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INTRODUCTlON”'

This report is a summary of work completed under NASA grant |
NGR 11- 002 ~-179 entitled Determination of the Effects of Nozzle ' ]

' Nonlinearities Upon the Nonlinear Stability of Liquid Propellant Rocket'-,
iMotors . Research activities supported by this grant were begun in »;v
G August 1973, and satisfactory progress has been made toward meeting theu.

| research objectives during the first six months ofueffort Before

giving a description of this progress, the motivations and ObJectlveS

_of this research project will be briefly reviewed. _

Various aerospace propulsion devices, such as liqnid and solid
propellant rocket motors and air breathing jet engines, are often sub--
ject to ‘combustion instabilities which are detrimental to the performance"’
and safety of operation of these devices. In order to design stable
‘engines, capabilities for a priori determination of the linear and
- nonlinear characteristics of the instability and the range of operating

conditions for which these engines are dynamically stable must be .
v.acquired.. In order to perform such an analysis,_the behavior of the-r
. exhaust nozzle under oscillatory flow conditions must be understood. In =
- particular, it is necessary to know how a wave generated in the combustion
. chamber is partially transmitted and partially’reflectedbat the_nozzle”t
entrance. This information is.usually.expressed as a boundary condition
(usually referred to as a Nozzle Admittance»Relation) that must be .. -
satisfied ‘at the nozzle entrance. v , | /
- Before such a boundary condition can be derived the nature of |
the wave motion inside the nozzle must be investigated The_behaVior (4
~of oscillations in a converging-diverging supercritical nozZle'Was first

" treated by Tsien'

who considered the case in which the oscillation of
2,3 extended .

" Tsien's work to cover the more general cases of non-isothermal one—

the incoming flow is-one-dnnensional and isothermal. . Crocco

and three-dimensional oscillations. The analyses of Tsien and Crocco.
are both restricted to small-amplitude (i.e. ,’linear) oscillations.

More recently, a nonlinear nozzle theory has been developed.by Zinn

4,5,6

and Crocco who extended the previous linear theories to the




~investigation of the behav1or of - flneue-amplltude maves.

~ In recent studies (supported under NASA grant - NGL ll 002- 083)

‘conducted by Zinn, Powell, and Lores, theories were developed which

7,8 9,

describe the nohlinear behavior of loﬁgitudinal and transverse

'instabilities in liquid-propellant rocket chanbers with quas;-steady“

nozzles;e These theories have now beeh extended to . situations in which

the instabilities are three-dimensional and the rocket combustors are

- attached to conventional nozzlesll.- All of these theofies-have

successfully predicted the transient behavior, nonlinear waveforms,

and limit-cycle amplitudes of longitudinal and taﬁgential instabilitieS'H'
in unstable motors. ' : | oo o
A new nonllnear nozzle theory is needed for . the follow1ng reasons.'

5,6

First, the nonlinear analysis of Zinn is mathematlcally compllcated_

and requires considerable computer time.. For this reason, Zinn's analysis

“has never been used to perform actual computations of the‘wave structure

in the nozzle or the nonlinear nozzle response. Seéondly; thexnonlinear..
nozzle admittance relation developed by Zinn is not'compatible with the
recently developed nonlinear combustion theofies:(see References 7 through
11). Comsequently, a linear nozzle boundary condition or & short nozzle .
(quasi-steady) assumption had to be used in all of the combustion '
instability theories developed to date. With.the exception of a‘few

special cases, where the amplitude of the instability is assumed to bef,

moderate and ‘the mean flow Mach number is small (e.g., see Reference ) R
‘the use of a linear nozzle admittance relation in a nonlinear'stability

analysis is obv1ously inconsistent. ”‘urthermore 5 in the case of =~

transverse 1nstab111t1es the llnear nozzle has been.known to exert a

: destablllzlng effect In these cases it is espec1ally important to know

how nonllnearltles affect the nozzle behav1or. C »

' The objective of this research procram is to develop a three- .
dimensional, nonlinear nozzle admittance relation to be used as a |
boundary condition in the recently—developed noqllnear combustion :

instability theories. This objective will be accomplished by performing

the following four tasks:




Task I: Development of the theowy‘”
Task II: Calculation of the nozzle resnonse"' ,
Task III: Application of the nozzle theory to combustion

instability problems L
Task IV:  Preparation of the final tedhnical_repdrt ‘

During the first six monfhs.of this prdjecf, considerable. >1 
progress was made toward completing the first of the above tasks. How-
ever, unforeseen difficulties.in-the mathematical fbrmulation of the

“problem arose in December,'and it was found that the remainder of the

- first year will be needed to complete‘Task‘I Thus a second year will |
be needed to complete the remaining tasks, ‘and a proposal for a one-year
" extension for this grant was submitted to NASA. A summary of the work |

- completed on Task I and a description of the mathematical difficulties .

are given in the remainder of this report.

TASK I: DEVELOPMENT OF THEORY

Research Completed

5,6

As in the Zinn-Crocco analys1s, flnlte—amplltude, perlodlc'

‘osc1llat10ns inside the slowly convergent, subsonlc portion of an axi-

-v-symmetrlc nozzle operating in the supercrltlcal.range were 1nvest1gated.

The flow in the'nOZZle was'assumed to be adiabatieland inviscid and to-
. have no body forces or chemical reactlons. The flui& was also assumed
to be calorlcally perfect. ‘ ' i ‘

. The nondimensional equations describlng the gas motlon in the B

 nozzle were written in the following form:

Biven-e W




— lv (V. v) + (VxV) xV +—l—Vp 0 - (2)
T o e
| S = % 4np - 4np + constant‘-;' - -". (W)

where Y is the specific heat ratlo, Vv, o, p ) and S are the

d1mens1onless velocity, pressure, den31ty and entropy respectively and

"t 1is the dimensionless tlme

It was also assumed that -the nozzle flow is 1sentrop1c and

~41rrotatlonal Under these conditions the energy equatlon (1.e,,»”

- Equation (3)% is no longer needed, the state equation (i.e;, Equation

(4)) reduces to the isentropic flow relation, p =p' , and a velocity

_potential exists such that V@ = V. The continuity and momentum

equations were combined, With the aid of the isentropic relation, to

yield the following equation which describes the behavior of the
-~ velocity potential: S : S

S

+ X% (vE-ve) 928 + —21- Vé-v(vé-"v@)ﬂ;‘ :

while the pressure is related to"é by:

¥-1
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These equations are consistent withbthose.uSed_in the secoﬂd-orderv
| nonlinear eombustion instability theory developed by Poﬁell, Zinn,
and Lores (see References 7 and 10). '
. In the nonllnear combustion instability theorles developed by

: Powell and Zlnn, each varlable was expressed as the sum of a space- -

dependent steady state quantity and a time~ and space-dependent pertur?_ij

batien quantity. In order to obtain a nozzle admittance relafion'
" compatible with these theories, the veloeity potential was expressed -

as follows:

o1
n
L)
+
[e 4

‘where the prime denotes the perturbauﬁon quantlty and the bar denotes
~ the steady-state quantity. Using the relation V& = i , Equation (7)
was substituted into Equatlon (5) 4o obtain the following wave equatlon

for the nozzle:

-

- "]v%@

[l
P
uu

- ‘ . . . lv'

+ (y - 1) (v-§) l:@,é + X'V‘:”j + V(v )-ve’ +2 e
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)+ Lod@wn] :




Before proceeding With the aznalysis, a coordinate'system,
appropriate for the introduction of the boundary condition at the nozzle
walls, was chosen. Following the approach used by Zinn and Crocco 6

for an axi-symmetric nozzle, the axial varisble gz was replaced by

- the steady-state potential function ¢ , and the radial varisble r waé ;

replaced by the steady-state stream function Y. The potential and

' stream functions are defined by: .

a
én

e

_raﬁ = u = %g_ ' o ‘ ‘ -(9)
where 0&s and 6n respectively feprésent elemehtary (non-dimensional)
lengths in the directions of the unperturbed streamlines and of theirr
normals on the meridional planes (see Figure l)rand U is the steady-
state veiocity. A third independent variable, | © , meastres the »
azﬁmuthél variation. In the new coordinate system, the perturbation

velocity is expressed in terms of its components along the coordinate

directions as:
Vi=ue +ve +we . - - (10)

where the e's are unit vectors. , L

The transformation of Equation (8) to (@,Y,G) coordinates was"
greatly simplified by assuming that the steady-staté flow is one-dimen—'
sional, which is a good approximation for slowly convergent nozzles. |
Under these conditions the dependence of p and u on :Y" and © can
be'neglected, so that they are considered to be ?ractically uﬁiformlon ‘
“each surface ¢ = constant. Also the angle of obliquity of the stream~ -
lines to the axis of symmetry is éufficientlylsmall‘so that its cosine
is practically 1 and the element of normal &n: aloﬁg the surface
® = constant can be identified with dr. Hence the first of Equations

(9) was integrated to obtain:
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In addition the mean flow velocity vector appearing in Equation (8)

is given by:

=ﬁ'(cp)_§.c'P :

l<h

With the aid of Equations (11) and (lE)_and the expressions for the
Laplacian, divergence, and gradient in a (9,¥,8) coordinate system,

- Equation (8) was transformed to the following equation:

£ (@5, - £ (@5, + 50 [A(vayy o) + 5y agg | (13)
. ) 1 . .
-2 é% + 1) () 2 5 %t
=23 &' +E§Y-'é\; + 25 5!

: .-2/ 1..' -- 
+ + 1 8’ 3’ +2 "Fé 5!
(v )u_cpw = RN

=

B 5 (1)?
+ £,(9) *f(@\;)"‘- : f6<<p>:_;%<¢'>i__ . 0y - 1) @W@

_ ) u(‘P) %@é + (v - 1)% -[2 (‘Ei& +'§g’>,
. - _

+—1—§’j§’+(y;1)5ﬁ[2'(\w’ +§’)+—1—§’—l§
¥ “e6_| "t _ vy U Yy/) T oY Fpe |

| .(-lg)_j |




where

Hy
'—'A
&
Il
]
t
o

\ e
£(9) = £
_ u
| -2
_=(y-1) au T
fh(tp) h -2 dep
. 2
~ ' -2 2
-3 Y-1 u jdu’
() =3 [l * 2 lap
; . 2 e
g =L[1-(-vnE |&
2u - e ae
‘In Equations (14) ¢ is the steady-state sonic velocity‘given by:
Ro1-¥z2@ @)

In deriving Equation (13) the third—order terms in Equation (8)>(i.e.,.’

the last two terms on the right-hand side) have been neglected, thus.

Equation (13) is correct to second order. ‘ ‘f '
. The equations obtained by the above procedure‘have'no knbwn“

closed~form mathematical solutions. Consequently;_it is-necessary to

resort to the use of either mmerical solution techniques or approximate

‘analytical techniques. Since the numerical solution techniques generally -

" . require excessive computer time, the latter approach was used. In the -

nonlinear combustion instability theories developed by Powell and Zinn -
(see References 7 - 11) the governing equations were solved by means of-

‘an approximate solution technique known as the Galerkin Methdd, which
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12’l3. In these

investigations it was shown that the Galerkin Method could be success-

- is a special case of the Method of Weighted Residuals

fully applied in the solution of nonllnear combustion mstablllty

problems; 1ts application was stra.lghthfward and. 1t required rela.tlvely

1ittle »computa.tlon time. Thus the Galerkin Method was also used in the

analysis to determine the nonlinear nozzle admittance relation.
Tn order to employ the Galerkin Method in the solution of the

wave equation (i.e., Equation (13)), it ~wa.s'f.'irst necessary to express

. the velocity potentlal Q', as an approximating series e@a.nsmn. : The
structure of thls series expansion was guided by the experience gained
in the nonlinear nozzle admittance ‘studies performed by Zinn and Crocco -
(see Reference 5) as well as in the nonlinear combustion insta.bility

" analyses of Powell and Zinn (see Reference lO) Thus the velocity

potential was expressed as follows:

L
2.

z 2{1&. (cp)cosmeJ I:s (w)

m=0) n=1

]_, m Y w

In Equa.tlon (16), the f‘unctlons A (tp) are unknown complex

mnctlons of the axial variable . The 6- and ‘i’~dependent elgeni‘unctlons

were determined from the first-order (i.e., llnea.r) ‘solutions by Zlnn5.
In these functions m is the transverse mode number, - n 1is the radial
mode_number, Jm is a Bessel function of order m, Yﬁ is the» valie
of the steady-state stream function evaluated at the nozzle wall, and
Sm.n is a roo’c_ of the equa.tion' dJm(x)/dx = Q, ' The expansions given -
above describe standing wave motion; they can be easily modified to-
describe spinning wave motion. In the time-dependence, ® is the
fundamental frequency which must be specified and the integer kmh
glves the frequency of the higher harmonics. The values of ‘-»kmn for
the wvarious modes appearing in Equation (16) mst be determined from
the results of the nonlinear combustion msta.blllty analysis of Porwell

" and Zlnnlp. For example 1t was fou.nd that, due to nonlinear coupling
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_between modes, the second tangential (m =2, n=1) and first radial

(m =0, n =1) modes oscillated with twice the ffsQuency of the first
tangential (m =1, n = 1) mode. Thus in Equation (16) k,, =1 for :
the first tangential mode and k = 2 for the second tangential and
the first radial modes. The amplltudes and phases of the various modes
depend on the axial location (i.e., 9) in the nozzle through the
unknown functions A (@) o ' \

, In order to obtaln a solutlon, the unknown ¢-dependent functlons

(i.e., the A (@)) were determined by the Galerkin Method as follows.
The assumed series expans1on for the velocity potentlal (i. €., Equatlon

- (16)) was substituted into the wave equation to form the residual,

- E(8"). 1In the event that this residual is identically zero, the

assumed solutlon is an exact solution. The residual, therefore,'
" represents the error_incurred by using the approximate solution given.

by Equation (16). The Galerkin Method determines the amplitudes A

A (@) that minimize the res1dual E(v ).

Applylng the Galerkln Method, the res1dual E(@ ) was. requlred
to satlsfy the following Galerkin orthogonallty conditions: ‘ '

I IE@ (e (O, (uf)asat S an
O 'S ' , e i . :

i=1,2, ... L

where L 1s the number of terms in the series expansions of the dependent
varisbles. The weighting functions, - T, (t), ® (6), and ¢ ¥) -

' correspond to the terms that appear in the assumed series expan51ons.‘
The temporal weighting function, Tj(t), is the complex conjugate of

'the’assumed time dependence, thus:

-ik » o
VTj(t)=e m | T (18)




The azimuthal weighting functions, ®j(e)’ are given by :
o) ~eonme (9

while the radial weighting functions, ¢j(Y), are given by: =

1

*j(Y) - Jm_[smn.(gi)gjl' N B | _,‘v J‘{Q?).f'“

The time integration is performed over one period of oscillation,'

T = Qﬂ/w, while the spatial integration is performe& over:any~surface

of - @ =-cohstantvin the nozzle (in_Equations (17): dS indicates an

incremental area on this surface). - o ' _
Evaluating the spatial and temporal iﬁtegralsfin_Equation‘<l7)

yields a systeﬁ of L honlinear, second order (in derivatives) ordinary

differential equations to be solved for the _Amn(Q). :These equations

are complex and are equivalent to a system of 2L real equations.

Using the notation

':sz_l(wﬁ

11

Ré_ {Ap(cﬁ)}

Im {Ap(¢)} :5-  L

I

BZIP(CVP)»

where each term in Equation (16) is assigned an index p, thevcorrespond-

‘ing set of ordinary differential equations becomes :




1|

- Equations (22).

13

21, . ‘ 2‘ ) . S v . B .

L {om =2 2o 2 AOEN S C(e2)
o | o
8L on - | daB'd_B'

) {D(tp) B+D(tp)—§ i

dy -

p—l 9=1 _ '
+ D,(9) 7‘;’? qu. D, (9)B, 5 * Dy (%) BBJ = ©

3=1,2, ... 2L

The coefficients qk and Dk in Equatlons (22) are functlons of the

“axial variable ¢ as weil as the indices -Js D> and q. Considerable °

time and effort was required to derive the analytical expre551ons for -
these coeff1c1ents, which were obtained by evaluating integrals
involving trigonometric and Bessel functions. In the absence of closed—

form expressions'for the ihtegrals of Bessel functions, these integrals

were computed numerically.

As a check on the above analysis, a single mode Series'cdn—_;
sisting of the first tangential mode (m =1, n = 1) was used in deriving
. - For this éase all of the coefficients of the nonlinear -
terms vanish, and the resulting linear equatioh’(in complex form) |

becomes:

Y -2) A 271 an - aa '
a ) =2 = S taiwl— . (23)
. dCP2 02 de 4 1 ayp | o R
2
-8 2D
11 -===2 ¥ -1. u 'du 2}
+ 1- D = = =
{2‘1, puc - - 5 iw 2 A(cp 0
W . : : .




C1h

_ Which.is identical to Croceco and Sirignano’s'éqﬂa.tion3 for the iséntropic

' and irrotational case. - _ _ o

Summarlzlng the work completed to date, the wave equatlon,I

(i.e., Equation (5)) has been perturbed and written in a (¢,Y,®)
_coordinate system. A secohd-order wave equation has been derived by

‘VIneglectlng third-order terms (i. e., products of three perturbation

quantities) in this equation. The veloclty potentlal was then expanded

. in the series given by Equation (16) and this series was subst ituted
into the second-order wave equation to form a residual. This re51dual ;
was then requlred to satisfy Equation (17) g1v1ng d system of non- - |
linear ordinary differential equations (i.e., Equations (22) which must
satlsfy certain boundary conditions at the nozzle entrance and at the

- nozzle throat. Expressions for the coefficients in Equations (22) were

derived by evaluafing the spatial and temporal integrals in Equation:(l7).

Mathematical Difficulties ‘ :
The part of Task I that remains to be completed is the

development of a computer program to solve the nonlinear equatlons;
(i.e., Equations (22)) for the unknown functions of @. -In order to do
this, the boundary conditions that the soluﬁions must'satisfy must be
- formulated. Tt is in the treatment of these boundary cohditions that
difficulties have been encountered which have delayed completion of '
'Task I. The nature of these dlfflcultles will now be described. . _
In the linear analyses of Crocco and Slrlgnano3 and Beli and
'ZinnllL the differential equation, that had £o be ‘solved was sihgular at
the nozzle throat; that is, the coefficient of the hlghest order -
derivative vanished there. Thus one of the boundary conditions that the
solutions had to satisfy was a regularity condition at the throat.
.This enabled the differential equations to be-numerically integrated;'
beginning a short distance upstream of the throat. and proceeding ’
“upstream to the nézzle entrance plane. 'The starting values were
" obtained from a Taylor's Series’expansion about the throat. In the
nonlinear case difficulties were encountered when applying the above

procedure because the corresponding nonlinear equations (i.e., Equations

(22)) are not quasi-linear; that is, the coefficients of the highest
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" derivatives depend on the unknown functions, Bp(cp). Thus the location.
of the singular point is not known a priori. "It is also not clear how
~the regularlty conditions should be applied in the nonlinear case even
if the location of the singular point were known. Thus a.ddltlona.l
study was needed in order to resolve this p'roblem. o

Most of the effort expended during December and J anuary -

was a.:x.med at resolvlng these mathematical difficulties. Once the proper

form of the bou_ndary condition at the throat is established, a computer -

.~ program will be developed to integrate Equations (22) and determine the
complex functions A (CP) . These in turn will be used to obta,ln
nonlinear nozzle a.dm1tta.nce relations for use in the Powell—Zlnn

nonlinear combustion instability theories.
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TINTRODUCTION

Al

“This report is a_summary of work completed under NASA grant NGR 11-

002-179 entitled "Determination of the Effects of Nozzle Nonlinearities

Upon the Nonlinear Stability of Liguid Propellant ‘Rocket Motors". Research

activities Supported by this grant were begun in August 1973, and satis-

factory progress has been made toward meeting the research objectives dur-

ing the first year of effort. Before giving a description of this progress,

" the motivations and objectives of this research progect will be briefly

reviewed.

Variousﬁaerospacet@ropulsion”devices,:such as-liquid and solid pro-

.. pellant rocket motors and air breathing jet englnes, are often subaect

“to combustion 1nstab11_t1es Whlch are detrlmental to the performance and

i capabllltles for a prlorl determlnatlon of the llnear and nonllnear,:'

characteristics of the instability and the range of operating conditions

for which these -engines are dynamically stable must be acquired. 'In

- order to. perform~such an analysis, the behavior of the exhaust nozzle

undexr osclllatory flow condltlons must be understood In partlcular, 1t

is necessary to know how a wave generated in the combustlon chamber is

A partially transmitted and partlally reflected at the nozzle entrance.

This information is usually expressed as a boundary condition_(ﬁsually
referred to as a Nozzle Admittance Relation) that must be satisfied at the

nozzle entrance.

Before such a boundary condition can be derived;'the'neture of the
wave motion inside the nozzle must be investigated. - The behavior of ‘
oscillations in a converging-diverging supercritical nozzle was first
treated by Tsienl who considered the case in which‘the oscillation of

the incoming flow is one-dimensional and iscthermal. Croccoz"3 extended

© " Tsien's work to cover the more general cases of non-isothermal one- and

“three-dimensional oscillations. The analyses of Tsien and'Crocco are.

both restricted to small-amplitude (i.e., linear) osclllatlons. More

recently, a nonllnear nozzle theory has been developed by Zlnn and Crocco

- who extended the previous linear theories to the 1nvest1gatlon of the

"fisafety of operation of these dev1ces. In order to de31gn stable eng1nes,_qi>‘;

4,5,6




"1n the nozzle or the nonllnear nozzle response. Secondly, the nonllnearf

behav1or of“inlle amplltude waves. _ _ v : .
In. recent studies (SupPOLth uind der NASA grant NGL 11-002- 083) con- ..

“ducted bv Arnn, Powell and Lores, theories were developed which describe

9,10

the nonlinear behavior of tongitudinal'’ 8 and transverse instabili-~

ties in liquid-propellant rocket\bhaubers with quasi-steady nozzles. Theseﬁ//4

T B ./_/

. theories have now been extended to situati ons "in which the 1nsr~¢w1l_»_ales

‘ are three-dimensional dnd‘the rocket combustors are attached to conven-

tional'nozzlesll. All of these theories haVetsuccessfully predicted the
transient behavior, nonlinear waveforms, and limit-cycle amplitudes of - -
longitudinal and tangential inStabilities'intunStable_motors.

A new nonlinear nozzle theory is 'needed for the following reasons.
Iirst the nonllnear analysis of Zlnn5 6 is mathematically‘complicated
and requires considerable computer tlme."For this reason57Zinnts analysis

has never been used to perform actual computatlons of the wave structure»

nozzle admittance relation developed by Zinn is not compatible with the
recently developed nonlinear combustion theories-(see References 7 through
11). Consequently, a linear nozzle boundary condition or short nozzle

(quasi- steady) assumption had to be used in all of the combustion in-

stablllty theories developed to date. - Wlth the exceptlon of a few spec1all.'5'

*cases,.where‘the.amplitude of the instability is assumed to be moderate:

and the mean flow Mach number is small (e.g., see Reference'9),'the'use of_
a linear nozzle admittance relation in a nonllnear stablllty analysls is’ -

obviously inconsistent. ' Furthermore, in the case of transverse 1nsta-_+

 bilities the "llnear nozzle has been known to exert a destablllz1ng

effect; in these cases it is especially important to know how nonlinearities

affect the nozzle behavior. _ _ _ RS
‘The objective of this research program is to develop a three-

~ dimensional, nonlinear hozzle admittance relation to be used as a

boundary condition in the recently-developed nonlinear combustion insta-‘.

. bility theories. This objective will be accompllshed by performlng the

follow1ng four tasks:

Task I: Development of the theory
‘Task IT: ~ Calculation of the nozzle reSponse
Task IIT: Application of the nozzle theory to combustion

instability problems ..




«w..lkations. inside .the slowly_convergent, subsonic'pottien offah_axisym—

T@e TV Preparétign of the'final»teeﬁhieal report

Daring the first six months of this project, considerable progress
was made toward completing the first -of the above tasks. However, un-
faeseemudifficulties in the mathematical formulation of the problem arose
~inrBacenber, and most of the first year was needed to complete Task I. |
Once the theory and computer programs‘were developed, Task II was com-
*pleted during the remaining time. A one-year extehsion of support has
”4FbeeﬂrgrantedfberASA to complete Tasks IIT and IV. A suﬁmary of the work . :..

““completed on Tasks I and II is given in the remainder of this report.

TASK I: " DEVELOPMENT OF THEORY

Derlvatlon of the Nozzle Wave Eqpatlon

“As in the' Zinn- Croccoranaly31s,5’6

finite-amplitude, periodic oscils

metric nozzle operating in the supercritical range were investigated.
The flow in the nozzle was assumed to be adiabatic and inviscid and to

have no bbdy‘forces or chemical.reactions. The fluid was also assumed tdvv

~be calorlcally perfect. ol ‘
' The nondimensjional equatlong descrlblng the gas motlon in the nozzle‘

were wrltten in the folldWlng form:
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where v is the specific heat ratio; v, p, p, and S are “the dlmen31on—

Jess velocity, pressure, density and entropy respectively and t is theu

dimensiorless time.

It was also assumed that the nozzle flow is isentropic and irro-

 tational. Under these conditions the energy equation (i.e., Equation

(3))is no longer needed, the state equation (i.e., Equation (H))reduoes‘

o thekisentropic_flow relation, p =_oy, and a velocityupotential'exists

such that v@v- V. ’The continuity and momentum equations were’combined,
with the aid of the 1sentrop1c relatlon, to yield the follow1ng equatlon

which deocribes the behaV1or of tae veloc1ty potentlal

V8 - g, = 2ve-ve, + (v - 1) e ve »(S)V

This equatlon is consistent w1th the wave equatlon used in the second—order
nonlinear combustion 1nstab111ty theory developed by Powell Zlnn, and s
Lores (see Referénces 7 and 10). o

In the nonlinear combustion instability theorles developed'by Powell
and Zinn, each variable was expressed as the sum of a Space dependent '

steady state quantity and a time- and space- dependent perturbatlon quantlty.z

© In order to cbtain a-nozzle admittance relation compatible w1th«these theo-

ries, the wvelocity potential was expressed as follows:
8 =23 +8" ':ow'; o vpl'p . ; (6)

where the prime denotes the perturbation quéntity and the bar denotes .

~ the steady-state quantity. Using the relation Ve = ¥, Equatlon (6) Was,

qubstltuted into Equation (5) to obtaln the follow1ng wave equatlon for theu;;

nozzle:

LA e [ da] - o
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" Before proceeding with.the analysis, a'cdordinateisystem,wapproe B

“priate for the introduction of the boundary condition at the nozzle
“walls’, was 'cho’s.e"n. 'Fol.'l.owingf the mpproach used by Zinn and  Crocco”
- for an axi-symmetric nozzle, the axial variablé Z Was repiaced-by the ~

- steady-state potential function ¢, and the radial variable r was re- 3
placed by the steady-state stream function {. The potential and stream

functions are defined by:
- q - dp L
where 6s and &n respectively repfesent elémenﬁéry (nOn-dimehsioﬁal).; :"

. lengths in the directions of the unperturbed streamlines and of their
normals on the meridional planes (see Figure 1) and u is the steady-

state velocity. A third independent variable, 6, measures the azimuthal & .

variation. In the new coordinate system, the perturbation wvelocity is

expressed in terms of its components along the coordinate directiqns as:

vVi=u'e +vig +w'e _ IR f.a‘,é_(9)

where the e's are unit vectors.

The transformation of Equation (7) to (5¥,8) coofdinates was"gfeatly N

simplified by assuming that the steady-state flow is ohe-dimensional, which

556  ;‘1,;M
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Figure 1. _Coofdinaté System'ﬁséd for?the Solutionyof’the'Oscillétory Nozzle Flow.




is a good approximation for slowly ccanvergent nozzles. Under

these con-

~.ditiaons the dependence of 5 and u on ¥ and 8 can be neglected, so that

they are congidered to be practically uniform on each surface

¢ = .constant.

. Also. the angle of obliquity of the stream-lines to the axis of symmetry

4ris csufficiently small so that its cosine is practicallywl and.

;theﬂeleménti'

of normal én along the surface ¢ = constant can be identified with dr.

. Hence the first of Equations (8) was integrated to cbtain:

(10)

veiIniaddition the mean flow ve1001ty ‘vector appearing in: Equatlon (7):is .

Ulven'by

=<

.=u(cp)_,cp

© Qi)

. With the aid of Equations (10) and (11) é.nd the expressions for the

" Laplacian, divergence, and gradient in a- (@,¥,8) coordinate. system,

Equation (7) was transformed to the following equation:

\
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In Equations (13) ¢ is the steady-state sonic velocity given by:
o1z rg® 0 ay

Tn deriving Equation (12) the third-order terms in Equation (7) (i.e.,

the last two terms on the right-hand side) have been neglected,‘thus

Equation (12) is correct to second order.

Appllcatlon of the Galerkin Method

The equations obtained by the above procedure have no known closed-

-form_mathematlcal solutlons. Consequently, it is necessary to resort to




the use of Cthor numervcal polutlon technlques or approximate analytlcal
techniguas . Since the numerical solution tnchnlques generally require
axcessive ovmvuter time, the latter approach was used. In the nonlinear

combustion instability theories developed by Powell and Zinn (see Refer-

ctences.. 7 = 11) +he governing equations were solved by means:of an approxi-... ..

mate solution technique known as the Galerkin Method, which is a special
" case of the Method of Welghted Residuals 2 3. In these 1nvest1gat10ns.
it was shown that the Calerkln Method could be successfully applled in the
solution of nonlinear combustion instebility problems; its application . =
was straightfofﬁafd'and it required relatively little’computation time.
Thus the Galerkin Method was also wused in the present analys1s to de-
termine the nonlinear nozzle admittance relatlon : -
In order to. employ the Galerkin Method in the solution: of: the wave
equatlon'(l.e., Equation (12), it was first necessary to express the ve-
locity potential, &, as an approximating series expansion. - The struc-
ture of this series expansion was guidedlby the ex?erience gained in
the nonlinear nozzle admittance studies performed bvainn and Crocco
(see Reference45) as well as in the nonlinear combustion instabilityvb
.analyses of Powéll and Zinn_(see Reference 10) . _Thus the velocity po—"

tential was expressed as follows:

mn=0 n—l

© In Equation (15), the functions Amn(@) are unknown complex functiohs
of the axial variable ¢: The 8~ and {-dependent eigenfunctions were de-
termined from the first-order (i.e., linear) solutions by_ZinnS; In these
functions m is the transverse mode number, n is the radial mode number, Jm
is a Bessel.functiqn of order m, ¢W is the wvalue of the steady-state stream
function evaluated at. the nozzle wall, and Smn'is a root of the equation
' dJm(X)/dx = 0. The expansions given above describe standing wave motion;
they can be easily modified to describe spinning wave motion. In the time-
dependence, w is the fundamental frequency which must be specified and. the
integer kmn gives the frequency of the higher harmonics. The values of k

for the various modes appearing in Egquation -(15) must be determined from:

}: }: i_ (@) cos mB J [S (ﬁL)éj e ikmnw{;}  ._{w .(15)f
. o 2o :
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' Galerkln Method, the approx1mat1ng series expansion for 3’ is written as

_f (§) are the 8-and y-dependent functions whlle N is the. number of terms
_ ‘wn the series expansion. In the present analysls, a three term expan— ;,
' sion con51st1ng of the first tangentlal (p=1; n= l n'= l),fsecond tan

 was used, but the theory is appllcable to any nuﬂber of modes

"A (w),_were determined by the Galerkin Method as follows., ‘The assumed R

" event that this residual is identically zero, the assumed solution isp EERA

ﬂ'

satisfy the follow1ng Galerkln orthogonallty condltlons e '; »-. j

the results of the nonlinear combustion instability analysis of Powell

.10 . - . . . T e
- and Zinn ~., For example it was found that, due to ronlinear coupling be-

tween“modes, the second tangential (m = 2, n = 1) and first radial (m =0,

n‘z.l) modes oscillated with twice the frequency of the first tangential

: (m.e,l n = 1) mode. Thus in Equation (15) ky; =1 for the first tan-

ntial mode and k = 2 for the second tangential and the first radlal .

e

‘modes . The anplltudes and phases of the varlous modes depend on the

wx:Lal locatlon (i.e., @) in the nozzle through the unkrown functlons

2 (o).

mn
In order to ulmpllfy the algebra involved in the appllcatlon of the

a slngle summation as follows

3 =) A (m) ® RORAUR VP T ae
_1 g S A

where o each value of the 1ndex D there corresponds the mode numbers S
n(p) and n(p), which determine the value of k . In Eq. (16) @ (e) and

gential (p 2;m=2,n-= 1) and first radial (p 3, m = 0 n = 1) modes '
In order to cobtain the solutlon, the unknown m-dependent functlons,

ries ‘expansion for the velocity potential- (1 e., Eq. (l6))was sub-

stituted into the wave equation to form the residual, E (% Y.  In the

en exact solution. The residual, therefore, represents the error ini ’
curred by using the approximate solutions given_by‘Eq.'(l6);i‘The Galer-
kin Method determines the, amplitudes Ap(m) that minimizes the residual R

Applylng the Galerkin Method, the residual E(N ) was requlred to

T | . T A S
er%)%&)%m)%W)ﬁdt=o,‘ Jel2, .o N L an

J .é
0




S

JERT: funbblons _J(u), ®.(8) and Y () correspond to the terms

that appr;r in the assumed serles expan51on ‘The temporal'welghtlng

v eoral e Eisms

ket ; N
n)=e P (18)

- The azimuthal weighting functions, ®j(8), are given by .

@j(e)_= cos,me'_zlj ;.. o  _ o | (19j

while the radial weighting functions, Y.(W), are given.by

11

%4$)f”lswthewcowp%¢x conjugate of the assumed time dependences: o oy

L 1L ‘The time iﬁtegration is performed over one periodrdf bscillatidn;x;
T = %?, while the spatial integration is performed over any surface
of @ = constant in the nozzle (in Eq (17) ‘as 1nd1cates an 1ncrementa.l
area ‘on this surface) . - :
Evaluating the spatial and temporal 1ntegrals in Eq. (a7) y1elds
the following system of N nonlinear, second order, coupled, complex c
ordinary differential equations to be solved for the complex amplitude

. functions, A (@)

,dAw) dA (@) '
}S {Cl o +C, ——%ﬁ;g— + C3 A (qﬂ

N N 2 B
B aca d A dA
DL IR CEY
P:l q=1 oo W --m
aa_ (®) A (o) Ca ey
. A | N
Dy — o + PuAp(”) ——%E;—-+ DA (o) Aq(m)}

+Q=0 , N Cd=12, ..W . (22)
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"that arise when a complex solution (i.e. Eq. (16)) rs used to solve the

" which is identical to Crocco and Sirignano's equation

~

In the'#bove equations, Q rebresents the addlutt;ti nonlirt

nonlinear wave equation (i.e. Eq. (12)). These terms are s1mllar in

. form to the nonlinear terms shown, but they involve: the complex con-
jugatesof the:amplitude funetions. .. The procedure‘for ‘deriving these ’

terms is given in Appendix B of Ref. 11. The'coefficients C> and Dk are

funotlons of the ax1al variable ¢ as well as the 1ndlces J.p.and q.

Analytical expresslons for these coefficients contaln 1ntegrals involv~

ing trlgonometxlc and Bessel functlons. In the absence of closed—
form expresslons for the 1ntegrals of Bessel functlons, these 1ntegrals
were .computed numerically. ‘ .

As a check on the above analysis, a single mode series consisting

“of the first-tangential mode was used in deriving Eg. (21). For this

case, all the coefficients of the nonlinear terms vanish and the re-~

 sulting linear equation is:

2 -2
—~2,=2 -2y d A -2 L @q dA
u (c” - u") —5 - u" (:—-~—~ + 21w]-——
d$2 _02 dep dep
(22)
2 i
8= -2 -2
11l =~-2 vy =1 u~ du 2}
+ { =T puc_ -~ w =5 =— +w [ Alp) =0
2¢W 2. C2 dep
3

for the isentroplc

and irrotational case.

Dominance of the 1T Mode S
The well known fact that most transverse 1nstab111t1es behame llke E

the first tangential (1T) mode was used to further slmpllfy Eq.- (21)
‘Based on the results of the recent combustion 1nstab111ty theory,ll it ;‘

was assumed that the amplitude of the 1T mode was conslderably larger' .
than the  amplitudes of the remaining modes in the serles solution.
Through an order of magnitude analysis, correct to the second order,;

E1 (21) reduced to the following system of equatlons
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CCICNE S S R A P 0] & ]oa
| &2 2 d oo
S oo =2 =2 ‘ : o
A 1 --=2 y ='1 . u” du” - 2] S :
fL- By, P T T gy e Al =0 (230)
W ¢ '
| 2, L
. -2 - dA
-0 D - ‘
u (e” - ) ~—¥E 2 []' du 21k wJ @i
d(p .
2 - o o L
+ [ -P—“ e VoL B a0 022 4 (o)
v p” 2 - p AP
d“A ‘ a°A, aa,

i

- Dy (gsp) "d_cp'g' Ay = Dy{9sp) —3 dep

. 2 AR _ :
D, (9,7 (—5431-> - Dy (,p) E} Ay = Ds(wsp) A-_2L

-Q, =0 L
® ’ . | | (23b)
P =2,3,...N » :
The above equations can bé written concisely aé follows:
a%a_(q) dA_(¢) = ‘
H (o) —5— + 1 (o) 72-‘;——— + N (cp)A (0) = I (cp) : (21)
dm : . v

p=1,2, .8
where I (m) O. | | ‘ .

It can be seen that the above equations are decoupled w1th respect
to the 17 mode; that is, the solution for Al can be cbtained indepen-
dently of the amplitudes of the other modes. Thus, to second order, the
nonlinearities of the problem db not affect the 1T mode. On thé.other

hand the nornlinearities influence the amplitudes of the higher modes




(i.e., Ay, A,...) by means of the inhomogeneous terms in the equations

2 3
for the obher modes.

“Homogeneous and Particular Solutions :

‘Equation (24) is a second order, linear ordinary differential
egquation and its general solution is a corbination of the homogeneous

solution that satisfies the homogeneous part of Eg. (24), i.e.,

» 2 (n) (n) | s
) h : d A . dA h) v SRR
v;.Aé,)};; H) dmg v+_Mb _@ﬁ L Aé ? =0 R (?5)

“ and ‘the particular solution that satiéfies‘ﬁd. (24) .  The general so= -

lution can be written in the following form:

Aol =1 Y gl 0
where Aéh) and ﬁéh) are two independent solutions of Eq. (25), K, and .'

K2 are arbitrary constants, and.Aé 1) is a partlcular solution of the in-

homogeneous equation. , .
Examination of the coefficients of Eg. (24) show that this equatlon

has the follow1ng singular p01nts

a=0

- - o ¥ -
u=c= (y + 1/ C throat
u=o

For a supercritical nozzle with a finite area entrance, only the singu-

larity at the throat is of concern -to us. Assuming that the singularity

~of the solution appears in Zéh), the condition requiring the regularity

of the solution at the throat can be expreséed'by requiring K2 = 0.
Consequently, the required solutlon of Eg. (24) is of the form

) - KlA”(qo)m(l)() N 0
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Derivation of Admittance Relations

- Using the above result, a nonlinear»admittance relation to be used -
2s '8 bdundary'condition in“nénlinear combustion;iﬁétability analyses can
be derived. Denoting the terms of BEq. (16) by .

| ikt - | L
= A @ (9)Y e : 27)
NOEROMOICI AN S e

3/
P

taking partial derivatives with respect to z and t, and using Eq. (26)

gives
333 ) : _ ikpwt dA (1) _
T3z w0 .Yp(q'_),e_ ' do
) _ »ikpwt dA (n) '
=X u-®P(9) Yp(q;) e & ‘ ,(28')
5o 7 Mo 0000 YW e TooA |
=K ikw® (8) ¥ (V) eil?Pu.)t s (29)
1l 7 p D : D :
Eliﬁinating Kl_betweeﬁ Eqs,(28) and (29) and defining
el o
e o . o | (30)
& = T e
w @ |
‘ .\ dA aar
SRR S Y € M TN ¢ R N8 PR ER
I1p B =2, h) I.Ap dep :Ap Cdp - o (31)
yieldé  »
a3’ aép’ o Akowt o
T%? +y Yﬁ St T —»uc @P(e) Y (Y) e P .FP- > : (33)
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Eguation (33) is the nonlinear nozzle admittance relation, to bé';'

~used as the boundary condition at the nozzle entrance in nonlinear com- . -

bustion instabllity analyses. The right-hand-side of this equation

rises from the nonlinear terms in the nozzle wave equabion.. The guan-

W

ftities.Yb.and I' are respectively the linear'and‘nonlinear admittance

coefficients for the pth mode. The nonlinear admittance, F ) represents
the effect of nozzle nonllnearltles upon the nozzle admlttance and it 1s'
1dontlcally zero when nonllnearltles are not present

‘ It ‘can easily be shown that Egq. (33) can be written in terms of the

j:nressure and ax1al veloc1ty'pertufbatlons as:

aeD : . : ) o
U.—YP:—ucF =1,2,...N : L (3
D PP D, PE e _,-,(3;)_-

where U and P_ are the amplitudes of the axial velocity and pressure

"~ perturbations respectively as given by:

ik wt -

2’ - Z Pplo) (@) ¥ () e ¥ S B
p=1 S ~ :

w =) U (e 8@ ¥(he T (38
p:l ' v T .

Equation (3&) is equlvalent to Eg. (33) to second order only when the

Mach number at the nozzle entrance, u , 1is small
In order to use the admittance relatlon (Eq. (33) or (3&)) in the
combustion 1nstab111ty theories, the admittance coefficients Yé (or gp)

and FP must be determined for a given nozzle. The equations governing -

these quantltles are readily derlved from Eq. (2k) u31ng the deflnltlons :

for gp (i.e., Eqs.(30) and (31)) The resultlng equatlons are:

a | . SR
a, 2 o S
Homp =" MG - - RO G (37)




-tude P
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H«—E—}(-Hg+H—Y—-‘——l—dl_£-M)F-EE" (38)
podp N PP D o7 _ ’ S

TASK II: CALCUTATION OF THE NOZZLE RESPONSE

' To obtain the nozzle response for any specified nozzle, Egs. (37)

and (38) are solved in the following manner. As pointed out earlier,

‘the nonlinear terms vanish for the 1T mode (i.e., Iy =0, I = 0). and
. it is only necessary to solve Eq..(37) to obtain g (and hence Y ) at

the nozzle entrance. Since Eq. (37) does not. depend on the higher modes,

it cad be solved 1ndependently for: Ql Once Ql has been determined, both
" Egs. (37) and (38) must be solved for the other modes. In order to do
. -this, the amplitude Ay () must be determined since Eg. (38) -depends on

Al(m)jand its derivatives through Ip(m). Once gl(¢) is knoWn,‘Al(m)~is
determined by numerically integrating Eq. (30) where the constant of in- "
tegration is determined by the specified value of the pressure ampli-
1 (of the 1T mode) at the nozzle entfance. The value of A, thus
found is introduced into Eq. (38) which is then solved for tp. ' ‘

It may be observed that Eq..(37) and (38) have singularities at
the same points as Eq. (24)}- As before, the only singulerity of interest
is the throat. Since Egs. (37) and (38) are first order ordinary differ- .
ential equations, the numerical integration of these equations must start

at some,initiel point where the initial conditions are known, and termi-

-nate at the nozzle entrance where the admittance coefficients ?p and-fi

are needed. Since the equations are 31ngular at the throat, the inte-

gratlon is 1n1t1ated at a point that is located a short distance up-
_‘stream of the throat. The needed 1n1t1al conditions are dbta;ned by ex-
"panding the dependent variables in a Taylor series.about the throat-
.‘(w = 0); thus, | | '

[y
—
-5
s
)]

'Cp(o.)'%cbcé(o) R | i o _(39@)‘

Fj

s

S’
!

r,(0) +wl}(0) + L o (o)
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tations.

The coeffioients'g (0) and gé(o) can.be determined by sﬁbstituting

Eq (30 a) in Iq. (37),and taklﬁothe limit as ¢ = 0. The results aré:.. . .

" () | .
0,0 = - 575 | Kr (koa)
p : , s s ’
-M’(0) ¢ (0) - H'(0) € <o> - N'<o> IR RV
£/(0) = - Pr) p i s (bow)
P | H’(o) + M (o) | B
P
p =1,2, . N
.similarly,'PK(O)Handvfé(O) can be detefminéd'by shbstiﬁuting’Eq. (39p)
in Eq. (38), and taking the limit as ¢ — 0. The resuits are: - :
T (0) = - mEe— ‘ ‘ (L)
P - &“(0) M (0) - SN
P » . . .
rio) = {- a‘?(o) 5! (0) c_,p<o> rp<o>-+%-;-—l%- ©) 200) 1,0
- 22(0) (0) r (o) +3’———— (0) M (0) T (o)
- 12(0) ,}/{62(0) B/(0) + 2(0) s ()} : .’_,m‘;g) i

In Egs. (37) and (38), the quantities Hﬁ, MP Nb and Ip are functlons

'of the steady—state flow varlables in the nozzle and these must be com-

puted before performlng the numerlcal integration to dbtaln ;P and F .

- ~ For a. specified nozzle profile, the steady-state guantities are computed'

by solv1ng the qua51—one-d1mens1onal 1sentroplc steady-state equatlonS;
forfnozzle flow. . Figure 2 shows the nozzle profile used in our compu~
A1l of the length variables have been non-dimensionalized with

t to the radius of the combustion chamber, to which the nozzle 1s -
is fixed by the Mach numf'

respec
attached, and hence r, = 1. At the throat Tiy
ber at the nozzle entrance plane. The nozzle profile is smooth and is
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I
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e
T
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e

- Figure 2. Nozzle Profile Used in Calculéting Admittanceé}f
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completely specified by Te? rCt and 91, which are respectively the radius

~of curvature at the chamber, radius of curvature at the throat and slope

of the central conical section. The steady-state eguations are inte-
grated using equal steps in steady-state potential ¢ by beginning at the

throat and éontinuing to the nozzle entrance where the radius of the wall

| equals 1.

Compufatlons of the admlttance coeff1c1ents have been performed using
a three term series expansion con51st1ng of the first tangential, second.
tangential and first radial modes. An Adam—Bashforth predlctor-corrector
scheme was used to perform the numerical integration, while the starting
values:needed to apply"this method were obtained using a fourth order
Runge-Kutta integration scheme. The integration computer program has
been written so that ﬁhe integration can be performed up.to the rozzle
entrance and also.inside the -combustion chamber for any desired distance.
Thus, the admittance relation is'dbtained at the nozzle entrance section
or at any station inside the chaMber. Computations have been performed for
several nozzles, at dlfferent frequencies and pressure amplitudes of the
first tangential mode. _ _

_Figures 3 and U4 show the frequency dependence of the linear ad-
miftance coefficients for the 1T, 2T, and 1R modes for a typical nozzle
(e = EOO,AréC 1.0, r . =0. .9234; M = 0.2). Here, w is the frequency
of the 1T mode, while the frequency of the 27T and lR modes is 2w due to

'_nonllnear coupling. Hence the real parts of the linear admittance coef- -

ficients for the 2T and IR modes attain their peak values at a higher
fre‘quency ‘than that for the lT mode. The linear admittance coefficients

for the 1T mode are in complete agreement with those calculated previously

by Bell and Zinnlu as expected from Eq. (22).

The frequency dependence of the nonlinear admlttance coefflclent

for the 2T mode is plotted in Fig. 5 with pressure amplltude of the 1T

‘mode as a parameter. While the behavior of the linear admittance co-

efficient depends only upon the frequency of oscillations, the behavior“‘
of the nonlinear admittance coefficient is seen to depend on the ampli-
tude of the 1T mode. This result 1s expected, Since4in Eq. (38), Ip,is
a funetion of the amplitude of the 1T mode.- As expected the absolute -

values of both Fr and Fi increase with increasing pressure amplitude of




the 1T mode, which acts as a driving force. It is observed that ‘the
rabsolute values of Fr.and Ti vary'éimilarly'with frequénqy as the ab-
solute values of Yr and Yi; The freguency dependence of the nonlinear
admittance coefficient for the 1R mode is plotted in Fig._6 with pressure
amplitude of the 1T mode as a rarameter.

Flguzeu T and 8 show the effect of pressure amplltude upon the
magnitude of the ratio of nonlinear admittance coefficient to the 11near
‘admittance coefficient for the 2T and 1R modes respectively. These re-‘_
sults clearly indicate that the nonlinear contribution to the nozzle

admittance 1is significant’and should be included in nonlinear combustion
stability analyses.
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TNTRODUCTION

This report is a summary of work comple'ted under NASA grant
NGR 11-002-179 entitled "Determination of the Effects of Nozzle Non-
linearities Upon the Nonlinear Stability of Liqﬁid Propellant Rocket
Motors" during the period August 1, 1974 to January 31, 1975. 'During'

 the first year of this project, Task I (Development of the Theory) and

most of Task II (Calculation of the Nozzle Response) were completed
and the results were presented in Ref. (1). During this report period
additional Task II calculations were made, and work was begun on Task III -
Application of the Nozzle Theory to Combustion Instability Problems In
this task the nonlinear nozzle respounse developed under Tasks I and II
is incorporated into the nonlinear combustion instability analysis
developed under NASA grant NGL 11~002-083 in Ref. (2).

* A paper, entitled "Application of the Galerkin Method in the =

 Prediction of Nonlinear Nozzle Admittances", was prepared during this

.report period. This paper is based upon. research conducted under this
grant and it is co-authored by M. S. Padmanabhan, E, A. Powell, and
B. T. Zinn. This paper was presented at the 1lth JANUAF Conbustion
Meeting in Pasadena, California. . . . :

A brief summary of the additional Task II calculations and the

progress made in the Task IIT investigations is prov1ded in the follow-
ing sections.

ADDITTONAL TASK IT CALCULATIONS

The nonlinear nozzle admittance data presented in. Ref. (1) was
obtalned for only one. set of nozzle parameters. Addltlonal calcula-v
tions were subsequently made to determine the influence of entrance
Mach nunber (M ) and nozzle half-angle (8 ) on the nonlinear nozzle

; admittance coefficients.

The effect of Mach number is shown in Flgures 1 and 2 for the
2T and IR modes respectlvely. Here the relative magnitudes of the




. linear and nonlinear admittances (i.e., IT/Y| are plotted as a
function of amplitude of the 1T mode. In each case there is a signi-

ficant decrease in IF/YI with increasing Mach number, thus it appears t

that the importance of nozzle nonlinearities will be smaller at higher
Msch numbers . o o :
~ The effect of nozzle ha.lf‘-a.ngle on IF/YI “for the 2T mode is
shown in Figure 3. Tt is readily seen that for Gl _between 15 and

45 degrees there is only a slight effect of nozzle half-angle on the
relative magnitudes of the linear and nonlinear admittances. For

the . Jarger half-angles it should be noted tha.t both the linear and ‘
_nonlineax theorles are restricted to slowly comrergent nozzles

(i.e., small 91) . Similar results are also obtained for the 1R mode.

TASK IIT INVESTIGATIONS

This section describes the application of the nonlinear nozzle

e.dmitta.nce theory developed under Task I to the analysis of combustion :

instability in a liquid-propellant rocket combustor. A cylindrice.i'
combustor with uniform mJectlon of propellants at one end and a _
_'slowly-convergent nozzle at the other end is considered. - The hqliid
‘propellant rocket motor to be analyzed is shown in Figure. L, The
analysis of such a motor for a linear nozzle response is given in

-~ Ref. (2). ' ‘ ' ' '

o The osc:Ll_'Latozy flow in the combustlon cha.mber is descr:Lbed by
the three-dimensional, second-~order, potential theory developed u.nd.er ‘
NASA grant NGL 11-002-083 in Ref. (2). In this theory the velocity

‘potential & must satisfy the following nonlinear partial differential -

.equation:
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‘where Crocco's. time-lag (n - T) model is used %o describe the distri- el
butéd unsteady combustion process. Assuming a series expansion of the"'.=‘u”L;e;}
form (see Ref. (2)): ' s

2 -Zﬁ v ZA (+) z,(=) @ (e) R, (r) 'f NG
p=1 p=1 - _ S e el

‘the Galerkin method is used to obtain approximate solutions to Eq.. (1).

'Uﬁlike the nozzle analysis where the unknown coefficients were fUnctions 

of axlal location in the nozzle, the unknown coeff1c1ents in Eq. (2) -Argfiﬁﬁﬂki
are ‘functions of time. ' . ' ': ' i}r'ylaw‘
- In the present analysis the linear nozzle boundary condltlon ';:ffee_?jf: _‘
used in the previous analysis (see Eq. (2) of Ref. (2)) is replaced ER |
by the nonlinear nozzle admittance condition developed in Task 1.
Thls relation is given by- ‘

Cog i e ‘

2 - =2 4
2 s =-8% 8o (8) ¥ (¥) ep*t r

(3)




where Yp and T‘p are, respecti;r;ally, the linear and nOnlinear'
admittance coefficients for the p ~ mode. Applying the Galerkin :
orthogonality conditions given by Eq. (11) of Ref. (2) for each mode ‘
gives the follow:.ng system of nonlinear eque.tlons to be solved for the W_‘
- amplitude functlons, A, (t) |

z ‘[C (J,P) + ¢ (J,p)A (t) + l:c (J,p) -;-nc (J’P)]%E ‘(h) :
S S |

| | ala (t-"l"')] | i
.. +n03(j,p) ""—"EGT—" + Cu(j:P)em?wt}

dA_ ' @
| Z z {D (J,p,q) A D2(j,1l>,q)>prf&9.”
Sop=l q=1 ‘ L
+ D3(J:P:Q) Ap at DM(J:P:Q) p _Ed't —_0,1 p
. .j' - 1;2,'...1\r

In fhe above eque.tion, the term C (J p)e P“’b_ resu.lts from the
presence of nozzle nonllnea.rltles (1 e. the r1ght-ha.nd—s1de of -

"Eq- (3). | E
. The coefflc:.ents a.ppearlng in Eq. (h) are determlned by evaluat:.ng : -
the various :mtegra.ls of hyperbolic, trlgonometrlc, and Bessel functlons ‘
. that arise from the spatial integrations indicated in the Ga.lerkln e o
orthogonality conditions. These are ca.lculated by the computer progra.m B
' COEFFS3D (see Appendix C of Ref.(2)). During this report period the . . o
' program COEFFS3D was modified to include the coefficient C,_L(J »P) which _- o : t
arises from the nozzle nonlinearities. A further modification was TN :|i

- mecessary to enable the program to evaluate the coefficients correctly R
for realistic linear admittances (i.e., the Yp’s) vhich are an order o ,‘
‘of magnitude larger than the admittances for which the program was : T o !’




previously run successfully. Both modifications have been checked out
and have been found to be functioning properly.

Work is now in progress on modifying the program LCYC3D (see :
Appendix D of Ref. 2) to obtain numerical solutions of Eqs. (&) for
the amplitude functions. This involves incorporating the additional
terms arising from the nozzle nonlinearities into the computer calcula-
t.iohs_ performed by LCY C3D. Im accordance with the work of Task I, a ‘

three-mode series expansion consisting of the 1T, 2T, and 1R modes will .

be used in developing the modified program.

Since the amplitudes, frequencies, and phases of the above modes s

" upon which the nonlinear nozzle admittances depend, are not known a
:’priori, an iterative solution technique must be used. Tn this pro-
cedure the limit-cycle amplitudes are first calculated using the
linear nozzle admittances. From this solution the frequency, ampl;l.tude,
‘and. phase of each of the three modes at the nozzle entrance is
’de'l:emlned. This 1n;f‘orma'b10n is then used in the nozzle »theory 'l:o :
- determine the nonlinear nozzle admittances which are used in the ‘

" chanber a.na.ly:51s to calculate new limit-cycle frequencies, amplitudes,
a.nd. phases., If the limit-cycle amplitude obtained with the nonlinear
“nozzle boundary condition is significantly different from the limit- -

cycle amplitude obtained with the linear nozzle admittances, new values -

,of the non-linear ad.m:.ttances are calcula.ted and the process is- repeated
,untll the change in 1:un1t-cycle a.mplltude is sufficiently small.

| The modifications necessary to mclude the nonlinear nozzle
a.dmi‘btances and the iterative solutlon technlque into Program LCYC3D
‘are nea.rly com'plete. Ai‘ter check-out of the progra.m, combustion in-
stability calcula.tlons will be made~for d.lfferent values of the

" following para.meters._ (1) time=-lag, 'F_, (2) interaction index, n )’

_ (3) steady state Mach mmber at the nozzle entrance, ﬁé , _and (&)

* chanber length-to-diameter ratio, L/D. In each case limit-cycle
.amplitude, pressure waveforms, and frequencies will be caleulated and
the reSults W:Lll be compared with those eomputed using a linear nozzle
response. This information will determine the importance of nozzle
nonlinearities in combustion instability calculations..




REFERENCES

Padmanabhan, M, S., Powell, E. A., and Zinn B. T.,
"Determination of the Effects of Nozzle Nonlinearities

Upon Nonlinear Stability of Liquid Propellant Rocket Motors",

" Annual Report for August 1, 1973~July 31, 1974 for research

conducted under NASA Grant No. NGR 11-002-179.

Powell, E. A., and Zinn, B. T., "The Prediction of Nonlinear

_ Three—])imensional Conbustion Imstability in Liquid Rockets

with Conventional Nozzles," NASA CR-121279, October 1973.




1 T
M = 0.1 ’
[]
5F —------ M, = 0.2

——-—- M =0.3

}h oL T, = 1.0, rct,=k1.o

6, = 20°, w = 1.84118

|

|-

Figure 1. Effect of Entrance Mach Number on the
' Relative Magnitudes of ILinear and Non- .
linear Admittances for _'2T_ Mode.f:» L




-
N

1.0

i

M =0.1 -
e .

mmmm———M

Figljré 25 Effect of Entrance Mach Numbér on the
Relative Magnitudes of Linear and Non-
linear Admittances for 1R Mode. L




|-

- 0.8

2.0

[en]

Il

-
U

0.4

v S

o 0.2 0.k 5.6 ~ 0.8

E ‘_‘Pi'essui'e amplitude of 1T 'modei,,lPll

Figure 3. Effect of Nozzle Half-a.ng_lé‘on the .
. Relative Magnitudes of Linear and
Nonlinear Admittances of 2T Mode.




' z = Constdnt

R Distributed
_ / . ~Combustion

 « Hot = .. .|
GCases "',

Y = Constent

© = Conétant"

~ s

: 4 | Rocket

g = Constant Bnaust

COMBUSTION

o

'NOZZIE

- Nozzle
vl Throat
PP DR it
Injector - Nozzle Entrance, Where = = = '

. Face . S ¢ Nozzle Admittance Relation .~
Uo7 Must Be Satisfied o SO

g :

’nd‘UFiguféz+{{*Typicgi M§th§ma£i9ﬁi‘Modei 6f*a‘quuid'ﬁocket‘Ehginé{ 'fj,fff




- JFV S T ‘
RN ma@n@ mwﬁmmm m@@m@ﬁm@

ST 1‘; =
. SRR .
kR W 2
”‘ : R WEQ&EIP(BIIEI]_] s
| | BT.Zm -

EEORCIA INSTTIUTE OF TECINOLOGY

1‘3

. &dl ffor
NAW@NMQ omzwﬁm@ SEINGE N

SRR
. ~'_"* =

NA@A L@vﬁ@@mﬁ@e
@ﬁmﬁm@ﬂﬂﬂﬂ?@

\
|
|
‘ wﬁm

| | g -
| N
|
I | s
‘ C ERREET @@i [;‘]@@[L@ [\‘]@[\‘]D:[][ﬂéﬂbuﬂ?ﬂ.
L - PO CIONLINEAR STABILTY QF = -

VA-1 9

A CR=13E0 -




‘,gﬁ@w‘o@mmﬁa eBeTTeD -
b e . EE =g 0 °g
OTTEoRE g TopgEEmogH TEOTHEPO] PEB OTITITOLOS -
gﬁpﬁpﬁgﬂm@&-i@ SOTITTOLE TEUTERHN

33&3%% @@-ﬂgﬁﬁaﬁﬁ

@E@ 30 ©95ton aop syseber

Lo R @ﬁg pgwiﬂ%m o 30 f-i %@ %ﬁpﬁo‘
3 evewfordne ST 09 TSRS wopisEosty Ane o9
" S5eR0B SEPTACTEN J0 SSeaTTTuRSSTY ‘seTuiend EoNSBIATIOoD
e eas o sefoTtim® @0 VSV Jo To0BInos o eeloréime
© O EO0S- 9WYY JUSATe 6TR 09 CT090RTmed Tous Jo eeloydine
@0 SYSWR O T099Rmuee %o eedordine Aws SSPRTIEEL
gﬁi 3o Fregeq Wo 5@@@ wosued, ‘esoqE pesm &y

ﬁomoa @w@@ @.ﬁ DOSOTOSTR S8e00ad &@@
i@ﬁ' S sngareditle CuopaemReITr MAue SFo esn
" ong, woxy Suponser sesfemEp aof @0 Sgo esm -
@% 63 %&.@m TRTS SCTITTEAEL e %@@%q (ca

o @@@%ﬂa -8%%@@@!«& mmﬁaﬁ
aﬂpb@s azofien STUD UL DESOTOSER SSE00dt do -
porpew. 6 shuarEiic. StoTiTnTegTE AT® $O ofn, &Y.

aEe. 30 Sasofien STUY TE POULDATD TWOTIBHIOITE
. EfY JO SSSUTAZesn Jo ‘Sseueserinee °Aoemnoe® -
- oy 02 wedsex TaEn SperTdng Jo pesseatze
mﬂ@ﬂ@dﬁo@o&mﬂ ) hpqﬁ.ﬁ,ms E_- -nl. v .

AL H...” ﬁ%ﬁ%@.ﬂnﬁm@ﬁ@ mﬁﬁ@@@ lo@nmoﬁ @@&oﬁ :
G () gﬂ@@w@mﬁﬁsg eoedy PUE SOLINETOISY TEROTAE
. ohg 30T Seeqens Pe4TUN eYl JSULTeN CTmol pesostods
ATEHRICACH JO UMosE T e peledesnt sen Iofles STem

L e




2. Gavernment Accession No.

1. Report No. 3. Recipient’s Catalog No.
NASA CR-134880
4, Title and Subtitle 5.- Report Date
Effect of Nozzle Nonlinearities Upon Nonlinear Stability October, 1975
of Liquid Propellant Rocket Motors B. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.

M. 8. Padmanabhan, E. A. Powell, and B. T. Zimn

9. Performing Organization Name and Address

Georgia Institute of Technology
Atlanta, Georgia 30332

10,

Work Unit No.

"

Contract or Grant No.

NGR 11-002-179

12, Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D. C. 20546

13.

Type of Report and Period Covered
Contractor Report

14.

Sponsoring Agency Code

15. Supplementary Notes

Project Manager, Richard J. Priem, Chemical Propulsion Division, NASA Lewls Research

Center, Cleveland, Ohio.

16. Abstract

A three-dimensional, nonlinear nozzle admittance relation is developed by solving
the wave equation describing finite-amplitude oscillatory flow inside the subsonic portion
of a choked, slowly-convergent axisymmetric nozzle. This nonlinear nozzle admittance
relation is then used as a boundary condition in the analysis of nonlinear combustion
instabllity in a cylindrical liquid rocket combustor. In both nozzle and chamber analyses
solutions are obtained using the Galerkin method with a series expansion consisting of
the first tangential, second tangential, and first radial modes.
leg model to describe the distributed unsteady combustion process, combustion instability
caleulations are presented for different values of the following parameters: (1) time-
lag, (2) interaction index, (3) steady-state Mach number at the nozzle entrance, and
(%) chamber length-to-diameter ratio. In each case, limit-cycle pressure amplitudes and
waveforms are shown for both linear and nonlinear nozzle admlttance conditions. These
results show that whenh the amplitudes of the second tangential and first radial modes
are considerably smaller than the amplitude of the first tangential mode the inclusion
of nozzle nonlinearities has no significant effect on the limiting amplitude and pressure

waveforms .

Using Crocco's time-

17. Key Words (Suggested by Author(s))

Combustion Instability
Tigquid Rockets

Exhaust Nozzles

Method of Weighted Residuals

1B. Distribution Statement

Unclassified - unlimited

19. Security Classif. {of this report)

20. Security Classif. (of this page)

Unclasgified Unclassified

21. No. of Pages 22. Price”

TS © $3.00

" For sale by the Nationa! Technical Information Service, Springfield, Virginia 22151

NASA-C-168 (Rev. 6-71)




FOREWORD

The research described herein, which was conducted at Georgia

Institute of Technology, was supportéd by NASA Grant No. NGR-11-002-179,

The work was done under the management of the NASA Project Manager,
Dr. Richard J. Priem, Chemical Rockets Division, NASA-Lewis Regearch
Center.

iii




ABSTRACT

A three-dimensional, nonlinear nozzle admittance relation is developed
by solving the wave equation describing finite~-amplitude oscillatory flow
inside the subsonic portion of a choked, slowly=-convergent axisymmetric nozzle.
This nonlinear nozzle admittance relation is then used as a boundary condition
in the analysis of nonlinear combustion instability in a cylindrical liquid
rocket combustor. In both nozzle and chamber analyses solutions aré obtained
using the Galerkin method with a series expansion consisting of the first |
tangential, second tangential, and first radial modes. Using Crocco's time-lag
model to describe the distributed unsteady combustion process, combustion
instability calculations are presented for different values of the following
parameters: (1) time-lag, (2) interaction index, (3) steady=-state Mach number
at the nozzle entrance, and (4) chamber length-to-diameter ratio. In each case,
limit-cycle pressure amplitudes and waveforms are shown for both linear and
nonlinear nozzle admittance conditions. These results show that when the
amplitudes of the secohd tangential and first;radial modes are considerably
smaller than the amplitude of the first tangential mode the inclusion of |
nozzle nonlinearities has no significant effect on the limiting amplitude and

pressure waveforms.
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- SUMMARY

Recently, a three-dimensional, nonlinear nozzle admittance relation has
been developed. In this analysis, the wave equation for an axisymmetric, choked
nozzle was solved using the Galerkin method with an approximating series solu-
tion for the velocity potential perturbation which was compatible with recent
nonlinear combustion instability theories. Assuming that the amplitude of the
fundamental mode is considerably larger than the amplitudes of the remaining
modes in the series expansion, nonlinear admittance coefficients were determined
as a function of the frequency and amplitude of the fundamental mode.

The nonlinear nozzle theory was then applied in the analysis of nonlinear
combustion instability in a cylindrical combustor with uniform injection of pro=-
pellants at one end and a slowly converging nozzle at the other end. The dis-
tributed unsteady combustion process was described by means of Crocco's time-
lag model. The Galerkin method waé used to determine the behavior of the pres-
sure perturbation in the rocket combustor, where the nonlinear nozzle admittance
relation was used as the boundary condition at the nozzle end of the chanber.

In these computations, a three-mode series expansion consisting of the first
tangential (1T), second tangential (2T), and first radial (1R) modes was used.
Since the amplitude and frequency of the 1T mode upon which the nonlinear nozzle
admittances depend are not known a priori, an iterative solution technigue

was used.

Combustion instability calculations have been made for different values
of the following parameters: (1) time-lag, (2) interaction index, (3) steady
state Mach number at the nozzle entrance, and (4) chanmber length-to-diameter
ratio. In each case limit-cycle pressure amplitudes and waveforms were
obtained with both the linear and nonlinear nozzle admittances. These results
show that under- the assumptions of the analysis the effect of nozzle non-

linearities can be safely neglected in nonlinear stability calculations.




INTRODUCTION

Various aerospace propulsion devices, such as liquid and éolid propellant
rocket motors and air breathing jet engines, are often subjecl to combustion
instabilities which are detrimental to the performance and safety of operation
of these devices. In order to design stable engines, capabilities for a
priori determination of the linear and nonlinear characteristics of the
instability and the range of operating conditions for which these engines
are dynamically stable must be acquired. In order to perform such an analysis,
the behavior of the exhaust nozzle under oscillatory flow conditions must be
understood. In particular, it is nécessary to know how a wave generated in
the combustion chamber is partially transmitted and partially reflected at the
nozzle entrance. The information is usually expressed as a boundary condition
(usually referred to as a Nozzle Admittance Relation) that must be satisfied
at the nozzle entrance.

Before such a boundary condition can be derived, the nature of the wave
motion inside the nozzle must be investigated. The behavior of oscillations
in a converging-diverging supercritical nozzle was first treated by Tsien;
who considered the case in which the oscillation of the incoming flow is one-

253 extended Tsien's work to cover the

dimensional and isothermal. Crocco
more general cases of non-isothermal one- and three-dimensional oscillations,
The analyses of Tsien and Crocco are both restricted to small-amplitude
(i.e., linear) oscillations. More recently, a nonlinear nozzle theory has

4,5,6

been developed by Zinn and Crocco who extended the previous linear
theories to the investigation of the behavior of finite-amplitude waves.

In recent studies conducted by Zinn, Powell, and Lores, theories were
developed which describe the nonlinear behavior of longitudina17’8 and

transverse9’lo

instabilities in liquid-propellant rocket chambers with quasi-
steady nozzles. These theories have now been extended to situations in which
the instabilities are three-dimensional and the rocket combustors are attached
to convemrtional nozzlesll. All of these theories have successfully predicted
the transient behavior, nonlinear waveforms, and limit-cycle amplitudes of
longitudinal and tangential Instabilities in unstable motors.

In order to assess the importance of nozzle nonlinearities upon the




nonlinear stability characteristics of varioué proPulsnion devices, a néw non-
linear nozzle theory is needed fér the following reéséﬁs. First, the nonlinear
analysis of Zinn »6 is mathematically complicated and requires considerable
computer time. For this reason, Zinn's analysis has never béen used to pér-
form actual computations of the wave structure in the nozzle or the ﬁonlj.near
nozzle response. Secondly, the nonlinear nozzle admittance relation developed
by Zinn is not compatible with the recently developed nonlinear combustion
theories (see References 7 through 11). Consequently, a linear nozzle
boundary condition or a short nozzle (quasi-steady) assumption had to be used
in all of the nonlinear combustion instability theories developed to date.

The use of a linear nozzle boundary condition in these nonlinear theories was
Jjustified by assuming that under the conditions of moderate amplitude oscilla-
tions and small mea.ﬁ flow Mach number the effect of nozzle nonlinearities is of
higher order and can be neglected. Thus a nonlinear nozzle analysis is needed
to determine the validity of this assumption. Furthermore, in the case of
transverse instabilities the "linear" nozzle has been known to exert a
destabilizing effect; in these cases it is.especiall;y important to know how
nonlinearities affect the nozzle behavior.

Thus a nonlinear nozzle admittance relation has been developed and has
been applied as a boundary condition in the recently=-developed nonlinear
combustion instability theories. The development of this theory, its
application in the chamber stability analysis, and typical results for liquid-
propellant rockets will be described in the following sections.

SYMBOLS
AP(QP) axially dependent amplitude functions Iin Eq. (&)
Bp(t). tlme dependent amplitude functions in Egq. (18)
BN(g') ’ nozzle boundary residual (see Eq. (10))
bp _ complex axial acoustic eigenvalue
c - dimensionless sonic velocity, c*/c¥




residual of Eq. (2)
residual of Eq. (17)

imaginary unit, /=1

Bessel function of the first kind, order m
multiple of fundamental frequency

azimuthal mode nunber

pressure interaction index
] . %, % ¥°
dimensionless pressure, Yp /poc'o

*, ¥
dimensionless radial coordinate, r /rc

chamber radius

dimensionless transverse mode acoustic frequency

dimensionless time, ——;;—;—
(xr/cr)
- 0 - - * *
dimensionless axial velocity, u /co
. . th
linear admittance for the p " mode
%, %

dimensionless axial coordinate, z /rc

specific heat ratio

nonlinear admittance for the pth mode
linear admittance function

azimuthal coordinate

_ *, %
dimensionless density, p /Po

dimensionless pressure sensitive time lag,

T
(x /ch)



® " steady state potential function -

3 ' vélocity'poﬁentiél

¥ steady state stream function

w o dimensionless frequency

Subsecripts:

e evaluéfed at.the nozzle  entrance

n _ radial mode number

r, i . real and imaginary parts of a complex quantity, respectively
W evaluated at the nozzle wall

° - stagnation quantity

m,w,r,e;z,t partial differentiation with respect to @,{,r,0,z, or t,

- respectively

Superscripts:

( )' _ _pérturbation.quantity

M) - steady state_quénﬁity

( )* dimensional quantity, complex cohjugate
) approximate solution

NOZZIE ANAIYSIS

The deVelopment of the nonlinear nozzle theory is described in detail

in Refs. (12) and (13), therefore only a brief summary will be given in
this section. ‘

i
I



Development of the Nozzle Wave Equation
5,6

"~ As in the Zimn-Crocco analysis, finite-amplitude, periodic oscilla=-
tions were assumed to occur inside the slowly convergenf; subsonic portion of
an axisymmetric nozzle operating in the supercritical range. The flow in the
nozzle was assumed to be adisbatic and inviscid and to have no body forces

or chemical reactions.  The fluid was also assumed to be calorically perfect.
Under the further assumption of isentropic and irrotational flow the continuity
and momentum equations were combined to obtain the following equation which

describes the behavior of the velocity potential:
V2% - 8, = oV8.VE, + (y=1) & v’ (1)
tt t t '

+ lé'-l (V8-v8) Vo8 + :EL V8. v(V3-v8)

These equations are consistent with those uéed in the second-order nonlinear
combustion instability theory developed by Powell, Zinn, and Iores (see
References 7 and 10). |

A nozzle wave equation was obtained from Eq. (1) by expressing the
velocity potential as the sum of a steady state and a perturbation
(i.e. & =% +8’), introducing the (¢,§,9) coordinate system used by Zinn
and Croccos’6 (see Figure 1), assuming a slowly convergent nozzle and one=

dimensional mean flow, and neglecting third order nonlinear terms. This wave
equation is given by:

A _ ’ 4 Al ! ¢ i ¢
ENKQ ) = fl(q,)gqxP - fg(cp)éCP + f3(w) szwéww + @w) + 5 éeej (2)
’ ¥ l 7
-2 §¢m + fﬁ(@)ét - EE étt
t ! 4o ‘5! E N
-128’ e’ +-Lyelal + 8 0
{ Pt 2 ot uy © "8t



where

=2 5/ g/ B 4/
+ (v )32 8L 8!+ 5 + 20l 5
(HH1)u” &g 8y 2pu"’\lr \IICP 20 0 8¢

+2(9) (2% + £4(9) w(2)7 + 2,(0) g (39)°

’
+ (Y'l) §tp‘-P 't = f)_I_(CP) QCP Q't

+ (v-1) [2 (¢§¢¢ ) ee] N

s () B 4] v )

2 a2
£,(9) =c” -u

ane

50 =Z &

f(cp)=

ﬁl[ﬁ% | O&h4

-2
oo y-1) qu”
fu(¢) = 252

ae
f(cp)=.3.|:l+X'_1 %i‘f
5 2 2 2 4
-2

-2
— | &
2(9) _i[l - (2_-Y) ‘;—2] i

(3)




¢ = constant

y = constant

Flow direction
- —

— Nozzle throat

t—— Nozzle entrance

Figure 1. Cocrdinate System used for the Solution of the Oscillatory Nozzle Flow.




Method of Solution

Tn the nonlinear combustion instability theories developed by Powell and
Zinn (see Refs. 7 - 11) the governing equations were solved by means of an
approximate solution technique known as the Galerkin Method, which is a
‘Special case of the Method of Weighted Residualslu’lS.
tions it was shown that the Galerkin Method could be successfully applied in

the solution of nonlinear combustion instability problems; its application

In these imvestiga-

was straightforward and it required relatively little computation time.
Thus the Galerkin Method was also used in the nozzle analysis to determine
the honiinear nozzle admittance relation.

The first step in using the Galerkin Method in the solution of the wave
equation (i.e., Eq. (2)) was to express the veloéity potential, &, as an
approximating series expansion. The structure of this series expansiqn was
guided by the experience gained in the nonlinear nozzle admittance studies
performed by Zinn and Crocco (see Ref. 5) as well as in the nonlinear com-
bustion instability analyses of Powell and Zinn (see Ref. 10). Thus the

velocity poﬁential was expressed as follows: /

EL {A (9) cos(mB)J [S ( ] (k)

p=1

where the,fundtions Ap(¢) are unknown complex functions of the axial “
variable ¢, and €~ and {-dependent eigenfunctions were determined from :
the first-order (i.e., linear) solutions by Zinn5. For each value of the :
index p, there corresponds the mode mumbers m(p) and n(p) as well as a
the number kp. This correspondence is illustrated in the table below for
a three-term expansion consisting of the first tangential (1T), second u

tangential (2T7), and first radial [1R) modes.




Table 1. Three-Mode Expansion

P n(p) n(p) L. Mode
1 1 1 1 1T
> o 1 o oT
3 0 1 2 1R

In the time-~dependence, w dis the fundamental ffequency‘which.must be
specified and the integer k? gives the frequency of the higher harmonics.
The values of kp for the various modes appearing in Eq. (4) were determined
from the results of the nonlinear combustion instability analysis of Powell
and Zinnlo. For example it was found that, due to nonlinear coupling between
modes, the 2T and 1R modes oscillated with twice the frequency of the 1T mode.
Thus in Egq. (1) k, =1 and k, = k3 = 2. The amplitudes and phases of the
various modes depend on the axial location (i.e., ©) in the nozzle through the
unknown functions Ap(m). |

Next the assumed series expansion for &' (i.e., Eq. (4)) was substituted
into the wave equation (i.e., Eq. (2)) to form the residual, EN(S'>' According
to the Galerkin methbd, the residual EN(S/) was required to satisfy the
following orthogonality conditions: '

B
NI - il . I/ 2 .
J J EN(§ ) e 1kat cos mB Jm;[smn \ﬁi} ] dasdt =0 (5)

g=1, 2, ... N

where N is the number of terms in the series expansions of the dependent
variables. The weighting functions in Eq. (5) correspond to the assumed time

and space dependences of the terms that appear in the series expansion.

10




The time integration is performédN0ver one Pperiod of OSéillation, T = 2n/w;
ﬁhile the spatial integration is performed over any surface of ¢ = constant
in the nozzle (in Eq. (5) dS indicates an incremental area on this surface).
Evaluating the spatial aﬁd témporal integrals in Eq. (5) yielded a
system of N nonlinear, second order, coupled, complex ordinary differential
equations to be éolved.for the complex amplitude functions Ap(¢).
Unfortunately these equations were not quasi~linear; that is, the highest
order derivatives appeared in the nonlinear terms. This greatly complicated the
nmerical solution of these equations, thus an additional approximation was’
made to obtaln a quasi~linear system of eqﬁations. ,
This additional approximation was based on the well-known fact that most
transverse instabilities behave like the first tangential (1T) mode. Based
on the results of the recent nonlinear combustion insta:bility 'bheoryll, i'E was
assumed that thevamplitude'of the 1T mode was considerably larger than the
amplitudes of the remaining modes in the series solution. Through an order of
magnitude analysis correct to second order, the original non-quasilinear system

of equations was reduced to the following linear inhomogeneous system of

equations:
&, aA,
H (9) —5= + M (9) — + N, (9)A,(9) =0 (6)
ay aw | |
a°a aA T
B (0 —2+u(e) 2 +n(@a -1, {a, =2, =t}
ay ap ap a9
p=2,3 ... N
where

11




-2, =2

B =TE -8) (M

-2 :
=2 [1 du . ]

M = - _ == 4+ 2 w

p(cp) u | e

& a4
sz 2 y-1 P&, e
. _ [_ R = T + K2 :]
(¥ 2¥, Pue 2 Tp 2 a9 p

and IP_ are inhomogeneous terms which are function§ of ? and the amplitude
of the 1T mode, Al(@). 7 _ _

It can be seen that the above equations are decoupled with respect
to the 1T mode; that is, the solution for Al can be obtained independently
of the amplitudes of the other modes. Thus to second order the nozzle non-
linearities do not affect the 1T mode. On the other hand, the nozzle non-
linearities influence the amplitudes of the higher modes‘(i.e.,v A, and A3)

by means of the inhomogeneous terms in the equations for the higher modes.

Derivation of Admittance Relations
It has been shown (see Refs. (12) and (13)) that the solution of Eq. (6)

can be expressed as the sum of a homogeneous solution ~A(h) and a particular

solution of the inhomogensous equation Aél as follows:

A (@) = KiAéh) () + AI(,i)(cp) I (8)

Using this result a nonlinear admittance relation to be used as a boundary
condition in nonlinear combustion instability analyses was derived. Noting

that the velocity potemtial 3’ given by Eq. (5) is a summation of partial
potentialé @; where

12




1

8! = 4 (¢) cos(ad) I, [Smn(@z ot (9)

‘a nozzle admittance relation can be written for each of the partial poten-
tials. This is dome by introducing Eq. (8) into Eq. (9), taking partial
derivatives with respect to 2z and t and eliminating K., Dbetween the

_ 1
resulting equations. The resulting admittance relations are given by:

Bp(®') = 55 * Y, 5% | (10)

+ ﬁeaz {cos(mﬁ) I [Smn (¢ ) ] } r =

where.

(h)

i
v - (Yk;w) Af;) dAgm p=1,2,...N (11)
aa(n
:E_TET [ () __EL_. éh) __E__ ] D =2,3,...0 (12)

Equation (10) is the nonlinear nozzle admittance relation to be used
as the boundary condition at the nozzle entrance plane in nonlinear stability
analyses of rocket combustors. The quantities Yp and Ip are, respectively, .
the linear and nonlinear admittance coefficients for the pth mode. The
nonlinear admittance, Fp, represents the effect of nozile nonlinearities
upon the nozzle response, and it is zero when nonlinearities are absent

(i.e., for the 1T mode).

13




It can easily be shown that when the Mach nurber at the nozzle entrance

is small, Eq. (10) can be expressed, correct to second order, as:
-2
U -Y P ==-uc T S (13)

where Ub and Pp are the @-dependent amplitudes of the g#iai velocity and
pressure perturbations respectively.

Tn order to use the admittance relation (Eq. (10) or Eq. (13)) in
combustlon instability analysis, the admittance coefficients Yp and T
mist be determined for the nozzle under consideration. The equations
governing these quantities are readily derived from Egs. (6) using the
definition of Fp (i.e., Eq. (12) to obtain:

ag
P - - - 2 1
Hp ae Mpgp Np Hp Cp (1)
ar -2 : I '
S o Y-1 du_ -M - 2 '
Hp de ( Hpgp T3 - de Hp D Fp -2 (15)
where
| . a®
SN ) —P—dcp | (16)
P

Calculation of the Nozzle Response

To obtain the nozzle response for any specific nozzle, Eqs. (14) and
(15) are solved in the following manner. As pointed out earlier, the non-
;= 0) and it is only
necessary to solve Eq. (1L) to obtain ¢, (and hence Yl) at the nozzle

linear terms vanish for the 1T mode (i.e., ry=0,1I

entrance. Since Eq. (14) does not depend on the higher modes, it can be
solved independently for Agl. Once gl has been determined both Eqs. (14)

1k




and (15) must be solved for.the other modes. In order to do th'is, the.
amplitude .Al(cp) mist be determined since Eq. (15) depends on Al(cp) and its
derivatives through IP(Cp). Once gl(fp) is known, Al(cP) is determined by
mmerically integrating Eq. (16) where the constant of integration is
determined by the specified value of the pressure amplitude Ipl-l (of the 1T
mode) at the nozzle entrance. The value of Al thus found is introduced*into
Eq. (15) which is then solved for Fp. ' '

Since Egs.(14) and (15) are first order ordinary differential equations,
the numerical integration of these equé.tions must start at somevinitial point
where the initial conditions are known, and terminate at the nozzle entrance
where the admittance coefficients 'Yp and Fp are needed. Since the
equations are .singular at the throat, the integration is initiated at a point
that is located a short distance upstream of the throat. The needed initial
conditions are obtained by expanding the dependent variables in a Taylor
series about the throat (¢ = 0). _ , |

In Egs. (14) and (15), the quantities Hp, Mp, l\Tp and Ip are functions
of the steady-state flow variables in the nozzle and these must be computed
before performing t'he mmerical integration to obtain Qp and Fp. For a
specified nozzle profile, the steady-state quantities are computed by solving
the quasi-one~dimensional isentropic steady-state equatlons for the nozzle
flow. Figure 2 shdws the nozzle profile used in these computations. All
of the length variables have been non-dimensionalized with respect to the
radius of the combustion chamber to which the nozzle is attached, and hence
r, = 1. At the throat r, is fixed by the Mach muber at the nozzle
entrance plane. The nozzle profile is smooth and is completely specified by
T o9 Top 804 0., which are respectively the radius of curvature at the
chamber, radius of curvature at the throat and slope of the central conical
section. The steady-state equations are integrated using equal steps in
steady~state potential ¢ by beginning at the throat and continuing to the
nozzle entrance where the radius of the wall equals 1.

A computer program, NOZADM, has been developed to mim_erica].’ly solve
Egs. (14%) - (16) and calculate the linear and nonlinear nozzle admittances. .

A computer code and description of this program is given in Appendix A.
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COMBUSTION INSTABILITY ANALYSIS

Combustion Chamber Model

This section describes the application of the nonlinear nozzle admit-

tance theory developed in the previous section to the analysis of combustion
instabllity in a liquid-propellant rocket combustor. A cylindrical combustor
with uniform injection of propellants at one end and a slowly-convergent
nozzle at the other end was considered. The liquid propellant rocket motor
that was analyzed is shown in Figure 3. The analysis of such a motor for a
linear nozzle response 1s given in Ref. (11). _

The oscillatory flow in the combustion chamber is described by the
three-dimensional, second~order, potential theory developed in Ref. (11).
In this theory the velocity potential & must satisfy the following nonlinear
partial differential equation: ’

1l . 1
8) =8’ +=38' += + -3
Ec( ) er r r r2 66 sz tt (27)
1.1 2 F y
- 2§rért - ;5 §'8§ et 2§zézt

P 1l ./ 1 ./ )
- (Y-l)ét(érr T §r * ;5 g + sz)
- 2u§zt B (Y+;)§t dz

+

Yo % [@é(r,e,z,t) - @é(r,e‘,z,t - 'F)] =0

where Crocco's time-lag (n - T) model is used to describe the distributed
unsteady combustion process. In the present analysis the linear nozzle
boundary condition used in the previous analysis (see Eq. (2) of Ref. 11) was
replaced by the nonlinear admittance condition given by Eq. (10).
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Application of Ga.lerk:m Method
Assuming a series expa.nsmn of the form (see Ref. ll)

N N o , |
T/ = z @p =_2 Bp(t) cos (md) Jm(Smnr) cosh(ibpz) (18)
p=1 p=1 '

the Galerkin method was used %o obtaln approximate solutions to Eq. (17).
In Eq. (18) the radial and azimuthal eigenfunctions are the same as those

used in the nozzle analysis (see Eq. §). Unlike the nozzle analysis where the -

unknown coefficients Ap(cp) were functions of axial location in the nozzle,
the unknown coefficients Bp(t) in Eq. (18) are functions of time. The bp
appearing in the axial dependence are the axial acoustic eigemvalues for a
chanber with a solid wall boundary condition at the injector end and a
linear nozzle admittance condition at the other end. _

The unknown amplitudes B (t) were determined by substituting the
assumed series expansion (i.e., Eq. (18)) into the wave equation (i.e.,
Eq. (17)) to form the residual EC(E'). Similarly, the series expansion
was substituted imto the nozzle boundary condition (i.e., Eq. (10)) to obtain
the boundary residual BN('g'). The residuals Ec('a') and BN('i') were
required to satisfy the following orthogonality condition (see Ref. 11):

Ze 2L . _ . o
Io .[0 .[0 Ec(3 ) Z"j(Z) @j(e)Rj(r) rdrdddz - (19)

em 1 S
f‘[o J‘o Bl\l('s ) Zy (Ze).®j(9)Rj(r). rd?de = O.

3=1,2, ... N
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where the Z% are the complex conjugates of the axial acoustic eigenfunctions
appearing in Eq. (18), and ®. and R. are the azimuthal and radial eigen-
functions respectively. '

Evaluating the spatial integrals in Egs. (19) gave the following system
of N complex nonlinear equations to be solved for the amplitude functions, Bp(t):

N .
- B |
7 {oy ) —2 6, (352)B,(8) + [6,(3,:0) = ne(3,m) ] 2 (20)
p_l - P . , P
- alB (t-T)] ,
+ nC,(J>P) P + Cu(a,p)e D }
-+-Z L {D (J,P,q)Bp '&%9' D, (J,p,q)B -
x *

* 0532, )B, 75 D, (450,008 7 } -

j=1,2, ... N

In the above equation, the term Cu("]',p)eikpwt results from the presence of
nozzle nonlinearities (i.e. the term involving Fp “in Eq. (10)).

The coefficients appearing in Eq. (20) were determined by evaluating
the various integrals of hyperbolic, trigonometric, and Bessel functions
that arise from the spatial integrations indicated in the Galerkin ortho-
gonality conditions. These were calculated by the computer program
COEFFS3D (Appendix B). «_ -

The time-dependent behavior of an engine following the introduction of
a disturbance is determined by specifying the form of the initial disturbance
and then following the subsequent behavior of the individual modes by
mmerically integrating Eqs. (20). Once the time-dependence of the individual

modes is known, the veloeity potential, 5, is calculated from Eq. (18).

The pressure perturbation at any location within the chamber is related to
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3’ by the following second-order momentum equation (see Ref. 11):

>
el b 3 W 36
P YI:QtJruézJ’z 2. +2r2 &) +3\,

umerical Solution Procedure

Equation (20) is a system of N ordinary differential equations which
describes the behavior of the N complex time-dependent functions,
Bp(t). Beginning with a sinusoidal initial disturbance, a fourth order
Runge-Kutta scheme was employed for the numerical integration of this system
of equations. In the present calculations, a thiee—mode series expansion
consisting of the first tangential (1T), second tangential (2T) and first
radial mode (1R) was used. This is the same series expansion used in the

stability calculations presented in Refs. (10) and (11). The numerical
integration of Egs. (20) is performed by the computer program, LCYC3D, which is
described in Appendlx C.

The oscillatory flow in the combustor and nozzle are mutually dependent
on each other; that is, the combustion chamber analysis requires knowledge of
the nozzle admittances, but these nozzle admittances depend on the frequency
of oscillation and the pressure amplitude, which can only be determined by the
combustion chamber analysis. Thus an iterative solution technique is used.

In this procedure, linear nozzle admittances are first calculated for the
specified nozzle geometry. Next, the combustion charber analysis is
carried out using these linear nozzle admittances (F = 0), and limit-cycle
frequency and pressure amplltude of the 1T mode at the nozzle entrance

are determined. This information is then used in the\nozzle theory to

determine the nonlinear nozzle admittances which are used in the chamber
analysis to calculate new limit-cycle frequencies and pressure amplitude.
If the limit-cycle amplitude obtained with the nonlinear nozzle boundary I
condition is significantly different from the limit-cycle amplitude obtained
with the linear nozzle admittances, new values of the nonlinear admittances
are calculated and the proéess is repeated until the change in limit-cycle i
amplitude is sufficiently small,
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RESULTS AND DISCUSSION

Admittance Coefficients

Computations of the admittance coefficlents have been performed using

a three-term series expansion consisting of the first tangential, second
tangential and first radial modes. An Adam-Bashforth predictor-corrector
scheme was used to perform the numerical integration, while the starting values
needed to apply this method were obtained using a fourth order Runge-Kutta
integration scheme. Computations have been performed for several nozzleé, at
different frequencies and pressure amplitudes of the first tangential mode.

Figure 4 shows the frequency dependence of the linear admittance coeffi-
cilents for the 1T, 2T, and 1R modes for a typical nozzle (Gl = 200, L = 1.0,
Ty = 0.92343; M = 0.2). Here, w is the frequency of the 1T mode, while the
frequency of the 2T and 1R modes is 2w due to nonlinear coupling. Hence the
real parts of the linear admittance coefficients for the 2T and 1R modes
actually attain their peak values at a higher frequency than that for the 1T -
mode. The linear admittance coefficients for the 1T mode are in complete
agreement with those calculated previously by Bell and Zinnl6.

The frequency dependence of the nonlinear admittance coefficient for

the 2T mode is shown in Figure 5 with pressure amplitude of the lT.mode_as a

‘parameter. While the behavior of the linear admittance coefficilent depends

only upon the frequency of oscillations, the behavior of the nonlinear
admittance coefficient is seen to depend also on the amplitude of the 1T mode.
The absolute values of both Fr and Fi increase with increasing pressure
amplitude of the 1T mode, which acts as a driving force. It is observed that
the absolute values of Fr and Fi vary with frequency in a manner similar

to the absolute values of Yr and Yi' The frequency dependence of the non-
linear admittance coefficient for the 1R mode is shown in Figure 6 with pressure
amplitude of the 1T mode as a parameter. :

Figure 7 shows the effect of pressure amplitude upon the magnitude of
the ratio of nonlinear admittance coefficient to the linear admittance coeffi-
cient for the 2T and 1R modes respectively. This ratio, IF/YI , increases
with increasing pressure amplitude. In the limiting case of Ipll =0,

the nonlinear admittance coefficient is zero for all frequencies as expected.
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Figure 8 shows the influence of entrance Mach nunber Me on the nonlinear
nozzle admittance coefficilents for the 2T and 1R modes respectively. Here the
relative magnitudes of the linear and nonlinear admittances (i.e., |T/Y|) are
plotted as a function of amplitude of the 1T mode. In each case there is a
significant decrease in |T/Y| with increasing Mach nurmber, thus it appears that
the importance of nozzle nonlinearities will be smaller at higher Mach numbers.

The effect of nozzle half-angle on |T/Y| for the 2T and 1R modes is

shown in Pigure 9. It is readily seen that for 8. between 15 and 45 degrees

there is only a slight effect of nozzle half—angli on the relative magnitudes
of the linear and nonlinear admittances. However, it should be noted that both
the linear and nonlinear theories are restricted to slowly convergent nozzles
(i.e., small el) .

Figure 10 shows the effect of the nozzle radii of curvature upon the

quantity |F/Y| for the 2T mode. It is observed that a change in the radius of

~ curvature of the nozzle at the throat has an insignificant effect on the

relative magnitude of the linear and nonlinear admittances. On the other hand,
a similar change in the radius of curvature of the nozzle at the entrance
section has considerable effect on the relative magnitude of the linear and
nonlinear admittances. Similar results were obtained for the 1R mode. |

In summary, the results obtained in the admittance calculations indicate
that the magnitude of the nonlinear admittance coefficient is comparable to
that of the linear admittance coefficient, especially at large pressure ampli-
tudes. To determine if this result has a significant effect upon combustor
stability, calculations were made for typical liguid rocket combustors using the
nonlinear admittances. These results were compared with similar calculations
using linear admittances. The results of this investigation are discussed in the

remainder of thils report.

Stability Calculations

Combustion instability calculations have been made using the three mode
series consisting of the 1T, 2T, and 1R modes. These calculations have been
made for different values of the following parameters: (1) time lag T, (2)
interaction index n, (3) steady state Mach number at the nozzle entrance M_»
and (4) chamber length-to-diameter ratio L/D. All of the combustors that
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have been analyzed are attached to nozzles with the foliorwing specifications:

radius of curvature of nozzle at the combustion chamber, Too = 1.0, radius of
(o]

ot 1.0; and nozzle half-angle, el =20 .

In each case, solutions have been cbtained with both the linear and nonlinear
nozzle admittances.

A typical neutral stability curve is shown in the n-T pla.ne in Figure 11.

curvature of nozzle at the throat, r

Since it was desired to study the limit-cycle behavior of the motor, the values
of n and T considered were chosen from the unstable region of this stability
diagram. , . ‘
Limit-cycle amplitudes and waveforms Wére calculated for T = 1.6
(resonant conditions) for several values bf n as showri in Figure' 11. Wall
pressure waveforms (antinode) are shown for a mildly unstable case (Point A,

n = 0.52) and a strongly unstable case (Point B, n = 0.70) in Figures 12 and 13.
Figure 14 shows limit-cycle amplitude as a function of n for T = 1.6. In
each case both linear and nonlinear nozzle admittances were used in the calcula-
tions. These results show that the nozzle nonlinearities have only a small
effect on the limit-cycle amplitude and waveform even for fairly large amplitude
instabilities. |

Similar comparisons were made for the off-resonant values of n and
T shown in Figure 11 (see points C, D, E, F). These results also show very
1little effect of nozzle nonlinearities on the limit-cycle amplitudes for off-
resonant oscillations as seen in Figure 15.

Finally, comparisons of limit-cycle amplitudes are shown for various
exit Mach numbers in Figure 16 and for various length-to~diameter ratios in
Figure 17. Again, limit-cycle amplitudes obtained using the nonlinear nozzle
boundary condition agree closely with those obtained using the linear nozzle

boundary condition.

CONCIUDING REMARKS

A second-order theory and computer pngra.m have been déveloped for cal-~
culating three~dimensional, nonlinear nozzle admittance coefficients to be used
in the analysis of nonlinear combustion instability problems. This theory ié
applicable to slowly comvergent, supercritical nozzles under isentropie,

irrotational conditions when the combﬁstion chamber oscillations are dominated
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by the 1T mode. Nozzle admittances have been computed for typical nozzle
geometries, and results have been shown as a function of the frequency and
amplitude of the 1T mode.

The nonlinear nozzle admittances have beeh incorporated into the
previously developed nonlinear combustion instability theory, and calculations
of ljmit—cycle amplitudes and pressure waveforms have been made to assess the
importance of the nonlinear contribution to the nozzle admittance. These
results show that nozzle nonlinearities can be safely neglected in nonlinear
combustion instability calculations if the following conditions a.i'e satisfied:
(1) the amplitude of the oscillations are moderate, (2) the mean flow Mach
mumber is small, and (3) the instability is dominated by the first tangential
mode. Therefore, the linear nozzle boundary condition used in the previous
nonlinear combustion instability analyses is adequate for most cases involving
1T mode instability. '
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APPENDIX A
PROGRAM NOZADM: A USER'S MANUAL

General Description

Program NOZADM calculates both the linear and the nonlinear admittance
cbefficients for a specified nozzle. These admittance coefficients are
required as input for Program COEFFS3D (see Appendix B) which calculates the
coefficients of both the linear and nonlinear terms in the combustor amplitude
eciuation (i.e., Eq. (20)). The output of Program NOZADM is either punched

onto cards or stored on disk or drum for input to Program COEFFS3D.

Program Structure

A flow chart for Program NOZADM is shown in Fig. (A-1l). The progranm
performs the following operations: (1) reads the input data, (2) calculates the
steady-state flow quantities in the nozzle, (3) obtains the starting values
needed to numerically integrate Eqs. (14) and (15), (4) performs the numerical
integration of Eqs. (1%) and (15) to obtain the desired admittance coefficients,
and (5) provides the desired output.

The inputs to the program include parameters describing the nozzle, the
frequency and pressure amplitude of the fundamental mode, and the various
control numbers.

After reading the input, the program obtains the steady-state flow
quantities at every station in the nozzle by calling the subroutine STEADY.
This subroutine also calculates the number of station points (NPLAST) in the
nozzle,

The evaluation of the admittance coefficients is carried out in stages.
The work performed in each step depends upon whether or not the nonlinear
admittances are to be evaluated. If only the linear admittances are required,
only‘the equation for §p needs to be solved. Thus, the equations govering gp
are solved individually for each of the modes in the series expansion. On the
other hand, if the nonlinear admittances are also required the equations
governing the linear admittance for the fundamental mode (C l) and the amplitude

of the fundamental mode‘(A are first solved to obtain these quantities at
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every statlon in the nozzle. In the subsequent steps, the equations for

and I' for each of the remaining modes are solved.

Input Data A o
A precise definition of the input data required to run the computer

program is given below. The input is given through three data cards. -In the
description of the cards below, the location number refers to the columns of
the card. "I" indicates integers and "F" indicates real mumbers with a
decimal point. For the I formats, the values are placed in fields of five
locations while a field of ten locations is used with the "F" formats. In
either case, the numbers must be placed in the rightmost locatilons of the
allocated field. v

No, of :
Cards Iocation Type Input Ttem Comments
1 1-10 F M Mach number at the nozzle
entrance
11-20 F ANGLE - Nozzle half-angle
21-30 F RCC Radius of curvature of the
-nozzle at the entrance
31-40 F RCT 4 Radius of curvature of the
‘ nozzle at the throat
41-50 F GAM Ratio of specific heats
1 1-5 ' I NOZNL1 If 0: nonlinear admittances

are not evaluated

It 1: noniinear admittances |
are evaluated

6=10 I NOUT Determines output

, If O0: only printed output
If 1: printed and stored on|
disk or drum (output device
nunber 7)
If 2: printed and cards
punched in a format suitable
for the program COEFFS3D

k2




No df

Cards Location Type Input Ttem Comments
11-15 I IEXTN If 0: no extension section

It 1: an extension section
is present. =

16-25 F EXTNSN - : Length of the extension
section; omit if IEXTN = O

1 1-10 F WC Frequency of oscillation
11-20 F P1AMPL Pressure amplitude of the

fundamental mode. Omit - if
only linear admittances
are needed.

The nozzle parameters ANGILE, RCC and RCT correspond to el, Too and Tt

in Fig. 2. For IEXTN = 1, the integration of Egs. (14) and (15) is contimued

beyond the nozzle entrance plane to a length EXTNSN Within the combustion chamber.

When NOUT = 1, the values of the necessary admittance coefficients are stored
on disk or drum (device number 7) in a format suitable for input to program
COEFFS3Ds If, instead of providing this data to program COEFFS3D through data
file 7, it is desirable to provide punched cards only, NOUT should be 2.
Again the format is such that these cards can be fed to program COEFFS3D
directly. '

Steady-State Quantities
The subroutine STEADY is called to evaluate the steady-state quantities

in the nozzle. This subroutine first calculates the radius of the nozzle at

the throat necessary to obtain the specified Mach number at the nozzle entrance.
The steady-state flow quantities at the throat are determined by the choking
conditionS.Starting with these values, the steady-state flow quantities at the
other stations in the nozzle are calculated by numerically integrating the ‘
steady-state equations starting from the throat. The subroutine RKSTDY deter-
mines the values of the steady-state velocity near the throat using the
Runge-Kutta scheme. These values are needed to start the Adam's predictor-
corrector scheme for integrating the steady-state flow equation. The numerical

integration is performed by the subroutine UADAMS., Starting slightly upstream
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of the throat, the numerical integration is continued till the nozzle entrance
is reached (radius of the nozzle R = 1). The arrays U and C contain the

steady~state velocity and speed of sound respectively.

Coefficlents

The complex coefficients that appear in the nozzle admittance equations
are evaluated in the program by calling the subroutine COEFFS. These coeffi~
cients contain certain integrals involving trigonometric and Bessgel functions.

The subroutine INTGRL sets up arrays for these integrals.,

Integrals
The necessary trigonometric integrals are determined by the subroutine

INTGRL itself. Denoting

@p(e) = cos(mpe),

the integrals are as follows:

ALPHA (1, p)

Tﬂ [@p(e)]g @l(e) ds

O

2n
AFEA (2, D) = | [@5(9)]2 ©,(8) @
O

2m
ALPHA (3, p) = J @é(e) @p(e) ®,(8) 4o
o -
2m 5
a4, p) = | [e0)] a0
O
2 :
AP (5, 7) = | ©7(6) ©_(0) a6
O

L



The integrals involving

BETA (1,

BETA (2,

BETA (3,

BETA (X4,

BETA (5,

BETA (6,

BETA (7,

BETA (8,

BETA (9,

»)

)

P)

P)

P)

D)

P)

]

Bessel functions are as follows:

R

1 5 -
[T e
Il

1 2
[0 o

Ol | 2
RIEHCIERD
1
| Rg(r) Rp(r) Rl(?) r dr

o.
1

dr

o

N

o

R'(r)‘RP(r) Rl(r) dr

o P

1 2
J'[Rp(r)] r dr

O

1 : .
J R;(r) Rp(r) dr
O

1

uJ
Rg(r) Rp(r) r dr
o

1 |
J @] =

@)

Here RP(IO ='ﬁn[smnr] where m and n afe the transverse mode nunbers

for the pth mode.
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These integrals of Bessel functions are cbtained from the functions
RAD1 and RAD2. RAD2 provides the first five integrals while RAD1 provides
the last four integrals., Simpson's integration scheme is used in these
function subprograms to evaluate these integrals. The values of the Bessel

functions of the first kind are obtained using the subroutine JBES (see Ref. 17)

Integration of the Differential Equations

For the numerical integration of the differential equations, a fourth-
order Adam~Bashforth predictor-correctorvscheme is employed.. The necessary
initial values are obtained by using a fourth-order Runge-Kutta scheme near
the throat. The Runge-Kutta integration is performed by subroutine RKTZ.

The predictor-corrector integration is performed by subroutines TADAMS and
ZADAMS, The values of the dependent variables are stored in the array Y and
their derivatives are stored in the array DY. The integration is continued in
steps of DP in the axial variable (steady-state velocity potential) till the
combustion chamber is reached. ‘

After the numerical integration of all the differential equations 1is
completed, the admittance coefficients are evaluated. AMPL (J) and
"PHASE(J) are the amplitude and phase of the linear admittance coefficient for
mode J. GNOZ(J) is the complex, nonlinear admittance coefficient for mode J.

Output
The output of the program NOZADM contains two sections.

In Section 1, the parameters of the nozzle being analyzed are printed
out. The output of this section occupies—only one page and 1s essentially a
print out of the input data. The parameters,‘which are printed are:
the Mach number at the nozzle entrance (CM), the specific heat ratio (GAM),
the nozzle half-angle (ANGIE), the length of the extension section, if any
(EXTNSN), the radius of curvature of the nozzle at the throat (RCT), the
radius of curvature of the nozzle at the entrance (RCC), and theé number of
stations in the nozzle (WPIAST). Section 1 is printed for any value of the

control number NOUT.
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Section 2 contains the nozzle admittance coefficients. Depending 6n
the value of the control number NOUT, Section 2 is printed, stored on disk or
drum or punched onte cards. These three modes of output will now be discussed
individually. | : _ _ ‘

Printed output: The control number NOUT for this mode is O.  The
printed output appears on one page and contains both the linear and nonlinear
admittance coefficiénts. .For each coefficient, the real and imaginary parts as
well as the magnitude and'phase are printed out. If nonlinear admitfance
coefficlents are not calculated by the program (NOZNL1 = 0), zeros are entered
in the spaces for the nonlinear coefficients.

This mode of output is inconvenient to use for 1nstab111ty analys1s
since it would then be necessary to manually punch all-the input cards for the

program COEFFS3D. _ )
Disk or Drum Storage: The control number NOUT for this mode is 1.

When disk or drum storage (like the FASTRAND System on the UNIVAC 1108) is

available, this i1s the most convenient means of storing the output of

Section 2. The necessary admittance coefficients are stored in a format suit-
able for input to the program COEFFS3D. The dev1ce nurber for this output
is 7. The control statement needed to request the disk or drum storage on the
computer depends on the computer facilities being used.

Punched Cards: NOUT for this mode is 2. This mode of output is the

simplest way to run the instability program. The cafds containing the

necessary admittance coeffilcients are punched by the computer in a format

suitable for use with program COEFFS3D, which is the next program to be executed.
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FORTRAN Listing

REERREERRRRENERS FROGRAN NOZALM deok sk s ook ok ok o o o ok ok oo oo

THIS FROGRAM EVALUATES THE LINEAR ANL NONLINEAR AIMI TTANCES
OF A SFECIFIED NOZZLE.

THE FOLLOWING INPUTS ARE REQUIRED ¢

Cv IS THE MACH NUMBER AT THE NOZZLE ENTRANCE.

‘ANGLE IS5 THE SLOFE OF THE MIDLLE SECTION GF THE NOZZLE.: o
RCC 15 THE RALIUS OF CURVATURE OF THE NOZZLE AT THE ENTRANCE.
RCT IS5 THE RADIUS OF CURVATURE AT THE THROAT.

GAM IS THE SPECIFIC HEATS KATIO.

NOZNL1 DETERMINES WHETHER THE NONLINEAR ALMITTANCES ARE TO
BE EVALUATED:

NOZNL.1 = G NOT EVALUATEL.

NOZNL1 = 1 EVALUATEL.
NOUT DETERMINES THE OUTFUT:

NOUT = O FRINTED OUTPUT ONLY.

NOUT = } FRINTED ANLC WRITTEN INTO A FASTRAND FILE.

NOUT = 2 PRINTEL AND AIMITTANCES FUNCHED INTO CARLS.
IEXTN DETERMINES IF THERE IS AN EXTENSION SECTION

IEXTN = © NO EXTENSIOKN SECTION.

IEXTN = 1 THERE IS AN FXTENSICN SECTION.

EXTNSN 1S THE LENGTH OF THE EXTENSION SECTION.

WC IS THE FREGUENCY OF THE FUNDAMENTAL MOLE.
P1AMFL 15 THE PRESSURF AMFLITULE OF THE FUNDAMENTAL MOLE.

[+ X2 s Kz K2 K2 K2 X2 K K2 X2z v 22 X7 K2 X2 K2 e R s N2 ks Ev R v Ee Ne No Ko N o]

COMMON Z/X1/7CMs ANGLE>RCCoRCT,GAM» €2 KT» DF
/X227 TsR15 R2SNFLASTSNENDs 1 EXIN
/X3/7%Cs SUNS I FsMOLEs NUsKF(3)
/X47RUCTI> REUCTILZ THRE1, GTHRI
/X85/70C1000),CUC 10003, CCI1000)Y KW 1000
/X6/AFN, AFN1, AFN2
/7XT/7ALFHACSs 3), EBETA(9,3)
/XB/ZERKC 1000)

COMFLEX AFN(lOOO)!AFNl(IUOO)JAFNQ(lOOO)JACHFEH:CONbT;
CC(25),CC1(25),CFHs CFM, CFNs CGFF1, CGEF2,
INHMGs INHMG 12 ZTHESZ THR 12 AH» AH1» GTHHRS, CTHE Y»
ZETA, TAUsLINAIM, ZFKK» GNOZ € 3)

DIMENSION GUaYsGFCAY»YCLIa DY C s 42 SMNC3IS I STEFC 3,

1 NAMEC3Ys FHASEC(3), AMFL(3)

DATA (NAMEC(NMODE)s» MODE = 1,3) /72H1T,2H2T,2H)YR/
1 CSMN(NMODEY» MODE = 153) /1841185 3+4054245 3831717

SOUMS LN -

W 10 -

KEAD (5, 5005) CMsANGLEs» RCCo KCT,GAM
READL (5, 5010) NGZNL1s NOUTs, ITEXTINs EXTNSN
READ (S:5015) WC», FIAMFL
GMINI = GAM = 1.
GFL1 = GAM + J.
DF = =0.002
C ISTEP = 1 ¢ INTEGRATE FOR ZETA ONLY.
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10

a0 o0

(o]

OO0

20
25

. SRTR=C(RT*RCT)**¢5

K3 A S “
¥ Py 3 *

1STEP = 2 ¢ -~ INTEGRATE FOE ZETA & AH. )
ISTER = 3 INTEGRATE FOR ZETA & GAMMA.
IF (NOZNL1 «EBe¢ 1) GO TO 10

ISTEF(1) = 1 :

ISTEF(2) =
ISTEF(3) =
GO T0 15
1STEFC1) =
ISTEF(2) =
I'STEP(3) =
CONTINUE
KF¢1)y = 1t
KFE(2) = 2
KP(C3) =« 2

I

[ARARG

OBTAIN STEADY~-STATE QUANTITIES IN THE NOZZLE .
CALL STEALY ‘ ‘ '

PRINT CUT THE .NOZZLE FARAMETERS.
VRITE (65 1005) :
WRITE (6210107 CM

WRITE (6, 1015) GaM

VRITE (6,1020) ANGLE

WRKITE (6,1025) EXTNSN

WRITE (6,1030) RCT

VRITE (62103%) RCC

WRITE ¢(6s1040) NFLAST

NEND = NFLAST
IF CITEXTN «NEe 1) GO TO 25

DETERMINE NUMEER OF STATIONS IN THE EXTENSION KEGION,
DEFINE STEALY~-STATE QUANTITIES IN THAT REGIONe.

UEXT = U(NFLAST)

"NENL = NFLAST = (EXTNSEN * UEXT *%x .S) / DP

IC 20 NF = NPLAST,NEND
U(NP) = UCNFLAST)

C(NF) = C(NPLAST)

CUCNF) = DUCNPLAST)

KW(NF) = RW(NFLAST)

CONTINUE -

CONTINUE

IF (NEND «GT. 1000> GO TO 550

CALL INTGHL

ACHMBR = CMPLX (F1AMPL 7/ (WC*GAM) »0.)
IF (NOUT +EQe 0) WRITE (6,1050) WCs F1AMFL
1F (NOUT «EQe 0O) WRITE (653055)

DO 500 MODE=],3
I1P=ISTEP(NOLE)
SUN=SMNCMODE)?

AND
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C

c

[sNsXoN o]

aoon

110

130

140

SUNE=SUN/RT

o sk e dk e ok ok ok o o e ok STARﬂ NG VALUES SECTION®& kb kokdoakikopdom ok ador kargkeokok s gk kok &

Pto.

AHR = .

AHI = O.

AH = CMFLX (AHR.AHI)

UP = U(Y)

CP = C(1)

DUF = DUCI)

RWF = RU(C1)

CALL COEFFS C(UFs»DUF,CFsEWF,CC)
CFH = CC(1)

CFM = CC(2) + CC(&)

CFN = CC(3) + CCC4) + CC(5) + CCC7) + CC(8B)

*************DEHIVATIUES'OF THE'COEFFICIENTS AT THE THROATH*&kk®kkk

EVALUATE DERIUATIVES OF LINEAR COEFFICIENTS-
XK = = 44/(GPL1 * SRTR)

CFH1 = CMFLX (XRs0e)

KR = = (248« + 4« * GAM) 7 C(GPL! * 3. ¥ RT * RCT)

Xl = ~ B¢ * UWC * KF(MODE) 7/ (GFL}] * SRTR)

CFM1 = CMFLX (XR,XI? . '

XR = = 2.#GMIN! * (BETA (85MODE) + PETA (7,MOLE) + BETA (9,MODEL)
1 * ALPHA (5,NMOTE) /7 ALPHA (4sMUOLED)) / (GFL1 * KT * KT

2 * SRTR * BETA (6:VNMOLE))

Xl = =C}2 + 2%GAM) * WC * KP(MODE) * GMIN1 / (3+kxGFL1 * RTxRCT)
CFN1 = CMPLX (XFsX1)

SET UF VALUES AT THE THROAT ‘BY TAYLORS EXFANSION

"STARTING VALUES FGER ZETA

ZTHR = « CFN 7 CFM

ZTHR] = -~ (CFM1 % ZTHR + CFH1 #*# ZTHR * ZTHR + CFNI) /- CCFH1 + CFM)
ZEK(1) = ZTHR

IF (MODE.NE«1) GO TC 110

AFNC1) = AH

AFNIC1) = AFNC1) # ZTHR _
AFN2C1) = AFNIC1) * ZTHR + AFN(]) * ZTHRI
CONTINUE

GC1) = REAL (ZTHR)

G(2) = AIMAG (ZTHR)

DY €1,1> = REAL (ZTHR1)

DY €2,1) = AIMAE (ZTHRI1)

GO TO €12051305140)» IP

G(3) = AHR

GC4) = AHI

AH) = AH * ZTHR

DY (351> = REAL (AH1)

DYC4s1) = AIMAG CAHI)

GO T0 120

CONTINUE




CGRPY = CC(13) + CCC14) + CCC19) + CC(23) + CC(24) + CC(2D
CGRFE2 = CC(10) + CCL11) + CCC17) + CC(20) + CC(21) + CcC(g®)
INHMG = =CC(18) » AFN(1) *= AFN2(1) = CC(12) * AFN]C(1) % AFN2(1)

1 =(CC(9) ¢+ CCC15)) * AFN1C1) » AFNIC1) - CGRF1 * AFN(]) =
15 AFN1C1) - CGRF2 % AFNC(1) * AFN(1)

C

C EVALUATE DERIVATIVES OF NON-LINFAR COEFFICIENTS.

A1Bl = ALPHA(1,MODE) * BETAC1,MODE)
AZBR2 = ALPHA(Z2,MODEY * BETA(2,MODE)

Al1P3 = ALFHAC1,MODE) & BETA(3,MCLE)

A4BS = ALFHACA,MODE) * BETAC6sMODE?

TO 26 J = 1,25

26 CCL(J) = CMFLX (0050Qs)

XR ® = (2.#A1B} * WC) 7/ (A4B6 » GFL1 » snrn)

x! = XR ‘

CC1(9) = CNPLX C(XRsXI)

XR = = (4. * AIB1) 7 (31415927 * GFL! * SRTEK * A4BE6)

Xl = - XR

CCY €12) = CMFLX (XFoXI)

XR v - AIB3 ¢ (GFL1 * RT # KT * SRTR * A4B6)

X1 = - XR

CCi1 (13) = CMFLX ¢(XR»XI)>

XR = - A2BE 7/ (GFL! * RT * KT * A4B6 * SRTR)

Xl = = XR

CCY Cl4) = CMFLX (XRsXI)

XR = = A1B1l % (3.%GFL1 # SRTR ¢+ GMIN! % (12.+GAM)) ~/

1 (2e ® RT #* RCT %= GFL1 » GFL] = A45g)

Xl = - XR

CC1 (15) = CMFLX (XRoXI)

XR = AIB3 % (9. = 2.%GAM - GAM#GAM) / (12¢ * RT#*%3 % RCT * GFL]
1 = A4B6)

Xl = - XR

CCl (16 = CMFPLX (XRsXI) .
XR = ASR2 % (9. - 2.%GAM - GAM$GAM) / (12. * RT**3 % RCT = GFL!
1 , * A4B6)

Xl = = XR

CCi C17) = CMPLX (XEReXI)

XR = = (GMIN] * WC % A}IB1) / (GFL1 % SRKTRK * A4B6)

Xl = XR

CC1 (18) = CMFLX (XRsXI}

XR = = (GMINi * (6.4GAMY % WC % AlB1) ’ (3. * GFL1 = RT * RCT
1 * A4B6)

Xl = XR :

CCl (19) = CMPLX (XRsXI)

XR = - (GMIN] * ALFHA (1,MODE) % (BETA (4»MODE) - BETAC(S,MOLE))>)
1 /s (GFL1 = RT *= RT = SRTR % A4B6)

X! « - XR

CCi (23) = CMFLX (XR.,XI)
 XR = = (GMIN1 * ALPHA (1,MODE) # BETA (Ss:MODE) * 2.)

1} s (GPLi #* RT % KT * SRTR % A4E6)

X3 = - XER

CC1 (24) = CMPLX (XR.XI)

XR = - (GMIN} #* ALFHA (3,MODE) #* BETA (2sMODE))

1 ¢ (GPL1 #*= RT % RT #* SRTR * A4B6)

XI = - XR

ol

== = ——— = = =




OO0

160

'162
170

150
30

CCl (25) = CMFLX (XR:XI1)

INHMG1 = = AFN2C(1) *= AFN2C]1) * CCC12) - AFNIC]1) * AFN2(1) *
CCCC18) + CC1C12) ¢+ 2.%CC(9) + 2.xCC(15)) = AFN2C(1)
* AFNC1) * (CC1(18) + CGRF1) = AFNI1C(1) * AFNIC(]) *
(CC1€(9) + CC1(15) + CGRF]) = AFN1C1) * AFNC1) =*
(CC1C13) + CClC14) + CC1(19) « CC1(23) + CClc2a)
+ CC1C25) + 2.%CGRP2) = AFN(1)> *= AFNC(1) =* (CCI(1O)
4+ CCL1C11) + CC1(17) + CCIC20) + CCl(R1) + CClICE2»M

[ JRT B S AN R

STARTING VALUES FOR GAMMA

GTHR = = INHMG / (CF * CFM)

GTHR1 = (~CF * GTHR * (CFH1 * ZTHR + CFM1) + (GMIN]1 % +5 * 4. /
! ¢ GFL]1 * SRHRTR)) * GTHR * (CFHl + CFM) - INHMG]) /
2 ¢ CP *= CFHl +« CF * CFM)

G(3) = REAL (GTHR)

G(4) = AIMAG (GTHR)

DY (3,1) = REAL (GTHR1)
DY (4,1) = AIMAG (GTHRI)
CONTINUE

wrexkkerkxkkxNUMER]I CAL. COMFUTATIONS**%%xxx%xk ke kehkh kb ghdkr ks X

RUNGE-KUTTA INTEGRATION TO FROVIDE INITIAL VALUES
FOR FREDICTOR-CORKRECTOR INTEGERATION

DO 30 IRK = 2,4

CALL RHKTZ(DFsFsGsGFa1FK)

P=P+DP

ZR=G(])

Z1=G(2)

ZRKC(IRK) = CMFLX (ZRl.Z1)
DYC1,IRK)=GP(1)

DYC(2,1RK)I=CGP(2)

GO TO (150,160,170)» IP

AHR = G(3)

AHI = G(4L)

DY(3,IRK)=GP(3)

DYC4,1RK)Y=GPC 4)

IF (MODEeNE.1) GO TO 162

AFN (IRK) = CMPLX (G(32,G(4))
AFN] (IFK) = CMFLX (GP(3)2GP(4))
AH2 = GC1)*GF(3) = G(2)*GP(4) + GF(1)*%G(3) = GP(2)*G(4)
Al2 v G(2)*GF(3) + GC1)%GF(4) + GF(2)*G(3) + GF(1)*xG(H
AFN2(IRK) = CMPLX (AR2,;AI12)

GC TO0 150 - ’

CONTINUE

GAME = G(3)

GAM]I = GU4H)

DY(3,IRK) = GF(3)

DYC 4, 1FK) = GP(&)

CONTINUE

CONTINUE

Y(1)=2ZER




190

200

-
@
o

a0 oo

35

40

220

Y(2)=21
GO TO €180,190-200)%, 1P

Y(3) = AHR

Y(4) = pHI
GO TO 180
CONTINUE
Y(3) = GAMK
Y(4) = GAMI]
CONTINUE

FREDICTOK~ CORFECTOR INTEGRATION
CALL - ZADAMS C(DPsPsYo LY,»1TOKHZ)

CALCULATE LINEAR AIMITTANCE CCEFFICIENTS.

UE = UC(NEND)

CE = C(NEND)

RHOE = CE #*%x (1./GMIN1)>

FR = WC * KFC(MODE)

F = UE #% .5 / (FR*#GAM)

IF CITORZ +EQe 1) GO TO 38
ZR=Y(1) '

Z1=¥Y(2)

ZETA = CMFLX (ZRs21)

LINAIM « F *® CMFLX(Qe21s) * ZETA
GO TO a0

ThR= Y(12

TI = Y(2)

TAU = CMPLX (TR, TI)

LINAIM = F % CMFLX(0e»1.) 7 TAU
CONTINUE

YR = REAL (LINALM)

YI = AIMAG (LINATM)

YMAG = CABS (LINADM)

YFHASE = ATANZ2 (YI.YR) * 180« 7 3.1415927
AMFL(MODE) = YMAG

FHASE(MODE) = YFHASE

GO TO €210,220,230), 1F

AHR = Y(3)

AHI = YC&)

IF (MODE «NEe 1) GO T0 210
CONST = ACHMBER / AFN(NEND)
DO SO NP = 1,NEND _
AFN(NF) = CONST & AFNCNP)
AFN1C(NF) = CONST * AFNI1C(NF)
AFN2(NF) = CONST * AFN2(NF)
CONTINUE

NONLINEAR ADMI TTANCE CCEFFICIENT 1S ZERO FORK 1T MODE.

GAME = Os
GAMI = Q.
GMAG = O+
GFHASE = 0.
GEYY. = 0.0
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230

210

500
510
520
550

570

1010
1015
1020

‘1025

1030
1035

1040
1050

1055

i

GNOZC(1) = (0<0,0.0)

GC TO 210
CONTINUE

CALCULATE NONLINEAR ADMITTANCE COEFFICIENTS.
GAME = Y(3)

GAMI = Y(4)

GMAG = (GAMR » GAMR + GAMI * GAMI) ** 5
GPHASE = ATANZ (GAMI,GAME) * 1EO« 7/ 3.1415927
GBYY = CABS (CMFLX (GAME,GAMI) / LINADM)
GNOZ(MOLE) = CMPLX(GAME, GAMI1)

CONTINUE

IF (NOUT «EQe 0) WRITE (6,1060) NAMECNMOLE)s YR, Yl
1 YVMAGs YPHASEs, GAMR, GAMI» GMAG» GFHASEs GPBYY
CONTINUE

CONTINUE

CONTINUE

CONTINUE .

IF (NOUT -E@e 0) GO TO 560

IO 570 J = 1, 3

IF (NOUT «E@. 1) WKITE (7,7005) J» AMFLCJ)» FHASEC(J)
IF (NOUT +<EGQe 2) PUNCH 7005 J» AMFL(J), PHASE(J)
CONTINUE '

IF (NOZNL1 «EGs. 0) GO TO 560

DO 580 v = 1, 3

IF (NOUT «E@« 1) WRITE (7,7005) J, GNOZ(J)

1F (NOUT +E&e 2> PUNCH 7005 J» GNOZC(J)

CONTINUE ‘

VRITE (6.,1065)

RkkEREkRkkdkkkkkhnk KEAD FORMAT SFECIFICATIONS #amidn ok ik ko dokokok &

FORMAT (6F1040)
FORMAT (315,F10.02
FORMAT (2F10.0)

skknpkkrkkrankkk WRITE FORMAT SFECIFICATIONS #kxskrddkknmkkokakkk &k

FORMAT C1H15/777777777 45K 1 THRR kb kkkkkn®ky /p 45K »

1 1THNOZZLE FAFRAMETERSs 75 45X, | THRX k& ¥nkkkkkRkkk kkp /// /17 7))
FORMAT C(1HO,25X,"MACH NWBER = “2F4.2) .

FORMAT (1lHO»25X,"GAMMA = ", F4.2)

FORMAT (1HO»25Xs"NOZZLE ANGLE = ",F5¢2)

FORMAT C(1HO»25X»"LENGTH OF EXTENSION SECTION = ",F4.2)

FORMAT (1H0.25X»"RALIUS OF CURVATURE AT THE THROAT = “,F7.%
FORMAT C1HO»25X»*"RAD1US OF CURVATURE AT THE NOZZLE ENTRANCE = °*%»
1 F75)

FORMAT C(1HO225X,"NWBER OF STATIONS IN THE NOZZLE = '"214)

FORMAT ClH1s /77772 46X |BH Yk kkkkkkkrkhkkknk, /s 46XK2 .

1 16HNQOZZLE ADMI TTANCES, 75 46X, 1BHE kR kb kX kkk ks Rk ////// >
2 20X, "FREGUENCY = “sFB+6s40Xs "FRESSURE AMFLITUDE = *sF6e4)
FORMAT (/7777774 5X2"MODE"> 10Xs 2HYR29X» 2HY 159X "YMAG"»9X,» "Y FHAASE",




11X+ S2HGRs9X» 2HGI »9Xs 4HGMAG, 1 OXs 6HGFHASEs 13X, 3HG/ Y, /7
1060 FORMAT C(1HOs SXs A2, 2Xs3F 12645 F 16042 3F12e452F16e41)
1065 FORMAT (1H1)

7005 FORVAT (15,2F10.5)

C
c EERRRERERARRERARR R R AR AR EERERERE DR RR R DRk R ook ek ok ok
C .

STOP

END
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SUBROUTINE STEADY ‘
THIS SUBROUTINE EVALUATES STEADY-STATE QUANTITIES IN THE NOZZLEe

NOZZLE PROFILE AND FLOW PARAMETERS ARE PASSED TO THE SUBROUTINE
THROUGH THE COMMON BLOCKS X1 AND X2.

THE SUBPROGRAM PROVIDES THE OUTPUT THROUGH COMMON ‘ELOCK XS

U 1S THE SQUARE OF THE STEADY=-STATE VELOCITYS

DU 1S THE DEKRIVATIVE OF U WITH KESFECT TO STEADY-STATE FOTENTIAL 3
C 1S THE SQUAKE OF THE SFEEL OF SOUNLD3

RW 1S THE RADIUS OF THE NOZZLE.

THESE OUTPUT QUANTITIES ARE STORED IN THE RESPECTIVE ARRAYS AT
INTERVALS OF DF IN F (STEADY~STATE FOTENTIAL).

COMMON 7/X1/ CMs ANGLEs RCCs RCT»GAMs Q2 RTs DP
COMMON /X227 TsRis»FK2.NFLASTsNENL, 1 EXTN

COMMON /X47 RUCT)2RDUCTI»ZTHR1»GTHR1

COMI“ON /XS/ UC1000).DUC1000),CC1000)sRWC1000)

Te 31415927*ANGLE/ 180« .

KT = (CM%%485) * ((le+(GAM~1)*CMEX2/2e) %% ((=GAM~1e)/
1 CHR(GAM= 1)) IR ((2/7(GAM+ 1)) %% ((~GAM=1)7CL+x(GAM~]1))))
SRTR = (RT*RCT) *%.5

€@ = (e25%RT) % ((2./7(GAM+1:)) %% ((CAM+1e) 7/ (Le*x(GAM=1))))
Rl = RT+RCT*(1.=CO0SCT)) ’

R2 = 1+=RCC * (}.-COSC(TY)

ReKT

Pz O«

Re(1}) = RT

UC1) = 2.7(GAM+14)

RUC1) = UCY)

CC1) = W)

DUCLIY = 4e/7C(GAM+ 1+)%SRTR)

KPUC}) = DUC1)

6 = UC1)

DO 30 I1=2,7

CALL HKSTDY (P»GsGF)

FeP "‘ DP/2»

RU(1) = G.

RDUCI )=GP

IF (1 «EQe. 2%(I/2)) GO TO 30

NF = (1+1)/2

UCNP) = RUC(1)

DU(NF) = KDUCI)

CINP) &8 Je=(GAM~1)®XUINFI*.5%

RWCNPY = Qkx(CCCNF)Y) *% (~]1¢/(2e¢%(GAM=1+))))

1 *CUCNPI®E=2a25) %k 4o
CONTINUE

CALL UADAMS (P)

RETURN

END
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SUBROUTINE BKSTDY(P»sGsDUM)

THIS SUBKOUTINE FERFORMS A FOUKTH ORDER RUNGE-KUTTA INTEGHATION
TO OBTAIN STARTING VALUES OF STEADY-STATE VELOCITY FOR THE
FREDICTOR-CORRECTOR METHOD.

P 15 THE CURRENT VALUE OF THE STEADY-STATE FOTENTIAL: INFUT.

G 15 THE SOQUAKE THE STEADY-STATE VELOCITY: INFUT AND OUTPUT.

AS QUTPUT, G 1S THE VALUE AT THE NEXT STEP. v

DU 1S DERIVATIVE OF THE SQUARE OF STEADY-STATE VELOCITY: OUTPUT.
DU IS OBTAINED BY CALLING SUBROUTINE KKUDIF.

COMMON /X1/ CMsANGLEs RCCs RCT»GAMs 85 RT» DP
DIMENSION A(4),FZ(4&) ’

AC1) = Q.

AC2) = 0e5

ACJ) = Q.5

ACY) = 1l

H = DP/2.

FR=F

GH=G

CALL FRKUDIF(FFRsGER, D)
FZC1) = DUM

DO 30 1I=2,4

PR = P+A(1)*H

GR = G+A(1)*HX*FZ(1~-1)
CALL RKUDIF (PRsGR, DUM)
FZC1) = DM

CONTINUE

G w G + H¥ (FZ(1) + 2%x(FZ(2)+FZ(3)) + FZC4))/6.
CALL FERKUDIF(PR,G,DUM)
RETURN

END

- 57




(s EsEsNesNoReNeRo No N

SUBROUTINE RKUDIF(F,G,GF)

THIS SUBROUTINE EVALUATES THE DIFFERENTIAL FLEMENT IN TﬂE
RUNGE-KUTTA INTEGRKATION SCHEME FOR SOLVING THE EGUATION FOR SQUARE
OF STEADY-STATE VELOCITY.

P 1S THE VALUE OF STEADY-STATE FOTENTIAL AT THE STATION,
WHERE DIFFERENTIAL ELEMENT 1S5 SOUGHT; INFUT.

G IS THE VALUE OF THE FUNCTION AT F; INFUTe

GP IS THE KEQUIRKED DIFFERENTIAL ELEMENT.

CONMMON 77X 17 Cls ANGLE» FCCo RCToGANMs s KTo DF
COMMON /X277 T>RlsR2sNFLASTINEND, I EXIN
COMMON 223/ WC:SVN:}P!MODE:NU:KF(3)W

10
15
22
25

30
35

40
45

$0
20

58

1F (F) 15»

GF = 4o/ ((GANM+1.) * (CRCT*ERT) %*.5))

GO TO 20

10.15

C = 1=-{(GAM=1.)%G*.5

R = G@%((C) *% (~1e/(2+%(GAM=10)3)) * (G¥%=028) * 4o

1F (R=1s)
1F (R-Rl)

DR = «((2+%¥RCT*(R~RTY = (K-BRT) * (R-RT))*%.5) / (RT+RCT~RK)

GO TO 45
IF (R-H2)

22,22, 50
255,30, 30

35, 40, 40

LR = -TAN(T)

GO TO 45

DE = ((2.%HCC*(]~-FK) =~

GF = DUxLCH
GO ‘T0 20
GP = Qe
KETURN

END

(Q@k(le=(GAM+1+) * G*5))

(F=1)%(R-1)) *%.5) 7/ (1«-RB=KC(C)
DU 8 =(C¥*+75)%(CH*k((2.%xCGAM=1) 7/ (2%(GEM=13))) /
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SUBROUTINE UADAMS(P)

TH1S SUBROUTINE CARRiEé OUT A MODIFIFD ADAMé PEEDiCTOB-CORRECTOR
INTEGRATION SCHEME TO SOLVE THE LCIFFERENTIAL EQUATION FOR THE
STEADY-STATE VELOCI TY.

P 1S THE VALUE OF THE STEADY=-STATE POTENTIAL AT THE STATION,
VHERE PREDICTOR-CORKECTOR INTEGRATION COMMENCES: INFUT.

DURING THE PROGRAM., F 1S CHANGED TO THE VALUE AT CURRENT STATION-
H IS THE STEP-SIZE; INFUT THROUGH COMMON ELOCK X1. ,

COMMON BLOCKS X1 AND X2 PROVIDE DETAILS OF NOZZLE FROFILE«

THE STEALY-STATE QUANTITIES ARE THE OUTPUT» AND
ARE PROVILED BY MEANS OF CCGMMON BLOCK XS5. ‘

COMMON /sX1/ CM,ANGLE,RKCCs RCTs» GAM» ©» KTsH
COMMON 7X27 T+ R1,R2,NFLAST2NENDs I EXTN
COMMON sX5/ UC1000Y,DUCIC00),CC1000),RWII1000)

NP=4

CONTINUE ‘

PRED = UCNF) + H*(55.%DUCNP) = 59+%DUCNP=-1) + 37:2DUCNF=-2>
=9« DU(NP=3))/24.0

Pw P+ H :

NF = NP + 1

UP = PRED

CP & Je=(GAM=1)%UF*+5

R = 0%(CF*%(~1e/ (2%(GANM=10)32) * (UF*%=,25)*4. "

I1F R = 1, THE NOZZLE ENTRANCE HAS BEEN REACHED.
IF (R=1+) 17517,100

IF (R-k1l) 20,-25,25
DR = =((2%RCT*(R-KT) ~ (R-RT)*(EK-RT))*%.5) / CRT+RCT-K)
GO TO 40 ' '
IF (R=-R2) 30,355 35
DR==TANCT)
GO TO 40
PR 2 ((L22KCC%x(1e=R) = (la=R)%®(1=R))2%.5) / (le=-R=-KCC(C)
PO = =(UFX%k oT75) % (CPRx((2:%GANM~1) / (2%(GAM~1))))/
(0% (le~(GAM+ 1) %= UFP % +5))
DUP = DR*DGO
COR = U(NP=1)+H* (9 +*xDUF+19+xLCU{NF~1) =~ 5.%DU(NF=-2)
+DU(NF=3))724.0
UP = (251«%COR + 19.*%PRED) 7/ 270.
CP = le=(GAM~]1e)*UP%*e5
R =2 QkCCPR%k(=1a/ (2+%(GCAM=14)))) * (UFk%=,25)%4,

IF R= 1, THE NOZZLE ENTRANCE HAS BEEN REACHED
IF (R=1.) 62,562,100

IF (R=FK1) 65,70,70 ' .
PR 5 =((2+*%HCT*(R=KT) = (R=RT)*(R-KT)I*%.5) 7/ (HT+KCT-R)

GO TO 85
IF (R=R2) 75,80,80
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75

80
85

87
100

DR = =TANCT)

G0 TC B8S .

DR = ((2+%RCC*k(]1e=R) = (1¢=R)*(le=R)JI*%*:¢5) 7/ (1le~R~KCC)
DO = =CUF*%e75) * (CEF*#((2+.%CAM=1) / (2.%(GAM=1))))/

1 COF(1le-CCAM*Le) % UF * 45)) ’

1F (NP «GT. 1000) GO TO B7

STORE STEADY STATE GQUANTITIES AT STATION NF IN KESPECTIVE AKRAYS.

DUCNPI=DR*DQ
U(NF) = UF
C(NF) = CF
RW(NF) = R

G0 TG 10
NFLAST= NP-1
RETURN

END
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SUBROUTINE COEFFS (Us,DUsCsR2CC)

THIS SUBROUTINE COMFUTES  THE COEFFICIENTS.

U,sDUsC+R ARE THE STEADY-STATE GUANTITIES AT THE AXIAL LOCATION.
WHERE THE COEFFICIENTS AKE REQUIREDe.

CC ARE THE COMFLEX COEFFICIENTS.

SUBROUTINE INTGFL FROVIDES ALPHA & BETA, THE VALUES OF TRANSVERSE

INTEGRALS THROUGH COMMON FLOCK X7e.

COMMON /X3/ WC» SUN»IFsMODE,NU,KF(3)
COMMON/X7/ ALFHA(S5,3)s BETA(9,3)
COMPLEX CC(25) :

DATA GAM/ 1.2/

GMIN] = GAM =~ |.

¥ = MODE

A4B6 = ALPHA (4,M) * BETA (6,M)
RSGR = R % R

Crknkhntsrkx LINEAR COEFFICIENTS ®kknsdkbhkbkbhkhbkbhbkhkphhbnrkrrpkhnks ki

C

Cc

c

CCR = U * (C~W)

CC(1) = CMFLXC(CCR,0.0)

CCR = = UxpU 7 C

CC(2) = CMPLXC(CCR,0+0)

CCR = C # (BETA (8:M) - BETA (7.M)) / (RSGR * BETA (6,M))
CC(3) = CMPLXCCCR»0.0)

CCR = 2+ * C *« BETA (7,M) /7 (RSQR * BETA (6:M))

CCC4) = CMFLX(CCR»0+0)

CCR = C * ALPHA (5,M) # BETA (9,M) / (ESER * A4E6)
€CC(5) = CMFLX(CCR,»0+0)

CCR = 040

CCI = = 2+ * UC * U = KP(M)

CC(6) = CMPLX (CCRsCCI)

CCR = 0.0

CCl = - GMINI * WC * KP(M) « U * DU 7/ (2+ * C)
CC(7) = CMPLX (CCRsCCI)

CCR = (WC %= KF(M)) %%2

CCl = 0.0

CCC(B8) = CMFLX (CCR»CCl)

IF (IP «NE« 3) GO TO 110

Ck ko ke NQNLINEAR "COEFFICIENTS %kakpkpkkkdkkdokhkkkrkhnkkkpbhkbhbkxkkk

Al = ALPHA (1,M)

A2 = ALPHA (2.M)

A3 = ALPHA (3.M)

Bl = BETA (1,M)

B2 = BETA (2,M)

B3 = BETA (3-M)

B4 = BETA (4,M)

BS = BETA (S5.M)

CCFE = = +5 % Al¥Bl *= WC*U / A4B6
CCI = CCR

CC(9) = CMFLX (CCR.CCI?
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CCR = = 5 * Al * B3 * WC / (RSQR * A4B6)
CCI = CCR
CCC10) = GMPLX C¢CCR»CCI)

CCR = = «5 * A2%B2 * WC 7/ C(RSOR * A4B6)

CC! = CCR

CCC11) = CMPLX C(CCR.CCl)

CCR & = ((GAM+1le¢) % UxU *x A1%Bl) / (4¢%31415927%A4B6)
CCl = - CCR .

€CC(12) = CMFLX (CCR,CCI) )

CCR = = (U * Al % B3) /7 (4. * KSQHK * A4E6)

CCI = - CCR .

CCC13) = CMPLX. (CCRsCCI)

CCR = ~ (U * A2 * B2) /7 (4. * RSQR * A4B6)

CCl = - CCR X

CCCl4) = CMPLX C(CCRs,CC1)
CCR = = 3+% % (le + +SGMIN1 * UkDU/C) * Al%Bl / (B+.%xA4B6)
CCl = ~ CCR . '
CC(15) = CMPLX (CCR,CCI)

A

CCR = = DU * (le = (2.=-GAM) * U/C) * Al * B3 7 (16 * KSGR * A4E6)

CCl = = CCR
CC(16) = CMFLX (CCRsCCI)

CCR = = DU * (le = (2.-GAM) * UsC) * p2 * B2 / (16 * KSCK * A4ES)

CClI = - CCER

CCC17) = CMPLX (CCR,CCI)

CCh = = (GMIN]1 * WC * Al * RB1) / (4. * A4E6)

CCI = CCR ’

CCC18) = CMFLX (CCE.,CCI)

CCR = -~ (GMIN1 * WC * U *x DU * Al * El1) 7/ (4« * C * A4E6)
CCl = CCE i

CC(19) = CMPLX (CCR.CCl)

CCR = = GMIN] % WC * Al * (B4 - B5) / (4« * RSOF * ALEG)
¢Cl = CCR : .
CC(20) = CMFLX (CCEsCCl)

CCR = - GMINI * A} * BS 7 (2. * RSGE * A4E6)
CCl = CCH

€Cc21) = CMPLX (CCRsCCI)

CCR = - GMIN] * A3 * B2 7 (4« * RSOR * A4B6)
CCl = CCH

cccz22) = CMFLX (CCR.CCID

CCR = = GNMIN] * U*Al * (B4 - B5) 7/ (4. * RSGRE * A4E6)
CCi = - CCR

CCc23) = CMFLX (CCR,CCI) '

CCR = = GMIN1 * U * Al ¥ BS / (2+%RSGE * A4B6)-
CCl = - CCH

CC(24) = CMFLX (CCER.CCI)

CCR = = GMIN1 * U % A3 * B2 / (A4+*R50RK * A4B6)
CCl = - CCK

CC(2%) = CMFLX (CCER,CCl)

CONTINUE

RETURN
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110

120

130
140

40

SUBROUTINE INTGRL.
THIS SUBROUTINE EVALUATES THE DIFFERENT TRANSVERSE INTEGHALS.

CUMMON/X7/ ALFHA(5,3), BETA(9,3)
S1 1.84118 )
3.05424

383171

31415927

[7)]
[A)
anan

*kEphhr kxR bk kR TANGENTIAL INTEGRALS*2XB k&2 XX hREERNEERRECRREERRS

DO 20 NOPT = 1,3
ALPHA (NOPT»1) =0
ALPHA (451) = 10

ALPHA (551) = =140
ALPHA (1,2) = 05
- ALFHA (25,2) = =05
ALPHA (3,2) = =0+5
"ALPHA (4,2) = 1.0
ALFHA (5,2) = =400
ALFHA (1,3 = 1.0
ALPHA (2,3) = 1.0
ALPHA (3,3) = =10
ALFHA (4,3) = 2.0
ALPHA (5,3) = 0.0

PO 30 I = 1,5
PO 30 J = 1,3

~ ALFHACI»J) = PI*ALFHA(I»J)

kprkhkkrhkkkRADIAL INTEGHAL Skt mabok s ko b o sk i gk s sk o oo

PO 40 MODE = 1,3 '

GO TO (1310,120,130), MODE '

M=

5=81

GO TO 140
M=2

S5=52

GO TO 140
M=0

S=53
CONTINUE :
BETA (1,MOLDE)

RAD2 (1515 15Ms5155155)

=
BETA (2,MODE) = RADZ (2515 1sMs5145855)
BETA (3,MOLE) = RADZ2 (751515M5515,51,8) |
BETA (4,sMODE)Y = RADZ2 (8s1215M251551,5) ' i |
BETA (S,MOLEY = RAL2 (5:1,1sMsS1281,5) |
BETA (€,MO0DEY = RAD! (1,VM,5) !
BETA (7-MODE) = RADl (4sMs S) 4
BETA (8,MODE) = RAD1 (5sM»S) !
BETA (9,MODE) = RADI (2,MsS)
CONTINUE
RETUKN [
END _
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FUNCTION RAD1 (NOPT.M,B)

THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
€0, 1) OF THE FOLLOWING PRODUCTS OF TwO BESSEL FUNCTIONS

"NOPT = 1 JM(B*R) % JMCB*K) * K

NOPT = 2 JM(B*K) * JM(B*R)/R
NOPT = 3 JPM(B%xR) * JM(B%R) =* K
NOPT = 4 JFM(B*R) * JM(Ex*R)

NOFT = 5 JPPM(E*R) * JM(B*FK) * K

JM IS THE BESSEL FUNCTION OF FIRST KIND OF ORDER M
JPM IS THE DEKRIVATIVE OF J¥ WITH RESPECT TO R

JPFM 15 THE SECOND DERIVATIVE OF JM WITH RESPECT TO R
M 1S A NON-NEGATIVE INTEGER

B IS5 A REAL NWMBER

DIMENSION FUNCT(200)
DOUBLE PRECISION DN, DHs, DSTEFs DR, ARG, BES1, BES2, EESH.
1 _ BESL, PRODs, FUNCT, S1, S2, S3

NN = 100

DN = NN

DH = 1.0/7DN
NPl = NN + |

wkkrkekkkrkdk CALCULATION OF INTEGRANDS ks ok rkkkfk gk kk

DO 160 I = 1s NP1

DSTEF = [ =~ 1
DR = DH * DSTEP
ARG = B x DR

CALCULATE BESSEL FUNCTIONS.
CALL JBES(M» ARG, BES2, $500)
BES1 = BES2

IF (NOPT .LTe 3) GO TO 130

CALCULATE FIRST DERIVATIVES OF BESSEL FUNCTIONS.
CALL JBES(N+1s,ARGs BESHs $500)
IF (NOFT «E€s 5) GO TO 120

- IF (I +E@¢ 1) GO TO 115

RM = M

BES! = B * (RM*BES1/ARG - BESH)
GO TO 130

IF (M +E@e Q) GO TO 117

CALL JBES(M-1,ARG, BESL, $500)
BES1 = B * (BESL =~ BESH)/2.0
GO0 TO 130

CALL JBES(1,ARG»EES1,»$500)

BESt = -BES| * B




120

122

130

140

145
150

160

o000

eo

30

/500
. 6000
501

GO TO 130

CALCULATE SECOND DERIVATIVES OF BESSEL FUNCTIONS.
IF (I «EQ. 1) GO T0 122

RM = M :

F = RM # (BM ~ 1.0)7(ARG * ARG?

BES] = ((F - 1.0) * BES? + PBESH/ARG) » B » B
GO TO 130

CALL JBES(M+2s, ARG, BESH» $500)

1F (M +E€e 0) RBES] = 05 %# B * B * (BESH -~ BES1)
IF (M «EGQe 1) BES! = 0«25 * B x B *(BESH = 3.0%«BES1)
IF (M «LTe 2 GO TO 130

CALL JEBES(M=2,ARG» BESL», $500)

BES]1 = 025 * B ¥ B * (BESL ~ 2.0%BES] + BESH)

FROD = BES] * BES2

CALCULATE WEIGHTING FUNCTIONS AND LIMITS FOR K = 0.
IF (NOPT «E@e« 2) GO TO 140
IF (NOPT «EQe 4) GO TD 150
FUNCTC(!) = PROD * DR

GO TO 160

IF (1 «EQs 1) GO TO 145
FUNCT(1) = FROD/LR

GO TO 160

FUNCTCI) = 0+0

GO TO 160

FUNCTCI) = PROD

CONTINUE

wxkkkkkkrkarne SIMPSONS RULE INTEGRATIE ON sk skokak ook ko ook ok oo ko ok ok ok o

NMYl = NN - 1

S1 = FUNCTC1) + FUNCT(NF1!)
52 = 0.0 .

S3 = 0.0

DO 20 1 = 2, NN, 2

S22 = S2 + FUNCT(])
CONTINUE N

D0 301 = 3, NM1, 2

83 = 53 + FUNCT(I)
CONTINUE

RESULT = DH % (S] + 400%S2 + 2.0%533/73.0
RAD]1 = RESULT

GO TO 501

WRITE (6, 6000)

FORMAT (iH1, 10HERROR JBES)
CONTINUE-

RETURN

END
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FUNCTION RAD2 (NOFT>LsMsN»A,BsC)

THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL .
(0,13 OF THE FOLLOWING FRODUCTS OF THREE BESSEL FUNCTIONS @ = ¢

NOPT = 1 JLCA®R) ®= JMCB*RK) * UNCC*R) * R

NOPT = 2 JLCA*R) * aﬁcstni'*.JN<Cfﬁ>/R

NOPT = 3 JLCASR) % JMCBER) % JNCCHR) ZCRE)

NOPT = 4 JPL(ASR) * JMCB*E) * JNCCHE) * R

NOPT = § JPLCA%R) * JMCB*R) * JNCCHR)

NOPT = 6 JFLCA®R) * JM(B¥E) * JNCC*F)/R

NOPT = 7 JFPLCA%R) * JPM(B*R) * JNCC*xK) * R

NOPT = 8 JPFLCA*R) * JMCB¥R) * JNCC#R) * R

NOFT = 9 JPPLCA*R) * JPM(B*K) * JNCCHR) * K

JL 1S THE BESSEL FUNCTION OF FIKST KIND OF ORDER L
JFL IS THE DERIVATIVE OF JL WITH RESEECT TO R -
JPEL IS THE SECOND DERIVATIVE OF JL WITH RESFECT TO K

L, M N ARE NON-NEGATIVE INTEGERS
As Bs» C ARE REAL NUMBERS

CIMENSION - FUNCT(200) .
DOUBLE FRECISION ©DNs DH., DSTEP» DR, ARG1s ARG2» AKG3,
: . ' BES1, BES2, BES3, BESH» BESL, FROD.

2 FUNCT, BESLIM, S1, 52, 53
NN = 100

DN = NN

CH = 1.0/DN

NP1 = NN + 1
*kkkkkkkkkkks CALCULATION OF INTEGRANDS ok hskokoksor ook ok skokok ok ok &

DO 160 I = 1, NP1
DSTEP = 1 - 1

DR = DH * DSTEP
ARGIl = A * DK
ARG2 = B * DR
ARG3 = C * Dk

CALCULATE BESSEL FUNCTIONS.

CALL JBES(N,AKG3, BES3s $500)

CALL JBES(L,AKGlsBES1,$500)

CALL JBES(M,AKGEs BES2, $500)

IF CC(NOPT «EQe« 7) «ORe (NOFT «EQe. 9)) GO TO 105
GO TO 110




105

107

109

110

117

120

122

130

133

134

CALCULATE FIRST DERIVATIVES OF BESSEL FUNCTIONS.
CALL JBES(M+1,AFRG2, FESH, $500)

IF (I -E@. 1Y GO TO 107

RM = M

BES2 = B * (RM*BES2/ARGZ -~ BESH)
GC TO 110

IF (M «E€e 0) GO TO 109

CALL JBES(M<-1,ARG2s BESLs $500)
BES2 = B * (BESL - BESH)/2.0

G0 TO 110

CeLL JBES(1,ARG2,PES2s £5002

BES2 = =BES2 * B

IF (NCFT «LTe 4> GO TO 130

CALL JBES(L+1,ARG1,BESH, $5002

IF (NOFT «GT. 7) "GO TOo 120

IF (I «EQe 1) GO TO 115

RL = L

BES1 = A % (RL*EES1/ARG) = BESH)}
GO TO 130

IF (L <EGe 0) GO TO 117

CALL JBES(L=1,ARG1,BESL, $500)
BES] = A ¥ (BESL = BESH)/72.0

GO TO 130

CALL JBES(1s,ARG1sBES1, $500)

BES1 = =BES1 *x A )

GO TO 130

CALCULATE SECOND DERIVATIVES OF BESSEL FUNCTIONS.
IF ¢I «EGCe 1) GO TO 122

RL = L

F = RL # (RL - 1+0)/7CARG1 * AREG1)

BES] = ((F = 1.0) * BES1 + PBESH/ARG1l) * A * A
GO TO 130

CALL JEES(L+2,ARG1,BESH, $500)

IF (L +E@s 0) BES] = De5 * A * A x (BESH = BESI)
1F (L +EQe¢ 1) BES] = 0425 % A * A *(BESH ~ 3.0%BES})
IF (L .LTe 2) GO TO 130

CALL JBES(L-2,AKGlsBESL, $500) ‘

BES] = 0«25 % A * A x (BESL = 2+0%BES]1 + BESH)

FPROD = BES! * BES2 * BES3

CALCULATE WEIGHTING FUNCTIONS AND LINMITS FOR K & Oe
IF ((NOFT +EQe 2) «OFe (NOFT «EQe 6)) GO TO 133
IF (NOFT «EQe 3) GO TO 136

IF (NOFT +EGe 5) GO TO 140

FUNCTCI) = PROD * DR

GO T0 160

IF (I <EQe 1) GO TO 134

FUNCTC(I) = PROD/DR

GO TO 160

BESLIM = 0.0

IF (NOFT oE@e 6 GO TO 135

IF ((L«EQel) +ANLe (MeEGeD) «ANDe (NeEGe0)) BESLINM = A/2.0
IF (C(L.EQe0) +ANDe (M+ECs1) +ANLe (NsEQe0)) BESLIM = B/2.0
IF ((L+EQsD) +ANDe (M+EQs0) +ANDe (Ne«EG«1)) BESLIM = Cr/2.0
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135 IF

136 IF

10 155
((L<EQe0Q)
((LeEQel)
((L+EQel)
((L.EQ.2)
TO 155

(1 «<E@¢ 1)

s ANDe.
«ANDe
¢ANDe
e ANT e

(M EQ.Q)
(MeEQe 1)
(MeEQ.0)

(MeEQeD) -

GO TO 138

FUNCT(1) = FROD/(DE*DR)

GO

¢ 160

138 BESLIM = 0.0

IF
IF
IF
IF
1F
IF
GO

((L.EQe2)
((L+EO.0)
((L.EQ.0?
(C(LeEQel)
((LeEQ.1)
((L.EQ«0D)
T0 1558

«ANDe.
s ANDe
eANDo.
«ANDe
«ANDo
« AN Do

140 FUNCT(I) = PROD

GO

T0 160

155 FUNCTC(I) = BESLIM

aaOma O

160 CONTINUE

NMl = NN - |
Sl = FUNCTC(1) + FUNCT(NF1)

52
S3
Do

= Qe0
= 0.0
20 1 = 2,

NNs» 2

S2 = 52 4 FUNCTC(I)
20 CONTINUE

Do
53

301 = 3»

NMi, 2

= S3 + FUNCT(I)
30 CONTINUE

RESULT = DH * (S1 + 4.0%52 + 2. 0*53)/3-0

(MEQ«Q)
(MeEGe2)
(M<EQe0)
(M.EQe 1)
(M.EQe D)
(MeEQe)D

RAD2 = RESULT
GO TO0 501 ‘
500 WRITE (&, 60002
6000 FORMAT (1H1» 10OHERRORK JBES)
501 CONTINUE
RETURN
END

68

«AND.
QANDQ
eANDe
«ANDe

«ANDe
s AN Do
s ANDe
e ANDe
o« ANL»
«AND.

kkekkkkknkdkkrk SIMFSONS RULE INTEGRATION

(N+EQ«D))

(N.EQ.0))
(NeECea1))
(N+.EQ.0))

(NeEQe0))
(N«EQ«0))
(N<EGe2))
(NeEQsD)Y)
(N«EQe 13D
(N.EGe 1))

BESLIM
BESLIM
BESLINM

BESLIM

BESLIM

BESL1IM
BESLINM
BESLIM
BESLIM
BESLIM

nennnn

~A*¥A/2.0

A¥B/4.0
A%xC/4e0
A*A/4e 0

A*A/Bob
BxB/8.0

FC*CIGOO

A*Brye0
Bk C74.0
BxC/4¢0

et 222 P 222 2 22 2l 2 s L)
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SUBROUTINE RKTZ(H» T1,G»DiMs IERK)

THIS SUBROUTINE PERFORMS A FOURTH ORDER RUNGE~KUTTA INTEGRATION
TO OBTAIN THE INITIAL VALUES FOR THE FREDICTOR~CORRECTOR METHOUD.

NU IS THE NUMBER OF DIFFERENTIAL EQUATIONS TC EE SOLVED.

IF IP = 1,INTEGRATION IS CARKRIEL OUT FOR ZETA ONLY (NU = 2).

IF 1P = 2, INTEGRATION IS CARRIED OUT FOGR ZETA AND AH (NU = 4).

IF IP = 3, INTEGRATION 1S CARKIED OUT FOR ZETA AND GAMMA (NU = 4).
IP IS FASSED TO THIS SUBROUTINE THROUGH BLOCK COMMON X3.

H IS THE STEP-SIZE; INPUT.

T: 1S THE CURRENT VALUE OF STEADY STATE FOTENTIAL; INFUT.

G ARE THE VALUES OF THE FUNCTIONS AT THE NEXT STEF; OUTFUT.
DU ARE THE VALUES OF THE DERIVATIVES OF THE FUNCTIONS

AT THE NEXT STEP; OUTFUT.

DUM ARE OBTARINED BY CALLING SUBHOUTINE RKIDIF.

COMMON /X3/ WC,SUN,1FP,MODE,NUsKFP(3)
DIMENSION AC4)»GCAI»GZC4Is DRCAILFZC4r 4)
A(1’=°'

Al2)=e5

AC 3)='5

AC4d=].

TZ=T1

NU=4

IF (IP+EQs}) NU=2

DO 10 J=1.NU

GZCJI=G(D)

IK=1

CALL RKLIF(TZ,GZ,DW,IK,1KK)

DO 25 J=1,NU

FZC1,D)=DpUMD) N
LO 30 1K=2,4

TZ=TI+ACIK)Y*H

DO 35 J=1,NU
GZCJI=GCIY+ACIK)I*H*FZ(IK~1,J)

CALL RKDIF(TZ,GZ,DWs1Ks1RK)

LCO 50 J=1,NU

FZC(IK»J)=DUMCI)

CONTINUE

L0 55 J=1,NU
GUIISGCII+HR(FZ (o J)+2e¥(FZ(2,J)+FZC(3,J))4FZ2CH,J)) /60
IK=4

CALL RKDIF{(TZ,G,»DUMs»IK,»IRK)

KETUEN

END
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130

110
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150

160

140
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SUBROUTINE RKDIF(F,G,GF,1K.,1RK)

THIS SUBROUTINE EVALUATES THE DIFFFRENTIAL ELEMENT IN THE
RUNGE-KUTTA INTEGRATION SCHEME. ' '
F IS THE CURRENT VALUE OF STEALY-STATE FOTENTIAL; INFUT.

G ARE THE VALUES OF THE FUNCTIONS AT F3 INPUT.
GF ARE THE DERIVATIVES OF FUNCTIONS AT P3 OUIFUT.

COMMON /X1/ CM»ANGLE,»RCC»KCTsGANMs» G» KT» DP

COMMON /X2/ T»R1,R2,NPLAST,NEND, I EXTN

COMMON /X337 WC, SUN,IFsMODEs NUsKF(3)

COMMON rsX47 RUWTI>RDUC7),Z THR1s» GTHRI

COMMON /X67 AFN, AFN1, AFN2 :

COMPLEX AFNC1000),AFN1C1000), AFN2C1000)

COMFLEX CC(25),CFHsCFMs CFNs INHMG )

COMFLEX ZETA»ZETAl»AH, AH1,CGAM, CGANM 1,ZTHR1»GTHRI1» APs AP s AF2
DIMENSION GC43,GPC4) ’ ’ .

ZR = G(1)

Z1 = G(2)

ZETA = CMFLX (ZR,Z1)

GO TO (1105120, 130),1F

AHR = G(3)

AHI = GC(4)

AR = CMPLX C(AHRs AHI)

GO TO 110

CONTINUE

GAMER = G(3)

GAMI = GC4)

CGAM = CMFLX (GAMR,GAMI)
CONTINUE

IF (F) 15,10,15

GF(1)> = REAL(ZTHRI1)

GF(2) = AIMAGCZTHR1)

GO TO C140,1505160), 1F

AH1 = AH * ZETA

GP(3) = REAL (AH1)

GPC4) = AIMAG (AHD)

GO TO 140

CONTINUE

GF(3) = KREAL (GTHEHI1)

GF(4) = AIMAG (GTHRI1)»

CONTINUE

GO TO 20

ICL = 2%IRK ~ 2

IF (1K «EQe 1) ICL = 2%IKRK = 3
IF (IK <EQe 4 ICL = 2%1RK - 1
UsRUCICL)

DU=RDUCICL)

Cele+(CAM=1)%U%,5

KRGk ((CI%% (=1 /(2% (GAM= 1)) ) )k (Uk¥k=0a285)% 4o
CALL COEFFS CUsDUsCs RsCC)

CFH = CCCD)

CFM = CC(2) + CC(®) .
CFN = CC(3) + CC(4) + CCC(5S) + CC(7) + CC(8)




ZETAl = ¢ =CFM % ZETA - CFN) 7/ CFH - ZETA * ZETA
GPC(1) = REAL (ZETAl)
GP(2) = AIMAG (ZETAl)
GO TO C(170,180,190), IP
180 AH1l = AH * ZETA
GP(3) = REAL (AH1)
GPC(4) = AIMAG (AH1)
GO T0 170
190 CONTINUE
GO TO (30, 40s,40050)» 1K
30 AP = AFN (1RK~1)
AF]1 = AFN1 (1RK-1)
AF2 = AFN2 (I1RK-~1)
GO TO 60
40 - AP = o5 % (AFN (IRK=1)> + AFN (IRK))
APl = +5 * (AFN1 (IRK~1) + AFN]1 (1HK))
AP2 = o5 * (AFN2 (IRK=-1) + AFN2 (I1FKK))
GO T0O 60
S0 AP = AFN (IRK)
! AP1 = AFN1 CIRK)
AP2 = AFN2 (IERK).
60 CONTINUE . .
- INHMG = CCC18) » AP = AP2 = CC(12) x AF]l » AP2 - (CC(9)
CCC15)) = AFl * AF1l - (CC(13) + CCC14) + CCC19)
CC(23) + CC(24) + CC(25)) * AF] * AP = (CCC10) + CCC1D
‘ CCCL1T7Y + CCC20) + CC(21) + CC(22)) *= AF * AF i
CGAM] = ( = ZETA + +5% (GAM~1+) % DU/C - CFM/CFH) * CGAM
1 - INHMG 7/ (C * CFR)
GF(3) = REAL (CGAMI1)
: GP(4) = AIMAG CCGAMI])
170 CONTINUE
20 RETUERN
END

[~ I
+ ¢+
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SUBROUTINE ZADAMS (HsX»Y»DY»ITOKZ)

TH1S SUBROUTINE CARRIES OUT A MODIFIED ALAMS PRELICTOER~CORKRECTOFR
INTEGHATION SCHEME TO SOLVE THE UAFIOUS DIFFERENTIAL EQUATIONS AS
DESCRIBED EELOW

IF IF = 1, INTEGKRATION IS CARRIED OUT FOR ZETA ONLYS

IF IP = 2, INTEGRATION IS CARRIED OUT FOR ZETA AND AH3

1F 1P = 3, INTEGEATION 1S CARRIELD OUT FOR ZETA AND GAMMA.

IP IS PASSED TO THE SUBROUTINE THROUGH COMMON ELOCK X3.

H 1S THE STEP=SIZE; INFUT.

X 1S THE VALUE OF STEADY-STATE POTENTIAL AT THE STATION »
WHERE THE FREDICTOR-CORRECTOR INTEGRATION STARTSS INFUT.
DURING THE FROGRAM, X 15 CHANGED TO VALUE AT CUKRENT STATION.
Y ARE THE VALUES AT X » OF THE FUNCTIONS, WHOSE EQUATIONS AKE
BEING SOLVED; INFUT ANL OUTFUT.

LY ARE THE DERIVATIVES OF Y3 INPUT AND OUTFUT.

ITORZ FASSES TO MAIN FROGRAM THE INFORMATION - AS TO WHICH VARIABLE
(TAU OR ZETA) HAS BEEN INTEGRATED.

ITORZ = 1 &t INTEGRATION OF EGUATION FOR TAU.

ITORZ = 2 ¢ INTEGRATION OF EQUATION FOK ZETA.

e NeREsEsErEsEoEoNrReResNoNeNoNoNoNoNoReNoNo NeoN o)

COMMON 7X1/ CMs» ANGLE, RCCs RCT»GAM» G» RT

CONMMON 7X2/ ToR1sRE2sNFLASTSNENL,IEXTN

COMMON /7X3/ WCs SUNs IFsMOLELNUSKF(3)

COMMON /X5/ UC1060Y»LUCI000)-CC1000Y» RWC1000?
COMMON /X6/ AFN, AFN1,AFN2

COMMON /X877 ZETA, TAU» CCEXT

COMPLEX ZETAC1000%, TAUC10003,CCEXT(25)
COMPLEX AFNC1000Y»AFN]1C1000)» AFNZCI10002
CUMELEX CCC(25),CFHsCFMsCFN, INHMGL,ZETAY»AHs AHL» AHZs AFs AF 12 A2,
1 CGAlM, CGAM §

DIMENSIGON YC4),TYC4, 8),CFC 43 FREDC 43, CORC4)

NP=4
ITORZ = 2
IF (IEXTN «NE. 1) GO TO 10

DEFINE STEADY STATE QUANTITIES IN THE EXTENSION KREGION.

e NeNe]

UCNEND?

CEXT C(NEND?

REXT RUW(NEND)

DUEXT = DUCNEND)

CaLL COEFFS C(UEXT, DUEXT» CEXT» REXTo CCEXT)

UEXT

Nu IS THE NUMEER OF EGUATICNS TO BE SOLVEDs

-O00

0 CONTINUE
DO 15 J=1,NU
FREDCJII=EY (I +H* (55 %k DY Jr 41 =59 kDY (Js 3)+37e%LY(Js 2)
1 =~ ekLY(Jr 1)/ 240

15 CONTINUE

X=X+H

T2




120

130

1t0

25

20

30

150

160

140

45

NF=npP+ )
ZR=FRED( 1)

ZI=PRED(2)

ZETACNF) = CMFLX (ZE.sZI)

GO TO (110,120»,130), 1P

AHR = PRED( 3)

AHI = FREDC4)

AH = CMPLX CAHR,AHI)

GO TO 110 '

CONTINUE _

CGAM = CMFLX (FRED(3),FREL(4))
CONTINUE

IF (NP «LEs NFLAST) GO TO 20
DO 25 1 = 1,25

CC(I) = CCEXTCI)

GO TO 30

CONTINUE

UFe=UCNP)

DUP=DUCNP)

CPe C(NF)

R=RWC(NF)

CALL COEFFS CUP,DUFsCFsRs CC)
CONTINUE

CFH = CCC1)

CFM. = CC(2) + CC(6&)

CFN = CC(3) + CCC(4) + CC(5) ¢ CCCT) + CC(B)
ZETAl = ( = CFM * ZETA(NF) - CFN) 7 CFH - ZETAC(NF) **e
DPC1) = REAL (ZETA1)

DP(2) = AIMAG (ZETAl)

GO TO €140,150:160), 1P

AH1 = AH * ZETA(NF)

DP(33 = KREAL (AH1)

DF(4) = AIMAG (AH1)

GO TO 140

CONTINUE

AF» APl AND AF2 ARE THE VALUES OF THE AMFLITUDE FUNCTION AND
THEIR DERIVATIVES AT THE CURRENT STATION. .

AF = AFN(NP)

AF! = AFNI(NP)

AP2 = AFN2(NP)

INBMG = ~ CC(18) * AP * AF2 -~ CC(12) %= AF) * AF2 =~ (CC(9)

1 + CCC15)) » APl * AF! = (CCC13) + CCGE4) + CC(19)
2 + CC(23) + CC(24) + CC(25)) = APl * AF - (CCC10) + CCc1D)
3 + CCC17) + CC(20) + CC(21) + CC(22)) = AP * AP

CGAM1 = (= ZETACNF) + +5% (GAM=1.) % DUP/CP -~ CFM/CFH) * CGAM

1 = INHMG ¢ (CF * CFH)
DP(J3) = REAL (CGAMI)

DFC4) = AIMAG (CGAMI)
CONTINUE

DG 45 J=1sNU

CORC(JI= Y(J) + H*(LY(J»2)~ 5.*DY(JJS)+19-*EY(JJA)
1 49 «%DF(J))/24-0

Y(J)e (251%CORCJI+ 19 «*FREL(J?I /7270
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S5

180

182
190

170

aaon

420

100

T

410

LO 55 I=1,NU

0 S5 Js1,3

IY(IsJ) = EY(1,J+1)

ZR=Y(1)

ZI=Y(2)

ZETA(NF) = CMFLX (ZF,21)

ZETAl = ¢ = CFM % ZETA(NF) = CFN) 7/ CFH = ZETA(NEF) *x2

DY €1,4) = REAL (ZETAY)

DY (2,4) = AIMAG (ZETAL)

GO TO €170,180,190), IF

AH = CMFLX (YC(3),Y(4))

AH1 = AH * ZETA(NP)

ID¥€3,4) = REAL (AH1)

DY(4,4) = AIMAG (AHL)

1F (MCDE.NE.1) GC TO 182

AH2 = AH] *» ZETA(NF) + AH % ZETAl

AFNC(NP) = AH

AFNICNF) = AH1

AFN2C(NF) = AHZ

GO TC 170

CONTINUE

CGAM = CMPLX (Y(3).,YC4))

CGAML = (- ZETAINF) + +5% (GAM=]«) * LUF/CF - CFM/CFH) * CGAM
-~ INHMG 7 (CF * CFH)

DYC(3,4) = REAL (CGaM))>

DY (4,4) = AINAG (CGANMID

CCNTINUE

1F (NF +E@e¢ NEND) GO 7TC 100

LECIDE WHICH EQUATION IS 10 BE INTEGRATED ¢ TAU OR ZETA

IF (CABS (ZETA(NP)) «LT. 10) GO 10 10
ITORZ = |

CALCULATE VALUE OF TAU AND ITS DERIVATIVE AT LAST FOUK STATIONS.
DO 410 1 = 1,4

TAU (NF=4+]1) = 1./ZETA(NF~4+1)

Y(1) = REAL C(TAU(NF))

Y(2) = AIMAG (TAUINE))

O 420 1 = 1,4

TSGR = FREAL C(TAUCNP-4+1) * TAUINF-4+1))
TSQI = AIMAG CTAUINF-4+1) * TAUINF-4+1))
Z¥Kk = DY(l1.1)

ZF1 = DY(2,1)

DYC121l) = ~ TSCR*ZPR + TSQIxZFI

LY(2,1) = - TSCR*ZFl = TSQI*ZFR
CONTINUE

CALL TADAMS (HsNF-X»Y»DY»1Q,1TORZ)
GO TC (10,1002, 16

RETURN

END
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SUBROUTINE TADAMS C(H,NFsXsYsDY»10s1TORZ)

THIS SUBKOUTINF CARRIES OUT A MODIFIED ADAMS FREDICTOR=CORRECTOK
INTEGRATION SCHEME TO SOLVE THE VARIOUS DIFFE&ENTIAL EQUATIONS AS
DESCRIBED EBELCW

IF IP = 1, INTEGEATIGN 15 CARRLED OUT FOR TAU ONLY:

IF IF = 2, INTEGKRATION IS5 CARRIED OUT FOR TAU ANL AH}

1F IF = 3, INTEGRATION 1S CARRIED OUT FOR TAU  AND GAMMA.

IP IS FASSED TC THE SUBROUTINE THROUGH COMMON BLOCK X3«

H IS THE STEP-SIZE: INPUT. _

X 1S THF VALUE OF STEADY-STATE FOTENTIAL AT THE STATION »
WHERE THE PREDICTOR-CORRECTOR INTEGRATION STARTS} INFUT. o .
DURING THE PROGRAMs, X IS CHANGED TO THE VALUE AT CURRENT STATION.
Y ARE THE VALUES AT X » OF THE FUNCTIONS, WHOSE EQUATIONS ARE
BEING SOLVEED; INFUT AND OUTFUT.

DY ARE THE DERIVATIVES OF Y3 INFUT AND OUTFUT.

I1Q INCICATES WVHETHER INTEGRATION 1S COMFLETE} OUTFUT.

1= 1 3 INTEGRATION IS TO BE CON1INUED BY SUBROUTINE ZADAMS.
Ie = 2 3 INTEGRATION IS COMFLETE- i

ITORZ INCICATES WHICH EQUATION SHOULD PE INTEGRATEL @

ITGRZ = 1 3 INTEGHATION OF EQUATION FOR ZETA.

ITORZ = 2 3 INTEGEATION OF EQUATION FOK TAU.

COMMON 7X317 CMsANGLE, RCCoRCToGAM» Go KT

COMMON /X2/ ToR1skK2,NFLAST,NEND, I EXTN

COMMON sX37 WCsSUNsIFsMOLEsNUsKF(3) '

COMMON sXSrs UC10002,DUC1000),CC1000)+ KWC 1000

COMMON /X667 AFN, AFN1., AFN2

COMIMON /7X8/7 ZETA, TAUsCCEXT

COMPLEX  AFNC1000),AFNICI1000), AFN2C1000)

COMPLEX CC(25):CFHICFMJCFNJINHFGJAH:AHI:AF:AFI:AFE:CGAM:CGAM
COMPLEX ZETAC1000), TAUC1000)Y, TAUL»CCEXT(E5)

DIMENSION YC4),DYC4, 45 DPC 4o FREDC4Ys CORC )

CONTINUE . _

NU IS THE NUMBER OF EQUATIONS TO BE SOLVEDe.

DO 15 J = 1.NU

PRED(JI=Y (JI+H*(S55.%xDY(Js 4)~ 59-*DY(J:3)*37-*DY(J:2)
°90*DY(dol))124-

CONTINUE )

X = X+H

NP = NP + 1}

TR = PRED (1)

Tl = FRED (2)

TAU (NF) = CMPFLX (TR, TI)

ZETA (NP) = l+/ TAUCNF)

GO TO (110,120-,130), 1P

AHR = PREL(3)

AHl = FRED (4

AR = CMPLX C(AHRsAHI)

GO TO 110

CONTINUE

CGAM = CMPLX CFREDC3),PRED(4)?
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CONTINUE
1F (NP «LE. NFLAST) GO TO 20

OBTAIN COEFFICIENTS IN THE EXTENSION SECTION.
o 25 I = 1,25 '
CC(IY» = CCEXT(I)

GO TO 30

CONTINUE

DUF = DU(NF)

UP = UCNE)

CF = C(NF)

F = RW (NF),

CALL COEFFS (UF,LUFsCFsFsCC)

CONTINUE ’

CFH =. CCC1) .

CFF = CC(2) + CC(6)

CFN = CC(2) + CCC4) + CC(S5) + CC(7) + CcC(8)Y .
TAU1 = le + (CFM + CFN *x TAUCNF)) * TAUINP) / CFH
LFC1) = REAL (TAUD) ,

DEC(2) = AIMAE (TAUL)

GC TO (1405150,160)s IF

AH1 = AH 7 TAUCNE)

DF(3) = REAL (AH1)

DFC4) = AIMAG (AH1)

G0 TG 140

CONTINUE

AF, APl ANL AF2 ARE THE VALUFS OF THE AMFLITULDE FUNCTION AND
THEIR DERIVATIVFKFS AT THE CURRENT STATION.

AF = AFN(NP)

AP1 = AFNI1(NP)

AF2 = AFNZ(NEF)

INHMG = = CCC18) * AF * AP2 = CCC1283 * AF1 * AF2 - (CC(9)

1 + CCC1S)) * AF1 * AF1 = (CCC13) + CCCl4) + CCC19)
2 + CC(23) + CC(24) + CC(25)) * AP1 * AP - (CCC10) + €CC11) .
3 + CCC17) + CCC20) + CC(21) + CC(22)) * AF * AF

CGAM] = ( - ZETA(NFY:+ «5 * (GAM = ].)-% DUF/CF - CFMsCFH) * CGAM
1 = INHEMCG 7 (CF * CFH) ' ’

EF(3)> = REAL (CGeNM1)

LPC4) = AIMAG (CCAMI)

CONTINUE

LO 4S5 J=1,NU

CORCJI= Y(J) + H*x(DY(Jsr2)-5«*%LY(Jsr3)+19.%L¥(Js Q)
1 +9.*LP(J)3 /2440

Y(J)= (251*CORCJI*+19«*xFRED(JII/ZE70.
L0 S5S 1I=1,NU

IO 55 J=1,3

DYCIsd) = DYCIoJd+1D

TR'= Y(1)

TI = Y(2)

T2 = TE*TR + TI*TIl

TAU (NF) = CMFLX (THaTI)

ZETA (NP) = 1«7/ TAUINF)




180

182
190

170

coo

420

f 105

100 -

1

1

0 420 I = 1.4

23501 = AIMAG ¢ ZETA(NF-4+1)> ® ZETAINF~4+1) )

1g= 2"

TAUl &« le + (CFM ¢ CFN % TAUCKNP)) * TAUINF) 7 CFH

DY C(1,4) = REAL (TAU1)

LY (2,48) = AIMAG (TAUD)

GO TO (170,180,190), IF

AHR = Y(3)

AHI = Y

AH = CMFLX C(AHK,AHI)

AH1 = AH / TAUCNEF)

DY (3.4) = REAL (AH1)

DY Cas4) = AIMAG (AH1)D

1F C(MCLE «NEe 1) GO TC 182

AFNC(NF) = AH

AFNI(NF) = AR :

AFNZ2 (NF) = ( TAUINF) * AFNI(NF? = TAULl * AFNANE) ) 7/

¢ TAUCNF) *TAUCNE) )

GO T0 170

CONTINUE

CGAM = CNFLX (Y(3)sY<C4)) ;

CGAMY = ( = ZETA(NP) + «5 % (GPM = 1e) * LUP/CF = CFM/CFH) * CGAMN
’ - INMMG 7 (CF *= CFH) :

DY €3,4) = REAL (CGAM1)

DY Ca,4) = AIMAG (CGAM])

CONTINUE

IF (NP +EQe NENLY GO TO 100

DECITE VWHICH EQUATION IS TO FBE INTEGRATED t TAU 'OR ZETA

IF <(CAEBSCTAU(NF)) «LTe. . 10) GC TO 10
ITORZ = 2 :

Y(1) = KREAL ( ZETA(NF) )

Y(2) & AIMAG ( ZETA(NF) )

CALCULATE DERIVATIVES OF ZETA AT THE LAST FOUR FOINTS,

ZSQGR = KREAL C ZETA(NF=-4+1) * ZETA(NF-4+]1) )

TER = DY(1,1)

TPI = DY(2,1) ‘ :
DY(1,1) = - ZSGF*TFR + ZSGI*TFI
DY(2,1) = - ZSGR*TFI - ZSQI*TFR
CONTINUE

1g = 1
RETURN

RETUERN
END




APPENDIX B
 PROGRAM COEFFS3D: A USER'S MANUAL.

Program COEFFS3D calculates the coeffic:.i.'éfﬂ‘:s[t_)f ,b‘otlf the ,iinear and
nonlinear terms that appear in Eq.. (20). These coefficients are required as
input for Program LCYC3D (see Appendix C) which numeriqally integrates this
system of equations. Program COEFFS3D is a slightly.modifiéd version of the
program described in detail in Appendix C of‘Ref.'Il. The modification lies in

the evaluation of one more coefficient, Ch(j’ p) defined by

e Igﬂ s Il
Ch(a,p) =u, ¢, TP Zj(ze) o ®p®jde o RR rdr.:

This coefficient fepresents the effect of nozzle nonlinearities. Except
for this additional coefficient, the two programs are very similar in the
structure of their numerical calculations and their output. Hence in this
user's manual, only the llstlng of the entlre program together with a pre01se'
descrlptlon of the necessary 1nput 1s glven. For details of the program,
one is referred to Appendix C of Ref. ll ’ ‘ A

In the following description of the input, fhe'location:numbervrefers
to columns of the card. Three formats are used for imput: "A" indicates
alphanumeric characters, "I indlcates intégers and "F" indicates real
mmbers with a decimal p01nt. For the "I" and "F" formats the values are

placed in fields of five and ten locations respectively (right justified).

gz;dzf Tocation Type Input Ttem Comments
1 1-72 A Title Title of theléése
1 1-10 F GAMMA | Ratio of specific heéts
11-20 F UE Steady-state Mach number
at nozzle entrance:
21-30 F RID length-to-diameter ratio
' 31-40 F 7 COMB Iength of the combustion
zone
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'

No. of

Cards ' Location

41-45

46-50

6-10

11-15

16-20

21-25

26-30

Comments

Type Input Ttem
I NDROPS

I NOZZIE

I NJIMAX

I - NONLIN

I NEGL

I NouT

I NOZNLL

I NZDATA

The next card is necessary only if NEGL = 1.

If 0: droplet momentum
source neglected

If 1: droplet momentum
source included

If 0: quasi=-steady nozzle
If 1: conventional nozzle

Nunmber of series terms
(complex)

If 0: linear terms only
If 1: both linear and
nonlinear terms

If 0: all non-zero coeffi-
cients calculated

If 1: small coefficients
neglected

If O: printed output only
If 1: printed and written
into file

If 2: written into file only
If 3: card output only

If 0: nozzle nonlinearities
neglected
If 1: nozzle nonlinearities
included

If 0: nozzle admittance values
input through cards

If 1: nozzle admittance
values input through file

If NZDATA is 1, NOUT in
program NOZADM should be 1
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No. of

Cards Location
1 1-10
11-20

Type
F
F

Input Item Comments

SM1 - Linear coefficients with

' absolute value less than -
SM1L negle cted

SM2 Nonlinear coefficients

with absolute value less
than SM?2 neglected

The next NJMAX cards are necessary only if NOZZIE = 1 and NZDATA = O.

NIMAX 1-5
6-15

16-25

I

J

AMPL(J)

PHASE(J)

Integer which identifies
the geries term

Amplitude of the linear
nozzle admittance

Phase of the linear nozzle
admittance

The next NJIMAX cards are necessary only if NZDATA = 0 and NOZNL1 = 1.

NIMAX 1-5

6-15

16-25

NJMAX 1-5

6-10
11-15
16-20"

21-25

26-30

80

I

J

GNOZ (J)

GNOZ(J)

NAME (J)

Integer which identifies
the series term

Real part of the nonlinear
nozzle admittance

Imaginary part of the
nonlinear nozzle admittance

Integer which identifies
serieg term

Axial mode number, 4
Tangential mcde number, m
Radial mode number, n

NS(J) =1: @ =sin (rB)
NsS(J) = 2: @% = ¢

Four character name




FORTRAN Listing

<K Rs ek Ko XsReRxXsReXsKeReReXsReRs R Re ReRe Re Kz he R Re Ko K2 Ne s Ns Ne Kzl s He Ne R s Nz N e N e Re No o Ne Ne Ne Re Re No Ny Re No N ol o}

AR RREREERREERkRkkkRkRr PROGRAM COEFFS3D ##kffdnsknhhdnkhaheninss

THIS PROGRAM COMFUTES THE COEFFICIENTS WHICH APPEAK
IN THE DIFFERENTIAL EGUATIONS WHICH GOVERN THE MODE~AMFLI TUDE
FUNCTIONS. THESE COGEFFICIENTS ARE FUNCHED ONTO CARDS FOR
INFUT INTO FROGRAM LIMCYC.

THE FOLLOWING INFUTS ARE REGUIRED:
THE TITLE OF THE CASE.
GAMMA 1S THE SFECIFIC HEAT KATIO.
UE 1S THE STEADY STATE MACH NUMBER AT THE NOZZLF ENTRANCE.
RLD 1S THE LENGTH-~TO-DIAMETER RATIC. '
ZCCMB 15 THE LENGTH OF THE RFGION OF UNIFORrLY LISTRIBUTEL
COMBUSTION, EXFRESSEL AS A FHRACTION COF THE CHAMEBEF LENGTH.
NDRCFS DETERMINES THE PHESENCE OF LROFLET MOMENTWM SOURCES:
NLROFS = 0 ODROFLET MOMENTUM SOURCE NEGLECTEL.
NLKOPS = 1 DROFLET MOMENTW: SOURCE INCLULEL.
NOZZLE SFECIFIES THE TYFE OF NOZZLE USEL1
NOZZLE = © " QUASI-STEALY
NOZZLE = ) CONVENTIONAL NOZZLE.

-FOR CONVENTIONAL NCZZLE

AVFL 15 THE NOZZLE AMFLITULDE ERATIOC.
FPHASE 18 THE NOZZLE FHASE SHIFT.
NCZNL1 DETERMINES THE FRESENCE OF NOGZZLE NONLINEARITLES

NOZNL! = O NOZZLE NCNLINEARITIES NEGLECTED.

NOZRLY = 1 NOZZLE NONLINEARITIES INCLUDED.
NZDPATA DETERMINES HOW THE NOZZLE LATA 1& SUFFLIELD

NZDATA = O FROM CARLS.

NZDATA = 1 FROM A FASTEANL FILE.

NJMAX IS THE NUMEBER OF MOLE-AMFLITULDE FINCTIONS IN THE ASSUMED
SERIES SOLUTIONe NJMAX MUST NOT EXCEEL MX. .
THE COEFFICIENTS COMFUTEL AFRE LETFRMINED EY NONLIN AS FOLLOWS
NONLIN = O LINEAR COEFFICIENTS ONLY
NONLIN = 1 BOTH LINEAR AND NONLINEAR COEFFICIENTS
COEFFICIENTS TO BE NEGLECTEL AFE LDETERMINED EY NEGL
AS FOLLOVS:
NEGL = 0 TERMS SMALLER THAN 0.00001 AKE NEGLECTEL.
NEGL = ] LINEAR TERMS SMALLER THAN SM1 ANLD NONLINEAR
TERMS SMALLER THAN SM2 AFE NEGLECTED.
THE OUTFUT 15 DETERMINEL BY NOUT AS FOLLOWS
NOUT = 0 FRINTED OUTFUT CNLY
NOUT = 1 FRINTEL AND WRITTEN ON FASTRANL FILE.
NOUT = 2 FASTRANL FILE ONLY.
NOUT = 3 CAKD OUTFUT ONLYe.
EACH MODE-AMFLITUDF IS5 ASSIGNEL AN INTEGER Je.
THE MCGDE 1S SFECIFIED EY THE INDICES L(J}s M(J)s AND NC(J)»
L<(J> 1S5 THE AXIAL MODE NIMEBER AND MUST NOT EXCEED 5.
MCJ) IS THE AZIMUTHAL MOTE NUWMBEK AND MUST NOT EXCEED 8.
N(J> 1S THE RADIAL MODE NWEER AND MUST NOT EXCEED Se
THE INTEGER NS(J) IS ASSIGNED A5 FOLLOWS:
KNS = 1 A=FUNCTION SINCM*THETA) * COSH(IxExZ)
NS = 2 B-FUNCTION COS(MATHETA) * COSH{I¥EBE*Z)
NAME(J) 1S5 A FOUR-CHARACTER NAME.
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[¢NeNo]

FPARAMETER
DIMENSION

MX= 5,
LCMX)»

MX2=10.
N(NMX)s

RJROOT(10,5),

MX4=20
NAME(MXJs» SC(MX),

SJ(MX)s TITLECEO)S

RJVALC105,5), Cl(MX2sMX2)s ClHsVMX22MX2),s
DIMX2,MX2,MNX2)s AMFL(MX)» FHASE(MX), AZI(2),.

EES1(929+9)s BES2(9,9,9)»

BES3(9,9,9),

Bwor

v(2y,

COMFLEX
Gls, DCOEFs
CNORM(MX)»
AXINTC(4,3)

RD W -

COMMON B /7BLK2/

DATA INFUT.

Fl = 31415927
SM1 = 0.00001
sM2 = 0.00001
SM3 = 0.00001
Cl = (0051.0)

[sNeNal

CRSLT, CI, ZEJ»

JOMX2)s TSCa,MXE2)s TSQIMX2), KMAX(S)
ZEF1, ZEF2, CZE, CAZ, CKRAD»

CGAM» CAX, BINMX)» BC(MX)>s YNOZ(NMX),
CSSOCNMXYs TANINTC(2), RADINT(3),

CCCSaMXPMX)s

CD2(MXsMXoMXd» AXC4)s Tis
CD3(MXsMXaMX)»

CLI1IMXsMX s MX),
72, LLl» D2» D3» D4»

CDAMX»MXsMX)s» GNOZ (MX)

MIMX)» NS(MX)

C INFUT ROOTS AND VALUES OF EESSEL FUNCTION S

VOO WM~

VOO D W -

DATA (C(RJEOOT(I+J),

3.83171,
1.84118»
34054245

5431755,
641562,
T+50127,
Ee57784,
Q. EHTUL,

4.20119».

T+01559,
S+33144»
670613,
Be01524s
928240,
10¢519806:
1173494,
12.93239»
1411552

DATA (C(RJVALC(I»J): J

~0+ 40276,
058187,
O+« 48650,
043439,
039965,
037409
De35414,
D« 33793»
0e«32438»

030012,
~0e34613,
~0«31353»
~0.29116,
'Oo 27‘)38}
~CeZ26109,
~0.25017,»
=~0«2409 6,
~023303,

J = 1,5, 1

1017347,
B¢ 53632,
9496947
1134592,
12.68191»
13.98719.,
1526816,
16+ 52937»
1777401,
= 1,5, 1
~024970,
027330,
025474
024074,
022959,
022039,
0212615
020588,
0619998,

= 159)/
1332369,
11.706060,
1317037,
14+ 58 58 54
159641 1»
1731284,
1E«637a4,
1994165,
2122906»
= 1,93/
0+ 21836,
~0+23330>»
=0« 22088,
~0:21097,
=0+ 20276»
~0+«19580»
~0e 18978,
=0+ 18449,
017979,

1647G63»
14.86359,
1634752,
1778875,
19. 19603»
2057551,
21.93172»
2326805,
24587207

~0+19647»
0.207C1.,
019794,
0190425
0+18403,
0e178249,
017363,
016929,
0165397

C INFUT PAKAMETERS. .
4 READ (5,5000» END = 600) C(TITLEC(I)» 1 = i» 720
KEAD (5.5001) GaAMMA, UE, KLDs ZCOMB, NLROPS, NOZZLE
IF -(GAMNMA) 600, 600» &
8 READ (5,5004) NJMAX, NONLIN, NEGL, NOUT, NOZNL1» NZIDATA
1F (NEGL +EQe¢ 1) KEAD (5, 5005) SMls, tM2
IF (NOZZLE .EGe 1) GG TO 5
C COMFUTE ADMITTANCE FOR QUASI1-STFEADY NOZZLE. .
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0000

OOQOOO0

710

10

12

15
25

20

Y = CGAMMA = 1.0) * UE/(S:0 * GAMMA)

PO 3 J = 1, NJMAX -

AMPLCJ) = Y

FPHASE(J) = 0+0

CONTINUE

GO T0 7

CONTINUE

IF (NZDATA -EQ. 0) NZDATA = S

IF (NZDATA -EQ. [) NZDATA = 7

DO 6 I = 1, NJMAX

READ (NZDATA»S003) J» AMFLCJ)s FHASECJ)
CONTINUE

IF (NOZNL1 «NE. 1) GO TO 7

DO 710 1 = 1.NJMAX

READ (NZDATA,S003) Jr GNOZ(J)

CONTINUE

DO 10 I = 1, NJMAX - o
READ (5,5002) Js LCJ)s M(J)s NCJ)s» NSCJ)s NAMECJ)
CONTINUE

DO 12 J = 1, NJMAX

THETA = FHASE(J) * F1/18B0.0
YR = AMFL(J) * COSCTHETA)?
Y1l = AMFL(J) * SINCTHETA)
YNOZ(J) = CMPLXC(YERsYI)
CONTINUE

ZE = 2.0 * FKLD

CZE = CMFLX(ZE,Q.Q)

CGAM = CMFLX(GANMMA, 0.0)

CAX = CGAM

IF (NDROPS <EQ@. 1) CAX = CGAM + (1.0,0.0)

e a2k e o o 3 ok oK e ok ke ok e o ook o ok ok ok A ok e o e e e o B ok o o ok e o ok ok e ok ok e e o o ok ok e ok e o ok o ok e 3 e e ok 2k ok o ok ok ok

ASSIGN ARRAYS FOR ROOTS OF EESSEL FUNCTIONS.
DO 20 J = 1, NJMAX '

IF ((MCJ)Y <EQe 0) «ANDe (N(J) «EQe 03) GO TO 15
MM = M(J) + )

NN = NCJ)

SC(J) = RJEOOT(MNM,NN)

S5J(J? = RJVAL(MMsNN)

GO TO 25

SC¢JY = 0.0

SJ(J) = 1.0

§50 = S{J) * S5(J)

CSSQCJ)Y = CMFLXC(SSEQ» 000

CONTINUE

e o e she e o o ok o o e o ok o o o ol e ok o ok e ook sk ok ok s e e ok o e ook 3 o K o o ok ok o Kok sk ok ok o ok ok ok ok ok
CALCULATE AXIAL ACOUSTIC EIGENVALUES.

FIND MAXIMUM UVALUES OF L(J)s M(J), AND N(J).
KN = O
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LMAX = O

MMAX = O

NMAX = O

DO 30 J = 1, NJMAX

IF (L(J) «GTe LMAXY LMAX = LC(J)
IF (M(J) «GTe MMAX) MMAX = M(J)
IF (NCJ) «GTe NMAX) NMAX = NC(J)
IF (NC(J) «NEs NC1)) KN = |

30 CONTINUE
LMAX = LMAX -+ |
MMAX = MMAX + |

COMFPUTE EIGENVALUES.
O 40 J = 1, hdFAX
LL = L(J)
SMN = S :
YAMFL = AMFL(J)
YFHASE = FHASE(J)
CALL EIGVALCLL, SMN»GAMMAsZEs»YAMFL,YFHASE, CHELT)
B¢JY = CRSLT
BC(JY = CONJG(CHSLT)
40 CONTINUE

o o sk ok oo o o ok ok o ook o s sk ke ok ok ko ok sk ok ok ok ok oK ok ok ok oK o ol ok s ok ok o ok ok ok ok ok ok ok ok ok ko kR
CALCULATE LINEAR COEFFICIENTS.
CALCULATE THE NUMBER OF LINEAR COEFFICIENTS-

NCOEFF = 4
IF (NOZNL1 «EG@« 1) NCOEFF = 5
NCFM1 = NCOEFF=-)

DO 100 NJ = 1, NJIMAX
DO 100 NF = 1, NJUMAX

ZERO COEFFICIENT ARRAYSe

DO 105 KC = 1» NCCEFF

CCCKCHNJUSNP)Y = (0«Cs00)
105 CONTINUE

OKTHOGONALITY FEOFERTY OF TANGENTIAL EIGENFUNCTIONSe
IF ¢ NS(NF) «NEe NS(NJ) ) GO T0 100
IF (M(NP) «NE. MC(NJ)> GO T0 100
IF (M(NJ) «EQ. 0) GO TO 112
AZ = FI
GO TO 120
112 IF ¢ NSCNJ) <E@e 1) GO TO 100
AZ = 2.0 * Pl

OKETHOGCNALLTY FROFERTY OF RALIAL EIGEhTUNCTIONS.
120 IF (NC(NF) «NEe N{NJ)) GO TC 100

IF (S(NFY) 125, 122, 125
125 SGM = MC(NJ) * M(NJ)

S50 = SC(NF) % S(NF)
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o0 a0 00

oo (o} (e R e

lg]

aacoOon0n

122

127

130

100

140

SJ50 = SJ(NJ) * SJINI) :
RAD = (SS@ - SEM) * SJS0/(2.0 * 5SQ)
GO TO 127
RAL = Q0«5

#

CALCULATE AXIAL INTEGEALS.

DO 130 NOFT = 1, 4

CALL AXIAL1 (NOFT» NFs» NJ» UEs, ZE» ZCOME» CHSLT)
AX(NOFT) = CRKSLT

CONTINUE

EVALUATE FUNCTIONS AT NOZZLE ENDe.

ZEJ = CCOSH(CI*BC(NJ)*CZE)

ZEF1 = CCOSHC(CI*E(NFI)*CZE) .
ZEF2 = CI % B(NF) * CSINK(CI*B(NF)*CZE)

CAZ = CMFLX(AZ,0.0)
CRAD = CMFLX{(KAD»0.0?

COEFFICIENT OF THE SECOND DERIVATIVE OF A(P).
CCC1.NJsNF) = AXC(1) * CAZ * CRAD

COEFFICIENT OF A(F)e. '
CC(2,NJsNF) = (CSSQI(NFI*AX(1) = AX(2) + ZEF2*ZEJ) * CAZ * CRAD

COEFFICIENT OF THE FIRST DERIVATIVE OF A(F).
CCU3sNUsNF) = (CAX*AX(3) + (2+:0,00)%AX(4)
+ CGAM*YNOZINF)*ZEF1*ZEJ) * CAZ % CRAD

COEFFICIENT OF THE RETAKLED DERIVATIVE OF ACF).
CCCa,NJ.NP) = CGAM % AX(3) * CAZ * CKAr

IF (NOZNL}l «NE. 1) GO TO 100

COEFFICIENT DUE TO NOZZLE NONLINEARITIES.
CES© = 1= (GAMMA=1) * UE/2.
CC(5:,NJsNF) = UE * CESO * GNOZ(NF) * ZEJ * CAZ * CRAD

CONTINUE

NOFMALIZE LINEAR COEFFICIENTS.

DO 140 NJ = 1, NJMgX

CNOEM(NJ)Y = CCC12NJsNJ)

DO 140 NP = 1, NJMAX

PO 140 KC = 1, NCOEFF :
CCCKCHoNJUsNF) = CCCKCsNJsNFI/CNORM(NJ)
CONTINUE

ko koo kR ok ke ok ko kR Rk kA Rk Rk kR kR Rk Rk Kk
COMPUTE NONLINEAR COEFFICIENTSe

IF (NONLIN +E€e 0> GO TO 402
Gl = (CGAM = €140,00)) * (0+5,0.0)
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160

165

167

150

170

210

225

220

COMFUTATIONS OF BESSEL INTEGRALS WHEN ALL SERIES TEFRMS HAVE THE

SAMFE RADIAL MOLE NUMBER N(J). :

IF (KN «EQe 1) GO TO 170

LO 150 MP = ], MiMAX

PO 150 MO = 1, MMAX

DO 150 MJ = 1s MMAX

BES1(MP,MEsMJ) = D0

BES2(MP,MEsMJ) 0«0

BESJ3(MP,MEsMJ) 00

Ll = MNP = 1}

L2 = M@ - 1}

L3 = MJ ~ 1
= L}l + L2

LN = L1 + L3

MN = L2 + L3

IF ((L3+EQeLM) sO0Re (L2:EQeLNI eOFe (L1«FEQMNI? G0 TO 160

GO TO 150

IF (NMAX <EQe 0) GO TO 165

Al = RJROOT(MP.NMAX) ¢

A2 = RJROOT(ME, NMAX)

A3 = RJROOT(MJs NMAX)

GO TO 1617

Al = 0.0
= 0.0

A3 = 0.0

CALL RADIALC1,L1,L2,L3,A1,A2:A3>RESULT)

EBESI(MF,MBsNMJ) = RESULT

CALL RADIALC2,L1,L2,L3sA1,A2,A3RESULT)

BESZ2(MPMGsMJ)Y = RESULT

CALL FRALIALC(3,L1,L2,L35,A1,A2,A3,RESULT)

BES3(MF,NMEsNMJY = RESULT

CONTINUE

® o

DO 200 NJ = 1s NJMAX
LO 200 NF = 1, NJMAX
DO 200 NG = 1, NJMAX

(Q0e0»0.0)
(Q«02,0-.0)
€0+0500)
(C=0,0.0)

CDI1(NJ,SNP,NQ)
CD2(NJ»NF2NG)
CL3(NJs NP NE)
CD4a(NJsNFs NQ)

I

DO 210 J = 1,
CALL AZIMTLC(JsNP,NE,NJ» RESULT)
AZ1C(J) = RESULT

TANINT(J)Y = CMFLXCRESULTs 002
CONTINUE

4]

IF CAZIC1)) 220, 225, 220
IF CAZI1(2)) 220, 200, 220

IF (KN «EGs 0) GO TO 222
L1 = MC(NP)
L2 = MINQ)
L3 = M(NJ)




(2 NsNoNeXe]

222

244

242

240

250
200

402

Al = SGP)
A2 = SI(NQ)
A3 = S(NJ)
GO TO 244

MP = M(NP) + |
ME@ = MINQ) + |}
MJ = MINJ) ¢+ 1)

RADINTC1) = CMPLX(BESI1C(MF,MQsMJII»0.0)
RALINT(2) = CMPLX(BESZ2(MF:MQ,MJ)50.0)
RADINT(3) = CMPLX(BES3(MP,MQsMJI)» 00X

DO 240 J = 1, 3
1F (KN «EQ. 0) GO TO 242

CALL RADIAL (J,L1,L2,L3,A15A2,A3,RESULT)

RADINT(J) = CMFLXCRESULT» 0.0

DO 240 NC = 1,4

CALL AX1ALZ (JsNCsNF»NQsNJ»ZE»CRSLT)

AXINT(NC»J) = CHSLT
CONTINUE

T1

DO 250 J = 1.4

Gl % CSSQ(NF) * AXINT(J» 1)

T2 = Gl * AXINT(J»3?

Dl = AXINT(J» 1) * TANINT(1) * RALINTC(3)
D2 = AXINT(Js»1) * TANINT(2) * RADINT(2)
D3 = AXINT(J,2) * TANINTC1) * RALDINTC(1)

L4 = (T2 - Tl) * TANINTC(}1) =*
DCOEF = (0+550-0) * (L1 + L2
IF (J «E€. 1) CDI(NJ,NF,NG)
IF (J «EQe 2) CL2(NJ»NFsNE?
IF (J +EQe¢ 3) CD3C(NJ»NF2NQ)
IF (J «EQe 4) CD4(NJLNFLNG)
CONTINUE

CONTINUE

RADINT( 1)

RN+

D3 + DB4)s/CNORMINJ)
(1+0s-1.0) % BCOEF
(1051+0) * DCOEF
(1¢021+0) * LCOFEF
(1+0,-1.0) * DCOEF
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CALCULATE COEFFICIENTS FOR EQUIVALENT hEAL SYSTEM.

PO 350 NJ = 1, NJEAX
NEWJ = (2 * NJY - 1
NEWJ1l = NEWJ + 1

DO 350 NP = 1. NJMAX
NEWP = (2 = NF) - 1|
NEWPl = NEWF + 1

COEFFICIENTS OF LINEAR TEHRMS.

CCR = REAL(CCC1,NJ,NP))
CCI = AIMAG(CC(1,NJsNP)D
Cl(NEWJsNEWF) = CCR
Cl1(NEVJLNEWFL) = =CCl
CIC(NEWJ1.NEWF) = CCI
CI(NEWJ1,NEWF1) = CCR
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s NeNoNasNoNel

ano

360

370
350

405
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PC 360 KC = 1, NCFMI

CCR = REAL(CC(KC+1,NJsNF))
CCI = AIMAGCCCC(KC+ 1,NJsNF))
C(KCoNEWJSNEWF) = CCEk
C(KCoNEWJLNEKFL1) = =-CCI
C(KCoNEWJI1,NEWF) = CCI
C(KC»NEWJ1,NEWF1) = CCEk
CONTINUE

COEFFICIENTS OF NONLINEAK TERMS.
IF (NGNLIN «E&. 0) GC TO 350

DO 370 NO = 1, NJMAX

NEWQ = (2 * NQ) - 1

NEWE@]1 = NEWC + )

CDIR = REAL(CLI1(NJ.NF,NQ))

CLII = AIMAGC(CDI(NJSNF,N@))

CL2F = REALC(CL2(NJ»NF,NG))

Cl2I = AIMAG(CD2(NJ,NF,NE))
CL3R = REALC(CL3(NJ»NF»NG))
CL31 = AIMAG(CL3I(NJ,NF,NE))
CL4F = REALC(CD4(NJLNFsNG))
CL4al = AIMAGCCLACNJSNFLNQ))

D(NEWJ>NEWF»NEWE) = CDIR + CD2F + CD3k + CL4R
D(NEwJ. NEWF,NEVGQ1) = -CLC1I + Cp2I - CL31 + CLal
D(NEVWJSNEVF1,NEW@) = -CD11 -~ CL21I + CD31 + Cr4l
D(NEWJ,NEWF1.NEWG1) = -CLlER + CL2k + CL3k - CLah
DCNEWJ1,NEWF»NEWG) = CLII + CcL2l + CL3I + CrL4l
DCNEWJ 1, NEWF,NEW@L1) = CDIK - CL2F + CD3K - CL4ER
D(NEWJ1sNEWP1,NEWG) = CL1k + CLD2Kk - CL3K - CL4R
DCNEWJ1I,NEWFI1,NEWE]1) = -CDI1 + CCp21 + CD31 - CLel
CONTINUE

CONTINUE
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COMFUTE COERFFICIENTS FOR THE EQUATIONS WHICH ARE LECOUFLEL
IN THE SECOND DERIVATIVES.

L0 405 KC = 1» NCOEFF

KMAXC(KC) = O

CONTINUE

CALCULATE INVEKRSE OF THE MATRIX Cl(l,J).
JMAX = NJMAX

NJMAX = 2 * NJMAX

Vil = } .
CALL GJRCC1,MX2,MX2,NJIMAX, 0s £500JC» V)

USE INVERSE TO CALCULATE DECOUFLED COEFFICIENTS.
PO 410 NF = 1, NJMAX

LINEAR COEFFICIENTS.
DO 420 NJ = 1, NJMAX
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DO 420 KC = 1, NCFM]

TSC(KCoNJ) = 0.0

DO 420 K = 1, NJMAX

TSCKCaNJ) = TS(HKC,NJ) + ClI(NJ»K) * CC(KC,oK,NF)
420 CONTINUE

DO 430 NJ = 1, NJMAX

DO 425 KC = 1, 3

C(KCsNJLNF) = TS(KC,NJ)

ABSVAL = ABS(C(KC,NJ,NP))

1F (ABSVAL +GE. SM1) KMAX(KC) = KMAX(KC) + 1
42% CONTINUE .

IF (NOZNL1 «NE. 1) GO TO 430

CCHsNJLNF) = TS(4,NJ)

ABSVAL = ABSC(C(4,NJsNF))

IF (ABSUVAL GEe. SM3) KMAXCA) = KMAX(4) + }
430 CONTINUE

NONLINEAR CCEFFICIENTS.

IF (NONLIN <EQe 0> GO TO 410

DO 415 NQ = 1, NJMAX

DO 440 NJ = 1, NJMAX

TSCI(NJ) = 0.0

DO 440 K = 1, NJIMAX

TSQI(NJ) = TSEI(NJ) + Cl(NJ,»K) * L(K»,NF,NQ)
440 CONTINUE

DO 445 NJ = 1, NJIMAX

DI(NJ,NF,NQ) = TSOINJ)

ABSVAL = ARS(DI(NJsNP,NG))

IF (ABSVAL +CGEe SM2) KMAXC(NCOEFF) = KMAX(NCOEFF) + 1
445 CONTINUE
415 CONTINUE

410 CONTINUE
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OUTPUT.

IF (NOUT «GEe. 2) GO TO 455

PRINTED GUTFUT :
¥RITE (66,6001 (TITLE(I)» 1 = 1, 72)
WRITE (626002) CANMA, UE»KLD,ZCOMB
IF (NLECPS «EGe 0) WRITE (6,6020)
IF (WNDROFS «EQ. 1) WRITE (6,6021)
IF (NOZZLE <Efle 0) VWRITE (62,6012)
IF (NOZNL1 «EQ« 1> GO TO 760
WEI TE (6.6022)
WRITE (6,6004)
DO 310 J = 1, JMAX
WRITE (6,6003) NAMECJ)» Jo LCJ)s MCJIs NCJI» NSCJ)»
1 S€J)» SJGJI» EBE(JI» YNOZ(J)
310 CONTINUE
GO TO 765
760 CONTINUE
WRITE (6,6023)

89




WRITE (6,6025)

LO 770 Jd = 1, JMAX
NAMEC(J)» Js LCJIs MCJI)s NCGJIs NSCJI)»
SCJYs SJCJIs BCJ)s YNOZUCJI)s» GNOZ LD

WVRITE (6,6026)
1

770 CONTINUE

765 CONTINUE
I1F (NONLIN «.EQ.

C OUTFUT CF LINEA
LO 320 KC = 1,
IF (KC <EQe 1)
IF (KC +ECe 2)
IF (KC +EQ. 3)
IF (KC «EQ. 4)
WRITE (6,6008)
WRITE (6,6014)
LO 320 NJ = 1,
WEITE (6,6009)
320 CONTINUE

C OUTPUT OF NONLI
IF (NONLIN +EGCe.
DO 400 NJ = 1,
WREITE (6,6010)
WRITE (6,6011)
VRITE (626015)
PG 400 NF = 1,
WRITE (6,6009)
400 CONTINUE

452 1F (NOUT «EQ. O

0) WRITE (6,6013)

R COEFFICIENTS.
NCFM 1
WRITE ¢(6,6005)
WRITE €(6,6006)
wRITE (6,6007)
WRITE (6,6024)
(Jds J = 1s NJMAX)

NJMAX
NJs, C(CC(KC,NJ:NP), NP = 1, NJMAX)

NEAF COEFFICIENTS.
0) GO 710 452
NJMAX
NJ
(Js J = 1, NJIMAX)

NJMAX

NFs (DINJoNF2N@)» NE = 1, NJIMAX)

GG TO 4

455 IF (NOUT +EQ. 3) GO TO 480

o0o0

WRITE (9,7001)

WRITE COEFFICIENTS CN FASTRANL FILE.

GaMMA, UE, ZE, ZCOMB, NDROPS, NJME&X, NOZNL 1

DO 450 J = 1, JMAX

WRITE (9,7002)

Jo LCJY» MCGJ)s NCGJIs NSCGJIs SCJ)»

1 NANMECJ)

450 CONTINUE

PO 457 Jd = 1, JMAX

WRITE (9,7006)
457 CONTINUE

J» YNCGZ(J)s» BCGJDD

IF (NOZNL1 «NE« 1) GO TO 720
IO 730 J = 1, JMAX

WRITE (89,7007
730 CONTINUE
720 CONTINUE

PO 460 KC = 1,
WRITE (9,7003)
LO 460 NJ = |1,
DO 4€¢0 NP = 1.

.90

Js» GNOZCJ)

3
KMAXC(KC)
NJMAX
NJIMAX

SJdd),
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460

462
464

470

480

ABSVAL = ABS(C(KC,NJsNF))
IF (ABSVAL «+GE« SM1) WRITE €(9,7004) NJ,NPs C(KC,NJ,NF)

CONTINUE A

IF (NOZNL 1 «NE+ 1> GO TO 464

WRITE (9,7003) KMAX(4)

DO 462 NJ = 1, NJUMAX

DO 462 NF = 1, NJMAX

ABSVAL = ABS(CC4,NJsNP)) ) :

1F (ABSVAL «GE« SM3) WRITE (9,7004) NJs NFs CC4sNJSNF)
CONTINUE

CONTINUE

WRITE (9,7003) KMAX(NCOEFF)

IF (NONLIN E@. 0) GO TO 4

DO 470 NJ = 1, NJMAX

DO 470 NP = 1, NJMAX

DO 470 NQ = 1, NJMAX

ABSVAL = ABSC(DI(NJsNP,NQ))

IF C(AESVAL +GE. SM2) WRITE (9,700S)NJ, NF» NG, D(NJ>NF,NQ)
CONTINUE

GO TO 4

PUNCHED CARD OUTPUT

FUNCH 7001 GANMMA, UEs ZE, ZCOMBs NDECFS, NJMAXs NOZNL1

DO 482 J = 1, JMAX
PUNCH 7002 J»s LCJ)s M(J)» NCJ)» NSUGJ)» 50J)s SJCJI

1 NAKECJ)

482

484

CONTINUE

DO 484 J = lsJMAX

PUNCH 7006 J, YNOZC(J), BCJ)
CONTINUE

IF (NOZNL1 «NE. 1) GO TO 740

DO 750 J = 1, JMAX

750
740

486

FUNCH 7007 J»GNOZ(J)
CONTINUE -
CONTINUE

DO 486 KC = 1, 3
- FPUNCH 7003 KMAXI(KC)

DO 486 NJ = 1, NJMAX

L0 486 NF = 1, NJMAX

ABSVAL = ABRS(CI{KCsNJ»NF))

IF CABSVAL «GEe SNM1) PUNCH 7004 NJs NPy CLKCsNJ:.NP)

CONTINUE

IF (NOZNL]1 oNEe 1) GO TO 430

FUNCH 7003 KMAX(4)

DO 492 NJ = 1, NJMAX

LG 492 NP = 1, RNJdMaX

ABSUAL = ABS(CC(4,NJsNF))

IF (ABSVAL +GEs SM3) FUNCH 7004 NJds NFs» CC4sNJ,NP)
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492
490

CONTINUE
CONTINUE

PUNCH 7003 KMAX (NCOEFF)

IF (NONLIN

D0 488
IO 488
DO 488
ABSVAL

1F (ABSVAL «GEe SM2) FUNCH 7005 NJs» NFs» NQ
CONTINUE
GO TO 4

488

«EQs O0) GO TO 4
NJ = 1, NJMAX

NF = 1, NJMAX

NG = 1, NJMAX

& ABS(D(NJsNF,NE&) D

ERROR EXIT

500
510

1F Jcein
JCC1) = ABS(JC(1))

510, 510, 520

WVRITE (6,6017) JC(1)

GO T0 4

VRITE (6,6018) JC(1)
GO TO 4

CONTINUE

520

600

WVEITE (6.,6027)

D(Nd:&P:NQ)
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FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
1
6003 FORMAT
6004 FOERMAT
1
6005 FORMAT
6006 FORMAT
1
6007 FORMAT
1
6008 FORMAT
6009 FORMAT
€010 FORMAT
1
FORMAT
FOKMAT
FCEMAT
FORMAT
FORMAT
FORMAT
FOFMAT
FORMAT

5000
5001
5002
5003
5004
5005
6001
6002

€011}
6012
6013
€014
6015
6017
6018
6020
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SPECIFICATICNS.
(72A1).

(4F 10050215
(S15,1XsA8)

(15, 2F10.0)

(61 S)

(2F10.0)

ClH1s 1X»72AY77)

(2Xs BHGAMMA = ,FSe2,
SX,BHZCOME = ,FS5.2/
(2X, A4, 5] Ss 4F 10a 5, 2F

C2X/77772X, 29HNAME

SXs SHUE =
)

115/7)

J L

2F5¢255X,6HL/D =

M N

2FB eSS,

NSs 7X» SHSMN. 3X»

THIMCSMNDY » TXs BHEFS» 720 SBHETAL 8X 5 ZHYFS 8Xs EHYI /7))

ClH1, 45H
C1H1l, 44H DECOUFLELDL
C(1H1,39H
20H DERIVATIVE GF
(7X, lHFs 16291 12)

CECOUFLEL COEFFICIENT OF B(F)!@

CClsUsFYI27)

CGEFFICIENT OF THE DERIVATIVE OF, |
6H BUP)2,S5X,8HC(EsJsFI///)

(2X//72X21323%Xs10F126)

(lH1,42H
19H IN EQUATICN
(7Xs 1HG» 18,9112)

(22X, 19HGUASI~STLALY NOZZLEZ)
(2X/72Xs 24HELINEAR CCEFFICIENTS ONLYD

(4Xs 1HI)
(4% THF)

(1H1,31H OVEFFLOW LETECTEL.

(1H1,34H SINGULAERITY

DETECTELS

LAST RGOWw =

DECOUFLEL COEFFICIENT GF THE KRETARLEL,
E(F)1, SX,8HC(3,J2P) /77D

IECOUFLED COEFFICIENT OF E(F) * DE(@ /DT,
FGR B(sl2s1H)/2/77).

LAET hOW =

(2X»s"LEGFLFT MOMENTUM SOUFRCE NECGLECTEL'/)

2 152

2150




6021 FORMAT
6022 FORMAT
6023 FOFMAT
6024 FORMAT
1
6025 FORMAT
1
2
6026 FORMAT
6027 FORMAT
7001 FORMAT
7002 FORMAT
7003 FOEMAT
7004 FOEMAT
7005 FORMAT
7006 FORMAT
7007 FORMAT
END

(2X,» "CROFLET MOMENTUM SOURCE INCLULED™/)
(2X,"NOZZLE -NONLINEARI TIES NEGLEGTEE*"/)
(2X»"NOZZLE NCGNLINEARITIES INCLULERL*/)
DECOUFLEL COEFFICIENT DUE TO NOZZLE"™,
" NONLINEARITIESI®s 5Xo8HCCHsJsFYrr77)
C2X/77772Xs 29HNANE
THIMCEMNI » TX» 3HEFSs 7X2 SHETA B8X» 2HY R2s 8Xs 2HY L »
8Xs 2HGR, 8X» 2HGL //)

(2X2R4, 515, 4F 105, 4F1157)

(4F10+5,319)
(S15,2F10+5, 1Xo A8)

(2152F15.6)
(315 F15.€)
(15,4F10.5)
(15,2F10.5)

NSs» 7%Xs 3HSMN» 3X»

93




oo 00Oan

45

160

.94

SUBROUTINE EIGUAL(Ls SMN,GAMMASZEsYAMFL,YFHASEsRESULTY .

COMFLEX RESULT
CoOMMON ~sELK1/ GSQ, APSO, ALPET, SMNSO

***********l********************************f**#******************

_THIS SUBRGUTINE COMFUTES THE COMFLEX AXIAL ACOUSTIC EIGENVALUES

FOR A CYLINDRICAL CHAMBER wITH A NOZZLE AND STORES THEM IN
RESULTe. ' -
THE EIGENVALUES ARE COMFUTEL BY MEANS OF NEWTONS METHOE-

THE INPUT PARAMETERS ARE AS FOLLOWS

L 1S THE AXIAL MODE NUMBER. .
SMN IS THE DIMENSIONLESS ACOUSTIC FEREGQUENCY .
GAMMA 1S THE SPECIFIC HEAT KATIO. '

ZE 1S THE LENGTH~TO-RADIUS KATIO.

YAVFL 1S5S THE NOZZLE AMFLITUDE FACTOFR.

YFHASE IS THE NOZZLE PHASE SHIFT IN LDEGEREES.
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Pl = 3.1415927
ERR = 0.0000001

IF (YAMFL) 5S,€0.,5

CALCULATE CONSTANTS.

FHASE = YFHASE = FI/180.0

ALFHA = YAMFL * COS(FHASE)

BETA = YAMFL * SINCFHASE)

GS@ = GAMMA * GAMMA

ABSQ = C(ALFHA * ALPHA) - (BETA * BETA}
ALBET = ALFHA * BETA

SMNSG = SN * SMN

ASSIGN INITIAL GUESS FOR EIGENVALDE.

IF (L «E@e O0) GC TO 45

KL = L

PHI = Fl/2.0 + FHASE

XM = KL * FPI/ZE

A = YAMFL/ZE

X0 = XM + A*xCOS(PHI)

YO = A*SINCFHI)

GO 10 4%

CONTINUE

YFHI = YFHASE

IF (YFHASE +GTe 180) YFHI = YFHASE - 180.
IF (YPHASE «LTe 0) YFHI = YPHASE + 180«
IF (YAMPL LT« 0.1) GO TC 110

IF (YAMPL «LTe Qeé&)d GO 70 120

IF (YAMFL LT« 0+8) GO TO 150

I1F CYANMPL «LTe 1e2) GO TO 160

X0 = 1.0 * YAMEL

GO TO 170

X0 = 1425 * YAMFL
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170 IF (YFHI .LEe 30.) TANFSI = ~0.4 ok
IF (YPHI+GT+30« «ANDe YFHI.LE.60+) TANFSI = =0.2
IF C(YFHI «GT+60« sANDe YFHI+LE.120.) TANFSI = 0.0
IF (YPHI+GTe120« +ANDe YPHI<LE«150¢) TANFSI = 0.2
IF (YFHI +GTe. 150¢) TANFSI = 0.4
GO TO 140

150 X0 = 240 * YAMFL
IF (YFHI «LEe 30+) TANFSI ® =0.6 ;
IF (YPHI.GT-30s sANDe. YFHI.LE«60+) TANFSI = =0.3
IF CYFHI<GT+60e «ANDe YPHI.LE.120¢) TANESI = 0.0
IF (YFHI<GT-120+ «AND. YFHI.LE.150+) TANPSI = 03
IF (YFHI «GTe 150+) TANPSI = 0e6
GO TO 140

110 X0 = 5. * YAMFL
GO TO 130

120 X0 = 3« * YAMFL

130 CONTINUE
IF (YPHI +LEe. 30e¢) TANFSI = =075
IF (YFHI «GTe30+ «ANDe YFHILE«60¢) TANFSI = =D.4
IF (YFHI.GT+60¢ «ANDe YFHI+LEs120+) TANFSI = 0.0
IF (YPHI «GT+120+ «AND. YFHI.LE«150e¢) TANPSI = 0.4
IF (YPHI +GTe 150.) TANFSI = 075

140 CONTINUE
YO = XO * TANFSI

I TERATION USING NEWTONS METHOD FOK A SYSTEM OF TwO EGQUATIONS
IN TWO UNKNOWNSe. '

47 L1 = O
X = X0
Y = YO

80 CALL FCNSCXsYs»ZEsFsGsFXsFYsGXsGY)
IF (L1 +EG. 40> GO TO S50
RJFG = (FX * GY) = (GX = FY)
1F (RJFG) 20, 30s 20

20 DELTAX = (=F * GY + G * FY)/RJFG
DELTAY = (<6 * FX + F % GX)/RJFG
Ll = L1 + 1
X = X + DELTAX
Y = Y + DELTAY

TEST FOR CONVERGENCE. :
IF CABSC(LDELTAX) «GE«. EREK <OR. ABS(DELTAY) +GE. ERR) GO TO 40

GO TO 10

WAHNING MESSAGES
30 WRITE (656005)
GO TO 10
50 WRITE (6,6006)
GG TO 10

CASE OF HARD WALL (YAMFL = 0).
60 RL = L
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C
C

X = FL * PI/ZE

Y = 0.0

10 RESULT

FORMAT

6005 FORMAT
6006 FORMAT

%

RETURN
END

= CMFLX(X,»Y)

SPECIFICATIONS.
(2X772Xs 16HJACOEIAN 15 ZERO//)
(2X//72%Xs 3SHFAILED TO CONVERGE IN 40 ITERATIONS//)




SUBROUTINE FCNS(XsYsZEsF»GsFX»FYs»G6X»GY)

;| XY = X ®* Y

ﬁ Fl1 = (ABSQ * SMNXY) ~ (4.0 * ALBET * XY)

: : F2 = (ALBET * SMNXY) + (ABS@ * XY)
Gl = (ABSQ * SMNXY) + (4.0 * ALBET * XY)
FX1 = (20 % X * ABS5SQ) - (4.0 * ALBET * Y)
FX2 = (2.0 * X % ALBET) + (ABSQ * Y)
FY1 = (=2.0 % Y * ABSQ) ~ (4.0 * ALBET * X)
FY2 = (~2+0 ®# Y * ALBET) + (ABSG * X)

c
c THIS SUBROUTINE COMPUTES THE FUNCTIONS F(X»Y) AND G(X»Y)
c AND THEIR PARTIAL DERIVATIVES WITH RESPECT TO X AND Y.
c

COMMON /BELK1/ GSQ, ABSQs ALBETs SMNS@
Cc .
c COMPUTE THE TRIGONGMETRIC FUNCTIONS, THE HYPERBOLIC FUNCTIONS
c AND THEIR SQUARES. ,
c

I =1

ARGX = ZE * X

ARGY = ZE * Y

10 SX = SINCARGX)

CX = COSCARGX)

SHY = SINH(ARGY)

CHY = CDSHCARGY)

IF ¢1 .EQ. 2) GO TO 20

SXS@ = SX * SX

CXSQ = CX * CX

SHYSQ = SHY * SHY

CHYSQ = CHY * CHY

ARGX = 2.0 * ARGX

ARGY = 2.0 * ARGY

I =2

GO TO 10
c
c COMPUTE TRANSCENDENTAL FUNCTIONS AND THEIR DERIVATIVES
c

20 FF = (SXSQ * CHYSQ) - (CXSQ * SHYSQ)

6G = (CXSQ * CHYS@) - (SXS@ * SHYSQ)

HH = 0.25 * SX * SHY

FFX = ZE * SX * CHY

GGY = ZE * CX * SHY

FFY = -GGY

GGX = =-FFX

HHX = Q.5 * GGY

HHY = 05 * FFX
c
c COMPUTE FACTORS

XYSQ = (X * X) = (Y * Y)

SMNXY = SMNSQ@ + XYS@

il
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:F

1

GX1
GY1

(2.0 * X ¥ ABSA) + (4.0 * ALBET * Y)
(=20 * Y *¥ ABSG) + (4.0 ¥ ALBET * X)

nn

COMPUTE F(XsY) AND G(X»Y)

= (XYSQ ¥ FF) =~ (4.0 *¥ XY * HH)
+ GS@ # ((Fl % GG) + (4.0 * F2 * HH))
G = (XYSQ@ * HH) + (XY * FF)

+ GSQ * ((F2 * GG) - (Gl * HH))I
COMPUTE THE PARTIAL DERIVATIVES OF F AND G

FX = (2.0 * X % FF) + (XY5Q * FFX)
=40 % (Y % HH) + (XY * HHX)J)

1
2 + GSQ * ((FX1! * GG) + (F1 * GGX)
3

+ (40 * FX2 * HH) + (4.0 * F2 * HHX))
FY = (~2.0 *¥ Y % FF) + (XYS5Q % FFY)
~4«0 % ((X * HH) + (XY * HHY)?)

1
2 4+ GS@ * ((FYl * GG) + (Fl * GGY)
3

2
3

+ (4.0 % FYZ2 ¥ HH) + (4.0 * F2 * HHY))
GX = (2.0 * X % HH) + (XYSQ * HHX)
+ (Y * FF) + (XY *x FFX)
+ GSQ * ((FX2 * GG)Y + (F2 * GGX)
=(GX1 * HH) - (Gl * HHX))
GY = (=240 * Y ¥ HH) + (XYS5@ * HHY)
+ (X *¥ FF) + (XY * FFY)
+ G5Q@ * ((Fr2 #* GG) + (F2 * GGY)
-(GY1 * HH) <~ (Gl * HHY))
RETUERN
END
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SUBROUTINE AXIAL1 (NOPT:NP:NJJUE:ZE:ZCOME:ﬁESULT)

THIS SUBROUTINE CALCULATES THF INTEGRAL OVER THE INTERUVAL
(0»ZE) OF THE FOLLOWING FUNCTIONS ACCORLING TG THE VALUE
OF NOPT

‘NOFT = 1} Z{NF) * ZC(I(NJ)

NOFT = 2 ZFF(NF) ® ZC(NJ)
NOFPT = 3 UF * Z(NF) * ZC(NJ)
NOFT = & U * ZF(NF) * ZC(ND)

IN THE ABOVE EQUATIONS: .
Z(NF) IS THE AXIAL ACOUSTIC EICENFUNCTION OF INDEX NF.

Z(NJY 1S THF AXIAL ACOUSTIC EIGENFUNCTION OF INDEX NJe

ZC 1S THE COMFLEX CONJUGATE OF THE AXIAL EIGENFUNCTION.

ZF AND ZFF ARE THE FIRST AND SECONL DEKRIVATIVES OF THE

AXIAL EIGENFUNCTIONS HESPECTIVELY.

U IS THE STEADY STATE VELOCITY DISTRIBUTION AND UF 1S ITS
AX]I AL DERIVATIVE.

THE VELOCITY DISTRIBUTION IS COMFUTED BY THE SUBROUTINE UBAke

PARAMETER MX = 5
REAL MAG
COMFLEX Cl, CZE, BP, BJ, Tl, T2, CHs Fl, F&2s F3, CZs» AKG,

1 Sls S8, S3, RESULT, FUWNCTC(500),B(MX)

20
2s
30
3s

40

45

COMMON B

Cl = €0«0s1e0)

CZE = CMFLX(ZE, Q-0
BP = B(NF)

BJ = CONJGC(B(NJ))

IF (NOFT +GT. 2) GO TO SO
CALCULATE INTEGRALS BY MEANS OF ANALYTICAL EXFRESSIONS FOR
NOFT = 1 AND NOFT = 2.

ARG = (BF + BJ) % CI

MAG = CABSCAKG)

IF (MAG) 20, 255 20

Tl = CSINHCARG*CZE)/ARG

GO TO 20

T1 = CZE

ARG = (BF - BJ) * CI

MAG = CABSCARG)

IF (MAG) 35, 4Cs» 35

T2 = CSINHCARG*CZE)/ARG

GO TO 45

T2 = CZE

RESULT = (Tl + T2) * (0e5:000)

IF (NOPT «EQ. 2) RESULT = =B(NF) % B(NF) * RESULT
GO TO 100 ‘ :
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NUMERICAL EVALUATION OF INTEGRALS FOR NOPT = 3 AND NOPT = 4.

aOon

COMPUTE STEP SIZE FOR SIMPSON INTEGRATION.
50 N = 50 , : .

RN = N ' :

RESULT = (0+050.03

IC = ZCOMB

IC = 2 - IC

W

DO 90 J = 1, IC
IF ¢J «EQ« 1)

H ZCOMB * ZE/BN
IF (J «EQ. 2) H

A

A

(1.0 - ZCOMB) * ZE/RN
0 = 0.0
0 = ZCOMB * ZE

ftu

IF (J «+EQ. 1)
IF (J <EQ. .2)
NP1 = N + 1
CH = CMPLX(CH,0.0)

c COMPUTE INTEGRANDS. ..
DO 60 I = 1, NPI S
STEP = 1 - 1
Z = (STEP * HY + 20 :
IF (CI«EQ.1) «ANDs (J+EQe2)) Z = Z + H/100.0
IF (NOPT .EQe 3) CALL UBAR(Z2,UE,ZE,ZCOMB»Z>F)
IF C(NOPT .EQ. 4) CALL UBAR(1s UEsZE,ZCOMB»ZsF)
Fl CMPLXCF2040) ‘ :
cz CMPLX(Z50.0)
ARG = CI #* BP
IF (NOPT .EQe 3) F2
IF (NOPT «EQe. 4) F2
ARG = Cl #* BJ
F3 = CCOSHCARG*CZ)
FUNCTC1) = Fl * F2 % F3
60 CONTINUE

CCOSHCARG*CZ)
ARG * CSINH(ARG*CZ)

nn

C . PERFORM SIMPSON INTEGRATION.
NM1l = N - 1
S1 FUNCT(1) + FUNCT(NP1)
s2 (0+0+0.0)
s3 C0.050+0)
DO 70 1 = 2, N» 2
52 = S2 + FUNCTCI)
70 CONTINUE
DO 80 I = 3, NMl, 2
53 = S$3 + FUNCTCI)
80 CONTINUE
RESULT = RESULT + L
1 CH * (S] + (4¢050:0)%52 4+ (2.050+0)%53)/¢3.0500)
90 CONTINUE S

nn

n

c
100 CONTINUE
RETURN
END
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SUBROUTINE AXIALQ(NOFT:NCDNJ:NP;NQ:NJ:ZE)%EgULT)

THIS SUBRKOUTINE CALCULATES THE INTEGRAL OVEK THE INTERVAL
(0»ZE) OF THE FOLLOWING FUNCTIONS ACCORDING TO THE VALUES
OF NOFT A&ND NCONJ

FOR NCONJ = 1 AND -

NOPT = | ZCNE) * Z(NQ@) #* ZC(NJ)
NOPT = 2 ZP(NF) * ZF(NG) * ZC(ND)
NOFT = 3 ZFP(NF) * Z(NQ) #* ZC(NJ)
FOR NCONJ = 2 AND

NOPT = 1} Z(NF) * ZC(N@ #* ZC(NJ)
NOPT = 2 ZP(NP) * ZPC(NQ@) * ZC(NJ)
NOPT = 3 ZPPC(NP) * ZCING) * ZC(NJ)
FOR NCONJ = 3 AND

NOPT = 1 ZCCNP) #* Z(NQ) * ZCCND)
NOPT = 2 ZPC(NF) * ZF(NG) * ZC(NJD)
NOPT = 3 ZFPCI(NP) * ZI(NE)Y * ZCI(NJD)

FOR NCONJ = 4 AND

NOPT = 1 ZC(NP) * ZC(NG) * ZC(ND)
NOPT = 2 ZPC(NF) = ZPC(NG) *= ZC(NJ)
NOFT = 3 ZFPC(KF) * ZC(NQ) * ZCI(NJ)

IN THE ABOVE EQUATICNS:

ZC(NP)» Z(NQ)s AND Z(NJ) ARE THE AXIAL ACOUSTIC EIGENFUNCTIONS
AND NP» NG» AND NJ ARE THEIR INDICES.

ZF IS THE FIRST DERIVATIVE OF THE AXIAL EIGENFUNCTIONS.

ZFP 1S THE SECOND DERIVATIVE OF THE AXIAL EIGENFUNCTIONS.

ZC AND ZFC ARE COMFLEX CONJUGATES OF Z AND ZF RESFECTIVELY.

PARAMETER MX = §

REAL MAG

COMPLEX Cls CFs CZF» EF» BGQ» BJs» SW¥s KESULT»
1 ARG(4), FUNCTC(4), B(MX)

COMMON B

CALCULATE INTEGRALS BY MEANS OF ANALYTICAL EXFRESSIONS.
Cl = (00,10

CF = (02550.0)

CZE = CMFLX(ZE,»0.0)

BP = B(NPE)
BQ = B(NQ)
BJ = CONJG(B(NJ))

IF ((NCONJ<EGQeZ2) +0Re (NCONJeEQe4)) EQ = CONJG(E®)
IF (NCONJ +GTe. 2) BF = CONJG(BEF)
ARG(1) = (BF + BQ + BJ) * (Il
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15
10

30
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ARG(2) = (BP + BQ - BJ) % CI

ARG(C(3) (BP - BG@ + BJ) x CI

ARG(4) (BP - BGQ - BJ) * CI

DO 10 J = 1,4

MAG = CABS(CARG(J)?

IF (MAG) 12, 15, 12

FUNCT(J) = CSINHCARG(JI*CZE)ZARG(J)

GO TO 10 .

FUNCT(J) = CZE

CONTINUE

IF (NOPT -.EQ. 2> GO TO 30 .

SuM = FUNCTC1) + FUNCT(2) + FUNCT(3) + FUNCT(&)
RESULT = CF * SUM o _ ,

IF (NOFT .EQe 3) RESULT = ~BP % BP % RESULT
GO TO 50

SUM = FUNCT(1) + FUNCT(2) - FUNCT(3) - FUNCTC4>
RESULT = ~CF * BP * BR * S5UM

CONTINUE

RETURN

END

LI ]
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SUBROUTINE AZIMTLC(NOPT,NP>NGsNJ» RESULT)

PARAMETER MX = §
DIMENSION NFCNC(3)s» SG(2)
COMMON /BLKZ2/ MIMXIs NSIMX)

******#*#**t#*#**##***#****#***#********************##?*!!*‘###***

THI S SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
C0» 2%PI) OF THE FOLLOWING FUNCTIONS ACCORDING TO THE VALUE
OF NOPT ‘

NOFT = 1 THCNF) * TH(NG) #* TH(NJ)
NOPT = 2 THP(NF) #* THFINGQ) * TH(NJ)

IN THE ABOVE EQUATIONS:

TH(NF)» TH(NG)» AND TH(NJ) ARE THE TANGENTIAL EICENFUNCTIONS
AND NF» NQs AND NJ ARE THEIR INLICESe

THP 1S THE DERIVATIVE OF THE TANGENTIAL EIGENFUNCTIONS-

IF NS = 1 TH = SIN(M*THETA)
IF NS = 2 TH = COS(M*THETA)

dhkkgk Rk kR kR ko kR ko ko k kR Rk ke k kR kR ko k%

 RESULT = 0.0
FACTOR = 1.0
Pl = 3.1415927

DISTINGUISH BETWEEN SINES AND COSINES.
L0 10 K1 = 1, 3
NFCN(K1) = 1
10 CONTINUE
IF (NS(NJ)«EG2) NFCN(3) = 2
1F (NOFT «EG. 2) GO TO 20

IF (NS(NF)+EG+2) NFCN(1) = 2
IF (NS(N@)eEB«2) NFCN(2) = 2
GO TO 30

20 IF (NS(NP).EQe¢1) NFCNC)) = 2
IF (NSC(NOY-EQe1) NFCN(2) = 2

DO 40 K1 = 1,2

"S8G(K1) = 1.0 : )

IF (NFCNCK1) +EGe 1) SG(K1) = =~].0
40 CONTINUE

FACTOH = SGC(1) * SG(2) * M(NP) * MING)

30 NSUM = O

IO 50 Kl = 1» 3

NSUM = NSWM + NFCNC(K1)
50 CONTINUE
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70

72

T4

76

78

80

90

101

102

103

IF C(NSUM +EQ. 3)
IF (NSUM «EQ. 4
IF (NSUM <EQ. 6)

«0R.
GO TO 70
GO TO 80

KCGPT = 2
IF (NFCN(1)
GO TO 74
LL MONP)
MM MINQ)
NN MIND
GO TO 90
IF (NFCN(2)
GO TO 78
LL = M(N&
MM = M(NP)
NN =

GO -TO 90 -
LL =

MM = MINP)
NN =

GO TO 90

«EQ. -2) GO TO 72

«EQe 2> GO TO 76

MM = MINQ)
NN =

COMPUTE VALUES OF THE INTEGERALS.

IF ((LL.NE«0O) +ANDe (MMeNE«O) «AND. (NNeNE«0>)
GO TO 103 ‘.

LM = LL + MM

LN = LL + NN

MN = MM + NN

IF C(NN-EQ.LM) «0OR-. (MM<EQ.LN)) RESULT = Pl
IF (LL «EQ. MN> GO TO 102 o
GO To 104

IF (KOPT .EQe 1) RESULT = PI/2.0

IF (KOPT +EQe 2) RESULT = -Fl/2.0

GO TO 104 :

IF (C(LL+EQe0) «ANDs (MM«EQe(0) <ANDs (NN.EQ.0)D
IF ((KOPT«EQ+s1) «ANDe (NN<EQ+0) +AND.

IF ((KOPT«EQe1l) «ANDs (MM<EQ+0) -AND.

"IF ((LL +EQe¢ 0) «ANDe. (MM +EQe¢ NN))

105
104

60

"10k

GO TO 104

IF (KOPT «E@- 1)
CONTINUE

RESULT = FACTOR * RESULT
CONTINUE

RETURN

END

RESULT = 2.0 * PI

(NSUM «Ef8. 5)2

RESULT =

(LL+EQeMM)>) RESIWLT
(LL+EQ.NN)) RESULT

GO TO 60

GO TO 101

/2.0 .

GO TO 105

non

Pl

- PI

P1
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SUBROUTINE RADIAL(NOPTsLsMsNsAsBsCs RESULT)

THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
<0,1) QF THE FOLLOWING PRODUCTS OF THREE BESSEL FUNCTIONS:

NOPT = 1 JL(A*R) % JM(B*R) * JNC(C*R) * R

NOPT 2 JLCA*R) * JM(B*R) * JNCC*R)/R

NOPT 3 JPL(A*R) * JPM(B*R) * JNCC*R) * R

JL IS THE BESSEL FUNCTION OF FIRST KIND OF ORDER L
JPL IS THE DERIVATIVE OF JL WITH RESPECT TO R

L, M» N ARE NON-NEGATIVE INTEGERS :

As Bs» C ARE REAL NUMBERS

DIMENSION FUNCTC2G03
DOUELE PRECISION DNs» DHs DSTEPs DRs ARGl» ARGZ2s ARG3»

1 BESl», BES2s BES3» BESH», BESL, PROD,
2 FUNCT» BESLIM., Sl, S2s S3
NN = 100

DN = NN

DH = 1.0/DN

NP1l = NN + 1

DO 10 I = 1, NP1l

DSTEP = 1 - 1

DR = DH * DSTEP

ARGl = A * DR

ARG2 = B * DR

ARG3 = C * DR

101

103

104

CaLl JBES(N,ARG3>BES3,5%5002
1F (NOPT .EQe. 3) GO TO 101
CALL JBES(L,ARG1,BES1,$500)
CALL JBES(M,»ARG2,BES2,%500)
GO TO 102

IF (L +EQ. 0) GO TO 103
CALL JBES(L+1sA4RG1l,BESH» $5002
CALL JBES(L-1,ARG1,>BESL»$500)
BES1 = A * (BESL -~ BESH)/2.0

GO TO 104
CALL JBES(1,ARG1,BES1, £500)
BES1 = -~BES1 % A

IF (4 «EQ. 0 GO TO 105
CALL JBES(M+1,ARG2,BESH, $500)
CALL JBES(M-1,ARG2sBESLs $500)
BES2 = B % (BESL - BESH)/2.0
GO TG 102 :

105




105

102

110

10

20

30

500
6000
501

106

CALL JBES(1sARG2,BES2,$500)
BES2 ~-BES2 * B
PROD BES! * BES2 * BES3

IF-(NOPT .EQ. 2) GO TO 110
FUNCT(1)> = PROD * DR

GO TO 10 -

IF (I «EQ@- 1) GO TO 111
FUNCT(I)> = PROD/DR

GO TO 10

BESLIM = 0.0

IF ((L+EQs1) «ANDe (MoEQ-O)‘;AND-.(N-EQ-O))

IF ((L«EQeQ) «ANDs (M«EQel) <ANDe. (NeEG.0))
IF ((L-EQe0) +ANDe (M<EQes0) ANDe (N+EQ«1))
FUNCT(I) = BESLIM g
CONTINUE

NM] = NN - 1

S1 = FUNCT(1) + FUNCT(NP1)
s2 = 0.0 ’ .o N .
53 = 0.0

DO 201 = 25 NN, 2

S2 = §2 + FUNCT(I)
CONTINUE

DO 301 = 35 NM1, 2

83 = S3 + FUNCTC(I)
CONTINUE

RESULT = DH * (51 + 4.0%52 + 2.0%S3)/3+0
GO TO 501

VRITE (6, 60000

FORMAT (1H1», 10HERROR JBES)
CONTINUE

RETURN

END

BESL.IM

. BESLIM -
BESLIM

[

A/2.0
B/2.0

C/72+.0
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10

20

30
40

SUBROUTINE UBAR(NOPT»UEsZE,ZCOMB,Z,»RESULT)

THIS SUBROUTINE CALCULATES THE STEADY STATE VELOCITY
DISTRIBUTION FOR UNIFORMLY DISTRIBUTED COMBUSTION COMPLETED AT
Z = ZCOMB * ZE WHERE: .

UE IS THE EXIT MACH NUMBERs

ZE 15 THE DIMENSIONLESS. LENGTH.

Z 1S THE AXIAL COORDINATE.

1 THE DISTRIBUTION 1S CALCULATED.

IF NOPT =
IF NOPT = 2 THE DERIVATIVE 1S CALCULATED.
1F NOPT = 3 THE SECOND DERIVATIVE IS CALCULATED.

ECZ = ZCOMB * ZE

GO TO €10,20,30)s NOPT
IF ¢Z .LE. ECZ) RESULT
IF ¢Z «GTe» ECZ) RESULT
GO TO 40

IF (Z +LE. ECZ) RESULT
IF €Z «GT. ECZ) RESULT
GO TO 40

RESULT = 0.0

CONTINUE

RETURN

END

UE * Z/ECZ
UE

UE/ECZ
0.0
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APPENDIX C
PROGRAM LCYC3D: A USER'S MANUAL

Program LCYC3D calculates the nonllnear stability characterlstlcs
of the combustion chamber described in Fig. 3 by numerlcally 1ntegrat1ng the
system of differential equations given by Eq. (20), Except for the term
6,(3,0) e thnis equation is the same as Bq. (12) of Réf. 11, whose
solution is carried out by the program LCYC3D described in detail in Appendix D
of Ref. 11. The present computer program ieeﬁery similar to Program LCYC3D
of Ref. 11 in its general structure, input and outpuf | Hence in this user's
manual, only the complete llstlng of the present program,. along w1th a precise
description of the necessary 1nput, is given; for details about the program

(including input) one is referred to Appendix D of Ref. 11. L t

No,of , : o ‘ ' |

Cards Tocation Type Input Ttem Comments -~
1 1-5 I NOUTCF " If 0: coefficients are not
‘ printed out
If 1: only the linear coeffi
cients are printed out
- If 2: all the coefficients
are printed out ‘
6=10 I NOZNI2 If O: nozzle nonlinearities
not included
If 1: nozzle nonlinearities
included
1 1-72 A TITIE Title used to label the
plots
1 1-10 F EN Interaction index, n
11-20 F TAU Time lag, T
21-30 F H Time increment for numerical
integration
31-40 F TSTART Time at which output of

solution begins
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No. of

Cards

Tocation

41-50

15

6=10

11-15

16=20

21-25

26-30

31-35

Input Ttem

Comments

TQUIT

NTEST

JMODE

NIOC

NTERMS

NPz

NOUT

ICTYPE

Time at which output of
solution ends

If O: compute transient
behavior

If 1: compute limit-cycle
behavior

Identifies the amplitude
function used to test for
limit~cycles

Determines location for wall
pressure maxima and minirm

1l: =z
2: 2
3: z

0,
0,
0]

H H -~
5 b
D DD
o

o

3

Nunber bf amplitude
functions given initial
values

Determines how secondary
instability zones ar
handled : :

If 0: all instability zones
included .
1f 1: secondary zones
eliminated

Determines output

If O0: printed output

only

If 1 < NOUT < 6: both
printed and plotted output;
NOUT being the number of
the last plot produced

If 1: amplltudes selected
t0o satisfy the nozzle
boundary condition

If 2: amplitudes selected
to eliminate the extraneous
solution
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The next three cards are necessary only if 1 < NOUT < 6,

No, of

Cards location

1 | 1-10
11-20
21-30 -
31=40
1 ‘ 1-5
6#10
11-15.‘

16-20

6-10

11-15

110

Input Ttem

Comment s

YHI(1)

YHI(5)
iLAB(l)
YIAB(5)
ITICY (1)
ITICY(5)
NFIRST

NOMIT

MDPIOT(1)

MDPIOT(2)

MDPIOT(3)

- Maximum ordinate for

Pressure plots

Maximum ordinate for
velocity plots

Interval for ordinate
labeling of pressure plots

Interval for ordinate
labeling of velocity plots

Nurber of ordinate tic
marks for pressure plots

Number of ordinate tic
marks for velocity plots

Gives the nﬁmber of the
first plot produced

If O: time-history plot
produced
It 1: +time-history plot
omitted

If 0: plot of the first
mode amplitude not
produced

If 1: plot of the first
mode amplitude is produced

If 0: plot of the second
mode amplitude not produced
If 1: plot of the second
mode amplitude is produced

If O0: plot of the third
mode amplitude not produced
If 1: plot of the third
mode amplitude is produced



% No. of
1 Cards

Comments

Iocation Type Input Ttem
16-20 T MDPLOT(k4)

If 0: plot of the pressure
amplitude of the first
mode not produced

If 1: plot of the pressure
amplitude of the first mode
is produced

The next card is necessary only 1if plot of any mode-~amplitude 1s desired.

1

| NTERMS

1~10 F YHIMD
11-20 F YIABMD
21-25 T ITICMD

1-5 T J

6-15 F AST
16-25 F ACT

The next card is necessary only if ICTYPE = 2.

1

1-10 F DAMP

11-20 . F - FREQ

Maximum ordinate for mode-
amplitude plots

Interval for ordinate
labeling of mode-amplitude
plots :

Number of ordinate tic
marks for mode-amplitude
plots

Tdentifies complex amplitude
function

Amplitude of sin(wt) terms
in initial conditions

Amplitudebof cos{wt) terms
in initial conditions

Damping factor in initial
condition, obtained from
linear stability analysis
(Appendix E of Ref. 11)

Corresponding frequency
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FORTRAN Listing

SkkkkkkkkrFhkkk FROGHAM L CYC3D skokokdk ok dk ok sk de sk ok ok ok ok ok ok sk e ok ok ok ok okake ook ok

THIS PROGEAM CALCULATES THE NONLINEAR EEHAVIOKR OF
TRANSVERSEs, AX1AlL» OR COMBINED LONGITUDINAL~TRANSVERSE
INSTAEILITIES IN A CYLINDKICAL CONMBUSTION CHAMEER WITH
UNIFORM PROPELLANT INJECTIONs LISTRIBUTED COMBUSTION
PROCESS, AND A CONVENTICNAL NOZZLE. THE COMEBEUSTION FROCESS
15 DESCRIBED BY ChOCCO"S TIME-LAG MOLEL. BOTH ThANSIENT
AND LIMIT=-CYCLE SOLUTIONS ARE CALCULATELs

THE FOLLOWING INFUTS ARE REGQUIERED

(1) THE CONTROL NUMEERS, NOUTCF AND NOZNLZ.
(2> THE COEFFICIENTS FROM FROGRAM COEFFS3De
(3) THE DATA DECK.

NOUTCF LETERMINES PRINTOUT OF COEFFICIENTS.
IF NOUTCF = O COEFFICIENTS ARE NOT FRINTED OUT. -
IF NOUTCF = 1 LINEAR COEFFICIENTS GNLY ARE FRINTED OUT.
IF NOUICF = 2 ALL COFFFICIENTS ARE FRINTED OUT.
NOZNL2 DETERMINES IF THE NOZZLE NONLINEARITIES ARE TO EF INCLULED.
I1F NOZNLZ2 = 0 NOZZLE NONLINEARITIES NOT INCLULED.
I1F NOZNLZ2 = 1 NOZZLE NONLINEARITIES INCLUDED.

THE DATA DECK CONTAINS THE FOLLOWING INFORMATION:
TITLE OF THE RUN.

EN IS THE INTERACTION INLEX.

TAU 1S THE TIME LAG.

H IS THE INTEGRATION STEP SIZE.

TSTART 1S THE TINE AT WHICH OUTFUT STARTS.

TOUIT IS THE TIME AT WHICE CONMFUTATICNS ARE TEFMINATEL.

NTEST 1S TASK CONTROL NWEBEF:

IF NTEST = O COMFUTE TRANSIENT EERAVIOK.

IF NTEST = 1 COMFUTE THE LIMIT-CYCLE ERhAVIOK.
JMODE 18 THE MOLE-AMFLITULDE USEL TC TEST FOR LIMIT-CYCLES.
NLGC DETERMINES THE LOCATION OF THE WALL FRESSUHE MAXIMA®
AND MININA:

IF NLCC = 1 LOCATION IS Z = O» THE1A = O DEGREES.
1F NLOC = 2 LOCATION IS Z = 0s THETA = 45 LDEGREES.
IF NLOC = 3 LOCATION 1S5 Z = 0, THETA = 90 DEGHEES.

NTERMS IS THE NUMBEEK OF TERMS GIVEN INITIAL VALUES.
NFZ DETERMINESE BOW SECONDARY STAERILITY ZONES (FHANTOM
ZONES) ARE HANDLEL.

IF NFZ = O FHANTOM ZONES ARE RETAINED.

1F NFZ = 1 FHANTOM ZONES AKE ELIMINATEL.
NOUT IS THE OUTFUT CONTRHOL NUMEEH.

IF NOUT = O FRINTEL GUTPUT ONLY.
IF NOUT > O BOTH FRINTED AND FLOTTEL: OUTFUTs NOUT
DETERMINES THE NUMEEFR OF THE LAST HLOT
PRODUCEL.
ICTYFE 1S THE INITIAL CONLITION CONTROL NWEER?

OO0 O0000O00O00000000000

I1F ICTYFE = | AMFLITULES SELECTEL TO SATISFY
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THE NOZZLE BOUNLARY CONLITION.
IF ICTYFE = 2 AMFLITULES SELECTELC TO ELIMINATE THE
EXTRANEOUS SOLUTION.

DATA FOR SETTING UP FLOTS 3

YHIC1) IS THE MAXIMWM ORLINATE FOR FRESSUKRF FLOTS.
YHIC(S) 15 THE MAXIMUM ORLINATE FOR UVELOCITY FLOTS.
NOTEs THE ORDINATE SCALES FOR FRESSURE AND VELOC1TY FLOTS
ARE SYMMETRIC AEOUT ZEROe.
YLAB I5 THE INTERVAL FOR ORGINATE LABELING FOR AEOVE FLOTSe
ITICY IS THE NUMEER OF ORLINATE TIC MAKKS FOR AEBOVE FLOTS.
. NOTE: ITICY SHOULD EE NEGATIVE FOR FRESSURE AND VELCCITY FLOTS
" TO OBTAIN CENTERLINE.
NFIRST 1S5 THE NUMEER OF THE FIRST FLOT FROLUCED.
NOMIT DETERMINES WHETHER AMFLITUDE FLOT 1S FRODUCED
IF NOMIT = O AMFLI TUDE FLOT 1S PHROLUCED.
IF NOMIT = | AMFLITUDE FLOT 1S OMITTED.

MLCPLOT DETERMINES 1F THE FLOT OF THE MOLE-AMFLITUDE 1S REGUIKEL.
IF MDFLOT = 0 FLOT NOT REQUIRED.
IF MDPLOT = 1 FLOT REQUIRED.

YHIME 1S THE MAXINUM ORDINATE FOR AMFLI TUDE FLOTS. :
YLAEMD 1S THE INTERVAL FOK OKLINATE LABPELING OF AMFLI TULE FLOTS.
ITICME IS THE NUMRER OF ORDINATE TIC MARKS.

NOTE: ITICML SHOULD BE NEGATIVE TO OBTAIN THE CENTERLINE.

INITIAL AMFLITULES OF F-FUNCTICNS C(REMAINING CARDS)

AS(J) 1S THE AMPLITUCE OF THE SINE TERM.
AC(JY 1S THE AMFLITULE OF THE COSINE TERM.

DAMP AND FHEG® ARE THE DAMFING COEFFICIENT AND THE FHREGQUENCY F ROM
THE LINEAR STABILITY FROGRANM.

FARAMETER MX=5s KX2=10s, MX4=20, MX25Q=100

COMFL EX YNOZ(MX), B(MX), Cls C2, €3, CFHIT(MX), CS5W, A

COMPFL EX GNOZ (X)» CAX1.» CIi . _

DIMENSION L(MX)s NCMX)s S(MX)s NAME(MX)» AS(MX2), ACI(MX2),»
U(250sMX4)s Y(MXU)» FZO4sME4)s YF(MXA), UVZ(MX4L),
CFC4aMX2sMX2)» FROI(MKE), LMFI(MX2), UMAX(SO00)s
ZC6)s ANGLE(6)» THETA(6)» CFT(62MX2), YI(MX2),

CFTH( 6,MX23s CFZ(6,MX2)s FRESS(6)s AXVEL(3)» YE(MX2).,
TELOT(500)» YPLOT(6s500), DLMMYTCS5003» LUMMYYC500),
IBUFC(3000), ITTCA)s ITYIC7)> ITY2C(7)s I1TY3(T7)s
I1TY4C(7)s 1TYSC6)s TAUCUT(NMX2), 1TYE(B), UAVG(100).»
ITP(3)s . TITLEC12Y» FRSC(S00), TICS500), FMAX(5G0),
TIMAX(500)s YLO(6)» YHIC6)» YLAB(6)» ITICY(6),
KFREQ(MX)» WKFCMX), AACA)» UFLOT(MX, S00)» FRIT(S500),

MDPLOTC(4), MTITLIC4), MTITL2CA4Y, MTITL3C(4),

MTITLC4), PRTITL(S5)

W= ORI U D W
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coMMON RUCMX2r 43, CCaAMXE,MX2)s D(MX2,MX258),

1 KPMAXC(4,MX2)s I1CCASMXC,MX2)s HFEMAX(MX2),
2 IDF(MX2, MX258), ILOCMX2,MX2S56)

COMMON /BLK2/ MCMXI» NS(MX), SJ(MX)s B

COMMON /BLK 3¢ NJUMAX» NLMAX, GAMMAs, COEF(3,MX2)
COMMON /NLTERM/ NOZNL 2, EXThA(MXZ2s4)

DATA ITT/"DIMENSIONLESS TIME» T*/,»
ITY1/"INJECTOR FRESSURE FERTURBATION, THETA = 0“7/,
ITY2/"INJECTOR FRESSURE FEKTUREATION, THETA = 45"/,
ITY3/"INJECTOR PRESSURE FERTURBATION», THETA = 90'/,
I1TY4/"NOZZLE FRESSURE PERTUKEBATION, THETA = 0/,
ITYS/"NOZZLE AXIAL VELOCITY»,» THETA = 0%/
ITY6/"NCZZLE BeCe (RE(~GAMMAX*Y%®PHIT)) AT THETA = 0"/,
I TF/"PRESSURE FEAKS"/
MTITLY1/"AMPLI TUDE OF 1T MODE"/
MTITL2/“AMFLI TUDE OF 2T MODE"/
MTITL3/"AMFLI TUDE OF 1k MODE"/
FRTITL/"PRESSURE AMFLITULE OF 1T MODE"/

W= ORI D W =

LAST = 250

EREk = 0.001

TDEL = 10.0

NPT = O

AACL) = 0.0

AAC2) = (+5

AAC3) = 0+5

AACY) = 1.0

Pl = 3.1415927

REAL (5S,5003) NOUTCF, NOZRLZ

¥kkdkkkkkkkkk COEFFICIENT INFUT SECTION #kkrkkkdkkbkdbdrhhkdkkkhkkks

THIS VERSION OF LCYC3D READS THE COEFFICIENT DATA FROM
A FASTRAND FILE GENERATED BY FROGEAM COEFKFS3L. TO READ
THIS DATA FROM CARDS, USE READ (SsXXXX) INSTEAD OF

" READ (9,XXXX) IN THIS SECTION.

Qo000

INPUT OF MOTOK PARAMETERS AND NWMBEK OF TERMSe
| READ (9,5001) GAMMA, UE» ZEs» ZCOME» NDKOFSs NJMAX., NOZNL1
WRITE (6,6001) G&MMAr UEs ZEs ZCOMB, NJMAX

IF (NDKOFS sEGe 0) WRITE (6,6030)

IF (NLROFS oEQe¢ 1) WRITE (656031)

1 IF (NOZNLZ2 «EQ. 0) WHITE (6s6032)

1 IF (NOZNL2 +EQ. 1) WRITE (6,6033)

i NU = 2 * NJMaX

1 JMX = NJMAX/2

41 RLD = 0«5 * ZE

|

I WRITE (6:6002)
0O 10K = 1, JMX

READ (9,5002) NJs» L(NJY» M(NJI)s N(NJ)s NS(NJYs S(NJI, SJd(NJI.
: 1 - NAMEC(NJ)

i

! - C

h ' C INPUT OF DESCRIPTION OF SERIES EXFANSION.
]

1
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C

s NeNel

" WRITE (646003

10

15

820
815

20

30

45
40

1 . S(NJ)Y» SJI(NJ)
CONTINUE P
WRITE €6,6010)

PO 15 K = 1, JMX

READ (9,5010) Js YNOZCJ)» BCJ)
WRITE (6,6015) Js YNOZ(J)» B(J)
Nd = (2 % J) = |

YR(NJ) = REALC(YNOZ(J))

YI(NJ) = AIMAGC(YNOZ (J))
YR(NJ+1) = YRC(NJ)

YICNJ+1) = YI(NJ)

CONTINUE

1F (NOZNL1 .NE. 1).G0O TO 815
VRITE (656034)

O 820 K = 1, JMX

READ (9,5011) Js, GNOZ(J)

WRITE (6,6035) J» GNOZ(J)
CONTINUE

CONTINUE

NAME(NJ)»> NJs LCNJIs MCNJIs NCNJ)» NSCNJ),

CALCULATE THE NUMBER OF TYFES OF LINEAR COFFFICIENTS.

NCOEFF = 4
IF (NOZNL1 +EQ. 1) NCOEFF = 5
NCFM1 = NCOEFF =1

ZERO LINEAR COEFFICIENT ARRAYSe
DO 20 KC = 1, NCFM1

DO 20 NJ = 15 MX2

DO 20 NF = 1, MX2

C(KCsNJsNP) = 0.0

CPCKCsNJsNP) = 0.0

CONTINUE

ZERO NONLINEAR COEFFICIENT ARRAY.
DO 30 NJ = 1, MX2

L0 30 NPQ = 1, MX25@

DI(NJ.NF@) = 0.0

CONTINUE

INFUT GF LINEAR COEFFICIENTS.
DO 40 KC = 1, NCFM]
READ (9,5G03) KMAX

IF (NOUTCF «GT. 0) WRITE (6,6004) KC, KMAX

IF (KMAX +EQe 0) GO TO 40

DO 45 K = 1, KMAX

READ (9,5004) NJs NPs CFC(KCsNJsNP)

IF (NOUTCF «GTes 0) WRITE (6,6005) KC» NJ» NF»
CONTINUE

CONTINUE

INFUT OF NONLINEAR COEFFICIENTS.
READ (9, 5003) NLMAX

CP(KCsNJONP)
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s ReNoN el

IF (NOUTCF «EQe 2) WRITE (6,6006) NLMAX
IF (NLMAX +E@. 0) GO TO 50
DO 52 NJ = 1, MX2
KPQMAX(NJ) = O
52 CONTINUE
DO 55 K = 1, NLMAX
READ (9,5005) NJ» NF, N6» DT
IF (NOUTCF .EQs 2) WRITE (6,6007) NJ» NFs NO, DT
KPEMAX(NJ) = KPOMAX(NJ) + 1
KFO = KFGMAXC(NJ)
IDF(NJ>KPQ) = NF
IDO(NJsKPQ) = NG
D(NJ+KFQ) = DT
55 CONTINUE
50 CONTINUE

ekkkkkkkkdk®®x FRESSURE COFFFICIENT SECTION ko msok ko sk krkdoks

CALCULATE SFATIAL COOFDINATES FGR FRESSURE COMFUTATION.
L0 51 NEFRES = 1, 3
Z(NFRES) = 040
RTHETA = NPRES = 1
ANGLE(NPHES) = RTHETA * 45.0
THETA(NFRES) = RTHETA * FI/4.0
Z(NFFES + 3) = ZE
ANGLE(NPKES + 3) = ANGLE(NFRES)
THETA(NFERES + 3) = THETA(NFRES)
51 CONTINUE

CALCULATE COEFFICIENTS FOR FRESSURE TIME HI STORIES.
O S3 NFRES = 1, 6
DO 53 J = 1, JMX -
NF = (2 * J) - |
Z1 = Z(NFRES)
ANG = THETA(NFRES)
CALL FPHICFS(J,Z1,ANGsC1,C2,C3)
IF (NFRES +EQ« &) CPHIT(J) = C1
CFT(NPRES,NF) = REAL(CI)
CFT(NFRESsNF+1) = ~AIMAG(CY)
CFTH(NFRESsNF) = REAL(C2)
CFTH(NFFESs NF+1) = =AIMAG(C2)
CFZ(NFRES»NF? = REALC(C2)
CFZ(NFFRESsNF+1) = <AIMAGC(C3)

53 CONTINUE ‘

Cl = (Qe«Csioe)

CAXI = GANMMA * CCOSH(CI * B(1l) * ZE)
CAXIE = RFALCCAXI)

CAXII = AIMAG(CAXI)

QUTPUT OF CGEFFICIENTS FOR FHRESSURE TIME HISTORIES.
WRI TE (6, 6020)

O 56 NFRES = 1s 6

WRITE (65,6014

DO $6 J = 1, NJMAX
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1
56

57

830
825

3eo

WRITE (6,6021) J» Z(NFRES)» ANGLE(NFKRES),»
CFT(NPRESsJ)» CFTH(NFBRESsJ)» CFZ(NFRES,J)
CONTINUE . .

REkke kSRR Rk® DATA INPUT SECTION *kkkdkdkdkxkkdddskxkisrkxbbr ek
READ (5,S000) TITLE

ZERO INITIAL VALUE AND FREQUENCY ARRAYSe
DO 57 K = 1, NJMAX

ASCK) = 0.0 4 )

AC(K) = 0.0

FEQIC(K) = 0.0

CONTINUE

REAL COMBUSTION ANL CONTROL FAFRAMETERS.
READ (5, 5006, END = 300) ENs, TAUs Hs TSTAET, TCEUIT

KEEAD CONTROL NUMBERS.

READ (5, 5008) NTEST» JMODE», NLOC> NTERMS, NFZs» NOUT» ICIYFE
JMODE & (2 * JMODE) =~ 1

JEMODE = JMOLE + NJMAX

IF (NOZNLZ2 «NE. 12 GO TO 825

FREQ = SC1)

KFREB(]) = 1

KFHEQ(2) = 2

KFREQ(3) = 2

DO B30 K = 1, JMX

WKF(J) = FREG #* KFREQ(J)
CONTINUE

CONTINUE

IF (NOUT «GT- 0) NFT = 1

IF (NOUT +EQe 0) GO TO 9

READ DATA FOR SETTING UF PLOTS.

READ (5,5009) YHIC1)» YHIC(S5)» YLAB(1)s YLAE(S5)
READ (5,5008) ITICYC1), ITICY(S5), NFIRST. NOMIT
READ (5,5014) MLPLOT

MDFLTL = O

DO 320 K = 1, JMX

MDFLTL = MDPLTL + MDFLOT(K)

CONTINUE

IF (MLFLTL «EQe 0) GO TO 9

READ (5,5015) YHIMD» YLAEMD, ITICMD

YLOMD = = YHIMD '

dkkkhkknkkkkx INITIAL AMFLITULES SECTION ®&kdskknkkkkkkknkkhkkkikkik
DO S8 K = 1, NTERMS

INFUT INITIAL AMFLITULES FOR F-FUNCTIONS.

READ (5,5007) J» ASTs ACT

NJd = (2 % J) = 1
AS(NJ) = AST
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584

586

581

S8z

118

AC(NJ} = ACT

CALCULATE FREQUENCY AND DAMFING.
IF (ICTYPE +EQ. 2) GO TO S84
RL = L(J) . =
AX = FRL * FI/ZE

AXSEG = AX * AX

S5@ = S(JY * S(J)

FRQI(NJ) = SQRT(SSE + AXSQ)
IMF1(NJ) = Q.0

GO TO 586

LONG = L<CJ)

SMN = S(J)

READ (5,5099) DAMFsFREQ
IMFIC(NJ) = DAMF

FRE1(NJ) = FREQ

CONTINUE

FRQIC(NJ+1) = FRQ1(NJ)
DMP1(NJ+1) = DMF1(NJ)

IF (ICTYFPE »E@s 2) GO TO 582
CALCULATE INITIAL AMFLITUDES FOR G-FUNCTIONS.

IF (FROI(NJ)) SB, S8, SB1
GYRU = CGAMMA*YR(NJI*UE

GYIF = GAMMA*YI(NJI*FREI(NJ)
GYRF = GAMMA*YR(NJ)*FERQI(NJ)
GYIU = GAMMA*YI(NJ)*UE
NFRES = 4

IF (NSCJ) «E@s 1) NFRES = 6

Al = (1«0 + GYRUW*CFZ(NFRES,NJ+1)
= GYIF+CFT(NPRESsNJ+1)
A2 = GYRF*CFT(NFRESsNJ+1) + GYIU*CFZI{NFRES,NJ+1)
A3 = =(10 + GYRUW*CFZ(NFRESsNJ) + GYIF*CFT(NFRES»NJ)
Ay =

GYRF*CFT(NFRKESsNJ) + GYIU%CFZC(NFRES,NJ)

DET = Al*%xAl + AR%AL2

IF (DET «LT. 0.0000001) GO TO 583
Rl = AJ3%AC(NJ) = A4*ASINJ)

R2 = =AuxAC(NJ) = A3*AS(ND)

AC(NJ+1) = (R1*A] + RexA2)/LET

AS(NJ+1) = =(h2¥%Al1l - RI1*A2)/DET
GO T0 58

ACCNJ+ 1) = =AS(NJ)

AS(NJ+1) = AC(NJD)

GG TO S8

ARG = FROI(NJ) = TAU
FSIN = SINCARG)

FCOS = 1« = COGSCAKG)

FSO = FRQI(NJ) * FEG1C(NJD)
£SE = DMPLINJ) * LMF1(NJ)



o0 O

aonn

585

592
S91
590

59

[

Al = TSQ - FS@ + DMFLI(NJ) * (CP(2,NJ,NJ)
= EN * CF(3,NJsNJY * FCGS) S

1
2 + EN * CFPC3,NJ,NJ) * FHROI(NJ) * FSIN
3

+ CF(1,NJsNJ)
A2 = (2.0 * DMFI(NJ) + CP(2,NJsNJ)
- EN * CP(3,NJ,NJ)Y * FCOS) * FRECI(NJ)
= EN * CF(3,NJ,NJ) * IMPI(NJ) * FSIN
A3 = CF(2,NJoNJ+ 1) * IMPI(NJ) + CFC1,NJoNJ+1)
A4 = CF(2sNJ,NJ+1) * FREGI(NJ)D
DEN = A3%A3 + A4xA4
IF C(DEN .LT. 0.0000001> GO TO 58S
Rl = Al%*A3 +A2%A4
R2 = Al*A4 - A2*A3
ACINJ+1) = (~K1*AC(NJ? + R2*AS(NJ))/DEN
ASI(NJ+1) = =(R2*¥ACI(NJ) + RI*AS(NJII/LEN
GO TO S8
ACCNJ+1) = «ASI(NJ)
ASC(NJ+1) = ACCNJ)

CONTINUE

OUTFUT OF INITIAL AMPLITULES.

VRITE (6,6016)

DO 590 J = 1, NJMAX

IF (ASCJ))> 591, 592, 591

IF (ACCJ)) 591, 590, 591

WRITE (6,6017) J» DMP1CJ)» FRE1CJI» ACCJI, ASC(I)
CONTINUE . '

IF (NTEST «E€. 0) VWKRITE (6s6025)

IF (NTEST «EGe 1) WHKHITE (6,6026)

"1F (NPZ +EQe 1) WRITE (6,€028)

IF (NOUT +GEe. 1) WRITE (6,6027)

kkkokkknkkkdk LINEAR COEFFICIENTS SECTION sokokakokakok ok ok ok ok ok ok ik ofok ok ok e ok ok ok
LO 59 KC = }, NCFMI1

LO 59 NJ = 1, MX2

KFMAX(KCoNJ) = O

CONTINUE-

IF (NFZ «FOs 0> GO TO 605

DO 602 J = 1, JNX

N = (2 % J) - 1
RL = L(J)
AX = KL * FI/ZE

- AXSE = AX * AX

€02

£5€ = SCJ) * S(JI _
OMEGA = SERT(S5G + AXS@)
TAUCUT(NJ) = 2.0 * Fl/0OMEGA
TAUCUTI(NJ+1) = TAUCUTC(ND
CONTINUE

PO 604 NJ = 1, NJMAX
DO 604 NF = 1, NJMAX
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[eBNeNe!

IF (TAU «GTs TAUCUTC(NF)) CF(3,NJ>NF) = 0.0
604 CONTINUE

COMPUTE LINEAR COEFFICIENTS FOR GIVEN VALUES OF EN ANLC TAU.

605 DO 60 NJ = 1, NJIMAX
DO 60 NF = 1, NJMAX
CT = CF(1sNJsNP)
IF (CT) 61, 62, 61

61 KPMAX(15NJ) = KFMAX(15NJ) + 1
KP = KPMAXC1,NJ)
ICC1-NJ»KF) = NF
CC12.NJL,KF) = CT

62 CT = CP(Z2,NJ»NP) = EN*xCF(3,NJsNF)
IF (CT) 63, 64, 63

63 KPMAX(2,NJ) = KPMAX(Z2,NJ) + 1
KP = KFMAX(2sNJ)
ICC(2,NJsKF) = NF
CC2sNJWKP) = CT

64 CT = EN * CF(3,NJ»NF)
IF (CT) €65, 66, 65

65 KFNMAX(3,NJ) = KFMAX(3,NJ) + 1
KF = KPMAX(3,NJ)
I1CC3,NJsKF) = NP
C(3,NJsKP) = CT

66 IF (NOZNLZ .NE. 1) GO TO 60
CT = CEC(4,NJLNP)
IF (CT) 67,60,67

67 KPMAX(4,NJ) = KPMAXK(4sNJ) + 1]
KF = KFMAX{(45NJ)
ICC4>NJ»KP) = NP
CC4:NJKFP) = CT

60 CONTINUE

hkdkkokkkokkkkkt STEP=SIZE COMFUTATION koo aboab ok ok sk ok o e o o 3ok ok ok ok ke ok ok 3 o o ok ok ok ok o o

NDIV = ]l«.0 + TAU/H
RN = NDIV
H = TAU/EN
H6 = H/60

dkkkkknkxkkknkk INITIAL VALUES SECTION ks shok ok o ok shokak s ook oo ok ok o ook i ok

WRITE (6,6008) EN, TAUs, GAMMAs, UEs, KLD

WRITE (65 6009) )
WRITE (6,6022) C(ANGLE(JYs J = 1,6)s (ANGLE(JYs J = 1,3)
WRITE €6,6012)

NF1 = NDIV + 1

DO 70 1 = 1, NF1

NSTEP = I - NFI1

RSTEF = NSTEF

TIME = RSTEP * H

TICI) = TIME

DO 75 J = 1, NJIMAX

JP = J + NJMAX

IF CACCJ)) 751, 753, 751
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aOno

753
752

751

75

702

703

704

710

70

IF (AS(J)) 751, 752, 751
UCI,J) = 0.0 :

UCI,JP) & 0.0

GO TO 75

ARG = FRQ1(J) *x TIME

FSIN = SINCARG)

FCOS = COSCARG)

FEXP = EXF(DMPI(J)*TIME) _

UCI.Jd) = (ASCUI*FSIN + ACCJI*FCOS) * FEXF -

UCTsJF) = (CASCJ) * FCOS) - (AC(J)Y * FSIN)) = FRQI(J) * FEXF
B + DMF1CJ) * WI,J)

CONTINUE '

CALCULATE INITIAL VALUES OF FRESSURE AND UELOCITY-
DO 704 NPRES = 1, 6

DO 702 U = 1, NJMAX

COEF(1,J) = CFT(NFRES,J)

COEF(2,J) = CFTH(NPRES.,J)

COEF(3,J) = CFZ(NFRES,J)

CONTINUE

DO 703 J = 1, NU

YCJY = U,

CONTINUE

UBAR = 040

IF (NPRES «GTe 3) UBAR = UE

uMs = 0.0 , :
IF CCNDHOFS+EQel) <ANDe (NFRESeLTe4)) UMS = UE/(ZE*ZCOME)
CALL FKSVEL (UBAFE, (¥ 8,Y» F» VTH» VZ)

FRESS(NFPRES) = P

IF (NPKES «GTe 3) AXVEL(NFRES - 3) = VZ

CONTINUE ' »

FRS(1) = FRESS(NLOC)

CALCULATE INITIAL VALUES OF NOZZLE E.C.
CSW = (0+0,0.0)

DO 710 J = 1, JMX

JE = NJMAX + (2 * J) - 1]

FT = Y(JP)

GT = Y(JP+1)

A = CMFLX(FT.,GT) .

CSuM = CSUM + YNOZ(J) * CFHIT(J) * A
CONTINUE

SUM = REAL(CSUNM)

YFH1 = -GAMMA * S .

WRITE (6,6011) NSTEF, TIME, (FRESS5(J)» J = 1,6),
1 . CAXVEL(J)» J = 1,3)s YFHI
CONTINUE

"WRITE (6,6008) EN» TAU» GAMMA, UE, ELD :
WRITE (656022) C(ANGLECJ)s» J = 156)» (ANCLE(J)» J = 153)

wxkkkkkkkkhkk INITIALIZE CONTHOL NUMBERS #kkaksskokdoksk ko kkomdokdokkokkokkn
LINE = 8

K=20
MAXNO = O
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o Ne)

90

10C

105

110

840
835

144

122

MAXP = (O

1F (NOUT «E€e« 0) GO TO 100
JFLOT = 0

TIN = TSTAET

TMAX = TSTART + TDEL
YLOCIY = =YHIC1)

DG 90 J = 2,4

YHIC(J) = YHICD)
YLOCGJ) = YLOCID)
YLABC(J) = YLABC!1)
ITICYCJ) = ITICYC])
CONTINUE

YLOC(5) = «YHI(5)
YHI(C(€) = YHIC(S)
YLOC(A) = YLOC(S)
YLAB(6) = YLAB(S)
ITICYC(6) = ITICY(S)

dakokkkkkkkhkk NUMERICAL CALCULATIONS SECTION o ok skokokok s ok dokokok o ok ok ok

1 = NP1

KUNGE-KUTTA INTEGRATION SCHEME.
NSTEF = (I = NF1 + (LAST - NF1) % K)
KRSTEF = NSTEF

TIME = RSTEF * H

TICI) = TIWE

DO 110 J = 1, NJMAX

JP = J + NJMAX

KUCJs 1) = UCL~NDIV.JF)

RUCdJs4) = UCI~NDIV+1,JF)

RUCJL2) = 0e375%RV(Js 1) + Oe75%RUCJ24) ~ Os125%xUCI~NDIV+2,JF)
RU(J» 3) = RVU(J, 2D

CONTINUE

IF (NOZNL2 «NEe 1) GG T0 835
TO 840 11 = 1,4

TZ = TINE + AACII)*H

DO 840 J = 1sJMX

JODD = 2%J = |}

JEVEN = 2%J

EXTRACJODD, I1) = COSCVWKECJII*TZ)
EXTREACJEVEN,I1)> = SINCWKF(JI*TZ)
CONTINUE

CONTINUE

Lo 120 J = 1» NU

Y(J) = UKIad)

CONTINUE

CALL RHS(NUs1l,Y»YP)

L0 130 J = 1, NU

FZC(1sd) = YF(J)

CONTINUE

EO 140 11 = 2,4

DO 144 J = 1, NU

UZCJ) = Y(J) + AACLI) * H * FZ(II-1,dJ)
CONTINUE




o000

o000

148
140

150

152

154

650

170

171

160

CALL RHS(NU,I1,UZ,YF)

DO 148 J = 1, NU

FZ(1l1,J) = YF(J)

CONTINUE

CONTINUE

DO 150 J = 1, NU

UCI+1,50) & Y(J) + (F2(1,J)42.0%(FZ(2,J)+FZ(3,J)) + FZC4sJ)) * H6
CONTINUE

CALCULATE PRESSURE TIME HISTORIESe

PO 154 NFKES = 1, 6

DO 152 J = 1, NJMAX

COEF(1sJ) = CFT(NPRES, dJ)

COEF(2,J) = CFTH(NPRES,J)

COEF(3sJ) = CFZ(NFRES»J)

CONTINUE

UBAR = 0.0

IF (NFRES «GTe« 3) UEAR = UE

UMS = 0.0

IF (C(NLROFS«EQo1) «ANDs (NFEES+LT«4)) WMS =& UE/(ZE*£COFE)
CALL FRSVELC(UEAR,UMS,Ys Fs UTH, VZ)
FRESS(NFRES) = F

1F (NFRES +GT« 3) AXVEL(NFRES = 3) = V2
CONTINUE

PRSC(I) = PRESS(NLOC)

CALCULATE VALUES OF NOZZLE EeCo
CSUM = (0+0,0.0)

DO 650 J = 1, JMX

JF = NJMAX + (2 = J) - 1

FT = Y(JP)

GT = Y(JP+1)

A = CMPLX(FT,GT)

CSv = CSUM + YNOZ(J) * CFHIT(J) * A
CONTINUE

S = REAL(CSW¢)

YPHl = ~GAMMA * SUM

DETERMINE MAXIMA ANLD MININMA CF PRINCIFAL MODE-AMFLI TUDE
FUNCTION FOR USE IN DETERMINING LIMIT-CYCLE BEHAVIOR.
IF (UCl,JFNMOBE) #* UCI+1,JFMODE)) 170, 170, 160

FPDEN = U(l,JFMODE) =~ UCI1+1,JPMOLE)

IF CFDEN)Y 171, 160, 171

FP = UC1,JPMOLE)/FDEN

FA = (PF = 1+0) ® PF * 0.5

FPB = 1.0 - (FP * FP)

PC = (FP + 1.0) * FP % (Qe5

MAXNO = MAXNO + 1

UMAX(MAYXNO) = FA*UCI~-1,JNMODE) + FB*UC1,JMODE) + PC*U(I+1:JMO£E)
IF (MAXNO .GE. S00) GO TO 250

CONTINUE

DETERMINE MAXIMUM AND MINIMUM FRESSURE AT LOCATION SFECIFIED

BY NLOC.
: s

123
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173

174

175

¢ Ne X

1001

(oMo} [N g o0

[e]

o0

322

124

LFL = PFRS(1) - PRS(I-1)

CFS = FhSC(I-1) - FRS(I-2)

IF C(DPL*DPS) 173, 1735 175

FNUM = FKSC(I-2) - FRSCI)

FDEN = 2.0 * (FRS(I-2) + FRSC(I) - 240%FRS(I=1))
IF (FDEN) 174, 175, 174

PP = FNUM/FDEN

FA = (PF - 1.0) * PF % (0.5
FB = 10 - (FF * FF)

FC = (FP + 1.0) * FF * Q.5

MAXF = MAXP + 1

EMAX(MAXF) = PFA*PRS(1-~2) + PB*PRS(I~=1) + FC*xFRS(I)
TIMAX(MAXF) = TIC(I-1) + FF*H

I1F (MA¥P «GEs 500) GO TO 250

CONTINUE

IF (NTEST -EQ. 1) GO TC 155
I1F (TIME «LTe TSTART) GO TO 155
IF (C(NOUT <«EQ« 0) «OR. (NOUT «GTe 6)) GO TO 156

krpkrkkkkkrkkx TIME HISTORY FLOTTING SECTION ®#kkkrkkkkkkddkhkkigkkkk

IF (TMAX «GTe. TQUIT) GO TC 156
IF (CTIME «GTe+ TMAX) «0hs (JFLOT ~GE+. 500)> GO TO 1000

JFLOT = JFLOT + 1

FILL 7TIME ARRAY FOR FLOTTING.
TFLOTC(JELOT) = TIME

FILL INJECTOKR PRESSURE ARRAYS FOK FLOTTING (THETA = 0. 45 90
DO 1001 J = 1,3

YFLOTC(J+JFLOT) = FRESS(J)

CONTINUE

FILL NOZZLE PRESSURE AREAY FOR FLOTTING (THETA = O)
YFLOT(42,JFLOT) = PRESSC#)

FILL NOZZLE A¥X1AL VELOCITY AKRRAY FOh FLOTTING (THETA = O)
YFLOT(S5,JPLOT) = AXVEL(])

FILL NQZZLE BeCe. ARKHAY FOR FLOTTING (THETA = Q).
YFLOT(6>JPLOT) = YFHI

1F (MDPLTL «EQe 0) GO TO 156

FILL MODE AMFLI TUDE ARRAYS FOR FLOTTING.
DO 322 J = 15 JMX

I1F (MDELOTCJ) «EQe Q) GO TO 322

Jig = 2%J -~ 1

UFLOTCJ>JPLOTY = W(IsJl12)

CONTINUE

JITI = NJMAX +
J1TE = NJMAX +

N s



PRITC(JFLCT) = CAXIF*UCI»JI1T1) = CAXII*UCI,»JIT2)

c
GO TO 156.
C
1000 NUM = JFLOT
c .
Cc FLOT TIME HISTORIES.
Cc
DO 1020 NFLOT = NFIKST, NOUT
Cc
JFLOT = O
[of N
C ASSIGN FLOTTING FPARANMETERSs
YMIN = YLC(NFLOT)
YMAX = YHIC(NFLOT)?
NTICY = ITICY(NFLOT)
LELY = YLAB(NFLOT)
c .
Cc ELIMINATE FOINTS THAT ARE OUT OF THE OKLCINATE KANGE.

IO 1010 J = 1, NUM

IF CCYFLCT(NFLOT»J? «LTe YMIN) <OR. (YPLOT(NPLOT:J).-GTo YMAX))

1 GO TO 1010

JELCT = JFLOT + 1

DUMMY TCJFLOT) = TPLOTC(J?

DUMMYYCJFLOT) = YFLOT(NFLOT»J)
1010 CONTINUE

c
IF (JPLOT .EGQ. 0) GO TO 1020
GO TO (1011,1012,5,1013,1014»1015,1016)» NFLOT

c

c FLOT INJECTOR FRESSURF AT THETA = O LDEGKEES. o

1011 CALL GRAFHSCIEUF,»3000, 4»JFLOT>S1sNTICY, TMAX»YMAX, TMIN, YMINS

1 ITT»ITY15,215 415 DUMMY To DUMMYY, 240 DELY» TI TLED
GO TO 1020

c :

c FLOT INJECTOR PRESSURE AT THETA = 45 LEGREES.

1012 IF (MC(JMODE) «EB. 0) GO TO 1020
CALL GRAFHSCIBUF»,» 3000, 4 JFLOT, 51,NTICY,» TMAX, YMAY., TMIN> YMIN,
1 : ITT,1TY2s 21, 425 LUMMY T» DUMMYY s 2+ 0s DELY» TI TLE)
GO TO 1020 ‘
Cc . ,
c PLOT INJECTOR FHESSURE AT THETA = 90 LDEGhEES.
1013 IF (M(JMOLE) «EQe O0) GO TO 1020 -
CALL GRAFPHSCIEUF,» 30005 4,JPLOTs 51,NTICY, TMAK,YMAXs TMINSYMIN,

1 ITT»1TY 35215 42, GUMMY Ts DUMMYY » 20 0s DFLY » TI TLE)
GO TO 1020
c , _
C FLOT NOZZLE FPRESSURE AT THETA = 0 DEGHEES.
1014 CALL GRAFHSCIBUF»3000s 4»JFLOT, S1oNTICY» TMAXsYMAX, TMINS YMINS
1 ITT»10Y 4,215 39, LMY To LUMMYY» 200, CELY S TI TLE)
GO TO 1020
c , -
Cc FLOT NOZZLE AXIAL VELOCITY AT THETA = O DEGREES.
1015 CALL GRAFHSCIRUF, 3000, 45 JFLOTs 51,NTICY» TMAX»YMAX, TMIN, YMIN,
1 ITTs17YS221>32, LUMMY To LLMMYY s 20 02 LELY » TI TLE)
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GO 10 1020
c
c FLOT NOZZLE BeCe AT THETA = O LEGEFEES.
1016 CALL GRAFHSCIBUF» 30005 45 JFLOTS» S1.NTICY,» TMAXS YMAX s TMINS YMIN,
1 ITTs3TY6s 210 445 DUMMY To DU¥MYY» 2 0s DELY s TI TLE)
c
1020 CONTINUE
c
IF (MDFLTL +EG. 0) GC TO 330
DO 324 NFLOT = 1, JMX
IF (MDFLOT(NPLOT) «EGe Q) GO TO 324
JFLOT = ©
PO 328 J123 = 1, 4
IF (NFLOT «F&e 1) MTITLCJ123)
IF (NFLOT +EQ. 2) MTITL(JIZ23)
IF (NFLOT «EQe 3) MTITLC(JI123)
328 CONTINUE

MTITLICJ123)
MTITL2¢J123)
MTITL3C(J123)

N

DO 326 J = 1, NUM
IF (CUFLOT(NFLOT,J) L Te YLOMD) «OFKs (UFLOT(NFLOT,J)
1 «GTe YHIML)) GC TO 32€
JFLOT = JPLOT + 1
DUNMNMY TCJFLOTY? TELCTCJ)
LMYY(JFLOT) UFLCT(NFLCT»J)
326 CONTINUE
IF (JFLOT «E@e¢ 0) GO TO 324

c PLOT AMFLI TUDES OF LCIFFERENT MODESe.
CALL GRAFHSCIEUF, 3000, 4>JFLOTs» S ITICMD, TMAX» YHINMDS, TMIN,
1 YLOMD, ITT»MTI TL» 215 20, DUMNMY T CUMMY Y s 20 05 YLAENML, TT TLED
324 CONTINUE .

IF (MLFLOTC(4) «EGe 0O) GO T0 330
JFLUT = ©
DO 332 J = 1, NUM
IF (CPRITC(J) «LTe YLOMD) «CKRe (FRITC(J) «GTe YHIMD)) GO 70 332
WJFLOT = JFLOT + 1
DUMMY TCJPLOTY TFLCTC(J?
DMMYY CJPLOT) FRIT(D)
332 CONTINUE
IF (JPLOT +EQe 0O) GO TC 330

non

c FLOT FRESSURE AMFLITULE GF 1T MODE.
CALL GRAFHSC(IBUF>3000s 4 JFLGT, 5121 TICME, TMAX, YHINMNE, TMIN,
1 YLOMDS ITT> FRTITL 21529, CUMMY T LUNMYY > 2. 0> YLAFRMD» TI TL E)
330 CONTINUE

c REASSIGN FLOTTING PARAMETEKS FCH NEXT SET OF FLOTS.
JFLOT = O
TMIN TMAX
™ AX ™aAX + TLFL

"8

[sReNe!

Aokkokkdokdokoxkkk TIME HI STORY FRINTED CUTFUT SECTION o kskoksdokdkdok ok dkokkokk

156 WKITE (6,6011) NSTEFs TIME, (FRESS(J), J = 126D,
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a006

1 (AXVELC(J)s» J = 153)s YPHI1
LINE = LINE + | ‘

157 IF (TIME «GTe TQUIT) :GO TO 250 AN
IF (LINE .LTe 52> GO TO 155
WHITE (6,6013)
WRITE (6,6022) (ANGLEC(J)» J = 156)s (ANGLEC(JI» J = 1,3)
LINE = 4

1551 =1 + 1 :
IF (I LT. LAST) GO TO 105

kkokokkkokokkkokk LIMIT=CYCLE SECTION skakokkoksk ook dkonok ok gokokok ok ok ok sk ke ok % ko ok

TEST FOR LIMIT CYCLE.

K=K+ 1 '

IF C(C(NTEST +EQ« 0) «0Re (MAXNO LTes 80)) GO TO 190

UTOT = 0.0

DO 180 J = 0, 3

JMAX = MAXNG = J

UTOT = UTOT + ABS(UMAX(JMAX))
180 CONTINUE

UVAVG(K) = UTOT/4.0

IF (K «FQe 1) GO TO 190

CHANGE = UAVG(K) = UAVG(K=1)

ABSCHG = ABSC(CHANGE/UVAVG(K))

IF CABSCHG «GT. ERR) GO TO 190

™ = TIME/2.0

IT™V = TM

ITM & 21T + 2

™ = IT™

TSTART = TV 4+ TSTART

TQUIT = T + TQUIT

TMIN = TSTART

TMAX = TSTART + TDEL

NTEST = O

RE-ASSIGN ARRAYS.

190 DO 200 1 = 1, NF1 .
ILAST = LAST = NFl + 1
PRSC(1) = PRSC(ILAST)
TICI) = TICILAST?

PO 200 J = 1s NU
UlI.J) = UCILAST.J)

200 CONTINUE

GO TO 100

dkdokkkkokdokkkk FRESSURE MAXIMA AND MINIMA PRINTOUT #skktokskkkkkdkokdkkkk

250 WRITE (6,6023) Z(NLOCY» ANGLE(NLOC), MAXF
" LINE = 4
DO 255 JST = 1, MAXF, 8
- JSTART = JST
JSTOF = JST + 7
IF (JSTOP «GTe MAXKE) JSTOF = MAXF
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255

260

300

500C
50C1
5002
50G3
5004
5005
5006
5007

128

WHITE (6,6024) (FMAX(J)s J = JSTAKT» JSTOF)
WRITFE (626024) (TIMAX(J)s J = JSTART» JSTOR)
WRITE (656014

LINE = LINE 4+ 3

I1F C(LINE «LTe 52) GO TO 255

LINE = O

WRITE (6,6013)

CONTINUE

IF (C(NOUT +EQs 0) «ORe¢ (NOMIT +EQe 1)) GO TO 5

®kdkkkdokkdkdk FRESSURE MAXINA FLOTTING SECTION %k %ok ok aokkok % %

LETEFVINE LARGEST VALUE OF FMAX.
AMEMAE = 0.0

DO 260 J = 1s MAXFE

IF (FMAX(J) LT. AMFMAX) GO TO 260
ANMFMAX = FMAX(S)

CONTINUF

RANGE OF FLCT ANL CCORDINATE LABELING.
ITV = AMFMAX + 1.0

AMPMAX = ITM

ITM = 1.0 + TIMAX(MAXF)/S0.0

TMAX 11 * 50

PELX TMAX/7 100

DELY = ANMFMAX/10.0

o

ELINMINATE NEGATIVE VALUES.
JFLOT = ©

L0 262 J = 1» MAXF

IF (FMAX(J)) 262, 264, 264
JFLOT = JFLOT 1

+

DUWWMYTCJPLCTY = TIMAX(J)
DU YY(JFLCT) = PMAX(J)
CONTINUE

FLOT VALUES. ,
CALL GRAPHSCIFEUF,» 3000s 4>JFLCT» 1015 1015 TMAX> AMFNAX, 0 Cs O+ 0s
ITT»1TFs21s 14, FUMNMY To DUMMYY » LELXs DELY » TI TLE)

GO TG 5

TUEN COFF FLOTTING ROUTINE.
IF (NFT «EG» 1) CALL SHFAFRG

kAR kR Rk kkkk KEEAD FORMAT SFECIFICATIONS ok ok okokook ok ok e o o ok 3K ok ok o o oK o ok oK ok ok ok o

FORMAT C(12#86)

FORMAT (4F10<0, 315)
FOFMAT (5152 2F 105, 1Xs £4)
FORMAT (215)

FORMAT (215,F15+6)

FORMAT (315,F15.6)

FORMAT (S5F10.0)

FOMMAT (15, 2F10.0)




C
C
C

S008 FORMAT
5009 FORMAT
5010 FORMAT
5011 FORMAT
5012 FORMAT
5614 FORMAT
5015 FORMAT
5099 FORMAT

Axkrkhkhshs®x WKITE FORMAT SFECIFICATIONS Rasskikahsstsbhkkthhsns

6001 FORMAT
1
2
6002 FORMAT
1
6003 FORMAT
6004 FORMAT
6005 FORMAT
6006 FORMAT
6007 FOEMAT

(715
(7F10.0)
(IS5, 4F 105
(15,2F10+5)
(F10.07
415)
(2F10.0,15)
(2F10.-0)

(1H1,9H GAMMA = ,F5¢3,5%XsSHUE = ,FS5.3,

5Xs SHZE = »F8e5s 5Xs BHZCOME = ,F5.2,

SXs BHNJMAX = »12/7)
(2%, 29HNAME J L M N NS» 7%s 3HSMN» 3%

THIM( SMN) 7) '
(2X,A4,51552F10+5)

C1HO,» 26H NUWEER OF COEFFICIENTS CCs11s10HsNULNF) 1551872
(2X» 2HCCs 115 1Hs 2125 1Hs 212, 4H) = 5F10e5)

(1HO, 38H NUMBER: OF COEFFICIENTS DC(NJsNP,NQ)Y 1S,15/)
C2Xs2HD(5 125 1Hs512s1Hs512s4H) = L,F105)

6008 FORMATC1H1, 45SH COMEUSTION FARAMETEKS: INTERACTION INDEX = »F7405.

1

2

3
6009 FORMAT
6010 FORMAT
6011 FORMAT
6012 FORMAT
6013 FORMAT
6014 FORMAT
6015 FORNMAT
6016 FORMAT

1

2

3
6017 FORMAT
6020 FURMAT

I BAN O

6021 FORMAT
6022 FORMAT

B Wo -

6023 FORMAT
1

6024 FORMAT

6025 FORMAT
6026 FORMAT
6027 FORMAT
6028 FORMAT

12X5 1 IHTIME=LAG = »F75/72%X, 17THMOTOR FARAMETERS?t » 19X»
BHGAMMA = ,F7.+5,23H EXIT MACH NUMEBEEK = sF7¢5s
22H LENGTH/DIAMETER = »sF7¢%77)

€2X, 1BHINI TI AL CONEI TIONS//)

(IHOQS?JlHdlSXl?HYHJSX:dHYI:7Xl3HEFSJ7X13HETA//)

(2X,I55F12. SJIDFIO 5)

C(1HO)

C1H1)

(1H 2

(22X, 15, 4F10+5)

ClH1,36H INITIAL CONLDITIONS AKE OF THE FORNMs// |
2Xs WOHUCI,J) = ACCJI*COSIFREQ*T) + ASCJIXSINCFREGKT))»
14H * EXP(DAMP%T)//7/76Xs 1HU»8Xs THDAMFING,
6Xa9HFREEUENCY;lOX;SHAC(d):lOX:SHAS(d)//)

(2Xs 15, AF 15487 |

C1H1s 46H COEFFICIENTS FOR COMFUTATION OF WALL FRESSURE,
10H WAVEFOFRMS//7743Xs27THCOEFFICIENTS IN SERIES FORtv//
22X:5HTHETA:10X:AHTIME:10X05HTHFTA:!OX:SHAXIAL/

‘ 6X:lHd59X:lHZ:3X19H(DEGHEES):5XJlOHDERIVATIVEJ
5X» 10HDERIVATIVE, 5SX» 10HCERIVATIVEZZ)

(2Xs15sF106¢3:F12+1,3F15+7)

(26Xs 1 7THINJECTOK FHKESSURE, 14X, 1SHNOZZLE FRESSURE,
12X, 21HNCZZLE AXIAL VELOCITY/3Xs 4HSTEFs»8Xs 4HTIMEs
FS5¢0s5H LDEGesF5e055H DEGesaFSe0sSH DEGe» .
FSe0sSH LEGesFS5e0s5H LEGesF500s 5H LEGs»

FSe0s5H DEGesFS5+0s5H DEGes¥ 5«0, 5H DEG-:GX:QHYPHI//)

C(lH1»3BH FRESSUKE MAXIMA ANL MININMA AT: Z = sFS5 2
11K THETA = »F4¢1/19H VALUES COMFUTEL: »13/7)

ClH »7Xs8F13.6)

(2Y.//2Y%5s 3THTHE TRANSIENT EFEHAVIOR 1S5 CALCULATED.)

C2X772Xs 3YHTHE LIMIT-CYCLE BEHAVIOR 1S CALCULATEDs)

(2X/772%s 33HTHI S HUN FROLDUCES FLOTTED CGUTFUT.)
(2X/772X,"THE PHANTONM ZONES AKRE ELIMINATED.')

129
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6030 FORMAT (2Xs“IPROFLET MOMENTUM SOUKCE IS NEGLECTED'"/)
6031 FORMAT (2X,»"LROFLET MOMENTUM SOUECE 1S INCLULDED"/)
6032 FORMAT (2X,"NOZZLE NONLINEARITIES NEGLECTEL"/)
6033 FORMAT (22X, "NOZZLE NONLINEARITIES INCLULEL*/)
6034 FCRMAT (1HOs8Xs 1HJs 10X» 2HGEs 10X22HG1 /7))
6035 FORMAT (5X,15,2F12¢5)

END
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SUBRROUTINE PHICFS(NF:Z:THETA:CT:CTH:CZ)

THIS SUBEOUTINE COMPUTES THE COEFFICIENTS NLLDED T0
CALCULATE THE WALL PRESSURE FERTURBATION.

NF IS THE INDEX OF THE COMFLEX SERIES TERM.

Z 1S THE AXIAL LOCATION. ‘

THETA IS THE AZIMUTHAL LOCATION.

CT 1S THE COEFFICIENT IN THE SERIES FOR THE TINME DFhIVATIVE OF
THE VELOCITY FOTENTIAL.

CTH 1S THE COEFFICIENT IN THE SERIES FOE THE THETA DERIVATIVE
OF THE VELOCITY FOTENTIALo_

CZ 1S THE COEFFICIENT IN THE SERIES FOk THE AXIAL DERIVATIVE
OF THE VELOCITY FOTENTIAL.

FARAMETER MX = 5 ’ ' o
COMPLEX Cl, CZ» CAXI, CAX1Z, CRADs CAZIl, CAZITH,

B(MX)» CT» CTHs, CZ
CONMMON /BLK2s M(MX), NS(MX), SJ(MX), B

CI = (002102

CZ = CMFLXC(Z50.0)

CAX1 = CCOSH(CI * B(NF) % C2Z)

CAXIZ = ClI * B(NF)Y » CSINH(CI » B(NF) » CZ)
CHAD = CMFLXC(SJ(NF)»0.0)

EM = MUINF)

ARG = EM * THETA

FSIN = SINCARG)

FCO0S = COSCAERG)

AZI = FCOS

IF (NSC(NP) .EQe 1) AZ1l = FSIN

AZITH = EM * FCOS .

IF (NS(NF) .EQ. 2) AZITH = ~EM * FSIN
CAZI = CMPLXCAZI»0.0)

CAZITH = CMFLXCAZITH, 0.0)

CT = CAZI * CAX] * CRAD
CTH = CAZITH * CAXl * CKAD
CZ = CAZl * CAXIZ x CRAD

RETURN
END
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SUBROUTINE FRSVEL(UBAKs UMS,YsF»UTHs VZ)
TH1 S SUBROUTINE COMPUTES THE WALL FRESSUKE AND VELOCITY.

UBAR 1S THE LOCAL AXIAL STEADY STATE MACH NUMEER.

UMS 15 THE DERIVATIVE OF THE MACH NUMEER FOR THE CASE
WHEN DROFLET MOMENTUM SOUKCES ARE INCLULED.

Y IS THE ARRAY CONTAINING VALUES OF THE MODE-AMFLI TULE

FUNCTIOGNS @NL THEIR LERIVATIVES.

F IS THE.VALUE OF THE WALL FRESSURE FEKTURBATION. .

UTH IS THE TANGENTIAL COMPONENT OF VELOCITY AT THE WALL.

VZ IS THE &XIAL COMFONENT OF VELOCIIY AT THE. WALL.

PARANMETER Mx2=10, MX4=20
DIMENSION Y(MX4), SUMC4), SUMSG(3)
CCMMON /BLK 3/ NUMAX, NLMAX, GAMMA, COEF(3,MX2)

DO 101 = 1, 4
SUMCI) = 0.0
CCNTINUE

DO 201 =
IO 20 J =
JY = J

IF (I «EQe¢ 1) JY = J + NJMAX

I1 =1

IF (1 «EQe 4) 1I = 1

SWM(1) = SM(I) + Y(JY) * COEF(I1,J)
CONTINUE

4

1,
1» NJMAX

FLIN = SUM(1) 4+ UBAR*SWM(3) + UMSkSWM(4)

PNL = 0.0

IF (NLMAX «EQ. 0) GO TO 40

PO 301 = 1, 3

SUMSQCIY = SUMCIDY> * SUM(I)

CONTINUE

FNL = 05 % (5UMSQ(2) 4 SUMSQ(3) - SWsS0C13)

P = =GAMMA * (FLIN + FNL)
VTH = SUM(22>
VZ = SUM(3)

RETURN
END
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20
25

30
35

40
45

60
65

50
55
10

SUBKOUTINE RHS(NU-I1, U, UP)

PARAMETER MX=5, MX2=10, MX4=20s, MX25C=100

DIMENSION UINUY» UF(NL) Do

COMMON RUMX2, 4)» CC4sMX2sMX2)s DIMX2,MX25G),
KEMAX(45MX2)s 1CC4sMX2oMX23s KPEMAX(NMX2),

2 1DP(MX2,MX250), 1LOQIMX2S,MX25E)

CONMMON . /BLK3/ NJMAX, NLMAXs, GAMMA, COEF(3,MX2)

CoOMMON /NLTERM/ NOZNL 2, EXTRA(MX2,4)

DO 10 NJ = 1, NJMAX
NJP = NJ + NJMAX
UF(NJ) = UINJUF)

SL1 =
sL2
SL3
SL4.
SNL =
MAX = KFMAX(1,NJ)

IF (MAaX «EGe 0) GO TO 25

DO 20 KP = 1, MAX

NF = 1CC1,NJ.KP)

SL1 = SL1 + (CC1sNJ»KF) % U(NP))
CONTINUE

MAX = KEMAX(2sNJ)

IF (MAX .EQ. 0) GO TO 35

DG 30 KFP = 1s MAX

" NPP = IC(2,NJ»KF) + NJMAX

SL2 = SLZ2 + (CC2,NJLSKF) * U(NFEF)Y)
CONTINUE

MAX = KFMAX(3,NJ)

IF (MAX +EQ. 0) GO TO 45

DO 40 KFP = }, MAX

NF = ICC(3,NJsKF)

SLL3 = SL3 + (CC(3s,NJ,KF) * RUINF»112)
CONTINUE ‘

IF (NOZNL2 .NE. 1) GO TO 65

MAX = KFMAX(4,NJ)

IF (MAX +EG. O) GO TO 65

D0 60 KFP = 1, MAX

NF = 1CC4,NJ»KF)

SL4g = SL4 + (CC4a4,NJLKP)Y * EXTRAC(NF»112))
CONTINUE .

IF (NLMAX .EGC. O) GO TO 55

MAX = KFOMAX(NJ)

1F (MAX E@. 0) GO T0 55

DO 50 KFG@ = 1, MAX

NF = 1LP(NJ,KFE)

NGF = 1DEQI(NJsKFQ) + NJvaAX

SNL = SNL + (D(NJLKFQ) * UINE) % UINEF))
CONTINUE

UF(NJF) = =(SL1 + SL2 + SL3 + SL4 + SNL)
CONTINUE

RETURN

END
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SUBROUTINE GRAFHS(IBUF,NLOC,LDEVsNTOT,NTICXsNTICY,

ILER (FLD=AES)

1 XMAX:YMAX:XMIN:YMIN;ITITLX,LTITLY,LTITLX:LTITLY:XARRAY;
2 YARRAY.,DELX,DFELY>TITLE)

IDENTIFI

I BUF:
NLOC:
LDEV:
NTOT:
NTICX:
NTICY:
XMAX:
yYMAaX:
AMIN:
YMING
ITITLX:
ITITLY:

LTITLX:
LTITLY:
XARRAY:
Y ARRAY:
DELX:

DELY:

TITLE:

e A . e A A e = e A e e e e A e R e e e R SR e e e AR A R e e e e e P e A e e e e e e AR e 4 A e e e e e e o A -

DIMENSION IBUF(NLCC);XAERAY(NTOT),YAHRAY(NTOT);ITITLX(1);

ER MEANING

ADDKESS OF BUFFER AREA FOR FLOT GUTFUT
NUMEER OF LOCATICNS IN BUFFER AREA (>=2000)
LOGICAL DEVICE NUMBER FOR FLOT

NUMBER OF FOINTS TO BE FLOTTED

NUMBER OF TIC IMAKKS CN ABSCI SSA (>=2)
NUMBER CF TIC MARKS ON ORLINATE (>=2)
UPFER LIMIT OF ABSCISSA LONMAIN

UFPFER LIMIT OF ORDINATE RANGE

LOWER LIMIT CF ABSCISSA DOMAIN

LOWER LIMIT OF ORDINATE KANGE

ABSCI SSA LABEL

OCRDINATE LABEL

NUMBER GF CHAEACTERS IN
NUMBER OF CHARACTERS IN
ABSCISSA POUINTS IN TEEMS OF XMIN~XMAX COORD®S
ORDINATE POINTS IN TERMS COF YMIN-YMAX COORD'S
INTERVALS OF ABSCISSA TIC MAKK LABELING

IN TERMS OF XMIN-XMAX CCORDINATES

INTERVALS OF ORLDINATE TIC MARK LABELING

IN TERMS OF YMIN-YMAX CGORDINATES

LABEL FOR THE WHGLE FRUN

ITITLX
ITITLY

1 ITITLYC1)»YLITC100)
DIMENSION TITLEC1)

A e A Y e A e S A SR e A G S e e Y e e e PR Y e e e

LOGICAL ZERO
DEFINEZERO=NDECeLT+GC» ANDeABS(FEN) eLTee5

1 «OFRNDEC«GTeQ0sAND+ABS(FFN) LToSe*10e**x(-NLEC~1)
DEFINE DNDEC=NDEC-FLD(Os36,ZEF0)®NDEC-FLDC(0O, 36>»ZERO)

DEFINE IFIX(FARGI)=INT(FAERG++5)
DATA J/71/

DATA HEIGHT/.105/

DATA INTEG/ 1/

DATA ABSCIS/Z 8.7

DATA OKRLINAZG6./

DATA ICODEs-1s
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INTEGER
INTEGER
INTEGEK
INTEGER
INTEGER
INTEGER
REAL

"KEAL .

REAL
REAL
FIELDATA AKRAY
FIELDATA ARKAY

INTEGER
INTEGEK
REAL ARKAY
REAL ARKAY

REAL

REAL
FIELDATA ARRAY




OOOO0O00

© -
0

2019

DATA TOPMAR/ 1./

- DATA- BOTMAR/ 15/

REAL LEFMAR
DATA LEFMAR/ 1.9/
DATA RYIMAR/1.1/
DATA FACT/1./-
DATA MAXIS/1/
DATA MLINE/1/
DATA HTLAB/ 1057

19 INITIAL COFPUTATIOV OF DERIVED FARAMETERS
AND INITIAL FLOTS CALL
20 SKIPS PRELIMINARIES FOR 2ND AND SUBSFGUENT CALLS

GO TO (19,20),J
YDITC(1Y = 3¢/19.

TICKLE = HEIGHT/Z2.

ROTFAC = = 3e¢/14¢ % HEIGHT - 4477+ % HEIGHT
STARTL = 6 * HEIGHT + ROTFAC + TICKLE '
SEPLAB = STARTL + 1.5 * HEIGHT :
SYMELH = 0.070- v e

REAL LABSEP

LABSEP = 4. % HEIGHT

ASTART = 2. * HEIGHT

DO 1 I = 2,100

YDITCIY = YDITCI =~ 1) + (2 % MOD(I»2) % 1)7/19.
¥DITC100)Y = YDITC100) + 5

CALL PLOTSC(IBUF,NLOC,LDEV)

CALL FACTORC1le.)

Jd= 2 . . o
CALL SYNBOL CHEIGHT» 36 * HEIGHT + 5. 5:HEIGHT:TITLE:270~:72)
CALL PLOT(lesr =~ o5 - 3

DO 2 1 = 1,100 B
CALL PLOTCQ+>YDITC(1I3s3 - MOD(I:2))

DO 33 1 = 1,100 B
YDITCI) = YDIT(I) = ABSCIS - RYTMAB )

XPAGE = BOTMAR + ORDINA

GO TO 2019

XPAGE = BOTMAR + ORDINA + TOFMAR
CALL WHERE(RXPAGE, RYPAGE,FACT)
YPAGE = RYPAGE - LEFIAR

CALL PLOT(XPAGE,YPAGE, - 3

CALL FACTOR(FACT)
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DO 100 I = 1,MAXIS
100 CALL MYAXIS

C ——————————— - - — R = - R G W e m S Sm G G = = - ——— - - -—— - ———
C . :

C DRAW POINTSs, OFTIONAL CENTERLINE,AND PAGE SCI SSORLINE

c MLINE TIMES ' :

Cc

C ~memmececm e —c————— ——m——e————— ————m——— e e — e ————————————————— -

DO 200 1 = 1,MLINE
200 CALL MYLINE
RE TURN

c

c .

C ENTRY POINT SHPARG

C TERMINATE PLOTTING SEQUENCE
C
c

ENTRY SHPARG
CALL WHERE(RXFAGEs RYFAGEsI)
CALL PLOTC(RXFAGE,»KYFAGE»999)

RETURN
C _____________ g G v - - - T S G G T T T T S R St e S S D e S e TR G G g W G W Am Sm R Y e e
C
C SUBROUTINE MYAXIS C(INTERNAL)
c
(ol Lt R R L R L L - — N o W S S A e =
SUBROUTINE MYAXIS :
STARTL = 6 * HEIGHT + KOTFAC + TICKLE
IMAX = IFIX((YMAX - YMIN)/DELY)
TICSEP = ORDINA/C(ABS(NTICY)> - 1)
CALL DENDEC(YMAX.,DELY,NDEC)
K= 1 ‘
N = (ABS(NTICY)/IMAX) - 1 + MOD(ABS(NTICY)>,2)
DO 9 1 = 0,IMAX
GO TO (11!,12),K
11 IFC(2 % 1.LT«IMAX)GC TO 12
CALL AXLAB(O+,ITITLY>LTITLY>HTLAB)
K= 2
12 FPN = YMAX -~ I * DFLY
IF(ZEROYFFN = 0.
TMID = 1.

XPAGE = - 1 * ORDINA/IMAX =~ 5 % HEIGHT
IFCFFN)>113,122,118 :

113 IF(NDEC - &2)115,1145112

114 YPAGE = STARTLE@5CHAR
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115
116

117
119
120
121

122

118

123
124
125
126
127
128
112

110

24

25

813
814

815

GO TO 112

IFCNDEC ~ 1)117,116s112

YPAGE = STARTL - HEIGHT@ACHAR o
60 TO 112 ' S
IFCABSC(FPN) - 100.)11951165116
IFCABSCFPN)Y - 10.3120,121-121
YPAGE = STARTL - 3 * HEIGHT62CHAR'
GO TO 112 e

YPAGE = STARTL - 2 % HEIGHT@3CHAR
GO TO 112 Tt

YPAGE = STARTL - &4 * HEIGHTe 1CHAR
GO0 TO 112 R
IFC(NDEC - 2)123,116,112

IF(NDEC -~ 1)125,1245112

IFCFFN - 10.312151165116

IFCFPN - 10.)122,120,126

IFCFPN - 100.)120,121,127

IFCFPN - 1000212151165 128

IFCFPN = 10000+)11651145114

NNDEC = DNDEC ‘
CALL NUNBER(XPAGE:YPAGE:HEIGHT:FFN:270-:NNDEC)
XPAGE = =~ I * (ORDINA/IMAX) '

LO 10 JJ = 1,N

YPAGE = TICKLE * TMID

CALL PLOT(XPAGE»YPAGE, 3)

YPAGE = YPAGE * ¢ - 1 + I/IMAX #* «5)
CALL PLOT(XPAGE,YPAGE,2)

IFCI/ZIMAX) 110511059

YPAGE = O ,

CALL PLOT(XPAGE>YFAGE, 3)

XPAGE = XPAGE ~ TICSEP

CALL FLOT(XPAGE, YFAGE,2)

TMID = «5

CONTINUE

CONTINUE

K= 1

IMAX = IFIXCC(XMAX ~ XMIN)/DELX)
TICSEP = ABSCIS/C(NTICX - 1)

XPAGE = - ASTART - ORDINA

CALL DENDECCXMAXs DELX»NDEC)

DO 28 I = 0,IMAX

STARTL = =~ I * ABSCIS/IMAX

GO TO (24,25):K

1IF¢2 * I1.LT.IMAX)GO TO 25 :

CALL AXLABC270.,ITITLX,LTITLXsHTLAB)
K= 2 :
XPAGE = - ASTART < ORDINA

FPN = XMIN + 1 * DELX

IFCZEROIFPN = Q.

IFCFPN)813;8225818

IF(NDEC - 2)815,814,23 Sl
YPAGE = STARTL + 16«77« * HEIGHT&S5CHAR
GO TO 23

IFCNDEC - 1)817+816,23

137




81

81
81
g2

82
ge

81
82
g2
g2
g2
82
ae
23
28

27
26

sNeNeNeNy]

17

6 YPAGE = STARTL + 25./14. * HEIGHT@A4CHAR
GO TO 23 ; :
7  1F(ABS(FPN) - 100.)819,8165816

9  I1F(ABS(FPN) - 10.)820,821,821

0 YPAGE = STARTL + 11./14. * HEIGHT@2CHAR
GO TO 23 _ _—

1  YPAGE = STARTL + 9./7. * HEIGHT@3CHAR
GO TO 23

2  YPAGE = STARTL + 2./7. * HEIGHT®1CHAR
GO TO 23 :

8 IF(NDEC - 2)823,8616,23

3 IFCKNDEC - 1)825,824,23
4 IF(FPN - 10.)821,816,816
5 IF(FFN - 10.)822,820,826
6 1FC(FPN - 100.)820,821,827
7 IF(FPN - 1000.)821,816,828
g IF(FFN - 10000.)816,814,814
NNDEC = DNDEC . : :
CALL NUMBERCXPAGEsYPAGE,HEIGHT, FPN»270.,NNDEC)

N = (NTICX/IMAX) - 1 + MODI(NTICXs2)
DO 26 I = IMAX»0s, - 1

TMID = 1.

YFAGE = - I * ABSCIS/IMAX

DO 27 JJ = 1sN

‘XPAGE = =~ ORDINA - TICKLE * TMID

CALL PLOT(XPAGE>YPAGE, 3>
XPAGE = XPAGE + (TICKLE + FLD(0s,3621.NE«0) * TICKLE) * TMID
CALL PLOT(XPAGE-YPAGE,2)
IFCI)111,2651101

1 XPAGE = -~ ORDINA
CALL PLOT(XAPAGE,YPAGE, 3)
YPAGE = YPAGE + TICSEP
CAaLL. PLOT(XPAGE,YPAGE, 2>
TMID = 05
CONTINUE
CONTINUE
RETURN

SUBROUTINE MYLINE :

ITOP = IF1IX((ABSCIS + RYTMAR + «5)/11. * 99.)
IBOT = IFIX(REYTMAR/J1s % 99)

DO 17 1 = 1,NTOT

XPAGE = (YARKAY(I) - YMAX)I/Z(YMAX - YMIN) * ORDINA
YPAGE = (XMIN -~ XARRAY(ID))/(XMAX - XMIN) * ABSCIS
CALL SYMBOL(XFAGE,YPAGE» SYMELH»INTEGQ» 270.>1CODE)
IF(NTICY.GE«0)GO TO 22

XPAGE = = ORDINA/Z2.

YPAGE = =~ ABSCIS

CALL PLOT(XPAGE:YPAGE» 3>

PO 18 1 = IBOT>ITQOP
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18
22

a1

aoaooaq

30

31

13

15

14

.......... e o e e

CALL FLOT(XPAGE,YDIT(1)»3 - MOD(I»2))
XPAGE '
- YPAGE

DO 21 1

CALL PLOT(XPAGE:YDIT(I):3 - MOD(I;2))

RETURN

- S o e . = O =Y O SV S A S A A G - G - S S PV A e P e = A S A A O G A = o v = -

SUBROUTINE AXLAEB ¢ INTERNAL)

SUBROUTINE AXLAB(ANGLE,IBCD,NCHARX,>HEIGHT)
DIMENSION IBCD(7)

LOGICAL S
INTEGER Q@5Qr/°"
K=2

NCHAR

S = <FALSE.

IFCABSC{ANGLE) «GT.-1)G0O TO 30
XPAGE ORDINA/ 2.
YPAGE
GO TO 31

XPAGE =

YPAGE

LSTART
IF(LSTART«EQe.
LOOK =

NCHAR

S = «TRUE.
CALL SYMBOL(XPAGE»>YPAGEsHEIGHT> I BCDs> ANGLEs NCHAR)
IF(S)CALL SYMBOL(999.,999.,2 % HEIGHT/3, 050> ANGLE,2)

RETURN.

SUBROUTINE DENDEC (INTERNAL)

SUBROUTINE DENDEC( @MAX> DEL.@sNDEC)
IFCINTCABS(GMAX)Y).GE-10)G0 TO S
IFC(AMOD(ABS(QMAX

NDEC =
RETURN

NDEC =

RETURN

NDEC =

RETUEN
END

ABSCIS - EYTMAR -
CALL PLOT(XPAGE,YPAGEs3)

~ NCHAR * HEIGHT/2

- ORDINA - LABSEP
ABSCIS/ 2.
6 * MOD(NCHARs6) -~
12)ILSTART = 24
NCHAR/6 + 1.1
IFC(LSTART.EQe.
IFCFLDC(Os12»
GO TO 14
IFCFLDCO» 65" >

+ NCHAR * HEIGHT/2

6)GO T0 13
*»5').EQ.FLD(LSTART» 12, IBCDC(L.OOK>)>)G0O TO 15

') «NE.FLD(30s 6, IBCD(LOCK -~ (
"IFCFLD(0»65"'5"')«NE«FLD(0» 6, IBCD(LOCK)>>GO TO 14~

125360 TO 14

DEL@)5+1)+GE:.01)G0 T0 7
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