(R-K T) *(K-R T)) * * \cdot 5) /(R T+E C T-R)$
GO TO 40
IF (R-R2) $30,35,35$
DR= - TAN(T)
GO TO 40

DQ $=-(U P * * \cdot 75) *(C P * *(2 \cdot * G A M-1) /(2 * *(G A M-1)))) /$
$1 \quad(0 *(1-(G A M+1 \cdot) * U F *$-5))
$D U P=D R * D Q$
$\operatorname{COR}=\mathrm{U}(\mathrm{NP}-1)+\mathrm{H} *(9 \cdot * \mathrm{DUF}+19 * * \mathrm{CU}(\mathrm{NF}-1)=5 \cdot * \mathrm{DU}(\mathrm{NF}-2)$
$1 \quad+\mathrm{DU}(\mathrm{NP}-3)>/ 24.0$
$U P=(251 * * C O R+19 * * P R E D) / 270$.
$C P=1 *-(G A M-1 \cdot) * U P *-5$
$R=0 *(C P * *(-1 . /(2 . *(G A M-1)))) *.(U F * *-.25) * 4$.
IF $R=1$, THE NOZZLE ENTRANCE HAS BEEN REACHED
IF (R-1.) 62.62.100
1F ($\mathrm{R}-\mathrm{F} 1$) 65,70.70

60 TO 85
IF (R -R2) 75,$80 ; 80$

```
75 LR = -TAN(T)
    GO TO }8
80 DR=((2.#RCC*(1.-R)-(1--R)*(1.-R))***5) ( (1.-R-FCC)
85 DO = - UF***75) * (CF**((2**GAN-1)/(2.*(GAN-1))))/
    1 (O*(1.-(GAM+1.) *UF**5))
    IF(NP EGT. 1000) GO TO 87
C
C STORE STEADY STATE GUANTITIES AT STATION NF IN KESPECTIUE AREAYS.
    DU(NP)=DR*DQ
    U(NP) = UF
    C(NF)=CF
    RW(NF)=R
C
87 GO TG 10
100 NFLASTE NP-1
    RETUFN
    END
```


SUBROUTINE COEFFS (U,DU,C,R,CC)

C

C U, DU, C, R AKE THE STEADY-STATE GUANTIIIES AT THE AXIAL LOCATION. WHERE THE COEFFICIENTS AKE REQUIFED.
CC AFE THE COMFLEX COEFFICIENTS. SUBFOUTINE INTGFL FFOVIDES ALPHA \& BETA. THE VALUES OF TRANSUERSE INTEGRALS THROUGH COMMON ELOCK X7.

COMMON /X3/ WC.SUN.I F.MODE.NU.KP(3)
COMMON/X7/ ALFHA(5,3). BETA(9,3)
COMPLEX CC(25)
DATA GAM/1.2/
C
GMINI $=$ GAM -1.
$M=M O D E$
A4B6 = ALPHA (4,M) * BETA (6.M)
RSQR $=\mathrm{R} * \mathrm{~K}$
C

C
$C C R=U *(C-U)$
CC(1) = CMPLX (CCR.0.0)
$C C R=-U * D U / C$
CC(2) $=$ CMPLX $(C C R, 0.0)$
$C C R=C *(B E T A(8, M)-\operatorname{BETA}(7, M)) /(R S O R * \operatorname{BETA}(6, M))$
CC(3) $=$ CMPLX(CCR, O.0)
CCR = 2.* C * EETA (7, M) ((RSQR * BETA (6.M))
$\operatorname{CC(4)}=\operatorname{CMPLX}(C C R, 0.0)$
c
CCF $=C$ (ALPHA (5,M) * BETA (9, M) / (ESGF * A4E6)
CC(5) $=$ CMFLX(CCR.0.0)
CCR $=0.0$
$\mathbf{C C I}=-2 . * W C \neq U \neq K P(M)$
CC(6) $=$ CMPLX (CCR.CCI)
$C C R=0.0$

CC(7) $=$ CMPLX (CCR.CCI)
CCR $=(\mathrm{KC} * K P(M)) \neq \neq 2$
$C C I=0.0$
CC(8) CMFLX (CCR.CCI)
IF (IF NE. 3) GO TO 110
C

C

```
AI = ALPHA (1,M)
A2 = ALPHA (2,M)
A3 = ALPHA (3,M)
B1 = HETA (1,M)
B2 = BETA (2,M)
B3 = BETA (3,M)
B4 = EETA (4,M)
ES = EETA (5,M)
CCF: - .5* Al*B1 * WC*U / A4E6
CCI = CCR
CC(9) = CMFLX (CCEsCC1)
```

```
CCR = - .5 * Al * E3 * WC / (RS0R * A4B6)
CCI = CCR
CC(10) = CMPLX (CCR,CCI)
```

```
CCR = - -5 * A2*B2 * WC / (RSQR * A4B6)
CCI = CCR
CC(11)= CMPLX (CCR.CCI)
CCR = ((GAM+1.) * U*U * Al*B1) / (4**3*1415927*A4B6)
CCI = - CCR
CC(12) = CMFLX (CCR,CCI)
CCR = - (U * Al * B3) / (4. * FSOF * A4E6)
CCI = - CCR
CC(13) = CMPLX (CCR.CCI)
CCK = (U * A2 * B2) (4. * RSOR * A4B6)
CCI = - CCR
CC(14)=CMPLX (CCR,CCI)
CCR = - 3**U* (1. + 5*GMIN1 * U*DU/C) * Al*B1 / (8.*A4B6)
CCI = CCR
CC(15)=CMPLX (CCF.CCI)
```


$\mathrm{CCI}=\mathrm{CCR}$
CC(16) = CMFLX (CCF:CCI)
$C C R=-D U *(1 .-(2 .-G A M) * U C) * A 2 * E 2 /(16 * H S G F * A 4 E 6)$
$\mathrm{CCI}=-\mathrm{CCF}$
CC(17) = CMPLX (CCF, CCI)
CCF $=-\left(G M I N 1 * W C * A_{1} * \mathrm{Bl}_{1}\right) /\left(4 * * \mathrm{~A}_{4} \mathrm{E} 6\right)$
$C C I=C C R$
$\mathrm{CC}(18)=$ CMFLX (CCF, CCI)
$C C R=-(G N I N 1 * W C * U * D U * A 1 * E 1) /(4 * * C * A 4 E 6)$
$\mathrm{CCI}=\mathrm{CCF}$
CC(19) = CM.PLX (CCR.CCI)
CCR $=-\mathrm{GMIN} 1$ * WC * A1 * (B4-B5) / (4. * RSGF * A4E6)
$\mathrm{CCI}=\mathrm{CCF}$
CC(20) $=$ CMFLX (CCE, CCI)
CCF $=-$ GMIN1 * A1 * BS / (2. * RSGF * A4E6)
$\mathrm{CCI}=\mathrm{CCF}$
CC(21) \quad CMPLX (CCF,CCI)
CCK = - GMIN1 * A3 * B2 / (4. * RSEK * A4E6)
$\mathrm{CCI}=\mathrm{CCF}$
CC(28) $=$ CMFLX (CCR.CCI)
CCR $=$ - GMINI * U*AI * (B4-B5) / (4. * RSGE * A4B6)
CCI $=$ - CCR
CC(23) = CMPLX (CCR. CCI)
$C C R=$ GMIN1 * U * Al * E5 / (2.*RSQR * A4B6)
$\mathrm{CCI}=-\mathrm{CCF}$
$\mathrm{CC}(24)=\mathrm{CMFLX}$ (CCR, CCI)
CCR = - GMIN1 * U * A3 * B2 / (4**RS0F * A4B6)
$\mathrm{CCI}=-\mathrm{CCF}$
CC(25) $=$ CMFLX (CCF,CCI)
CONTINUE
BETUFN
ENL

SUBFOUTINE INTGRL.

C
THIS SUBROUTINE EUALUATES THE DIFFERENT TFANSUERSE INTEGHALS. COMMON/X7/ ALFHA 5,3$)$ BETA(9,3)
$S 1=1.84118$
$S 2=3.05424$
$S 3=3.83171$
FI $=3.1415927$

C

C C
$\mathrm{M}=0$ $\mathrm{S}=\mathrm{S} 3$
DO 20 NOPT $=1,3$
AL PHA (NOPT, 1) $=0$.
ALPHA $(4,1)=1.0$
ALPHA (5,1) $=-1.0$
ALPHA $(1,2)=0.5$
ALFHA $(2,2)=-0.5$
ALPHA $(3,2)=-0.5$
ALPHA $(4,2)=1.0$
ALFHA $(5,2)=-4.0$
AL.FHA $(1,3)=1.0$
ALDHA (2,3) $=1.0$
AL.PHA $(3,3)=-1.0$
ALFHA (4,3) $=2.0$
ALPHA $(5,3)=0.0$
DO $301=1,5$
DO 30 J $=1,3$
AL.FHA(I,J) $=P I * A L P H A(I, J)$

DO 40 MODE $=1,3$
GO TO (110.120.130), MOLE
$M=1$
$S=S 1$
GO TO 140
$M=2$
$S=S 2$
GO TO 140
BETA (1.MODE) $=\operatorname{RADZ}(1,1,1, M, S 1, S 1, S)$
BETA (2,MODE) $=\operatorname{RALE}(2,1,1, \mathrm{M}, 51,51,5)$
BETA (3,MOLE) $=\operatorname{RADE}(7,1,1, N, S 1, S 1, S)$
BETA (4,MODE) $=\operatorname{RADC}(8,1,1, M, S 1, S 1, S)$
BETA (5,MODE) = RADC $(5,1,1, M, S 1, S 1, S)$
BETA ($6, M O D E)=\operatorname{RADI}(1, \mathrm{~N}, \mathrm{~S})$
BETA (7,MOLE) $=$ KAD1 ($4, \mathrm{M}, \mathrm{S}$)
BETA (B,MODE) $=\operatorname{RADI}(5, M, S)$
BETA (9,MODE) $=$ RADI $(2, M, S)$
CONTINUE

RETUFN
END

FUNCTION RADI (NOPT,M,E)

DIMENSION FUNCT(200)
DOUBLE PRECISION DN, DH, ESTEF, DR, ARG, EESI, BES2, EESH,

NN $=100$
DN = NN
$\mathrm{DH}=1.0 / \mathrm{DN}$
NP $1=N N+1$

DO $160 \mathrm{I}=1$. NPI
DSTEF = 1-1
$D R=D H * D S T E P$
$A F G=B * D R$
C
C CALCULATE BESSE1 FUNCTIONS.
CALL JBES (M, ARG, BES2, \$500)
BES 1 = BES2
IF (NOPT •LT. 3) GO TO 130
C
C
CALCULATE FIRST DERIVATIVES OF EESSEL FUNCTIONS.
CALL JBES ($\mathrm{N}+1$, AKG, BESH, \$500)
IF (NOFT EQ. 5) GO TO 120
IF (I EQ. 1) GO TO 115
RM $=M$
BES $1=B *(E M * B E S 1 / A F G-B E S H)$
GO TO 130
115 1F (M - EQ. O) GO TO 117
CALL JBES (M-1,ARG, HESL, $\$ 500$)
$B E S L=B *(B E S L-B E S H) / 2.0$
GO TO 130
117 CALL JEES (1, ARG, EES $1, \$ 500$)
BES $1=-$ BES $1 * B$

```
        GO TO 130
C
C CALCULATE SECOND DERIVATIVES OF EESSEL FUNCTIONS.
    1201F(I EEQ. 1) GO TO 122
        RM =M
        F= RM * (RM - 1.0)/(ARG * ARG)
        BES1 = ((F)-1.0) * BES1 + BESH/ARG) # B # B
        GO TO 130
    122 CALL JBES(M+2,AFG,BESH,$500)
        1F (M .EC. O) RESI = 0.5* B*B * (EESH - EES1)
        1F(M EQ. I) EESI = 0.25* E* E*(BESH - 3.0*BES1)
        IF(M LT. 2) GO TO 130
        CALL JEES(M-R,ARG,BESL,$500)
        BESL = 0.25 * B * B * (BESL - 2.0*BESI + BESH)
C
    130 FROD = BES1 * EES2
C
C CALCULATE WEIGHTING FUNCTIONS AND LIMITS FOR F = O.
        IF (NOFT . EQ. 2) GO TO 140
        IF (NOPT EQ. 4) GO TO 150
        FUNCT(1) = PROD * DF
        GO TO 160
    140 IF (I EQ. 1) GO TO 145
        FUNCT(I) = FROD/DR
        GO TO 160
    145 FUNCT(I) = 0.0
        GO TO 160
    150 FUNCT(I) = PROD
C
    160 CONTINUE
C
C
C
C
    NM1 = NN - 1
        S1 = FUNCT(1) + FUNCT(NF1)
        S2 = 0.0
        S3 = 0.0
        DO 20 I = 2. NN, 2
        S2 = S2 + FUNCT(I)
        20 CONTINUE
        DO 30 1 = 3. NM1, 2
        S3 = S3 + FUNCT(I)
        30 CONTINUE
        RESULT = DH*(S1 + 4.0*S2 + 2.0*S3)/3.0
        RADI = RESULT
        GO TO 501
    500 WR1 TE (6. 6000)
6 0 0 0 ~ F O F M A T ~ ( 1 H I , ~ 1 O H E F F O F ~ J E E S ) ~
    501 CONTINUE
        RETURN
        END
```


FUNCTION RAD2 (NOFT,L,M,N,A,B,C)

C
C C
DOUBLE FRECISION DN, DH, DSTEP, DR, AFGi, ARG2, AFG3,

```
```

DO 160 I = 1, NP1

```
```

DO 160 I = 1, NP1
DSTEP = I - 1
DSTEP = I - 1
DR = DH * DSTEP
DR = DH * DSTEP
ARGI = A * DF
ARGI = A * DF
ARGC = E * DR
ARGC = E * DR
ARG3 = C * DH
ARG3 = C * DH
C CALCULATE BESSEL FUNCIIONS.
C CALCULATE BESSEL FUNCIIONS.
CALL JBES(N, AFG 3, BES3,\$500)
CALL JBES(N, AFG 3, BES3,\$500)
CALL JBES(L,AFG1,BES1,\$500)
CALL JBES(L,AFG1,BES1,\$500)
CALL JBES(M,ARGE,BES2,9500)
CALL JBES(M,ARGE,BES2,9500)
IF ((NOFT .EQ. 7) .OF. (NOFT .EQ. 9)) GO TO 105
IF ((NOFT .EQ. 7) .OF. (NOFT .EQ. 9)) GO TO 105
GO TO 110

```
```

 GO TO 110
    ```
```

C
1
2
$\mathrm{NN}=100$
$\mathrm{DN}=\mathrm{NN}$
$\mathrm{LH}=1.0 / \mathrm{DN}$
$N P 1=N N+1$ EESI, BES2, EES3, BESH, BESL, FFOD. FUNCT, BESLIM, S1, S2. S3

C 105 CALL JBES $(M+1$, AFG2, EESH, $\$ 500$)

IF (I EQ. 1) GO TO 107
RM $=\mathrm{M}$
BES2 = B * (FN*BES2/AFGR - BESH)
GO TO 110
107 IF (M EEG O) GO TO 109
CALL JEES (M-1, AFG2, BESL, $\$ 500$)
BESS = B * (BESL. - BESH) 12.0
GO TO 110
109 CALL JBESC $1, A R G 2$, EES2, 5500%
EES2 = -EES2 * B
110 IF (NOFT .LT. 4) GO TO 130
CALL JBES $(L+1, A F G 1, B E S H, \$ 500)$
IF (NOFT -GT. 7) GO TO 120
IF (I EQ. 1) GC TO 115
RL $=\mathrm{L}$
BES $1=A *(R L * E E S 1 / A F G 1-E E S H)$
GO TO 130
$1151 F$ (L EGCO) GO TO 117
CALL JBES (L-1, ARG 1, BESL, $\$ 500$)
BESI $=A$ (${ }^{(B E S L}$ - BESH)/2.0
GO TO 130
117 CALL JBES (1, AFG $1, \mathrm{BES} 1, \$ 500$)
BES $1=-$ BES 1 * A
GO TO 130
C
C CALCULATE SECOND DEKI VATIUES OF EESSEL FUNCTI ONS.
120 IF (I EG. 1) GO TO 12E
$\mathrm{RL}=\mathrm{L}$
$F=\mathrm{RL} *(R L-1.0) /($ ARG1 * ARG1)
BES $1=((F-1.0) * B E S 1+B E S H / A K G 1) * A * A$ GO TO 130
122 CALL JEES(L+2, ARG1, BESH, \$500)
IF (L.EQ. O) BESI = 0.5*A*A*(EESH - EESI)
1F(L.EQ. 1) BES $1=0.25 * A * A *(E E S H-3.0 * B E S 1)$
IF (L - LT. 2) GO TO 130
CALL JBES(L-2, AFG1, BESL. $\$ 500$)
EESI $=0.25 * A * A *(E E S L-2 * 0 * E E S 1+E E S H)$
C
130 PROD $=$ BES 1 * BESE * BES3
C
C
CALCULATE WEIGHTING FUNCTIONS ANL LIWITS FOF $F=0$.

IF ((NOFT EQ. 2) -OF. (NOFT .EQ. 6)) GO TO 133
IF (NOFT •EQ. 3) GO TO 136
IF (NOFT •EG. 5) GO TO 140
FUNCT(I) $=$ PROD * DR
GO TO 160
133 IF (I EQ. 1) GO TO 134
FUNCT(1) $=$ PROD/DF
GO TO 160
134 EESLIM = 0.0
IF (NOFT •EQ. 6) GO TO 135
IF ((L.EQ.1) -ANL• (M.EG•O) -AND. (N.EG.O)) BESLIM =A/R.O
IF ((L.EQ.O) AND. (N.EG.1).ANL•(N.EQ.O)) EESLIM = B/2.O
IF ((L.EQ.O) AND. (M.EQ.O).AND. (N.EQ.1)) BESLIM = C/2.O

```
        GO 70 155
    135 IF ((L.EQ.O) AND. (M.EQ.O) .ANL. (N.FQ.O)) EESLIM = -A*A/2.O
        IF ((L.EQ.1) AND. (M.EQ.I) ANL. (N.EQ.O)) EESLIMM=A*B/4.0
        IF (CL.EQ.1) AND. (M.EQ.O).AND. (N.EG.1)) EESLIM = A*C/4.0
        IF ((L.EQ.2) .ANL. (M.EQ.O).AND. (N.EQ.O)) BESLIM = A*A/4.0
        GO TO 155
    136 IF (I .EQ. 1) GO TO 138
        FUNCT(I) = FROD/(DF*DR)
        GO TC 160
    138 BESLIM = 0.0
        IF ((L.EQ.2) -AND. (M.EQ.O) AND. (N.EQ.O)) BESLIM = A*A/B.O
        IF ((L.EQ.0) .AND. (M.EG.2).AND. (N.EQ.0)) EESLIM = B*B/8.0
        IF ((L.EQ.O) AND. (M.EQ.O) -AND. (N.EG•2)) EESLIM = C*C/8.0
        IF ((L.EQ.1) .AND. (M.EQ.1) AND. (N.EQ.OS) EESLIN = A*B/4.0
        IF ((L.EQ.1) AND. (M.EQ.O).AND. (N.EQ.1)) EESLIM = A*C/4.O
        IF ((L.EQ.O).AND. (M.EG.I).AND. (N.EQ.1)) BESLIM = E*C/4.0
        GO TO 155
    140 FUNCT(I) = PROD
        GO TO 160
    155 FUNCT(I) = BESLIM
C
    160 CONTINUE
C
C
C
C
    NM1 = NN - 1
    S1 = FUNCT(1) + FUNCT(NF1)
    S2 = 0.0
    S3 = 0.0
    DO 20 I = 2, NN, 2
    S2 = S2 + FUNCT(I)
        20 CONTINUE
        DO 30 I = 3, NMI, 2
        S3 = S3 + FUNCT(I)
        30 CONTINUE
        RESULT = DH * (S1 + 4.0*S2 + 2.0*S3)/3.0
        RAD2 = RESULT
        GO TO 501
    500 WEITE (6, 6000)
6000 FOFNAT (IH1, 10HERFOF JBES)
    501 CONTINUE
        FETURN
        END
```

THIS SUBROUTINE PEFFOPNS A FOURTH ORDER FUNGE-KUTTA INTEGGATI ON TO GBTAIN THE INI TIAL VALUES FGR THE FREDICTOR-CORFECTOF METHOL.

NU IS THE NUMBER OF DIFFERENTIAL EGUATIONS TO EE SOLVED. IF IP $=1$, INTEGFATION IS CAFKIEL OUT FOR ZETA ONLY (NU $=2$). IFIF $=2$. INTEGBATION IS CARFIED OUT FGR ZETA AND AH (NU $=4$). IF IP $=3$, INTEGFATION IS CAKKIED OUT FOR ZETA AND GAMMA (NU = 4). IP IS FASSED TO THIS SUBFOUTINE TH\&OUGH BLOCK COMMON X3.

H IS THE STEP-SIZE; INPUT.
T1 IS THE CURFENT VALUE OF STEADY STATE FOTENTIAL; INFUT: G ARE THE VALUES OF THE FUNCTIONS AT THE NEXT STEF; OUTFUT. DUM ARE THE UALUES OF THE DERIVATIVES OF THE FUNCTIONS AT THE NEXT STEF: OUTFUT. DUM ARE OBTAINED BY CALLING SUBHOUTINE FKIIF.

COMMON /X3/ WC, SUN, IF, MOLE, NU,KP(3)
DIMENSION $A(4), G(4), G Z(4), D U M(4), F Z(4,4)$
$A(1)=0$.
$A(2)=.5$
$A(3)=-5$
$A(4)=1$.
$T Z=T 1$
$N U=4$
IF (IP.EQ.1) NU=2
DO $10 \mathrm{~J}=1, \mathrm{NU}$
$G Z(J)=G(J)$
$I K=1$
CALL RKDIF (TZ, GZ, DUK,IK,I FK)
DO $25 \mathrm{~J}=1$, NU
$F Z(1, J)=\operatorname{LUM}(J)$
DO $301 K=2.4$
$T Z=T 1+A(I K) * H$
DO $35 \mathrm{~J}=1, \mathrm{NU}$
GZ(J) $=G(J)+A(I K) * H * F Z(I K-1, J)$
CALL HKDIF(IZ,GZ, DUN: IK,IFK)
LO $50 \mathrm{~J}=1$, NU
$F Z(I K, J)=\operatorname{CUM}(J)$
CONTINUE:
LO $55 \mathrm{~J}=1 . \mathrm{NU}$
$G(J)=G(J)+H *(F Z(1, J)+2 \cdot *(F Z(2, J)+F Z(3, J))+F Z(4, J)) / 6$.
I $K=4$
CALL RKDIF (TZ, G, DLM, IK, I RK)
EETUFN
END
THIS SUBROUTINE EUALUATES THE DIFFERENTIAL ELEMENT IN THE
FUNGE-KUTTA INTEGRATI ON SCHEME.
C F IS THE CUFBENT VALUE OF STEADY-STATE FOTENTIAL; INFUT.
C G AFE THE VALUES OF THE FUNCTIONS AT F: INPUT.
C GF ARE THE DERIVATIUES OF FUNCTIONS AT P; OUTFUT.

COMMON /X1/ CM, ANGLE, RCC, KCT, GAM, $6, \mathrm{FT}, \mathrm{DP}$
COMMON /X2/ T,FI, KR,NPLAST,NEND,IEXTN
COMMON /X3/ WC,SUN,IF,MODE,NU,KF(3)
COMMON (X4/ RU(7), FDU(7), ZTHR1.GTHR1
COMMON /X6/ AFN, AFN1, AFN2
COMPLEX AFN(1000), AFNI (1000), AFN2 (1000)
COMPLEX CC(25), CFH, CFY, CFN, INHMG
COMFLEX ZETA,ZETA1, AH, AH1, CGAM, CGAM1,ZTHF1,GTHR1, AP, AP1, AFZ DIMENSION G(4),GP(4)
C
$Z R=G(1)$
$Z 1=G(2)$
ZETA = CMFLX (ZR,ZI)
GO TO (110,120,130), IF
$A H R=G(3)$
AHI $=G(4)$
$A H=C M P L X$ (AHR, AHI)
GO TO 110
CONTINUE
GAMF $=$ G(3)
GAMI = G(4)
CGAM $=$ CMFLX (GAMR,GAMI)
CONTINUE
IF (F) 15,10,15
10 GF(1) REAL(ZTHF1)
$G P(2)=A I M A G(Z T H R 1)$
GO TO (140.150,160), IF
150 AHI $=\mathrm{AH} * \mathrm{ZETA}$
GP(3) = FEAL (AH1)
$G P(4)=\operatorname{AIMAG}(A H 1)$
GO TO 140
CONTINUE
GF(3) $=$ FEAL (GTHE1)
$G F(4)=A I M A G(G T H R I)$
140
CONTINUE
GO TO 20
$15 \quad 1 \mathrm{CL}=2 * I \mathrm{FK}-2$
$I F(I K \cdot E Q \cdot 1) I C L=2 * I F K=3$
IF (IK - EQ. 4) $1 C L=2 * I F K-1$
U= RU(1CL)
DU=RDU(ICL)
$C=1 .-(G A M-1 *) * U * \cdot 5$
$H=Q *((C) * *(-1 /(2 *(G A M-1 \cdot)))) *(U * *-25) * 4$.
CALL COEFFS (U, DU, C, $R, C C$)
$\mathrm{CFH}=\mathrm{CC}(1)$
$C F M=C C(2)+C C(6)$
$\mathrm{CFN}=\operatorname{cc}(3)+\operatorname{cC}(4)+\operatorname{cC}(5)+\operatorname{CC}(7)+\operatorname{CC}(8)$

```
    ZETA1 = - CFM * ZETA - CFN ) CFH - ZETA * ZETA
    GP(1) = REAL (ZETA1)
    GP(2) = AIMAG (ZETA1)
    GO TO (170,180,190), IP
    AH1 = AH & ZETA
    GP(3) = REAL (AH1)
    GP(4) = AIMAG (AH1)
    GO TO 170
    CONTINUE
    GO TO (30,40,40,50), IK
    AP = AFN (IRK-1)
    AF1 = AFN1 (IFK-1)
    AF2 = AFN2 (IRK-1)
    GO TO 60
    AP = 5 * (AFN (IRK-1) + AFN (IRK))
    AP1 = 5 * (AFN1 (IRK-1) + AFN1 (IFK))
    AP2 =.5*(AFN2 (IFK-1) + AFNS (IFK))
    GO TO 60
    AP = AFN (IFK)
        AP1 = AFN1 (IRK)
        AFE = AFNE (IFK)
60 CONTINUE
    INHMG = - CC(18) * AP * APZ - CC(12) * AFI * APE - (CC(9)
    1 + CC(15))*AF1*AF1 - (CC(13) + CC(14) + CC(19)
    2 + CC(23) + CC(24) + CC(25)) * AF1 * AP - (CC(10) + CC(11)
    3 +CC(17) + CC(20) + CC(21) + CC(22)) # AF # AF
    CGAM1 = - 2ETA + 5* (GAM-1.) * DU/C- CFM/CFH) * CGAM
1 - INHMG / (C * CFH)
    GF(3) = REAL (CGAM1)
    GP(4) = AIMAG (CGAM1)
    CONTINUE
20 RETUKN
    END
```


SUBEOUTINE ZADAMS ($H, X, Y, D Y, I T O K Z$)

```
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
    COMMON /X1/ CM, ANGLE, FCC, RCT,GAM,G,RT
    COMMON /X2/ I,Fi.FR2.NFLAST,NENE,IEXTN
    COMMON /X3/ WC,SUN,IF,MOLENNU.KF(3)
    COMMON /X5/ U(1000), DU(1000),C(1000), FW(1000)
    COMMON /XG/ AFN, AFN1, AFN2
    COMMON /XB/ ZETA, TAU, CCEXT
    COMFLEX ZETA(1000), TAU(1000), CCEXT(25)
    COMPLEX AFN(1000), AFNI(1000), AFNE(1000)
    CCNFLEX CC(25),CFH,CFN,CFN,INHMG,ZETA1,AH,AHI,AHE,AF,AF1,AFR,
1 CGAN, CGAN1
    DIMENSION Y(4), IY (4,4), IF(4),FRED(4),COR(4)
C
    NP=4
    1TORZ =2
    IF (IEXTN .NE. 1) GO TO 10
C
C
C
    UEXT = U(NEND)
    CEXT = C(NEND)
    HEXT = FW(NEND)
    DUEXT = LU(NEND)
    CALL COEFFS (UEXT, DUEXT, CEXT, FEXT,CCEXT)
C NU IS THE NUMEER OF EGUATIONS TO AE SOLVED.
C
10 CONTINUE
    LO 15 J=1,NU
    FREL(J)=Y(J)+H*(55**DY(J,4)-59**LY(J,3)+37.*DY(J,2)
    I
                -9.*LY(J,1))/24.
    CONTI NUE
    X=X+H
```


NF $=$ NP +1

Z R=FRED(1)
ZI=PRED(2)
ZETA(NF) $=$ CMFLX (2H.ZI)
GO TO (110.120.130), IP
AHR = PFEL(3)
AHI $=$ FRED (4)
$A H=$ CMPLX (AHR,AHI)
GO TO 110

CGAM = CMFLX (FHED(3), PREL(4))
CONTINUE
IF (NP LLE. NFLAST) GO TO 20
DO $251=1,25$
25 CC(I) = CCEXT(I)
GO TO 30
80 CONTINUE
UF=U(NP)
DUP= DU(NP)
CP=C(NF)
K=RW(NF)
CALL COEFFS (UP,DUF,CF,R,CC)
30 CONTINUE
$C F H=C C(1)$
CFM $=\operatorname{CC}(2)+\operatorname{CC}(6)$
$\mathrm{CFN}=\mathrm{CC}(3)+\operatorname{CC}(4)+\operatorname{CC}(5)+\operatorname{CC}(7)+\operatorname{CC}(8)$
ZETAI = (CFM * ZETA(NF) - CFN) (CFH - ZETA(NF) *末 2
DP(1) = FEAL (ZETA1)
DP(2) $=$ AIMAG (ZETA1)
GO TO ($140,150,160$), IP
AH1 =AH * ZETA(NF)
DP(3) = FEAL (AH1)
DF(4) $=$ AIMAG (AH1)
GO TO 140
CONTINUE
AF, API ANE AFE ARE THE VALUES OF THE AMFLITUDE FUNCTION AND
$A F=A F N(N P)$
AFI $=A F N 1(N P)$
AP2 = AFN2(NP)
C
1 NHMG $=-C C(18) * A P * A F 2-C C(12) * A F 1 * A F 2-(C C(9)$
$1+\operatorname{CC}(15)) * A P 1 * A F 1-(C C(13)+\operatorname{CC}(4)+C C(19)$
$2+C C(23)+C C(24)+C C(25) * A P 1 * A F-(C C(10)+C C(11)$
$3+\operatorname{CC}(17)+\operatorname{CC}(20)+\operatorname{CC}(21)+\operatorname{CC}(22)) \neq A P * A P$
CGAMI $=(-Z E T A(N F)+5 *(G A M-1-) * D U P / C F-C F M / C F H) * C G A M$
1 - INHMG (CF * CFH)
DF(3) = REAL (CGAM1)
DF(4) = AIMAG (CGAM1)
CONTINUE
DC $45 \mathrm{~J}=1$, NU
$\operatorname{COR}(J)=Y(J)+H *(D Y(J, 2)-5 \cdot * E Y(J, 3)+19 \cdot * E Y(J, 4)$
1
+9.*DF(J))/24.0
45

```
    LO 55 I=1,NU
    [0 55 J=1.3
    LY(I,J) = DY(I,J+1)
    ZR=Y(1)
    ZI=Y(2)
    ZETA(NF) = CMFLX (ZF.ZI)
    ZETA1 = (-CFM * ZETA(NF) - CFN) , CFH - ZETA(NF) **Z
    DY (1,4) FEAL (ZETA!)
    DY (2,4) = AIMAG (2ETA1)
    GO TO (170.180.190). IF
180 AH = CMFLX (Y(3),Y(4))
    AH! = AH * ZETA(NF)
    DY(3,4) = FEAL (AH1)
    DY(4,4) = AIMAG (AH1)
    IF (MODE.NE.1) GC TO 182
    AH2 = AH1 * ZETA(NF) + AH * ZETA1
    AFN(NP) = AH
    AFNI(NF) = AHI
    AFNZ(NF) = AH2
    GO TO 170
182 CONTINUE
    CGAM = CNPLX (Y(3),Y(4))
    CGAML = (- ZETA(NF) + 5* (GAN-1.) * IUF/CF - CFM/CFH) # CGAM
    1 - 1NHMG / (CF * CFH)
    DY(3,4) = FEAL (CGAM1)
    DY (4,4) = AINAG (CGAM1)
    CONTINUE
    IF (NF .EQ. NEND) GO TO 100.
C
C LECIDE WHICH EQUATION IS 10 EE INIEGRATED: TAU OR ZETA
C
    IF (CABS (ZETA(NF)) .LT. 10) GO 10 10
    ITOFZ = 1
C
C CALCULATE vALUE OF TAU AND ITS DEFIVATIUE AT LAST FOUK STATIONS.
    DO 410 I = 1,4
    TAU (NF-4+I)=1./ZETA(NF-4+I)
    Y(1) = REAL (TAU(NF))
    Y(2) = AlMAG (TAU(NP))
    DO 420 1 = 1.4
    TSQF = FEAL (TAU(NP-4+1) * TAU(NF-4+I))
    TSQI = AIMAG (TAU(NF-4+I) * TAU(NF-4+1))
    ZHF=DY(1,I)
    ZFI = DY(2.1)
    LY(1,I) = -TSQR*ZFR + TSQI*ZFI
    DY(2,I) = - TSQK*ZFI - TSQI*ZFH
    CONTINUE
    CALL TADAMS (H,NF,X,Y,DY,IO,ITOFZ)
    GO 10 (10,100), 10
    KETURN
    END
```


SUBROUTINE TAUAMS (H,NF,X,Y,DY,I D.ITORZ)

C
C C C C
THIS SUBFOUTINE CARRIES OUT A MODIFIED ADAMS FREDICTOR-CORFECTOF
INTEGFATION SCHEME TO SOLVE THE VAFIOUS DIFFEFENTIAL EQUATIONS AS
DESCRIBED EELOK
IF IF $=1$. INTEGFATIGN IS CAKRIED OUT FOK TAU ONLY:
IF IF $=$ 2, INTEGFATION IS CAFEIED OUT FOR TAU ANL AH:
IFIF = 3. INTEGKATION IS CAKFIED OUT FOK TAU AND GAMMA.
IP IS FASSED TO THE SUBROUTINE THROUGH COMMON ELOCK X3.
H 15 THE STEP-SIZE: INPUT.
X IS THE VALUE OF STEALY-STATE FOTENTIAL AT THE STATION.
WHEFE THE FFEDICTOK-CORRECTOF INTEGFATION STARTS: INFUT.
LURING THE FROGRAM, X IS CHANGED TO THE VALUE AT CUFFENT STATION.
Y ARE THE UALUES AT X, OF THE FUNCTIONS, WHOSE EGUATIONS ARE
BEING SOLUEDS INFUT AND OUTFUT.
DY ARE THE DERI VATIUES OF Y; INFUT ANE OUTFUT.
IO INLICATES WHETHER INTEGRATION IS COMFLETE: UUTFUT.
$10=1:$ INTEGRATION IS TO RE CONIINUED EY SURROUTINE ZADAMS.
$10=2$ INTEGFATIONIS COMFLETE.
ITOFZ INDICATES WHICH EQUATION SHOULD EE INTEGRATEL:
$1 T O R Z=1: 1 R T E G H A T I G N$ OF EGUATION FOK ZETA.
$I T O H Z=2:$ INTEGFATION OF EQLIATION FOK TAU.
COMMON $/ X 1 /$ CM, ANGLE, RCC, RCT, GAM, G,FT
COKPON /X2/ T,R1, K2,NFLAST, NEND, IEXTN
COMMON $\times X 3 /$ WC, SUN, IF,MOLEONU,KF(3)
COMMON $/ X 5 /$ U(1000), DU(1000), C(1000), FW(1000)
COMMON /X6/ AFN; AFN1, AFN2
COMKON /X8/ ZETA. TAU, CCEKT
COMPLEX AFN(1000), AFNI(1000), AFNE(1000)
COMPLEX CC(25), CFH, CFM, CFN, INHNG, AH, AH1, AF, AF 1, AF2, CGAM, CGAM1
COMFLEX ZETA(1000), TAU(1000), TAU1, CCEXT(25)
DIMENSION $Y(4), \operatorname{DY}(4,4), \operatorname{DP}(4), F F E D(4), \operatorname{COR}(4)$
CONTINUE
NU IS THE NUMEER OF EQUATIONS TO EE SOLVED.
DO $15 \mathrm{~J}=1 . \mathrm{NU}$

$1-9 * * D Y(J .1)) / 24$.
CONTINUE
$X=X+H$
$N P=N P+1$
TR = PRED (1)
II FRED (2)
TAU (NF) $=$ CMFLX (TR,TI)
ZETA (NP) $=1.1$ TAU(NF)
GO TO (110,120.130). IP
AHR = PFED(3)
AHI = PRED (4)
$A H=$ CMPLX (AHR AHI)
GO TO 110
CONTINUE
CGAM = CMPLX (FRED(3), PRED(4))

CONTINUE
1F (NP .LE. NPLAST) GO TO 20
C
C OBTAIN COEFFICIENTS IN THE EXTENSION SECTION.
50 $251=1,25$
$25 \operatorname{CC}(I)=\operatorname{CCEXT}(I)$
C
GO TO 30
20 CONTINUE
DUF $=$ DU(NF)
$\mathrm{UP}=\mathrm{U}(\mathrm{NF})$
$\mathrm{CF}=\mathrm{C}(\mathrm{NF})$
$\mathrm{F}=\mathrm{KW}$ (NF).
CALL COEFFS (UA,DUF,CF, F, CC)
CONTINUE
$\mathrm{CFH}=\mathrm{CC}(1)$
CFM $=\operatorname{CC}(2)+\operatorname{CC}(6)$
$\mathrm{CFN}=\operatorname{CC}(3)+\operatorname{CC}(4)+\operatorname{CC}(5)+\operatorname{cC}(7)+\operatorname{CC}(8)$
TAU1 $=1 \cdot+(C F M+C F N * T A U(N F))$ * TAU(NP) / CFH
$\operatorname{DF}(1)=$ KEAL (TAU1)
$\operatorname{DF}(2)=$ AIMAE (TAU1)
GC TO ($140,150,160)$, IF
150 AH1 $=A H$, TAUC(NF)
$\mathrm{DF}(3)=$ REAL (AH1)
$\operatorname{DF}(4)=\operatorname{AIMAG}(\mathrm{AH} 1)$
GO TO 140

C AF,API and afz are the values of the amflitude function and
C theif derivatiurs at the curbent station.
$A F=A F N(N F)$
$A P 1=A F N 1(N F)$
AFE = AFNE(NF)
C

$\operatorname{EF}(3)=$ REAL (CGAM1)
$\operatorname{LP}(4)=$ AIMAG (CGAM1)
140 CONTINUE
LO $45 \mathrm{~J}=1$, NU
$\operatorname{CCR}(J)=Y(J)+H *(D Y(J, 2)-5 . *[Y(J, 3)+19 . *$ LY(J,4)
1 +9.*LF(J) 124.0
$45 Y(J)=(251 \cdot * \operatorname{COE}(J)+19 . *$ FFEL (J) $) / 870$.
LO $55 \mathrm{I}=1, \mathrm{NU}$
IO $55 \mathrm{~J}=1,3$
$55 \operatorname{DY}(1, J)=\operatorname{DY}(1, J+1)$
$T \mathrm{~F}=\mathrm{Y}(1)$
$T I=Y(2)$
T2 $=$ TF*TR $+\mathrm{TI} * T I$
TAU (NF) $=$ CMFLX (TK.TI)
ZETA (NP) $=1.1$ TAU(NF)

```
    TAUl = 1. + (CFM + CFN * TAU(NF)) * TAU(NF) / CFH
    DY (1,4) = REAL (TAU1)
    IY (2,4) = AIMAG (TAU1)
    GO TG (170.180.190). 18
    AHF = Y(3)
    AHI =Y(4)
    AH = CMFLX (AHH,AHI)
    AH1 = AH / TAU(NF)
    DY (3,4) = FEAL (AHL)
    LY (4,4) = AIMAG (AH1)
    IF (MGLE NE 1) GO TC 182
    AFN(NF) = AH
    AFN1(NF) = AH1
    AFNC (NF) = (TAU(NF) * AFNI(NF) - TAU1 * AFN(NF) ) /
    1 (TAU(NF)*TAU(NF) )
    GO TO 170
    CONIINUE
    CGAM = CMPLX (Y(3),Y(4))
    CGAM1 = (-2ETA(NP) 4.5* (GAM - 1.)* LUP/CF - CFM/CFH) * CGAN,
    1 - INHEG / (CF * CFH)
    DY (3,4)= FEAL (CGAM))
    DY (4,4) = AIMAG (CGAM1)
    CONTINUE
    IF (NF EG. NEALD)GO TO 100
C
C LECIEE WHICH EQUATION IS TO EE INTEGRATED & TAU OF ZETA
    IF (CAES(TAU(NF)) &LT. 10) GC T0 10
    ITOKZ = 2
    Y(1) = FEAL (ZETA(NF) )
    Y(2) AJMAG ( ZETA(NF) )
    CALCULATE DERIVATIUES OF ZETA AT THE LAST FOUR FOINTS.
    DO 420 I = 1.4
    ZSGK = FEAL (ZETA(NE-4+I) * 2ETA(NF-4+I))
    ZSQI=AlMAG (ZETA(NF-4+I)*ZETA(NF-4+I))
    TFR = DY(1,I)
    TPI = DY(2,1)
    CY(1,I)=-ZSQE#TFR + ZSEI#TFI
    DY(2,I) = - ZSGR*TFI - ZSGI*TFR
    CONTINUE
C
    1Q=1
    FETUFN
    1G=2
    FETUFN
    END
```


APPENDIX B

PROGRAM COEFFSSD: A USER'S MANUAL

Program COEFFS3D calculates the coefficients of both the linear and nonlinear terms that appear in Eq. (20). These coefficients are required as input for Program LCYC3D (see Appendix C) which numerically integrates this system of equations. Program COEFFS3D is a slightly modified version of the program described in detail in Appendix C of Ref. "ll. The modification lies in the evaluation of one more coefficient, $C_{4}(j, p)$ defined by

$$
C_{4}(j, p)=\bar{u}_{e} \bar{c}_{e}^{2} \Gamma_{p} z_{j}^{*}\left(z_{e}\right) \int_{0}^{2 \pi} \Theta_{p}^{\Theta} \Theta_{j} d \theta \int_{0}^{1} R_{p} R_{j} r d r
$$

This coefficient represents the effect of nozzle nonlinearities. Except for this additional coefficient, the two programs are very similar in the structure of their numerical calculations and their output. Hence in this user's manual, only the listing of the entire program together with a precise description of the necessary input is given. For details of the program, one is referred to Appendix C of Ref. 11.

In the following description of the input, the location number refers to columns of the card. Three formats are used for input: "A" indicates alphanumeric characters, " I " indicates integers and " F " indicates real numbers with a decimal point. For the "I" and "F" formats the values are placed in fields of five and ten locations respectively (right justified).

| No. of Cards | Location | Type | Input Item | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1-72 | A | Title | Title of the case |
| 1 | 1-10 | F | GAMMA | Ratio of specific heats |
| | 11-20 | F | UE | Steady-state Mach number at nozzle entrance |
| | 21-30 | F | RID | Iength-to-diameter ratio |
| | 31-40 | F | ZCOMB | Length of the combustion zone |

No. of Cards

| Iocation | Type | Input Item | Comments |
| :---: | :---: | :---: | :---: |
| 41-45 | I | NDROPS | If 0: droplet momentum source neglected |
| | | | If l: droplet momentum source included |
| 46-50 | I | NOZZIE | If O: quasi-steady nozzle
 If l: conventional nozzle |
| 1-5 | I | NJMAX | Number of series terms (complex) |
| 6-10 | I | NONLIN | If 0: linear terms only If 1 : both linear and nonlinear terms |
| 11-15 | I | NEGL | If 0: all non-zero coefficients calculated If I: small coefficients neglected |
| 16-20 | I | NOUT | If 0: printed output only If 1: printed and written into file |
| | | | If 2: written into file only If 3: card output only |
| 21-25 | I | NOZNLI | ```If 0: nozzle nonlinearities neglected If l: nozzle nonlinearities included``` |
| 26-30 | I | NZDATA | If 0 : nozzle admittance values input through cards If 1 : nozzle admittance values input through file If NZDATA is 1 , NOUT in program NOZADM should be 1 |

Comments
If 0: droplet momentum source neglected

If l: droplet momentum source included

If 0: quasi-steady nozzle If 1: conventional nozzle

Number of series terms (complex)

If 0: linear terms only If 1: both linear and nonlinear terms

If 0: all non-zero coefficients calculated If l: small coefficients neglected

If 0: printed output only If l: printed and written into file

If 2: written into file only If 3: card output only

If 0 : nozzle nonlinearities neglected If 1: nozzle nonlinearities included

If O: nozzle admittance values input through cards If l: nozzle admittance values input through file If NZDATA is 1 , NOUT in program NOZADM should be 1

The next card is necessary only if NEGL $=1$.

No. of

| Cards | Iocation | Type | Input Item |
| :--- | :--- | :--- | :--- |
| I-10 | F | | SM1 |

The next NJTMAX cards are necessary only if NOZZIE $=1$ and NZDATA $=0$.

| NJTMAX | I-5 | I | Integer which identifies
 the series term |
| :--- | :--- | :--- | :--- |
| $6-15$ | F | $\operatorname{AMPL}(J)$ | Amplitude of the linear
 nozzle admittance |
| $16-25$ | F | $\operatorname{PHASE}(J)$ | Phase of the linear nozzle
 admittance |

The next NeMAX cards are necessary only if NZDATA $=0$ and NOZNII $=1$.

| NJMAX | 1-5 | I | J | Integer which identifies the series term |
| :---: | :---: | :---: | :---: | :---: |
| | 6-15 | F | GNOZ (J) | Real part of the nonlinear nozzle admittance |
| | 16-25 | F | GNOZ (J) | Imaginary part of the nonlinear nozzle admittance |
| NJMAX | 1-5 | I | J | Integer which identifies series term |
| | 6-10 | I | $L(J)$ | Axial mode number, ℓ |
| | 11-15 | I | M (J) | Tangential mode number, m |
| | 16-20 | I | $N(J)$ | Radial mode number, n |
| | 21-25 | I | NSS (J) | $\begin{aligned} & \operatorname{NS}(J)=1: \quad \Theta j=\sin (m \theta) \\ & \operatorname{NS}(J)=2: \quad \Theta_{j}^{J}=\cos (m \theta) \end{aligned}$ |
| | 26-30 | A | NAME (J) | Four character name |

THIS PROGRAN COMFUTES THE COEFFICIENTS WHICH APPEAK IN THE DIFFERENTI AL EGUATIONS WHICH GOUEFN THE MODE-AMFLI TUDE FUNCTIONS. THESE COEFFICIENTS AKE FUNCHED ONTO CARDS FOR INFUT INTO FROGRAM LIMCYC。

THE FOLLOWING INFUTS ARE REQUIRED:
THE TITLE OF THE CASE.
gamma is the sfecific heat fatio.
UE IS THE STEADY STATE MACH NUMEER AT THE NOZZLE ENTFANCE.
RLD IS THE LENGTH-TO-DI AMETER RATIO.
ZCCMB IS THE LENGTH OF THE FFGION OF UNIFOFPLY LISTHIEUTEL
COMEUSTION, EXFFESSEL AS A FFACTIGN OF THE CHAMEEF LENGTH.
NDFGFS DETEFMINES THE FHESENCE OF LFOFLET MOMENTUM SOUKCES:
NLROFS $=0$ LFGFLET MGNENTLM SOUFCE NEGLECTEI.
NLFOFS $=1$ DFOFLET NOMENTUK SOUFCE INCLUDEL.
NOZZLE SFECIFIES THE TYFE OF NOZZLE USEL8
NOZZLE $=0$ GUASI-STEAIY
NOZZLE $=1$ CONVENTIONAL NOZZLE.
. FOR CONUENTIONAL NCZZLE
AMFL IS THE NOZZLE AMFLITULE RATIO.
FHASE IS THE NOZZLE FHASE SHIFT.
NGZNL1 DETEFRINES THE FRESENCE OF NOZZLE NONLIAEAFITIES NOZNLI $=0$ NOZZLE NGNLINEAEITIES NEGLECTEE. NOZNLI $1=1$ NOZZLE NONLINEAFITIES INCLUDED.
NZDATA DETERNINES HOW THE NOZZLE DATA IS SUFFLIEL NZDATA $=0 \quad$ FRON CARES.
NZDATA $=1$ FFOM A FASTFANL FILE.
NJMAX IS THE NUMEER OF MOLE-AMFLITUDE FLNCTIONS IN THE ASSUMED SERIES SOLUTION• NJMAX MUST NOT EXCEEL MX.
THE COEFFICIENTS COMFUTEL AFE LETEFMINED EY NONLIN: AS FOLLOLS NONLIN $=0$ LINEAR COEFFICIENIS GNLY NONLIN $=1$ BOTH LINEAK AND NONLINEAF COEFFICIENTS
COEFFICIENTS TO BE NEGLECTEL AEE DETEFMINED EY NEGL
AS FOLLOWS:
NEGL $=0$ TEFMS SMALLEF THAN 0.00001 AFE NEGLECTEE. NEGL $=1$ LINEAR TEKMS SMALLEF THAN SM 1 ANL NONLINEAR TEKMS SMALLEF THAN SMC AFE NEGLECTEL.
THE OUTFUT IS DETEKMINEL EY NOUT AS FOLLOWS
NOLT $=0$ FRINTED OUTFUT ONLY
NOUT $=1$ FRINTEL ANL WFITTEN ON FASTFANL FILE. NOUT $=2$ FASTFANL FILE ONLX. NOUT $=3$ CAFE OUTFUT ONLY.
EACH MODE-AMFLITUDF IS ASSIGNEL AN INTEGEF J. THE MGDE IS SFECIFIED EY THE INDICES L(J), M(J), AND N(J). L(J) IS THE AXIAL MODE NLMEEF AND MUST NOT EXCEED 5. M(J) IS THE AZIMLTHAL MOEE NUWEEF ANE MUST NOT EXCEED 8. N(J) IS THE HADIAL MODE NUWEEK AND MUST NOT EXCEED 5. THE INTEGER NS(J) IS ASSIGNED AS FOLLOWS: $N S=1$ A-FUNCTION SIN(M*THETA) * COSH(I*E*Z) NS $=2$ E-FUNCTION COS(N*THETA) * COSH(I*E*Z) NAME(J) IS A FOUR-CHAFACTER NAME.

| PARAMETEF | $M X=5, \quad M X 2=10, M X 4=20$ |
| :---: | :---: |
| DIMENSION | L(MX), N(MX), NAME(MX), S(MX), SJ(MX), TITLE(80). |
| 1. | RJRGOT (10,5). FJUAL (10,5$)$, Ci(NX2, MX2), C(4, MX2, MXE). |
| 2 | D(MX2, MX2, NX2), AMFL(MX), EHASE(MX), AZ1(2). |
| 3 | EES1 $(9.9 .9)$, $\operatorname{BES2}(9.9 .9)$, $\mathrm{EES} 3(9.9 .9)$, |
| 4 | V(2), JC(MX2), TS(4, MX2). TSE(MX2), KMAX(5) |
| COMFLEX | CRSLT, CI, ZEJ, ZEF1, ZEF2, CZE, CAZ, CFAD, |
| 1 | G1. DCCEF, CGAM, CAX, E(MX), EC(MX), YNOZ(N;X), |
| 2 | CNORM(MX), $\operatorname{CSSQ}(\mathrm{MX}), \mathrm{TANINT}(2), ~ K A D I N T(3)$. |
| 3 | AXINT(4, 3), CC($5, M X, M X), C D 1(M X, N X, M X)$. |
| 4 | |
| 5 | CD3(MX, $(\mathrm{X}, \mathrm{NX})$, CD4(MX,MX,MX), GNOZ (MX) |
| COMMON | B /ELK2/ M(MX). NS(MX) |

DATA INFUT.

```
F1 = 3.1415927
SM1 =0.00001
SM2 =0.00001
SM3 = 0.00001
CI = (0.0.1.0)
```

INFUT ROOTS ANL VALUES OF EESSEL FUNCTIONS. DATA ((FJFOOT(I.J), $J=1.5), I=1.9) /$

| | 3.83171 . | 7.01559. | 10.17347. | 13.32369. | 16.47063. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1.84118. | 5.33144, | 8.53632. | 11.70600, | 14.86359, |
| 3 | 3.05424\% | 6.70613. | 9.96947. | 13.17037. | 16.34752. |
| 4 | 4.20119. | 8.01524, | 11.34592. | 14.58585, | 17.78875: |
| 5 | 5.31755, | 9.28240. | 12.68191. | 15.96411. | 19.19603. |
| 6 | 6.41562. | 10.51986, | 13.98719, | 17.31284, | 20.57551. |
| 7 | 7.50127. | 11.73494, | 15.26818. | 18.63744, | 21.93172. |
| 8 | 8.57784, | 12.93239. | 16.52937. | 19.94165. | 23.26805 |
| 9 | 9.64742. | 14.11552, | 17.77401. | 21.22906 | 20% |
| DATA | | | | | |
| 1 | -0.40276. | 0.30012. | -0.24970, | 0.21836, | -0.19647. |
| 2 | 0.58187. | -0.34613. | 0.27330 | -0.23こ30. | 0.20701. |
| 3 | 0.48650. | -0.31353. | 0.25474. | -0.22088. | 0.19794* |
| 4 | 0.43439. | -0.29116. | 0.24074. | -0.21097. | 0.19042. |
| 5 | 0.39965 | -0.27438. | 0.22.959. | -0.20276. | 0.18403. |
| 6 | 0.37409. | -C.c6109. | 0.22039. | -0.19580. | 0.17849. |
| 7 | 0.35414 , | -0.25017. | 0.21261. | -0.18978. | 0.17363 |
| 8 | 0.33793. | -0.24096 | 0.20588. | -0.18449. | 0.16929. |
| 9 | 0.32438. | -0.23303. | 0.19998 | -0.17979 | 0.16539 |

1 NFUT PAhANETERS.
4 FEAD (5.5000, END $=600$) (TITLE(I), $1=1,72$)
FEAD (5.5001) GAMMA. UE, FLD Z ZCOME, NLFOYS, NOZZLE IF (GAKMA) 600, 600. 8
8 READ (5,5004) NJMAK, NONLIN, NEGL, NOUT, NOZNL 1. NZDATA 1F (NEGL . EQ. 1) FEAD (5.5005) SM1. 5ME
IF (NOZZLE EG. 1) GO TO 5
COMFUTE ADMITTANCE FOR QUASI-STFADY NOZZLE.

```
            Y=(GAMKA - 1.0) # UE/ (2.0 # GANMA)
```

 Y=(GAMKA - 1.0) # UE/ (2.0 # GANMA)
 DO 3 J = 1. NJMAX
 DO 3 J = 1. NJMAX
 AMFL(J) = Y
 AMFL(J) = Y
 PHASE(J) = 0.0
 PHASE(J) = 0.0
 3 CONTINUE
 3 CONTINUE
 GO TO 7
 GO TO 7
 5 CONTINUE
5 CONTINUE
IF (NZDATA -EQ. O) NZDATA =5
IF (NZDATA -EQ. O) NZDATA =5
IF (NZDATA .EQ. I) NZDATA = 7
IF (NZDATA .EQ. I) NZDATA = 7
DO 6 I = 1. NJMAX
DO 6 I = 1. NJMAX
READ (NZDATA: 5003) J, ANFL(J), FHASE(J)
READ (NZDATA: 5003) J, ANFL(J), FHASE(J)
6 CONTINUE
6 CONTINUE
IF (NO2NL1 -NE. I) GC TO 7
IF (NO2NL1 -NE. I) GC TO 7
DO 710 1 = 1.NJMAX
DO 710 1 = 1.NJMAX
READ (N2DATA,5003) J. GNOZ(J)
READ (N2DATA,5003) J. GNOZ(J)
710 CONTINUE
710 CONTINUE
7O 10 I = 1. NJMAX
7O 10 I = 1. NJMAX
READ (5,5002) J. L(J), M(J), N(J), NS(J), NAME(J)
READ (5,5002) J. L(J), M(J), N(J), NS(J), NAME(J)
10 CONTINUE
10 CONTINUE
DO 12 J = 1: NJMAX
DO 12 J = 1: NJMAX
THETA = FHASE(J) * FI/180.0
THETA = FHASE(J) * FI/180.0
YR = AMFL(J) * COS(THETA)
YR = AMFL(J) * COS(THETA)
YI = AMFL(J) = S1N(THETA)
YI = AMFL(J) = S1N(THETA)
YNOZ(J)= CMPLX(YF,YI)
YNOZ(J)= CMPLX(YF,YI)
12 CONTINUE
12 CONTINUE
2E=2.0 * FLD
2E=2.0 * FLD
CZE = CMFLX(ZE,0.0)
CZE = CMFLX(ZE,0.0)
CGAM = CMFLX(GANMA,0.0)
CGAM = CMFLX(GANMA,0.0)
CAX = CGAM
CAX = CGAM
IF (NDFOFS.EQ. 1) CAX = CGAM + (1.0.0.0)

```
                    IF (NDFOFS.EQ. 1) CAX = CGAM + (1.0.0.0)
```



```
    ASSIGN ARRAYS FOR FOOTS OF EESSEL FUNCTIONS.
```

 ASSIGN ARRAYS FOR FOOTS OF EESSEL FUNCTIONS.
 DO 20 J F I, NJMAX
 DO 20 J F I, NJMAX
 IF ((M(J) E EQ. O) .ANL. (N(J) EQ. O)) GO TO 15
 IF ((M(J) E EQ. O) .ANL. (N(J) EQ. O)) GO TO 15
 MM = M(J) + 1
 MM = M(J) + 1
 NN=N(J)
 NN=N(J)
 S(J) = FJFOOT(MN,NN)
 S(J) = FJFOOT(MN,NN)
 SJ(J) = RJVAL(MM=NN)
 SJ(J) = RJVAL(MM=NN)
 GO TO 25
 GO TO 25
 15 S(J) = 0.0
 15 S(J) = 0.0
 SN(J) = 1.0
 SN(J) = 1.0
 25 SSO = S(J) * S(J)
 25 SSO = S(J) * S(J)
 CSSQ(J) = CMFLX(SSO.0.0)
 CSSQ(J) = CMFLX(SSO.0.0)
 2O CONTINUE
 2O CONTINUE
 CALCULATE AXIAL ACOUSTIC EIGENUALUES.
 CALCULATE AXIAL ACOUSTIC EIGENUALUES.
 FIND MAXIMUM UALUES OF L(J), M(J), AND N(J).
 FIND MAXIMUM UALUES OF L(J), M(J), AND N(J).
 KN = O
    ```
        KN = O
```

```
        LMAX = O
        MNAX=0
        NMAX = 0
        DO 30 J = 1. NJMAX:
        IF (L(J) -GT. LNAX) LNAX = L(J)
        IF (M(J) GT. MNAX) MMAX = M(J)
        IF (N(J) .GT. NNAX) NMAX = N(J)
        IF (N(J) -NE.N(1)) KN = 1
        30 CONTINUE
        LMAX = LMAX + 1
    MMAX = MMAX + 1
    C
    C
    COMPUTE EIGENUALUES.
    LO 40 J = 1. NJMAX
    LL = L(J)
    SMN = S(J)
    YAMFL = AMFL(J)
    YFHASE = FHASE{J)
    CALL EIGUAL(LL,SNN,GAMMA,ZE,YANFL,YFHASE,CKSLT)
    B(J) = CFSLT
    EC(J) = CONJG(CFSLT)
4O CONTINUE
    CALCULATE LINEAF: COEFFICIENTS.
    CALCULATE THF NUMEEF OF LINEAF CGEFFICIENTS.
    NCOEFF=4
    IF (NOZNL1 - EG• 1) NCOEFF=5
    NCFM1 = NCOEFF-1
C
    DO 100 NJ = 1. NJMAX
    DO 100 NF = 1. NJMAX
C
C ZEFO CGEFFICIENT AFFAYS.
    DO 105 KC = 1, NCCEFF
    CC(KC,NJ,NP) = (O.C.O.0)
    105 CONTINUE
C
C OFTHOGONALITY FHOFEFTY OF TANGENIIAL EIGENFUNCTIONS.
    IF (NS(NF) -NE:NS<NJ) > GO TO 100
    IF (N(NF) -NE. M(NJ)) GO TO 100
    IF (M(NJ) EQ. O) GO TO 112
    AZ = FI
    GO TO 120
    112 IF (NS(NJ) EQ. 1) GO TO 100
        AZ = 2.0 * FI
C
C OFTHOGCNALITY FFOFEFTY OF RALIAL EIGENFUNCTIONS.
    120 1F (N(NF) .NE.N(NJ)) GO TO 100
    IF (S(NF)) 125, 122, 125
    125 SGM = M(NJ) * M(NJ)
    SSQ = S(NF) * S(NF)
```

```
        SJSO = Su(NJ) * Su(NJ)
        RAL = (SSO - SGM) * SJSQ/(2.0 * SSG)
        GO TO 127
    122 RAD = 0.5
C
C CALCULATE AXIAL INTEGRALS.
    127 DO 130 NOFT = 1. 4
        CALL AXIALI (NOFT, NF, NJ, UE, ZE, ZCOME, CFSLT)
        AX(NOFT) = CFSLT
    130 CONTINUE
C
C EVALUATE FUNCTIONS AT NOZZLE END.
    ZEJ = CCOSH(CI*BC(NJ)*CZE)
    ZEF1=CCOSH(CI*E(NF)*CZE)
    ZEF2 = CI * B(NF) * CSINH(CI*B(NF)*CZE)
C
C
C
c
C
C
C
```



```
C
C
C
```



```
    100 CONTINUE
C
C NOFMALIZELINEAR COEFFICIENTS.
    DO 140 NJ = 1, NJMAX
    CNORM(NJ)=CC(1,NJ,NJ)
    LO 140 NP = 1. NJMAX
    DO 140 KC=1, NCOEFF
    CC(KC,NJ,NF) = CC(KC,NJ,NF)/CNORM(NJ)
    140 CONTINUE
    COMPUTE NONLINEAR COEFFICIENTS.
    IF (NONLIN EG. O) GO TO 402
    G1 = (CGAM - (1.0,0.0)) # (0.5,0.0)
```

C COMFUTATIONS OF BESSEL INTEGRALS WHEN ALL SERIES TEFMS HAUE THE
C SAMF RADIAL MOLE NUMBER N(J).
IF (KN •EQ. 1) GO TO 170
LO $150 \mathrm{MP}=1$, MMAX
DO $150 \mathrm{MQ}=1$, MMAX
DO $150 \mathrm{MJ}=1 . \mathrm{MMAX}$
BESI(MP,MQ,MJ) $=0.0$
BESR(MP,MQ, MJ$)=0.0$
BES3(MP.MQ.MJ) $=0.0$
$11=M F-1$
$12=M 0-1$
$L 3=M J-1$
$L M=L 1+L 2$
$L N=L 1+L 3$
$M N=12+L 3$
1F (L3.EQ.LN) .OF. (L2.EQ.LN) .OF. (LI.EQ.MN) GO TO 160
GO TO 150
160 IF (NNAX EQ O) GO TC 165
AI = RJFGOT (MP, NMAX)
$A 2=F J F O O T(N Q$, NMAX $)$
A3 $=$ FJFOOT(MJ, NMAX)
GO TO 167
$165 \mathrm{Al}=0.0$
$A 2=0.0$
$A 3=0.0$
167 CALL RADI AL ($1,11, L 2, L 3, A 1$, A2, A3. FESULT)
BESI(MF,MQ, MJ) = FESULT
CALL FADIAL (2,L1,L2,L3,A1,A2, A3, FESULT)
EESE (MP, M G, MJ) $=$ KESULT
CALL FALIAL ($3, L 1, L 2, L 3, A 1, A 2, A 3, R E S U L T)$
BES3(MF.NG.NJ) = FESULT
150 CONTINUE
C
$170 \mathrm{DO} 200 \mathrm{NJ}=1$. NJMAX
LO $200 \mathrm{NF}=1 . \mathrm{NJMAX}$
DO 200 NO $=1$. NJMAX
C
$C D 1(N J, N F, N Q)=(0.0,0.0)$
$C D 2(N J, N F, N Q)=(0.0,0.0)$
$\mathrm{CE} 3(\mathrm{NU}, \mathrm{NP}, \mathrm{NG})=(0.0,0.0)$
$C D 4(N J . N F, N Q)=(0.0,0.0)$
C
$10210 \mathrm{~J}=1.2$
CALL AZIMTL(J,NP,NQ,NJ, FESULT)
AZI(J) = RESULT
TANINT(J) $=$ CMFLX(FESLIT, O.0)
210 CONTINUE
C
IF (AZII(1)) 220. 225, 220
225 IF (AZI(2)) 220. 200. 220
C
220 IF (KN.EG. O) GO TO 222
$L 1=M(N P)$
$L 2=M(N Q)$
$L 3=M(N J)$

```
        A1=S(wP)
        AR = S(NQ)
        A3 = S(NJ)
        GO TO 244
C
    222 MF m M(NP) + 1
    MQ =M(NQ) + 1
    MJ = M(NJ) + 1
    RADINT(1) = CMFLX(EESI(MF,MO,MJ),0.0)
    RALINT(2) = CNPLX(BES2(NF,MQ,MJ),0.0)
    RADINT(3) = CMPLX(EES3(MP,MO,MJ),0.0)
C
    244 DO 240 J=1. 3
            IF (KN .EG. O) GO TO 242
            CALL RADIAL (J,L1,L2,L3,A1,A2,A3,RESLLT)
            RADINT(J) = CNFLX(RESULT:O.O)
    242 DO 240 NC = 1.4
            CALL AXIALE (J,NC,NF,NE,NJ,ZE,CFSLT)
            AXINT(NC,J) = CFSLT
    240 CONTINUE
C
C
    10 250 J = 1.4
    T1 =GI * CSSG(NF) * AXINT(J.1)
    T2 = Gl * AXINT(J.3)
    H1 = AXINT(J,1) * TANINT(1) * FALINT(3)
    D2 = AXINT(J.1) * TANINT(2) * FADINT(2)
    D3 = AXINT(J.2) * TANINT(1) * HADINT(1)
    L4 = (T2 - T1) * TANINT(1) * HADINT(1)
    DCOEF = (O.5,0.0) * (LI + LE + L3 + DA)/CNOFM(NJ)
    IF (J .EE. 1) CDI(NJ,NF,NG) = (1.0,-1.0) * DCOEF
    IF (N.EQ. 2) CL2(NJ,NF,NG) = (1.0.1.0) * DCOEF
    IF (J.EQ. 3) CD3(NJ,NF,NG)=(1.0,1.0) # ECOEF
    IF (J.EQ. 4) CD4(NJ,NF,NQ) = (1.0,-1.0) * DCOEF
    250 CONTI NUE
    200 CONTINUE
C
C
C
C
C
    402 DO 350 NJ = 1. NJMAX
        NEWJ = (2 * NJ) - 1
        NEWJ1 = NEWJ + 1
        DO 350 NP = 1. NJMAX
        NEWP=(2 * NF)-1
        NEWP1 = NEWF + 1
C
C CGEFFICIENTS GF LINEAR TEHNS.
    CCD = FEAL(CC(1,NJ,NP))
    CCI = AIMAG(CC(1,NJ,NF))
    C1(NEVIJNEWF) = CCF
    C1(NEWJ.NEWF1) = -CCI
    C1(NEWJIONEWP) = CCI
    Cl(NEWJleNEWF1)= CCR
```

```
            DC 360 KC = 1, NCFM1
            CCR = REAL.(CC(KC+1,NJ,NF))
            CCI = AIMAG(CC(KC+1,NJ,NF))
            C(KC,NEWU,NEWF) = CCF:
            C(KC,NEWJ,NELF1) = -CCI
            C(KC,NEWJI,NEWF) = CCI
            C(KC,NEWU1,NEWF1)= CCF
    360 CONTINUE
                            COEFFICIENTS OF NONLINEAF TEFMS.
            IF (NONLIN .EG. O) GC TO 350
            DO 370 NQ = 1. NJMAX
            NEWQ = (2 * NQ) - 1
            NEWO1 = NEWG + 1
            CD1R = REAL(CL1(NJ,NF,NQ))
            CIII = AIMAG(CD\(NJ,NF,NQ))
            CL2F = FEAL(CL2(NJ,NF,NQ))
            CE2I = AIMAG(CLZ(NJ,NF,NG))
            CE3F = FEAL(CD3(NJ,NF,NQ))
            CE3I = AIMAG(CL3(NJ,NF,NQ))
            CE4F = FEAL (CE4(NJ,NF,NQ))
            CE4I = AIMAG(CL4(NJ,NF,NG))
            D(NEWJ,NEWF,NEWO) = CD1F + CD2F + CD3F + CL4R
            [(NEWU,NEWF,NEWGI) = -CLII + CL2I - CL3I + CL4I
            D(NEGU,NEVF1,NEWO) = -CD1I - CI2I + CE3I + CD4I
            L(NEGJ,NEWF1,NEWG1) = - CLIF + CE2K + CL3F - CL4K
            D(NEKJI,NEWF,NEWG) = CLII + CE2I + CE3I + CL4I
            D(NEWU1,NEWF,NEWQ1) = CD1F - CL2F + CE3F - CL4P
            L(NEWJ1,NEWP1,NEWQ) = CLIF + CLEF - CE3F - CL4F
            D(NEWJ1,NEWF1,NEWG1) = - CD1II + CD2I + CD3I - CL4I
    370 CONTINUE
    350 CONTINUE
C
C
C
C
C
C
C
C
C
C
C
C
C
C LINEAR COEFFICIENTS.
    DO 42O NJ = 1. NJMAX
```

```
        DO 420 KC = 1. NCFMI
        TS(KC,NJ)=0.0
        LO 420 K = 1. NJMAX
        TS(KC,NJ) = TS(KC,NJ) + Cl(NJ,K) * C(KC,K,NF)
        4 8 0
    CONTINUE
    DO 430 NJ = 1. NJMAX
    DO 425 KC = 1. 3
    C(KC,NJ,NF) = TS(KC,NJ)
    AESUAL = ABS(C(KC,NJ,NP))
    IF (ABSVAL -GE. SM1) KMAX(KC) = KMAX(KC) + 1
    4 2 5 ~ C O N T I N U E
    IF (NOZNLI -NE. 1) GO TO 430
    C(4,NJ,NF) = TS(4,NJ)
    ABSUAL = ABS(C(4,NJ,NP))
    IF (ABSUAL -GE.SM3) KMAX(4)=KMAX(4) + 1
    430 CONTINUE
C
C
    NONLINEAR COEFFICIENTS.
    IF (NONLIN.EEQ. O) GO TO 410
    DO 415 NO = 1, NJNAX
    DO 440 NJ = 1, NJMAX
    TSQ(NJ) = 0.0
    DO 440 K=1. NJMAX
    TSQ(NJ) = TSQ(NJ) + CI(NJ,K) * L(K,NF,NQ)
    440 CONTINUE
    DO 445 NJ = 1. NJMAX
    D(NJ,NF,NQ) = TSO(NJ)
    ABSUAL = ABS(D(NJ,NP,NG))
    IF (ABSUAL GE. SNZ) KNAX(NCOEFF) = KNAX(NCOEFF) + 1
    445 CONTINUE
    415 CONTINUE
C
    410 CONTINUE
    OUTPUT.
    IF (NOUT .GE. 2) GO TO 455
    PFINTED OUTFUT
    WFITE (6.6001) (TITLE(I). I = 1. 72)
    WFITE (6,6002) GANNA, UE,KLD,ZCONB
    IF (NLFOPS .EQ. O) WRITE (6,6020)
    IF (NLFOFS EQ. 1) WRITE (6,6021)
    IF (NOZZLE -EG* O) WFITE (6.6012)
    IF (NOZNLI EEQ 1) GO TO 760
    WF1TE (6,6022)
    WRITE (6,6004)
    DO 310 J = 1. JMAX
    WFITE (6,6003) NAN:E(J), J, L(J), M(J), N(J), NS(J),
    1 S(J), SJ(J), E(J), YNOZ(J)
310 CONTINUE
    GO TO 765
760 CONTINUE
    WAITE (6,6083)
```

```
            WRITE (6,6025)
            LO 770 J = 1, JMAX
            WRITE (6,6026) NAME(J), J, L(J), M(J), N(J), NS(J),
            I
    770 CONTINUE
    765 CONTINUE
        IF (NONLIN .EQ. O) WFITE (6,6013)
C
C
    320 CONTINUE
C
C OUTFUT OF NONLINEAF COEFFICIENTS.
        IF (NONLIN .EG. O) GO TO 452
        DO 400 NJ = 1, NJMAX
        WEITE (6,6010) NJ
        WRITE (6,6011) (J. J = 1, NJMAX)
        WRITE (6,6015)
        DO 400 NF = 1, NJMAX
        WFITE (6,6009) NF, (D(NJ,NF,NQ), NQ=1, NJNAX)
        400 CONTINUE
        452 IF (NOUT .EO. O) GO TO 4
C
    455 IF (NOUT .EO. 3) GO TO 480
C
C
C
C
C
    450 CONTINUE
    DO 457 J = 1, JMAX
    WRITE (9.7006) J, YNOZ(J), B(J)
    457 CONTINUE
        IF (NOZNL 1 NE, 1) GO TO 720
        LO 730 J = 1, JMAX
        WHITE (9,7007) J. GNOZ(J)
    730 CONTINUE
    720 CONTINUE
C
    DO 460 KC= 1, 3
    WHITE (9,7003) KNAX(KC)
    LO 460 NJ = 1, NJMAX
    LO 460 NF = 1. NJMAX
```

```
            ABSVAL = ABS(C&KC,NJ,NP))
            IF (ABSVAL .GE. SM1) WHITE (9.7004) NJ,NF, C(KC,NJ,NE)
    460 CONTINUE
C
            IF (NOZNL1 NE. 1) GO TO 464
            WRITE (9,7003) KMAX(4)
            DO 462 NJ = 1. NJMAX
            DO 462 NF = 1. NJMAX
            ABSUAL = ABS(C(4,NJ,NP))
            1F (AESVAL .GE. SM3) WFITE (9.7004) NJ, NF, C(4,NJ,NF)
    462 CONTINUE
    464 CONTINUE
C
            WRITE (9,7003) KMAX(NCOEFF)
            IF (NONLIN .EQ. O) GO TO 4
            DO 470 NJ = 1. NJMAX
            DO 470 NP = 1. NJMAX
            DO 470 NO = 1. NJNIAX
            ABSUAL = ABS(D NJ,NP,NQ))
            IF (AESVAL .GE. SM2) WRITE (9,7005)NJ, NF, NQ, D(NJ,NF,NQ)
    47O CONTINUE
            GO TO 4
C PUNCHED CARD OUTPUT.
    480 FUNCH 7001 GANMA, UE, ZE, ZCOME, NDFOFS, NJMAX, NOZNLI
C
            DO 482 J = 1. JMAX
            PUNCH 7002 J, L(J), M(J), N(J), NS(J), S(J), SJ(J),
            1 NANE(J)
    482 CONTINUE
C
        DO 484 J = 1,JMAX
            FUNCH 7006 J, YNOZ(J), E(J)
    484 CONTINUE
            IF (NOZNLI .NE. 1) GO TO 740
            [O 750 J = 1. JMAX
            FUNCH 7007 J.GNOZ (J)
    750 CONTINUE
    74O CONTINUE
C
        DO 4B6 KC = 1, 3
        FUNCH }7003\mathrm{ KM,AX(KC)
        DO 486 NJ = 1, NJMIAX
        IO 486 NP = 1. NJMAX
        ABSVAL = ABS(C(KC*NJ,NF))
        IF (ABSUAL .GE. SN1) PUNCH 7004 NJ. NF, C(KC,NJ,NF)
    4B6 CONTINUE
    IF (NOZNL1. NE. 1) GO TO 490
    FUNCH }7003\mathrm{ KMAX(4)
    DO 492 NJ = 1. NJPMAX
    LO 492 NF = 1. NJMAX
    ABSUAL = ABS(C(4,NJ,NF))
    IF (ABSUAL .GE. SM3) FUNCH 7004 NJ, NF, C(4,NJ,NP)
```

```
    4 9 2 ~ C O N T I N U E ~
    490 CONTINUE
C
    PUNCH 7003 KMAX (NCOEFF)
            IF (NONLIN .EQ. O) GO TO 4
            DO 488 NJ = 1, NJN.AX
            LO 488 NF = 1, NJMAX
            DO 488 NO = 1, NUKAX
            ABSUAL = ABS(D(NJ,NF,NG))
            1F (ABSVAL .GE. SNE) FUNCH 7005 NJ, NF, NG , D(NJ,NF,NQ)
    488 CONTINUE
            GO TO 4
C
C ERROF EXIT
    5001F (JC(1)) 510, 510, 520
    510 JC(1) = ABS(JC(1))
        WRITE (6,6017) JC(1)
        GO TO 4
    520 VRITE (6,6018) JC(1)
        GO TO 4
    6 0 0 ~ C O N T I N U E ~
        WFITE (6,6027)
C
C
C
    5000 FOFMAT (72A1)
    5001 FOFMAT (4F10.0.215)
    5002 FOFMAT (515,1X,A4)
    5003 FGFNAT (I 5, 2F10.0)
    5004 FOFNAT (6I 5)
    5005 FOFMAT (2F10.0)
    6001 FOKMAT (1HI,1X.72A1/1)
    6002 FORNAT (2X,8HGANMA =,F5.2,5x,5HUE =,F5.2,5X,6HL/D =, F8.5,
    1 5X,8HZCOME = .F5.2;)
6003 FOFMAT (2X,A4,5I 5, 4F10.5,2F11.5/)
6004 FOFMAT (2X////EX, 29HNAME J L N NS,7X,SHSMN,3X,
    1 THJM(SMN),7X, 3HEFS,7X, 3HETA, 8X, 2HYF,8X, 2HYI/1)
600S FOFMAT (1H1,45H [ECOUFLEL COEFFICIENT OF B(F): C(1,J,F)/1/)
6006 FOFNAT (IHL.44H DECOUFLEL CGEFFICIENT CIF THE DERIVATIUT OF,
        1 6H E(P):,5X,8HC(2,J,F)///)
6007 FORMAT (1H1.39H DECOUFLEL COEFFICIENT OF THE KETAFLEL,
        1 2OH DEFIVATIUE GF E(F)%; 5X,8MC(3.J,F)///)
6008 FOFMAT (7X,1HF,18.911E)
6009 FOEMAT (EX//EX,13,3X,10F1E.6)
6010 FOFNAT (1HI.48H [ECGUFLEL COEFFICIENT OF E(F) * [E(G)/DT.
        1 19H.IN EQUATION FOF E(.I&,1H)/%/)
6011 FOFMAT (7X.1HG.18.9112)
6012 FOHMAT (EX,19HGUASI-STEALY NOZZLE/)
6013 FOFNAT (EX//AX, C4HLINFAF CCEFFICIENTS ONLY)
6014 FOHMAT (4X,1HJ)
6015 FOHMAT (AX, 1HF)
6017 FOFMAT (1H1,31H CUEFFLGK LETECTEL, LAST EOL = IS)
6018 FGFMAT (1H1,34H SINGULAFITY EETECTELF LAST KOK = IS)
GOZO FOFNAT (EX,"LEGFLET MOMENTUM SGLFCE NLGLECTEL"O)
```

```
6021 FOFNAT (2X, "LROFLET MGNENTUM SOUFCE INCLUEED"/"
6022 FOKMAT (2X,"NOZZLE NONLINEARITIES NEGLECTEE">)
6023 FOFMAT (2X,"NOZZLE NGNLINEARITIES INCLULEL"")
6024 FOKMAT (1H1," DECOLFLEL COEFFICIENT DUE TO NOZZLE",
    1 * NONLINEAFITIESg",5X,8HC(4,d,F)////)
6025 FORMAT (2X////2X, 29HNAME J N N N N,7X, 3HSMN, 3X,
    1 7HJM(SMN),7X,3HEFS,7X, 3HETA,8X,2HYF,88, 2HYI,
    2 8X,2HGF,8X,2HGI/1)
6026 FOFMAT (2X,A4,5I5,4F10.5,4F11.5/)
6027 FORNAT (1H1)
7001 FORMAT (4F10.5,315)
7002 FOFNAT (515,2F10.5,1X,A4)
7003 FORMAT (15)
7004 FOFMAT (215,F15.6)
7005 FOFMAT (315,F15.E)
7006 FOFMMAT (I 5, 4F 10.5)
7007 FOFNiAT (I 5, 2F10.5)
    END
```

SUEROUTINE EIGUAL(L, SNN, GAMMA,ZE,YANFL,YFHASEDFESUTT)

IF (YAMFL) $5,60,5$
CALCULATE CONSTANTS.
5 FHASE $=$ YFHASE $\# F I / 180.0$
ALFHA $=$ YAMFL $*$ COS(FHASE)
BETA = YAMFL * SINくFHASE)
GSO = GAMMA * GAMMA
ABSO = (ALFMA * ALPHA) - (EETA * EETA)
ALBET $=$ ALFHA $\#$ BETA
SMNSO $=$ SMN * SMN
ASSIGN INITIAL GUESS FOF EIGENUALUE.
IF (L E EQ. O) GC TO 45
$\mathrm{FL}=\mathrm{L}$
PHI $=$ FI/2.0 + FHASE
$X V=\mathrm{FL} \neq \mathrm{FI} / 2 \mathrm{E}$
$A=Y A M F L / Z E$
$X 0=X M+A * C O S(P H I)$
YO = A*SIN(FHI)
GO 104%
45 CONTINUE
YFHI $=$ YPHASE
IF (YFHASE -GT. 180) YFHI = YFHASE - 180. IF (YPHASE -LT. O) YFHI = YPHASE + 180.
IF (YAMPL .LT. 0.1) GO TC 110
IF (YAMPL -LT. 0.4) GO TO 120
IF. (YANFL LTT. 0.8) G0 TO 150
IF (YAMPL .LT. 1.2) GO TO 160
$X O=1.0 \neq Y A M F L$
60 TO 170
$160 \times 0=1.25 * \mathrm{YAMFL}$

```
    170 IF (YFHI .LE. 30.) TANFSI = 0.0.4
    1F (YPHI.GT.30. .AND. YFHI.LE.60.) TANFSI = -0.2
    IF (YFHI.GT.60. .AND. YFHI.LE.120.) TANFSI = 0.0
    IF (YFHI.GT.120. .AND. YFHI.LE.150.) TANFSI = 0.2
    IF (YFHI .GT. 150.) TANPSI = 0.4
    GO TO 140
    150 X0=2.0 = YAMFL
        IF (YFHI -LE 30.) TANFSI = -0.6
        IF (YFHI.GT.30. .AND. YFHI.LE.60.) TANPSI = -0.3
        IF (YFHI.GT.60. .AND. YPHI.LE.120.) TANFSI = 0.0
        IF (YFHI.GT.120. .AND. YFHI.LE.150.) TANFSI = 0.3
        IF (YFHI .GT. 150.) TANPSI = 0.6
        GO TO 140
    110 XO = 5. * YANFL
    GO TO 130
    120 KO=3. * YAMFL
    130 CONTINUE
    IF (YFHI -LE. 30.) TANFSI = -0.75
    IF (YFHI.GT.30. .ANL. YFHI.LE.60.) TANFSI = -0.4
    IF (YFHI.GT.60. .AND. YPHI.LE.120.) TANFSI = 0.0
    IF (YPHI.GT.I20. *AND. YFHI.LE.I50.) TANPSI = 0.4
    IF (YPHI .GT. 150.) TANFSI = 0.75
    140 CONTINUE
    YO = XO * TANFSI
C
C ITERATION USING NEWTONS METHOD FOK A SYSTEM OF TWO EGUATIONS
C IN TWO UNKNOWNS.
47 L1 = 0
    x=x0
    Y = YO
    4O CALL FCNS(X,Y,ZE;F,G,FX,FY,GX,GY)
        IF (LI - EQ. 40) GO TO 50
        RJFG = (FX * GY) - (GX * FY)
        IF (RJFG) 20, 30, 20
    20 DFLTAX = {-F * GY + G * FY)/FiJFG
        DELTAY = (-G * FX + F * GX)/FJFG
        LI = L1 + 1
    X = X + DELTAX
    Y =Y + DELTAY
C
C TEST FOR CONUEFGENCE.
    IF (AES(DELTAX) GE. EFF .OR. ABS(DELTAYJ .GE. ERF) GO TO 40
    GO TO 10
C WAKNING MESSAGES
        30 WFITE (6,6005)
            GO TO 10
        50 WFITE (6,6006)
            GO TO 10
C
C CASE OF HAFD WALL (YAMFL = 0).
    60 RL = L
```

```
                            X = FL # P1/ZE
                            Y=0.0
    10 RESULT = CMFLX(X,Y)
    FOEMAT SPECIFICATIONS.
    6005 FOPMAT (2X//2X, 1GHJACOEIAN IS ZEHO//)
    6006 FORMAT (2X//2X,35HFAILED TO CONUEJGE IN 40 ITEFATIONS//)
        RETURN
        END
```

SUBROUTINE FCNS (X,Y,ZE,F,G,FX,FY,GX,GY)

```
        \(I=1\)
        ARGX \(=\) ZE \(* X\)
        ARGY \(=\mathrm{ZE} * Y\)
    \(10 S X=\) SIN (ARGX)
        \(C X=C O S(A R G X)\)
        SHY \(=\) SINH (ARGY)
        \(\mathrm{CHY}=\mathrm{COSH}(A R G Y)\)
        IF (I EQ. 2) GO TO 20
        \(S X S Q=S X * S X\)
        CXSQ \(=\mathbf{C X} * \mathbf{C X}\)
        SHYSQ \(=\) SHY * SHY
        CHYSQ \(=\) CHY * CHY
        ARGX \(=2.0 *\) ARGX
        ARGY \(=2.0 *\) ARGY
        \(I=2\)
    GO TO 10
```

C
C
$20 \mathrm{FF}=(\mathrm{SXSQ} * \mathrm{CHYSQ})-(C X S Q * S H Y S Q)$
$\mathbf{G G}=(C X S Q * C H Y S Q)-(S X S Q * S H Y S Q)$
$\mathrm{HH}=0.25 * S X * S H Y$
$\mathrm{FFX}=\mathrm{ZE} * \mathrm{SX} * \mathrm{CHY}$
GGY $=$ ZE * CX * SHY
FFY $=-$ GGY
GGX $=-F F X$
HHX $=0.5 *$ GGY
$H H Y=0.5 *$ FFX
COMPUTE FACTORS
$X Y S Q=(X * X)-(Y * Y)$
$X Y=X * Y$
SMNXY $=$ SMNSQ $+X Y S Q$
$F 1=(A B S Q * S M N X Y)-(4.0 * \operatorname{ALBET} * X Y)$
$\mathrm{F} 2=(\mathrm{ALBET} * \operatorname{SMNXY})+(A B S Q * X Y)$
$G I=(A B S Q * S M N X Y)+(4.0 * A L B E T * X Y)$
$\mathrm{FXI}=(2.0 * X * \mathrm{ABSQ})-(4.0 *$ ALBET $* Y)$
FXZ $=(2.0 * X *$ ALBET $)+(A B S Q * Y)$
FYI $=(-2.0 * Y * A B S Q)-(4.0 * A L B E T * X)$
$F Y 2=(-2.0 * Y * A L B E T)+(A B S Q * X)$

```
GX1=(2.0 * X * ABSQ) + (4.0 * ALBET * Y)
GY1 =(-2.0*Y * ABSQ) + (4.0 * ALBET * X)
```

```
F}=(XYSQ*FF)-(4.0*XY * HH
1+GSO * ((F1 *GG) + (4.0*F2 * HH))
G = (XYSQ * HH) + (XY * FF)
1 +GSQ * ((F2 * GG) - (GI * HH))
```

COMPUTE THE PARTIAL DERIVATIVES OF F AND G
$F X=(2.0 * X * F F)+(X Y S Q * F F X)$
$1-4.0 *((Y * H H)+(X Y * H H X))$
$2+\mathrm{GSQ} *((\mathrm{FXI} * \mathrm{GG})+(F 1 * G G X)$
$3+(4.0 * \mathrm{FXZ} * \mathrm{HH})+(4.0 * \mathrm{FZ} * \mathrm{HHX}))$
$F Y=(-2.0 * Y * F \bar{F})+(X Y S Q * F F Y)$
$1-4.0 *((X * H H)+(X Y * H H Y))$
$2+G S Q *((F Y 1 * G G)+(F 1 * G G Y)$
$3+(4.0 * \mathrm{FYZ} * \mathrm{HH})+(4.0 * \mathrm{FE} * \mathrm{HHY})$
$\mathbf{G X}=(2.0 * X * H H)+(X Y S Q * H H X)$
$1+(Y * F F)+(X Y * F F X)$
$2+G S Q *((F X Z * G G)+(F 2 * G G X)$
$3-(G X 1 * H H)-(G 1 * H H X))$
$\mathbf{G Y}=(-2 \cdot 0 * Y * H H)+(X Y S Q * H H Y)$
$1+(X * F F)+(X Y * F F Y)$
$2+G S Q *((F Y Z * G G)+(F 2 * G G Y)$
$3-(G Y 1 * H H)-(G 1 * H H Y))$
RETUFN
END

SUBROUTINE AXIALI (NOPT,NF,NJ,UE,ZE,ZCOME, AESULT)
CAL CULATE INTEGRALS BY MEANS OF ANALYTICAL EXFRESSI ONS FOR
NOFT $=1$ AND NOFT $=2$.
$A R G=(B F+B J) * C I$
MAG $=$ CABS (ARG)
IF (MAG) 20, 25, 20
20 T1 = CSINH(ARG*CZE)/AKG
GO TO 30
$25 \mathrm{TI}=\mathrm{CZE}$
30 AKG = (BF - BJ) * CI
MAG $=$ CABS $A R G)$
IF (MAG) 35, 4C, 35
$35 \mathrm{~T} 2=\operatorname{CSINH}(\mathrm{ARG} * \mathrm{CZE}) /$ ARG
GO 1045
40. $\mathrm{T} 2=\mathrm{CZE}$
45 HESULT $=(T 1+T 2) *(0.5,0.0)$
IF (NOPT \&E. 2) BESULT $=-\mathrm{E}(\mathrm{NF}) * E(N F) *$ RESULT
GO TO 100
C
this subroutine cal culates the integral ouer the interval
($0, Z E$) of the following functions accorinng to the value
OF NOPT
NOFT $=1 \quad Z(N F) * Z C(N J)$
NOFT $=2 \quad$ ZFF(NF) * ZC(NJ)
NOPT $=3 \quad \mathrm{UF} * \mathrm{Z}(\mathrm{NP}) * Z \mathrm{C}(\mathrm{NJ})$
NOFT $=4 \quad U * Z F(N F) * Z C(N J)$
IN THE ABOVE EQUATIONS:
Z(NF) IS THE AXIAL ACOUSTIC EIGENFUNCTION OF INDEX NF.
Z(NJ) IS THF AXIAL ACOUSTIC EIGENFUNCTION OF INDEX NU.
ZC IS THE COMPLEX CONJUGAIF OF THE AXIAL EIGENFUNCTION.
ZP AND ZFF AFE THE FIRST AND SECOND DEFIVATIVES OF THE
AXIAL EIGENFUNCTIONS RESPECTIUELY.
U IS THE STEADY STATE VELOCITY DISTRIBUTION AND UF IS ITS
AXIAL DERIVATIVE.
the velocity listribution is comfuted ey the sueroutine ubafo
PARAMETER MX $=5$
REAL MAG
COMPLEX CI, CZE, BP, BJ, T1, T2, CH, F1, FE, F3, CZ, AKG,
1 S1, S2, S3, RESULT, FUNCT(500), B(MX)
COMMON B
$C I=(0.0,1.0)$
$C Z E=$ CMFLX(ZE, O.O)
$B P=E(N F)$
$\mathrm{EJ}=\mathrm{CONJG}(\mathrm{B}(\mathrm{NJ}))$
IF (NOFT .GT. 2) GO TO 50
MF (NAG) 35. 4 C35
$35 \mathrm{~T} 2=\mathrm{CSINH}(\mathrm{ARG} * \mathrm{CZE}) /$ ARG

```
C
C
C COMPUTE STEP SIZE FOR SIMPSON INTEGRATION.
    50 N= 50
        RN = N
    RESULT = {0.0,0.0)
    IC = 2COMB
    IC=2-IC
C
    DO 90 J = 1, IC
    IF (J .EQ. 1) H = 2COMB * 2E/RN
    IF (J.EQ. 2) H= (1.0 - ZCOMB) * ZE/RN
    IF (J.EQ. 1) ZO = 0.0
    IF (J.EQ. 2) ZO=ZCOMB * ZE
    NP1 = N+1
    CH}=\textrm{CMPLXX(H,O.O)
C
C COMPUTE INTEGRANDS.
    DO 60I = 1, NP1
    STEP = I - 1
    Z = (STEP * H) + ZO
    IF ((I.EQ.1) .AND. (J.EQ.2)) Z = Z + H/100.0
    IF (NOPT -EQ. 3) CALL UBAR(2, UE,ZE,ZCOMB,Z,F)
    IF (NOPT -EQ. 4) CALL UBAR(1, UE, ZE,ZCOMB,Z,F)
    F1 = CMPLX(F,0.0)
    CZ = CMPLX(Z;0.0)
    ARG = CI * BP
    IF (NOPT .EQ. 3) F2 = CCOSH(ARG*CZ)
    IF (NOPT -EQ. 4) F2 = ARG * CSINH(ARG*CZ)
    ARG = CI * BJ
    F3 = CCOSH(ARG*CZ )
    FUNCT(I) = F1 * F2 * F3
    6 0 \text { CONTINUE}
c
C PERFOFM SIMPSON INTEGRATION.
    NM1 = N - 1
    S1 = FUNCT(1) + FUNCT(NP1)
    S2 = (0.0.0.0)
    S3=(0.0,0.0)
    DO 70 I = 2,N, 2
    S2 = S2 + FUNCT(I)
    70 CONTINUE
    DO 80 I = 3, NM1, 2
    S3 = S3 + FUNCT(I)
        8 0 ~ C O N T I N U E
            RESULT = RESULT +
        1 CH * (S1 + (4.0,0.0)*S2 + (2.0,0.0)*S3)/(3.0,0.0)
    90 CONTINUE
C
    100 CONTINUE
        RETURN
    END
```

SUBFOUTINE AXIALZ(NOFT,NCONJ,NP,NQ,NJ,ZE, FESULT)

THIS SUBROUTINE CALCULATES THE INTEGRAL OUEF THE INTEFVAL (O, ZE) OF THE FOLLOWING FUNCTIONS ACCORDING TO THE VALUES OF NOFT AND NCONJ

```
FOR NCONJ = 1 AND
```

NOPT $=1 \quad Z(N F) * Z(N Q) * Z C(N J)$
NOPT $=2 \quad Z P(N F) * Z F(N Q) * Z C(N J)$
NOFT $=3 \quad Z F P(N F) * Z(N Q) * Z C(N J)$
FOR NCONJ $=2$ AND
NOPT $=1 \quad Z(N F) * Z C(N Q) * Z C(N J)$
NOPT $=2 \quad 2 P(N P) *$ ZFC(NQ) * ZC(NJ)
NOPT $=3$ ZPP(NP) * ZC(NG) * ZC(NJ)
FOF NCONJ $=3$ AND
NOPT $=1 \quad Z C(N P) * Z(N Q) * Z C(N J)$
NOPT $=2 . \quad Z F C(N F) \neq 2 F(N G) * 2 C(N J)$
NOPT $=3 \quad$ ZFPC(NP) * Z(NG) * ZC(NJ)
FOH NCONJ $=4$ AND
NOPT $=1$ ZC(NP) * ZC(NG) * ZC(NJ)
NOPT $=2$ ZPC(NF) * ZFC(NG) $2 \mathrm{ZC}(N J)$
NOFT $=3$ ZFFC(NF) * ZC(NQ) * ZC(NJ)
IN THE ABOVE EQUATIONS:
Z(NP), Z(NQ). AND Z(NJ) AFE THE AXIAL ACOUSTIC EIGENFUNCTIONS
AND NP, NQ, AND NJ AFE THEIF INDICES.
ZF IS THE FIGST DERIVATIUE GF THE AXIAL EIGENFUNCTIONS.
ZFP IS THE SECOND DEFIVATIVE OF THE AXIAL EIGENFUNCTIONS.
ZC AND ZFC ARE COMFLEX CONJUGATES OF Z AND ZF HESFECTIVELY.
PARAMETER MX $=5$
REAL MAG
COMPLEX CI, CF, CZE, EF, BC, BJ, SUM, FESUL,
1 ARG(4), FUNCT(4), B(NX)
COMMON B
CALCULATE INTEGFALS BY MEANS OF ANALYTICAL EXFEESSIONS.
$C I=(0.0 .1 .0)$
$C F=(0.25,0.0)$
$C Z E=C M F L X(Z E, 0.0)$
$E P=E(N P)$
$B Q=B(N Q)$
$B J=C O N J G(B(N J))$
1F ((NCONJ.EG.2) .OR. (NCONJ.EQ.4)) $B Q=$ CONJG(EQ)
IF (NCONJ.GT. 2) $B F=C O N J G(E F)$
$A R G(1)=(B F+E Q+B J) * C 1$

```
    ARG(2)=(BP + BQ - BJ) * CI
    ARG(3)=(BP - BQ + BJ) * CI
    ARG(4) = (BP - BQ - BJ) * CI
    DO 10 J = 1,4
    MAG = CABS(ARG(J))
    IF (MAG) 12, 15, 12
12 FUNCT(J) = CSINH(AFG(J)*CZE)/ARG(J)
    GO TO 10
15 FUNCT(J) = CZE
10 CONTINUE
    IF (NOPT .EQ. 2) GO TO 30
    SUM = FUNCT(1) + FUNCT(2) + FUNCT(3) + FUNCT(4)
    RESULT = CF * SUM
    IF (NOFT -EQ. 3) RESULT = -BP * BP * RESULT
    GO TO 50
30 SUM = FUNCT(1) + FUNCT(2) - FUNCT(3) - FUNCT(4)
    RESULT = -CF * BP * BQ * SUM
50 CONTINUE
    RETURN
    END
```

SUBFOUTINE AZIMTL (NOPT,NPDNQ,NJ, FESUET)

C
PARAMETER MX $=5$ DIMENSION NFCN(3), SG(2)
COMMON /ELK2/ M(MX), NS(MX)

C
C
C
C
c
C
C
C
C

FESUL $=0.0$
FACTOF $=1.0$
$P I=3.1415927$
C DISTINGUISH BETWEEN SINES AND COSINES. DO $10 \mathrm{Kl}=1.3$ NFCN(K1) $=1$
10 CONTINUE
IF (NS(NJ).EG.2) NFCN(3) $=2$
IF (NOFT - EQ. C) GO TO 20
IF (NS(NF).EG-2) NFCN(1) $=2$
$1 F(N S(N Q) \cdot E \theta \cdot 2) N F C N(2)=2$
GO TO 30
20 IF (NS(NP).EQ.1) NFCN(1) $=8$
IF (NS(NQ).EQ.1) NFCN(2) $=2$
DO $40 \mathrm{KI}=1.2$
$S G(K 1)=1.0$
IF (NFCN(K1) .EG. 1) SG(K1) $=-1.0$
40 CONTINUE
FACTOF $=$ SG(1) * SG(2) * M(NF) * M(NG)
C
30 NSUM $=0$
LO $50 \mathrm{Ki}=1.3$
NSUM $=$ NSLM + NFCN(K1)
50 CONTINUE:
THIS SUBROUTINE CALCULATES THE INTEGFAL OUER THE INTERUAL. (O. 2*PI) OF THE FOLLOWING FUNCTIONS ACCOKDING TO THE VALUE OF NOPT

NOFT $=1$ TH(NF) * TH(NG) $=$ TH(NJ)
NOPT $=2$ THP(NP) $=$ THP(NQ) $=$ TH(NJ)
IN THE ABOUE EQUATIONS:
TH(NF), TH(NG), AND TH(NJ) AEE THE TANGENTIAL EIGENFUNCTI ONS AND NF, NG. AND NJ AFE THEIF INUICES.
THP IS THE DEFIUATIVE OF THE TANGENTIAL EIGENFUNCTIONS.
IF NS $=1 \quad$ TH $=$ SIN(M*THETA)
$1 F N S=2 \quad T H=\operatorname{COS}(M \neq T H E T A)$


```
        IF ((NSUM - EQ. 3) -OR. (NSUM -EQ. 5)) GO TO 60
        IF (NSLM . EQ. 4) GO TO 70
        IF (NSUM -EQ. 6) GO TO 80
C
    70 KOPT = 2
        IF (NFCN(1) EQ.2) GO TO 72
        GO TO 74
    72 LL = M(NP)
        MM =M(NQ)
        NN = M(NJ)
        GO TO 90
    74 IF (NFCN(2) - EQ. 2) GO TO 76
        GO TO 78
    76 LL = M(NQ)
        MM = M(NP)
        NN = M(NJ)
        GO TO 90
    78 LL = M(NJ)
        MM = M(NP)
        NN = M(NQ)
        GO TO 90
C
    80 KOPT = 1
        LL = M(NP)
        MM = M(NQ)
        NN = M(NJ)
C
C
90 IF ((LL.NE.O) AND. (MM.NE.O) AND. (NN.NE.O)) GO TO 1O1
        GO TO 103
101 LM = LL + MM
        LN =LL + NN
        MN = MM + NN
        IF ((NN.EQ.LM).OR. (MM.EQ.LN)) FESULT = PI/2.0
        IF (LL .EQ. MN) GO TO 102
        GO TO 104
    102 IF (KOPT EQ. 1) RESULT = PI/2.0
        IF (KOPT EQ. 2) RESULT = - FI/2.0
        GO TO 104
103 IF ((LL.EQ.O) .AND. (MM.EQ.O) .AND. (NN.EQ.O)) GO TO 105
        IF ((KOPT.EQ.1) .AND. (NN.EQ.O) .AND. (LL.EQ.MM)) RESU.T = PI
        IF ((KOPT.EQ.1) AND. (MM.EQ.O) -AND. (LL.EQ.NN)) RESULT = PI
        IF ((LL •EQ. O) .AND. (MM •EQ. NN)) RESULT = PI
        GO TO 104
105 IF (KOPT .EQ. 1) RESULT = 2.0 * FI
104 CONTINUE
        RESULT = FACTOR * RESULT
    60 CONTINUE
        RETURN
        END
```


SUBROUTINE RADI AL (NOPT,L,M,N,A,B,C,RESULT)

 THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
 (0,1) OF THE FOLLOWING PRODUCTS OF THREE BESSEL FUNCTIONS:
 \(N O P T=1 \quad J L(A * R) * J M(B * R) * J N(C * R) * R\)
 \(N O P T=2 \Omega(A * R) * J M(B * R) * J N(C * R) / R\)
 \(\operatorname{NOPT}=3\) JPL \((A * R) * J P M(B * R) * J N(C * R) * R\)
 JL IS THE BESSEL FUNCTION OF FIRST KIND OF ORDER L
 JPL IS THE DERIVATIVE OF JL WITH RESPECT TO R
 L. \(M\), \(N\) ARE NON-NEGATIUE INTEGERS
 \(A, B, C\) ARE REAL NUMBERS
 DIMENSION FUNCTCZOOS
 DOUELE PRECISION DN, DH, DSTEP, DRs ARGI, ARG2, ARG3,
 1
 2
 \(\mathrm{NN}=100\)
 \(\mathrm{DN}=\mathrm{NN}\)
 \(\mathrm{DH}=1.0 / \mathrm{DN}\)
 \(\mathrm{NP}_{1}=\mathrm{NN}+1\)
 DO \(10 \mathrm{I}=1, \mathrm{NP} 1\)
 DSTEP = I - 1
 \(\mathrm{DR}=\mathrm{DH} * \mathrm{DSTEP}\)
 ARG1 \(=A * D R\)
 ARGR \(=\mathrm{B} * \mathrm{DR}\)
 ARG3 \(=\mathbf{C} * \mathrm{DR}\)
 C
CALL JBES(N,ARG3,BES3,5500)
IF (NOPT •EQ. 3) GO TO 101
CALL JBES(L,ARG1,BES1,\$500)
CALL JBES (M,ARG2,BES2,\$500)
GO TO 102
101
IF (L EEQ. O) GO TO 103
CALL JBES (L+ 1, ARG 1, BESH, $\$ 500$)
CALL JBES (L-1,ARG 1,BESL, 5500)
BESI = A * (BESL -BESH$) / 2.0$
GO TO 104
103 CALL JEES (1, ARG1,BES1,9500)
BES1 $=-$ EES 1 * A
104 1F (M •EO. O) GO TO 105
CALL JBES (M+1, AEG2, EESH, $\$ 500$)
CALL JBES (M-1,ARG2,EESL, $\$ 500$)
BES2 $=\mathrm{B} *($ EESL -BESH$) / \mathrm{C} .0$
GO TO 102

```
    105 CALL JBES(1,ARG2,BES2,$500)
    BES2 = -BES2 * B
    102 PROD = BES1 * BES2 * BES3
C
    IF (NOPT EQ.2) GO TO 110
    FUNCT(I) = PROD * DR
    GO TO 10
    110 IF (I EQ. 1) GO TO 111
    FUNCT(I) = PROD/DR
    GO TO 10
    111 BESLIM = 0.0
    IF (CL.EQ.1) - AND. (M.EQ.O) .AND. (N.EQ.O)) BESLIM = A/2.O
    IF ((L.EQ.0) .AND. (M.EQ.1) .AND. (N.EQ.O)). BESLIM= B/2.0
    IF ((L.EQ.O) AND. (M.EQ.O) AND. (N.EQ.1)) BESIMM=C/2.0
    FUNCT(I) = BESLIM
        10 CONTINUE
C
    NM1 = NN - 1
    S1 = FUNCT(1) + FUNCT(NP1)
    S2 = 0.0
    S3 = 0.0
    DO 20 1 = 2, NN, 2
    S2 = S2 + FUNCT(I)
    2O CONTINUE
    DO 30 I = 3, NMI; 2
    S3 = S3 + FUNCT(I)
    30 CONTINUE
    RESULT = DH * (SI + 4.0*S2 + 2.0*S3)/3.0
    GO TO 501
    500 URITE (6, 6000)
    6000 FOFMAT (1H1, 10HERROR JBES)
    501 CONTINUE
            RETURN
            END
```

SUBROUTINE UBAR (NOPT, UE, ZE, ZCONB,Z,RESULT)

C

 cAPPENDIX C
PROGRAM LCYC3D: A USER'S MANUAL

Program LCYC3D calculates the nonlinear stability characteristics of the combustion chamber described in Fig. 3 by numerically integrating the system of differential equations given by Eq. (20). Except for the term $C_{4}(j, p) e^{i k} p^{\omega t}$, this equation is the same as Eq. (12) of Ref. 11 , whose solution is carried out by the program LCYC3D described in detail in Appendix D of Ref. ll. The present computer program is very similar to Program LCYC3D of Ref. 11 in its general structure, input and output. Hence in this user's manual, only the complete listing of the present program, along with a precise description of the necessary input, is given; for details about the program (including input) one is referred to Appendix D of Ref. 11.

No. of
Cards
1
Iocation
1-5
$6-10$

1

1
1-72

1-10
11-20
21-30

31-40

Type
I

I

A

F
F

F

F

Input Item

NOUTCF

NOZNI2

TITIE

EN
TAU
H

TSTART

Comments

If 0: coefficients are not printed out
If l: only the linear coeff cients are printed out
If 2: all the coefficients are printed out

If 0 : nozzle nonlinearities not included If l: nozzle nonlinearities included

Title used to label the plots

Interaction index, n
Time lag, $\bar{\top}$
Time increment for numerical integration

Time at which output of solution begins

No. of Cards	Iocation	Type	Input Item	Comments
	41-50	F	TQUIT	Time at which output of solution ends
1	1-5	I	NTEST	If 0 : compute transient behavior If l: compute limit-cycle behavior
	6-10	I	JMODE	Identifies the amplitude function used to test for limit-cycles
	11-15	I	NLOC	Determines location for wall pressure maxima and minima
				If 1: $z=0, \quad \theta=0^{\circ}$ If 2: $z=0, \quad \theta=45^{\circ}$ If $3: z=0, \theta=90^{\circ}$
	16-20	I	NTERMS	Number of amplitude functions given initial values
	21-25	I	NPZ	Determines how secondary instability zones are handled If 0: all instability zones included.
				lif 1: secondary zones eliminated
	26-30	I	NOUT	Determines output If 0 : printed output only If $1 \leq$ NOUT ≤ 6 : both printed and plotted output; NOUT being the number of the last plot produced
	31-35	I	ICIYPE	If l: amplitudes selected to satisfy the nozzle boundary condition If 2: amplitudes selected to eliminate the extraneous solution

No. of Cards	Iocation	Type	Input Item	Comments
1	1-10	F	YHI (1)	Maximum ordinate for pressure plots
	11-20	F	YHI (5)	Maximum ordinate for velocity plots
	21-30	F	$Y L A B(1)$	Interval for ordinate labeling of pressure plots
	31-40	F	YTAB (5)	Interval for ordinate labeling of velocity plots
1	1-5	I	$\operatorname{ITICY}(1)$	Number of ordinate tic marks for pressure plots
	6-10	I	$\operatorname{ITICY}(5)$	Number of ordinate tic marks for velocity plots
	11-15	I	NFIRST	Gives the number of the first plot produced
	16-20	I	NOMIT	If 0: time-history plot produced If l: time-history plot omitted
1	1-5	I	MDPIOT (1)	If 0: plot of the first mode amplitude not produced If l: plot of the first mode amplitude is produced
	6-10	I	MDPLOT(2)	If $0:$ plot of the second mode amplitude not produced If 1 : plot of the second mode amplitude is produced
	11-15	I	MDPLOT (3)	If 0: plot of the third mode amplitude not produced If l: plot of the third mode amplitude is produced

No, of
Cards

Iocation Type	Input Item
$16-20$	Comments
	If 0: plot of the pressure amplitude of the first mode not produced
If l: plot of the pressure	
amplitude of the first mode	
is produced	

The next card is necessary only if plot of any mode-amplitude is desired.

1	1-10	F	YHIMD	Maximum ordinate for modeamplitude plots
	11-20	F	YLABMD	Interval for ordinate labeling of mode-amplitude plots
	21-25	I'	ITICMD	Number of ordinate tic marks for mode-amplitude plots
NTERMS	1-5	I	J	Identifies complex amplitude function
	6-15	F	AST	Amplitude of $\sin (\omega t)$ terms in initial conditions
	16-25	F	ACT	Amplitude of $\cos (\omega t)$ terms in initial conditions

The next card is necessary only if ICTYPE $=2$.

$1-10$	F	DAMP	
	$11-20$	F	FREQ

```
*************** FKOGFAM LCYC3D
THIS FHOGFAN CALCLLATES THE NONLINEAF EEHAVIOF OF TRANSUEFSE, AXIAL, OF COMBINEI LONGITUIINAL-TFANSUEFSE INSTAEILITIES IN A CYLINDFICAL COMEUSTION CHANEEF WI TH UNIFOFM FFOPELLANT INJECTION, DISTFIBUTED CONEUSTION PFOCESS, ANL A CONUENTICNAL NOZZLE THE CONEUSIION FFOCESS IS DESCRIBED EY CHOCCG*S TIME-LAG MOLEL. EOTH THANSIENT AND LIMIT-CYCLE SOLUTIONS AKE CALCULATEL.
THE FOLLOWING INFUTS AFE FEGUIEED
(1) THE CONTEOL NUMEERS, NOLTCF AND NOZNLQ. (2) THE COEFFICIENTS FFOM FFOGFAM COEFFS3L. (3) THE DATA DECK.
NOUTCF LETEFMINES PRINTUUT OF COEFFICIENTS.
IF NOUTCF = O COEFFICIENTS AFE NOT FFINTEL OUT.
IF NOUTCF = 1 LINEAR COEFFICIENTS GNLY ARE FFINTED OUT.
IF NOUTCF \(=2\) ALL COEFFICIENTS AFE FFINTED OUT.
NOZNL2 LETEPMINES IF THE NOZZLE NONLINEAFITIES AFE TO EE INCLULED•
IF NOZNLR \(=0\) NOZZLE NONLINEAFITIES NOT INCLUDED.
IF NOZNLQ \(=1\) NOZZLE NONLINEARITIES INCLUDED.
THE DATA DECK CONTAINS THE FOLLOWING INFOFMATION:
TITLE OF THE FUN.
EN IS THE INTEKACTION INLEX.
TAU IS THE TIME LAG.
H IS THE INTEGFATION STEP SIZE. TSTAFT IS THE TIME AT WHICH OUTFUT STAFTE. TQUIT IS THE TIME AT WHICF CONFUTATICNS GFE TEFMINATELE
NTEST IS TASK CCNTROL NLMEEF:
IF NTEST \(=0\) COMFUTE TFANSIENT EEHAVIOF.
IF NTEST = 1 CGNFUTE THELIMIT-CYCLE EFAAVIOF.
JMODE: IS THE; MGLIE-AMFLITULE USEL; TC TEST FOF LINIT-CYCLES. NLCC DETERMINES THE LOCATIOA OF THE WALI. FRESSUKE MAXIMA
ANL MININA:
```



``` NTEFMS IS THE NUNBEF OF TEKMS GIVEN INITIAL UALUES. NFZ UETEKMINEG HOH SECONDAFY STAEILITY ZONES (FHANTON ZONESS AFE HANLLEL-
IF NFZ \(=0\) FHANTON ZONES ALE HETAINED.
IF AFZ \(=1\) FHANTON ZONES AFE ELIMINATEL.
NOUT IS THE OUIFUI CONTFOL NUNEEF.
IF NOUT = 0 FRINTEL GUTFUT ONLY.
IF NOUT \(\rightarrow 0\) BOTH FFINTED ANS FLOTTET OUTFUT, NOUT
DETEFMINES THE NUMEEF OF THE LAST HLOT
PROIJCEL.
ICTYFE IS THE INITIAL CONLITION CONIFOL NUMEEIIZ
IF ICTYFE \(\quad 1\) ANFLITULES SELECTEL TO SATISFY
```


IF ICTYFE $=2$
 THE NOZZLE BOUNL:AFY CONEITION. AMFLITUDES SELECTEL TO ELIMINATE THE EXTKANEOUS SOLUTION.

DATA FOK SETTING UP FLOTS:

YHI (1) IS THE MAXIMLM OELINATE FOR FFESSUKE FLOTS. YHI (5) 15 THE MAXIMUM OFLINATE FOR UELOCITY FLDTS. NOTE THE GEDINATE SCALES FOR FEESSUHE AND UELOCETY FLOTS ARE SYMMETFIC AEOUT ZEFO.
YLAB IS THE INTEFVAL FOF OFDINATE LABELING FOF AEGUE FLOTS.
ITICY IS THE NUMEER OF ORLINATE TIC MGFKS FGF AEOVE FLOTS. NOTE: 1 TICY SHOULD EE NEGATIUE FOF FGESSURE AND VELOCITY HOTS TO OETAIN CENTERLINE.
NFIRST IS THE NUMEER OF THE FIFST FLOT FFOLUCED. NOVIT DETEFMINES WHETHER AMFLITUDE FLOT IS FRODUCED IF NOMIT $=0$ AMFLI TUDE FLOT IS FHOLUCED. IF NOMIT $=1$ AMFLITUDE FLOT IS OMITTED.

MLFLOT LETEEMINES $1 F$ THE FLOT OF THE MOLE-AMFLITUDE $1 S$ EEGULKEL. IF MDFLOT = O FLOT NOT FEQUIFED. IF MDPLOT $=1$ FLOT REQUIRED.

YHIME IS THE MAXINUM OFDINATE FOR AMFLITULE FLOTS.
YLAEMD IS THE INTEFVAL FOR GFEINATE LAEELING OF AMFLITULE FLOTS.
ITICML IS THE NUMEEK OF OKDINATE TIC MAFKS. NOTE: ITICMD SHOULD BE NEGATIVE TO OBTAIN THE CENTEFLINE.

INITIAL AMFLITULES OF F-FUNCTIGNS (FEMAINING CAFDS)
AS(J) IS THE AMPLITULE OF THE SINE TERM. AC(J) IS THE AMFLITULE OF THE COSINE TEFM.

DAMP AND FFEQ ARE THE DAMFING COEFFICIENT AND THE FFEGUENCY FFOM THE LINEAR STABILITY FROGRAM.

FARAMETEH COMFLEX COMFLEX DIMENSION
$\mathrm{MX}=5$. $\mathrm{MXR}=10, \mathrm{MX4}=20$. MX2SQ=100
YNOZ (MX), E(MX), C1. C2, C3, CFHIT(MX), CSUM, A GNOZ(NX), CAXI, CI
L(MX), N(MX), S(MX), NAME(MX), AS(MX2), AC(MX2). U(250, $\mathrm{H} X 4), \mathrm{Y}(\mathrm{MX4}), F Z(4, \mathrm{MX} 4), \mathrm{YF}(\mathrm{MXA}), \mathrm{UZ}(M X 4)$. CF(4FMX2,MX2), FFEI(MXR), LMF1(MX2), LMAX(500). Z(6), ANGLE(6), THETA(6), CFT(6,MX2), YI(MX2), CFTH(6,MX2), CFZ(6,MX2), FRESS(6), AXVEL(3), YF(MX2), TFLOT(500), YPLOT(6,500). DLMMYT(500), LUMNYY(500), IBUF(3000), ITT(4), ITY1(7), ITY2(7), IIY3(7), ITY4(7), ITY5(6), TAUCUT(NX2), ITY6(8), UAVG(100), ITF(3), TITLE(12), FES(500), TI (500), FMAX(500), TIMAX(500), YLO(6), YHI(6), YLAB(6), ITICY(6), KFREQ(NX), WKF(NX), AA(4), UFLOT(MX, 5003, FR1T(500), MUPLOT(4), MTITLI(4), MTITL2(4), MTITL3(4), MTITL(4). PRTITL(5)

```
        COMMON
    1
2
    COMMON
        COMMON
        COMMON
```

```
FU(MX2,4), C(4,MX2,MX2), L(MX2,NX2SQ),
```

FU(MX2,4), C(4,MX2,MX2), L(MX2,NX2SQ),
KPMAX(4,MX2), IC(4,MX2,HX2), KFGMAX(MX2),
KPMAX(4,MX2), IC(4,MX2,HX2), KFGMAX(MX2),
1DF(MX2.MX2SG), IEG(MX2,MX2SG)
1DF(MX2.MX2SG), IEG(MX2,MX2SG)
/ELKE, M(MX), NS(MX), SJ(NX), E
/ELKE, M(MX), NS(MX), SJ(NX), E
/BLK3. NJNAX, NLMAX, GAMMA, COEF(S,MX2)
/BLK3. NJNAX, NLMAX, GAMMA, COEF(S,MX2)
/NLTEFM/ NOZNL2. EXThA(MX2:4)
/NLTEFM/ NOZNL2. EXThA(MX2:4)
DATA ITT/*DIMENSIONLESS TIME, T*/%
l
ITY1/"INJECIOR FFESSUFE FEFTUFEATIGN, THETA = 0"%%
ITY2/"INJECTOR FFESSURE FEKTUREATION, THETA = 45"%,
ITY 3/*INJECTOF PEESSUHE FEFTUEBATION, THETA = 90"%
ITY4/'NOZZLE FFESSURE FEFIUFEATION, IHETA = 0"%,
ITY5/"NOZZLE AXIAL UELOCITY, THETA = 0"%,
ITY6/'NOZZLE B.C. (FE(-GAMMA*Y*PHIT)) AT THETA = 0'%,
I IF/"PRESSURE FEAKS"/
MTITLI/"AMPLITULE OF IT NODE"/
MTITL2/"AMFLITUDE OF 2I MODE"/
MTITL 3/"ANFLITULE OF IK MODE"/
FFTITL/"PFESSURE AMFLITULE OF IT MODE"%
LAST = 250
ERK = 0.001
TDEL = 10.0
NFT=0
AA(1) = 0.0
AA(2)=0.5
AA(3)}=0.
AA(4)=1.0
PI = 3.1415927
KEAL (5,5003) NOUTCF, NOZNL2
C
C

```
    IHIS UERSION OF LCYCSD FEADS THE CGEFFICIENT DATA FFOM
```

 IHIS UERSION OF LCYCSD FEADS THE CGEFFICIENT DATA FFOM
 A FASIFAND FILE GENEFAIEL EY FROGKAM COEFFS3L. TO FEAD
 THIS DATA FFIOM CAFDS, USE FFAD (5&XXXX) INSIEAD OF
 FEAD (9, KXXX) IN THIS SECTION.
 INPUT OF NOTOF FARAMETERS AND NUMEEF OF TEHMS.
 FEAD (9,5001) GAMMA, UE, ZE, ZCOME, NDFOFS, NJMAX, NOZNLI
 WRITE (6,600!) GAMMA, UE, ZE. ZCOMB; NJMAX
 IF (NDKOFS .EQ. O) WKITE (6,6030)
 IF (NLKOPS EQQ 1) WFITE (6,6031)
 IF (NOZNL2 -EQ. O) WHITE (6.6032)
 IF (NOZNLE .EQ. 1) WRITE (6,6033)
 NU = 2* NJviAX
 JMX = NJMAX/E
 RLD = 0.5* ZE
 WRITE (6:6002)
 C
C INPUT OF DESCHIPTION OF SERIES EXFANSION.
LO 10K=1, JMX.
HEAD (9,5002) NJ, L(NJ), M(NJ): N(NJ): NS(NJ), S(NJ), SJ(NJ)\&
l
NAME(NJ)

```
```

 WFITE (6,6003) NAME(NJ), NJ, L(NJ), M(NJ), N(NJ), NS(NJ),
 l
 S(NJ), Su(NJ)
 IO CONTINUE
 C
WRITE (6,6010)
DO 15 K = 1, JMX
READ (9,5010) J. YNOZ(J). E(J)
WRITE (6,6015) J. YNOZ(J), E(J)
NJ = (2 * J) - 1
YR(NJ) = REAL(YNOZ(J))
YI(NU) = AIMAG(YNOZ(J))
YR(Na)+1)=YR(NJ)
YI(NJ+1) = YI(NJ)
15 CONTINUE
IF (NOZNLI -NE. 1).GO TO 815
WFITE (6,6034)
LO 820 K = 1, JMX
REAL (9,5011) J. GNOZ(J)
WKITE (6,6035) J, GNOZ(J)
820 CONTINUE
815 CONTINUE
C
C CALCULATE THE NUMBER OF TYFES OF LINEAR COFFFICIENTS.
NCOEFF=4
1F(NOZNLI,EQ, 1) NCOEFF=5
NCFM1 = NCOEFF-1
C
C ZEFO LINEAR COEFFICIENT ARFAYS.
DO 20 KC = 1. NCFM1
DO 2O NJ = 1, NX2
DO 2O NF = 1. MXE
C(KC,NJ,NP) = 0.0
CP(KC.NJ.NP) = 0.0
20 CONTINUE
C
C ZERO NONLINEAR COEFFICIENT ARRAY.
DO 30 NJ = 1, MXE
LO 30 NPQ = 1. MX2SQ
D(NJ.NPQ) = 0.0
30 CONTINUE
C
C INFUT OF LINEAR COEFFICIFNTS.
DO 40 KC = 1. NCFM1
READ (9,5003) KMAX
IF. (NOUTCF .GT. O) WRITE (6.6004) KC, KMAX
IF (KMAK EQ. O) GO TO 40
DO 45 K = 1. KMAX
READ (9,5004) NJ, NF, CF(KC,NJ,NP)
IF (NOUTCF.ET. O) WFITE (6.6005) KC, NJ. NF, CF(KC,NJ,NF)
4 5 ~ C O N T I N U E ~
40 CONTINUE
C
C
C INFUT OF NONLINEAF COEFFICIENTS.
READ (9, 5003) NLMAX

```
```

 IF (NOUTCF .EQ. 2) WRITE (6,6006) NLMAX
 IF (NLNAX EE. O) GO TO 50
 DO 52 NJ = 1, MX2
 KPOMAX(NJ)=0
 52 CONTINUE
DO 55 K = 1. NLMAX
FEAD (9.5005) NJ, NF, NQ, DT
IF (NOUTCF .EQ. 2) WRITE (6.6007) NJ, NF, NQ, DT
KFEMAX(NJ) = KPGNAX(NJ) + 1
KFG = KFGMAX(NJ)
ILF(NJ,KPQ)=NF
IDQ(NJ,KPQ) = NQ
D(NJ,KFQ) = DT
55 CONTINUE
50 CONTINUE
CALCULATE COEFFICIENTS FOF FRESSUKE TIME HISTOKIES•
LO 53 NFFES = 1. 6
DO 53 J = 1, JMX
NF=(2*J)-1
Z1= Z(NFRES)
ANG = THETA(NFRES)
CALL FHICFS(J,Z1,ANG,C1,C2,C3)
IF (NPFES - EQ. 4) CPHITCJ)=C1
CFT(NPEES,NF) = REAL(CI)
CFT(NFFES,NF+1)= -AIMAG(C1)
CFTH(NFRES,NF) = FEAL(C2)
CFTH(NFFES,NF+1)= - AIMAG(C2)
CFZ(NFFES,NF) = REAL(C3)
CFZ(NFFES.NF+1)= -AIMAG(C3)
53 CONTINUE
Cl = (0.0.1.0)
CAXI = GANNA * CCOSH(CI * E(1) * ZE)
CAXIFs = hEAL(CAXI)
CAXII = AINAC(CAXI)
OUTPUT OF CGEFFICIENTS FOF FHFSSUKE TIME HISTOFIES.
WRITE (6.6020)
DO 56 NFRES = 1.6
WFITE (6,6014)
LO 56 J = 1. NJMAX

```
```

 WFITE (6,6021) J, Z(NFRES), ANGLE(NFEES),
 1 CFT(NPRES,J), CFTH(NFFES,J), CFZ(NFFES,J)
 5 6 ~ C O N T I N U E ~
5 DO 57 K=1, NJMAX
AS(K) = 0.0
AC(K) = 0.0
FFQ1(K) = 0.0
57 CONTINUE

```

REAL COMEUSTION ANL CONTROL FAFAMETERS.
READ (5,5006, END \(=\) 300) EN, TAU, H, TSTAFT, TCUIT
FEAD CONTFOL NUMEERS.
FEAD (5,5008) NTEST, JMODE, NLOC, NTEFMS, NFZ, NOUT, ICTYFE
JMOLE \(=\) 《 2 * JMODE -1
JFMODE = JMOLE + NJMAX
IF (NOZNL2 NE. 1 ) GO TD 825
FEEO = S(1)
KFREQ (1) \(=1\)
KFAEG(2) \(=2\)
KFREQ(3) \(=2\)
LO \(830 \mathrm{~K}=1\), JKX
WKF(J) \(=\) FREQ * KFFEQ(J)
830 CONTINUE
825 CONTINUE
C
IF (NOUT -GT. 0 ) NFT \(=1\)
IF (NOUT •EQ O) GO.TO 9
C READ DATA FOR SETTING UF FLOTS.
READ (5,5009) YHI (1), YHI (5). YLAB(1). YLAE(5)
FEAL (5,5008) ITICY(1), ITICY(5), NFIRST, NOMIT
READ (5,5014) MLFLOT
MDFLTL \(=0\)
DO 3EO K = 1. JMX
MLPLTL \(=\) MDPLTL + MDFLOT(K)
320 CONTINUE
IF (MIFLTL E EQ. O) GO TO 9
READ (5,5015) YHIMD. YLAEME. ITICMD
YLOND \(=-Y H I M D\)
c
C
C
\(9 \mathrm{DO} 58 \mathrm{~K}=1\), NTEFMS
C
C
INEUT INITIAL AMFLITUDES FOF F-FUNCTI ONS.
```

PEAD (5,5007) J. AST, ACT
$N J=(2 * J)-1$
AS(NJ) $=$ AST

```
```

 AC(NJ)=ACT
    ```
    CALCULATE FREQUENCY ANL DAMFING.
    IF (ICTYPE - EQ. 2) GO TO 584
    \(R L=L(J)\)
    \(A X=F L * F I / Z E\)
    \(A X S Q=A X * A X\)
    \(S S Q=S(J) * S(J)\)
    FFQI(NJ) \(=\) SQRT(SSQ \(+A X S Q)\)
    LMFI(NJ) \(=0.0\)
    GO TO 586
    584 LONG \(=\) L(J)
    SMN = \(5(J)\)
    FEAD (5,5099) DAMF,FREQ
    LMF1(NJ) \(=\) DAN:F
    FRGI(NJ) \(=\) FREQ
    586 CONTINUE
    FRQ1(NJ+1) = FRQ1(NJ)
    \(\operatorname{DMFI}(N J+1)=\operatorname{DMFI}(N J)\)
C
    IF (ICTYPE EO. 2) GO TO 582
C CALCULATE INITIAL AMFLITUDES FOF G-FUNCTIONS.
C
    581 GYFU \(=\) GAMMA*YF(NJ)*UE
        GYIF \(=\) GANMA*YI(NJ)*FHOI(NU)
        GYFF \(=\) GAMMA*YF(NJ)*FFGI(NJ)
        GYIU \(=\) GAMMA*YI(NJ)*UE
    C
        NFRES \(=4\)
        IF (NSCJ) \(\cdot E Q \cdot 1) \quad\) NFRES \(=6\)
C
    \(A_{1}=(1.0+G Y R U) * C F Z(N F F E S, N J+1)\)
    1 - GYIF*CFT(NFRES,NJ+1)
    \(A 2=G Y F F * C F T(N F F E S, N J+1)+G Y I U * C F Z(N F F E S, N J+1)\)
    \(A 3=-(1.0+G Y E U) * C F Z(N F K E S \& N J)+G Y I F * C F T(N F E E S, N J)\)
    A4 \(=\) GYFF*CFT(NFFES:NJ) + GYIU*CFZ(NFRES,N」)
C
    \(D E T=A 1 * A 1+A Z * P 2\)
    IF (DET - LT. 0.0000001 ) GO TO 583
    R1 = A3*AC(NJ) - A4*AS(NJ)
    \(R 2=-A 4 * A C(N J)-A 3 * A S(N J)\)
C
    \(A C(N J+1)=(R 1 * A 1+R 2 * A 2) / L E T\)
    \(A S(N J+1)=-(F 2 * A 1-R 1 * A 2) / D E T\)
    GO \(70 \quad 58\)
    \(583 \mathrm{AC}(\mathrm{NJ}+1)=-\mathrm{AS}(\mathrm{NJ})\)
        \(A S(N J+1)=A C(N J)\)
        GO TO 58
C
    582 AFG = FFGI(NJ) * TAU
    FSIN = SIN(AKG)
    \(F \operatorname{COS}=1 .-\operatorname{Cos}(A H G)\)
    FSO = FFG1(NJ) * FFG1(NJ)
    DSQ \(=\) LMPl(NJ) * LNFI(NJ)
```

 A1 = LSQ - FSQ + IMFI(NJ)* (CF(2,NJ,NJ)
 1 - EN * CF(3,NJ,NJ) * FCOS)
 2 + EN * CF(3,NJ,NJ) *FFGI(NJ) * FSIN
 3 + CF(1,NJ,NJ)
 A2 = (2.0 * [MF1(NJ) + CP(2,NJ,NJ)
 1. - EN * CP(3,NJ,NJ) * FCOS) * FFQ1(NJ)
 2 - EN * CF(3,NJ,NJ) * LMP1(NJ) * FSIN
 A3 = CF(2,NJ,NJ+1) * [MP1(NJ) + CF(1,NJ,NJ+1)
 A4 = CF(2,NJ,NJ+1)*FRG1(NJ)
 DEN = A3*A3 + A4*A4
 IF (DEN .LT. 0.0000001) GO TO 585
 R1 = A1*A3 + A2*A4
 H2 = A1*A4 - A2*A3
 AC(NJ+1)=(-K1*AC(NJ) + F2*AS(NJ))/DEN
 AS(NJ+1) = - (F2*AC(NJ) + Fl#AS(NJ))/IEN
 GO TO 58
 585 AC(NJ+1)=-AS(NJ)
 AS(NJ+1)=AC(NJ)
 C
58 CONTINUE
C
C
C GUTFUT OF INITI AL AMPLITUDES.
WFITE (6,6016)
DO 590 J = 1, NJMAX
IF (AS(J)) 591, 592,591
592 IF (AC(J)) 591, 590,591
591 wRITE (6,6017) J, DMP1(J), FRC1(J), AC(J), AS(J)
590 CONTINUE
IF (NTEST .EQ. O) WFITE (6.6025)
IF (NTEST .EQ. 1) WHITE (6,60E6)
IF (NFZ .EQ. 1) WFITE (6,6028)
IF (NOUT .GE. 1) WFITE (6,6027)
C
C
C
LO 59 KC = 1, NCFM1
LO 59 NJ = 1, N:X2
KFMAX(KC,NJ)=0
59 CONTI NUE.
C
IF (NEZ -EO. O) GO TO 605
DO 602 J = 1, JNX
NJ=(2*J)-1
RL=L(J)
AX = FL * FI/ZE
AXSE =AX * AX
SSG = S(J) * S(J)
OMEGA = SEFT(SSG + AXSQ)
TAUCUT(NJ) = 2.0* FI/OMEGA
TAUCUT(NJ+1) = TAUCUT(NJ)
6 0 2 ~ C O N T I N U E ~
C
DO 604 NJ = 1. NJMAX
DO 604 NF = 1, NJNAX

```
```

 1F(TAU.GT. TAUCUT(NF)) CF(3,NJ,NF)=0.0
 6 0 4 ~ C O N T I N U E ~
 C
C COMPUTE LINEAR COEFFICIENTS FOR GIUEN UALUES OF EN ANL TALU.
605 DO 60 NJ = 1, NJNAX
DO 60 NF = 1. NJMAX
CT = CP(1,NJ,NP)
1F (CT) 61, 62,61
61KPMAX(1,NJ)=KFMAX(1,NJ) + 1
KF= KFMAX(1,NJ)
IC(1,NJ,KF)=NF
C(1,NJ,KP) = CT
62 CT = CP(2,NJ,NF) - EN*CF(3,NJ,NF)
1F (CT) 63, 64,63
63 KPMAX(2,NJ) = KFMAX(2,NJ) + 1
KP = KFMAX(2,NJ)
1C(2,NJ,KF) = NF
C(2,NJ.KP) = CT
64 CT = EN * CF(3,N,N,NF)
IF (CT) 65, 66, 65
65 KFNAX(3,NJ)= KFMAX(3,NJ) + 1
KF=KPMAX(3,NJ)
IC(3,N,N,KF)=NP
C(3,NJ,KF) = CT
66 IF (NOZNL\& .NE. 1) GO TO 60
CT = CF(4,NJ,NF)
IF (CT) 67,60,67
67KFMAX(4,NJ)=KPMAX(4,NJ) + 1
KP = KFMAX(4,NJ)
IC(4,NJ,KF) = NP
C(4,NJ,KF) = CT
6 0 CONTINUE
NDIV = 1.0 + TAU/H
RN = NDIU
H = TAU/FN
H6 = H/6.0
C
C
C

```
```

WRITE (6,6008) EN, TAU, GAMNA, UE, HLD

```
WRITE (6,6008) EN, TAU, GAMNA, UE, HLD
WRITE (6,6009)
WRITE (6,6009)
WRITE (6,6022) (ANGLE(J), J = 1,6), (ANGLE(J), J = 1,3)
WRITE (6,6022) (ANGLE(J), J = 1,6), (ANGLE(J), J = 1,3)
WFITE (6,6012)
WFITE (6,6012)
NFI = NDIV + 1
NFI = NDIV + 1
DO 70 I = 1. NFI
DO 70 I = 1. NFI
NSTEP = I - NF1
NSTEP = I - NF1
RSTEF=NSTEF
RSTEF=NSTEF
TIME = FSTEP * H
TIME = FSTEP * H
    TI (I) = TIME
    TI (I) = TIME
    DO 75 J = 1, NJMAX
    DO 75 J = 1, NJMAX
    JF=J + NJNAX
    JF=J + NJNAX
    IF (AC(J)) 751, 753, 751
```

 IF (AC(J)) 751, 753, 751
    ```
```

 753 IF (AS(J)) 751, 752, 751
 752 U(I,J) = 0.0
 U(1,JP)}=0.
 GO TO 75
 751 ARG = FRO1(J) * TIME
 FSIN = SIN(ARG)
 FCOS = COS(AKG)
 FEXP = EXP(DMP1(J)*TIME)
 U(I,J)=(AS(J)*FSIN + AC(J)*FCOS) * FEXF
 U(I,JF)=((AS(J) * FCOS) - (AC(J) * FSIN)) *FFQI(J) * FEXF
 1 + DMFI(J) * U(I,J)
 75 CONII NUE.
 CALCULATE INITIAL VALUES OF FEESSUKE AND VELOCITY.
 DO 704 NFFES = 1, 6
 LO 702 J = 1, NJMAX
 COEF(1,J) = CFT(NFRES,J)
 COEF(2,J) = CFTH(NFRES,J)
 COEF(3,J) = CFZ(NPRES,J)
 702 CONTINUE
 DO 703 J = 1. NU
 Y(J) = U(1,J)
 703 CONTINUE
 UBAR = 0.0
 IF (NPRES -GT. 3) UBAR = UE
 LMS = 0.0
 IF ((NLHOFS.EQ.1) .ANL. (NFHES.LT.4)) UNS = UE/(ZE*ZCOME)
 CALL FFSUEL(UBAF, UKS,Y,F,UTH,VZ)
 FEESS(NFRES) = P
 IF (NFFES -GT. 3) AXVEL(NFFES - 3) = VZ
 704 CONTI NUE
 FRS(I) = FRESS(NLOC)
 C
C CALCULATE INI TIAL UALUES OF NOZZLE E.C.
CSUM = (0.0.0.0)
DO 710 J = 1, JMX
JF = NJMAX + (2*J) - 1
FT = Y(JP)
GT = Y(JP+1)
A=CMFLX(FT,GT)
CSUM = CSUM + YNOZ(J) * CFHIT(J) * A
710 CONTINUE
SUM = FEAL(CSUM)
YFHI = -GAMMA * SUM
WRITE (6.6011) NSTEF, TIME, (PRESS(J), J= 1.6),
1 . (AXUEL(J), J= 1,3), YFHI
70 CONTINUE

```
C
    WFITE ( 6,6008 ) EN, TAU, GAMMA, UE, RLD
    WFITE (6,6022) (ANGLE(J), J \(=1,6\) ), (ANGLE(J), \(J=1,3)\)
    C
    C
    *************INITIALIZE CONTHOL NUMEEFS *************************
        LINE \(=8\)
        \(K=0\)
        MAXNO \(=0\)
```

 NAXP=0
 IF (NOUT .EG. O) GO TO 100
 JFLOT = 0
 TMIN = TSTAFT
 TNAX = TSTART + TUFL
 YLO(I) = -YHI(1)
 DG 90J J = 2,4
 YHI(J) = YHI(1)
 YLO(J) = YLO(1)
 YLAB(J)= YLAB(1)
 ITICY(J) = ITICY(1)
 90 CONTINLIE
 YLO(5) = -YHI(5)
 YHI(E)= YHI(5)
 YLO(6) = YLO(5)
 YLAE(6) = YLAB(5)
 ITICY(6) = 1TICY(5)
 C
C
1001=NF1
C
KUNGE-KUTTA INTEGFATION SCHENE.
105 NSTEF = (I - NF1 + (LAST - NFI) * K)
HSTEF = NSTEF
TIME = RSTEF * H
TI(I) = TIME
HO 110 J=1. NJMAX
JF = J + NJMAX
KV(J,1) = U(I-NDIV,JF)
RV(J,4)=U(I-NLIU+1,JF)
RU(J.2) = 0.375*FU(J.1) + 0.75*FU(J.4) - 0.125*U(I-NLIV+2,JF)
RV(J,3) = FV(J,2)
110 CONTINUE
IF (NOZNL2 -NE. 1) GO TO 835
IO 840 II = 1.4
TZ = TIME + AR(II)*H
DO 840 J = 1:JMX
JODD = 2*J - 1
JEUEN = 2*J
EXTHA(JODD,II) = COS(VKF(J)*TZ)
EXTFA(JEUEN,II) = SIN(WKF(J)*TZ)
840 CONTINUE
835 CONTINUE
LO 120 J = 1, NU
Y(J) = U(I,J)
12O CONTINUE
CALL RHS(NU,J,Y,YP)
LO 130 J = 1. NU
FZ(1,J) = YF(J)
130 CONTINUE
LO 140 11 =2.4
LO 144 J=1. NU
UZ(J)=Y(J) + AA(II) * H * FZ(II-I:J)
144 CONTINUE

```
```

 CALL RHS(NU,II,UZ,YF)
 LO 148 J = 1, NU
 FZ(II,J)=YF(J)
 148 CONTINUE
 140 CCNTINUE
 DO 150 J = 1, NU
 U(I+1,J)=Y(J)+(FZ(1,J)+2.0*(FZ(2:J)+FZ(3,J))+FZ(4,J)) (H6
 150 CONTINUE
 C
C CALCULATE PRESSURE TIME HISTOFIES.
DO 154 NFEES = 1,6
DO 152 J= 1, NJMAX
COEF(1,J) = CFT(NFEES,J)
COEF(2,J) = CFTH(NPEES,J)
COEF(3,J) = CFZ(NFFES,J)
152 CONTINUE
UBAR = 0.0
IF (NFFES .GT. 3) UEAR = UE
UMS = 0.0
IF ((NLKOFS.EQ.1) .AND. (NFFES.LT.4)) LMS = UE/(ZE*ZCOME)
CALL FFSUEL (UEAR, UMS,Y,F,UTH,UZ)
FRESS(NFRES) =F
1F (NFFES -GT. 3) AXVEL(NFFES - 3) = VZ
154 CONTINUE
PRS(I) = FRESS(NLOC)
C
C CALCULATE VALUES OF NOZZLE E.C.
CSUM = (0.0,0.0)
DO 650 J = 1. JMX
JF = NJMAX + (2 * J) - 1
FT=Y(JF)
GT=Y(JP+1)
A=CMPLX(FT,GT)
CSLN = CSUM + YNOZ(J) * CFHIT(J) * A
650 CONTINUE
SUM = REAL (CSUM)
YPHI =-GAMMA * SUW.
C
C
C
C
DETERMINE MAXIMA ANL MINIMA OF PRINCIFAL MODE-ANFLITUDE
C FUNCTION FOR USE IN DETERMINING LIMIT-CYCLE BEHAUIOF.
1F (U(1,JFNODE) * U(I+1,JFMODE)) 170, 170, 160
170 PDEN = U(I,JFMODE) - U(1+1,JFMOEE)
IF (FDEN) 171, 160, 171
171 FP = U(I,JPMOLE)/FLEN
FA = (FF - 1.0)*FF* 0.5
PB = 1.0-(FF * PP)
PC= (FF + 1.0) * FF*0.5
MAXNO = MAXNO + 1
UMAX(MAXNO) = FA*U(I-1,JMODE) + FB*U(I,JMODE) + PC*U(I + 1,JMOLE)
IF (MAXNO .GE. 500) GO TO 250
160 CONTINUE
C
C
DETEFMINE MAXIMUNG AND MINIMUM FFESSURE AT LOCATION SFECIFIED
BY NLOC.

```
```

LFL = FRS(I) - FRS(I-1)
LFS = FHS(I-1) - FES(I-2)
IF (DPL*EPS) 173. 173, 175
173 FNUN = FHS(I-2)-FRS(I)
FDEN = 2.0 * (FFS(I-2) + FRS(I) - 2.0*FHS(I-1))
IF (FDEN) 174. 175. 174
174 FP = FNUM/FDEN
FA=(FF-1.0)*PF*0.5
FB=1.0-(FF*FF)
FC = (FP + 1.0) * FF*0.5
MAXP = MAXP + 1
FMPX(MAXF)=FA*PFS(I-2) + PB*FRS(I-1) + FC*PRS(I)
TIMAX(MAXF)=TI(I-1) + FF*H
IF (MAXP .GE. 500) GO TO 250
175 CONTINUE
C
IF (NTEST .EQ. 1) GO TO 155
IF (TIME .LT. TSTART) GO TO 155
IF ((NOUT - EQ. O) .OR. (NOUT .GT. 6)) GO TO 156
C
C ************** TINE HISTOFY FLOTTING SECTION
IF (TMAX .GT. TQUIT) GO TO 156
IF((TIME .GT. TMAX) .OF. (JFLGT .GE. 500)) GO TO 1000
C
JFLOT = JFLOT + 1
C
C FILL TIME AFEAY FOR FLOTIING.
TFLOT(JFLOT) = TIME
C FILL INJECTOK FFESSURE AFRAYS FOK FLOTTING (THETA = 0. 45, 90)
LO 1001 J = 1,3
YFLOT(J.JFLOT) = FRESS(J)
1001 CUNTINUE
C
C FILL NOZZLE PFESSURE AREAY FOF FLOTTING (THETA = 0)
YFLOT(4,JFLOT) = PRESS(4)
C
C FILL NOZZLE AXIAL VELOCITY AFHAY FOF FLOTTING (THETA = O)
YFLOT(5,JPLOT) = AXVEL(1)
C FILL NOZZLE B.C. ARFAY FOR FLOTTING (THETA = 0).
YFLOT(G,JPLOT) = YFHI
C
1F(MLFLTL .EQ. 0) GO TO 156
C
C FILL MODE AMFLITUDE AFFAYS FGF FLOTTING.
DO 32E J = 1, JNMX.
IF (NDFLOT(J) •EQ. O) GO TO 32E
J12 = 2*J - 1
UFLOT(J,JILOT) = U(1,U12)
322 CONTINUE.
C
JIT1= NJMAX + 1

```
```

 PFIT(JFLGT) = CAXIF*U(I,JIT1) - CAXII*U(I,JITR)
 C
60 10 156
C
1000 NUM = JFLOT
C
C FLOT TIME HISTOFIES.
CDO 10EO NFLOT = NFIFST, NOUT
C
JFLOT = 0
C
C ASSIGN FLOTTING FAFANETERS.
YNIN = YLC(NFLOT)
YMAX = YHI (NFLOT)
NTICY = ITICY(NFLOT)
LELY = YLAE(NFLOT)
C
C ElIMINATE FGINTS THAT AFE UUT OF THE OFILINATE FANGE.
[0 1010 J=1, NUM
IF ((YFLGT(NFLOT,J) -LT. YMIN) .OR. (YFLGT(NFLOT,J) .GT. YMAX))
1 GO TO 1010
JFLOT = JFLOT + 1
LUMMYT(JFLOT) = TPLOT(J)
DUMNYY(JFLOT) = YFLOT(NFLOT,J)
1010 CONTINUE
C
IF (JPLOT .EQ. O) GO TO 1020
GO TO (1011,1012,1013,1014,1015,1016), NFLOT
C
C FLOT INJECTOF FFESSUHE AT THETA = O LEGFEES.
1011 CALL GFAFHSC1EUF, 3000,4,JFLOT,51,NTICY, TMAX,YMAX,TMIN,YMIN,
1 ITT,ITY1,21,41,DUNMYT, DUMMYY,Z.O,DELY,TITLE)
G0 TO 1020
C
C FLOT INJECTOR PRESSUFE AT THETA = 45 LEGFEES.
1012 IF (N(JNODE) EE. O) GO TO 102O
CALL GFAFHSCIEUF, 3000,4,JFLOT, 51,NTICY,TKAX,TMAX,TNIN,YMIN,
1
I TT, I TY 2, 21, 4E, LUMMYT, DUKMYY, 2. 0, DELY, II TLE)
GO TO 1020
c
C PLOT INJECTOF FKESSURE AT THETA = 90 LEGKEES.
1013 IF (M(JNOLE) E EQ. O) GO TO: 1020
CALL GRAFHSCIELF, 3000,4,JPLOT,51,NTICY, TMAX,YMAX,TMIN,YNIN,
1 ITT,ITY 3.21,42,DUMMYT, DUMMYY,2.0, DELY,TITLE)
GO TO 1020
C
C FLOT NOZZLE PFESSURE AT THETA = O LEGFEES.
1014 CALL GRAFHSKIBUF, 3000,4,JFLOT,51,NTICY,TMAX,YMAX,TMIN,YMIN,
1 ITT,ITY4,21,39, DLWMYT, LUWMYY,2.0,DELY,TITLE)
GO TO 1020
C
C FLOT NOZZLE AXIAL UELOCITY AT THETA = O LEGREES.
1015 CALL GFAFHSCIEUF, 3000, 4.JFLOT, 51,NTICY, JN,AX,YMAX,TMIN,YMIN,
l
ITT,ITY 5, 21,32, LUMMYT, LUMMYY, 2. O, LELY, TITLE)

```
```

 GO 10 1020
 C
 C FLOT NOZZLE B.C. AT THETA = O LEGFEES.
 1016 CALL GNAFHSUIFUF,3000,4,JFLOT,51,NTICY, TMAX,YNAX,TMIN,YMIN,
 1 ITT,1TY6,21,44, LUMMYT, LUMMYY,2.0, DELY,TITLE)
 C
1020 CONTINUE
C
IF (MDFLTL EEG. O) GO TO 330
LO 324 NFLOT = 1, JMX
IF(MDFLOT(NFLGT) - EG. 0) GO TO 324
JFLOT = 0
50 328 J123=1, 4
IF (NFLOT - EG. 1) MTITL(J123) = MTITLI(J123)
IF (NFLOT - LQ. 2) NTITL(U123) = MTITL2(JI23)
IF(NFLOT EQ. 3) MTITL(J123)=NTITL3(J123)
328 CONTINUE
C
DO 326 J = 1. NUM
IF ((UFLOT(NFLOT,J) .LT. YLOMD) .OF. (UFLOT(NFLOT,J)
1.GT. YHIMLJ) GC TO 326
JFLOT = JFLOT + 1
LUMMYT(JFLGT) = TFLCT(J)
LLMNYY(JFLOT) = UFLOT(NFLOT,J)
326 CONTINUE.
IF (JFLOT EE. O) GO TO 324
C
C FLOT AMFLITUDES OF LIFFERENT NODES.
CALL GFAFHSCIEUF, 3000,4,JFLOT,51,ITICMD,TNAX,YHIND,TMIN,
1 YLOMD,ITT,MTITL, 21, 20, LUNMYT, DUMNYY, 2.O,YLAENL,TITLE)
324 CONTINUE
C
IF (MLFLGT(4) - EQ. O) GO TO 330
JFLOT = O
LO 332 J = 1, NUM
IF ((FRIT(J) \<. YLOND) OF. (FFIT(J).GT. YHIML)) GO TO 332
JFLOT = JFLOT + 1
DLANYT(JPLOT) = TFLCT(J)
IUMMYY(JFLOT) = FF1T(J)
332 CONTINUE
IF (JFLOT EEQ O) GO TO 330
C
C FLOT FRESSUFE AMFLITULE GF 1T MODE.
CALL GFAFHSSIEUF, 3000, 4,JFLGT,51,ITICML, TMAX,YHIML, TMIA,
1 YLOML,ITT,FFTITL.21, 29, LUNMYT, LUNNYY, 2.O,YLAEMD,IITLE)
330 CONTINUE
C
C HEASSIGN FLOTTING FARAMETEKS FOH NEXT SFT OF FLOTS.
JFLOT = O
TMIN = TMAX
TNAX = TMAX + TLEL
C
C ************** TIME HISTOFY FFINTED OUTFUT SECTIGN
156 WFITE (6, 6011) NSTEF, TIME, (FFESS(J), J = 1,6),

```
```

 1
 (AXVEL(J), J = 1;3): YPHI
 LINE = LINE + 1
 157 IF (TIME >. TQUIT) GO TO 250
 IF (LINE &T. 52) GO TO 155
 WH1TE (6,6013)
 WRITE (6,6022) (ANGLE(J), J = 1;6), (ANGLE(J), J E 1,3)
 LINE=4
 C
155 I=1 + 1
1F (I \<. L.AST) GO TO 105
C
C ************** LIMIT-CYCLE SECTION
C TEST FORLIMIT CYCLE.
K=K+1
IF ((NTEST .EG. O) .OF. (NAXNO .LT. 80)) GO TO 190
UTOT = 0.0
DO 180 J = 0, 3
JMAX = MAXNO - J
UTOT = UTOT + ABS(UMAX(JMAX))
180 CONTINUE
UAVG(K) = UTOT/4.0
IF (K .EQ. 1) GO TO 190
CHANGE = UAVG(K) - UAVG(K-1)
ABSCHG = ABS(CHANGE/UAVG(K))
IF (ABSCHG \>. EFR) GO TO 190
TM = TIME/2.O
ITM=TM
ITM \# 2*ITM + 2
TM = 1 TM
TSTART = TM + TSTART
TQUIT = TM + TGUIT
TMIN = TSTART
TMAX = TSTAKT + TUEL
NTEST = 0
C
C FE=ASSIGN ARRAYS.
190 DO 200 1 = 1. NF1
ILAST = LAST = NFI + I
PES(I) = FRS(ILAST)
TI(I)=TI(ILAST)
DO 200 J = 1. NU
U(I,U) = U(ILAST,U)
200 CONTINUE
GO TO 100
C
C
C
C
250 WRITE (6,6023) Z(NLOC). ANGLE(NLOC), MAXF
LINE = 4
DO 255 JST = 1, MAXF, B
JSTAFI = JST
JSTOF = JST + 7
IF (JSTOP .GT. MAXF) JSTOF = MAXF

```
```

 WFITE (6.6024) (FMAX(J), J = JSTAKT, JSTOF)
 WRITE (6,6024) (TIMAX(J), J = JSTAFT, JSTOF)
 WRITE (6,6014)
 LINE = LINE + 3
 IF (LINE LLT. 52) GO TO 255
 LINE=0
 WRITE (6,6013)
 255 CONTINUE
 IF (<NOUT - EG. O) -OR. (NOMIT -EG. 1)) GO TO 5
 C
C ************** FRESSUFE MAXIMA FLOTTING SECTION
C
C LETEFNINE LARGEST VALUE OF FMAX.
AMFMAX = 0.0
DO 260 \ = 1. MAXF
IF (FNAX(J) LT. AMFMAX) GO TC }26
ANENAX = FNAX(e)
260 CONTINUF
C
C FANGE: OF FLCT ANL COOFLINATE LAEELING.
ITN = AMFNAX + 1.0
AVPMAX = ITM
ITM = 1.0 + IIMAX(MAXF)/50.0
TMAX = ITN * 50
IEL.X = TMAX/10.0
LELY = ANFMAX/10.0
C
C ELININATE NEGATIUE valuES.
JFLGT = O
[0 262 J = 1. MAXF
IF (FMAX(J)) 262, 264, 264
264 JFLOT = JFLOT + 1
DU\#MYT(JPLOT) = TIMAX(J)
DLMNYY(JFLCT) = FMAX(J)
268 CONTINUE.
C
C PLOT VALUES.
CALL GRAFHS(IEUF, 3000,4,JFLCT, 101, 101, TNAX, AMFNAX,0,0,0.0,
1 ITT,ITF,21,14,IUMNYT, LUNNYY,LELX,IELY,TITLE)
C
G0 T0 5
C
TUEN OFF FLOTTING FOUTINE.
300 IF (NFT .EG. 1) CALL SHFAFG
C
C
C
500C FOFMAT (12P6)
50C1 FORMAT (4F10.0.315)
5002 FOFMOT (5I 5, 2F10.5,1X,A4)
50G3 FOHMAT (2I5)
5004 FOFNNAT (2I 5,F15.6)
5005 FOFMAT (3I 5,F15.6)
5006 FORMAT (5F10.0)
5007 FOFMAT (15.2F10.0)

```
```

5008 FOFMAT (715)
5009 FOFMAT (7F10.0)
5010 FOFNAT (1 5, 4F10.5)
5011 FOFMAT (15,2F10.5)
5012 FOFMAT (F10.0)
5G14 FORMAT (415)
5015 FOFMMP (2F10.0.15)
5099 FORMAT (2F10.0)
C
C ************** WHITE FOFMAT SFECIFICATIONS ************************
C
6001 FGFMAT (1H1,9H GAMMA =,F5.3,5X,5HUE=,F5.3,
1 5X,5HZE = F8.5.5X,8HZCOME = F5.2.
2 5X,8HNJMAX = ,12//)
6CO2 FGFMAT (2X, 29HNAME J L N NS,7X,3HSMN, 3X,
1 7HJM(SNN)/)
6003 FOFIMAT (2X,A4,5I5,2F10.5)
6004 FOEMAT (1H0,26H NUMEER OF COEFFICIENTS CC,I 1. 10H,NJ,NF) ISPI 5/)
6005 FOFMAT (2X, 2HC(,I 1, 1H,,1 2,1H,,12,4H) =,F10.5)
6006 FOFMAT (1HO, 38H NUMEEF:OF COEFFICIENTS D(NJ,NP,NQ) IS,I 5%)
6007 FOFIMAT (2X, 2HDC,1 2, 1H,,12,1H,,12,4H)=,F10.5)
6008 FOKMATC1HI,45H COMEUSTION FAFAMETEKS: INTEFACTION INDEX = %F7.5.
1 12X,11HTIME-LAG = ,F7.S/2X,17HMOTOF FARAMETEFS:, 19X,
2 8HGAMMA =,F7.5.23H EXIT MACH NUMEEF =,F7.5.
3 22H LENGTH/DIAMETEF=.F7.5/1)
6009 FOFNAT (2X,18HINITIAL CONLITIONS//)
6010 FOFNAT (1HO,5X,1HU,8X,2HYR,8X, EHYI, 7X, 3HEFS,7X, 3HETA//)
6011 FOFMAT (2X,I5,F12.5,10F10.5)
6012 FOFMAT (1HO)
6013 FORMAT (1H1)
6014 FORMAT (1H)
6015 FORNAT (2X,I 5, 4F10.5)
6016 FOFMAT (1H1,36H INITIAL. CONDITIONS AFE OF THE FOFN://
1 2X,49HU(I,J) = AC(J)*COS(FFEG*T) + AS(J)*SIN(FFEQ*T)),
2 14H * EXP(DAMP*T)///6X,1HJ,8X.7HDAMFING.
3.6X,9HFREQUENCY, 10X,5HAC(J),10X,5HAS(J)//)
6017 FORMAT (2X,15,4F15.B/)
6020 FURMAT (1H1,46H COEFFICIENTS FOR COMFUTATION OF WALL FRESSUKE,
1 1OH WAVEFGFMS///43X.27HCOEFFICIENTS IN SERIES FOF://
2 22X, 5HTHETA,10X,4HTIME,10X, 5HTHETA,10X,5HAXIAL/
6X,1HJ,9X, 1HZ,3X,9H(DEGFEES),5X,10HDEFI VATL UE,
5X,10HDEFI UATIVE,5X,10HDEKIVATIVE//)
6021 FOFNAT (2X,15,F10.3,F12.1,3F15.7)
6022 FOFMAT (26X,17HINJECTOK FKESSUKE,14X,15HNOZZLE FRESSURE,
12X,21HNGZZLE AXIAL VELGCITY/3X, 4HSTEF,8X, 4HTIME,
F5.0,5H LEG.,F5.0,5H DEG.,F5.0.5H DEG.,
F5.0,5H LEG.,F5.0,5H LEG.,F5.0,5H LEG.,
F5.O,5H DEG.,F5.O,5H LEG.,FS.0,5H DEG.,6K,4HYFHI//)
6023 FOFMAT (IH1,38H FFESSUFE MAXIMA ANL MINIMA AT: Z =,F5.2,
1 11H THETA =,F4.1/19H VALUES COMFUTEL: ,I3/1)
6024 FOFNAT (1H.7X,8F13.6)
6025 FORMAT (2X//2X, 37HTHE TRANSIENT EEHAVIOR IS CALCULATED.)
6026 FORNAT (2X//2X, 39HTHE LIMIT-CYCLE EEHAVIOF IS CAL.CULATED.)
6027 FOFNAT (2X/12X, 33HTHIS hUN FFODUCES YLOTTED OUTFUT.)
6028 FOFMAT (2X//2X,"THE PHANTON ZONES AFE ELIMINATED.")

```

\footnotetext{
6030 FORMAT (2X."EROFLET MOMENTUM SOURCE IS NEGLECTED" /)
6031 FGRMAT (2X, "LFOFLET MOMENTUN SOUFCE IS INCLULED" /)
6032 FOFMAT (2X,"NOZZLE NONLINEAFITIES NEGLECTEL"')
6033 FOFMAT (2X, "NOZZLE NONLINEAEITIES INCLULEE", )
6034 FCRMAT ( \(1 H 0,8 \mathrm{~B}, 1 \mathrm{HJ}, 10 \mathrm{X}, 2 \mathrm{HGF}, 10 \mathrm{X}, \mathrm{EHGI} / 1)\)
6035 FOFMAT ( \(5 \mathrm{X}, \mathrm{I} 5,2 \mathrm{~F} 12 . \mathrm{S})\)
END
}

SUAKOUTINE PHICFSENF,Z, THETA,CT,CTH,CZ)

C

THIS SUBROUTINE COMPUTES THE COEFFICIENTS NEEDED TO CALCULATE THE WALL PKESSUFE FEFTUFBATION.

NF IS THE INDEX OF THE COMFLEX SEKIES TEFM.
\(Z\) IS THE AXIAL LOCATION.
THETA IS THE AZIMUTHAL LOCATION.
CT IS THE COEFFICIENT IN THE SERIES FOR THE TIME DERIVATIVE OF THE UELOCITY FOTENTIAL.
CTH IS THE COEFFICIENT IN THE SERIES FOF THE THETA LERIVATIVE OF THE VELOCITY FOTENTIAL.
CZ IS THE COEFFICIENT IN THE SEFIESFOK THE AXIAL DEFIUATIUE OF THE UELOCITY FOTENTIAL.

FARAMETER MX \(=5\)
COMPLEX CI, CZ, CAXI, CAXIZ, CFAD, CAZI, CAZITH,
1 H(NX), CT, CTH, CZ
/BLK2, M(MX), NS(MX), SJ(NX), \(E\)
\(C I=(0.0,1.0)\)
\(C Z=C M F L X(Z, 0.0)\)
CAXI \(=\operatorname{CCOSH}(C I * B(N F) * C Z)\)
CAXIZ \(=\) CI * B(NF) * CSINH(CI * E(NF) * CZ)
CHAD \(=\) CMFLX(SU(NF),0.0)
\(E M=M(N F)\)
ARG \(=\) EM * THETA
FSIN \(=\) SIN(AFG)
\(F C O S=\operatorname{COS}(A F G)\)
\(A Z I=F C O S\)
IF (NS(NP) •EQ. 1) AZI =FSIN
\(A Z I T H=E N * F C O S\)
IF (NS(NF) EEQ. 2) AZITH \(=-E M * F S I N\)
CAZI \(=\) CMPLX(AZI, 0.0)
CAZITH \(=\) CMPLX(AZITH, O.O)
\(C T=C A Z I\) * CAXI * CFAD
\(C T H=\) CAZITH * CAXI * CKAD
\(C Z=C A Z I\) * CAXIZ * CKAD
RETUFN
END

SUBFOUTINE FFSUEL (UEAK, UMS,Y,F,UTH, UZ)

10 CONTINUE

IO 20 I \(=1,4\)
\([020 \mathrm{~J}=1\), NJMAX
\(J Y=J\)
IF (I EQ. 1) JY = J + NUMAX
\(I I=I\)
IF (I •EG. 4) II = 1
\(\operatorname{SUM}(1)=\operatorname{SLM}(I)+Y(J Y) * \operatorname{COEF}(1 I, J)\)
20 CONTINUE
FLIN \(=\) SUM(1) + UEAF*SUN(3) + UMS*SLN(4)
PNL \(=0.0\)
IF (NLMAX - EQ. O) GO TO 40
DO \(30 \mathrm{I}=1,3\)
\(\operatorname{SUMSO}(I)=\operatorname{SUP}(I) * \operatorname{SUM}(1)\)
30
FNL \(=0.5 *(S U M S Q(2)\) * SUMSQ(3) - SUMSQ(1))
C
\(40 P=-\) GANMA * (FLIN + FNL)
VTH \(=\) SUM(2)
\(U Z=\operatorname{sum}(3)\)
C
RETUFN
END

\section*{SUBEOUTINE FHS(NU,II,U, UP)}
```

 PARAMETER MX=5, MX2=10, MX4=20, MX2SG=100
 DIMENSION
 COMMON
 1
 2
 CONMON
 COMMON
 DO 10 NJ = 1. NJMAX
 NJP = NJ + NJMAXX
 UF(NJ) = U(NJF)
 SL1=0.0
 SL2 = 0.0
 SL3=0.0
 SL4=0.0
 SNL =0.0
 MAX = KFMAX(1,NJ)
 IF (NAX EEQ. O) GO TO }2
 DO 20 KP = 1. NAX
 NF=1C(1,NJ,KP)
 SLI = SLI + (C(1,NJ,KF) * U(NF))
 2O CONTINUE
25 MAX = KFN:AX(2,NJ)
IF (MAX EO. O) GO TO 35
DO 30 KF = 1. MAX
NPF = 1C(2.NJ,KF) + NJMAX
SL2 = SL2 + (C(C,NJ,KF) * L(NFF))
30 CONTINUF.
35 MAX = KFMAX(3,NJ)
IF (MAX .EQ. O) GO TO 45
DO 40 KP = 1, MAX
NF=IC(3,NJ,KF)
SL3 = SL3 + (C(3,NJ,KF) * KV(NF,II))
4 0 ~ C O N T I ~ N U E ~
45 IF (NOZNL2 .NE. 1) GO TO 65
MAX = KFN:AX(4,NJ)
IF (MAX .EQ. 0) GO TO 65
LO 60 KP = 1, NAX
NF = 1C(4,NJ,KF)
SL4 = SL4 + (C(4,NJ,KP) * EXTFA(NF,11))
60 CONTINUE
65 IF (NLMAX E EG. O) GO TO 55
MAX = KFGMAX(NJ)
IF (MAX EG. O) GO TO 55
DO 50 KFQ = 1, MAX
NF = 1LP(NJ.KFO)
NGF = IDQ(NJ,KFQ) + NJMAX
SNL = SNL + (E(NJ,KFQ) * U(NF) * U(NGF))
5 0 ~ C O N T I N U E ,
55 UF(NJF) = - (SLI + SL2 + SL 3 + SL4 + SNL)
10 CONTINUE
RETUFN
END

```

\section*{CGMFILEF (FLD=AES)}

SUBROUTINE GFAFHSCIBUF, NLOC,LDEU,NTOT,NTICX,NTICY,
1 XMAX,YMAX,XMIN,YNIN,ITITLX,ITITLY,LTITLX,LTITLY,XAFFAY, 2 YARRAY, DELX, DELY, TITLE)

```

 DATA TOPMAR/1./
 DATA BOTMAR/1.5/
 REAL LEFMAR
 DATA LEFMAR/1.9/
 DATA RYTMAR/1.1/
 DATA FACT/1./
 DATA MAXIS/1/
 DATA MLINE/1/
 DATA HTLAB/. 105/
    ```
        C
    C
    C 19 INITIAL COMPUTATION OF DERIVED FAFAMETERS
    C AND INITIAL FLOTS CALL
    C 20 SKIPS PRELIMINARIES FOR 2ND AND SUBSEQUENT CALLS
    C
    C
19 YDIT(1) \(=3 . / 19\).
    TICKLE = HEIGHT/2.
    FOTFAC \(=-3.114\) * HEIGHT - 4./7. * HEIGHT
    STARTL \(=6 *\) HEIGHT + ROTFAC + TICKLE
    SEPLAB \(=5\) TARTL \(+1.5 *\) HEIGHT
    SYMBLH \(=0.070\)
    REAL LABSEF
    LABSEP \(=4 . *\) HEIGHT
    ASTAHT \(=2 \cdot *\) HEIGHT
    DO 1 I = 2:100
    YDIT(I) \(=Y D I T(I-1)+(2 * M O D(I, 2)+1) / 19\).
    YDIT(100) \(=Y D I T(100)+.5\)
    CALL PLOTS(IBUF,NLOC,LDEV)
    CALL FACTOR(1.)
    \(J=2\)
    CALL SYMBOL (HEIGHT, \(36 *\) HEIGHT + 5.5,HEIGHT,TITLE, 270., 72)
    CALL PLOT \(1 .\), - \(5,-3)\)
\(\begin{array}{ll}3 & \text { DO } 2 \\ 2 & \text { CALL PLOT(O.,YDIT(I), } 3-\operatorname{MOD}(I, 2))\end{array}\)
    DO \(33 \mathrm{I}=1,100\)
33 YDIT(I) \(=\) YDIT(I) - ABSCIS - FYTMAF

C FESET OFIGIN
C

    XPAGE \(=\) BOTMAR + ORDINA
    GO TO 2019
20 XPAGE \(=\) BOTMAR + OFDINA + TOFMAR
2019 CALL WHERE (FXPAGE, EYPAGE,FACT)
    YPAGE = HYPAGE - LEFMAB
    CALL PLOT(XPAGE,YPAGE, - 3)
    CALL FACTOF(FACT)
```

C
C
DRAW AXES AND LABELING MAXIS TIMES
C
C
DO 100I = 1,MAXIS
100 CALL MYAXIS
C
C DRAW POINTS, OFTIONAL CENTERLINE, AND PAGE SCISSOFLINE
C MLINE TIMES
C
C
DO 200 I = 1.MLINE
200 CALL MYLINE
RETURN
C---
C
C ENTRY POINT SHPARG
C TERMINATE PLOTTING SEQUENCE
C
C
ENTRY SHPARG
CALL WHERE(RXFAGE, RYPAGE,I)
CALL PLOT(RXFAGE, KYFAGE,999)
RETURN
C---
C
C SUBROUTINE MYAXIS (INTEFNAL)
C
C
SUBROUTINE MYAXIS
STARTL = 6 * HEIGHT + KOIFAC + TICKLE
IMAX = IFIX((YMAX - YMIN)/DELY)
TICSEP = ORDINA/(ABS(NTICY)- 1)
CALL DENDEC(YMAX,DELY,NDEC)
K=1
N = (ABS(NTICY)/IMAX) - 1 + MOD(ABS(NTICY),2)
DO }9\mathrm{ I = O,IMAX
GO TO (11,12),K
11 IF(2 * I.LT.IMAX)GO TO 12
CALL AXLAB(O., I TI TLY,LTITLY,HILAB)
K=2
12 FPN = YMAX - I * DFLY
IF(ZERO)FFN = 0.
TMID = 1.
XPAGE = - I * ORDINA/IMAX - -5 * HEIGHT
IF(FFN)113,122,118
113 1F(NDEC - 2)115,1114,112
114 YFAGE = STARTI.E5CHAF

```
        GO TO 112
115 IF(NDEC - 1J117.116.112
116 YPAGE = STAFTL - HEIGHTe4CHAR
    GO TO 112
117 IF(ABS(FPN) - 100.) 119.116 .116
119 IF(ABS(FPN) - 10.)120.121.121
120 YPAGE \(=\) STARTL - \(3 *\) HEIGHTE2CHAR
    GO TO 112
121 YPAGE = STARTL - \(2 *\) HEIGHTE3CHAR
    GO TO 112
    YPAGE \(=\) STARTL \(-4 *\) HEIGHTE 1 CHAR
    GO TO 112
118 IF(NDEC - 2) \(123,116,112\)
123 IF(NDEC - 1)125,124,112
124 IF(FFN - 10.) 121,116,116
125 IF(FPN - 10.) 122,120,126
126 IF(FPN - 100.) 120,121,127
127 IF(FPN - 1000.) 121:116,128
128 IF(FPN - 10000.\() 116,114,114\)
112 NNDEC = DNDEC
    CALL NUMBER(XPAGE,YPAGE,HEIGHT,FFN, 270., NNDEC)
    XPAGE \(=-I *(O R D I N A / I M A X)\)
    DO \(10 \mathrm{JJ}=1, \mathrm{~N}\)
    YPAGE \(=\) TICKLE \(*\) TMID
    CALL PLOT (XPAGE,YPAGE, 3)
    YPAGE \(=\) YPAGE * \((-1+I / I M A X * * 5)\)
    CALL PLOT(XPAGE,YPAGE; 2)
    IF(I/IMAX) \(110,110,9\)
    YPAGE \(=0\)
    CALL PLOT (XPAGE,YPAGE, 3 )
    XPAGE \(=\) XPAGE - TICSEP
    CALL FLOT (XPAGE, YFAGE, 2)
    TMID \(=.5\)
    CONTINUE
    CONTINUE
    \(K=1\)
    \(I M A X=I F I X((X M A X-X M I N) / D E L X)\)
    TICSEP \(=\) ABSCIS/(NTICX - 1)
    XPAGE \(=\) - ASTART - ORDINA
    CALL DENDEC(XMAX, DELX, NDEC)
    DO \(28 \mathrm{I}=0 . \mathrm{IMAX}\)
    STARTL \(=-I *\) ABSCIS/IMAX
    GO TO (24, 25), K
    IF(2 * I.LT.IMAX)GO TO 25
    CALL AXLAB(270., ITITLX,LTITLX,HTLAB)
    \(K=2\)
    XPAGE \(=\) - ASTART - ORDINA
    FPN \(=\) XMIN \(+\mathrm{I} *\) DELX
    \(I F(Z E R O) F P N=0\).
    IF(FPN) \(813,822,818\)
    IF(NDEC - 2)815,814.23
814 YPAGE \(=\) STARTL \(+16.17 * *\) HEIGHTE 5 CHAF
    GO TO 23
815 IF(NDEC - 1)817,816,23

816 YPAGE \(=\) STARTL \(+25 . / 14 . *\) HEIGHTP4CHAR GO TO 23
817 IF(ABS(FPN) - \(100.3819,816,816\)
819 IF(ABS(FPN) - 10.)820.821.821
820 YPAGE \(=\) STARTL \(+11.114 . *\) HEIGHTE2CHAR GO TO 23
821 YPAGE = STARTL \(+9.17 \cdot *\) HEI GHTE3CHAR 60 TO 23
82. YPAGE = STARTL + 2.17. * HEIGHTEICHAR GO TO 23
816 IF(NDEC - 2) 823,816,23
823 IF(NDEC - 1)825,824.23
824 IF(FPN - 10.) 821,816.816
825 IF(FFN - 10.) 822.820.826
826 IF(FPN - 100.)820.821.827
827 IF(FPN - 1000.) \(82.1,816,828\)
828 IF(FFN - 10000.\() 816,814,814\)
23 NNDEC = DNDEC
28 CALL NUNBER(XPAGE,YPAGE,HEIGHT,FPN, 270., NNDEC)
\(\mathrm{N}=(\mathrm{NTICX} /\) IMAX) \(-1+\) MOD(NTICX,2)
DO \(26 \mathrm{I}=\mathrm{IMAX}, 0,-1\)
TMID \(=1\).
YFAGE \(=-I * A B S C I S / I M A X\)
DO \(27 \mathrm{JJ}=1, \mathrm{~N}\)
XPAGE \(=\) - OPDINA - TICKLE * TMID
CALL PLOT(XPAGE,YPAGE,3)
XPAGE \(=\) XPAGE \(+(\) TICKLE + FLD \((0,36, I \cdot N E .0) *\) TICKLE) * TMID
CALL PLOT(XPAGE,YPAGE,2)
IF(I) 111,26,111
111 XPAGE \(=\) - ORDINA
CALL PLOT(XPAGE,YPAGE, 3)
YPAGE = YPAGE + TICSEP
CALL PLOT (XPAGE,YPAGE, 2)
TMID \(=.5\)
27 CONTINUE
26 CONTINUE
RETURN

C
C SUBHOUTINE MYLINE (INTEFNAL)
C
c
SUBROUTJNE MYLINE
ITOP \(=\) IFIK ( \((A B S C I S+\) FYTMAF +.5\() / 11 . *\) 99.)
IBOT \(=\) IFIX(KYTMAR/J1.* 99.)
DO \(17 \mathrm{I}=1, \mathrm{NTOT}\)
\(X P A G E=(Y A F F A Y(I)-Y M A X) /(Y M A X-Y M I N) *\) ORDINA
YPAGE \(=\) (YMIN - XARKAY(I))/(XNAX - YMIN) * ABSCIS
17 CALL SYMEOL (XFAGE,YFAGE, SYMELH,INTEO, 270., I CODE)
IF (NTICY•GE•O)GO TO 22
XPAGE \(=\) - GMDINA/Z.
YPAGE \(=-\operatorname{ABSCIS}\)
CALL PLOT (XPAGE,YPAGE, 3)
DO \(18 \mathrm{I}=\mathrm{IBOT}, \mathrm{ITOP}\)
```

18 CALL FLOT(XPAGE,YDIT(I),3-MOD(I,2))
22 XPAGE = TOPMAR
YPAGE = - ABSCIS - FYTMAR - . 5
CALL PLOT(XPAGE,YPAGE,3)
DO 21 I = 1,100
21 CALL PLOT(XPAGE,YDIT(I),3-MOD(1,2))
RETURN
C C
C
30 XPAGE = - ORDINA - LABSEP
YPAGE = - ABSCIS/2. + NCHAR * HEIGHT/2
31 LSTART = 6* MOD(NCHAK;6) - 12
IFCLSTART.EQ. - 12JLSTART = 24
LOOK = NCHAR/6 +1.1
IF(LSTART.EG. - 6)GO TO 13
IF(FLD(O,12,",S').EQ.FLD(LSTART,12,IBCD(LOOK)))GO TO 15
GO TO 14
13 IF(FLD(0,6,',').NE.FLD(30,6,IBCD(LOOK - 1)))GO TO 14
IF(FLD(O,6,'S').NE.FLD(O,6,IBCD(LOOK)))GO TO 14
N NCHAR = NCHAR - 1
S = .TRUE.
14 CALL SYMBOL (XPAGE,YPAGE,HEIGHT,I BCD,ANGLE,NCHAR)
IF(S)CALL SYMBOL(999.,999.,2 * HEIGHT/3,QSQ,ANGLE,2)
RETURN
C ---
C SUBROUTINE DENDEC (INTERNAL)
C
SUBROUTINE DENDEC(GMAX,DELQ,NDEC)
IF(INT(ABS(QMAX)).GE-10)GO TO 5
IF(AMOD(ABS(OMAX - DELQ)P.1).GE..O1)GO TO 7
NDEC = 1
RETURN
NDEC = - 1
RETURN
7 NDEC = 2
RETUFN
END

```
1. Tsien, H. S., "The Transfer Functions of Rocket Nozzles," American Rocket Society Journal, Vol. 22, 1952, pp 139-143.
2. Crocco, L. and Cheng, S. I., Theory of Combustion Instability in Liquid Propellant Rocket Motors, Appendix B. AGARD Monograph No. 8, Butterworths, Iondon, 1956.
3. Crocco, L. and Sirignano, W. A., "Behavior of Supercritical Nozzles Under Three Dimensional Oscillatory Conditions," Princeton University Department of Aerospace and Mechanical'Sciences, Report No. 790, April 1967.
4. Zinn, B. T., "A Theoretical Study of Nonlinear Transverse Combustion Instability in Liquid Propellant Rocket Motors," Princeton University Department of Aerospace and Mechanical Sciences, Report No. 732, May 1966.
5. Zinn, B. T. and Crocco, L., "Periodic Finite-Amplitude Oscillations in Slowly Converging Nozzles," Astronautica Acta, Vol. 13, 1968, pp. 481-488.
6. Zinn, B. T. and Crocco, L., "The Nozzle Boundary Condition in the Nonlinear Rocket Instability Problem," Astronautica Acta, Vol. 13, 1968, pp. 489-496.
7. Lores, M. E. and Zinn, B. T., "The Prediction of Nonlinear Longitudinal Combustion Instability in Liquid Propellant Rockets, " NASA CR-120904, April 1972.
8. Lores, M. E. and Zinn, B. T., "Nonlinear Longitudinal Combustion Instability in Rocket Motors," presented at the AIAA llth Aerospace Sciences Meeting, January 1973.
9. Zinn, B. T. and Powell, E. A., "Nonlinear Combustion Instability in Iiquid Propellant Rocket Engines," Proceedings of the l3th Symposium (International) on Combustion, The Combustion Institute, pp. 491-503.
10. Powell, E. A. and Zinn, B. T., "The Prediction of the Nonlinear Behavior of Unstable Liquid Rockets," NJSA CR-72902, July 1971.

1l. Powell, E. A. and Zinn, B. T., "The Prediction of Nonlinear ThreeDimensional Combustion Instability in Liquid Rockets with Conventional Nozzles," NASA CR-121279, October 1973.
12. Padmanabhan, M. S., Powell, E. A., and Zinn, B. T., "Application of the Galerkin Method in the Prediction of Nonlinear Nozzle Admittances," Proceedings of the llth JANNAF Combustion Meeting, CPIA Publication 261, Vol. II, December 1974, pp. 141-163.
13. Padmanabhan, M. S., "The Effect of Nozzle Nonlinearities Upon the Nonlinear Stability of Liquid Rocket Motors," Ph.D. Thesis, Georgia Institute of Technology (December 1975).
14. Finlayson, B. A. and Scriven, L. E., "The Method of Weighted Residuals -- A Review," Applied Mechanics Reviews, Vol. 19, No. 9, September 1966, pp. 735-744.
15. Ames, W. F., Nonlinear Partial Differential Equations in Engineering, Academic Press, New York, 1965, pp. 243-262.
16. Bell, W. A. and Zinn, B. T., "The Prediction of Three-Dimensional Liquid-Propellant Rocket Nozzle Admittances," NASA CR-121129, February 1973.
17. McCracken, D. D., FORTRAN with Engineering Applications, John Wiley and Sons, Inc., New York, 1967, pp. 146-153.

NASA-Iewis Research Center
Attn: Dr. R. J. Priem/MS 500-204
21000 Brookpark Road
Cleveland, OH 44135
NASA-Lewis Research Center
Attn: Library/MS 60-3
21000 Brookpark Road
Cleveland, OH 44135
NASA-Lewis Research Center
Attn: Report Control Office/MS 5-5
21000 Brookpark Road
Cleveland, OH 44135
NASA-Iewis Research Center
Attn: E. A. Bourke/MS 500-205
21000 Brookpark Road
Cleveland, OH 44135
NASA Headquarters
Attn: RPS/Robert A. Wasel
600 Independence Ave., SW, Room 526
Washington, DC 20546
NASA-Lewis Research Center
Attn: Procurement Section
Mail Stop 500-313
21000 Brookpark Road
Cleveland, OH 44135
NASA-Iyndon B. Johnson Space Center Attn: EP/Joseph G. Thibodaux Houston, TX 77058

NASA-George C. Marshall Space Flight Center
Attn: S\&E-ASTNJ-PP/R. J. Richmond Funtsville, AL 35812

NASA Scientific \& Technical Information Facility - Acquisitions Branch P. O. Box 33

College Park, MD 20740

Aerojet Liquid Rocket Company
Attn: David A. Fairchild
Bldg. 2000I/Sec. 9732
P. O. Box 13222

Sacramento, CA 95813
Aerojet General Corporation
Propulsion Division
Attn: R. Stiff
P. O. Box 15847

Sacramento, CA 95803
Aerospace Corporation
Attn: O. W. Dykema
P. O. Box 92957

Los Angeles, CA 90045
Aerospace Corporation
Attn: Library-Documents
2400 E. El Segundo Boulevard
Los Angeles, CA 90045
Air Force Rocket Propulsion Lab. (RPM)
Attn: Library
Edwards, CA 93523
Air Force Office of Scientific Research
Chief Propulsion Division
Attn: Dr. J. F. Masi (NAE)
1400 Wilson Boulevard
Arlington, VA 22209
Air Force Rocket Propulsion Laboratory
Attn: Daweel George
Edwards, CA 93523
AFAPL
Research \& Technology Div.
AF Systems Command
U. S. Air Force

Attn: Library/APRP
Wright Patterson AF'B, OH 45433
Air Force Rocket Propulsion Laboratory
Attn: Richard R. Weiss
Edwards, CA 93523

AFAPL
Attn: Frank D. Stull (RJT)
Wright Patterson AFB, OH 45433
Army Ballistics Research Labs
Attn: Austin W. Barrows
Code AMXBR-1B
Aberdeen Proving Grounds, MD 21005
Army Ballistic Research Labs
Attn: Ingo. W. May
Code AMXBR-1B
Aberdeen Proving Grounds, MD 21005
Army Material Command
Missile Systems Div.
Attn: Stephen R. Matos
Code AMCRD-MT
5001 Eisenhower Ave.
Alexandria, VA 22304
Air Force Systems Command
Arnold Engineering Development Center
Attn: Dr. H. K. Doetsch
Tullahoma, IN 37389
Aeronutronic Div. of Philco Ford Corp. Technical Information Dept.
Ford Road
Newport Beach, CA 92663
Battelle Memorial Institute
Attn: Report Library, Room 6A
505 King Ave
Columbus, OH 43201
Bell Aerosystems, Inc.
Attn: Library
Box 1
Buffalo, NY 14205
Bell Aerospace Company
Attn: T. F. Ferger
Post Office Box 1
Mail Zone, J-8l
Buffalo, NY 14205
Bureau of Naval Weapons
Department of the Navy
Attn: Library
Washington, DC

BrookIyn Polytechnic Institute
Long Island Graduate Center
Attn: V. D. Agosta
Route 110
Farmingdale, NY 11735
California Institute of Technology
Jet Propulsion Laboratory
Attn: Fred E. C. Culick
4800 Oak Grove Drive
Pasadena, CA 91103
California Institute of Technology Jet Propulsion Laboratory
Attn: Jack H. Rupe
4800 Oak Grove Drive
Pasadena, CA 91103
California State Univ. Sacramento
School of Engineering
Attn: Frederick H. Reardon
6000 J. Street
Sacramento, CA 95819
Chemical Propulsion Information Agency
Johns Hopkins University/APL
Attn: T. W. Christian
8621 Georgia Avenue
Silver Spring, MD 20910
Colorado State University
Attn: Charles E. Mitchell
Fort Collins, CO 80521
Frankford Arsenal
Attn: Martin Visnov
NDP-R, Bldg. 64-2
Bridge \& Tacony Streets
Philadelphia, PA 19137
General Electric Company
Flight Propulsion Laboratory Dept. Attn: D. Suichu
Cincinnati, OH 45215
Georgia Institute of Technology
Georgia Tech. Res. Inst.
Attn: Warren C. Strahle
Atlanta, GA 30332

Georgia Institute of Technology
Georgia Tech. Res. Inst.
Attn: Ben T. Zinn
Atlanta, GA 30322
Melvin Gerstein
P. O. Box 452

Altadena, CA 91001
Marquardt Corporation
16555 Saticory Street
Box 2013 - South Annex
Van Nuys, CA 91409
Massachusetts Institute of Technology Department of Mechanical Engineering Attn: T. Y. Toong
77 Massachusetts Avenue
Cambridge, MA 02139
McDonald Douglas Corporation
McDonnel Douglas Astronautics Co. Attn: William T. Webber 5301 Bolsa Avenue Huntington Beach, CA 92647
D. E. Mock

Advanced Research Projects Agency Washington, DC 20525

Iockheed Aircraft Corp
Lockheed Propulsion Co., Div.
Attn: Norman S. Cohen
P. O. Box 111

Redlands, CA 92363
Naval Postgraduate School
Department of Aeronautics
Attn: David W. Netzer
Monterey, CA 93940
Naval Underwater Systems Center
Energy Conversion Dept.
Attn: Robert S. Lazar, Code 5B331
Newport, RI 02840
Naval Weapons Center
Attn: R. L. Derr, Code 608
China Lake, CA 93555

Naval Weapons Center
Attn: Charles J. Thelen, Code 4505
China Lake, CA 93555
Naval Postgraduate School
Department of Aeronautics
Attn: Allen F. Fuhs
Monterey, CA 93940
Ohio State University
Department of Aeronautical and Astronautical Engineering
Attn: R. Edse
Columbus, OH 43210
Pennsylvania State University Mechanical Engineering Department
Attn: G. M. Faeth
207 Mechanical Engineering Bldg.
University Park, PA 16802
Princeton University
Forrestal Campus Library
Attn: Irvin Glassman
P. O. Box 710

Princeton, NJ 08450
Princeton University
Forrestal Campus Library
Attn: David T. Harrje
P. O. Box 710

Princeton, N.J. 08540
Princeton University
Forrestal Campus Library
Attn: Martin Summerfield
P. O. Box 710

Princeton, N.J. 08540
Propulsion Sciences, Inc.
Attn: Vito Agosta
P. O. Box 814

Melville, NY 11746
Purdue University
Jet Propulsion Laboratory
Project Squid
Attn: Robert Goulard
West Lafayette, IN 47907

Purdue University Res. Foundation School of Mechanical Engineering Attn: John R. Osborn
Thermal Sci. Propulsion Center West Lafayette, IN 47906

Purdue University Res. Foundation
School of Mechanical Engineering
Attn: Bruce A. Reese
Thermal Sci. Propulsion Center West Lafayette, IN 47906

Research and Development Associates Atten: Raymond B. Edelman
P. O. Box 3580

525 Wilshire Blvd.
Santa Monica, CA 90402
Rockwell International Corporation
Rocketdyne Division
Attn: L. P. Combs, D/991-350 Zone 11
6633 Canoga Avenue
Canoga Park, CA 91304
Rockwell International Corporation
Rocketdyne Division
Attn: James A. Nestlerode
Dept. 596-124, AC46
6633 Canoga Ave
Canoga Park, CA 91304
Rockwe 11 International Corp.
Rocketdyne Division
Attn: Carl L. Oberg
Dept. 589-197-SS11
6633 Canoga Ave
Canoga Park, CA 91304
Rockwell International Corp.
Rocketdyne Division
Attn: Library Dept. 596-306
6633 Canoga Avenue
Canoga Park, CA 91304

Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025
Susquehanna Corp. Atlantic Research Division Attn: Library Shirley Highway and Edsall Road. Alexandria, VA 22314

TISIA
Defense Documentation Center
Cameron Station, Bldg. 5
5010 Duke Street
Alexandria, VA 22314
Tennessee Technological University
Dept. of Mech. Engrg.
Attn: Kenneth R. Purdy
P. O. Box 5014

Cookeville, IN 38501
Textron, Inc.
Bell Aerospace Div.
Research Department
Attn: John H. Morgenthaler, C-84
P. O. Box One

Buffalo, NY 14240
TRW, Inc.
TRW Systems Gp.
Attn: A. C. Ellings
One Space Park
Redondo Beach, CA 90278
TRW Systems
Attn: G. W. Elverun
One Space Park
Redondo Beach, CA 90278
TRW Systems Group
STL Tech. Lib. Doc. Acquisitions
One Space Park
Redondo Beach, CA 90278
'Tulane University
Attn: J. C. O'Hara
6823 St. Charles Ave
New Orleans, IA 70118
Ultrasystems, Inc.
Attn: Thomas J. Tyson
500 Newport Center Dr.
Newport Beach, CA
United Aircraft Corp.
Pratt \& Whitney Division
Florida Research \& Development Center
Attn: Library
West Palm Beach, FL 33402
United Aircraft Corporation
Pratt \& Whitney Aircraft Division
Attn: Thomas C. Mayes
P. O. Box 2691

West Palm Beach, FL 33402
United Aircraft Corporation
Attn: R. H. Woodward Waesche 400 Main Street
East Hartford, CT 06108
United Aircraft Corporation
United Technology Center
Attn: Library
P. O. Box 358

Sunnyvale, CA 94088
University of California
Aerospace Engineering Dept.
Attn: F. A. Williams
Post Office Box 109
LaJolla, CA 92037
University of California, Berkeley
Dept. of Mechanical Engineering
Attn: A. K. Oppenheim
Berkeley, CA 94720
University of Illinois
Aeronautics/Astronautics Engr. Dept.
Attn: R. A. Strehlow
Transportation Bldg. Room 101
Urbana, Ill 61801

University of Michigan
Attn: James A, Nicholls
P. O. Box 622

Ann Arbor, MI 48107
University of Utah
Dept. of Chemical Engineering
Atten: Alva D. Baer
Park Bldg, Room 307
Salt Lake City, UT 84112
University of Wisconsin
Mechanical Engineering Dept.
Attn: P. S. Myers
1513 University Avenue
Madison, WI 53706
United States Naval Research Laboratory
Director (Code 6180)
Attn: Library
Washington, DC 20390
Virginia Polytechnic Institute State University
Attn: J. A. Schetz
Blacksburg, VA 24061
Office of Assistant Director (Chemical Technician)
Office of the Director of Defense Research \& Engineering
Washington, DC 20301```

