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Examples
Coverage functions

I Underlying finite universe U
I Each i ∈ N corresponds to a set Ti ⊂ U
I f (S) = | ∪i∈S Ti |, for S ⊂ N
I Properties: monotone and nonnegagtive
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I f (S) := r(S)
I f (S) := r1(S) + r2(N \ S)

(min of f = maximum size of a set “independent” in M1 and M2 )
I Properties: monotone and nonnegative

(Differential/continuous) entropy of a finite set of Gaussian
random variables

I f (S) := log det C [S ], where C [N ] is positive semidefinite
I Does not trivially have additional, nice properties
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Information = Disorder

“Chance and chance alone has a message for us. Everything
that occurs out of necessity, everything expected, repeated day
in and day out, is mute. Only chance can speak to us. We
read its message much as gypsies read the images made by
coffee grounds at the bottom of a cup.”

- Milan Kundera (The Unbearable Lightness of Being)
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Entropy

“I propose to name the magnitude S the entropy of the body
from the Greek word ητρoπὴ, a transformation. I have
intentionally formed the word entropy so as to be as similar as
possible to the word energy, since both these quantities, which
are to be known by these names, as so nearly related to each
other in their physical significance that a certain similarity in
their names seemed to me advantageous ...”

— R. Clausius (1865)
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Historical Highlights

R. Clausius (1865) — “entropy” (also Carnot and Kelvin in their
versions of the 2nd law of thermodynamics), arrow of time (“What
then is time? If no one asks me, I know what it is. If I wish to
explain it to him who asks, I do not know.” — St. Augustine)
L. Boltzmann (1877) — statistical mechanics
C. Shannon (1948) — information theory
D. Blackwell (1951) — statistics
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Entropy more recently...
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and more...
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Maximum-Entropy Sampling

N = {1, 2, . . . , n}
Random YN = {Yj : j ∈ N} with continuous density gN

Goal: Choose S ⊂ N , with |S | = s, so that observing YS maximizes the
“information” obtained about YN .

Entropy: h(S) := −E [ln gS(YS)] .
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Motivation: Environmental Monitoring

Sites of emission =⇒ Causes

Sites of deposition =⇒ Effects∗

∗ Clean Air Act of 1990 and its revisions mandate effects monitoring

National Acidic Deposition Program/
National Trends Network

nadp.sws.uiuc.edu

1978 - 22 stations. 2012 - > 240 stations.
Precipitation collected weekly; analyzed for: Hydrogen (acidity as pH
— ‘acid rain’), Sulfate, Nitrate, Ammonia, Chloride, Calcium,
Magnesium, Potassium, Sodium
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Wet vs. Dry
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TPC 3000 (Yankee Environ. Sys.)
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US Federal $

YES has US federal funding of $300K to develop a new prototype
over 2 years

$3.5M federal funding for NTN (’99)

∼ $150M total US federal funding for environmental monitoring
(’99)

I much other monitoring focused on CO, NO
2
, SO

2
and small

particulate matter
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Nice Properties of Entropy

Submodularity X: h(S ∪ T ) + h(S ∩ T ) ≤ h(S) + h(T )

The Gaussian distribution maximizes the entropy for a given
covariance matrix C

Gaussian case: h(S) = ks + k ln det C [S , S ]

Conditional Additivity:

h(N ) =

max
︷ ︸︸ ︷

h(S)
⇔

+

min
︷ ︸︸ ︷

h(N \ S |S)

(justifies our objective function)

Change coordinate systems: Entropy difference is logdet(Jacobian
of transformation)

Complementation:
ln det C [S , S ] = ln det C + ln det C−1[N \ S , N \ S ]
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Not-So-Nice Property

Proposition [Ko, Lee, Queyranne]. The maximum-entropy sampling
problem is NP-Hard (even for the Gaussian diagonally-dominant case)
Proof:

INDEPENDENT SET: Does a simple undirected graph G on n
vertices have an independent set of vertices of cardinality s ?

Let C := A(G) + 3nI

4

2

1

3








12 1 0 0
1 12 1 1
0 1 12 0
0 1 0 12
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(KLQ) Branch . . .

Fixing j out of S :

⇒ Strike out row and column j : C [N , N ] →

C [N − j, N − j]

Fixing j in S :

⇒ Schur complement of C [j, j]: C [N , N ] →

C [N −j, N −j]−C [N −j, j]C−1[j, j]C [j, N −j]

(and solution/bounds are shifted by ln C [j, j] ).
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. . . and Bound

Lower bounds: Greedy, local-search, rounding heuristics

Upper bounds:
I Spectral based bounds

F Ko, Lee, Queyranne ’95 (original B&B and spectral bound)
F Lee ’98 (extension to side constraints)
F Hoffman, Lee & Williams ’01 (spectral partition bounds)
F Lee, Williams ’03 (tightening HLW via ILP and matching)
F Anstreicher, Lee ’04 (generalization of HLW)
F Burer, Lee ’07 (another approach to computing the AL bound)

I NLP relaxation
F Anstreicher, Fampa, Lee & Williams ’96 (continuous NLP

relaxation and parallel B&B)
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Complementary Bounds (Anstreicher, Fampa, Lee,

Williams)

ln det C [S , S ] = ln det C + ln det C−1[N \ S , N \ S ]

So a maximum entropy s-subset of N with respect to C is the
complement of a maximum entropy (n − s)-subset of N with
respect to C−1

So a bound on the complementary problem plus the entropy of the
entire system is a bound on the original problem

These complementary bounds can be quite effective
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NLP Bound (AFLW)

max f (x) := ln det

(

Diag(x
pj

j ) C Diag(x
pj

j ) + Diag(d
xj

j − djx
pj

j )

)

subject to
∑

j∈N

aijxj ≤ bi , ∀i; ⇐= CONSTRAINTS

∑

j∈N

xj = s;

0 ≤ xj ≤ 1, ∀j,

where the constants dj > 0 and pj ≥ 1 satisfy
dj ≤ exp(pj − √

pj), and Diag(dj) − C [N , N ] � 0.
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NLP Bound, cont’d

max f (x) := ln det

(

Diag(x
pj

j ) C Diag(x
pj

j ) + Diag(d
xj

j − djx
pj

j )

)

For (

S
︷ ︸︸ ︷

1, 1, . . . , 1,

N\S
︷ ︸︸ ︷

0, 0, . . . , 0)

Diag(d
xj

j − djx
pj

j ) = Diag(

S
︷ ︸︸ ︷

0, 0, . . . , 0,

N\S
︷ ︸︸ ︷

1, 1, . . . , 1) .

Diag(x
pj

j ) C Diag(x
pj

j ) =




C [S , S ] 0

0 0
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NLP Bound: Properties

Concavity: Assume D � C , pj ≥ 1, 0 < dj ≤ exp(pj − √
pj). Then

f is concave for 0 < x ≤ e

Dominance: Assume that p and d satisfy the above, and p′ ≥ p.
Let f ′ be defined as above, but using p′ for p. Then f ′(x) ≥ f (x) ∀
0 < x ≤ e

Scaling C by γ adds s ln(γ) to the obj. Let

fγ(x) := ln det
(

γXp/2(C − D)Xp/2 + (γD)x
)

− s ln(γ)

I Scaling: Assume I � D � C , p = e. Then fγ(x) ≥ f (x) ∀ 0 ≤ x ≤ e,
eT x = s and 0 < γ ≤ 1

I Assume D � C , D � I . Then fγ(x) ≥ f (x) ∀ 0 < x ≤ e, eT x = s
and γ ≥ 1, where p is chosen as above

These results give us some guidance for choosing the pj , dj and γ
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Spectral Bound (KLQ)

z ≤
s∑

l=1

ln λl(C )

Determinant = product of eigenvalues.

Eigenvalue interlacing.

















λ1 ≥ λ′
1

λ2 ≥ λ′
2

λ3 ≥ λ′
3

...
λs ≥ λ′

s
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Lagrangian Spectral Bound (Lee)

For handling linear side constraints

min
π∈R

m
+

v(π)

where

v(π) :=







s∑

l=1

ln λl (Dπ C Dπ) +
∑

i∈M

πibi






,

and Dπ is the diagonal matrix having

Dπ
jj := exp






−1

2

∑

i∈M

πiaij
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Optimizing the Lagrangian Spectral Bound

vπ is convex (in π)

vπ is analytic when λs (Dπ C Dπ) > λs+1 (Dπ C Dπ)

v(  )

0.005 0.01 0.015 0.02 0.025 0.03

26

26.2

26.4

26.6

π

π
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Optimizing the Bound, cont’d

Let x l be the eigenvector (of unit Euclidean norm) associated with
λl .

Define the continuous solution x̃ ∈ R
N by x̃j :=

∑s
l=1

(

x l
j

)2
, for

j ∈ N .

Define γ ∈ R
M by γi := bi − ∑

j∈N aij x̃j .

If λs > λs+1, then γ is the gradient of f at π.

Can incorporate this in a Quasi-Newton (or, with an expression
for the Hessian, a Newton) method for finding the minimum.
(Implemented using LBFGS-B (Zhu, Byrd, Nocedal) and a coarse
line search)
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Spectral Partition Bound (Hoffman, Lee, Willaims)

Let N = {N1, N2, ..., Nn} denote a partition of N . Let C ′ = 0 except
for C ′[Nk , Nk ] = C [Nk , Nk ].

z ≤
s∑

l=1

ln λl(C
′)

Based on “Fischer’s Inequality”

For N = {{1}, {2}, . . . , {n}} we have “the diagonal bound”

For N = {N , ∅, ∅, . . . , ∅} we have the ordinary spectral bound

As we partition N , the optimal value with respect to C ′ cannot
decrease, but the bound can decrease
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ILP Bound (Lee, Williams)

Observation: Why calculate eigenvalue based bounds for small blocks
of a partition? Just solve the small blocks exactly.
xk(i) = 1 ⇐⇒ pick k elements from block Ni

gs(N ) := max
p

∑

i=1

|Ni |∑

k=1

fk(Ni)xk(i)

s.t.

|Ni |∑

k=1

xk(i) ≤ 1, for i = 1, 2, . . . , p;

p
∑

i=1

|Ni|∑

k=1

kxk(i) = s

xk(i) ∈ {0, 1}, for i = 1, 2, . . . , p,

k = 1, 2, . . . , |Ni |.
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ILP Bound, cont’d

Refines the spectral partition bound.

Calculate via dynamic programming
(assuming |Ni | is bounded):

Boundary conditions:
vt(j) := −∞ when

∑j
i=1 |Ni | < t ≤ s;

v0(0) := 0.

vt(j) = max
0≤k≤min{|Nj|,t}

{fk(Nj) + vt−k(j − 1)} .

Then vs(p) = gs(N )

Can even calculate via Edmonds’ min-weight matching algorithm
when |Ni | ≤ 2.
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Masked Spectral Bound (Anstreicher, Lee)

A mask is a (symmetric) X � 0 having diag(X) = e. The associated
masked spectral bound is

ξC ,s(X) :=
∑s

l=1 ln (λl (C ◦ X))

Special combinatorial cases:

Spectral bound X := E

Diagonal bound X := I

Spectral partition bound X := Diagi(Ei)
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Validity

Based on

det A =
∏

l λl(A)

“Oppenheim’s Inequality”

det A ≤ det A ◦ B/
∏n

j=1 Bjj ,

where A � 0 and B � 0

the eigenvalue inequalities λl(A) ≥ λl(A
′), where A � 0, and A′ is

a principal submatrix of A
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