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A B S T R A C T

Large graphs with billions of nodes and edges are increasingly com-
mon, calling for new kinds of scalable computation frameworks. Al-
though popular, distributed approaches can be expensive to build,
or require many resources to manage or tune. State-of-the-art ap-
proaches such as GraphChi and TurboGraph recently have demon-
strated that a single machine can efficiently perform advanced com-
putation on billion-node graphs. Although fast, they both use sophis-
ticated data structures, memory management, and optimization tech-
niques. We propose a minimalist approach that forgoes such complex-
ities, by leveraging the memory mapping capability found on operating
systems. Our experiments on large datasets, such as a 1.5 billion edge
Twitter graph, show that our streamlined approach achieves up to 26

times faster than GraphChi, and comparable to TurboGraph. We con-
tribute our crucial insight that by leveraging memory mapping, a fun-
damental operating system capability, we can outperform the latest
graph computation techniques.

Keywords: graph mining; scalable algorithms; memory mapping;
single machine
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L I S T O F F I G U R E S

Figure 1 The mechanism of memory mapping. A por-
tion of a file on disk is mapped into memory
for use (blue); potions no longer needed are
unmapped (yellow). In our approach, our file
is a large edge list (on the left) which typically
does not fit in the main memory (on the right).
Our algorithm treats the edge file as if it were
fully loaded into memory; programatically, it
is accessed like an array. Each “row” of the
edge file describes an edge, identified by its
source node ID (left) and target node ID (right).

6

Figure 2 Comparing the elapsed times (in seconds) of
three approaches: GraphChi, TurboGraph, and
our Memory Mapping, on (top) 69 million edge
LiveJournal network, and (bottom) 1.47 billion
edge Twitter graph. Graph algorithms evalu-
ated are, from left to right: connected compo-
nents, 1 iteration of PageRank, and 5 iterations
of PageRank. Our approach, in orange, is up to
27 times as fast as GraphChi, for 5 iterations of
PageRank on the LiveJournal graph (3.37 times
vs. TurboGraph), and 4.77 times on the Twitter
graph. 10
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L I S T O F TA B L E S

Table 1 Networks used in experiment 9
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1
I N T R O D U C T I O N

Large graphs with billions of nodes and edges are increasingly com-
mon in many domains, ranging from computer science, physics, chem-
istry, bioinformatics, to linguistics. Such graphs’ sheer sizes call for
new kinds of scalable computation frameworks. Distributed frame-
works become popular choices; prominent examples include GraphLab [7],
PEGASUS [4], and Pregel [8]. However, such systems often demand
additional cluster management and optimization skills from the user;
and shared-memory systems can be expensive to build [6, 3].

Some recent state-of-the-art works, such as GraphChi [6] and Tur-
boGraph [3] take an alternative approach by, instead, focusing on
pushing the boundaries as to what a single machine can do. Their
impressive results demonstrate that even for billion-node web-scale
graphs, computation can be performed at a speed that matches that
of a distributed framework, and at times even faster.

We agree that single-machine approaches are promising, and in-
deed they can be attractive for researchers and practitioners who
want scalable computation without having to use computing clusters.
However, when analyzing these works, we observe that they often re-
quire sophisticated techniques [6, 3] to do explicit memory allocation,
edge file partitioning, scheduling, etc., in order to boost speed.

Can we streamline all these, and still achieve the same, or even bet-
ter performance than the state-of-the-art approaches? We believe we
can. In the paper, we propose a minimalist approach that does ex-
actly this and present our initial results to demonstrate its feasibility.
Specifically, our major contributions and results include:

• We contribute our crucial insight that by leveraging memory map-
ping, a fundamental capability from operating systems, we can
conduct high-speed graph computation that outperforms state-
of-the-art approaches, while sidestepping common design com-
plexities.

• We demonstrate through experiments on real, large graphs, in-
cluding a 1.47 billion edge Twitter graph, that our streamlined
approach, with only 184 lines of statements1, can be up to 26

times faster than GraphChi, and comparable to TurboGraph.

We note that we are not advocating replacing existing approaches
with ours. Rather, we intend to highlight how much performance gain
we can achieve by leveraging the memory mapping capability alone.

1 Number of statements measured by Eclipse’s Metrics plugin

1

[ August 16, 2013 at 5:23 – classicthesis version 4.0 ]



2 introduction

We believe other approaches can greatly benefit from integrating this
technique into their implementations.

The rest of the paper is organized as follows: Section 2 briefly sur-
veyed related work. Section 3 describes our main Memory Mapping
idea for boosting graph computation speed. Section 4 presents exper-
iment results that shows how our approach compares with GraphChi
and TurboGraph. Section 5 concludes and discusses future work.

[ August 16, 2013 at 5:23 – classicthesis version 4.0 ]



2
R E L AT E D W O R K

We survey some of the most relevant works, which may be broadly
divided into multi-machine and single-machine approaches.

Multi-machine. GraphLab [2] is a recent, best-of-the-breed distributed
machine learning library for graphs. It exploits multiple cores to
achieve high computation speed. However, like many other shared-
memory approaches, it requires the graph to fit in memory. For huge
graphs that do not fit in memory, distributed disk-based approaches
are popular, such as Pegasus [4] (runs on Hadoop), and the Google
Pregel system [8] (similarly, Apache Giraph).

Single-machine. This category is most related to our work. GraphChi [6]
was one of the first works that demonstrated how graph computa-
tion can be performed on massive graphs with billions of nodes and
edges on a commodity Mac mini computer, with speed matching
distributed frameworks. More recently, Turbograph [3], improves on
GraphChi, with greater parallelism, to achieve speed orders of mag-
nitude faster. These systems use sophisticated data structures and
memory management techniques. Our work aims to achieve an even
greater speed, with a simpler design; the experiment results in Sec-
tion 4 demonstrate our success.

3
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3
O U R A P P R O A C H

3.1 overview and motivations

In this section, we describe our fast, scalable approach that leverages
memory mapping to speed up graph computation. Memory mapping is
a fundamental capability in operating system (commonly used to sup-
port virtual memory). However, it has not been exploited extensively
by state-of-the-art approaches such as GraphChi and TurboGraph. In-
stead, they divide the edges into logical sections or separate files on
disk, and selectively load them into memory.

Although fast, these approaches require explicit memory manage-
ment and optimization in order to achieve high throughput and speed.
They may also be harder to develop and maintain. For example, the
GraphChi package contains about 8000 lines of code [6].

Can we streamline all these, and still achieve the same, or even bet-
ter performance than the state-of-the-art approaches? We believe we
can. And this motivated us to investigate to the idea of leveraging
memory mapping to achieve a minimalist approach that is not only
faster, but also simpler than GraphChi and TurboGraph. Our imple-
mentation has only 184 lines of statements.

In the next few subsections, we briefly describe what memory map-
ping does, its benefits and how it can help with graph computation.
We refer the reader to [9, 10, 11] for more details on memory map-
ping.

3.2 memory mapping and its advantages

Memory mapping is a mechanism that maps a file or part of a file
into the main memory. By doing so, files on disk can be accessed the
same way as if they were in memory [11]. This makes it possible to
do I/O operations faster than accessing disk directly. The basic idea
of the mechanism of memory mapping is illustrated in Figure 1.

3.2.1 Fast I/O Operations

The benefit of faster I/O speed provided by memory mapping is es-
pecially apparent when an application needs to execute a good num-
ber of operations on the same chunks of address space on disk. The
OS typically keeps these frequently accessed chucks in memory auto-
matically, so subsequent “reads” from disk become high-speed reads
from memory. In addition, as the OS does most of the work, addi-

5
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6 our approach

Figure 1: The mechanism of memory mapping. A portion of a file on disk
is mapped into memory for use (blue); potions no longer needed
are unmapped (yellow). In our approach, our file is a large edge
list (on the left) which typically does not fit in the main memory
(on the right). Our algorithm treats the edge file as if it were fully
loaded into memory; programatically, it is accessed like an array.
Each “row” of the edge file describes an edge, identified by its
source node ID (left) and target node ID (right).
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3.3 our idea : memory-map edge file for fast computation 7

tional low level optimization can be more directly provided by the
hardware.

3.2.2 Less Overhead

Many programs that process large files requires a lot of manual opti-
mization to reach good performance. Nevertheless, the OS does most
of the work for memory mapping and depends less the developers
for optimization. For example, as a rough comparison, GraphChi was
written in more than 8000 lines of code [6]; our implementation has
only 184 lines, while achieving significantly better performance.

3.3 our idea : memory-map edge file for fast computa-
tion

As identified by GraphChi and TurboGraph researchers [6, 3], the
crux in enabling fast graph computation is to design efficient tech-
niques to store and access the graph’s edges, because many widely
used graph algorithms eventually boil down to become repeated matrix-
vector multiplications at their cores. The matrix concerned here is of-
ten the graph’s adjacency matrix (or its variants), which we store as
an edge list (see Figure 1).

GraphChi and TurboGraph, among others, designed sophisticated
methods such as parallel sliding windows [6] and pin-and-slide [3] to
efficiently access the edges. We show that we can forgo them and still
achieve high speed, at times significantly faster (up to 26 times faster)
as shown in Section 4.

In more details, we first convert the raw, text-base edge list into a
binary file, which consists of m integer pairs where m is the number
of edges in the graph. Then we map the whole file into the main mem-
ory, even though we may not have enough main memory. For exam-
ple, the Twitter network’s binary edge file is 11GB on disk, while we
only have 8GB main memory. The reason is that the OS only reads sec-
tions from the file (and map them to memory) when they are needed,
or expected to be needed by the process. Portions that are no longer
needed are automatically unmapped by the OS (see Figure 1). To the
algorithm users, and the algorithm authors, all these mapping and un-
mapping operations are transparent. They can view the edge file as
one large, contiguous file, and access it as if it were in memory.
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4
E X P E R I M E N T

4.1 goal and overview

We compare our Memory Mapping approach with two state-of-the-
art approaches, GraphChi [6] and TurboGraph [3], by measuring the
elapsed times of two classic graph algorithms: Connected Component
and PageRank.

We first describe the graph datasets used for this experiment and
our setup, then we present and discuss our results.

4.2 datasets and experimental setup

Datasets

To understand how the three approaches perform at different scales,
we selected one smaller and one larger graph: a LiveJournal net-
work [1] with 69 million edges, and a Twitter network [5] with 1.47

billion edges. Table 1 shows the exact statistics of these two graphs.

Test computer

All tests are conducted on the same laptop computer with Intel i7-
2620M quad-core CPU at 2.70GHz, 8GB RAM and 512GB SSD of
Samsung 840 Series.

Since TurboGraph can only be run on Windows and GraphChi re-
quires a library missing on Windows, we conduct the tests for Turbo-
Graph and Memory Mapping on Windows 8 (x64), and the tests for
GraphChi on Linux Mint 15 (x64).

Implementations tested

• GraphChi: v0.2.6 C++ version with default configurations. The
full GraphChi package contains about 8000 lines of code [6].

• TurboGraph: v0.1 Enterprise Edition We have varied its buffer
size from 1GB to 4GB and report the best times recorded. Tur-
boGraph’s source code is not available.

Table 1: Networks used in experiment

Name Nodes Edges

LiveJournal 4,847,571 68,993,773

Twitter 41,652,230 1,468,365,182

9
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10 experiment
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Figure 2: Comparing the elapsed times (in seconds) of three approaches:
GraphChi, TurboGraph, and our Memory Mapping, on (top) 69

million edge LiveJournal network, and (bottom) 1.47 billion edge
Twitter graph. Graph algorithms evaluated are, from left to right:
connected components, 1 iteration of PageRank, and 5 iterations
of PageRank. Our approach, in orange, is up to 27 times as fast as
GraphChi, for 5 iterations of PageRank on the LiveJournal graph
(3.37 times vs. TurboGraph), and 4.77 times on the Twitter graph.
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4.3 results on 69m edge livejournal network 11

• Our Memory Mapping approach: Java 1.7 implementation; 184

lines of statements.

Test Protocol

Each test is run under the same configuration for 3 times and the
average is reported, as shown in Figure 2a and b. Page caches are
cleared before each test.

4.3 results on 69m edge livejournal network

Figure 2a shows the elapsed times of finding connected components
and running 1 and 5 iterations of PageRank on the LiveJournal Net-
work with 69 million edges. Our Memory Mapping approach (in or-
ange) shows great performance in all three tests. For 1-iteration PageR-
ank, our approach is up to 26x faster than GraphChi and 3.4x faster
than TurboGraph. We believe our significant speedup is due to the
LiveJournal graph being relatively small (its binary edge file is around
526MB), so that the operating system can memory-map the entire file
and keep it in the physical memory at all times, eliminating many
loading and unloading operations that the other approaches may re-
quire.

This result suggests that low-level optimizations performed by the
operating system may significantly outperform explicit memory man-
agement that typical graph computation packages are employing.

4.4 results on 1 .47b edge twitter network

After testing on the LiveJournal graph, we test on a much larger
graph—a Twitter graph with 1.47 billion edges. Figure 2b shows the re-
sults. Similar to those for the LiveJournal network, Memory Mapping
outperforms GraphChi, by at least 3 times for each test (e.g. 1,173s vs.
246s for 5 iterations of PageRank; 4.77 times as fast), and matches the
speed of TurboGraph.

We were unable to run TurboGraph’s PageRank algorithm for more
than 1 iteration. To estimate its 5-iteration timing, we extrapolate from
its 1-iteration time, which gives 207 seconds. We use the formula 47×
164400÷ 37200 = 207 where 47 is the elapsed time, in seconds, we
measured for one iteration, and 37200 and 164400 are respectively
the elapsed time, in ms, of running 1 and 5 iterations of PageRank
listed on TurboGraph’s website (http://wshan.net/turbograph/).

A possible explanation for Memory Mapping matching TurboGraph
on the Twitter network is due to the its much larger binary edge file
(11GB on disk). With only 8GB RAM total, the system cannot fully
load it into memory; instead, it must load the edges from disk on
demand. However, this behind-the-scene change is transparent to the
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12 experiment

algorithm user (or algorithm author). Our code remains the same,
and our edge file remains as one single file on disk; re-sharding is
unnecessary.
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5
C O N C L U S I O N A N D F U T U R E W O R K

We contribute our crucial insight that by leveraging memory mapping, a
fundamental operating system capability, we can outperform state-of-
the-art graph computation approaches. Using large, real graphs of up
to 1.5 billion edges, we compare our approach with two state-of-the-
art single-machine computing systems: GraphChi and TurboGraph.
We demonstrate that our minimalist approach—one that forgoes ex-
plicit memory management and data structure design employed by
other approaches—is up to 26 times faster than GraphChi, and com-
parable to TurboGraph. Our streamlined implementation has only
184 lines of statements.

Our work has shown us to an exciting, new direction that could
push the single-machine graph computation speed to a new height.
We look forward to seeing other approaches integrate our work. For
the road ahead, we plan to explore several related ideas, such as to
(1) port our Java implementation to C++ for even greater speed; (2)
investigate how using space-efficient data structures such as Com-
pressed Sparse Row for storing the edges may help boost speed; and
(3) explore how to support time-evolving graphs.

13
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