
ZERO-SHOT OBJECT-GOAL NAVIGATION USING MULTIMODAL GOAL
EMBEDDINGS

A Dissertation
Presented to

The Academic Faculty

By

Gunjan Aggarwal

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
College of Computing

Department of Computer Science

Georgia Institute of Technology

May 2023

© Gunjan Aggarwal 2023

ZERO-SHOT OBJECT-GOAL NAVIGATION USING MULTIMODAL GOAL
EMBEDDINGS

Thesis committee:

Dr. Dhruv Batra

Georgia Institute of Technology & FAIR, Meta

Dr. Judy Hoffman

Georgia Institute of Technology

Dr. Devi Parikh

Georgia Institute of Technology & Gen-
erative AI, Meta

Date approved: April 21, 2023

What we learn with pleasure we never forget.

Alfred Mercier

To my sister Chetna Aggarwal.

ACKNOWLEDGMENTS

It was the most rewarding and enriching experience of my life so far.

To Dhruv Batra, my thesis advisor and the person behind all the confidence I have in

myself. I have been immensely amazed by his in-depth knowledge of the ML domain

and his prowess of making connection between distinct concepts and piecing everything

together. Dhruv is also an amazing teacher - his Deep Learning class was the key to landing

an internship and thereafter a job offer in these stressful times. I would like to thank Dhruv

for his support throughout my Masters.

To Devi Parikh, for giving me the opportunity to conduct academic research and boosting

my career path. Her exceptional attention to detail, ability to articulate thoughts, and prompt

responses have significantly contributed to my growth as a researcher. Devi has been

a constant source of support throughout my Master’s journey, providing guidance and

assistance whenever I felt lost, both academically and personally. Working directly with her

in the field of Creative AI was an absolute privilege. From brainstorming ideas to project

implementation, from steering the project in the right direction to writing, submission,

website creation, and ultimately presentation, the entire experience was a valuable learning

opportunity for me. Devi is not only an inspiration to me as a researcher, but also as a person,

making her my favorite Human of AI. I am truly grateful for everything she has done for me.

To Judy Hoffmann, for providing invaluable inputs and helping me build a strong

foundation for my thesis project. Additionally, her course, Machine Learning with Limited

Supervision in Fall 2021, was my favorite from my Master’s program. This course helped

me develop the essential skill of reading and comprehending research papers, which proved

to be immensely beneficial for my research projects later on.

I am grateful to Devi and Dhruv for giving me the golden opportunity to attend CVPR,

my first ever in-person conference and NeurIPS, my first in-person conference as a presenter.

I would also like to thank them for having annual lab retreats that allowed me to form

v

stronger connections with my lab mates.

To Abhishek Sinha, for being a wonderful mentor during my first Deep Learning project

and guiding me throughtout my first submission to a conference workshop. He made settling

in a new continent less daunting. Today, I would not be where I am without him.

I would like to thank each and every member of the Computer Vision Machine Learning

& Perception (CVMLP) Lab for providing a lovely atmosphere and constructive feedback

during lab presentations during my Masters. This includes – Ram Ramrakhya, Joanne

Truong, Naoki Yokoyama, Karmesh Yadav, Harsh Agrawal, Samyak Datta, Erik Wijmans,

Nirbhay Modhe, Meera Hahn, Andrew Szot, Gunjan Chhablani, Harsh Maheshwari, Mukul

Khanna and Pranav Putta. Arjun Majumdar - for being a great mentor and collaborator,

Sameer Dharur - for being available through critical moments during my Masters, Ram-

prasaath Selvaraju - for providing timely career advice towards the end of my degree.

My special thanks to Ram Ramrakhya - from being my go-to person for silliest doubts,

to cooking amazing Indian food, he has been a dear friend and a constant support system at

Georgia Tech. I would like to thank him for making my Masters life better in every aspect.

I would like to thank Mayank Lunayach, for all the positivity, encouragement and

constantly rooting for me through past 2 years. Thank you for educating me about football

and preparing me to watch FIFA World Cup 2026 in USA.

I would also like to thank Soumajit Sen, for being there since the start, celebrating

all the achievements and lifting me up during failures. To Abhineet, Ashwin, Mukund,

Mayank, Pradeepti, Soumajit, Swapnil and Tanya for the laughter, dance sessions, board

games sessions and all the fun memories during these past 2 years.

To my grand-parents Sita Ram Aggarwal and Gita Aggarwal, for every-day morning

video calls, helping my happily kick-start the day. To my mother, Sunita Aggarwal, for her

relentless sacrifices over the years, for her unconditional love and support. To my brother,

Ashish Aggarwal, for all the funny memes exchange and light conversations to keep me

sane. To our lovely pet Snowie, just for existing in our lives.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . ix

List of Figures . x

Summary . xii

Chapter 1: Introduction . 1

Chapter 2: Related Work . 5

2.1 Image-Text Alignment Models. 5

2.2 CLIP for Visual Navigation. 5

2.3 Zero-Shot ObjectNav. 6

Chapter 3: Approach . 7

3.1 Preliminaries: Image-Text Alignment and Image-Goal Navigation 7

3.1.1 Image-Text Alignment Models. 7

3.1.2 Image-Goal Navigation. 7

3.2 Training Framework . 8

3.2.1 Learning Semantic-Goal Navigation 9

3.2.2 Zero-Shot Object-Goal Navigation 10

vii

Chapter 4: Experiments . 11

4.1 Experimental Setup . 11

4.1.1 Training Dataset. 11

4.1.2 Agent Configurations. 12

4.1.3 Evaluation Datasets. 12

4.1.4 Implementation Details. 13

4.1.5 Baselines. 13

4.1.6 Fully-Supervised ObjectNav. 14

Chapter 5: Results . 15

5.1 Zero-Shot Object-Goal Navigation . 15

5.2 Comparison with ZER without Encoder Pretraining and Training Environ-
ment Diversity . 16

5.3 Additional Ablations . 17

5.3.1 Qualitative Analysis . 17

Chapter 6: Discussion and Future Work . 20

Appendices . 22

Appendix A: Additional details and results . 23

References . 35

viii

LIST OF TABLES

5.1 Zero-shot ObjectNav performance on Gibson [4], HM3D [19], and MP3D [8]
validation. All methods use a single RGB sensor for agent observations ex-
cept CoW [21], which also uses depth observations and OVRL [16], which
uses GPS+Compass for ObjectNav. Our approach (ZSON) substan-
tially improves on previous zero-shot methods and narrows the gap to SOTA
fully-supervised methods such as OVRL [16], which is not zero-shot and
provided for reference. We report ZSON results averaged over three evalua-
tion trials. The standard deviation in ZSON ObjectNav SR is 0.02% in
Gibson, 0.46% in HM3D, and 0.11% in MP3D. ∗indicates reproduced results 16

5.2 Comparison with ZER [20] using a ResNet-9 and the Gibson dataset
with our approach. Learning SemanticNav (Ours) outperforms learning
ImageNav then language grounding (ZER [20]). 17

5.3 Ablations of the visual encoder and dataset used for training our SemanticNav
agents. 18

A.1 Comparison of ObjectNav methods. Open-world methods are not lim-
ited to a closed set of object categories. Zero-shot methods do not use
ObjectNav annotations for training. 23

A.2 Results of finetuning with ObjectNav annotations. ∗indicates reproduced
results . 24

A.3 Additional ablations of the visual encoders used for training our SemanticNav
agents. 25

A.4 Hyperparameters used to train SemanticNav agents. 26

ix

LIST OF FIGURES

1.1 We propose projecting navigation goals (from images or text) into a common,
semantic embedding space using a pre-trained vision and language model
(CLIP). This allows agents trained with image-goals to understand goals
expressed in free-form natural language (e.g., “Find a bathroom sink.”).
Accordingly, our approach enables open-world object-goal navigation in a
zero-shot manner – i.e., without using ObjectNav rewards or demonstrations
for training. 2

3.1 We tackle both ImageNav and ObjectNav via a common SemanticNav
agent. This agent accepts a semantic goal embedding (sg), which comes
from either CLIP’s visual encoder (CLIPv) in ImageNav or CLIP’s textual
encoder (CLIPt) in ObjectNav. Our agent has a simple architecture: RGB
observations are encoded with a pretrained ResNet-50, and a recurrent policy
network predicts actions using encodings of the goal sg, observation, and
the previous action at−1. 8

5.1 Qualitative examples for navigating to complex object descriptions. For
each trail, the agent is spawned at the start position looking into the house
(i.e., to the right on the maps) and given one of four instructions. Each
instruction is run five times with the path for the first trail highlighted
in bold colors. Our agent appropriately navigates to the correct rooms,
demonstrating an understanding of both explicit (“Find a kitchen sink”) and
implicit (“Find a sink and a stove”) room information. 19

A.1 Qualitative example of successful navigation to the “stairs.” The number of
steps taken by our agent over five trials ranges from 80 to 102. 28

A.2 Qualitative example of successful navigation to a “table.” The number of
steps taken by our agent over five trials ranges from 60 to 98. 29

A.3 Qualitative example of successful navigation to a “television.” The number
of steps taken by our agent over five trials ranges from 78 to 148. 29

x

A.4 Qualitative example of “Find a refrigerator.” The agent succeeds in 4 of 5
trials (green) from the same starting position. In the failure (red) the agent
stop short of fridge. The number of steps ranges from 83 to 99. 30

A.5 Qualitative example of “Find a bathtub.” The agent succeeds in 3 of 5 trials
(green) from the same starting position. In the two failures (red) the agent
never enters the bathroom. The number of steps ranges from 58 to 114. . . . 31

A.6 Qualitative example of “Find a sofa.” The agent succeeds in 3 of 5 trials
(green) from the same starting position. In the two failures (red) the agent
stops in the dining area (center). The agent never enters the room to the
right with two “sofas”. The number of steps ranges from 174 to 501. 32

A.7 Qualitative example of “Find a desk.” The agent fails in all five trials (red),
stopping at a table in 3 of 5 runs. The agent never enters the room in the
bottom right that contains a “desk”. The number of steps ranges from 49 to
114. 33

A.8 Qualitative example of “Find a dresser.” We run five trails from two starting
positions (A and B). From Start A the agent is able to find a dresser in 4 of
5 trials (green). However, when the starting location is shifted further from
the bedroom (Start B) the agent enters the kitchen and fails in all five runs
(red), stopping near the kitchen cabinets. These failures might be due to
the similarity in appearance between cabinets and dressers. The number of
steps ranges from 29 to 109. 34

xi

SUMMARY

My thesis presents a scalable approach for learning open-world object-goal navigation

(ObjectNav) – the task of asking a virtual robot (agent) to find any instance of an object

in an unexplored environment (e.g., “find a sink”). The approach is entirely zero-shot –

i.e., it does not require ObjectNav rewards or demonstrations of any kind. Instead, we

train on the image-goal navigation (ImageNav) task, in which agents find the location

where a picture (i.e., goal image) was captured. Specifically, we encode goal images

into a multimodal, semantic embedding space to enable training semantic-goal navigation

(SemanticNav) agents at scale in unannotated 3D environments (e.g., HM3D). After

training, SemanticNav agents can be instructed to find objects described in free-form

natural language (e.g., “sink,” “bathroom sink,” etc.) by projecting language goals into

the same multimodal, semantic embedding space. As a result, our approach enables open-

world ObjectNav. We extensively evaluate our agents on three ObjectNav datasets

(Gibson, HM3D, and MP3D) and observe absolute improvements in success of 4.2% -

20.0% over existing zero-shot methods. For reference, these gains are similar or better than

the 5% improvement in success between the Habitat 2020 and 2021 ObjectNav challenge

winners. In an open-world setting, we discover that our agents can generalize to compound

instructions with a room explicitly mentioned (e.g., “Find a kitchen sink”) and when the

target room can be inferred (e.g., “Find a sink and a stove”).

Publications

• ZSON: Zero-Shot Object-Goal Navigation using Multimodal Goal Embeddings

Gunjan Aggarwal*, Arjun Majumdar*, Bhavika Devnani, Judy Hoffman, Dhruv Batra

The Thirty-Sixth Annual Conference on Neural Information Processing Systems

(NeurIPS 2022).

xii

CHAPTER 1

INTRODUCTION

Imagine asking a home assistant robot to find a “flat-head screwdriver” or the “medicine

case near the bathroom sink.” Building such assistive agents is a problem of deep scientific

and societal value.

To study this problem systematically, the embodied AI community has rallied around

a problem called object-goal navigation (ObjectNav) [1]. Given the name of an object

(e.g., “chair”), ObjectNav involves exploring a 3D environment to find any instance of

the object. The last few years have witnessed the development of new environments [2, 3, 4,

5, 6], annotated 3D scans [7, 8, 9], datasets of human demonstrations [10], and approaches

for ObjectNav [11, 12, 13, 14, 15, 16], cumulatively leading to strong progress. For instance,

the entries in the annual Habitat challenge [17] have jumped from 6% success (DD-PPO

baseline in 2020) to 53% success (top entry in ongoing 2022 Habitat Challenge public

leaderboard).

While this progress is exciting, we believe that a subtle but insidious assumption has

snuck into this line of work: the closed-world assumption. We started by discussing

an open-world scenario where a person may describe any object in language (e.g., “flat-

head screwdriver”), but ObjectNav is currently formulated over a closed predetermined

vocabulary of object categories (“chair”, “bed”, “sofa”, etc.), with approaches using pre-

trained object detectors and segmenters for these categories [10, 11, 12, 13]. While this

assumption may have been essential to get started on this problem, it is now important to

move beyond it and ask – how can embodied agents find objects in an open-world setting?

In this work, we develop an approach for ObjectNav that is both zero-shot, i.e., does

not require any ObjectNav rewards or demonstrations, and open-world, i.e., does not

require committing to a taxonomy of categories. Our key insight is that we can create a

1

Semantic-Goal
Embedding Space

“Find a
bathroom sink”

ImageNav Training

Zero-Shot
ObjectNav

Image-Goal

Figure 1.1: We propose projecting navigation goals (from images or text) into a common,
semantic embedding space using a pre-trained vision and language model (CLIP). This
allows agents trained with image-goals to understand goals expressed in free-form natural
language (e.g., “Find a bathroom sink.”). Accordingly, our approach enables open-world
object-goal navigation in a zero-shot manner – i.e., without using ObjectNav rewards or
demonstrations for training.

visiolinguistic embedding space to decouple two problems – (1) describing and representing

semantic goals (“chair”, “brown chair”, picture of brown chair) from (2) learning to

navigate to semantic goals.

To represent semantic goals (1), we leverage recent advances in multimodal AI research

on learning a common embedding space for images and text using large collections of

image-captions pairs. Specifically, we use CLIP [18], a method for training dual vision and

language encoders that produce similar representations for paired data such as an image

and its caption. As shown in Figure 1.1, we use CLIP to transform image-goals (e.g., a

picture of the kitchen island) and object-goals (e.g., “bathroom sink”) into semantic-goals

representing navigation targets. Our main observation is that a semantic-goal produced from

an image (e.g., a picture of the bathroom sink) should be similar to semantic goals produced

from descriptions of the same target (e.g, “bathroom sink”). Thus, we hypothesize that these

2

modalities (images and language) can be used interchangeably for creating semantic goals.

Accordingly, for learning to navigate to semantic goals (2), we train agents using image-

goals encoded via CLIP’s image encoder. Then, we evaluate the learned navigation policy

on ObjectNav, where goals are specified in language (e.g., “chair”) and encoded via

CLIP’s text encoder. As a result, our agents perform ObjectNav without ever directly

training for the task – i.e., in a zero-shot manner.

An important advantage of our approach is that it reduces the data labeling burden.

Image-goals can be procedurally generated by randomly sampling points in 3D environ-

ments. This is in stark contrast to ObjectNav, which requires annotating 3D meshes [7, 8,

9] and potentially collecting large-scale human demonstrations [10] for training. Secondly,

the interface to our agents is a natural language description – matching the grand vision that

inspired the ObjectNav task. Through this interface we can refine object-goals by, for

instance, specifying object attributes (“brown chair”) or indicating which room the object

is in (“bathroom sink”) – which is not possible with traditional ObjectNav agents.

We perform large-scale experiments on three ObjectNav datasets – Gibson [4],

MP3D [8], and HM3D [19]. Our zero-shot agent (that has not seen a single 3D semantic

annotation or ObjectNav training episode) achieves a 31.3% success in Gibson environ-

ments, which is a 20.0% absolute improvement over previous zero-shot results [20]. In

MP3D, our agent achieves 15.3% success, a 4.2% absolute gain over existing zero-shot

methods[21]. For reference, these gains are on par or better than the 5% improvement in

success between the Habitat 2020 and 2021 ObjectNav challenge winners. On HM3D,

our agent’s zero-shot SPL matches a state-of-the-art ObjectNav method [16] that trains

with direct supervision from 40k human demonstrations.

Additionally, we study two techniques that are used in our approach to improve zero-shot

ObjectNav performance. First, we find that pretraining the visual observation encoder

has an outsized effect on zero-shot transfer. Specifically, success on the ImageNav training

task improves 4.5% - 5.8%, while downstream success on zero-shot ObjectNav improves

3

by 9.4% - 10.4%. Similarly, increasing the number of training environments (from 72 to

800) leads to a small drop in ImageNav success, but results in a substantial improvement

of 6.6% in success on zero-shot ObjectNav.

Finally, we qualitatively experiment with an open-world setting and observe that our

SemanticNav agents can properly change behavior in response to instructions that include

room information. For instance, when finding a “bathroom sink” the agent does not enter

the kitchen, and when looking for a “kitchen sink” it does not enter bathrooms. Furthermore,

we observe similar room awareness patterns for instructions such as “Find a sink and a

stove,” where the target room (“kitchen”) can be inferred. Source code for reproducing our

results will be publicly released.

4

CHAPTER 2

RELATED WORK

This thesis builds on research studying image-text alignment techniques (e.g., CLIP [18])

and their use in visual navigation. In this section, we discuss methods most related to our

proposed approach.

2.1 Image-Text Alignment Models.

Recent progress in vision-and-language pretraining has led to models such as CLIP [18],

ALIGN [22], and BASIC [23] that can perform open-world image classification, and achieve

strong performance on standard computer vision benchmarks (e.g., ImageNet [24]). These

models learn visual representations by training on massive datasets of image-caption pairs

scraped from the web (e.g., the 400M pairs used for CLIP or 6.6B for BASIC). In this work,

we take advantage of the semantic representations learned by CLIP to project navigation

goals (e.g., a picture of a brown chair or “brown chair”) into a multimodal, semantic-goal

embedding space.

2.2 CLIP for Visual Navigation.

A straightforward approach for using CLIP in a visual navigation agent is to process the

agent’s observations and navigation instructions (e.g., “Find a chair”) with the CLIP image

and text encoders, then learn a navigation policy that operates on these embeddings. Such a

solution was explored in EmbCLIP [25] with promising results. However, this approach

requires ObjectNav rewards or demonstrations to supervise the navigation policy, which

is difficult and costly to collect at scale. As a result, existing training datasets tend to be

small and agents generalize poorly to new settings. For instance, EmbCLIP only achieves

5

an 8% success rate in finding objects that were not used in training. By contrast, we train

using the image-goal navigation task, which does not require annotated environments. Thus,

we are able to scale training to 800 unannotated 3D scenes, which substantially improves

generalization (as demonstrated in ??).

2.3 Zero-Shot ObjectNav.

Two recent works [20, 21] directly address our motivation (zero-shot ObjectNav) and

are most related. First, ZER [20] proposes a two-stage framework in which an image-goal

navigation (ImageNav) agent is first trained from scratch. Then, independent encoders are

trained to map from various modalities (including language) into the image-goal embedding

space. A key challenge with this approach is that image-goal embeddings may not capture

semantic information because semantic annotations are not used in ImageNav training.

Instead, an ImageNav agent trained from scratch may learn to pattern match visual obser-

vations and goal image embeddings. By contrast, our approach reverses these two stages,

with CLIP pretraining representing stage one. Thus, our approach uses a goal embedding

space that captures semantics by design. We empirically demonstrate the benefits of our

proposed approach in ??.

In concurrent work, CLIP-on-Wheels (CoW) [21] uses a gradient-based visualization

technique (GradCAM [26]) with CLIP to localize objects in the agent’s observations. This is

combined with a heuristic exploration policy to enable zero-shot object-goal navigation. In

contrast, we demonstrate that learning a navigation policy can substantially outperform the

heuristic exploration approach proposed in [21] without using explicit object localization

techniques.

6

CHAPTER 3

APPROACH

3.1 Preliminaries: Image-Text Alignment and Image-Goal Navigation

3.1.1 Image-Text Alignment Models.

Multimodal alignment models aim to learn a mapping from images v and text t into a

shared embedding space such that representations for corresponding image-text pairs (e.g.,

a picture and its caption) are similar. Recent image-text alignment models [18, 22, 23] use

a dual-encoder framework and optimize the InfoNCE [27] contrastive learning objective,

which maximizes cosine similarity between representations of matching image-text pairs

and minimizes similarity for non-matching pairs. In this work, we leverage CLIP [18],

which was trained on 400M image-text pairs that cover a wide range of visual concepts.

3.1.2 Image-Goal Navigation.

In image-goal navigation (ImageNav) [28], agents explore an environment to find the

position where a goal-image vg was captured. We consider a setting in which both the

goal-image and the agent’s observations consist of RGB images taken from the agent’s

egocentric point of view. An agent can select from four actions: MOVE_FORWARD by

0.25m, TURN_LEFT by 30◦, TURN_RIGHT by 30◦, or STOP. The agent succeeds if it

selects STOP within 1.0m of the goal.

An ImageNav episode is uniquely defined by a starting position and (reachable) goal

viewpoint within a 3D environment. Thus, ImageNav training data can be procedurally

generated without annotating the scene – i.e., the objects and rooms do not need to be labeled.

As a result, the size of an ImageNav dataset is only limited by the number of environments

available for training. In this work, we use ImageNav to train visual navigation agents at

7

RGB
Observation

ImageNav
Goal

Semantic
Goal

ResNet-50 Policy
Network

SemanticNav
Agent

Semantic
Goal

ObjectNav
Goal

“sofa”
Training Evaluation

Actions

Figure 3.1: We tackle both ImageNav and ObjectNav via a common SemanticNav
agent. This agent accepts a semantic goal embedding (sg), which comes from either CLIP’s
visual encoder (CLIPv) in ImageNav or CLIP’s textual encoder (CLIPt) in ObjectNav. Our
agent has a simple architecture: RGB observations are encoded with a pretrained ResNet-50,
and a recurrent policy network predicts actions using encodings of the goal sg, observation,
and the previous action at−1.

scale (in terms of the number of training environments).

3.2 Training Framework

This section describes our framework for training visual navigation agents. We use CLIP [18]

to produce semantic goal embeddings of image-goals (e.g., a picture of the sink) and object-

goals (e.g., “sink”). This allows training semantic-goal navigation agents at scale using

image-goals in HM3D environments [19], then deploying these agents for object-goal

navigation in a zero-shot manner. In other words, our agents execute object-goal navigation

without ever directly training for the task.

8

3.2.1 Learning Semantic-Goal Navigation

As illustrated in Figure 3.1 (top-left), given an image-goal vg, we use a CLIP visual encoder

CLIPv to generate a semantic goal embedding sgv = CLIPv(v
g) that is used to guide

navigation. Conceptually, encoding image-goals with CLIP preserves semantic information

about the goal, such as visual concepts that might be described in image captions (e.g., “a

sofa in a living room”). However, semantic goal embeddings are less likely to include low-

level features (e.g., the exact patterns in a wood floor) that do not correlate with web-scraped

captions. While removing low-level information might make the navigation task more

difficult, our goal is to learn a policy that transfers to ObjectNav in which agents only

receives high-level goals (e.g., “Find a sofa”). As an added benefit, generating semantic

goal embeddings as a pre-processing step substantially improves training time (by ∼3.5x).

Our agent architecture is shown in Figure 3.1. At each timestep t, our agent receives an

egocentric RGB observation vt and a goal representation sgv. The observation is processed by

a ResNet-50 [29] encoder, which is pretrained on the Omnidata Starter Dataset (OSD) [30]

using self-supervised learning (DINO [31]) following the pretraining recipe presented

in OVRL [16]. The output from the ResNet-50 encoder is concatenated with the goal

representation sgv and an embedding of the agent’s previous action at−1 and then passed

to the policy network composed of a two-layer LSTM. The policy network outputs a

distribution over the action space.

We train our SemanticNav agent with reinforcement learning (RL). During RL train-

ing, we use two data augmentation techniques: color jitter and random translation (adapted

from [16]). Specifically, we train with DD-PPO [32] using a reward function proposed for

ImageNav by [20]:

rt = rsuccess + rangle-success −∆dtg −∆atg + rslack (3.1)

where rsuccess = 5 if STOP is called when the agent is within 1m of the goal position (and

9

0 otherwise), rangle-success = 5 if STOP is called when the agent is within 1m of the goal

position and the agent is pointing within 25◦ of the goal heading – i.e., the direction the

camera was pointing when the goal image was collected – (and 0 otherwise), ∆dtg is the

change in the agent’s distance-to-goal – i.e., the geodesic distance to the goal position, ∆atg

is the change in the agent’s angle-to-goal – i.e., the difference between the agent’s heading

and the goal heading – but is set to 0 if the agent is greater than 1m from the goal, and

rslack = −0.01 to encourage efficient navigation. In general, this reward function encourages

both reaching the goal and looking towards the goal before calling STOP, which matches

the requirements of the downstream ObjectNav task.

3.2.2 Zero-Shot Object-Goal Navigation

Recall that in ObjectNav [1], agents are given a target category (e.g., “sofa” or “chair”)

and must locate any instance of that object (i.e., “any sofa” or “any chair”). Similar to

ImageNav, ObjectNav requires exploring new environments that the agent has never

seen before. However, in ObjectNav, the goal (e.g., “sofa”) provides a minimal amount

of information about where the agent must go and it requires recognizing any version of the

goal object in the new scene.

To address this task, we transform object-goals og (e.g., “sofa”) into semantic goal

embeddings using the CLIP text encoder CLIPt, which results in the semantic goal sgo =

CLIPt(o
g). CLIP aligns image and text, thus the semantic goals from text sgo should be

close (in terms of cosine similarity) to the CLIP visual embeddings sgv used in training. To

keep our approach simple and easily reproducible, we do not use any prompt engineering

(e.g., using a template such as “A photo of a <>”). Instead, we simply use the object

name (e.g., “sofa”) as the object-goal input og.

10

CHAPTER 4

EXPERIMENTS

This section studies the zero-shot ObjectNav performance of our proposed approach. First,

we evaluate our method in the traditional ObjectNav setting [1] where agents must find any

instance of the goal object (“Find a chair”). Then, we explore variations of ObjectNav

in which additional information, such as a room location (e.g., “bathroom sink”), is given to

refine the task. These experiments aim to demonstrate both the effectiveness and versatility

of our approach.

4.1 Experimental Setup

4.1.1 Training Dataset.

We generate a dataset for training our SemanticNav agent using the 800 training environ-

ments from HM3D [19]. First, we sample 9k ImageNav episodes for each HM3D scan,

split equally between 3 difficulty levels corresponding with path length: EASY (1.5-3m),

MEDIUM (3-5m), and HARD (5-10m). We follow the episode generation approach from [33].

This results in 9k × 800 = 7.2M navigation episodes for training. Next, we pre-process the

goal-images with the ResNet-50 version of CLIP [18] to produce 1024 dimensional semantic

goal vectors sgv for each navigation episode. During pre-processing, we further augment the

dataset by sampling goal-images at four evenly-spaced heading angles to produce 36M total

episodes for training. Sampling at multiple angles approximates the randomized sampling

used in [20].

11

4.1.2 Agent Configurations.

Two different agent configurations are frequently used in prior work on visual navigation.

Configuration A is generally used for ImageNav and has an agent height of 1.5m, radius

of 0.1m, and a single 128×128 RGB sensor with a 90◦ horizontal field-of-view (HFOV)

placed 1.25m from the ground. Configuration B is typically used for ObjectNav and

approximately matches a LoCoBot, with an agent height of 0.88m, radius of 0.18m, and

a single 640×480 RGB sensor with a 79◦ HFOV placed 0.88m from the ground. Both

configurations use the aforementioned step size of 0.25m and left and right turning angle of

30◦.

4.1.3 Evaluation Datasets.

We measure performance on one ImageNav and three ObjectNav datasets:

– ImageNav (Gibson) consists of 4,200 episodes from 14 Gibson [4] validation scenes.

The dataset was produced by [33] for agents with configuration A.

– ObjectNav (Gibson) was generated by [20] for agents with configuration A. The dataset

consists of 1,000 episodes in 5 Gibson [4] validation scenes for 6 object categories.

– ObjectNav (HM3D), released with the Habitat 2022 challenge, consists of 2,000

episodes from 20 HM3D [19] validation scenes with objects from 6 categories, and

uses agents with configuration B.

– ObjectNav (MP3D) released with the Habitat 2020 challenge, contains 2,195 episodes

from 11 MP3D [8] validation scenes for 21 object categories, and requires agents with

configuration B.

Due to the different agent configurations required by these evaluation datasets, we

train agents with both settings to make fair comparisons with prior work on zero-shot

ObjectNav. For all experiments, we report two standard metrics for visual navigation

12

tasks: success rate (SR) and success rate weighted by normalized inverse path length

(SPL) [34].

4.1.4 Implementation Details.

We generate a SemanticNav dataset for each agent configuration (A and B). The CLIP

ResNet-50 encoder processes 224 × 224 images. Accordingly, for configuration A, we

render 512 × 512 RGB frames, then resize to 224 × 224. For configuration B, we render

at 640 × 480, then resize and center crop. We train agents using PyTorch [35] and the

Habitat simulator [2, 3]. Each training run was conducted on a single compute node with 8

NVIDIA A40 GPUs. We train agents for 500M steps, requiring ∼1,704 GPU-hours to train

two agents (one for each configuration). Additional training hyperparamters are detailed in

the Appendix. We report results using the best checkpoint, selected based on ObjectNav

validation success rate (SR). During evaluations we sample actions from the agent’s output

distribution. We report results averaged over three evaluation runs.

4.1.5 Baselines.

We provide comparisons with the, to the best of our knowledge, only two existing zero-shot

methods for object-goal navigation (ObjectNav):

– Zero Experience Required (ZER) [20]: first trains an ImageNav agent composed of

two ResNet-9 encoders for processing the goal-image and agent observations, and a policy

network consisting of a 2-layer GRU. After training the navigation policy, a 2-layer MLP

is trained to map from a goal object categories into the goal-image embedding space

learned through ImageNav training. This mapping is learned using an in-domain dataset

containing 14K images with object category labels.

– CLIP on Wheels (CoW) [21]: builds an occupancy map by projecting depth observations,

then searches the environment with frontier-based exploration [36]. At each step, CoW

calculates a 3D saliency map using a depth and RGB observations and the goal object

13

category via Grad-CAM [26], a gradient-based visualization technique. When the 3D

saliency exceeds a threshold the agent navigates to that location and stops. As such, CoW

does not require a learned navigation policy.

4.1.6 Fully-Supervised ObjectNav.

To understand the gap to fully-supervised ObjectNavmethods, we compare with OVRL [16],

a two-stage framework that achieves state-of-the-art ObjectNav results in our single RGB

camera setting. We highlight OVRL in blue to indicate the use of direct supervision.

14

CHAPTER 5

RESULTS

5.1 Zero-Shot Object-Goal Navigation

In Table 5.1 we report zero-shot ObjectNav performance. We compare with ZER [20]

in Table 5.1a using agent configuration A. Notice that our agent is stronger than ZER on

ImageNav, which is the base pretraining task before ObjectNav can be studied. Specifically,

we observe a 7.7% improvement in ImageNav SR (29.2% → 36.9%). This improvement

results from (1) learning to navigate to semantic goal embeddings (as proposed in this work)

instead of navigating to image-goal embeddings that are learned from scratch (as done in

ZER), (2) using more diverse training environments, and (3) from using a pretrained visual

encoder. We provide additional comparisons with ZER using the same set of training envi-

ronments and without using visual encoder pretraining in Section 5.2, where we also observe

improved performance. In Table 5.1a, we see even larger improvements in ObjectNav SR

of 20.0% (11.3% → 31.3%). These results indicate that our design decisions are particularly

useful for zero-shot ObjectNav.

In Table 5.1b we compare with CoW [21] using agent configuration B. In ObjectNav

on the MP3D validation set, we find that training a SemanticNav agent improves

ObjectNav SR by 4.2% absolute and 37.8% relative (11.1% → 15.3%). These results

demonstrate that learning a navigation policy improves zero-shot ObjectNav SR over

the hand-designed exploration strategy and stopping criteria proposed by CoW. Moreover,

we expect further improvements in zero-shot ObjectNav performance from scaling our

approach (e.g., by collecting more training environments). Such scaling is simply not possi-

ble with heuristic methods such as CoW because the navigation policy is not learned. The

SPL of our approach is 1.5% lower than CoW. However, unlike CoW, our agent navigates

15

Table 5.1: Zero-shot ObjectNav performance on Gibson [4], HM3D [19], and MP3D [8]
validation. All methods use a single RGB sensor for agent observations except CoW [21],
which also uses depth observations and OVRL [16], which uses GPS+Compass for
ObjectNav. Our approach (ZSON) substantially improves on previous zero-shot methods
and narrows the gap to SOTA fully-supervised methods such as OVRL [16], which is not
zero-shot and provided for reference. We report ZSON results averaged over three evaluation
trials. The standard deviation in ZSON ObjectNav SR is 0.02% in Gibson, 0.46% in
HM3D, and 0.11% in MP3D. ∗indicates reproduced results

ImageNav
(Gibson)

ObjectNav
(Gibson)

Method SPL SR SPL SR

OVRL [16] 27.0% 54.2% - -

ZER [20] 21.6% 29.2% - 11.3%

ZSON (ours) 28.0% 36.9% 12.0% 31.3%

(a) Configuration A

ObjectNav
(HM3D)

ObjectNav
(MP3D)

Method SPL SR SPL SR

OVRL [16] 12.3%∗ 32.8%∗ 7.0% 25.3%

CoW [21] (w/depth) - - 6.3% 11.1%

ZSON (ours) 12.6% 25.5% 4.8% 15.3%

(b) Configuration B

without depth observations, which may reduce path efficiency. On HM3D we find that our

agent achieves a strong SR of 25.5% and SPL of 12.6%. Impressively, this zero-shot SPL

matches OVRL [16], which is directly trained on 40k human demonstrations [10] for the

ObjectNav task with imitation learning.

5.2 Comparison with ZER without Encoder Pretraining and Training Environment

Diversity

In Table 5.2, we train our approach in Gibson environments (instead of HM3D) and do

not use a pretrained observation encoder. These settings match ZER [20], allowing for a

direct comparison between the two methods. We observe that our approach results in a

4.0% absolute and 35% relative improvement in zero-shot ObjectNav success (11.3%

→ 15.3%). These results demonstrate that learning to navigate to semantic-goal embed-

dings outperforms the inverse approach proposed by ZER of first training for image-goal

navigation, then learning a mapping from object categories into the image-goal embedding

space.

16

Table 5.2: Comparison with ZER [20] using a ResNet-9 and the Gibson dataset with
our approach. Learning SemanticNav (Ours) outperforms learning ImageNav then
language grounding (ZER [20]).

ImageNav
(Gibson)

ObjectNav
(Gibson)

Method
Visual

Encoder
Training
Dataset SPL SR SPL SR

ZER [20] ResNet-9 Gibson 21.6% 29.2% - 11.3%

Ours ResNet-9 Gibson 22.8% 33.3% 7.4% 15.3%

5.3 Additional Ablations

In Table 5.3, we study the impact of two key design decisions within our method: (1) the

visual observation encoder and (2) the number of training environments. While pretraining

the visual observation encoder is known to improve visual navigation task performance

(demonstrated in [16]), here we study the impacts on zero-shot transfer to ObjectNav.

We find that OVRL pretraining improves ImageNav success by 4.5% (rows 1 vs. 3) or

5.8% (rows 2 vs. 4) depending on the dataset used for training. However, the impact on zero-

shot ObjectNav performance is substantially larger. Specifically, ObjectNav success

improves by 9.4% (rows 1 vs. 3) and 10.4% (rows 2 vs. 4). These results suggest that a

strong visual encoder is often essential for zero-shot transfer to ObjectNav.

In rows 3 vs. 4, we switch the training dataset from the 72 Gibson [4] training environ-

ments (row 3) to the 800 (unannotated) HM3D [19] training environments. Surprisingly,

we observe a 0.9% drop in ImageNav success, yet a 6.6% improvement in ObjectNav

success (rows 3 vs. 4). A similar trend is observed in rows 1 vs. 2. These trends indicate

that training environment diversity is particularly useful for zero-shot ObjectNav.

5.3.1 Qualitative Analysis

In Figure 5.1, we present qualitative examples of our agent navigating to more complex

object descriptions (e.g., “Find a bathroom sink”). In each trial, the agent starts at the

17

Table 5.3: Ablations of the visual encoder and dataset used for training our SemanticNav
agents.

ImageNav
(Gibson)

ObjectNav
(Gibson)

#
Visual

Encoder
Training
Dataset SPL SR SPL SR

1 ResNet-9 from scratch Gibson 22.8% 33.3% 7.4% 15.3%

2 ResNet-9 from scratch HM3D 23.4% 31.1% 9.5% 20.9%

3 OVRL (ResNet-50, pretrained) Gibson 27.6% 37.8% 10.0% 24.7%

4 OVRL (ResNet-50, pretrained) HM3D 28.0% 36.9% 12.0% 31.3%

same position and heading (next to the front door looking into the house). The only thing

that changes about the initial conditions is the instructions given to the agent (“Find a...”

“...bathroom sink”, “...kitchen sink”, “...sink and a toilet”, or “...sink and a stove”). Since

the agent’s policy is stochastic, we show 5 sampled rollouts and highlight the first run in

bold colors.

We find that given room information such as “bathroom” or “kitchen”, the agent

appropriately finds a “sink” in the corresponding rooms in the house. Furthermore, in these

examples the agent does not enter the “kitchen” when prompted to look for a “bathroom

sink,” and vice-versa. In these long trajectories (ranging from 88 to 225 steps), we observe

more exploration in the living room and direct navigation when target rooms are visible. We

qualitatively observe interesting learned behaviors – for instance, the agent often performs a

360◦ turn before navigating, possibly to survey the environment.

Next, we experiment with variations in which room information can be inferred from

the instruction, but is not explicit. We use “sink and a toilet” to indicate “bathroom” and

“sink and a stove” for “kitchen”. In these examples, we discover that our agent still navigates

to the correct rooms, suggesting that it learns some priors of indoor spaces, such as that a

“stove” is often found within a “kitchen.”

18

…kitchen sink.”

…sink and a stove.”

…bathroom sink.”

…sink and a toilet.”

Instruction: “Find a…

Start Bathroom Kitchen

Figure 5.1: Qualitative examples for navigating to complex object descriptions. For each
trail, the agent is spawned at the start position looking into the house (i.e., to the right on
the maps) and given one of four instructions. Each instruction is run five times with the path
for the first trail highlighted in bold colors. Our agent appropriately navigates to the correct
rooms, demonstrating an understanding of both explicit (“Find a kitchen sink”) and implicit
(“Find a sink and a stove”) room information.

19

CHAPTER 6

DISCUSSION AND FUTURE WORK

This thesis presents a zero-shot method for learning open-world object-goal navigation

(ObjectNav). Our approach involves projecting image-goals into a semantic-goal embed-

ding space using an image-and-text alignment model (CLIP). This creates a semantic-goal

navigation task that does not require annotated 3D environments or collecting human demon-

strations. Thus, our method is easy to scale. We discover that SemanticNav agents

outperform previous zero-shot ObjectNav methods, and we identify two factors that have

a strong impact on navigation success – pretraining the visual encoder and training in a

diverse set of environments. In an open-world setting, we observe navigation patterns that

suggest that SemanticNav agents can understand complex instructions, such as “Find a

sink and a stove.”

Limitations and Impact. SemanticNav agents appear to learn useful priors of indoor

environments such as which room contains a “stove.” However, agents may struggle in

scenes where a navigation target is in an unusual location (e.g., a stove in a bedroom). Biases

in the 3D environments used to train such agents might exaggerate these issues and affect

deployments in non-traditional settings. Thus, interventions to mitigate this problem should

be considered. Future work might explore how to use the natural language interface to

SemanticNav agents to guide exploration in such scenarios.

Future Work. While our evaluation of SemanticNav agents on Habitat is a step towards

assessing performance to novel objects, ultimately, real-world performance matters the most.

Hence, a large-scale benchmarking of open-world object-navigation agents in simulation

and the real-world is one potential direction to explore. Additionally, these agents might

struggle in environments where navigation targets are out of place (e.g., a toy on the coffee

20

table), which is often the case in real-world, generalizing to such instances of objects is

another step towards building open-vocab ObjectNav agents.

21

Appendices

APPENDIX A

ADDITIONAL DETAILS AND RESULTS

Table A.1: Comparison of ObjectNav methods. Open-world methods are not limited to a
closed set of object categories. Zero-shot methods do not use ObjectNav annotations for
training.

Method Open-World Zero-Shot

Fully-Supervised Methods [10, 11, 12, 13, 16] ✗ ✗

EmbCLIP [25] ✓ ✗

ZER [20] ✗ ✓

CoW [21] ✓ ✓

ZSON (ours) ✓ ✓

A.1 Extended Discussion of Related Work

In Table A.1, we compare object-goal navigation (ObjectNav) methods along two

dimensions: open-world and zero-shot. Open-world methods are not restricted to object

categories from a closed predetermined vocabulary (e.g., “chair”, “bed”, “sofa”, etc.).

Zero-shot methods do not use ObjectNav annotations (e.g., labeled environments or

large-scale human demonstrations [10]) for training.

Traditional, fully-supervised ObjectNav methods [10, 11, 12, 13, 16] rely on a

closed-world assumption and task-specific training data – i.e., they are neither open-world

nor zero-shot. EmbCLIP [25] can be used for open-world ObjectNav because it pre-

processes object-goals (e.g., “chair”) with a CLIP [18] text encoder CLIPt. Thus, the

EmbCLIP interface allows describing objects using the open-vocabulary supported by

CLIPt. However, EmbCLIP is trained directly with ObjectNav annotations based on

labeled 3D environments. Consequently, EmbCLIP is not a zero-shot method.

23

The method proposed in [20] (ZER) is zero-shot because it uses the image-goal naviga-

tion (ImageNav) task for training. However, ZER cannot perform open-world ObjectNav

because it relies on a mapping from a closed-set of object categories into the image-goal

embedding space for transfer to object-goal navigation. CoW [21] is a zero-shot method

that does not require training a navigation policy. Instead, CoW uses a heuristically defined

policy that has no ability to learn about indoor layouts of home environments (e.g., the fact

that “stoves” are found in “kitchens” as illustrated in Fig. 5.1). However, CoW is able to

perform open-world ObjectNav through the use of CLIP visual and text encoders.

By contrast, our approach (ZSON) uses CLIP to project image-goals and object-

goals into a common semantic-goal embedding space, which converts ImageNav and

ObjectNav into semantic-goal navigation (SemanticNav). This enables training with

semantic-goals derived from images, followed by zero-shot transfer to open-world ObjectNav.

An interesting direction for future work might be to train SemanticNav agents with

multi-task training using semantic-goals derived from both image- and object-goals. Such a

solution would not be zero-shot. However, it might combined the advantages of large-scale

training with image-goals (as used in our approach) with the advantages of smaller-scale

task-specific training with object-goals (as used in EmbCLIP). We present initial results in

this direction in Section A.2.

Table A.2: Results of finetuning with ObjectNav annotations. ∗indicates reproduced results

Method Dataset SPL SR

1 OVRL [16] MP3D 7.0% 25.3%
2 ZSON (ours) MP3D 4.8% 15.3%

3 ZSON finetuned 25M steps (ours) MP3D 9.2% 22.9%

4 OVRL [16] HM3D 12.3%∗ 32.8%∗

5 ZSON (ours) HM3D 12.6% 25.5%

6 ZSON finetuned 100M steps (ours) HM3D 27.0% 49.6%

24

A.2 Results of ObjectNav Finetuning

In this section, we study the benefits of additional task-specific training by finetuning

ZSON agents using ObjectNav annotations – i.e., manually labeled training environments.

Specifically, we initialize with a SemanticNav agent trained for 500M steps of experience

in HM3D environments using image-goals. Then, we finetune for ObjectNav in either

MP3D [8] or HM3D [19] annotated environments using reinforcement learning (RL) with

the finetuning approach from [37].

In Table A.2, we find that finetuning ZSON agents results in 7.6% - 24.1% absolute

improvements in ObjectNav success rates (SR). Specifically, in row 3 we finetune for

25M steps in MP3D environments. This leads to a 7.6% absolute improvement in SR

(15.3% → 22.9%) and a 4.4% absolute improvement in SPL (4.8% → 9.2%). This 9.2%

SPL surpasses the state-of-the-art in the RGB-only setting of 7.0% SPL, which was set by

OVRL [16] (row 1) using direct supervision from 40k human demonstrations in MP3D

environments. Similarly, in row 6, we finetune for 100M steps in HM3D environments. This

results in a 24.1% absolute improvement in SR (25.5% → 49.6%) and a 14.4% absolute

improvement in SPL (12.6% → 27.0%). These results exceed the OVRL [16] baseline

presented in row 4 (which was trained in MP3D environments and is identical to the agent

in row 1) by 16.8% absolute in SR (32.8% vs. 49.6%) and 14.7% absolute in SPL (12.3%

vs. 27.0%).

Table A.3: Additional ablations of the visual encoders used for training our
SemanticNav agents.

ImageNav
(Gibson)

ObjectNav
(Gibson)

Encoder Dataset SPL SR SPL SR

1 ResNet-9 (scratch) HM3D 23.4% 31.1% 9.5% 20.9%

2 ResNet-50 (scratch) HM3D 22.4% 28.2% 6.9% 16.6%

3 ResNet-50 (OVRL) HM3D 28.0% 36.9% 12.0% 31.3%

25

A.3 Additional Ablation Experiments

Table 5.3 contains ablations of the visual encoder used to process RGB observations

within our agent. In Table A.3, we provide additional ablations that compare the ResNet-9

and ResNet-50 architectures with and without pretraining – i.e., from scratch vs. using

OVRL [16]. We find that without pretraining, switching to the larger ResNet-50 encoder

leads to a 2.9% drop in ImageNav SR and a 4.3% drop in ObjectNav SR (rows 1 vs. 2).

By contrast, using OVRL pretraining, performance improves on all tasks across all metrics.

For instance, ImageNav SR improves by 5.8% and ObjectNav SR improves by 10.4%

(rows 1 vs. 3).

Table A.4: Hyperparameters used to train SemanticNav agents.

Parameter Value

Number of GPUs 8
Number of environments per GPU 32
Rollout length 64
PPO epochs 2
Number of mini-batches per epoch 2
Optimizer Adam

Learning rate 2.25× 10−4

Weight decay 1.0× 10−6

Epsilon 1.0× 10−5

PPO clip 0.2
Generalized advantage estimation True

γ 0.99
τ 0.95

Value loss coefficient 0.5
Max gradient norm 0.2
DDPPO sync fraction 0.6

26

A.4 Additional Training Details

Table A.4 details the default hyperparameters used in all of our training runs. For ablation

experiments in Gibson [4] environments we reduce the “number of environments per GPU”

to 28 for ResNet-9 experiments and 20 for ResNet-50 due to GPU memory constraints. We

use the ResNet-9 implementation from [20] and ResNet-50 implementation from [2].

A.5 Additional Qualitative Results

In Figs. A.1 to A.8, we provide additional qualitative results. Figs. A.1 to A.3 show

successful navigation to “stairs”, “table”, and “television” (respectively), highlighting the

versatility of our ZSON agent.

Figs. A.4 to A.8 illustrate various failure modes of the learned policy. In Fig. A.4, the

agent successfully finds a “refrigerator” in 4 out of 5 trials. However, in one case the agent

stops before entering the kitchen, despite having a view of the “refrigerator”. In this case,

the failure mode is stopping short.

In Fig. A.5, the agent successfully finds a “bathtub” when it enters the bathroom nearest

to the starting position. However, in 2 of 5 trials it fails to find that bathroom, thus does not

find a “bathtub.” In this case, the failures are due to poor exploration. Similarly, in Fig. A.6

the agent does find a seating area that resembles a “sofa” in 3 of 5 trials. However, it stops in

the dining area in 2 trials. Furthermore, it never enters the room to the right, which contains

two sofas – again, demonstrating poor exploration.

In Fig. A.7 the agent never enters the room to the bottom right, which contains a “desk,”

thus failing in all five runs. In 3 of 5 trials it stops near a table that does not appear to be

functioning as a desk (e.g., there is no chair nearby). In these examples, the agent might be

confusing objects that can have a similar appearance. Finally, in Fig. A.8, we start the agent

from two different positions (A and B) and provide the instruction “Find a dresser.” When

the agent is initialized near the bedroom (A) it is able to find the dresser in 4 out of 5 trials.

27

“Find the stairs.”

Start

Stairs

Figure A.1: Qualitative example of successful navigation to the “stairs.” The number of
steps taken by our agent over five trials ranges from 80 to 102.

However, from position B the agent navigates into the kitchen and stops near the cabinets.

Again, these failures may be due to similarities in the appearance of dressers and cabinets.

28

“Find a table.”

Start

Table

Figure A.2: Qualitative example of successful navigation to a “table.” The number of steps
taken by our agent over five trials ranges from 60 to 98.

“Find a television.”

Start

Television

Figure A.3: Qualitative example of successful navigation to a “television.” The number of
steps taken by our agent over five trials ranges from 78 to 148.

29

“Find a refrigerator.”

Start

Refrigerator

Figure A.4: Qualitative example of “Find a refrigerator.” The agent succeeds in 4 of 5 trials
(green) from the same starting position. In the failure (red) the agent stop short of fridge.
The number of steps ranges from 83 to 99.

30

“Find a bathtub.”

Bathtub

Start

Figure A.5: Qualitative example of “Find a bathtub.” The agent succeeds in 3 of 5 trials
(green) from the same starting position. In the two failures (red) the agent never enters the
bathroom. The number of steps ranges from 58 to 114.

31

“Find a sofa.”

Start

Sofa

Figure A.6: Qualitative example of “Find a sofa.” The agent succeeds in 3 of 5 trials (green)
from the same starting position. In the two failures (red) the agent stops in the dining area
(center). The agent never enters the room to the right with two “sofas”. The number of
steps ranges from 174 to 501.

32

“Find a desk.”

Start

Table

Figure A.7: Qualitative example of “Find a desk.” The agent fails in all five trials (red),
stopping at a table in 3 of 5 runs. The agent never enters the room in the bottom right that
contains a “desk”. The number of steps ranges from 49 to 114.

33

“Find a dresser.”

Start A

Cabinet

Start B

Dresser

Figure A.8: Qualitative example of “Find a dresser.” We run five trails from two starting
positions (A and B). From Start A the agent is able to find a dresser in 4 of 5 trials (green).
However, when the starting location is shifted further from the bedroom (Start B) the agent
enters the kitchen and fails in all five runs (red), stopping near the kitchen cabinets. These
failures might be due to the similarity in appearance between cabinets and dressers. The
number of steps ranges from 29 to 109.

34

REFERENCES

[1] D. Batra et al., “Objectnav Revisited: On Evaluation of Embodied Agents Navigating
to Objects,” arXiv preprint arXiv:2006.13171, 2020.

[2] M. Savva et al., “Habitat: A platform for embodied ai research,” in ICCV, 2019.

[3] A. Szot et al., “Habitat 2.0: Training home assistants to rearrange their habitat,”
NeurIPS, 2021.

[4] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson Env: Real-
World Perception for Embodied Agents,” in CVPR, 2018, pp. 9068–9079.

[5] E. Kolve et al., “AI2-THOR: An Interactive 3D Environment for Visual AI,” arXiv,
2017.

[6] B. Talbot et al., BenchBot: Evaluating Robotics Research in Photorealistic 3D Simu-
lation and on Real Robots, 2020. arXiv: 2008.00635 [cs.RO].

[7] A. X. Chang et al., “ShapeNet: An Information-Rich 3D Model Repository,” Stanford
University — Princeton University — Toyota Technological Institute at Chicago,
Tech. Rep. arXiv:1512.03012 [cs.GR], 2015.

[8] A. Chang et al., “Matterport3D: Learning from RGB-D Data in Indoor Environments,”
in ThreeDV, MatterPort3D dataset license: http://kaldir.vc.in.tum.de/matterport/MP_
TOS.pdf, 2017.

[9] I. Armeni et al., “3D Scene Graph: A Structure for Unified Semantics, 3D Space, and
Camera,” in ICCV, 2019.

[10] R. Ramrakhya, E. Undersander, D. Batra, and A. Das, “Habitat-web: Learning em-
bodied object-search strategies from human demonstrations at scale,” in CVPR, 2022.

[11] D. S. Chaplot, D. Gandhi, A. Gupta, and R. Salakhutdinov, “Object goal navigation
using goal-oriented semantic exploration,” in NeurIPS, 2020.

[12] J. Ye, D. Batra, A. Das, and E. Wijmans, “Auxiliary tasks and exploration enable
objectnav,” in ICCV, 2021.

[13] O. Maksymets et al., “Thda: Treasure hunt data augmentation for semantic navigation,”
in ICCV, 2021.

[14] Y. Liang, B. Chen, and S. Song, “SSCNav: Confidence-Aware Semantic Scene
Completion for Visual Semantic Navigation,” in ICRA, 2021.

35

https://arxiv.org/abs/2008.00635
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf

[15] H. Luo, A. Yue, Z.-W. Hong, and P. Agrawal, “Stubborn: A Strong Baseline for
Indoor Object Navigation,” arXiv preprint arXiv:2203.07359, 2022.

[16] K. Yadav et al., “Offline Visual Representation Learning for Embodied Navigation,”
arXiv preprint arXiv:2204.13226, 2022.

[17] K. Yadav et al., Habitat challenge 2022, https://aihabitat.org/challenge/2022/, 2022.

[18] A. Radford et al., “Learning Transferable Visual Models from Natural Language
Supervision,” in ICML, 2021.

[19] S. K. Ramakrishnan et al., “Habitat-matterport 3d dataset (HM3d): 1000 large-scale
3d environments for embodied AI,” in NeurIPS Datasets and Benchmarks Track,
2021.

[20] Z. Al-Halah, S. K. Ramakrishnan, and K. Grauman, “Zero Experience Required: Plug
& Play Modular Transfer Learning for Semantic Visual Navigation,” arXiv preprint
arXiv:2202.02440, 2022.

[21] S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song, “CLIP on Wheels:
Zero-Shot Object Navigation as Object Localization and Exploration,” arXiv preprint
arXiv:2203.10421, 2022.

[22] C. Jia et al., “Scaling Up Visual and Vision-Language Representation Learning With
Noisy Text Supervision,” in ICML, 2021.

[23] H. Pham et al., “Combined Scaling for Zero-shot Transfer Learning,” arXiv preprint
arXiv:2111.10050, 2021.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A Large-Scale
Hierarchical Image Database,” in CVPR, 2009.

[25] A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kembhavi, “Simple but Effective:
CLIP Embeddings for Embodied AI,” arXiv preprint arXiv:2111.09888, 2021.

[26] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-
CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,”
in ICCV, 2017.

[27] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive
predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[28] Y. Zhu et al., “Target-driven Visual Navigation in Indoor Scenes using Deep Rein-
forcement Learning,” ICRA, 2017.

36

https://aihabitat.org/challenge/2022/

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”
in CVPR, 2016.

[30] A. Eftekhar, A. Sax, J. Malik, and A. Zamir, “Omnidata: A Scalable Pipeline for
Making Multi-Task Mid-Level Vision Datasets From 3D Scans,” in ICCV, 2021.

[31] M. Caron et al., “Emerging Properties in Self-Supervised Vision Transformers,” in
ICCV, 2021.

[32] E. Wijmans et al., “DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5
Billion Frames,” in ICLR, 2019.

[33] L. Mezghani et al., “Memory-Augmented Reinforcement Learning for Image-Goal
Navigation,” arXiv preprint arXiv:2101.05181, 2021.

[34] P. Anderson et al., “On Evaluation of Embodied Navigation Agents,” arXiv preprint
arXiv:1807.06757, 2018.

[35] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,” in NeurIPS, 2019.

[36] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in CIRA,
1997.

[37] R. Ramrakhya, E. Wijmans, D. Batra, and A. Das, Not all demonstrations are created
equal: An objectnav case study for effectively combining imitation and reinforcement
learning, https://github.com/Ram81/il_rl_baselines, 2022.

37

https://github.com/Ram81/il_rl_baselines

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	2 | Related Work
	Image-Text Alignment Models.
	CLIP for Visual Navigation.
	Zero-Shot ObjectNav.

	3 | Approach
	Preliminaries: Image-Text Alignment and Image-Goal Navigation
	Training Framework

	4 | Experiments
	Experimental Setup

	5 | Results
	Zero-Shot Object-Goal Navigation
	Comparison with ZER without Encoder Pretraining and Training Environment Diversity
	Additional Ablations

	6 | Discussion and Future Work
	Appendices
	A | Additional details and results

	References

