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PREFACE

Regression with L1-regularization, Lasso, is a popular algorithm for recovering the

sparsity pattern (also known as model selection) in linear models from observations

contaminated by noise. We examine a scenario where a fraction of the zero co-variates

are highly correlated with non-zero co-variates making sparsity recovery difficult.

We propose two methods that adaptively increment the regularization parameter to

prune the Lasso solution set. We prove that the algorithms achieve consistent model

selection with high probability while using fewer samples than traditional Lasso. The

algorithm can be extended to a broad set of L1-regularized M-estimators for linear

statistical models.
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CHAPTER I

INTRODUCTION

We consider the linear regression problem, where we observe a set of inputX1, ..., Xn ∈

Rp and output vectors Y1, ..., Yn. We assume our data is generated by a linear regres-

sion model, with target vector β∗.

Y = Xβ∗ + ε (1)

where ε is the noise variable, a vector of n i.i.d random variables with mean zero and

variance σ2. Y is the nx1 outout variable and X = (X1, X2, X3, ..., Xp) is the n x p

design matrix where Xi is the ith predictor (column) and Xj is the jth sample (row).

The model is assumed to be ”sparse”, that is some of the regression coefficients β∗

are exactly zero corresponding to predictors that are irrelevant to the response. The

non-zero co-efficients, also called as the true set, are defined by the set S : i : |β∗i | 6= 0

with s being the cardinality of the set S.

This paper focusses on the feature selection problem, where we are interested in

estimating the set of non-zero coefficients of β∗. The standard method is subset

selection, which computes the following estimator

β̂L0 = argminβ∈Rp ||Xβ − Y ||22 subject to ||β||0 ≤ k (2)

where k is tuning parameter. However, the optimization problem in (2) is nonconvex,

and the global solution to the problem cannot be efficiently computed.The most

popular approximation to L0 regularization is the L1 regularization method, also
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known as Lasso. The lasso estimates β̂ are defined by

β̂ = arg min
β

1

2n
||Y −Xβ||22 + λ||β||1 (3)

where > 0 is a regularization parameter and ||.||1 equals the sum of absolute values

of the vector’s entries.

The λ parameter controls the amount of regularization applied to the coefficients. A

very large λ completely shrinks the coefficients β to zero thus leading to an empty

model. In practice, the choice of λ is done by cross-validation.

The global optimum of (3) can be computed using standard convex optimization

techniques. The performance of lasso, for both feature selection and parameter esti-

mation, has been theoretically analyzed. For theoretical analysis of feature selection,

the sign of estimated β̂ is also compared with β∗, called model selection consistency.

P (Sign(β̂) = Sign(β∗S))

Among previous work, in particular Zhao and Yu[6] show, for fixed p and p growing

with n, there exists an Irrepresentable/Incoherence Condition that is almost

necessary and sufficient for model selection. The incoherence condition gives an upper

bound on the correlation between non-zero co-variates (Xj for j ∈ S) and zero co-

variates (Xj for j ∈ Sc).

1.1 Incoherence Condition

Let us assume, without loss of generality, for β = (β1, β2, ..., βp)
T where βj 6= 0 for

j = 1, 2...s and βj = 0 for j = s + 1, ...p. Let βS = (β1, β2, ...βs)
T and βSc =

(βs+1, ...βp)
T . Therefore βS contains all non-zero coefficients in β and βSc contains all

zero coefficients. Similarly we can divide the design matrix X into smaller matrices
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related to non-zero and zero coefficients. Let XS contain the s columns that get

multiplied with the non-zero co-efficients, and XSc contain the rest of the (p − s)

columns.

Based on these assumptions, we define the Incoherence condition as follows

Incoherence Condition There exists a positive constant vector η

|( 1

n
XT
ScXS)(

1

n
XT
SXS)−1sign(βS)|∞ ≤ 1− η (4)

where |.|∞ stands for the L∞ vector norm (i.e the maximum value in the (p− s) x 1

vector). The above equation can also be represented as an element wise inequality in

the vector, with individual ηj for each j ∈ Sc. .

The incoherence condition closely resembles a constraint on the regression coefficients

of the irrelevant/zero co-variates XSc with the relevant variates XS. Assuming a

bounded inverse of ( 1
n
XT
SXS), a lower η indicates higher correlation between co-

variates in Sc and S. This condition impacts the Lasso model selection probability,

as higher correlation leads to larger error in model selection.

1.2 Our Contribution

In this paper, we consider scenarios where incoherence is unevenly distributed among

the zero co-variates. We assume two possible distributions of incoherence among the

zero co-variates, and propose lasso procedures that exploit this structure to do model

selection with fewer number of samples than traditional lasso methods. Our main

results are

• a two-stage lasso procedure, where given the parameters (mins |β∗S|, η, σ) we can

recover the true set with high probability
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• a multi-stage procedure which adaptively updates the regularization parameter

λ and recovers the true set with high probability in finite rounds

The rest of the paper is organized as follows. In chapter 2 we summarize work related

to feature selection in Lasso and other feature screening methods. In chapter 3 we

describe the problem setting and our proposed algorithm. In chapter 4, we summarize

the theoretical proofs for feature selection of our methods. Finally in chapter 5 we

demonstrate the advantages of our methods in simulation studies.
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CHAPTER II

PREVIOUS WORK

The model selection consistency of lasso has been extensively studied by several au-

thors, and some of the most notable papers are Meinhausen and Bhulmann[3], Wain-

wright [4], and Zhao and Yu[6]. Meinhausen and Bhulman first established a proof

of lasso model selection using incoherence condition in Gaussian graphical models.

Zhao and Yu later proved that incoherence condition is a necessary condition for

model selection in lasso. Precise conditions on the problem dimension p, the num-

ber of nonzero elements s and number of samples n were proved by Wainwright.

Wainwright also extended the proofs from deterministic models to random Gaussian

ensembles.

In literature we have not yet found work exploiting the distribution of the incoherence

parameter. Most work related to adaptive lasso focuses on improving the lasso bias

and model selection probability rather than sample usage [7]. Such methods involve

processing the entire data twice, and thus are data inefficient. Recently work by

Ghaoui [1] have developed fast rules/methods that allow removal of zero co-variates

that are guaranteed to be removed later by lasso (using properties of dual Lasso).

However, these methods must be applied before the lasso algorithm, and thus are

data inefficient. In the next section we summarize the important proofs from these

papers related to model selection in Lasso.
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2.1 Events needed for Lasso Model Selection

An estimate which is consistent in terms of parameter estimation may not be consis-

tent in estimating the correct model. For model consistency we make the following

definition about Sign Consistency that does not assume the estimates to be estimation

consistent.

Sign Consistency: An estimate β̂ is consistent with the true model β∗ if an only if

sign(β̂) = sign(β∗) (5)

where the equality holds element wise. Sign(.) maps positive entries to 1, negative

entries to -1, and zero to zero. Sign consistency is a stronger requirement than the

usual selection consistency which only requires the zeros to be matched.

Using this definition we can define a lower bound on the probability of lasso selecting

the correct model.

Lemma 1 Assume strong irrepresentable condition holds with a constant η > 0 then

P (Sign(β̂λ) = Sign(β∗)) ≥ P (An ∩Bn) (6)

for

An = |( 1

n
XT
SXS)−1

XT
S ε

n
| < |β∗S| − λ|(

1

n
XT
SXS)−1Sign(β∗S)| (7)

Bn = | 1
n
XT
ScXS(

1

n
XT
SXS)−1

XT
S ε

n
− XT

Scε

n
| ≤ λη(8)

Proof:Since Lasso is a convex optimization problem, the solution to the Lasso should

satisfy the sub-gradient equation
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1

n
XTX(β̂ − β∗)− 1

n
XT ε+ λγ̂ = 0 (9)

Where γ is the sub-gradient associated with |β|1. Let us assume, without loss of

generality, for β = (β1, β2, ..., βp)
T where βj 6= 0 for j = 1, 2...s and βj = 0 for

j = s + 1, ...p. Let βS = (β1, β2, ...βs)
T and βSc = (βs+1, ...βp)

T . Similarly we

can divide the design matrix X into smaller matrices related to non-zero and zero

coefficients. Let XS contain the s columns that get multiplied with the non-zero

co-efficients, and XSc contain the rest of the p-s columns.

Then the XTX term can be written down as
XT
SXS XT

SXSc

XT
ScXS XT

ScXSc

. (β̂ − β∗) can be

written as
β̂S − β∗S

0
. The sub-gradient γ and XT

S ε can also be written in the same

format. This leads to two equations, one for all variables in S with the 1st row of

the sub-gradient equation, and another for all variables in Sc. The 1st row of the

sub-gradient equation can be written down as

(β̂S − β∗S) =

(
1

n
XT
SXS

)−1(
1

n
XT
S ε− λγS

)
(10)

Now for a solution to exist we have |β̂S − β∗S| < |β∗S|. Thus we get the equation

∣∣∣∣( 1

n
XT
SXS

)−1(
1

n
XT
S ε− λγS

)∣∣∣∣ < |β∗S| (11)

which is implied by the following equation

∣∣∣∣( 1

n
XT
SXS

)−1
1

n
XT
S ε

∣∣∣∣ < |β∗S| − λ∣∣∣∣( 1

n
XT
SXS

)−1
Sign(βS)

∣∣∣∣ (12)

This proves the equation for event An. Similarly looking at the 2nd row of the sub-

gradient equation, ∀i ∈ Sc we have
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(
1

n
XT
ScXS

)
(β̂S − β∗)−

XT
Scε

n
+ λγSc = 0 (13)

Since γSc ∈ (−1, 1), we have

∣∣∣∣( 1

n
XT
ScXS

)
(β̂S − β∗)−

XT
Scε

n

∣∣∣∣ < ∣∣∣∣λ∣∣∣∣
Substituting the values of β̂S − β∗ from Eq.(34) we get the following inequality

∣∣∣∣( 1

n
XT
ScXS

)(
1

n
XT
SXS

)−1
XT
S ε

n
−λ
(

1

n
XT
ScXS

)(
1

n
XT
SXS

)−1
Sign(β∗S)−X

T
Scε

n

∣∣∣∣ < ∣∣∣∣λ∣∣∣∣
which can be realized by the following inequality

∣∣∣∣( 1

n
XT
ScXS

)(
1

n
XT
SXS

)−1
XT
S ε

n
−X

T
Scε

n

∣∣∣∣ < λ

(
1−
∣∣∣∣( 1

n
XT
ScXS

)(
1

n
XT
SXS

)−1
Sign(β∗S)

∣∣∣∣)

where 1 indicates a vector of 1’s. Applying the irrepresentable condition (3), we get

∣∣∣∣( 1

n
XT
ScXS

)(
1

n
XT
SXS

)−1
XT
S ε

n
− XT

Scε

n

∣∣∣∣ < λη (14)

Where η represents the vector of ηi’s. This proves event Bn.
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CHAPTER III

SETTING AND PROPOSED ALGORITHM

In this paper, we study two scenarios where zero co-variates Xj for all j ∈ Sc have

different incoherence parameters:

• α(p−s) co-variates have incoherence parameter η1, and (1−α)(p−s) co-variates

have incoherence parameter η2 with η1 < η2

• the value of incoherence follows an exponential distribution (i.e fewer zero co-

variates have low incoherence values, and most zero co-variates have large in-

coherence values)

3.1 Two Stage Lasso Procedure

In the scenario where α(p − s) co-variates have incoherence parameter η1, and (1 −

α)(p− s) co-variates have incoherence parameter η2 with η1 < η2, we propose a two-

stage lasso procedure with two regularization parameters λ1 and λ2. Let Y kn, Xkn

represent kXn rows of Y and X, and XB, βB represent X and β restricted to columns

in set B. The algorithm proceeds as follows

Two-Stage Lasso Method

Input: p,n,s,k,min β∗S,σ,η1,η2,α

Output: β̂2

Initialize λ1 = λ2 = λinit = n
log(log(p))
2log(n)

− 1
2

• Calculate λub =

(
M2

4σ
√
M2+

√
s

)
minS |β∗S|

9



• Obtain λ1, λ2 and k using optimization procedure described below

• Estimate β̂1 using kn samples

β̂1 = arg min
β

1

2kn
||Y kn −Xknβ||22 + λ1||β||1

• Define set B = {j : j ∈ p, β̂1j 6= 0}

• Estimate β̂2 using (1-k)n samples

β̂2 = arg min
β

1

2(1− k)n
||Y (1−k)n −X(1−k)n

B βB||22 + λ2||βB||1

where β̂2 is the final estimate used for feature selection. M2 is the minimum eigenvalue

of 1
n
XT
SXS. Since we use only kn samples in the first stage, given an appropriate λ1, we

are able to learn (1 − α)(p − s) zero co-variates with high probability and eliminate

them after the first stage. Thus the two-stage lasso procedure uses (1 − k)n(1 −

α)(p−E(Supp(B))) fewer sample data than a single stage lasso with similar success

probability, where E(Supp(B)) is the expected cardinality of set B.

Since we require the two-stage procedure to have high probability of feature selection

while using fewer samples, we can run the following optimization algorithm which

maximizes the number of samples we avoid using.

Optimization Algorithm:

arg max
λ1,λ2,k

(1− k)(1− α)(p− E(Supp(B)))n

s.t

λ1 < λub

λ2 < λub

k < 1

P (Sign(β̂2) = Sign(β∗)) ≥ P (Sign(β̂1) = Sign(β∗))

10



To establish the proof for the two-stage procedure, we need to prove the existence

of a certain λ1 ∈ (λinit, λub) which removes the low correlation variables and another

regularization parameter λ2 which achieves better feature selection than λ1.

3.2 Multi-Stage Lasso Procedure

In the scenario where, the incoherence values follow an exponential distribution, we

can approximate the exponential distribution by selecting a set of η’s and α’s that

lower bounds the continuous distribution. The choice of such η’s and α’s determine

how well the algorithm will work in practice.

Given a set of η = (η1, η2, ...ηl) and α = (α1, α2, ..., αl), we can extend the two-stage

procedure to multiple stages. Let Y kn, Xkn represent kn rows of Y and X, and XB,

βB represent X and β restricted to columns in set B.

Multi-Stage Lasso Method

Input: p,n,s,min β∗S,σ,η,α

Output: β̂l

Initialize λ = λinit = n
log(log(p))
2log(n)

− 1
2

• Calculate λub =

(
M2

4σ
√
M2+

√
s

)
minS |β∗S|

• For i = 1, 2, ...l

– Estimate λi ≥ 4log(αi(p− s))σ2M1/nη
2
i

– Estimate β̂i using ni = n/2i samples

β̂i = arg min
β

1

ni
||Y ni −Xni

Bi−1
βBi−1

||22 + λi||βBi−1
||1

– Define set Bi = {j : j ∈ p, β̂ij 6= 0}

11



In this procedure β̂l is the final estimate used for feature selection. M2 is the minimum

eigenvalue of 1
n
XT
SXS, and M1 is the maximum ||(.)||2 of any column of X. The multi-

stage lasso procedure is similar to the two-stage procedure, except for the optimization

around sample usage.

12



CHAPTER IV

THEORETICAL ANALYSIS

We derive the model selection proofs using techniques from Zhao and Yu[6], Zhang[5]

and Wainwright [4]. We restrict our proofs to deterministic design matrix X.We also

allow the model parameters β, p, s to grow as n grows.

Assumption 1 Assume that {εi}i=1,2,..,n in (1) are independent sub-Gaussians. There

exists σ ≥ 0 such that ∀i and ∀t ∈ R

Eεie
tεi ≤ eσ

2t2/2

Assumption 1 allows us to bound the overall noise in the Lasso estimation, and enables

model selection by bounding the rate of growth of noise to n−1/2

Assumption 2 There exists 0 ≤ c1 + c3 < c2 ≤ 1 and M1,M2,M3 > 0 so that the

following holds:

1

n
XT
i Xi ≤M1 for ∀i (15)

αT
1

n
XT
SXSα ≥M2, for ∀||α||22 = 1 (16)

s = O(nc1) (17)

p = O(e−n
c3 ) (18)

13



Error Variance in S is σ1

Error Variance in Sc is σ2

Threshold due to λ

Figure 1: Left: The model selection error in Lasso can be divided into Type I error
due to mistakes in set S, and Type II error due to mistakes in set Sc. Under the
assumption of sub Gaussian noise, error probability is a zero mean sub Gaussian
random variable with variance determined by n, p, s,min β. Right: The upper bound
on the error probability is determined by the value of the regularization parameter
and the variance of the sub Gaussian random variable.

Error Variance in S is σ1

Error Variance in Sc is σ2

Threshold due to λ

New σ2

New σ1

New λ

Figure 2: Left: Given the upper bound on error due to n, p, we divide the error
into multiple stages by optimizing n, p, λ yielding advantages in overall data usage.
Right: Modified error probability due to optimization of n, p in a single stage of the
multi-stage lasso.
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min
i=1,2,..s

|βi| ≥M3n
c2−1

2 (19)

Condition (15) requires the normalization of the covariates. (16) requires that the

eigenvalues of XT
SXS are bounded from below so that the inverse behaves well.The

main conditions are (17) and (19). (19) requires a gap of nc2 between βS and noise,

since noise terms aggregate at the rate of n−1/2. (17) requires the
√
s to grow at a

rate slower than c2, which prevents estimation bias from dominating the model. (18)

allows exponential growth of p as a function of n.

Since we optimize around the number of sample used in different stages of the Lasso,

we also extend the regularity conditions as

1

kn
XTX ≤M1 (20)

αT
1

kn
XT
SXSα ≥M2, for ∀||α||22 = 1 (21)

where the regularity conditions also holds for k ∈ (logn, 1).

Theorem 1 Upper bound on λ: If the regularization parameter λ = O(n
c4−1

2 ),

where c4 ∈ (c3, c2 − c1), and λ is upper bounded by

(
4σ
√
M2 +

√
s

M2

)−1
min
S
|β∗S| (22)

then

P (Sign(β̂S) = Sign(β∗)) ≥ 1− 2 exp(−cnλ2)

for some constant c > 0.

15



Theorem 1 gives us an upper bound on the largest λ that can be used in lasso without

shrinking the non-zero co-variates to zero. This upper bound prunes the solution set to

our optimization algorithm for the two-stage and multi-stage procedure. Computation

of this upper bound requires knowledge of several unknown constants, which are

assumed to be known in the paper.

Theorem 2 Lower bound on λ based on η and n: If incoherence values of

the zero co-variates are distributed discreetly η = η1, η2, ..ηl, with proportions α =

α1, α2, ...αl, then a choice of

λ2 ≥ 4log(αi(p− s))σ2M1/nη
2
i (23)

ensures that the zero co-variates with incoherences greater than ηi are removed from

the lasso solution set with probability

≥ 1− 2 exp(−cλ2η2i n)

for some constant c > 0.

Theorem 2 gives an lower bound on the regularization parameter that removes a set of

zero co-variates with high probability. Also, if the incoherence parameters are known

in advance then λ and n can be optimized to achieve a desired error. Theorem 2

also helps us simplify the co-variates being used in each stage of the multi-stage lasso

procedure.

Theorem 3 Model Selection for Two-Stage and Multi-Stage Procedure If

Assumptions 1 and 2 hold, and if the incoherence values are distributed discreetly

η = (η1, η2, ...ηl) with η1 > η2 > η3... > ηl and with proportions α = (α1, α2, ...αl),

such that
∑l

i=1 αi = 1.

16



If λi, for stage i, is selected as

λ2i ≥ max((log(l + 1)− logδ)2i−1, logαi(p− s))σ2M1/η
2
i n (24)

using n
2i

samples and if for i ∈ (1, 2, ..l)

λi <

(
M2

4σ
√
M2 +

√
s

)
min
S
|β∗S|

then

P (Sign(β̂l) = Sign(β∗)) = P (Sign(β̂) = Sign(β∗)) ≥ 1− δ (25)

where β̂ represents lasso estimate using a single stage lasso and β̂l is the lasso estimate

using the multi-stage procedure.

Proof Sketch:

The proofs for the two-stage and multi-stage procedures proceed in the following

stages: firstly using Theorem 1 we ensure that all λi’s are upper bounded, so that the

true co-variates do not shrink to zero in any stage. Next using Theorem 2 we identify

conditions necessary to remove a specific subset of zero co-variates with incoherence

ηi. Finally, we compare the failure probability of such a procedure with a single

stage lasso procedure with given model selection error δ. The conditions required for

removal of zero co-variates and model selection error gives us a lower bound for λ

defined in Theorem 2. The detailed proof for Theorem 3 is given in Appendix.

Theorem 3 is the main result for the our proposed procedures. Given a upper bound

on the error probability of a single stage procedure δ, we can determine the regular-

ization parameter for each stage using equation (24) and (25). Theorem 3 provides

a general proof for model selection of the multi-stage procedure without optimizing

the number of samples used. However under specific conditions of η and α, we can

17



derive bounds on the sample usage. We prove two simple corollaries, for two-stage

and three stage procedures, which provide conditions under which a quarter of the

overall samples can be saved.

18



CHAPTER V

SIMULATION RESULTS

We have performed simulation studies to verify our theoretical analysis. Our com-

parison looks into feature selection accuracy using our predicted λ2, and the number

of samples saved due to the two-stage procedure and multi-stage procedure.

We first generate the true signal β∗ as 6log(n)+randn which ensures condition (9) in

our assumptions is satisfied. The sign of each non-zero element in β∗ is decided by a

binomial distribution bin(1, 0.4). Following this, the covariance structure of X is setup

as a random Gaussian matrix. This structure results is an exponential incoherence

distribution as observed in Figures 3 and Figures 4.

To test the validity of our claims we approximated the incoherence distribution, with

two and three distinct incoherence values, and tracked the model selection probability

and sample usage for each setting. Theorems (1), (2) and (3) were used to estimate

λ’s for each stage. For the single stage lasso we used the following regularization

parameter as suggested in Wainwright [4]

λ =
2

η

√
slogp

n

For each figure, in the left subplot, we plot the original incoherence distribution and

the approximation taken. In the right subplot we plot the model selection probability

as a function of samples used.We can observe that the multi-stage lasso procedures

are able to achieve higher model selection accuracy using lower number of samples

than the passive algorithm.
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Figure 3: Two Stage approximation of an exponential incoherence distribution (Left)
and Model Selection Performance (right) in the setting using single stage and multi-
stage procedures for p=1024, s=5. Incoherence approximated as η1 = 0.1, η2 = 0.25
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Figure 4: Three Stage approximation of an exponential incoherence distribution
(Left) and Model Selection Performance (right) in the setting using single stage and
multi-stage procedures for p=1024, s=5. Incoherence approximated as η1 = 0.01,
η2 = 0.05, η3 = 0.2
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CHAPTER VI

CONCLUSION

In this paper we introduce two-stage and multi-stage lasso procedures which take

advantage of variance in incoherence parameters to perform model selection with fewer

number of samples than lasso methods. We prove the model selection performance

of the proposed algorithms and also validate it though simulation studies.

Currently the algorithm requires knowledge of several parameters which are often

unknown in advance in practical settings. This reduces the applicability of the algo-

rithm to real datasets. In our future work, we would like to improve the algorithm

to address these practical issues.

Also of interest, is extending the current proofs and theorems to a broad set of

estimators. Recent work by Yen-Huan Li et al.[2] have shown generalized model

selection theorems for L1-regularization. They show application of theorems towards

linear regression, logistic regression, gamma regression and graphical model selection.

Similar to Lasso, the model selection proofs for such procedures requires the existence

of incoherence conditions. Thus under similar scenarios, multi-stage procedures for

other L1-regularization methods can also be developed.
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APPENDIX A

DETAILED PROOFS

A.1 Proof of Theorem 1

From the sub-gradient equation we have for ∀i ∈ S,

(β̂S − β∗S) = (
1

n
XT
SXS)−1

(
1

n
XT
S ε− λSign(β∗S)

)
Using triangle inequality,

||β̂S − β∗S||∞ ≤ ||(
1

n
XT
SXS)−1

1

n
XT
S ε||∞ + λ||( 1

n
XT
SXS)−1Sign(β∗S)||∞

= ||( 1

n
XT
SXS)−1

1

n
XT
S ε||∞ + λ||( 1

n
XT
SXS)−1||∞

Now since ε is a zero mean sub-Gaussian vector with variance σ2, it follows that

Z = ( 1
n
XT
SXS)−1 1

n
XT
S ε is zero mean sub-Gaussian with variance at most

σ2

n
|||( 1

n
XT
SXS)−1|||2 ≤

σ2

nM2

Consequently by the sub-Gaussian tail bound and union bound we have,

P

(
max
i=1,2,..s

|Zi| > t

)
≤ 2exp

(
− t2M2n

2σ2
+ log(s)

)
For t = 2σλ√

M2
, we have the exponential term simplifying as−2nλ2+log(s). If we assume

2nλ2 > log(s) which holds true base on Assumption 2, we have the exponential term

simplifying as −nλ2.
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Now, we require ||β̂S − β∗S||∞ < min β∗S for sign consistency to hold. Thus we have,

λ

(
||( 1

n
XT
SXS)−1||∞ +

4σ√
M2

)
≤ min β∗S

Now for the first term

λ||( 1

n
XT
SXS)−1||∞ ≤ λ

√
s||( 1

n
XT
SXS)−1||2 ≤

λ
√
s

M2

Thus simplifying we get,

λ

(√
s

M2

+
4σ√
M2

)
≤ min β∗S

with probability greater than 1− 2exp(−cnλ2).

A.2 Proof of Theorem 2

The error in the zero co-variates depend on the event

Bn =

∣∣∣∣ 1nXT
ScXS(

1

n
XT
SXS)−1

XT
S ε

n
− XT

Scε

n

∣∣∣∣ ≤ λη

Under assumptions (5)- (9), if we write the L.H.S term as HT ε
n
, where HT =

1
n
XT
ScXS( 1

n
XT
SXS)−1XT

S −XT
Sc then

HTH = XT
Sc

(
I −XS(XT

SXS)−1XT
S

)
XSc

Since (I − XS(XT
SXX)−1XT

S ) has spectral norm one, it’s eigenvalues lie between 0

and 1. Therefore the L.H.S term, will be a zero mean sub-Gaussian variable with

maximum variance

σ2

n
|| 1
n
XT
ScXS(

1

n
XT
SXS)−1XT

S −XT
Sc ||22 ≤

σ2M1

n
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Thus the probability of error for event Bn can be upper bounded by

P (Bc
n) ≤ 2(p− s) exp (−1

2

λ2η2n

σ2M1

) (26)

Where the error bound for each zero co-variate depends on its incoherence parameter.

For a set of αi zero co-variates with incoherence ηi, assuming λ < upper bound proved

in Theorem 1, if

λ2η2i n

2σ2M1

> 2log(αi(p− s))

then

P (Bc
nαi

) ≤ 2 exp(−λ2η2i n/2σ2M1)

Which completes the proof.

A.3 Proof of Theorem 3

To ensure that the multi-stage or two-stage procedure achieves a similar rate of error

as the single stage procedure, we can compare the model selection error probability of

the two procedures and give conditions which ensure equal error selection probability.

To simply the proof let us represent the error of a single stage procedure as δ.

For the multi-stage procedure with l rounds, let As be the event that the regularization

parameter is upper bounded by the result given in Theorem 1. Also, let Bαi(p−s) be

the event that in stage i, αi(p − s) zero co-variates with incoherence ηi are removed

from the solution set using n
2i

samples. Through union bound we can upper bound

the overall failure probability as

≤ P (Acs) +
l∑

i=1

P (Bc
αi(p−s))
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Thus if

P (Acs) +
l∑

i=1

P (Bc
αi(p−s)) ≤ δ

the multi-stage procedure achieves similar model selection consistency results as a

single stage lasso.This holds true if,

P (Acs) ≤ δ/(l + 1)

and for all i = (1, 2...l),

P (Bc
αi(p−s)) ≤ δ/(l + 1)

Replacing expressions from Theorem 1 for P (Acs), with n/2l samples we get the con-

dition

2 exp(−nλ2/2l) ≤ δ/(l + 1)

=> nλ2 ≥ 2l(log(l + 1)− log(δ)) + 1

and for P (Bc
αi(p−s))

2 exp(−λ2i η2i n/2i+1σ2M1) ≤ δ/(l + 1)

=> λ2i η
2
i n ≥ (log(l + 1)− log(δ))2i+1σ2M1 + 1

Thus if these additional constraints on λ are satisfied along with conditions from

Theorem 1 and Theorem 2, we will equivalent probability of model selection with a
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one stage procedure.

Choosing λi’s based on the following condition satisfies both the requirements

λ2i ≥ max((log(l + 1)− logδ)2i−1, logαi(p− s))σ2M1/η
2
i n
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