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SUMMARY

Visual tracking is the problem of following the positions of possibly multiple objects

in a video sequence, based on the input of one or many cameras (the optical sensors). It

is a fundamental problem of artificial vision and many different solution approaches have

been proposed. This thesis deals with visual tracking based on a sequence of planar images

in a partial differential equation framework.

Image segmentation can be seen as a static equivalent of tracking. A variety of active

contour approaches have been successfully applied to this problem, where a curve deforms to

minimize a given energy. Even though this deformation is typically written as an evolution

over time, there is usually no relation to physical time. Geodesic active contours (and their

higher dimensional analogs) have been particularly popular due to their geometric nature

which naturally leads to a level set implementation. However, geodesic active contours have

so far been inherently static.

This thesis introduces geometric dynamic active contours in the context of visual track-

ing, augmenting geometric curve evolution with physically motivated dynamics. Adding

additional state information to an evolving curve lifts the curve evolution problem to space

dimensions larger than two and thus does not allow for the use of classical level set tech-

niques: these only apply to closed curves or surfaces of codimension one.

This thesis therefore develops and explores level set methods for problems of higher

codimensions, putting an emphasis on the vector distance function based approach. This

formalism is very general, it is interesting in its own right and still a challenging topic.

Two different implementations for geometric dynamic active contours are explored: the

full level set approach as well as a simpler partial level set approach. The full level set

approach results in full topological flexibility and can deal with curve intersections in the

image plane. However, it is computationally expensive. On the other hand the partial

x



level set approach gives up the topological flexibility (intersecting curves cannot be repre-

sented) for increased computational efficiency. Contours colliding with different dynamic

information (e.g., objects crossing in the image plane) will be merged in the partial level

set approach whereas they will correctly traverse each other in the full level set approach.

Both implementations are illustrated on synthetic and real examples.

Compared to the traditional static curve evolution case, fundamentally different evo-

lution behaviors can be obtained by propagating additional information along with every

point on a curve.
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CHAPTER 1

INTRODUCTION

Object tracking can be accomplished in many ways including by mechanical, acoustical,

magnetic, inertial, or optical sensing, and by radio and microwaves, to mention a few. The

ideal tracker should be “tiny, self-contained, complete, accurate, fast, immune to occlu-

sions, robust, tenacious, wireless, and cheap” [139, 66]. As of now such a tracker does not

exist; trade-offs are necessary. A method should be chosen based on the application at

hand. Optical sensing is unobtrusive and can be simplified by choosing a simple (possibly

prespecified) work environment, or by altering the appearance of the objects to be tracked

(e.g., by painting them, or by mounting light sources on them). The desired objects to

be tracked then become much easier to detect. However, in certain instances (e.g., for an

uncooperative object to be followed) this is not possible. Visual tracking is the task of

following the positions of possibly multiple objects based on the inputs of one or many

cameras (the optical sensors). It is a challenging image segmentation problem with added

temporal information. From a controls perspective we distinguish between open loop and

closed loop control. Since visual tracking is based on measurements (an image, or image

sequence) obtained by an image sensor (a camera), it is intimately linked with closed loop

control. In the context of visual tracking, the two tasks of locating and following an object

(e.g., for surveillance applications), and influencing objects or the environment (e.g., con-

trolling the movement of a plane, based on visual input) can be distinguished. The latter

will most likely encompass the first (possibly resulting in nested control loops). Both tasks

can be accomplished by means of feedback mechanisms. Either case needs a good estimate

of object position. Having obtained this estimation, the task is either fulfilled (e.g., for

surveillance applications), or this information facilitates closing a control loop. This brings

to mind a broad range of applications. Indeed, be it for medical or military use, the need

for visual tracking is ubiquitous.
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Humans and animals perform visual tracking tasks with ease every day: following cars

in traffic, watching other people, following the lines of text in a document, etc. These

mundane tasks seem simple, but designing robust reliable algorithms and their computer

implementation have proven to be quite challenging [4]. We rely on a highly developed

brain, assumptions about the world acquired throughout a lifetime, and highly effective

visual sensors: our eyes. The design of algorithms which would make a machine behave

and perceive similarly to humans in all situations is a daunting task which is far from

being solved. However, if only a specific application is of interest, the problem becomes

more tractable. Visual tracking is a relatively well defined problem when dealing with well

defined environments.

Applications for visual tracking are diverse. Some key areas of research include:

• Vehicle guidance and control: See [134, 90, 14, 48, 36, 93] for applications to au-

tonomous driving 1. See Sinopoli et al. [119] and Sharp et al. [117] for visual tracking

systems for the navigation and the landing of an unmanned aerial vehicle, respectively.

• Surveillance and identification: See [110, 127, 15] for applications to target tracking

and biometric identification.

• Robotics and manufacturing: See Corke [28] and Hutchinson et al. [62] for discussions

on visual servo control which requires the visual tracking of objects/object features

as a preprocessing stage. Here visual tracking is used to increase the bandwidth and

accuracy of robots. Visual grasping falls into this category of tasks.

• User interfaces: See [102] for real-time fingertip tracking and gesture recognition, and

[4] for virtual environments.

• Video processing: See [71] for automated addition of virtual objects to a movie.

• Medical applications: See [61] for applications to vision guided surgery (surgical in-

strument tracking) and [8] for medical image tracking.

1Exemplary for these research efforts are the European Prometheus and the American PATH programs.
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A wide variety of algorithms for visual tracking exists: e.g., feature trackers, blob trackers,

contour and surface trackers. See [19, 17, 80, 30, 97, 126] and the references therein. All of

these have their own advantages and disadvantages. The seminal paper of Kass et al. [74]

spawned a huge interest in the area of contour and surface tracking algorithms; these are

the kind of algorithms this thesis will focus on.

1.1 Methodologies for Visual Tracking

The following sections group visual tracking approaches. The boundaries from one group

to another are fuzzy. The grouping is similar to the one by McLauchlan and Malik [93]. It

focuses on contour and surface trackers.

1.1.1 Feature Trackers

Feature trackers aim at finding and following features from image frame to image frame.

The most prominent representative of this class of trackers is probably the Kanade-Lucas-

Tomasi (KLT) tracker. Various extensions of this algorithm exist [118, 51]. The two most

crucial steps for feature trackers are

• selecting features and

• assessing a feature’s quality.

Only reliable (high quality) features should be used for the tracking. In the case of the

Shi-Tomasi-Kanade tracker [118] feature selection is for example accomplished based on the

conditioning of the linear system relating point translation to image measurements (image

derivatives). A well conditioned linear system corresponds to a good feature that can be

tracked well. To measure the quality of an image feature over time a measure of feature

dissimilarity is introduced. A feature is only being tracked if its dissimilarity measure is

small enough.

1.1.2 Blob Trackers

Blob trackers do not try to identify individual features (e.g., corners, bright spots, etc.) or

to track an outline of an object. Instead, the tracking is performed by separating the object
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and the image background. In its most simple form this could be accomplished by intensity

based thresholding or background subtraction; however, many other criteria to distinguish

the object from its background are conceivable: e.g., statistical properties. An advantage

of most blob trackers is that because of their simplicity they allow for real-time tracking.

Keeping track and distinguishing multiple blobs can be accomplished by assigning states

(properties) to individual blobs: e.g., color, speed, traveling direction (see for example the

KidsRoom project [63]).

1.1.3 Contour and Surface Trackers

Active contours or snakes were introduced by Kass et al. [74] as energy minimizing splines in

the two-dimensional image plane. The energy is classically based on elasticity and rigidity

constraints on the contour and the underlying image so that the snake gets attracted to the

sought for image features. More recently, area based approaches have been developed (see

for example [106]). Two different approaches for active contour based visual tracking exist:

the static and the dynamic approaches. In the static approach the contour is oblivious

of its own state; no velocity information is propagated. Tracking can then be achieved

by solving subsequent static problems [74] (assuming that the movements of the object to

be tracked are relatively slow and the contour does not leave the object’s capture range

from one frame to the next), or by incorporating temporal information (e.g., optical flow)

into an energy functional to be minimized [106, 135]. The dynamic approach [129, 107] is

based on a dynamical systems perspective, where points on the contour possess an inherent

kinetic energy. They are typically associated with a mass, a velocity vector, are related

to their neighboring points through elasticity and rigidity constraints, and move based on

an underlying potential field. One of the main problems in visual tracking is dealing with

image clutter against which visual tracking algorithms should be robust. The simplest

way to increase robustness of contour and surface based trackers is to incorporate shape or

movement information into the tracking algorithm [16, 18, 24, 23, 27, 26, 34, 32, 64, 82, 99,

112, 124, 133, 138, 146]; this is sensible, since in many cases the appearance of the object
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to be tracked is known (e.g., the approximate shape of lips for lip tracking [50], the shape

of an eye [146]).

1.2 Scope and Relation to Previous Work

This thesis is concerned with visual object tracking within the class of contour trackers.

Its contribution can be separated into two major parts. First, this thesis is concerned with

adding dynamics to contour based visual tracking in a geometric framework. Second, it

investigates level set methods in the context of geometric dynamic contour evolutions.

Typical geometric active contours [21, 22, 75, 116, 91] are static. However, variational

formulations many times falsely appear to be dynamic, because the resulting Euler-Lagrange

equations are solved by gradient descent, introducing an artificial time parameter. This time

parameter simply describes the evolution of the gradient descent. It will usually not be

related to physical time; the formalism is inherently static. A two step approach is typically

used for visual tracking by static active contours. First, the curve evolves on a static frame

until convergence (or for a fixed number of evolution steps). Second, the location of the

curve in the next frame is predicted. In the simplest case this prediction is the current

location. Better prediction results can be achieved by using optical flow information, for

example. In this two step approach, the curve is not moving intrinsically, but instead is

placed in the solution’s vicinity by an external observer (the prediction algorithm). The

curve is completely unaware of its state. The classical level set method [115] is easy to use

in this formalism. However, the approach is unnatural: The curve evolution gets decoupled

from the actual dynamics of the objects to be tracked. Even though the standard curve

evolution equations seem to be dynamic (they include a time dependence, e.g., Ct = κN )

they are not.

In contrast, Terzopoulos and Szeliski [129] or Peterfreund [107] view curve evolution

from a dynamical systems perspective; both methods are marker particle based and are

fast, but they may suffer from numerical problems (e.g., in the case of sharp corners [115]).

In the static case, level set methods are known to handle sharp corners, topological changes,

and to be numerically robust. In their standard form, they are restricted to codimension one
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problems (of closed curves and surfaces) and are thus not suitable for dynamic curve evo-

lution, since adding additional state information (e.g., velocity information) to an evolving

curve lifts the curve evolution problem to higher space dimensions and therefore to higher

codimensions. Extensions of level set methods to higher codimensions exist and a level set

formulation for dynamic curve evolution is desirable [100, 101].

The main motivation for this thesis is to have a natural framework for visual tracking.

The results of this thesis relate to dynamic snakes [129] as geodesic or conformal active

contours [75, 22] relate to the original snake formulation [74], advocating a different phi-

losophy to dynamic curve evolution. Instead of discretizing evolution equations upfront

(early lumping), partial differential equations describe the system as long as possible (late

lumping [141]), resulting in a more natural and geometric formulation.

Uniting dynamic active contours with the level set framework has several important

implications:

• The formulation will no longer be parametric, but will become geometric.

• It will no longer be possible to only use the classical level set approach, which is

restricted to codimension one problems of closed curves or surfaces.

• Numerical schemes will need to be tailored specifically for the resulting evolution

equations.

Level set methods for codimension one problems of closed curves or surfaces are well

developed [115]. However, in the context of this thesis, level set methods for problems of

higher codimension are of importance. These are a relatively recent development and little

is known theoretically for many of these methods.

Ambrosio and Soner [6] extend the codimension one level set approach to arbitrary codi-

mensions. They propose to surround an evolving surface of higher codimension by a family

of hypersurfaces (the level sets of a scalar function). Their setup facilitates mathemati-

cal analysis. Specifically, they prove existence and uniqueness of a weak solution. On the

downside, the approach is not straightforward to use for practical purposes, since extraction

of the evolving surface is nontrivial and the approach may suffer from fattening artifacts
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in case of topological mergers, thus partially losing one of the main advantages of level

set methods over particle based methods. Lorigo et al. [86] utilize this method to segment

blood vessels in magnetic resonance angiography images. This is a natural application for

the theory developed by Ambrosio and Soner, since objects are represented by hyper-tubes.

The alternative approach of representing a manifold of codimension k in Rd by the

intersection of k scalar function in Rd, proposed by Ambrosio and Soner, is not analyzed

mathematically in their seminal paper [6], due to theoretical difficulties.

Nevertheless, it enjoys popularity in practice. Bertalmio et al. [11] perform region track-

ing on a two dimensional manifold in R3 by intersecting two hypersurfaces represented as

level sets of two level set functions. Similarly, Osher et al. [103] model planar wavefronts

of geometric optics, as objects in three-dimensional space (codimension two), and are thus

able to deal with self intersections of the wavefronts. The main complication for these ap-

proaches is the initialization of the level set functions. Classically, these are signed distance

functions, where the zero level set describes the hypersurfaces. However, an initialization

based on signed distance functions is not unique (different sets of hypersurfaces can have

the same intersection). Especially at a distance from the intersection, it is not clear how

the level sets should be extended.

To cope with this problem, Gomes et al. [57] evolve vector distance functions to implicitly

move manifolds of arbitrary dimension. This amounts to the intersection of n hypersurfaces

in an n-dimensional space. The description is thus redundant, but does not suffer from

initialization problems, since the description of a manifold in terms of a vector distance

function is unique.

Evolutions based on vector distance functions or on the intersection of multiple level

sets are computationally expensive, since the evolutions are performed in high dimensional

spaces. Furthermore, it is not clear how to devise a narrow-banding technique (where the

equations are only solved within a small band around the manifold to be evolved; see for

example [115]) in the case of a representation based on intersecting hypersurfaces [56].

This thesis explores two different implementations for geometric dynamic active contour

based tracking: the partial, and the full level set approach. The full level set approach is
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based on a vector distance function evolution. It possesses full topological flexibility and

can deal with curve intersections in the image plane, but is computationally expensive.

Handling self intersecting objects is especially important for tracking moving objects which

temporarily occlude each other. The partial level set approach only represents curves in the

image plane by a level set approach. This allows for the use of well developed numerical

algorithms, but gives up the topological flexibility for increased computational efficiency.

1.3 Organization of this Thesis

The remainder of the thesis is structured as follows: Chapter 2 presents background in-

formation useful for a deeper understanding of the material presented in subsequent chap-

ters. Chapter 3 develops the dynamic curve evolution theory. Edge-based and area based

approaches are considered. Chapter 4 deals with possible extensions to the framework de-

veloped in Chapter 3. Specifically, extensions are proposed that simplify the use of the

developed dynamic curve evolution theory on real image sequences. Level set implementa-

tions are discussed in Chapter 5. Chapter 6 presents simulation results. Conclusions and

possible research directions are given in Chapter 7. The thesis contains an appendix for

detailed derivations of the curve evolution equations and an explanation of the numerical

methods used.
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CHAPTER 2

PRELIMINARIES

This chapter gives some background on the mathematical tools and descriptions used in

the remainder of this thesis. Section 2.1 briefly discusses different ways to represent an

object. Section 2.2 gives a general overview over filtering methods for a relatively general

class of systems given in state space form. This facilitates the classification of the infinite

dimensional state space description used for curve description in this thesis. As a side effect

Section 2.2 can be regarded as a general introduction to the concept of observers on an

informal level. Finally, Section 2.3 introduces the machinery of cubical homology which

will turn out to be a very useful tool for the discrete geometry considered in Section 5.2.

2.1 Object Representations

Object representation is a crucial design step. Representational flexibility increases, whereas

robustness usually decreases, with increased dimensionality of the representation. The

simplest way to represent an object is a point (0-dimensional). Partial differential equation

based approaches are infinite dimensional, they are considerably more complex. In between

lie the finite dimensional (parameterized) representations.

Two possible ways to represent objects are to represent them by their boundary (contour-

based) or by the region they cover. For region based approaches, texture information can

be incorporated: see the literature on active appearance models [25, 123, 114].

The simplest way to represent the boundary of an object is to represent it by a finite

number of points [124]. To obtain the boundary from the set of points an interpolation

scheme is necessary. The easiest interpolation scheme being linear interpolation. Frequently

splines are used for this purpose [18, 19, 136]. These methods can be regarded as the
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simplest form of contour-based parametric models, where a parameterization describes an

object boundary1.

Parametric methods have the advantage that they are usually computationally relatively

inexpensive and they allow easily for the incorporation of motion restrictions. The art lies

in the choice of parameterization. In light of representing curves as dynamical systems,

some parameterizations are better suited than others. In most cases linear or affine pa-

rameterizations (i.e., the parameters map in a linear or affine fashion to the coordinates

of points on the curve) will be desirable for dynamic curve evolution. However, nonlinear

parameterization may be useful to simplify a system’s governing equations (in this new

parameterized description). We refer the reader to the book by Sonka et al. [122] for a more

thorough treatment of object representations.

When employing a certain object representation in the context of visual tracking, it is

useful to restrict the shape search space whenever possible. This will lead to more robust

tracking algorithms. If we are following the center of mass of an object for example, we

could derive the dynamics based on a point model. In the plane this would amount to

specifying the coordinates of the point. If we know we are looking for circles it would be

sufficient to specify the center of the circle and a radius, for an ellipse it is sufficient to

specify the minor and major axis including the center. The tracking problem simplifies

further, if the object to be tracked only moves in certain ways, e.g., only by translation, by

translation and rotation, by affine transformations.

This thesis deals with dynamic curve evolution equations described by partial differential

equations. This leads to great representational flexibility. Adding shape constraints for

such systems is important, but not straightforward. It is still subject to active research

and beyond the scope of this thesis (see for example [82, 24, 23, 34, 32, 33, 112, 133]). The

contribution of this thesis is in the novel dynamic description and implementation of curve

evolution on which shape constraints should be added on the basis of further research.

1Region descriptions can be parametric as well. See for example the literature on active appearance
models, where frequently a principal component analysis is employed to derive a parametric appearance
model [25].
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2.2 Filtering

The dynamical equations governing curve evolution will depend on the chosen object de-

scription. If the object description is finite (infinite) dimensional then the system equations

will in general by finite (infinite) dimensional as well 2. Since for computer implementations

only the finite dimensional case matters, two different methodologies can be distinguished

for the infinite dimensional case: early lumping and late lumping. Early lumping aims

at discretizing a system description upfront, thus approximating it by a finite dimensional

system. Then all the tools for finite dimensional systems can be applied to this finite di-

mensional approximation. The late lumping approach on the other hand aims at keeping

the infinite dimensional description as long as possible, discretizing only as a very last

step before the actual implementation. This then requires and can make use of the whole

theoretical machinery for infinite dimensional systems [35].

A dynamical system can be discrete, continuous, deterministic, stochastic or a mixture

of the above (as for hybrid systems, where the interplay of continuous and discrete system

parts is studied). This thesis is concerned with infinite dimensional continuous time systems.

To position this type of system within the class of possible system descriptions, this section

gives an overview over some typical state space system descriptions. We restrict ourselves

to purely discrete or purely continuous systems, with purely discrete or purely continuous

observations.

Based on this restriction, the following four different system descriptions can be distin-

guished:

(1) Systems with continuous system dynamics and continuous observations.

(2) Systems with continuous system dynamics and discrete observations.

(3) Systems with discrete system dynamics and continuous observations.

(4) Systems with discrete system dynamics and discrete observations.

2As it turns out this will not necessarily be the case for the observer, since finite dimensional systems
may lead to infinite dimensional observers.
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Cases three and four are identical for all practical purposes (assuming that the obser-

vation is free of additional dynamics). If the system is to be simulated, the whole system

(system dynamics and observation model) needs to be discretized. From an implementation

point of view it is easier to work with completely discrete systems. However, the physical

meaning of the equations is then usually buried in the discretized equations. Note that by

viewing system dynamics together with an observation process, the following sections will

introduce the concept of system observers as well3. We assume in the following that the

given systems are observable.

2.2.1 System Descriptions

Based on the observation above, we need to distinguish three different system models. A

continuous system description4 is given by

ẋ(t) = f(x(t),u(t),v(t), t),

y = h(x(t),u(t),w(t), t),

where x is the state vector, f and h are the nonlinear vector functions describing the system

dynamics and the output respectively, v and w are noise processes, and y represents the

output of the system.

A completely discrete system description is given by

xk+1 = f(xk,uk,vk, k),

yk = h(xk,uk,wk, k),

where k denotes the discrete time index (e.g., x(kh) = xk, h > 0, h ∈ R). Linear time-

invariant systems can easily be transformed from a continuous to a discrete form (if certain

assumptions about the signal shape throughout the discretization intervals can be made).

Discretization for nonlinear systems is not so straightforward.

3The reader is referred to classical texts on control theory for background on state space descriptions,
observers, the concept of observability, etc. [49].

4The following system descriptions are sufficiently general for the presentational purposes in this thesis.
However, not all systems can be written in this way, e.g. differential-algebraic systems.
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In between lies the continuous-discrete system description given by

ẋ(t) = f(x(t),u(t),v(t), t),

yk = h(x(k),u(k),wk, k).

2.2.2 The Deterministic Viewpoint

In the deterministic case, v and w are assumed to be zero. Given an initial state x0, the

state at any time t can be computed by solving the governing equations for the system.

Also, if the state x0 is not known exactly, the state vector x can be observed based on the

measurements y if the system is observable. In this deterministic case a relatively simple

observer (e.g., a Luenberger observer [89] in the finite dimensional case, or an extension of

the Luenberger observer to infinite dimensional systems [141]) is sufficient. In principle, the

observer can then converge to the correct state arbitrarily fast (see for example the literature

on high-gain observers [131] or [94]). The deterministic problem, becomes more challenging

when the system equations themselves are assumed to be known only approximately. This

will be the case for most practical problems [40].

2.2.3 The Probabilistic Viewpoint

If noise processes are not neglected, we need to deal with stochastic differential or stochas-

tic difference equations. In the most general setting we would like to devise a scheme to

propagate a conditional density function associated with the evolution equation, i.e., how

likely is a certain state x given measurements y. Given the full conditional density the

system’s state can easily be determined. For example by a maximum a posteriori (MAP)

approach (i.e., by finding the highest peak of the conditional probability function), or by

a maximum likelihood (ML) approach (i.e., by calculating the mean state based on the

conditional probability density). Depending on the kind of noise process we are looking at,

tremendous simplifications can arise. The Gaussian posterior density assumption leads to

the Kalman filter in the linear case. However, in most real life situations the noise process

is not (or only approximately) Gaussian. Propagation of the full conditional probability
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density profile allows for maximum flexibility. Multi-modal distributions pose no prob-

lem in this setting and thus allow for the propagation of multiple hypotheses of a systems

state. This is an extremely nice property for visual tracking, and can yield highly robust

tracking systems [18, 19]. Of course this comes at a price: potentially high computational

cost. Whereas in the linear Gaussian case only mean and variance information has to be

propagated, a fine enough discretization of the conditional probability density needs to be

propagated in the general case. The computational cost increases with the state dimension.

A partial remedy to this “curse of dimensionality” are Monte Carlo based sampling ap-

proaches [5, 85, 39, 65, 54, 10, 59]. Note, that by propagating a probability density function

that includes the influence of measurements we essentially set up an observer.

2.2.3.1 Discrete Systems Dynamics and Discrete Observations

Following [10] we define the measurement vector as

Yk =

(
y0 y1 . . . yk

)T
.

Our goal is to estimate the probability distribution of the state xk conditioned upon the

measurements Yk. Or in mathematical terms: we want to estimate p(xk|Yk). To this end

we observe:

p(xk,yk|Yk−1) = p(xk|Yk)p(yk|Yk−1) = p(yk|xk,Yk−1)p(xk|Yk−1).

Some rearranging yields (this is Bayes’ rule)

p(xk|Yk) =
p(yk|xk,Yk−1)p(xk|Yk−1)

p(yk|Yk−1)

which can be simplified to

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
(1)

upon assumption that yk is independent of previous measurements if xk is known. If

furthermore xk is a Markov process then we can write

p(xk+1,xk|Yk) = p(xk+1|xk,Yk)p(xk|Yk)
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and simplify to

p(xk+1,xk|Yk) = p(xk+1|xk)p(xk|Yk).

Finally (upon marginalization on xk) we obtain the Chapman-Kolmogorov equation

p(xk+1|Yk) =

∫
p(xk+1|xk)p(xk|Yk) dxk (2)

relating the probability distribution at time step k + 1 to the measurements Yk. This can

be used to update the prior

p(xk+1|Yk+1) =
p(yk+1|xk+1)p(xk+1|Yk)∫

p(yk+1|xk+1)p(xk+1|Yk)dxk+1
. (3)

Equations (2) and (3) form the basis for the Bayesian filtering algorithm. The general so-

lution of these equations is difficult and computationally expensive. However, approximate

methods have been developed. See [7] for details on solutions based on grid-based filters

and particle filters.

2.2.3.2 Continuous System Dynamics and Discrete Observations

What follows will be for a scalar state equation for notational simplicity. Higher dimensional

results exist (see [140, 70, 73, 111, 3] for details). Given the continuous state vector x(t) let

xk+1 = x((k + 1)h), xk = x(kh),

where h > 0, h ∈ R denotes the discrete time step. Then

p(xk+1) =

∫
p(xk+1|xk)p(xk)dxk.

By letting h → 0 the evolution equation for p(x, t) can be written by the Kramers-Moyal

expansion as [111]

∂p(x, t)

∂t
=
∞∑

n=1

(
− ∂

∂x

)(
D(n)(x, t)p(x, t)

)
, (4)

where the D(n) are given by the Taylor expansion of the moments

Mn(x, t, τ)/n! =

∫ (
x′ − x

)n
p(x′, t+ τ |x, t)dx′ = D(n)(x, t)τ +O(τ 2).
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By Pawula’s theorem [111], the Kramers-Moyal expansion requires either an infinite number

of terms or stops after one or two terms. If the Kramers-Moyal expansion stops after the

second term, Equation (4) becomes the Fokker-Planck equation

∂p(x, t)

∂t
= − ∂

∂x

(
D(1)(x, t)p(x, t)

)
+

∂2

∂x2

(
D(2)(x, t)p(x, t)

)
,

where D(1) and D(2) are called drift coefficient and diffusion coefficient respectively. Given

discrete observations yk, the probability density can be corrected based on Bayes’ for-

mula [95]

p(x, tk|Yk) =
p(yk|x)p(x, tk|Yk−1)∫
p(yk|x)p(x, tk|Yk−1)dx

.

As an example system consider [95]

dx = f(x, t)dt+ g(x, t)dw

yk = h(x, tk) +
√
Rv,

where v is a white sequence of Gaussian random variables, the m×m matrix R is diagonal

and w is a Wiener process. Then the Fokker-Planck equation is

∂p(x, t)

∂t
= −∇ · (f(x, t)p(x, t)) +

∑

i,j

∂2

∂xi∂xj

((
1

2
g(x, t)gT (x, t)

)

ij

p(x, t)

)

and

p(yk|x) =
1

(2π)m/2
√
|R|

e−
1
2

(yk−h(x,tk))TR−1(yk−h(x,tk)).

2.2.3.3 Continuous System Dynamics and Continuous Observations

The probability densities in the discrete-discrete case are governed by Equations (2) and (3).

To obtain a completely general continuous description would require the analog to the

Kramers-Moyal expansion for the Equation set (2) and (3) (i.e., taking the limit as h→ 0).

This is difficult. As a remedy the observation is usually chosen as the observation process

(see [88, 87, 72, 73, 140, 98] for details).

y(t) =

∫ t

0
h(x(s))ds+W (t),
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where W is a Wiener process. The optimal filter [88] (in the mean square sense) to recover

x from the measurements y is then

x̂(t) =

∫
xp(x, t)dx∫
p(x, t)dx

,

where p = p(x, t) is the unnormalized filtering density which is the solution to

dp(x, t) = A∗p(x, t) + h(x)p(x, t)dY (t),

the Zakai equation. HereA∗ is the adjoint (solution) operator to the operator for the Markov

process governing the evolution of x (e.g., for the Fokker-Planck equation of Section 2.2.3.2

Ap(x, t) = − ∂
∂x

(
D(1)(x, t)p(x, t)

)
+ ∂2

∂x2

(
D(2)(x, t)p(x, t)

)
). The normalized filtering density

is governed by the solution to the Kushner equation [98]

dp̃(x, t) = A∗p̃(x, t)dt+ p̃(x, t)

(
h(x)−

∫
h(x)p̃(x, t)dx

)
dY (t) (5)

which is a nonlinear stochastic differential equation, whereas the Zakai equation is a linear

stochastic differential equation and is thus usually preferred for computational purposes. A

special case is the case where both the state and the observation evolutions are governed by

diffusion equations. Then, this is equivalent to the Kalman-Bucy filter (i.e., the continuous

time Kalman filter). As a matter of fact, all the cases presented in the previous sections

have as special cases the Kalman filter. See [53] for Kalman filtering results for the discrete-

discrete, continuous-discrete and continuous-continuous cases. In summary, we observe the

following: In the case of discrete observations, the observations update the probability

distribution in an update step after evolution of the system for some finite time period. In

the completely continuous case this update step is replaced by the continuous error injection

term

h(x)−
∫
h(x)p̃(x, t)dx

as can be seen in the Kushner Equation (5). Dealing with nonlinear dynamical systems

in complete generality is difficult. As demonstrated above, the governing equations get

complex even for systems with a finite number of states; a finite dimensional system may

require an infinite dimensional observer. The dynamic curve evolution problem considered in
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this thesis is infinite dimensional. Observer design for such systems is still in its infancy [141].

To deal with this problem, the error injection idea presented in this section will be used in

Section 4.1 to design an infinite dimensional observer-like system.

2.3 Cubical Homology

This section gives a brief introduction to homology. It will be used in Section 5.2 to define

the concept of a simple point in a d-dimensional space.

Homology aims at counting holes in a topological space. For three-dimensional image

data for example, three non-trivial homology groups H0, H1 and H2 exist. The number

of connected components, tunnels and voids present in the image are given by the Betti

numbers β0, β1 and β2 respectively; where βi is the rank of the homology group Hi. Ho-

mology is a combinatorial theory, i.e., it can be computed by decomposing the space into a

finite number of units. In the traditional simplicial homology, these units are simplices. In

the cubical homology these units are pixels/voxels and their respective vertices, edges and

higher-dimensional faces. Cubical homology is ideally suited for digital images, due to its

ability to handle voxels or pixels directly. Whereas homology is by now a standard tool of

algebraic topology [92], cubical homology is more recent [68, 69].

Formally, an elementary cube Q is given by the finite product [67]

Q = I1 × I2 × · · · × Id ⊂ Rd, (6)

where Ii is either a singleton (degenerated) interval I = [l, l] = [l] or an interval of unit

length I = [l, l + 1] for some l ∈ Z. The number of non-degenerate components in Q is

called the dimension of Q (dimQ). If a set X ⊂ Rd can be written as a finite number of

elementary cubes, it is called a cubical set. The set of all elementary cubes is denoted by

K, and the set of all elementary cubes Q in Rd with dimQ = k by Kk, for k ∈ N.

Definition 1

Let X ⊂ Rd be a cubical set. Let

K(X) := {Q ∈ K | Q ⊂ X} and

Kk(X) := {Q ∈ K(X) | dimQ = k}.
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To pass from the combinatorial structure of the elementary cubes, e.g., the collection of

voxels, to the algebraic structure of homology groups, one constructs the free abelian group

of k-chains, Ck(X), by declaring each element of Kk(X) to be a distinct generator (or basis

element). Let Ck denote Ck(Rd).

Given k ∈ Z, the cubical boundary operator

∂k : Ck → Ck−1 (7)

is the group homomorphism defined on every elementary cube Q ∈ Kk as the alternating

sum of its (k− 1)-dimensional faces. Due to linearity this boundary operator extends to all

k-chains. A k-chain z ∈ Ck(X) is called a cycle in X if ∂kz = 0. A k-chain z ∈ Ck(X) is

called a boundary in X if there exists a c ∈ Ck+1(X) such that ∂k+1c = z. The set of all

cycles and the set of all boundaries in X form subgroups in Ck(X) and are given by

Zk(X) := ker ∂Xk = Ck(X) ∩ ker ∂k (8)

Bk(X) := image ∂Xk+1 = ∂k+1 (Ck+1(X)) (9)

respectively.

Definition 2

The k-th cubical homology group of X is the quotient group

Hk(X) := Zk(X)/Bk(X).

The Betti numbers βk are then given as

βk(X) := rank(Hk(X)). (10)

The elements of Hk(X) are called the k-generators of X. The homology groups are com-

puted as (for example) described in [69, 108]. Software to compute the Betti-numbers of a

cubical complex is freely available (http://www.math.gatech.edu/~chom). A very useful

result to compute the homology of a cubical set is the Mayer-Vietoris theorem:

Theorem 1 (Mayer-Vietoris)

Let X be a cubical space, then given the two cubical sets A0 ⊂ X and A1 ⊂ X, such that

X = A0 ∪ A1 and B = A0 ∩ A1, there is a long exact sequence

· · · → Hk(B)→ Hk(A0)⊕Hk(A1)→ Hk(X)→ Hk−1(B)→ . . . ,
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where an exact sequence is defined as [68]:

Definition 3

A finite (or infinite) sequence of groups and homomorphisms

· · · → G3
Ψ3→ G2

Ψ2→ G1 → . . .

is exact at G2 if

ker Ψ2 = im Ψ3.

It is an exact sequence if it is exact at every group.

For details regarding the theory of cubical homology and a proof of the Mayer-Vietoris

theorem the reader should consult the excellent book by Kaczynski et al. [68].
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CHAPTER 3

CURVE EVOLUTION THEORY

3.1 Parameterized Dynamic Curve Evolution

This section reviews parameterized dynamic curve evolution [129] and introduces the math-

ematical setup required to derive the geometric dynamic curve evolution equations of Sec-

tion 3.2.

Consider the evolution of closed curves of the form C : S1 × [0, τ) 7→ R2 in the plane,

where C = C(p, t) and C(0, t) = C(1, t) [128, 76], with t being the time, and p ∈ [0, 1] the

curve’s parameterization (see Figure 1 for an illustration). The classical formulation for

dynamic curve evolution as proposed by Terzopoulos and Szeliski [129] is derived by means

of minimization of the action integral

L =

∫ t1

t=t0

L(t, C, Ct) dt, (11)

where subscripts denote partial derivatives (here with respect to the time t). The Lagrangian

L = T − U is the difference between the kinetic and the potential energy. The potential

energy of the curve is given by

U =

∫ 1

0
Uel + Urig + Upf dp

=

∫ 1

0

1

2
w1‖Cp‖2 +

1

2
w2‖Cpp‖2 + g(C) dp,

where g is some potential function (with the desired location of the curve forming a potential

well) and Uel, Urig, and Upf are the elasticity, rigidity and potential field contributions

respectively, with their (possibly position-dependent) scalar weights w1, and w2. A common

choice for the potential function is

g(x) =
1

1 + ‖G ∗ ∇I(x)‖r , (12)
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Figure 1: For parameterized curve evolution the parameterization travels with a particle.
In general, the parameterization will not stay uniformly spaced. The black disk and the
asterisk indicate particles attached to the curve; their assigned value for p will stay the
same throughout the evolution.

where x = [x, y]T are the image coordinates, I is (for example) the image intensity, r is a

positive integer, and G is a Gaussian of variance σ2. The kinetic energy is

T =

∫ 1

0

1

2
µ‖Ct‖2 dp,

where µ corresponds to mass per unit length. The Lagrangian used is then

L =

∫ 1

0

1

2
µ‖Ct‖2 −

1

2
w1‖Cp‖2 −

1

2
w2‖Cpp‖ − g(C) dp. (13)

Computing the first variation δL of the action integral (11) and setting it to zero yields the

Euler-Lagrange equations for the candidate minimizer [132] in force balance form:

µCtt =
∂

∂p
(w1Cp)−

∂2

∂p2
(w2Cpp)−∇g. (14)

Note, that the right hand side of Equation (14) corresponds to a force (compare with

Newton’s second law ma = F , where m is the mass, a the acceleration, and F the force),

where ∇g is the force exerted by the image on the curve. The capture range of the potential

force ∇g will depend on the variance of the Gaussian in Equation (12). If a greater capture

range is desired, ∇g can be replaced by a more general force [142], e.g., a force based on

the gradient vector flow field. Equation (14) depends on the parameterization p and is

therefore not geometric (see Xu et al. [143] for a discussion on the relationship between
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parametric and geometric active contours). The proposed methodology (see Section 3.2)

will be completely independent of parameterization. It will be geometric.

3.2 Geometric Dynamic Curve Evolution

This section presents the geometric dynamic curve evolution equations, which are geometric

and evolve according to physically motivated time. Minimizing equation (11) using the

Lagrangian

L =

∫ 1

0

(
1

2
µ‖Ct‖2 − g

)
‖Cp‖ dp,

instead of the Lagrangian (13), results in (see A.1 for a derivation)

µCtt = −µ(T · Cts)Ct − µ(Ct · Cts)T −
(

1

2
µ‖Ct‖2 − g

)
κN − (∇g · N )N , (15)

which is geometric and a natural extension of the geodesic active contour approach [22, 75].

Here, N is the unit inward normal, T = ∂C
∂s the unit tangent vector to the curve, κ = Css ·N

denotes curvature and s is the arclength parameter [38].

The term (gκ − ∇g · N )N in Equation (15) is a force exerted by the image potential

g on the curve C. Compare this to the evolution equation for geodesic active contours as

given in [113, 128] (Ct = (gκ−∇g · N )N ).

From a controls perspective this can be interpreted as a control law based on g and

its spatial gradient ∇g, which is designed to move the curve closer to the bottom of the

potential well formed by g.

The control law will not guarantee perfect tracking, since the potential forces associated

with g will have to outweigh the dynamical forces. As a remedy, proportional integral (PI)

control (optionally with an anti-windup scheme) of the form

µCtt = −µ(T · Cts)Ct − µ(Ct · Cts)T −
1

2
µ‖Ct‖2κN +

(
αpg + αi

∫
g dt

)
κN−

−
(

(diag(βp)∇g + diag(βi)

∫
∇g dt) · N

)
N (16)

can be used, where αp, αi, βp, βi are controller parameters (αp and αi are scalars, βp and

βi are vectors in R2), and diag(β) denotes the diagonal matrix with diag(β)kk = βk. We
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assume that g and ∇g vanish at the desired location of the curve. For the sake of notational

simplicity we will continue to use Equation (15) in what follows.

Equations (15,16) describe a curve evolution that is only influenced by inertia terms and

information on the curve itself. To increase robustness, the potential energy U can include

region-based terms (see for example [106, 145, 144]). This would change the evolution

Equations (14,15,16), but such changes pose no problem to the overall approach.

The state-space form of equation (15) is

xt(s, t) =




x3(s, t)

x4(s, t)

f1(x)

f2(x)



, (17)

where xT = [x1, x2, x3, x4]T , x1 = x(s, t), x2 = y(s, t), x3 = xt(s, t), x4 = yt(s, t), and fi are

scalar functions in x and its derivatives. The evolution describes the movement of a curve

in R4, where the geometrical shape can be recovered by the simple projection

Π(x) =



x1(s, t)

x2(s, t)


 .

3.2.1 Interpretation of the Evolution Terms for the Geometric Dynamic Curve
Evolution

To get an understanding of Equation (15), it is fruitful to look at the effect of its individual

terms. The term

− (∇g · N )N

accelerates the curve C towards1 the potential well formed by g. The term

−a(g, Ct)κN = −
(

1

2
µ‖Ct‖2 − g

)
κN

accelerates the curve C based on its smoothness properties and

−µ (T · Cts) Ct (18)

1−∇g points towards the potential well.
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Figure 2: Curve propagation in the normal direction, Cts constant and linearly increasing.

represents a smoothing term for the tangential velocity. The velocity change Cts at every

point on the curve C decomposes into its tangential and normal components as

Cts = (Cts · N )N + (Cts · T ) T .

Assume that the tangential and the normal components change approximately linearly close

to the point of interest. A Taylor series expansion (at arclength s0) yields

(Cts · N )(s) = (Cts · N )(s0) +
∂(Cts · N )

∂s


s0

(s− s0) +O(s2) = n0 + n1(s− s0) +O(s2),

(Cts · T )(s) = (Cts · T )(s0) +
∂(Cts · T )

∂s


s0

(s− s0) +O(s2) = t0 + t1(s− s0) +O(s2).

In order to appreciate the effect of the term (18), it is sufficient to consider the two fun-

damental cases depicted in Figures 2 and 3. The normal component (depicted in Figure 2)

is irrelevant for the evolution, since T · Cts = 0 in this case. The tangential component (de-

picted in Figure 3) will counteract tangential gradients of Cts. The two cases correspond to a

linearly and a parabolically increasing velocity Ct in the tangential direction. In both cases,

the term −µ (T · Cts) Ct will counteract this tendency of tangentially diverging particles on

the curve, ideally smoothing out the tangential velocities over the curve C.

The term

−µ (Ct · Cts) T
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Figure 3: Curve propagation in the tangential direction, Cts constant and linearly increas-
ing.

governs the transport of particles along the tangential direction. To understand what is

occurring locally, assume looking at a locally linear piece of the curve. Then the velocity

decomposes into

Ct = (Ct · T ) T + (Ct · N )N .

It is instructive to look at a triangular velocity shape Ct in the normal direction (as shown

in Figure 4(a)) and in the tangential direction (as shown in Figure 4(b)). The triangular

velocity shape in the normal direction induces a tangential movement of particles on the

curve. This can be interpreted as a rubberband effect. Assume that the rubberband gets

pulled at one point. This will elongate the rubberband. Since the point at which it is

pulled stays fixed (no movement except for the displacement due to the pulling) particles

next to it flow away from it. The triangular velocity shape in the tangential direction also

induces tangential motion of the particles. However, this motion will counteract the initial

tangential direction and will thus also lead to a smoothing effect on the change of tangential

velocity vector over arclength.

3.3 Simple Area Based Dynamic Curve Evolution

So far, we looked at dynamic curve evolution based on an edge-based potential function. It

is simple and fast, but generally not very robust. For the static case, region (or area) based

formulations have been proposed, which replace the edge-based potential function, by an
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Figure 4: Behavior of the curve evolution term −µ (Ct · Cts) T .
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expression based on area intensity, statistics, etc. Here, greater robustness is achieved by

giving up on flexibility and making stronger assumptions about the objects to be captured.

We can easily derive a dynamic curve evolution equation from an area based static

formulation. To do so, simply split the action integral into

L =

∫ t1

t=t0

(∫ 1

p=0

1

2
µ‖Ct‖2‖Cp‖ dp

)
− ga dt, (19)

where ga denotes the area based part of the action integral2. As an example, this section

demonstrates this methodology in case of the approach proposed by Yezzi et al. [145]. Define

(following [145])

ga(u,w) = −1

2
(u− w)2 ,

where u = Su/Au and w = Sw/Aw, where

Su =

∫

Ru
I dA Au =

∫

Ru
dA

Sw =

∫

Rw
I dA Aw=

∫

Rw
dA,

and Ru and Rw denote the domains inside and outside the curve respectively. Computing

the first variation and setting it to zero results in (see A.2 for a derivation)

µCtt = −µ(T · Cts)Ct − µ(Ct · Cts)T −
1

2
µ‖Ct‖2κN − (u− w)

(
I − u
Au

+
I − w
Aw

)
N .

The formulation (19) suggests keeping a curve based term for the velocity part of the

evolution equation. However, this is not necessary since the term ga can be chosen as

desired. See Section (3.4) for a “completely” area based approach.

3.4 Elastic Body Deformation

Given a set A on a domain Ω ⊂ R2 and a displacement u = (ux , uy)T associated with

every point in A (see Figure 5)

T =
1

2
ρ

∫

A
‖ut‖2 dA

2Generally, all static (energy-based) approaches can be cast into the dynamic framework by using the
static energy as the potential energy P of the action integral (19), where P = ga.

28



is the kinetic energy of the body B described by the set A, ρ denotes the density of B. The

elastic potential energy can be defined (see [121, 1] for details) for a volume V as

Uel(u) =

∫

V
W dV −

∫

∂V
T Tu d(∂V )−

∫

V
fTu dV,

where W is the strain energy density, T are the surface tractions, f is the body force, and

u are the displacements in three dimensions. For an isotropic material the strain energy

density is [58]

W = µεijεij +
λ

2
(εkk)

2,

using the usual Einstein summation convention (i.e., summing over indices occurring more

than once); ε denotes strain, and µ and λ are the Lamé constants. Following Gould [58] the

first variation of Uel is

δUel(ul; vl) = −
∫

V
(µ(ul),ii + (λ+ µ)(ui,i),l + fl) vl dV (20)

where the vl denote the perturbations. Looking at the two-dimensional (planar) plane strain

problem, all field variables become independent of z (see [1]). If furthermore there are no

body forces, initial displacements or velocities present in the z-direction, Equation (20)

reduces to its two dimensional case and becomes

δUel(ul; vl) = −
∫

V
(µ(ul),ii + (λ+ µ)(ui,i),l + fl) δ(z)vl dV

= −
∫

A
(µ(ul),ii + (λ+ µ)(ui,i),l + fl) vl dA.

Defining the boundary potential energy as3

Ubd =

∫

∂A
g ds, (21)

where s is arclength and g is some potential function, yields the variation

δUbd(u;v) =

∫

∂A
(−(∇g · N + κg)N ) · v ds =

∫

A
(−(∇g · N + κg)N ) δ(∂A) · v dA, (22)

where δ(∂A) is the Dirac Delta function on the set ∂A. Defining the Lagrangian as

L = T − (Ubd + Uel) (23)

3In this setting it would probably also make a lot of sense to use an area based formulation for the
potential energy, e.g. based on the separation of means, statistics, etc.
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Figure 5: Object domain with object for the elastic body deformation.

and computing the first variation of the action integral

L =

∫

t
L dt, (24)

yields (using the notation ∆u = (∆u1 ∆u2)T and Equations (20) and (22))

δL(u;v) =

∫

t

∫

A
(−ρutt + (−∇g · N + κg) δ(∂A)N ) · v dA dt−

−
∫

t

∫

A
(f + µ∆u+ (λ+ µ)∇(div(u))) · v dA dt.

This results in the sought for evolution equation on A

ρutt = (−∇g · N + κg) δ(∂A)N − µ∆u− (λ+ µ)∇(div(u)). (25)

The domain A is dependent on time. The only image dependent term is Ubd (as given

in Equation (21)). It attracts the contour to the object boundary and ensures boundary

smoothness. Augmenting the scheme by any kind of area-based image dependent term will

increase robustness. One possibility would be to add the image term from Section 3.3 to

the elastic area evolution equation (25). It then becomes

ρutt = (−∇g · N + κg) δ(∂A)N −µ∆u− (λ+ µ)∇(div(u))− (u−w)

(
I − u
Au

+
I − w
Aw

)
N .

(26)
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3.5 Normal Geometric Dynamic Curve Evolution

To get more insight into the behavior of the curve evolution Equation (15), it is instructive

to derive the evolution equations for the tangential and normal velocity components of the

curve.

The general version of the geometric dynamic curve evolution equation is given as

µCtt = −µ(T · Cts)Ct −
∂

∂s

((
1

2
µ‖Ct‖2 − g

)
Cs
)
−∇g

= −µ(T · Cts)Ct − µ(Ct · Cts)T −
(

1

2
µ‖Ct‖2 − g

)
κN − (∇g · N )N , (27)

where N is the unit inward normal and

Ts = κN ,

Ns = −κT .

The curve speed Ct can be decomposed as

Ct = α(p, t)T + β(p, t)N , (28)

where the parameterization p is independent of time and travels with its particle (i.e., every

particle corresponds to a specific value p for all times), and α and β correspond to the

tangential and the normal speed functions respectively.

The general (without prespecified special reparameterization φ) evolution equations for

α and β (see [77] for details on some of the used equations) are derived in what follows. Using

an arbitrary curve parameterization p (with C(p, 0) = C(p, 1), C = C(p, t), and p ∈ [0, 1])

define

G(p, t) := ‖Cp‖ = (x2
p + y2

p)
1
2 .

Arclength is then given by

s(p, t) :=

∫ p

0
G(ξ, t) dξ.

Then

∂

∂t

∂

∂s
= − 1

G
(αp − βκG)

∂

∂s
+

∂

∂s

∂

∂t
.
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It follows that [77]

Gt = αp − βκG.

The expressions above yield

Nt = −(βs + ακ)T ,

and

Tt = (βs + ακ)N .

From this follows

Ctt = (Ct)t = (αT + βN)t

= αtT + α(βs + ακ)N + βtN − β(βs + ακ)T

= (αt − ββs − αβκ)T + (αβs + α2κ+ βt)N

and

Cts = (αT + βN )s

= αsT + ακN + βsN − βκT

= (αs − βκ)T + (ακ+ βs)N .

Some simple algebra yields

µ

[
(αt − 2αβκ+ 2ααs)T +

(
3

2
κα2 − 1

2
κβ2 + αsβ + αβs + βt

)
N
]

= gκN − (∇g · N )N .

Or after some rearranging

µ [(αt + 2ααs)T + (αsβ + αβs + βt)N ] = (2αβµT +

(
1

2
β2 − 3

2
α2

)
µN+gN )κ−(∇g ·N )N .

Since

T =




0 −1

1 0


N ,

it follows

µ



αsβ + αβs + βt −αt − 2ααs

αt + 2ααs αsβ + αβs + βt


N =

µκ



(

1
2β

2 − 3
2α

2
)

+ 1
µg −2αβ

2αβ
(

1
2β

2 − 3
2α

2
)

+ 1
µg


N −




1
µ∇g · N 0

0 1
µ∇g · N


N . (29)

32



This must be true for all N . Equation (29) reduces to the following two coupled partial

differential equations:

αt = −(α2)s + 2καβ,

βt = −(αβ)s +

[(
1

2
β2 − 3

2
α2

)
+

1

µ
g

]
κ−∇g · N . (30)

Here, −(α2)s and −(αβ)s are the transport terms for the tangential and the normal velocity

along the contour, and gκ−∇g ·N is the well known geodesic active contour image influence

term [75, 22]. In contrast to the static geodesic active contour, this term influences the

curve’s normal velocity rather than directly the curve’s position. It can be interpreted as a

force. Finally, the terms 2καβ and ( 1
2β

2 − 3
2α

2)κ incorporate the dynamic elasticity effects

of the curve. Envisioning a rotating circle, the term ( 1
2β

2 − 3
2α

2)κ can be interpreted as a

rubberband (i.e., if we rotate the circle faster it will try to expand, but at the same time

it will try to contract due to its then increasing normal velocity; oscillations can occur).

Restricting the movement of the curve to its normal direction (i.e., setting α = 0) yields (see

Appendix A.3 for an alternative derivation)

βt =
1

2
β2κ+

1

µ
gκ− 1

µ
∇g · N . (31)

This is a much simpler evolution equation. It is identical to the full evolution Equation (30) if

the initial tangential velocity is zero. The image term, g, only influences the normal velocity

evolution β. It does not create any additional tangential velocity. Thus, if α = 0 ∀s, then

α = 0 ∀s, t; the flow with α = 0 is contained in (27) as an invariant subsystem.

If there is an initial tangential velocity, and/or if the image influence g contributes to

the normal velocity β and to the tangential velocity α, the normal evolution equation will

not necessarily be equivalent to the full evolution Equation (30). There is always a curve

parameterization resulting in an evolution equation free of tangential velocities. Specifically,

considering a reparameterization

C(q, t) = C(φ(q, t), t),

where φ : R× [0, T ) 7→ R, p = φ(q, t), φq > 0 then

∂C
∂t

=
∂C
∂t

+
∂C
∂p

∂φ

∂t
.
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The time evolution for C can then be decomposed into

Ct = αT + βN = (α(φ(q, t), t) + ‖Cp(φ(q, t), t)‖φt)T + βN ,

where

α = α(φ(q, t), t) + ‖Cp(φ(q, t), t)‖φt

β = β(φ(q, t), t).

Choosing φ as

φ(q, t)t = − α(φ(q, t), t)

‖Cp(φ(q, t), t)‖ (32)

results in

Ct = βN ,

which is a curve evolution equation without a tangential component. For all times the curve

C will move along its normal direction. However, the tangential velocity is still present in

the update equation for β. Compute Ctt and Cts reveals this. With

Ct = βN

it follows

Ct = (β(φ(q, t), t)N )t

= (βpφt + βt)N − ββpφsT

and

Cts = (β(φ(q, t), t)N )s

= (βpφs)N − βκT .

With

T · Cts = −βκ,

Ct · Cts = ββpφs,

‖Ct‖2 = β2
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it follows that (through substitution of the respective terms in Equation (27))

µ ((βpφt + βt)N − ββpφsT ) = µβ2κN − µββpφsT −
(

1

2
µβ2 − g

)
κN − (∇g · N )N .

This simplifies to

µ(βpφt + βt) =

(
1

2
µβ2 + g

)
κ− (∇g · N )N , (33)

which depends on the time derivative of the reparameterization function φ which in turn

depends on the tangential component α. The left hand side of Equation (33) represents a

transport term along the curve, the speed of which depends on the time derivative of the

reparameterization function φ.

If the Lagrangian used to formulate the variational problem does not explicitly depend

on time, the overall energy of the system will stay constant for all times. In this context

this amounts to

∫ 1

0

(
1

2
µ‖Ct‖2 + g

)
‖Cp‖ dp = const.

3.5.1 Special Solutions

Studying a simple circular example illustrates the behavior of Equations (30) and (31).

Assume g = µ = 1. Then ∇g = 0. Furthermore, assume a circle evolving with radius R

and constant initial velocities

α(s, 0) = α0 β(s, 0) = β0.

Then the normal evolution reduces to

βt = (
1

2
β2 + 1)

1

R
− γββ

Rt = −β (34)

and the full evolution becomes

αt = 2αβ
1

R
− γαα

βt =

[(
1

2
β2 − 3

2
α2

)
+ 1

]
1

R
− γββ

Rt = −β, (35)
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making use of the relations

αs = βs = 0 ∀t (given the constant initial conditions for the circle)

κ =
1

R
,

and adding an artificial friction term, with γα and γβ being the friction coefficients for the

tangential and the normal velocity, respectively. Since the initial velocity conditions are

constant on the circle and the circle evolves on a uniform potential field g, the solution is

rotationally invariant (with respect to the origin of the circle). Thus it is sensible to evolve

R in Equation (35) by using its normal velocity only.

Figures 6(a) to 8(c) show the evolution of the radius, R, the tangential velocity α (if

applicable), the normal velocity β for a small initial value of α, a larger initial value of α,

and with added friction, respectively.

Figures 6(a), 6(b), and 6(c) show the results for α0 = 0.1, β0 = 0, R0 = 100, γα = 0,

γβ = 0. While in the normal evolution case the circle accelerates rapidly and disappears in

finite time, this is not the case when tangential velocities are not neglected: then the circle

oscillates. It rotates faster if it becomes smaller and slower if it becomes larger. Due to the

small initial tangential velocity the radius evolution is initially similar in both cases. The

oscillation effect is more drastic with increased initial tangential velocity (α0 = 1). This can

be seen in Figures 7(a) and 7(b). Figures 8(a) to 8(c) show the results with added friction

(γα = γβ = 0.1). Both circles disappear in finite time. The evolutions of the radius look

similar in both cases. Due to the large friction coefficients a large amount of energy gets

dissipated; oscillations no longer occur.

Equations (34) and (35) do not exhibit the same behavior. Depending on the initial

value for α, they will have fundamentally different solutions. For α = ±
√

2
3 , and β0 = 0 in

Equation (35), the solution is (geometrically) stationary, and the circle will keep its shape

and rotate with velocity α for all times. Also if α0 = 0, in this example case, both evolutions

will be identical.
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(a) Evolution of the radius for the normal
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(b) Evolution of normal velocity (dashed
line) and the tangential velocity evolution
(solid line) for the full velocity approach.
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(c) Evolution of normal velocity for the nor-
mal velocity evolution.

Figure 6: Geometric dynamic curve evolution for an oscillating circle with parameters:
α0 = 0.1, β0 = 0, R0 = 100, γα = 0, γβ = 0.
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Figure 7: Geometric dynamic curve evolution for an oscillating circle with parameters:
α0 = 1, β0 = 0, R0 = 100, γα = 0, γβ = 0.
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(c) Evolution of normal velocity for the nor-
mal velocity evolution.

Figure 8: Geometric dynamic curve evolution for an oscillating circle with parameters:
α0 = 1, β0 = 0, R0 = 100, γα = 0.1, γβ = 0.1.
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CHAPTER 4

EXTENSIONS

This chapter discusses possible extensions to the framework developed in Chapter 3. Sec-

tion 4.1 develops an observer-like evolution equation to improve the performance of the dy-

namic curve evolutions on real image sequences. Section 4.2 derives a simple methodology

for occlusion detection and integrates it into the evolution equations derived in Section 4.1.

4.1 Observers

A system governed by a time-independent Lagrangian (i.e., Lt ≡ 0) will preserve en-

ergy [132], but this is not necessarily desirable. Indeed, envision a curve evolving on a

static image with an initial condition of zero normal velocity everywhere and with an ini-

tial position of nonminimal potential energy. The curve will oscillate in its potential well

indefinitely. One solution to this problem is to dissipate energy [129], which can be accom-

plished by simply adding a friction term to Equation (61). However, to increase robustness

it is desirable to be able to dissipate and to add energy to the system in a directed way.

Specifically, it is desirable to add and dissipate energy in such a way that the evolving curve

approximates the boundary contour of the object to be tracked.

An observer is a dynamical system designed to dynamically approximate the state of

another system based on measurable outputs. Usually not all the states of a given system

are measurable (be it for cost reasons, inaccessibility, etc.). Then an observer reconstructs

a system’s states based on the available outputs. The problem in this thesis is slightly

different. All the states of the system (here, location and velocity) can be measured; this

is the fully observable case. The problem then becomes one of blending an incorrect,

approximate system state into the correct one. The straightforward approach to do this

would simply be to replace the current state of a particle by it’s measured “correct” state.

However, this is not desirable, since it would destroy the dynamical properties of the system
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and would be very sensitive to noise. Constructing an observer for the geometric dynamic

active contour is not straightforward, since the governing equations are infinite dimensional

and nonlinear (see Sections 2.2 and 3.5). Observers for certain classes of infinite dimensional

systems exist. In particular, for systems with nonlinearities free of differential operators

(see [141] for a design procedure for such observers). The theory for more general systems

is in its infancy; e.g., Vande Wouwer and Zeitz [141] describe a minimum least squares

estimator for general nonlinear second order infinite dimensional systems. However, the

resulting filter is complex (and its complexity would increase for an increasing number of

space dimensions considered). A less principled way for the curve evolution to approximate

the dynamic behavior of the tracked objects is to use error injection. This guarantees

convergence of the curve to the desired object(s) if the curve is initially in the appropriate

basin of attraction and is the basis for the construction of an observer. However, in the case

presented here there, is no formal stability and convergence proof.

Estimating the position and velocity vector for every point on the curve C allows for

error injection. Define the line through the point x(s) on the current curve as

l(s, p) := x(s)− pN

and the set of points in an interval (a, b) on the line as

L(a, b, s) := {l(s, p), a < p < b)}.

Define

f(s) := inf{p : p < 0,Φ(x) ≤ 0 ∀x ∈ L(p, 0, s)},

t(s) := sup{p : p > 0,Φ(x) ≥ 0 ∀x ∈ L(0, p, s)}.

The set of estimated contour point candidates Z is the set of potential edge points in

L(f, t, s)

Z(L(f, t, s)) := {x : x ∈ L(f, t, s),∃ε > 0 : ‖∇(G ∗ I(x))‖ > ‖∇(G ∗ I(y))‖

∀y ∈ L(f, t, s) ∩Bε(x),y 6= x},
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Figure 9: The feature search is performed in the normal direction to the curve. The search
region is only allowed to intersect the curve at its origin of search (i.e., s0, s1, s2, ...).

where G is a Gaussian, Bε(x) is the disk around x with radius ε, and I is the current

image intensity. Many other feature detectors are conceivable. Given some problem specific

likelihood function m(z) the selected contour point is the likelihood maximum

xc(s) = arg max
z∈Z(L(f,t,s))

m(z),

at position

pc = d(x, s) = (x(s)− xc(s))TN .

It is sufficient to estimate normal velocity, since the curve evolution equation does not

take tangential velocity components into account. The estimation then can be performed

(assuming brightness constancy from image frame to image frame for a moving image point)

by means of the optical flow constraint without the need for regularization. Note, that this

estimate is computed on a few chosen points in Z only. The optical flow constraint is given

as

It + uIx + vIy = 0,

where u = xt and v = yt are the velocities in the x and the y direction respectively.

Restricting the velocities to the normal direction by setting



u

v


 = γ

∇I
‖∇I‖ .
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yields

γ = − It
‖∇I‖

and thus the desired velocity estimate


u

v


 = −It

∇I
‖∇I‖2 .

Define

β := −γ ∇I‖∇I‖ ·
∇Φ̂

‖∇Φ̂‖
,

Φ := −‖xc − x‖sign
(

Φ̂(xc)
)
.

The following observer-like dynamical system

Φ̂t =
(
m(xc)KΦ(Φ− Φ̂) + β̂ + γκ

)
‖∇Φ̂‖,

β̂t = m(xc)Kβ(β − β̂) +

(
1

2
β̂2 +

g

µ

)
κ+

1

µ
∇g · ∇Φ̂

‖∇Φ̂‖
+ δβ̂ss, (36)

dynamically blends the current curve Ĉ into the desired curve C (see Figure 10). Here, KΦ

and Kβ are the error injection gains for Φ̂ and β̂, respectively. Any terms related to image

features are computed at the current location x of the contour. The error injection gains are

weighted by the likelihood m(xc) of the correspondence points as a measure of prediction

quality. The additional terms κγ and δβ̂ss with tunable weighting factors γ and δ are

introduced to allow for curve and velocity regularization if necessary. They are computed

as

κ = ∇ ·
(
∇Φ̂

‖∇Φ̂‖

)

and

β̂ss = N T



β̂yy −β̂xy
−β̂xy β̂xx


N + κ∇β̂ · N .

In case no correspondence point for a point on the zero level set of Φ̂ is found, the evolution

equation system (36) is replaced by

Φ̂t = (β̂ + γκ)‖∇Φ̂‖,

β̂t = δβ̂ss (37)
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Figure 10: Correspondence point xc, inside correspondence point xi, and outside corre-
spondence point xo of the curve Ĉ. C represents the contour of the object to be tracked.

for this point. Assuming there is no curve and velocity regularization (i.e., γ = δ = 0), a

straight curve part (κ = 0) will have the dynamic steady state (βt = 0)

β̂ =
1

m(xc)

(
β +

1

µKβ
∇g · ∇Φ̂

‖∇Φ̂‖

)
.

For large values of Kβ and trustworthy feature points xc (with m(xc) ≈ 1), β̂ will approach

β as desired.

4.2 Occlusion Detection

The following simple occlusion detection algorithm allows for the assessment of the curve’s

prediction capability1. It is based on ideas in [60]. The inside and the outside correspon-

dence points are defined as (see Figure 10)

xi(s) = arg max
z∈Z(L(f,pc,s))

m(z),

xo(s) = arg max
z∈Z(L(pc,t,s))

m(z).

1More sophisticated, and less parametric, occlusion detection algorithms are conceivable; however, this
is not the main focus of this thesis, and the algorithm proposed is sufficient to show that the geometric
dynamic active contour can handle occlusions when combined with a suitable occlusion detection algorithm.
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The occlusion detection strategy is split into the following six subcases for every point

on the contour

(0) There is no correspondence point.

(1) Only the correspondence point is present.

(2) The point is moving outward, the correspondence point is present, but not its outside

correspondence point.

(3) The point is moving inward, the correspondence point is present, but not its inside

correspondence point.

(4) The point is moving outward, both the correspondence point and its outside corre-

spondence point are present.

(5) The point is moving inward, both the correspondence point and its inside correspon-

dence point are present.

Define the following Gaussian conditional probabilities

Pr(tocc|occ) =
2√

2πσt
e
− (tocc−µt)2

2σ2
t

Pr(va|occ) =
1√

2πσv
e
− (va−µv)2

2σ2
v

Pr(tocc|occ) =
2√
2π
σte
− (tocc−µt)

2

2σ2
t

Pr(va|occ) =
1√

2πσv
e
− (va−µv)2

2σ2
v ,

where tocc is the estimated time to occlusion, va is the velocity of the point ahead, overlined

symbols denote negated values (i.e., occ means not occluded), Pr(tocc|occ), Pr(va|occ) are

the probabilities of tocc and va given an occlusion, and Pr(tocc|occ) and Pr(va|occ) given

there is no occlusion respectively. The corresponding standard deviations are σt, σv, σt,

and σv; the means are µt, µv, µt, µv. Using the currently detected correspondence point

xc, and its interior xi and exterior xo correspondence points the values of tocc and va are

computed.
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The probability for an occlusion is given by Bayes’ formula as

Pr(occ|va, tocc) =
Pr(va, tocc|occ)Pr(occ)

Pr(va, tocc|occ)Pr(occ) + Pr(va, tocc|occ)Pr(occ)
.

where Pr(occ) = 0 and Pr(occ) = 1 everywhere initially. The priors at time step n + 1

are the smoothed posteriors of time step n. In case (0) Pr(occ|va, tocc) = Pr(occ) (i.e., the

probability is left unchanged), in all other cases

Pr(occ|va, tocc) =
PrioccPr(occ)

PrioccPr(occ) + PrioccPr(occ)
,

where

Pr1
occ = Pr(va = vc|occ),

P r1
occ = Pr(va = vc|occ),

P r2
occ =





Pr(va = vc|occ) if xc outside of C,

0 otherwise,

P r2
occ =





Pr(va = vc|occ) if xc outside of C,

0 otherwise,

P r3
occ =





Pr(va = vc|occ) if xc inside of C,

0 otherwise,

P r3
occ =





Pr(va = vc|occ) if xc inside of C,

0 otherwise,

P r4
occ = Pr(va = vo|occ)Pr(tocc = toocc|occ),

P r4
occ = Pr(va = vo|occ)Pr(tocc = toocc|occ),

P r5
occ = Pr(va = vi|occ)Pr(tocc = tiocc|occ),

P r5
occ = Pr(va = vi|occ)Pr(tocc = tiocc|occ),
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and

vc = β(xc) vo = β(xo)

vi = β(xi) v = β(x)

tiocc =
‖x− xi‖
|v − vi|

toocc =
‖x− xo‖
|v − vo|

.

To estimate the current rigid body motion, the equation system

(ur , vr)
T

∫

C
n1N ds = −

∫

C
n1β ds

(ur , vr)
T

∫

C
n2N ds = −

∫

C
n2β ds,

is solved, where N = (n1 , n2)T and µv = −(ur , vr)
TN and µv = 0.

The evolution equation becomes

Φ̂t =
(
Pr(occ)

(
m(xc)KΦ(Φ− Φ̂)

)
+ β̂ + γκ

)
‖∇Φ̂‖

β̂t = Pr(occ)

(
m(xc)Kβ(β − β̂) +

(
1

2
β̂2 +

g

µ

)
κ

)
+

Pr(occ)
1

µ
∇gκ+ δβss.

This is a linear interpolation between the systems (36) and (37) based on the occlusion

probability.
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CHAPTER 5

LEVEL SET APPROACHES

To implement the derived curve evolution equations, we propose two different approaches:

the partial level set method and the full level set method. The full level set approach

propagates the curve in a space consistent with the inherent dimensionality of the problem;

there is no separation between the representation of curves in the image plane and the state

information propagated along with the curves: the complete state is represented implicitly.

Geometric dynamic curve evolution would thus be performed in R4 (codimension three)

in the simplest case (since we are looking at planar curves). The codimensionality will

increase if additional information is to be attached to the curve (e.g., in the PI controller

case). Normal geometric dynamic curve evolution is at least a problem in R3 (codimension

two) in this setting. This method is computationally relatively complex, but allows for full

topological flexibility.

The second methodology, the partial level set approach, is based on an implicit de-

scription of the geometrical shape of the curves in the image plane by means of a level

set method. Additional state information (e.g., the normal speed in the normal geometric

dynamic curve evolution setting) gets propagated explicitly with every point on the curves

by possibly multiple transport equations and is not included in the level set representation.

This method has the advantage of computational efficiency, since the level set evolution is

performed in a low dimensional space, but sacrifices object separation: tracked objects that

collide will be merged solely on their position information; intersecting curves cannot be

represented.

Section 5.1 reviews briefly the classical level set method [115] designed to deal with

closed curves or surfaces of codimension one. This will be the level set method of choice for

the partial level set approach of Section 5.3. Section 5.2 will deal with level set methods

designed for the evolution of objects of codimension larger than one. We will focus on
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and extend the vector distance function based level set approach used for the full level

set method in Section 5.4. Section 5.3 describes the partial level set approach. Finally,

Section 5.4 explores the full level set approach.

5.1 The Classical Level Set Approach

The object M to be represented (e.g., a closed curve C or a closed surface S) is given

implicitly as the zero level set of the function

Φ(x(t), t) : Rd × R+ 7→ R, (38)

where Φ is called the level set function. Typically, Φ is initialized as the signed distance

function to M (assuming Φ > 0 outside of M and Φ < 0 inside M). Taking the total

derivative of equation (38) results in

Φt +∇Φ · xt = 0. (39)

This is a d-dimensional transport equation, with xt being the speed on M. If xt for each

point on M is known, the solution of Equation (39) guarantees, that the movement of

the zero level set of Φ corresponds to the desired movement of M. For the evolution of

the level set function Φ the velocity vector xt has to be defined on the complete domain.

Since Equation (17) only gives the velocities on M itself, extension velocities have to be

constructed [115] if it is not clear how to specify xt on all of Rd. Generally curves are only

moved in their normal directions (i.e., ∇Φ · xt gets replaced by ‖∇Φ‖N · xt), since the

tangential component of the evolution law only changes the parameterization of M, but

not its geometrical shape (see [113] for a proof). The position of M will be described for

all times by

Φt + ‖∇Φ‖N · xt = 0.

5.2 Level Set Approaches for Higher Codimensions

Typically, the level set formulation is used to represent closed codimension one objects (a

closed curve in R2, a closed surface in R3, etc., see Section 5.1). A surface that is not closed

will not separate its embedding space into two distinct regions. Also, there is the possibility
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to represent objects which are not orientable. Imagine a Möbius strip in R3. This is a

codimension one object, however it is neither closed nor allows for an orientation.

Recently there has been an increased interest in evolving objects of codimension larger

than one, with applications ranging from geometric optics [20, 96, 103], to image process-

ing [86], and to geometric optimization [109]. Theoretical aspects of these evolutions have

been investigated in [6, 43, 44, 45, 46, 57, 120].

The usual level set approach [105, 115] valid for the evolution of hypersurfaces is difficult

to apply in higher codimensions. Indeed, in the codimension one case, there is a clearly

defined interior and a clearly defined exterior of the given object of interest (if the surface is

closed). In this case, a signed distance function can be used for a level set implementation

of the evolution equation.

On the other hand, for objects of larger codimension, this is no longer the case. A

possible remedy to this problem is to evolve an unsigned distance function. However, this

is numerically challenging since numerical dissipation causes the zero level set to drift away

from zero requiring the detection of points of minimal distance to extract an approximation

to the zero level set. Closely related to the evolution of an unsigned distance function,

Ambrosio and Soner [6] analyze mean curvature motion in arbitrary codimension. Here,

the evolving surface of codimension k in Rd is surrounded by a family of hypersurfaces,

where the normal velocity is given by the sum of the geometrically relevant (the d − k

smallest) principal curvatures. Existence and uniqueness of a weak solution is established.

Lorigo et al. [86] use the ideas of Ambrosio and Soner for vessel segmentation based on

magnetic resonance angiography images, a codimension two problem. Classical numerical

schemes for level set evolutions can be used since a tube (an ε-level set) is evolved, thus gen-

erating an “artificial” inside and outside. A disadvantage of this method is the occurrence of

“fattening” which does not allow for straightforward topological changes [105], since curves

can develop interiors. (See [20] for an example of fattening and [9] for an analysis of the

phenomenon.)

Another possibility for the evolution of manifolds of arbitrary codimension is to repre-

sent a manifold of codimension k by the intersection of k scalar functions with non-vanishing
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gradient (e.g., one could use k signed distance functions with the intersection of their re-

spective zero level sets representing the desired manifold) on the surface of the manifold.

This approach was also proposed by Ambrosio and Soner, but not further pursued since

the resulting system of evolution equations is not straightforward to analyze (the theory

of viscosity solutions [31] is not available for such systems of equations). Nevertheless,

this approach has been very successfully applied, in particular to problems in geometric

optics [20, 96, 103], where the handling of topological changes is of no importance (as they

do not occur in this setting [103]). However, if one is interested in topological changes

these approaches may require global initializations, and it is not clear how to automatically

initialize the scalar functions to guarantee proper topological behavior. This is of special

importance when numerical efficiency is crucial (e.g., when it would be beneficial to employ

a narrow-band approach) [20].

An alternative approach, closely related to the evolution of an unsigned distance func-

tion, is the evolution of a vector distance function, which is the approach focused on in this

thesis. In this scheme not only the distance to an object is known at any space point, but

also the normal direction. For a vector distance function, there will always be a clearly

defined zero level set (where vectors flow away from each other), there are no initialization

problems and narrow-band approaches are possible. A vector distance function can easily

be calculated from a distance function and vice versa. Unfortunately, the theory underlying

the numerical methods for vector distance functions is still in its infancy, since one is dealing

with discontinuous vector fields. Also, as for the level set intersection methods discussed

above, there is no analog to the theory of viscosity solutions available for these systems of

partial differential equations [55]. In this thesis, we restrict ourselves to the representation

of closed curves. This will simplify the numerical implementation and facilitate a reinitial-

ization procedure compensating for fattening artifacts occurring throughout the evolution

process (due to numerical inaccuracies).

Section 5.2.1 describes the main level set approaches, focusing on the vector distance

function based approach. Section 5.2.2 discusses the vector distance function based level set
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method. Section 5.4.1 applies the methodology developed in Section 5.2.2 to the evolution of

a normal geometric dynamic active contour, which will constitute the full level set approach.

5.2.1 Overview of Level Set Methods for Higher Codimensions

This section outlines some of the main methods for the evolution of manifolds of codimension

greater than one via various level set approaches. It then describes in some detail the vector

distance function method which will subsequently be applied to the problem of dynamic

active contours which are represented as curves evolving in R4.

Level set approaches to date are extremely versatile and based on solid mathematical

foundations for codimension one problems [105]. Ambrosio and Soner extend the theory

of level set evolutions to mean curvature flows in arbitrary codimensions in their seminal

paper [6]. Specifically, they prove existence and uniqueness of weak solutions for the cur-

vature evolution of surfaces of arbitrary codimension represented by a surrounding family

of hypersurfaces. They also hint at the possibility of representing smooth surfaces by the

intersection of the level sets of multiple scalar functions, but do not follow this path due to

theoretical complications (it is not clear how to theoretically analyze the resulting system

of equations).

The first approach (as employed by Lorigo et al. [86]) for the evolution of a smooth

manifold M of codimension k > 1 in Rd makes use of the nonnegative scalar auxiliary

function v : Rd 7→ R+

M =
{
x ∈ Rd : v(x) = 0

}
,

which vanishes on M and fulfills ∇v(x) 6= 0 for x ∈ Rd \M. For x /∈ M, but ε-close to

M, define the matrix

J(x) :=
1

‖∇v(x)‖P∇v(x)∇2v(x)P∇v(x),

where

Pp = I − ppT

‖p‖2 , p 6= 0,

is the orthogonal projection operator along p and ∇2 denotes the Hessian. The d − k

smallest eigenvalues of J(x) orthogonal to ∇v(x) are related to the geometry of M.
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According to [6], the evolution

ut = F
(
∇u,∇2u

)
,

where

F (p, A) =

d−k∑

i=1

λi(PpAPp)

and

λ1(PpAPp) ≤ λ2(PpAPp) ≤ · · · ≤ λd−1(PpAPp)

are the eigenvalues of PpAPp orthogonal to p, represents the mean curvature evolution of

M where

Mt =
{
x ∈ Rd : u(x, t) = 0

}
.

The uniqueness and existence results obtained in [6] can be extended to a general normal

velocity

V = H + ΠN
Mg(x, t),

where H is the mean curvature vector, g(x, t) ∈ Rd is a given vector field and ΠN
M is the

projection operator onto the normal space of M. The evolution equation then becomes

ut = F (∇u,∇2u)−∇u · g.

This approach is mathematically well founded, however, fattening of the evolving man-

ifold can occur [9, 20] and so the handling of topological merging is problematic. Fur-

thermore, numerical extraction of the zero level set is not straightforward. This can be

circumvented (at the cost of less theoretical insight) by evolving the intersection of isocon-

tours of k scalar functions in a way consistent with the desired movement of the codimension

k object (see [20, 104, 11] for the case of codimension two, [103] for the case of codimension

three, and [56] for the arbitrary codimension case) which is the second method proposed by

Ambrosio and Soner [6]. Given the k scalar functions αi : Rd 7→ R, 0 < i ≤ k, i ∈ N, the

evolving object is implicitly described by the simultaneous evolution of

αit + xt · ∇αi = 0,
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where xt is the velocity vector. The object is represented (for example) by the intersection

of the respective zero level sets of the k scalar functions αi.

Two major questions arise from this formulation:

1) How are the scalar functions initialized? This has to be (in general) performed globally

(over the whole computational domain) if well-behaved handling of topological changes

is required (narrow-banding approaches [2] cannot be used per se for this problem).

Further, the representation of an object by intersection of multiple hypersurfaces is

not unique.

2) How should the speed functions in the complete computational domain be determined

for the scalar functions αi if the desired velocities are only known at the intersection

of the hypersurfaces? Based on these velocities, extension velocities have to be con-

structed (on the zero level sets, and in the interior of the domain).

To resolve these questions, a novel approach based on vector distance functions is intro-

duced in [55, 57]. Given a manifold M,

δ(x) := dist(x,M)

is defined as the distance from point x ∈ Rd to the manifold M. The vector distance

function u(x) is then given as the derivative of the squared distance function (see [6, 109]

for details on the squared distance function)

η(x) :=
1

2
δ2(x).

Thus

u(x) = ∇η(x) = δ(x)∇δ(x).

The vector distance function is an implicit representation of the manifold M with

M = u−1(0).

This amounts to the intersection of the d hypersurfaces

ui = 0, 1 ≤ i ≤ d, i ∈ N.
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The description is redundant, but unique.

The evolution equation for the manifold M(p, t), parameterized by p, becomes (using

the notation of [55])

Mt(p, t) = ΠN
M(p,t)(D(M(p, t), t)) = V (M(p, t), t),

where D(x, t) = xt is a vector field defined on Rd × R+, determining the evolution speed

at x. Here, ΠN
M(p,t) is the operator projecting the velocity xt on M into the normal space

of M. Note that we do not need the tangential component of the evolution equation since

the evolution is performed in Rd.

To evolve the manifold M, a speed function has to be constructed in the subspace of

Rd that contains the evolution of the manifold (in Section 5.4.1 the domain will be defined

based on image dimensions, and the expected velocities). This speed function should

1) maintain the vector distance function throughout the evolution, and

2) move the manifold M as desired.

It can be shown (see [57]) that the characteristic equation for the vector distance function

u(x) is

(Du)Tu = u, (40)

where Du denotes the Jacobian of u. Taking the time derivative of Equation (40) and using

the fact that (Du)T = Du yields (see [57] for a derivation)

Dbu = (I −Du)b, (41)

where b is the desired velocity for the vector distance function evolution with initial condi-

tion

b(M, t) = −V (M, t).

The overall evolution is then given by

ut + (Du)T b = 0.
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The vector distance function to a given manifold M is unique, and its initialization

is straightforward. Furthermore, narrow-band implementations are feasible, which signifi-

cantly reduce the computational cost. A fattening phenomenon (similar in spirit to the one

observed in the approach of [6]) can be observed for vector distance function based level

set approaches. This is not surprising due to the intimate connection between distance

functions and vector distance functions.

In what follows only closed one-dimensional curves in Rd are considered, a codimension

d−1 problem. This restriction is beneficial since it allows for the construction of an explicit

reinitialization method, which in turn alleviates the fattening problem, and is a sufficiently

good representation for the evolutions based on the equations of dynamic active contours.

The full level set approach for dynamic active contours will be presented in Section 5.4.1.

5.2.2 Details on Vector Distance Function Evolutions

An implicit description of an object by a vector distance function is extremely versatile;

there is no restriction regarding an object’s shape. Specifically, objects with varying dimen-

sions can be represented [55]. Objects can also change dimension throughout the vector

distance function evolution. This is in clear contrast to level set approaches using a signed

distance function, where objects necessarily need to be closed (unless we are working within

a bounded domain), i.e., a closed curve, a closed surface, etc. The representational flexibil-

ity of vector distance functions is clearly a desirable property. However, it is not clear at

this point how to devise numerical methods for this general case. To facilitate the numeri-

cal implementation, we restrict ourselves to the representation of (possibly multiple) closed

curves.

The following steps constitute the proposed vector distance function based curve evolu-

tion algorithm. To evolve a curve according to the vector distance function approach,

(0) Initialize the vector distance function.

(1) Detect (a band around) the zero contour (i.e., u−1(0) =M).

(2) Redistance the vector distance function outside of the zero band.
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(3) Compute b on the band determined in (1).

(4) Extend the b vector to the whole domain, keeping the values of step (3) fixed.

(5) Do an evolution step.

(6) Go to step (1).

Steps (0)-(5) are described in the following subsections.

5.2.2.1 Initializing the Vector Distance Function

Assume a given piecewise linear approximation of the closed curve to be represented. Let

this approximation be

A =
⋃

li∈L
li,

where L is the set of line segments constituting the piecewise linear approximation. Then

working on a discrete grid, we explicitly initialize1 the vector distance function u on a set,

B, γ-close to the piecewise linear approximation A:

B := {x ∈ Ω : dist(x,A) < γ} .

In the remainder of the computational domain Ω, i.e., Ω \ B, we can reinitialize by first

computing the distance function δ to A and then converting the distance function to the

vector distance function. One way to compute this distance function δ on Ω \ B is to use

the reinitialization approach proposed by Sussman et al. [125]. Since there is no inside and

outside in the case considered here, it is not possible to use this approach to initialize over

the whole domain Ω (see Section 5.2.2.3 for more details).

5.2.2.2 Simple Zero Band Detection

As will be shown later, redistancing the vector distance function over the whole computa-

tional domain Ω is not straightforward. Since redistancing is not straightforward, neither

will be the extension of quantities (like the velocities). However, frequently it is sufficient to

1For an efficient implementation this set has to be approximated, since the distance of a point x to A is
unknown beforehand.
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perform these operations away from the zero level set [42], where standard methods known

from the evolution of closed curves or surfaces of codimension one can be applied. This is

the approach followed here. We simply do not redistance and do not compute extension

velocities on the set B̂ which is γ-close to the zero level set (in analogy to Section 5.2.2.1).

Since we have the current vector distance function u at our disposal, determining this set

is straightforward

B̂ := {x ∈ Ω : ‖u(x)‖ < γ} .

Section 5.2.2.7 shows that a more precise approximation for the zero level set is needed for

the explicit reinitialization of the vector distance function field on B̂. The value for γ needs

to be chosen conservatively to make sure that the real zero level set is contained in B̂.

5.2.2.3 Redistancing the Vector Distance Field Away from the Zero Band

Inspired by [41], the vector distance function is reinitialized only outside the zero band

obtained as in Section 5.2.2.2. Gomes and Faugeras [55] propose to minimize the functional

1

2

∫

Ω
‖DuTu− u‖2 dx. (42)

By means of calculus of variations they derive the corresponding gradient descent flow. This

is a flow that directly works with the vectors u. Unfortunately, the numerical implementa-

tion is not straightforward (except in the case of simple geometries, e.g., lines).

Instead of using this flow, we thus decide to perform an alternative redistancing by the

intermediate step of computing a distance function. Based on this reinitialized distance field,

the vector distance field is computed. This has the advantage that standard algorithms can

be used and iteration free solutions (e.g., by using a fast marching approach) are possible2.

The current distance function δ(x) relates to the vector distance function by

δ(x) = ‖u(x)‖. (43)

2The overall scheme is then an iteration free scheme to produce a vector distance function.
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The distance function can be reinitialized on B̂c for example by a fast marching approach [115]

or by a partial differential equation approach along the lines of Sussman et al. [125]. How-

ever, since we are not dealing with a signed distance function here, the approach by Suss-

man et al. [125] simplifies to solving the equation

δt = 1− ‖∇δ‖. (44)

Given the reinitialized distance function δ, the reinitialized vector distance function can be

determined by solving3 for u in

u = δ∇δ.

5.2.2.4 Computing the Velocity Field on the Zero Band

It is sufficient to compute a velocity vector for every point in B̂. We know from [55] that

Du(x)t = 0 for every element t of the tangent space to the curve. Thus, since the evolution

equation is

ut − (Du)T b = 0

there is no need to project the velocity vector b onto the normal space of the curve. For

example, for a mean curvature evolution, the velocity vector b is given by the mean curvature

vector which can be computed [55] (for a one-dimensional curve) as

H(x) = − (∆u(x)) .

Section 5.4.1 contains the corresponding expressions for the normal dynamic active contour.

5.2.2.5 Extending the Velocity Field

We now show that the velocity field b satisfies Equation (41), if it is normal to M and

extended normal to M. Assume b is extended normally to M, i.e., given any point x ∈ Ω,

b will be constant in the u direction. Then,

Dbu = 0

3Choose the gradient direction dictated by the numerical scheme.
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and Equation (41) reduces to

b = Dub.

We know that

Du(x) = D(δ(x)Dδ(x)) = Dδ(x)Dδ(x) + δ(x)D(Dδ(x)).

But

δ(x)D(Dδ(x))b = 0,

since the gradient of δ(x) is constant along the normal direction, and b and the normal

direction are linearly dependent. The remaining equation is

b =
(
∇δ(x)Tb

)
∇δ(x),

which holds because b is assumed normal to M.

By Section 5.2.2.4, only the normal direction of b matters for the evolution of u. Thus,

instead of solving Equation (41) directly, it is sufficient to extend the components of b along

the normal direction to M, where b does no longer need to be linearly dependent with u

(since only its normal component matters for the evolution).

5.2.2.6 Evolving the Vector Distance Function

There are numerical advantages to evolving vector distance functions over evolving distance

functions directly. Whereas the vector distance function clearly defines the zero level set at

every point in time (vectors are emanating from the zero level set), the zero level set of the

distance function is not so easy to find. In case of the distance function it is unreasonable

to expect to find a level set that is exactly zero. Instead, locating the zero level set would

require searching for distance minima or locations of diverging gradients of the distance

function. The latter essentially goes back to the idea of the vector distance function. Also,

numerical algorithms usually cause dissipation. For the distance function this means, in

the extreme case, that the “zero level set” drifts away from zero over time. This is not

desirable.
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We assume we are given a velocity field b in Ω as discussed in Section 5.2.2.5. Given the

velocity field b in Ω, we evolve the vector distance function u using the negative velocity

field −b, i.e.,

ut − (Du)T b = 0. (45)

To obtain increased numerical accuracy back and forth error compensation and correc-

tion [41] can be implemented. If Lh is the numerical solution operator of Equation (45) the

backward error compensation method is given by the following three steps:

(1) Solve forward: ũn+1 = Lhun.

(2) Solve backward: un1 = L−1
h ũ

n+1.

(3) Solve with error compensation: un+1 = Lh
(
un + 1

2 (un − un1 )
)
.

We show an example of backward error compensation in Section 6.2, but refrain from its use

for the remainder to save on computational complexity (this scheme increases the numerical

complexity roughly by a factor of three).

5.2.2.7 Redistancing the Vector Distance Function Field

Due to numerical errors, the evolving vector field u will drift away from the class of vector

distance functions over time. Specifically, close to the zero level set, the vectors will no longer

be perpendicular to the curve being evolved. Then the approach of Subsection 5.2.2.3 will

no longer suffice.

In this case the vector field has to be reinitialized on the zero band (or alternatively,

it needs to get reinitialized throughout the evolution). The question is how to solve the

characteristic equation

(Du)T u− u = 0

numerically. Inspired by (44) it seems reasonable to evolve

ut + (Du)T u = u

to steady state. Since Du is symmetric this is equivalent to

ut + (Du)u = u. (46)
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Equation (46) has a particularly simple structure. It is a multi-dimensional transport

equation with a right hand source term. Unfortunately, solving Equation (46) numerically

is not straightforward. Only in the most trivial cases, e.g., when representing one single line,

will there be no solution shocks. Generically, the solution will have discontinuous shocks.

To get a feel for this equation and its associated problems, consider the one-dimensional

case. Equation (46) becomes

ut = u(1− ux). (47)

This is a one-dimensional Burgers’ equation with source term. The steady state for this

equation is either ux = 1 or u = 0. However, this is only true for implicit representations

of one single point. Otherwise, the solution needs to be discontinuous, and needs to be

interpreted in the weak sense. If the equation is discretized using a conservative scheme

(e.g., volume of fluids) the singled out solution is not necessarily the desired solution. This

can easily be seen in the one-dimensional case by looking at the shock-speed given by

the Rankine-Hugoniot condition. Due to the additional source term on the right hand

side of the Burgers’-like Equation (47), a derivation of the shock speed is instructive. To

derive the shock speed, we consider a small time interval ∆t for which the shock speed

s is approximately constant [84]. During that time period the shock travels the distance

∆x = s∆t. Assuming the discontinuous states across the shock are ul and ur the shock-

speed can be derived based on the conservation form of

ut + f(u)x = u,

which yields Equation (47) for f(u) = 1
2u

2.

We obtain (see Figure 11)

∫ x1+∆x

x1

u(x, t1 + ∆t) dx−
∫ x1+∆x

x1

u(x, t1) dx =

∫ t1+∆t

t1

f(u(x1, t)) dt−
∫ t1+∆t

t1

f(u(x1 + ∆x, t)) dt+

∫

t1

t1 + ∆t

∫

x1

x1 + ∆xu(x, t) dx dt.

(48)
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Since the value for u is constant in each of the triangles of Figure 11, Equation (48) simplifies

to

∆x(ul − ur) = ∆t(f(ul)− f(ur)) +
1

2
∆x∆t(ul + ur) +O(∆t2).

With ∆x = s∆t,

s(ul − ur) = f(ul)− f(ur) +
1

2
s∆t(ul + ur) +O(∆t) = f(ul)− f(ur) +O(∆t)

resulting in an expression for the shock speed s:

s =
f(ur)− f(ul)

ur − ul
. (49)

The latter expression is independent of the right hand-side source term (it is negligible

for this infinitesimal time interval). This is the classical Rankine-Hugoniot condition for

scalar conservation laws. Substituting f(u) = 1
2u

2 into Equation (49) yields

s =
1

2
(ul + ur),

the shock speed for Burgers’ equation. For the one-dimensional case, discontinuities will

only arise in between the represented points (the zero level set). For the representation to

be a true vector distance function the left-hand and the right-hand side limits of the vector

distance function magnitude at the discontinuity have to be equal. Since the numerics

will introduce errors, this will not always be the case. Redistancing performed in this way

will favor high magnitudes of the vector distance function. The vector distance function

will converge to a vector distance function of a single point (whichever one was the most

dominating). Figure 12 shows the shock speeds for two vector based level set representations

of a two-point scenario. In both cases the shock does not move in the desired direction.

To get a feeling for the fundamental difference between the signed distance function

based and the vector distance function based approaches, it is instructive to briefly review

the rationale behind the numerics for the level set evolution based on a signed distance func-

tion. Here, the slope of the signed distance function is conserved [115]. In one dimension,

the evolution equation is given as

Φt + F
√

Φ2
x = Φt + F‖Φx‖ = 0, (50)
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Figure 11: Shock propagation over an infinitesimal time interval ∆t.

where F is the speed function. Differentiation of Equation (50) gives

(Φt)x + (F‖Φx‖)x = (Φx)t + (F‖Φx‖)x = 0.

Substituting w = Φx results in

wt + (F‖w‖)x = wt +H(w)x = 0,

which is in conservation form for w, the slope. Here, H(·) is the flux function.

However, a numerical solution to Φ instead of w is sought, solving

Φt +H(Φx) = 0, (51)

a Hamilton-Jacobi equation, using a numerical approximation to H(·) (the numerical flux

function) for the computation. Equation (51) evolves a continuous function Φ as opposed

to a discontinuous vector field u.

Explicit Redistancing of the Vector Distance Function Since it is not immediately

obvious how to devise a partial differential equation based reinitialization strategy, reini-

tialization is done by construction. Doing so requires an explicit expression for the zero

level set, which is also useful for visualization purposes.

We propose a particle based method and a method based on discrete connectivity. Both

methods are computationally expensive; more efficient methods would be desirable. Fortu-

nately, it is not necessary to reinitialize the vector distance function after every iteration

step.
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(a) Shock propagating to the left. (b) Shock propagating to the right.

Figure 12: Shock propagation for the vector distance function redistancing flow performed
on a vector distance function representing two points.

Particle Based Explicit Redistancing of the Vector Distance Function Given a

sampling set S of a (discrete) domain containing the zero level set (e.g., S = S(B̂)), move

each particle in the sampling set along the vector distance field:

xt = −u(x), x(0) = x0, ∀x0 ∈ S.

The particles will converge to the zero level set (possibly suffering from fattening). A suffi-

ciently dense sampling will guarantee a good representation of the zero level set. Denoting

the set of points to which the particles converge by Sc, the vector distance function on B̂

can be reinitialized by explicitly computing dist(x,Sc), ∀x ∈ B̂.

Discrete Connectivity Based Redistancing of the Vector Distance Function The

discrete connectivity based approach hinges on a discrete approximation of the zero level

set. To construct this discrete approximation, begin with a discrete representation of the

zero band (as proposed in Section 5.2.2.2). This discrete approximation is then thinned.

Ideally, obtaining a (3d − 1)-connected (where d is the space dimension) approximation

of the zero level set, where this approximation is composed of a union of sets representing

discrete simple closed curves [130]4 whose union does not violate the property of every point

4For the purpose considered in this thesis, a discrete simple closed curve γd in Zd is a finite subset of Zd,
such that γd is (3d − 1)-connected and each point of γd is adjacent to exactly two other points of γd.
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Figure 13: Example of a thinning of the zero band that does not yield two clearly separable
discrete closed simple curves.

(d-xel) having exactly two neighbors. If the represented curves are sufficiently distant from

each other, this two-neighbor-property will not be violated. However, if the represented

curves are sufficiently close it may be, as illustrated in Figure (13).

Topology preserving thinning is frequently used to determine discrete skeletons of dis-

cretely represented objects. A key issue is the notion of a simple point: simple points

are points of the discrete sets that do not alter the topology of the represented object

upon removal. Testing for simple points gets increasingly complex for higher dimensions.

The two-dimensional case is straightforward. The three-dimensional case is well studied.

Higher-dimensional cases have not received much attention [79, 52]. However, this is the

case relevant to the application considered. For now, assume the existence of a test for the

simple point property in higher dimensions (Section 5.2.3 will explain the method used).

To decide if a point is simple, it suffices to check if its removal changes the topology

within its (3d−1) neighborhood. To utilize the additional directional information encoded in

the vector distance function for the thinning algorithm, define the local (3d−1) neighborhood

N 3d−1 of a point p as

N 3d−1(p) =

{
x ∈ N3d−1(p) :

(x− p)T

‖x− p‖ (u(x)− u(p)) < ν

}
,

and base the decision for a simple point on this neighborhood. As a consequence, the

thinning algorithm will no longer be topology preserving. Instead it will be allowed to

break undesired connectivities (see Figure 14 for a two-dimensional example) based on the
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Figure 14: Undesired topological connection remaining after topological thinning.
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Figure 15: All possible edges and vertices based on the discrete connectivity.

projection of the vector distance function vectors on connecting line segments between two

points.

The thinning is performed by successive removal of simple points until there are no

simple points left. The simple points with maximal vector distance norm are removed first.

Given this discrete approximation of the zero level set, we want to construct a piecewise

linear approximation by means of the discrete connectivity information, i.e., each line in

the piecewise linear approximation will correspond to a 3d−1 connected pair of d-xels. The

discrete connectivity induces a graph (V, E) over the discrete approximation Z of the zero

level set, where the vertex set V is the set of points in Z and the edge set E is given by the

discrete connectivity information. (See Figure (15) for an illustration.) We are interested in

simple cycles of this graph that are consistent with the definition for discrete, simple closed

curves. Figure (16) shows some possible simple cycles of the graph associated with a simple

two-dimensional discrete approximation of a zero level set of two circular objects. None of

these exemplary simple cycles are valid representatives for a discrete, simple closed curve.
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Figure 16: Some possible simple cycles that are not valid representatives for a discrete
closed curve.

In order to single out sensible candidates for the discrete, simple closed curves in which

we are interested, we introduce a measure for edge deviation from the edge contained in the

sought-after piecewise linear approximation of the zero level set. Specifically, given the two

points x0 and x1 (the vertices of the edge e), define the two line segments

x(p) = x0 + (x1 − x0) p,

x′(p) = p0 + (p1 − p0) p,

where p ∈ [0, 1] and

p0 = x0 − u(x0) and p1 = x1 − u(x1).

The distance is then defined as (see Figure 17 for an illustration):

d
(
x,x′

)
= d(e) :=

∫ 1

0
‖
(
x− x′

)
(p)‖2dp = ‖u(x0)‖2 + u(x0)T (u(x1)− u(x0)) +

1

3
‖u(x1)− u(x0)‖2.

Define the set of illegal starting edges, Ei, as

Ei := {e ∈ E : e is out-edge of v ∈ V,∃ simple cycle S : v ∈ S and |S| = 3} .
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Figure 17: Illustration of the line quality measure.

The following heuristic algorithm is used to find discrete, simple closed curve candidates:

(0) Set the set of uncovered edges to Eu = E \ Ei.

(1) While Eu 6= ∅: (repeat steps (2)-(4)):

(2) Find e ∈ Eu : d(e) ≤ d(e′) ∀e′ ∈ Eu, e 6= e′.

(3) Find all simple cycles containing e that represent a discrete, simple closed curve and

put them in Se (the set of these cycles).

(4) If Se = ∅ remove e from Eu. Otherwise, the smoothest of the cycles in Se is the desired,

discrete, simple closed-curve candidate whose edges are removed from Eu.

The smoothness of a cycle depends on the likelihood of a cycle to follow a path across

a vertex that has more than two neighbors. Specifically, if P is the set of all paths through

a vertex p ∈ V, define the path-likelihood as

l(pi) = e−
ci(p)

2

2σ2 , pi ∈ P,

where ci is an approximation to the curvature at p for the path pi and the probability P of

a cycle taking the path pi at vertex p as

P (pi) =
l(pi)

Σ
i
l(pi)

.

The smoothness s of a cycle C is then defined to be

s(C) := 1−
∏

∀pi∈C
P (pi).
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The piecewise linear approximation of these cycles is still a relatively crude approxima-

tion. To refine the approximation (keeping the connectivity at the same time), successively

split a line segment into two line segments. Given the two end-points p0 and p1 of a line

segment, define

pm :=
1

2
(p0 + p1)− u (p0 + p1) .

The line segment (p0,p1) is then replaced by the two line segments (p0,pm) and (pm,p1).

This process can be repeated multiple times if necessary. To increase curve smoothness

approximate this over-sampled piecewise linear approximation to the zero level set by a least

squares quadratic spline [37] or a least squares piecewise linear approximation. It is then

straightforward, but relatively computationally costly, to redistance the vector distance

function based on the obtained piecewise linear approximation. Given a line segment L

defined by its two endpoints p0 and p1, define the vector distance u of a point p to the line

segment L as:

u(p, L) =





p− p0 −
(
(p− p0)T t

)
t if (p− p0)T t ∈ [0, ‖p1 − p0‖]

min(‖p0 − p‖, ‖p1 − p‖) otherwise.

,

where

t =
p1 − p0

‖p1 − p0‖
.

The reinitialized vector distance function at a point x is then approximately

u(x) = argmin
L
‖u(x, L)‖.

5.2.3 Detecting Simple Points by Cubical Homology

Detecting simple points gets increasingly complex with higher space dimensions. Since the

potential space dimensions may be higher than three, it is desirable to use a method for

simple point detection applicable in arbitrary space dimensions. Previous work has focused

on specific space dimensions: see for example [12, 79, 52, 78]. The approach in this thesis is

based on cubical homology (as introduced in Section 2.3) and is not restricted to a specific

space dimension.
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We are concerned with the detection of simple points in Zd. Specifically, given the

cubical set N (C)

N (C) := C ∪
(⋃

i

Ui

)
,

where C and Ui are unitary cubes, and Ui ∈ (3d−1)−discrete neighborhood of C, we want

to know if we can remove the unitary cube C without changing the topology. Defining the

sets

A0 := N \ (C \ (N ∩ ∂C))

A1 := C,

with

N = A0 ∪ A1 and B = A0 ∩A1 = N ∩ ∂C,

there is a long exact sequence (Mayer-Vietoris)

· · · → Hk(B)→ Hk(A0)⊕Hk(A1)→ Hk(N )→ Hk−1(B)→ . . .

For a point C (i.e., a discrete point represented by a unitary cube) to be simple it needs to

be true that

H∗(N ) ∼= H∗(A0).

Note, that since the cubical set N is the union of unitary cubes in the discrete (3d − 1)-

neighborhood of C,

H∗(B) ∼= H∗(A0).

Thus, the Mayer-Vietoris sequence becomes

· · · → Hk(A0)→ Hk(A0)⊕Hk(A1)→ Hk(A0)→ Hk−1(A0)→ . . . (52)

Also, since A1 is a unitary cube,

Hk(A1) =





cZ for k = 0

∅ otherwise,
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where c is an element of the equivalence class of the vertices of C. From Equation (52) it

follows that

H0(A0)→ H0(A0)⊕H0(A1)→ H0(A0).

Since this has to be an exact sequence, it follows that

H0(A0) ∼= H0(A1) ∼= cZ,

and similarly

Hk(A0)→ Hk(A0)⊕Hk(A1)→ Hk(A0) for k > 0

and thus

Hk(A0) ∼= Hk(A1) ∼= ∅ for k > 0.

Thus, the cube C can be removed from N without changing the topology if

β0 := rank (H0(A0)) = 1

βk := rank (Hk(A0)) = 0 for k > 0.

It is sensible to only look at the discrete (3d− 1)-neighborhood of C, since topology preser-

vation in this neighborhood implies overall topology preservation in our setting. To see

that let’s assume X to be a cubical set (composed of the union of unitary cubes), such that

N ⊂ X. Then defining

A0 := X \ N

A1 := N ,

with

X = A0 ∪A1

B = A0 ∩A1 = ∅.

yields (again, by Mayer-Vietoris)

∅ → Hk(A0)⊕Hk(A1)→ Hk(X)→ ∅.
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But this implies (since the sequence is exact) that

Hk(A0)⊕Hk(A1) ∼= Hk(X),

or

Hk(X \ N )⊕Hk(N ) ∼= Hk(X). (53)

But since the two homology groups on the left hand side of Equation (53) only share the

empty set, it is not possible to change the topology of N without changing the topology of

X at the same time.

For our thinning purpose it is also useful to allow for topological changes. One useful

change for finding a discrete approximation to the zero level set is to allow for the “piercing”

of discrete planes, i.e., if the removal of a d-xel changes the topology of the (3d − 1)-

neighborhood from β0 = 1, βi = 0, i > 0 to β0 = 1, β1 = 1, βi = 0, i > 1, this removal is

allowed.

5.3 Partial Level Set Approach

For the partial level set approach, a planar curve C is represented implicitly as described

in Section 5.1 by means of the level set function Φ. The evolution of interest not only

depends on the geometrical shape of the curve, but also on its current state (e.g., its normal

velocities). This additional state information needs to be transported along with the curve.

In the partial level set approach this is accomplished by solving one additional transport

equations for each state that needs to be propagated:

sit + xt · ∇si = 0,

where si represents the i-th additional state and xt is the velocity the level set function Φ

moves with. In the case where only velocity state information is present, the two functions

u : R2×R+ and v : R2×R+, representing the x and the y components of the velocity vector

respectively (xt = [u, v]T ), are propagated along with the zero level set of Φ by solving

two additional transport equations (for normal curve propagation, one additional transport
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equation will be sufficient; the overall scheme will be identical). Specifically the following

algorithm is proposed for numerical implementations5

1) Compute the current velocities at every point of the contour based on equation (17).

2) Update the velocity fields u and v using the results from step 1.

3) Propagate Φt, u, and v by one time step using the velocities from step 1. For u and

v this amounts to solving

ut + xt · ∇u = 0

vt + xt · ∇v = 0

respectively. Note, that it is important to propagate u and v in the direction xt

opposed to the normal direction with respect to the curve in this case.

This approach can be used to propagate any kind of information along with the contour. By

distributing marker particles on the contour one could use this method for region tracking

(compare Bertalmio and Sapiro [11] where region tracking is performed by intersecting

two hypersurfaces, using ideas presented in Section 5.2). The advantage of a partial level

set approach compared to the full level set approach discussed in Section 5.4 is its low

computational complexity. For normal geometric dynamic curve evolution the complexity

will only be about twice as high as for a normal, static level set evolution. The price to pay

is the loss in topological flexibility: contours are not allowed to intersect each other and get

merged solely based on their shape in the image plane. The state information is not used

to influence the topology changes.

Section 5.3.1 sets up the framework for the partial level set approach for the normal

geometric dynamic curve evolution. Section 5.3.2 discusses the mathematical properties of

the partial level set evolution for the normal geometric dynamic curve evolution. Results

are presented in Section 6.1.

5This implementation needs to be tied into a whole numerical scheme. This is beyond the scope of this
thesis. See [115, 104, 84] for details.
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5.3.1 Normal Geometric Dynamic Curve Evolution

The normal geometric dynamic curve evolution (see Section (3.5)) is given as

Ct = β(s, t)N

βt =
1

2
β2κ+

1

µ
gκ− 1

µ
∇g · N . (54)

Since the evolution of the curve’s shape is independent of the tangential velocity, the

level set evolution equation for an arbitrary velocity xt can be written as

Φt + ‖∇Φ‖N · xt = 0, (55)

where

N = − ∇Φ

‖∇Φ‖ .

Here, xt = β̃N , where

β̃(x, t) = β(p, t) (56)

is the spatial normal velocity at the point x. This simplifies Equation (55) to

Φt − β̃‖∇Φ‖ = 0. (57)

Substituting Equation (56) into Equation (31) and using the relation

κ = ∇ ·
( ∇Φ

‖∇Φ‖

)

yields

β̃t − β̃∇β̃
∇Φ

‖∇Φ‖ =

(
1

2
β̃2 +

1

µ
g

)
κ+

1

µ
∇g · ∇Φ

‖∇Φ‖ . (58)

The left hand side of Equation (58) is the material derivative for the normal velocity. If we

use extension velocities, Equation (58) simplifies to

β̃t =

(
1

2
β̃2 +

1

µ
g

)
κ+

1

µ
∇g · ∇Φ

‖∇Φ‖ .

Since the extensions are normal to the contours, normal propagation of the level set function

will guarantee a constant velocity value along the propagation direction (up to numerical

errors). Specifically ∇β̃⊥∇Φ in this case and thus

∇Φ · ∇β̃ = 0.
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For an alternative derivation6, we change our Lagrangian, and extend it over a range of

level sets. For each time t, and 0 ≤ r ≤ 1 let

C(r)(t) := {(x, y) ∈ R2 : Φ(x, y, t) = r}.

Using the Lagrangian

L =

∫ 1

0

∫

C(r)(t)

(
1

2
µβ̃2 − g

)
ds dr

the action integral becomes

L =

∫

t

∫ 1

0

∫

C(r)(t)

(
1

2
µβ̃2 − g

)
ds dr dt,

which is

L =

∫ 1

0

∫

t

∫

C(r)(t)

(
1

2
µβ̃2 − g

)
ds dt dr

=

∫

t

(∫ 1

0

∫

C(r)(t)

(
1

2
µβ̃2 − g

)
dH1bC(r)(t) dr

)
dt

=

∫

t

∫

Ω

(
1

2
µβ̃2 − g

)
‖∇Φ‖ dx dy dt, (59)

where H1 is the one-dimensional Hausdorff measure and we applied the coarea formula [13].

This casts the minimization problem into minimization over an interval of level sets in a

fixed coordinate frame (x and y are time independent coordinates in the image plane).

Using Equation (57), β̃ becomes

β̃ =
Φt

‖∇Φ‖ . (60)

Substituting (60) into Equation (59) yields

L[Φ] :=

∫

t

∫

Ω

(
µ

Φ2
t

2‖∇Φ‖ − g‖∇Φ‖
)
dx dy dt,

which is the new Φ-dependent action integral to be minimized. Then, δL = 0 if and only if

∂

∂t

(
Φt

‖∇Φ‖

)
= ∇ ·

((
g

µ
+

Φ2
t

‖∇Φ‖2
) ∇Φ

‖∇Φ‖

)
.

The curve evolution is thus governed by the equation system:

β̃t = ∇ ·
( ∇Φ

‖∇Φ‖

(
g

µ
+

1

2
β̃2

))
, (61)

Φt = β̃‖∇Φ‖.

6This will yield directly the normal evolution equation, without the detour of deriving Equation (30).
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Expanding Equation (61) yields again

β̃t =

(
1

2
β̃2 +

1

µ
g

)
κ+

1

µ
∇g · ∇Φ

‖∇Φ‖ + β̃∇β̃ · ∇Φ

‖∇Φ‖ .

The equation system (61) constitutes a conservation law for the normal velocity β̃. The

propagation of the level set function Φ is described (as usual) by a Hamilton-Jacobi equation.

5.3.2 Mathematical Properties

This section presents some mathematical properties of the partial level set approach for the

normal geometric dynamic curve evolution.

5.3.2.1 Energy Bounds

Consider the energy functional7

E =

∫

Ω

{
1

2

Φ2
t

‖∇Φ‖ + g(x, y, t)‖∇Φ‖
}
dx dy =

∫

Ω

{
1

2
β̃2 + g(x, y, t)

}
‖∇Φ‖ dx dy.

It changes with time according to

dE

dt
=

∫

Ω

{
β̃β̃t + gt

}
‖∇Φ‖+

(
1

2
β̃2 + g

) ∇Φ

‖∇Φ‖ · ∇Φt dx dy

=

∫

Ω
gt‖∇Φ‖ −

∫

Ω
v‖∇Φ‖∇ ·

{(
1

2
β̃2 + g

) ∇Φ

‖∇Φ‖

}
+

(
1

2
β̃2 + g

) ∇Φ

‖∇Φ‖ · ∇ (v‖∇Φ‖) dx dy

=

∫

Ω
gt‖∇Φ‖ dx dy

Note that

(∇Φ)t = ∇(Φt), (62)

since x and y are independent of t.

5.3.2.2 Evolution of Graphs

Let Γt be the graph of a function y = h(x, t). Then

β =
ht√

1 + h2
x

, N =
1√

1 + h2
x



−hx

1


 , κ =

hxx

(1 + h2
x)3/2

7µ = 1 in what follows. This does not change the qualitative behavior of the evolution equation: µ can
always be subsumed in the expression for g, if desired.
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and time derivatives following the motion of the curve are given by

D

∂t
=

∂

∂t
− β hx√

1 + h2
x

∂

∂x
=

∂

∂t
− hthx

1 + h2
x

∂

∂x
.

Hence the law of motion D
∂tβ = (β2/2 + g)κ−N · ∇g for the curve Γt implies a partial

differential equation for h

∂

∂t

(
ht√

1 + h2
x

)
− hthx

1 + h2
x

∂

∂x

(
ht√

1 + h2
x

)
=

{
1

2

h2
t

1 + h2
x

+ g(x, h, t)

}
hxx

(1 + h2
x)3/2

− gy − hxgx√
1 + h2

x

. (63)

Observe that

∂

∂x

hx√
1 + h2

x

=
hxx(1 + h2

x)− h2
xhxx

(1 + h2
x)3/2

=
hxx

(1 + h2
x)3/2

,

and hence

hthx
1 + h2

x

∂

∂x

(
ht√

1 + h2
x

)
=

hx√
1 + h2

x

∂

∂x

(
1

2

h2
t

1 + h2
x

)
=

∂

∂x

{
1

2

hxh
2
t

(1 + h2
x)3/2

}
− 1

2

h2
thxx

(1 + h2
x)5/2

.

Also

g
hxx

(1 + h2
x)3/2

=
∂

∂x

{
ghx√
1 + h2

x

}
− hx√

1 + h2
x

(gx + gyhx) ,

so that

g
hxx

(1 + h2
x)3/2

+
hxgx√
1 + h2

x

=
∂

∂x

{
ghx√
1 + h2

x

}
− h2

xgy√
1 + h2

x

.

Applying all this to Equation (63) one gets

∂

∂t

(
ht√

1 + h2
x

)
− ∂

∂x

{
1

2

hxh
2
t

(1 + h2
x)3/2

+
ghx√
1 + h2

x

}
= −gy

√
1 + h2

x. (64)

Expanding (63),

∂

∂t

(
ht√

1 + h2
x

)
− hthx

1 + h2
x

∂

∂x

(
ht√

1 + h2
x

)
=

{
1

2

h2
t

1 + h2
x

+ g(x, h, t)

}
hxx

(1 + h2
x)3/2

− gy − hxgx√
1 + h2

x

yields:

htt(1 + h2
x)− hthxhxt

(1 + h2
x)3/2

− hthx
1 + h2

x

hxt(1 + h2
x)− hxhthxx

(1 + h2
x)3/2

=

{
1

2

h2
t

1 + h2
x

+ g(x, h, t)

}
hxx

(1 + h2
x)3/2

− gy − hxgx√
1 + h2

x
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and after simplifying and multiplying with (1 + h2
x)3/2 this leads to

htt(1 + h2
x)− hthxhxt − hthxhxt +

h2
xh

2
t

1 + h2
x

hxx =

{
1

2

h2
t

1 + h2
x

+ g(x, h, t)

}
hxx − (gy − hxgx)

(
1 + h2

x

)
,

i.e.,

htt (1 + h2
x)︸ ︷︷ ︸

a

= 2hthx︸ ︷︷ ︸
−2b

hxt +

{
1
2 − h2

x

1 + h2
x

h2
t + g(x, h, t)

}

︸ ︷︷ ︸
−c

hxx − (gy − hxgx)
(
1 + h2

x

)
. (65)

Since

ac− b2 = −
(
1 + h2

x

)
{

1
2 − h2

x

1 + h2
x

h2
t + g(x, h, t)

}
− h2

th
2
x = −1

2
h2
t − g(x, h, t)

(
1 + h2

x

)
< 0,

the evolution equation is hyperbolic.

5.3.2.3 Evolution of Graphs again

Equation (65) can be derived based on the variational principle. Then using

β =
ht√

1 + h2
x

, and ds =
√

1 + h2
x dx,

the action integral becomes

S =

∫ T

0

∫ b

a

{
v2

2
− g
}
ds dt =

∫ T

0

∫ b

a

{
1

2

h2
t

1 + h2
x

− g(x, h(x, t), t)

}√
1 + h2

x dx dt.

The Lagrangian is

L(x, t, h, hx, ht) =
1

2

h2
t√

1 + h2
x

− g(x, h, t)
√

1 + h2
x.

Computing the first variation yields the Euler-Lagrange equation,

d

dt

(
∂L

∂ht

)
+

d

dx

(
∂L

∂hx

)
=
∂L

∂h
.

We obtain

d

dt

(
ht√

1 + h2
x

)
− d

dx

(
1
2h

2
t + g(1 + h2

x)

(1 + h2
x)3/2

hx

)
=
√

1 + h2
x

∂g

∂y
(x, h, t).
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After some algebraic manipulations this yields

htt (1 + h2
x)2

︸ ︷︷ ︸
a

=

2hthx(1 + h2
x)︸ ︷︷ ︸

−2b

htx+

(
g(h2

x + 1) + h2
t

(
1

2
− h2

x

))

︸ ︷︷ ︸
−c

hxx+(gx+gyhx)hx(1+h2
x)2−gy(1+h2

x)3

(66)

which is the same as (64). Since

ac− b2 = −(1 + h2
x)2

(
g(1 + h2

x) +
1

2
h2
t

)
< 0,

Equation (66) is hyperbolic as long as g and ht are not both zero at a given point.

5.3.2.4 Evolution of Nearly Straight Curves

Assume g(x, y, t) ≈ G+ K
2 (y− at)2 and h(x, t) = at+ εk(x, t) +O(ε2), then (65) reduces to

εktt =

{
1

2
a2 +G

}
εkxx −K(h− at) +O(ε2),

and hence, after dropping the O(ε2) terms, to

ktt = c2
akxx −Kk where ca =

1

2
a2 +G.

This is a telegraph equation [47].

5.3.2.5 Evolution Equation Type

As shown in Section 5.3.2.2, the graph evolution Equation (66) is hyperbolic. It remains to

determine the evolution type for the level set evolution equation.

We can write the equation as

L[Φ] = Φtt + 2
∑

i∈{x,y}
aiΦit −

∑

i,k∈{x,y}
aikΦik + · · · = 0, (67)
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which in turn can be written as




1 0 0

0 a11 a12

0 a21 a22




︸ ︷︷ ︸
A0




Φtt

Φxt

Φyt




+




2a1 −a11 −a12

−a11 0 0

−a12 0 0




︸ ︷︷ ︸
A1




Φtx

Φxx

Φyx




+

+




2a2 −a21 −a22

−a21 0 0

−a22 0 0




︸ ︷︷ ︸
A2




Φty

Φxy

Φyy




+ · · · = 0, (68)

since Φxt = Φtx and Φyt = Φty. For Equation (68) to be symmetric hyperbolic, one of the

matrices Ai or a linear combination
2∑

i=0

ξiAi

has to be definite [29]. In this discussion, we assume that ‖∇Φ‖ 6= 0 everywhere. Then

with

a11 = −
(

1

2
β̃2 + g

)(
Φ2
x

‖∇Φ‖2 − 1

)
− β̃2 Φ2

x

‖∇Φ‖2 ,

a12 = − ΦxΦy

‖∇Φ‖2
(

3

2
β̃2 + g

)
,

a21 = a12,

a22 = −
(

1

2
β̃2 + g

)(
Φ2
y

‖∇Φ‖2 − 1

)
− β̃2

Φ2
y

‖∇Φ‖2 ,

we obtain the eigenvalues of A0

λ(A0) =

{
1,−β̃2,

1

2
β̃2 + g

}
,

with the corresponding eigenvectors

λ1 = 1→




1

0

0



, λ2 = −β̃2 →




0

Φx

Φy



, λ3 =

1

2
β̃2 + g →




0

−Φy

Φx



.

The eigenvectors point into the t direction and into the normal and tangential directions

to the curve respectively. None of the matrices Ai and none of the linear combinations are
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definite, since two of the eigenvalues are positive (or zero) and one is negative (or zero).

Thus the equation is not hyperbolic symmetric. In particular, it is not hyperbolic in the

normal direction to the curve. The equation can be written in the form of Equation (67) as

Φtt − 2β
Φx

‖∇Φ‖Φtx − 2β
Φy

‖∇Φ‖Φty − a11Φxx − 2a12Φxy − a22Φyy − ‖∇Φ‖2 = 0.

If β̃ = 0 at a point x, the level set function Φ does not change at x and the evolution

equation becomes

Φtt = ∇g · ∇Φ + g
Φ2
yΦxx − 2ΦxΦyΦxy + Φ2

xΦyy

‖∇Φ‖ = ∇g · ∇Φ + g‖∇Φ‖κ.

5.3.2.6 Special Solutions

Let g = g(r, t) be radially symmetric, and let Γt be a a circle with radius R(t). Then

v = −R′(t), κ = 1/R(t) and thus the circle will evolve governed by the equation

R′′(t) =

(
1

2
R′(t)2 + g(R, t)

) −1

R
− gr(R, t)

or,

RR′′ +
1

2
R′2 = −g(R, t)−Rgr(R, t),

(divide by
√
R)

2

3

(
R3/2

)′′
= R1/2R′′ +

1

2
R−1/2(R′)2 = −g +Rgr

R1/2
.

One can also write down the variational principle which reduces to

δ

∫ T

0

{
1

2
R′2 − g(R, t)

}
2πR dt = 0.

The Lagrangian is L(R,R′, t) = 1
2RR

′2 − Rg(R, t); the momentum is pR = RR′, and the

corresponding Hamiltonian is

H(R, pR, t) =
p2
R

2R
+Rg(R, t).

The Hamiltonian equations are

dR

dt
=
pR
R
,

dpR
dt

=
p2
R

R2
− g −Rgr.
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If g does not depend on time, then

H =
p2
R

2R
+Rg(R) =

1

2
R

(
dR

dt

)2

+Rg(R)

is a conserved quantity.

If

g = G+
K

4
(1−R2)2 = G+

K

4
− K

2
R2 +

K

4
R4,

then

g +Rgr = (Rg)R = G+
K

4
− 3K

2
R2 +

5K

4
R4,

and one obtains the system.

R′ =
pR
R
, p′R =

p2
R

R2
−G− K

4
+

3K

2
R2 − 5K

4
R4.

5.4 Full Level Set Approach

Unlike the partial level set approach of Subsection 5.3, a full level set approach evolves a

completely implicit representation of the curve based on Equation (17). This allows for full

topological flexibility.

The method of choice for the full level set approach in this thesis is the vector distance

function approach. As discussed in Section 5.2, the mathematical theory for vector dis-

tance functions is still in its infancy, however initialization of a vector distance function is

straightforward and (unlike methods based on the intersection of the level sets of multi-

ple scalar functions) a narrow-band approach is possible, reducing the computational cost

significantly.

Section 5.4.1 presents the full level set approach for the normal geometric dynamic curve

evolution, the demo problem already employed for the partial level set approach.

5.4.1 Normal Geometric Dynamic Curve Evolution

As shown in Section 3.5, the governing equations for normal geometric dynamic curve

evolution are:

Ct = βN ,

βt =

(
1

2
β2 +

1

µ
g

)
κ− 1

µ
∇g · N , (69)
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with β being the speed in the normal direction.

Although the evolution equations for the normal dynamic geometric curve evolution

seem to only require a curve evolving in three dimensional space (for the position in the

plane and the normal velocity for every point on the curve) this is not sufficient in general

when implementing the evolution for multiple curves simultaneously. In certain cases (i.e.,

when the projections of curves overlap in the image plane) there is no clear inside and outside

of the projected curve. Then it is not apparent how to assign a unique normal vector to

every point of the projected curves in the image plane without the normal vector exhibiting

a discontinuity (when traced along an individual curve). Also, even if such a normal vector

would be given, it is not desirable to perform the topological merging and splitting based on

this representation, i.e., based on the position and the normal velocity coefficient. Indeed,

if we use the unit inward normals of two curves, two curves will not necessarily merge even

though they coincide with position and velocity, because the normal velocity coefficient β

can (and in this case will) differ in sign (see Figure (18) for an illustration). It is thus

more desirable to perform the level set implementation in a four-dimensional space (this is

a codimension three problem) so that merging and splitting is performed based on the real

velocity vector.

The partial level set implementation (see Section 5.3) is not concerned with the prop-

agation of curves in this higher-dimensional space. Instead a partial level set approach

was used, where curves in the image plane are represented by a level set function and the

normal speed is simply propagated along with the curves. This guarantees dynamic curve

propagation according to Equation (69) as long as the level sets, used for the representation

of the curves’ positions in the image plane, do not merge or split; curves sliding past each

other cannot be represented in this setting. If this is desired, a full level set approach, i.e., a

level set method operating in the full four dimensional space, needs to be employed. Then

a completely implicit representation of the curve based on Equation (69) is evolved. This

allows for full topological flexibility. Of specific interest is the requirement that two curves

will only be merged at a point if their positions and velocities at this point are identical, i.e.,

the methodology allows for curves to slide past each other if this is what their dynamical
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(a) Curves should merge, but do not if only the normal velocity gets propagated.

(b) Curves should not merge, but merge if only the normal velocity gets propagated.

Figure 18: Merging curves scenarios.
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description requires them to do. The projection onto the image plane will then show curves

intersecting each other. The merging behavior will be very different from the one observed

for the partial level set approach. While two objects that get merged with the partial level

set approach will lose their joint boundary, this will not be the case for the full level set

approach. Here, the two contours will get fused.

We will treat the spatial and the velocity evolution combined within the vector distance

function setting (as a full level set approach), thus providing a sample problem for the

vector distance function approach. Equation (69) was derived based on curves evolving in

the plane. However, for an implicit evolution by a vector distance function approach planar

quantities (e.g., the mean curvature vector in the image plane) need to be computed based

on the vector distance function values u which implicitly describe a curve in R4. In short,

Equation (69) needs to be written in terms of u.

With

v =



v0

v1


 = βN ,

an evolution equation analogous to Equation (69) is

Ct = v

vt = βtN − ββsT = βtN −
1

2

(
β2
)
s
T ,

which is (upon substitution of Equation (69))

Ct = v

vt =

(
1

2
‖v‖2 +

1

µ
g

)
κN − 1

µ
(∇g · N )N − 1

2

(
‖v‖2

)
s
T . (70)

To implement Equation (70) in a level set framework, the tangential, T , and the normal,

N , vectors need to be written in terms of u. Also, a replacement for the mean curvature

vector in the plane, Hp = κN has to be found. Since the object dimension is one, exactly

one eigenvalue of Du will be zero, while the others will be one [55]. The eigenvector

corresponding to the zero eigenvalue will be aligned with the tangential direction of the

curve. For numerical robustness we propose to compute the full-dimensional tangential
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vector as

Tf =
t

‖t‖ ,

where

t = argmin
∀vi∈V

‖λi‖ (vi) , V =

{
v ∈ R4 :

1

2

(
Du+ (Du)T

)
v = λv, λ ∈ R

}
.

The tangential vector T in the plane is then the normalized projection of Tf onto the image

plane:

T =
P (Tf )

‖P (Tf ) ‖ , where P
((

x1 x2 x3 x4

)T)
=



x1

x2


 .

We define

r := T ⊥ =




0 −1

1 0


 T ,

and propose to compute the mean curvature vector in the plane as

Hp = Ts =

(
1

‖T · Tf‖
(DT ) Tf · r

)
r

and the squared velocity variation along the curve as

(
β2
)
s

=
1

‖T · Tf‖
∇
(
‖v · r‖2

)
Tf ,

where the quantities that should be normal to the planar curve are replaced by their pro-

jections onto o to increase numerical robustness. We cannot guarantee that v will indeed

be normal to the curve throughout the evolution due to numerical errors. Defining the

reprojected velocity to be

vR := (v · r) r,

we obtain (using the reprojected velocity) the overall evolution equation

Ct = vR

vt =

(
1

2
‖vR‖2 +

1

µ
g

)
Hp −

1

µ
(∇g · r) r − 1

2‖T · Tf‖
(
∇
(
‖vR‖2

)
Tf
)
T . (71)

In principle v should always be perpendicular to the evolving curve. In case of a numer-

ical implementation this will not be the case due to numerical inaccuracies. It might thus
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be useful to enforce this property dynamically by changing Equation (71) to

Ct = vR

vt =

(
1

2
‖vR‖2 +

1

µ
g

)
Hp −

1

µ
(∇g · r) r − 1

2‖T · Tf‖
(
∇
(
‖vR‖2

)
Tf
)
T −K (v − vR) .

The newly introduced term will ensure that the tangential velocity components will vanish

for t → ∞ (based on the amplification factor K > 0). The level set evolution equation is

then

ut − (Du)T



Ct
vt


 = 0.
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CHAPTER 6

SIMULATION RESULTS

This chapter presents simulation results for the theory developed previously. Section 6.1

presents simulation results for the partial level set method. Section 6.2 shows results ob-

tained using the full level set approach.

6.1 Results for the Partial Level Set Approach

We present two sets of results for the partial level set method. The first set (in Section 6.1.1)

shows results for the normal geometric dynamic contour evolution on synthetically created

blob sequences. Error injection is not used. Results for two real image sequences (a fish

and a car) are given in Section 6.1.2. Both use error injection. The car sequence also uses

the occlusion detection proposed in Section 4.2.

6.1.1 Tracking of Blob Shapes

To get insight into the behavior of the normal geometric dynamic active contour, it is

instructive to evolve it on simple synthetically created geometric objects: in this case, black

blobs. The overall objective is visual tracking, i.e., following moving objects in an image

sequence over time. The algorithm should work on static (one fixed image) as well as

dynamic (a movie) image sequences. Figure 19 shows nine frames for the curve evolution

on a static blob image. The curve does not settle at the bottom of the potential well of

the object (i.e., the edge of the blob object). Instead it oscillates indefinitely. This is

sensible behavior. Apart from possible numerical dissipation, the numerical scheme (see

Section B.2) is free of dissipational effects. Thus the curve moves back and forth in the

potential well without losing energy. Figure 20 shows the simulation results for the same

curve evolution with added dissipation (a dissipational term proportional to the curve’s

velocity will be used for all the following results in this section). The difference is striking.

The curve settles quickly at the correct location and then stops moving. Figure 21 shows
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two moving blobs merging and subsequently splitting. The curve evolution scheme manages

to keep track of these topological changes. In this case, the potential force is replaced by

a gradient vector flow field to ensure that the contour would flow into object concavities1.

Figure 22 shows four blobs emerging from a single point. This is a difficult example. Even

though the curve approximates the outlines of the objects very well at the beginning, the

algorithm has no way of “looking inside” the object, where a gap forms. Once the blobs

are further apart the curve could move around all four blobs and break into four distinct

parts. This would be the desired behavior. However, this is not what happens. Due to the

inherent smoothness constraint of the curve evolution algorithm, the curve gets stuck: in

between perfectly fulfilling the smoothness constraint (the closer to a circle the better) and

obtaining a good approximation to the moving objects.

As demonstrated, the partial level set approach can handle topological changes. To

handle the four blob scenario more sophisticated functionals for the potential energy need

to be employed. Figure 23 shows the results for the area based approach proposed in

Section 3.3. As desired, the evolving curve wraps around all four of the blobs. By using

the error injection approach proposed in Section 4.1 undesired oscillations (as for example

observed in Figure 19) can be eliminated. Since the error injection approach is based on

feature detection along normals to an evolving curve, it positions itself in between purely

edge based and purely area based approaches. This is the method employed for real image

sequences in Section 6.1.2.

6.1.2 Results on Real Image Sequences

The error injection based algorithm proposed in Section 4.1 is tested on two real video

sequences. Figure 25 shows three frames of a fish sequence and Figure 26 shows three

frames of a car sequence respectively. In both cases occlusions occur. For the fish sequence

no occlusion detection is performed, to demonstrate the behavior of the normal geometric

curve evolution algorithm alone, on an image sequence with a short-time partial occlusion.

1See [142] for details on computing a gradient vector flow field. The gradient vector flow field extends the
gradient away from the location of edges into areas of small gradient magnitude, thus enlarging the region
of attraction.
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(a) Frame 0. (b) Frame 5. (c) Frame 10.

(d) Frame 15. (e) Frame 20. (f) Frame 25.

(g) Frame 30. (h) Frame 35. (i) Frame 40.

Figure 19: Normal geometric dynamic curve evolution on a static blob image without
using dissipation results in oscillations.
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(a) Frame 0. (b) Frame 5. (c) Frame 10.

(d) Frame 15. (e) Frame 20. (f) Frame 25.

(g) Frame 30. (h) Frame 35. (i) Frame 40.

Figure 20: Normal geometric dynamic curve evolution on a static blob image using dissi-
pation prevents prolonged oscillations.
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(a) Frame 0. (b) Frame 10. (c) Frame 20.

(d) Frame 30. (e) Frame 40. (f) Frame 70.

(g) Frame 100. (h) Frame 115. (i) Frame 119.

Figure 21: The numerical scheme for the partial level set approach allows naturally for
merging and splitting of curves.
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(a) Frame 0. (b) Frame 3. (c) Frame 6.

(d) Frame 9. (e) Frame 12. (f) Frame 15.

(g) Frame 18. (h) Frame 21. (i) Frame 24.

Figure 22: The inherent smoothness constraint of the curve evolution equation does not
always allow for the desired segmentation.
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(a) Frame 0. (b) Frame 3. (c) Frame 6.

(d) Frame 9. (e) Frame 12. (f) Frame 15.

(g) Frame 18. (h) Frame 21. (i) Frame 24.

Figure 23: The area based evolution captures four blobs moving away from each other.
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Figure 24: Illustration of the shape of the weighting function w(x) for the fish sequence.

Define2

q(x) :=
1

1 + e−(p1+x)
, r := q(0) +

e−p1

q(0)2
p2,

w(x) :=





q(d(x)) if d(x) ≤ 0

q(0) + e−p1
q(0)2d(x) if 0 < d(x) ≤ p2

r − r
p3−p2

(d(x)− p2) if p2 < d(x) ≤ p3

0 otherwise.

The used likelihood function for the fish sequence is

m(z) = e
−
(

(g(z)−µg)2

2σ2
g

+
(I(z)−µI)2

2σ2
I

)

w(z).

The function depends on the image intensity I, the potential function g, and the distance

d to the contour. For the car sequence we define

a(x) := arccos

( ∇(G ∗ I)

‖∇(G ∗ I)‖ · N
)
,

an(x) := min (|a(x)|, π − |a(x)|) .

This is a measure of angle difference between edge orientation at correspondence points and

the normal of the curve. Ideally both should be aligned. The likelihood for a contour point

candidate z ∈ Z is then computed as

m(z) = e
−
(

(|d(z)|−µd)2

2σ2
d

+
(g(z)−µg)2

2σ2
g

+
(an(z)−µa)2

2σ2
a

)

,

and the occlusion detection of Section (4.2) is performed.

2This is simply a monotonic function which increases like a sigmoid up to x = p1, linearly increases for
x ∈ (p1, p2], linearly decreases to zero for x ∈ (p2, p3] and is zero everywhere else. See Figure 24 for an
illustration.
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(a) Frame 0 (b) Frame 80

(c) Frame 90

Figure 25: Three frames of a fish sequence.
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(a) Frame 0 (b) Frame 14

(c) Frame 55

Figure 26: Three frames of a car sequence.
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In both cases occlusions are handled. For the fish sequence the occlusion is dealt with

implicitly. The occluding fish moves over the tracked fish quickly, so that the inertia effects

keep the fish at a reasonable location. For the car example the occlusion (the lamp post) is

treated explicitly by means of the proposed occlusion detection algorithm. In both cases the

likelihood functions do not incorporate any type of prior movement or shape information.

Doing so would increase robustness, but limit flexibility. Finally, since this active contour

model is based on edge features, the active contour captures the sharp edge of the shadow

in the car sequence. Presumably this could be handled by including more global area-based

terms or shape information in the model.

6.2 Results for the Full Level Set Approach

The results for the partial level set based method presented in Section 6.1 demonstrate

the behavior of a normal geometric dynamic active contour on synthetic and real image

sequences. A partial level set approach cannot represent intersecting curves in the image

plane. Topological merging or splitting is only performed based on the geometrical shape

of the represented curves in the image plane. The full level set aims at altering the be-

havior for topological changes. In the context of dynamic active contours it should allow

for intersecting curves in the image plane and should allow for curve merging taking into

account the curves’ positions in the image plane and their additional states (e.g., velocity

information). This section illustrates this behavior for normal geometric dynamic curve

evolution (see Section 5.4) implemented using the vector distance function based full level

set approach on a simple synthetic image. Furthermore, simple numerical test cases are

presented to illustrate the behavior of vector distance function evolutions (see Sections 5.2

and 5.4 for the theoretical background).

Figure 27 shows a one dimensional toy problem, where an implicit representation of a

point gets moved back and forth. It demonstrates the superiority of the vector distance

function approach opposed to the distance function approach. Error compensation has

a very beneficial effect on the distance function results, but cannot prevent the distance

function from drifting away from its correct values (this is more dramatic for the case
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without error compensation). On the other hand error compensation does not significantly

improve the result for the vector distance function evolution in this example. In both cases

(with or without error compensation) the vector distance function scheme accurately follows

the desired movement.

Note that the main difference between the two approaches, and the reason for the

dramatically different results in this example, lies in numerical problems for the distance

function case: here the curve has a kink at the location of interest. The kink leads to

numerical dissipation, smearing out the kink and resulting in smaller gradients (which cause

very high sensitivity of the minimum of the level set function to numerical errors). On the

other hand the vector distance function does not have a kink at the point of interest. In

fact, the function is continuous and differentiable there. This is favorable for obtaining a

reliable numerical solution.

Figure 28 shows a two-dimensional result for a vector distance function based curvature

flow. This is merely a result to demonstrate the feasibility of vector distance function

evolutions, since this problem could be solved by a standard level set approach using a

signed distance function. The results show a nice regularization and the expected behavior

(the object becomes more and more circular over time). Finally, Figures 29 and 30 show

the result of propagating a circular object by applying a constant velocity field. By using

error compensation (this is a prime example of the usefulness of this approach in certain

cases) the theoretical result is almost indistinguishable from the numerical result.

Figures 31-32 show a circular object oscillating in a potential well based on the evolution

equations derived in Section 5.4.1. The curve shown is the projection of the space curve

on the image plane with velocity vectors given by the space curve. Clearly, the circular

object oscillates. It dissipates energy due to the numerics and the reinitialization scheme

and stops oscillating in finite time.

To test the behavior for topological changes, Figures 33-35 show two circles oscillating

simultaneously in the same potential well used previously. They slide over each other while

their velocities are significantly different from each other, but merge once their velocities

become numerically indistinguishable. Note that this is a demanding example since we chose
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(a) Initial curve.
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(b) Evolution without error com-
pensation.
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(c) Evolution with error compensa-
tion.

Figure 27: One-dimensional distance function and vector distance function evolutions.
Dash-dotted curves are the results for the distance function evolution. The dotted curve
is the initial curve for comparison and the solid curve is the result for the vector distance
function evolution. The results represent evolutions for 400 timesteps of 0.1. The evolutions
were performed with a constant velocity field of 1 which flips sign every 100 iterations.
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(a) Evolution step 50. (b) Evolution step 500.

(c) Evolution step 1000. (d) Evolution step 4000.

Figure 28: Vector distance function based curvature flow.
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(a) Evolution step 0. (b) Evolution step 0 with theoreti-
cal solution.

(c) Evolution step 250. (d) Evolution step 250 with theoret-
ical solution.

Figure 29: Circular object subject to a uniform flow field with theoretical solution. Vector
distance function evolution steps 0 and 250.
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(a) Evolution step 500. (b) Evolution step 500 with theoret-
ical solution.

(c) Evolution step 1000. (d) Evolution step 1000 with theo-
retical solution.

Figure 30: Circular object subject to a uniform flow field with theoretical solution. Vector
distance function evolution steps 500 and 1000.
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(a) Evolution step 0. (b) Evolution step 5.

(c) Evolution step 10. (d) Evolution step 15.

Figure 31: Normal geometric dynamic curve evolution using a vector distance function
approach showing an oscillating circular curve. Evolution steps 0-15.
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(a) Evolution step 20. (b) Evolution step 25.

(c) Evolution step 30. (d) Evolution step 35.

Figure 32: Normal geometric dynamic curve evolution using a vector distance function
approach showing an oscillating circular curve. Evolution steps 20-35.
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to discretize the velocity with the same accuracy as the spatial dimension (see the pixel size

in the images). To illustrate this, Figure 36 shows the three-dimensional projections for a

representative thinned discrete approximation to the zero level set.
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(a) Evolution time 0. (b) Evolution time 1.

(c) Evolution time 2. (d) Evolution time 3.

Figure 33: Normal geometric dynamic curve evolution using a vector distance function
approach showing two oscillating circles. Time steps 0 to 3.
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(a) Evolution time 4. (b) Evolution time 5.

(c) Evolution time 6. (d) Evolution time 7.

Figure 34: Normal geometric dynamic curve evolution using a vector distance function
approach showing two oscillating circles. Time steps 4 to 7.
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(a) Evolution time 8. (b) Evolution time 9.

Figure 35: Normal geometric dynamic curve evolution using a vector distance function
approach showing two oscillating circles. Time steps 8 to 9.

(a) Projection in the u direction at
evolution time 3.

(b) Projection in the v direction at
evolution time 3.

Figure 36: Two projections of the thinned discrete zero level set representation for the
vector distance function based normal geometric dynamic curve evolution.

110



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The contribution of this thesis is twofold: The active contour approach was extended to

include dynamics in the context of visual tracking and level set methods were developed

specifically for the resulting evolution equations.

Compared to traditional active contour methods, the approach developed in this thesis

incorporates the propagation of state information with every point on the evolving contour

into the evolution process. For the advocated normal dynamic geodesic active contour this is

the normal velocity, but any other kind of state information can be treated in a similar way.

In the context of visual tracking this facilitates a natural framework to combine velocity

and position estimation within a level set approach.

The normal dynamic geometric active contour relates to dynamic snakes [129] as geodesic

or conformal active contours [75, 22] relate to the original snake formulation [74], advocat-

ing a different philosophy to dynamic curve evolution. Instead of discretizing evolution

equations upfront (early lumping), partial differential equations describe the system as long

as possible (late lumping [141]), resulting in a more natural and geometric formulation.

Thus level set formulations become feasible. Due to the dynamic nature of the evolution

equations, the application of the classical level set methodology is not straightforward. This

thesis presented two different level set frameworks for the evolution of the normal dynamic

geometric active contour: the partial and the full level set approaches. Both methods were

implemented and their usefulness was demonstrated on a variety of real and artificial image

sequences.

To increase the robustness an observer-like system was proposed using error injection

to drive an evolving curve towards a desired state. Specifically, our proposed algorithm
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searches for image features (i.e., likelihood maxima) along normal lines of an evolving con-

tour, resulting in an algorithm that lies between purely edge-based and purely area-based

approaches.

The partial level set approach was designed to propagate the geometrical curve shape

in the image plane by means of a level set function. Any any additional information gets

propagated by transport equations. Thus the classical level set approach [115] can be ap-

plied, but topological changes are restricted to topological changes set forth by the geometry

of curves in the image plane. In particular, curve intersections cannot be handled in this

framework.

The full level set approach is built upon level set methods capable of evolving implicit

descriptions of objects of codimension larger than one. State and geometry information

gets propagated in one coherent framework. There is no separation between the description

of geometrical shape in the plane and additional information propagated with points on a

curve. In particular, the full level set approach can handle (as demonstrated) intersections

of curves in the image plane, thus potentially allowing for curves sliding over each other

while being visually tracked.

For the full level set approach we employed a vector distance function based level set

evolution, which is a useful tool to implement evolutions of objects of codimension greater

than one. It allows for a narrow-banding scheme, reducing the computational complexity

significantly. This is of great importance for evolutions in high dimensional spaces. To

address implementation issues, we successfully proposed reducing the class of objects to

be represented, to the class of closed curves. This greatly simplifies the required explicit

reconstruction of the zero level set for reinitialization purposes, which is not straightforward

in general, but then becomes tractable. The resulting evolution is a combination of an

implicit scheme (the vector distance function based level set propagation) with occasional

explicit reinitializations of the vector distance function. These explicit reinitializations are

based on discrete geometry and the recent theory of computational homology. Inadvertently,

this thesis proposed and proved a characterization of simple points in arbitrary (finite)

dimensions based on the theory of cubical homology. While a completely implicit scheme
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would be very desirable, also with regard to the representation and evolution of a less

restrictive object class, the reconstruction of an explicit representation of the zero level set

has the advantage of treating the fattening problem as a side-effect, for free. Topological

mergers can then be handled (as demonstrated) satisfactorily.

The level set methods used for the partial and the full level set approaches are inter-

esting in their own right and can be applied to a very general class of evolution equations.

However, a better mathematical understanding of the vector distance function evolution

scheme is highly desirable. Numerical methods tailored specifically for the evolution of

these discontinuous vector fields are useful and should be investigated. To obtain a com-

pletely implicit scheme, implicit reinitialization strategies need to be devised. This is a

challenging problem, numerically and in the context of how to properly handle fattening

artifacts.

The proposed visual tracking approach has the potential to deal with partial occlusions.

However, at the present stage it still lacks robustness. Generally, edge-based approaches

trade off robustness for versatility. If strong, clear edge information exists they are a

very useful class of algorithms; however, a straightforward edge-based approach will most

likely suffer in performance for noisy or cluttered images. To increase robustness, shape

information [82, 24, 23, 34, 32, 33, 112, 133] or area-based terms should be introduced into

the formulation. As an alternative to including dynamic area terms the image sequence

could be preprocessed (e.g., by some static segmentation step on every image frame).

Being able to transport additional state information is useful beyond the application of

visual tracking. Any kind of information can potentially be propagated along with a curve.

For example marker particles, enabling us to follow the movement of specific curve parts

over time. This property results in increased flexibility and enables fundamentally different

curve behaviors than in the static (i.e., non-dynamic) curve evolution case.

Furthermore, applications for dynamic active contours need not be restricted to tracking;

e.g., applications in computer graphics are conceivable (where the curve movement would

then be physically motivated), not necessarily involving an underlying real image (e.g., we

could design artificial potential fields enforcing a desired type of movement). As geodesic
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active contours extend to geodesic active surfaces, dynamic geodesic snakes can be extended

to dynamic geodesic surfaces. Of interest are also area based dynamic evolutions and

evolutions evolving tangential velocities which should be explored in future work.
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APPENDIX A

DERIVATION OF THE EVOLUTION EQUATIONS

This chapter presents detailed derivations for the evolution equations associated with geo-

metric dynamic curve evolution, area based dynamic curve evolution, and normal geometric

dynamic curve evolution.

A.1 Geometric Dynamic Curve Evolution

We consider the evolution of closed curves of the form C : S1 × [0, τ) 7→ R2 in the plane.

Where C = C(p, t) and C(0, t) = C(1, t) [128, 76], with t being the time, and p ∈ [0, 1] the

curve’s parameterization. The classical formulation for dynamic curve evolution as proposed

by Terzopoulos and Szeliski [129] is derived by means of minimization of the action integral

L =

∫ t1

t=t0

∫ 1

p=0
L(t, p, C, Cp, Cpp, Ct) dp dt, (72)

where the subscripts denote partial derivatives with respect to the time t and the param-

eterization p. The Lagrangian L = T − U is the difference between the kinetic and the

potential energy. Minimizing equation (72) using the Lagrangian

L =

(
1

2
µ‖Ct‖2 − g

)
‖Cp‖,

where g > 0 is a potential function (with the desired location of the curve forming a potential

well) yields

µCtt +
∂

∂s

((
1

2
µ‖Ct‖2 − g

)
Cs
)

+ µ (T · Cts) Ct +∇g = 0. (73)

which is intrinsic. Here N is the outward pointing unit normal, and T = ∂C
∂s the unit

tangent vector to the curve. κ = Css · N denotes curvature and s is arclength [38, 104].

Assume the curve C gets perturbed by εV yielding the curve

Cp = C + εV.
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The action integral (72) then becomes

L(C + εV) =

∫ t1

t=t0

∫ 1

p=0

(
1

2
µ‖Ct + εVt‖2 − g(C + εV)

)
‖Cp + εVp‖ dp dt.

Computing the Gâteaux-Variation by taking the derivative with respect to ε for ε = 0 yields:

δL(C;V) =
∂L
∂ε
|ε=0 =
∫ t1

t=t0

∫ 1

p=0
(µCt · Vt −∇g · V) ‖Cp‖+

(
1

2
µ‖Ct‖2 − g

)
1

‖Cp‖
Cp · Vp dp dt.

Assuming µ to be constant integration by parts results in

δL(C;V) =

∫ t1

t=t0

∫ 1

p=0
− ∂

∂p

((
1

2
µ‖Ct‖2 − g

)
T
)
· V 1

‖Cp‖
‖Cp‖−

−∇g · V‖Cp‖ −
∂

∂t
(‖Cp‖µCt) · V

1

‖Cp‖
‖Cp‖ dp dt. (74)

The boundary terms occurring from the integrations by parts drop out since the curves are

closed. Then (since (74) has to be fulfilled for any V)

∂

∂s

((
1

2
µ‖Ct‖2 − g

)
T
)

+∇g +
∂

∂t
(‖Cp‖µCt)

1

‖Cp‖
= 0, (75)

where we made use of the fact that

∂

∂s
=

1

‖Cp‖
∂

∂p
.

To simplify Equation (75) the following correspondences are useful:

Cpt = Ctp,
1

‖Cp‖
∂

∂t
‖Cp‖ =

1

2‖Cp‖2
2Cp · Cpt =

Cp
‖Cp‖2

· Ctp = Cs · Cts = T · Cts,

∂

∂s
T = κN ,

∂

∂s
‖Ct‖2 = =

1

‖Cp‖
∂

∂p

(
‖Ct‖2

)
=

1

‖Cp‖
2Ct · Ctp = 2Ct · Cts,

∂

∂s
g = ∇g · T ,

∂

∂t
Ct = Ctt.

Specifically it follows that

∂

∂s

(
1

2
µ‖Ct‖2 − g

)
= µCt · Cts −∇g · T ,

1

‖Cp‖
∂

∂t
(‖Cp‖µCt) = µCtt + µ (T · Cts) Ct.
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Plugging everything in (75) yields

µCtt +

(
1

2
µ‖Ct‖2 − g

)
κN +

∂

∂s

(
1

2
µ‖Ct‖2 − g

)
T + µ (T · Cts) Ct +∇g = 0, (76)

which is Equation (73). Expanding ∂
∂s

(
1
2µ‖Ct‖2 − g

)
, Equation (76) can be written as

µCtt = −
(

1

2
µ‖Ct‖2 − g

)
κN − (∇g · N )N − µ (T · Cts) Ct − µ (Ct · Cts) T . (77)

A.2 Area Based Dynamic Curve Evolution

We need to find the first variation of

S =

∫

R
I dA.

From the divergence theorem follows that

∫

C
F ·N ds =

∫

R
∇ · F dx dy =

∫

R
f dx dy,

where N = −N is the unit outward normal, F is a vector field and R is the interior of the

curve C. Assume the energy to minimize is

E(C) =

∫

C
F ·N ds.

We know that

E(C) =

∫ 1

0
F ·N‖Cp‖ dp =

∫ 1

0
F · JCp dp,

where we made use of the fact that

N = JT =




0 1

−1 0



Cp
‖Cp‖

.

Perturbing the curve C by εV yields

E(C + εV) =

∫ 1

0
F (C + εV) · J(Cp + εVp) dp.

Then the first variation is

δE =
∂E

∂ε


ε=0

.
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We obtain

δE =

∫ 1

0
∇FVJCp + FJVp dp

=

∫ 1

0
∇FVJCp −

(
∂

∂p
(F TJ)

)
V dp

=

∫ 1

0
CTp
(
JT∇F − (∇F )TJ

)
V dp.

Define

φJ := JT∇F − (∇F )TJ, (78)

then

δE =

∫ 1

0
(φJT )TV‖Cp‖ dp

=

∫

C
< φN ,V > ds.

By setting

F =



F x

F y


 ,

we obtain after substitution into Equation (78)

φJ = −(F xx + F yy )J = −∇ · FJ,

and thus

φ = −∇ · F .

Then it follows that

δE =

∫

C
< −fN ,V > ds =

∫

C
< fN ,V > ds, (79)

where N is as usual the unit inward normal.

Define

ga(u,w) = −1

2
(u− w)2 ,

where u = Su/Au and w = Sw/Aw, where

Su =

∫

Ru
I dA Au =

∫

Ru
dA

Sw =

∫

Rw
I dA Aw=

∫

Rw
dA,

118



and Ru and Rw denote the domains inside and outside the curve respectively. The gradients

(using Equation (79)) evaluate to

∇Su = IN ∇Au = N

∇Sv = −IN ∇Av = −N .

With this follows

∇u =
Au∇Su − Su∇Au

A2
u

=
AuI − Su

A2
u

N =
I − u
Au
N ,

and

∇w = −I − w
Aw

N .

Thus

∇ga = (u− w)

(
I − u
Au

+
I − w
Aw

)
.

A.3 Normal Geometric Dynamic Curve Evolution

The action functional is

S =

∫ ∫ (
1

2
‖Ct‖2 − g

)
ds dt

=

∫ ∫ (
1

2
‖Ct‖2 − g

)
‖Cp‖ dp dt.

Computing the first variation results in

δS =

∫ ∫ {
Ct · δCt‖Cp‖ − ∇g · δC‖Cp‖+

(
1

2
‖Ct‖2 − g

) CpδCp
‖Cp‖2

‖Cp‖
}
dp dt

=

∫ ∫ {
Ct · δCt‖Cp‖ − ∇g · δC‖Cp‖+

(
1

2
‖Ct‖2 − g

)
T · δCs‖Cp‖

}
dp dt

=

∫ ∫ {−1

Cp
(‖Cp‖Ct)t −∇g −

((
1

2
‖Ct‖2 − g

)
T
)

s

}
· δC ds dt,

using integration by parts. This gives the Euler-Lagrange equation:

1

Cp
(‖Cp‖Ct)t +∇g +

((
1

2
‖Ct‖2 − g

)
T
)

s

= 0.

Expanding the derivatives yields

Ctt +
1

‖Cp‖
Cp · Ctp
‖Cp‖

+∇g + (Ct · Cts)T − (T ∇g)T +

(
1

2
‖Ct‖2 − g

)
κN = 0.
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Using

Cs = T , and ∇g − (T · ∇g)T = (N · ∇g)N

one obtains

Ctt + (T · Cts)Ct + (Ct · Cts)T + (N · ∇g)N +

(
1

2
‖Ct‖2 − g

)
κN = 0.

One can always choose the parameterization of C so that

Ct = βN .

Then

Cts = (βN )s = βsN − κβT

Ctt = (βN )t = βtN − ββsT ,

(since Nt = −βsT ). Thus

βtN − ββsT + (−κβ)βN + ββsT + (N∇g)N +

(
1

2
β2 − g

)
κN = 0,

and finally,

βt −
(
g +

1

2
β2

)
κ+N∇g = 0.
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APPENDIX B

NUMERICAL METHODS

This appendix briefly discusses some of the numerical methods used for the implementa-

tion of the normal geometric dynamic active contour using the partial and the full level

set methods. The numerical methods for the classical level set method are well developed.

For details we refer the interested reader to [115, 104] and for more numerical background

information to the excellent books by LeVeque on numerical methods for hyperbolic prob-

lems [83, 84]. Since we are interested in the dynamics of our equations and not only the

steady state solution (as is for example usually the case for level set based segmentation

algorithms for static images) higher order numerical methods become potentially very use-

ful. However, this is beyond the scope of this thesis. We restrict ourselves (also for the sake

of presentational simplicity) to the most basic numerical algorithms and only care about

consistency and stability at this point. Section B.1 introduces some notation and opera-

tors. Section B.2 discusses the numerics for the partial level set approach. As an interlude,

Section B.4 addresses the extension of quantities and Section B.5 the redistancing of a level

set function. Finally, Section B.6 gives some background on the numerics for the vector

distance function based full level set approach.

B.1 Numerical Operators

We define the first order discrete differentiation operators as

D−eiF (x) :=
F (x)− F (x− ei)

∆ei
,

D+
eiF (x) :=

F (x+ ei)− F (x)

∆ei
,

Dc
eiF (x) :=

F (x+ ei)− F (x− ei)
2∆ei

,
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and the second order central derivative operators as

Dc
eieiF (x) :=

F (x+ ei)− 2F (x) + F (x− ei)
(∆ei)

2 ,

Dc
eiejF (x) :=

F (x+ ei + ej) + F (x− ei − ej)
4∆ei∆ej

−

−F (x+ ei − ej) + F (x− ei + ej)

4∆ei∆ej
for i 6= j,

where ·−, ·+, ·c denote the backward, forward and central differences respectively. The

direction of differentiation is given by ei (which correspond to the coordinate directions of

the discrete grid), the discretization step size in direction ei is ∆ei, and F : Rd 7→ R.

B.2 Numerics for the Partial Level Set Approach

The velocity evolves as

βt = ∇ ·
( ∇Φ

‖∇Φ‖

(
g

µ
+

1

2
β2

))
,

which simplifies, since we extend β normal to the curve,to

βt = ∇ ·
( ∇Φ

‖∇Φ‖
g

µ

)
+

1

2
β2κ, (80)

where

κ =
Φ2
xΦyy − 2ΦxΦyΦxy + Φ2

yΦxx

Φ2
x + Φ2

y

is the curvature. Based on this velocity the level sets of the curve move as

Φt − β‖∇Φ‖ = 0. (81)

Equations (80) and (81) need to get solved simultaneously. We propose the following algo-

rithm:

(1) Compute one time step of Equation (80).

(2) Extend β away from the zero level set of Φ.

(3) Propagate the level set function Φ according to Equation (81) based on the velocities

computed in step 2.

(4) Go to step 1.
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Section B.4 discusses the extension of β. The solution method breaks the dependency

between Equations (80) and (81) by computing a solution to β keeping Φ fixed and vice

versa. Equation (80) is then an ordinary differential equation in β.

Let’s define

c := ∇ ·
( ∇Φ

‖∇Φ‖
g

µ

)
, d :=

1

2
κ.

Then Equation (80) can be rewritten as

βt = dβ2 + c. (82)

Equation (82) can be solved analytically. Separation of variables yields (for dc 6= 0)

∫ β

β0

1

dβ
2

+ c
dβ =

∫ t

t0

dt.

The solution is then

β(t) =





β0 for cd = 0 ∨ β2 = − c
d ,

β0

1 + β0d(t0 − t)
for c = 0,

β0 + c(t− t0) for d = 0,

√
c

d
tan

(
arctan

β0√
c
d

+ d(t− t0)

)
for cd > 0,

−
√
− c
d

√
− c
d − β0 + e2d(t0−t) (√− c

d + β0

)
√
− c
d − β0 − e2d(t0−t)

(√
− c
d + β0

) for cd < 0 ∧ |β| <
√
− c
d ,

−
√
− c
d

β0 −
√
− c
d + e2d(t0−t) (√− c

d + β0

)

β0 −
√
− c
d − e2d(t0−t)

(√
− c
d + β0

) for cd < 0 ∧ |β| >
√
− c
d .

For c = 0, β(t) blows up in finite time,

t = t0 +
1

β0d
= t0 +

2

β0κ
,

if β0 < 0 ∧ d < 0 ∨ β0 > 0 ∧ d > 0. In practical applications this will only be the case in

pathological situations (e.g., if g ≡ 0), since

c = 0 ⇐⇒ κg +
∇Φ

‖∇Φ‖ · ∇g = 0.
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Of concern are also the cases for cd < 0. If cd < 0 ∧ |β| <
√
− c
d :

dβ2 + c < 0 for β < 0 ∧ d > 0 evolves to β = −
√
− c
d
,

dβ2 + c > 0 for β < 0 ∧ d < 0 evolves to β =

√
− c
d

dβ2 + c < 0 for β > 0 ∧ d > 0 evolves to β = −
√
− c
d
,

dβ2 + c > 0 for β > 0 ∧ d < 0 evolves to β =

√
− c
d
.

This is well defined. If cd < 0 ∧ |β| >
√
− c
d :

dβ2 + c < 0 for β > 0 ∧ d < 0 evolves to β =

√
− c
d
,

dβ2 + c > 0 for β > 0 ∧ d > 0 evolves to β →∞,

dβ2 + c < 0 for β < 0 ∧ d < 0 evolves to β → −∞,

dβ2 + c > 0 for β < 0 ∧ d > 0 evolves to β = −
√
− c
d
.

Here, the normal velocity blows up if β > 0∧ d > 0∨β < 0∧ d < 0. It is important to keep

in mind that overall an equation system gets evolved and not only the evolution equation

for β, but then

cd =
1

2
κ2g +

1

2
κ
∇Φ

‖∇Φ‖ · ∇g,

will ultimately change sign if g is designed properly. These two cases should thus be of no

relevance in real life applications. However, it is easy to design cases where this behavior can

be observed (e.g., a circle collapsing under its own curvature influence or a circle blowing

up to an infinite radius). The straightforward approach to solve for β for one time step is to

use an ordinary differential equation solver, e.g., an Euler forward approach in the simplest

possible case. Alternatively, the analytical solution (as shown above) of Equation (82) gives

the solution for β for a given time step. However, since the solution to Equation (82) may

exhibit finite-time blowup behavior it is advisable to use a numerical scheme like Euler

forward for its solution. This will lead to conservative estimates of β in pathological cases.

Section B.3 gives one possible solution method for Equation (81) given an updated value

for β.
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B.3 Numerical Implementation of a Generic Level Set Evo-
lution Equation

Consider the evolution of closed curves of the form C : S1× [0, τ) 7→ R2 in the plane. Where

C = C(p, t) and C(0, t) = C(1, t) [128, 76], with t being the time, and p ∈ [0, 1] the curve’s

parameterization. The most general curve evolution equation is

Ct = xt, (83)

where xt is the velocity associated with any point on the curve. The associated level set

equation is

Φt + xt · ∇Φ = 0.

The velocity vector xt decomposes into

xt = V −∇g + a
∇Φ

‖∇Φ‖ − bκ
∇Φ

‖∇Φ‖ ,

where g is a smooth function on Ω (the domain of interest), a and b are (possibly non-

smooth) functions on Ω, κ denotes curvature and V = [u, v]T is an external vector field.

The term

T1 = −bκ ∇Φ

‖∇Φ‖

can be approximated by central differences. The same is true for ∇g, since g is smooth.

This amounts to

κ =
(Dc

xΦ)2Dc
yyΦ− 2Dc

xΦDc
yΦD

c
xyΦ + (Dc

yΦ)2Dc
xxΦ

(Dc
xΦ)2 + (Dc

yΦ)2
, where

Φx = Dc
xΦ,

Φy = Dc
yΦ, and

gx = Dc
xg,

gy = Dc
yg.

Having discretized ∇g, define

v := V −∇g =



v1

v2


 .
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It remains then to discretize

T2 = v + a
∇Φ

‖∇Φ‖ ,

which is more complicated to handle than T1, since it is not immediately clear how to

discretize the derivatives of Φ in this case. The solution to the linear advection equation

ut + aux = 0,

is its initial data propagating to the right (the left) for a > 0 (for a < 0) [83]. T2 is then

the speed vector of a multi-dimensional advection (transport) equation. One of the sim-

plest ways for this solution of problem is Godunov’s method (in our case with dimensional

splitting; see [83, 84] for details). The idea of Godunov’s method is to propagate based

on cell averages and then to reaverage the result. This results automatically in an upwind

structure of the resulting numerical scheme. Figure 37 shows this for a simple one dimen-

sional example. Assuming a > 0 the solution gets propagated by ∆s = a∆t during the time

increment ∆t, but then reaveraging the cell i at time instant n yields

∆xun+1
i = uni (∆x−∆s) + ∆suni−1,

which can be rewritten as

un+1
i = uni −∆ta

uni − uni−1

∆x
.

This corresponds to a forward Euler scheme with upwind differencing for the spatial deriva-

tive. The literature on numerical methods for these types of equations is extensive. See [137]

for a higher order extension of the Godunov scheme and [81] for central schemes for exam-

ple. Since T2 depends on the derivatives of Φ, the numerical scheme needs to be adapted

slightly. In particular, it needs to be able to handle shocks and rarefactions. The follow-

ing presentation follows [104]. Assuming Φ is (at least approximately) a signed distance

function

T2 =



H1

H2


 = v + a∇Φ =



v1 + aΦx

v2 + aΦy


 .
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Figure 37: The piecewise constant Godunov scheme applied to a transport equation.

Then, the x and y components of T2 are decoupled. This allows for the independent

discretization of the x and y components of T2
1. Discretizing the x component as

H1 > 0 for D+
x Φ and D−x Φ =⇒ use Φx = D−x Φ

H1 < 0 for D+
x Φ and D−x Φ =⇒ use Φx = D+

x Φ

H1 < 0 for D−x Φ and H1 > 0 forD+
x Φ =⇒ rarefaction, use Φx = −v1

a

H1 > 0 for D−x Φ and H1 < 0 forD+
x Φ =⇒ shock

Φx =





D−x Φ if |H1(D−x Φ)| > |H1(D+
x Φ)|

D+
x Φ otherwise

,

1Maintaining the coupling would complicate the numerical scheme significantly.
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and the y component as

H2 > 0 for D+
y Φ and D−y Φ =⇒ use Φy = D−y Φ

H2 < 0 for D+
y Φ and D−y Φ =⇒ use Φy = D+

y Φ

H2 < 0 for D−y Φ and H2 > 0 for D+
y Φ =⇒ rarefaction, use Φy = −v2

a

H2 > 0 for D−y Φ and H2 < 0 for D+
y Φ =⇒ shock

Φx =





D−y Φ if |H2(D−y Φ)| > |H2(D+
y Φ)|

D+
y Φ otherwise

,

describes the numerical scheme. The time derivative is approximated by forward Euler.

Stability of the numerical scheme needs to be guaranteed by a sensible time step governed

by the Courant-Friedrichs-Lewy (CFL) condition. The computed velocities now need to

be extended to all of Ω. The solution method for Equation (81) follows immediately as a

special case for

V = ∇g = 0, a = −β, b = 0.

The overall scheme is in this case (using the Euler forward method for time discretization)

Φn+1[i, j] = Φn[i, j]−∆t
(
max(−β[i, j], 0)∇+ + min(−β[i, j], 0)∇−

)

where

∇+ =
(
max(max(D−x Φ, 0)2,min(D+

x Φ, 0)2) + max(max(D−y Φ, 0)2,min(D+
y Φ, 0)2)

) 1
2

∇− =
(
max(min(D−x Φ, 0)2,max(D+

x Φ, 0)2) + max(min(D−y Φ, 0)2,max(D+
y Φ, 0)2)

) 1
2 .

B.4 Extending Quantities

The proposed algorithm of Section B.2 requires the extension of β away from the zero

level set of Φ. Two possible approaches are extension methods based on the fast marching

algorithm [115] and extension methods based on the iterative solution of a partial differential

equation [104]. The former is essentially an iteration-free method to obtain the solution of

the partial differential equation solved iteratively in the iterative approaches. Even though

an iteration-free (by construction) methodology, like the fast-marching approach, is very
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efficient, this section will exclusively focus on iterative methods. These have the advantage

of extending easily to higher-dimensional problems and they facilitate the use of higher

order numerical schemes, to obtain high order accurate solutions.

The solution of the partial differential equation

st + sign(Φ)
∇Φ

‖∇Φ‖ · ∇s = 0

extends the scalar quantity s away from the zero level set of Φ [104]. The discretization

follows from the scheme presented in Section B.3. In particular,

V = sign(Φ)
∇Φ

‖∇Φ‖ , ∇g = 0, a = b = 0,

where the derivatives of Φ are computed using central differences. The extension of β is

then straightforward.

B.5 Redistancing

As discussed in Section 5.2 the redistancing of vector distance functions is nontrivial. This

section describes the redistancing of signed distance functions only. However, this is identical

to redistancing an unsigned distance function (and thus also a vector distance function) if

the redistancing is not performed in the vicinity of the zero level set.

The solution of the partial differential equation [125]

Φt + S(Φ0)
∇Φ

‖∇Φ‖ · ∇Φ = S(Φ0) (84)

redistances the signed distance function Φ, where Φ0 is the initial condition of Φ and

S(Φ0(x)) =
Φ0(x)√

Φ0(x)2 + ε2
,

with ε ∈ R small. The discretization method of Section B.3 applies with

V = ∇g = 0, a = S(Φ0), b = 0

to the left hand side of Equation (84).
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B.6 Numerics for the Vector Distance Function Based Full
Level Set Approach

The overall scheme for the full level set approach is described in Sections 5.2 and 5.4. The

quantities needed to compute the current velocities (see Section 5.4.1) are all discretized

using central differences. The redistancing scheme of Section B.5 facilitates the redistancing

away from the zero level set of u. The same is true for the velocity extensions, where

the velocities are all extended component by component in accordance with the scheme

presented in Section B.4. What remains is the discretization of

ut − (Du)T b = 0.

Since Du is symmetric, this is equivalent to the component-wise form

uit − b · ∇ui = 0, 1 ≤ i ≤ n, i ∈ N,

but with

V = −b, ∇g = 0, a = b = 0,

the scheme of Section B.3 applies.
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tions. PhD thesis, Linköping University, 1999.

[11] Bertalmio, M., Sapiro, G., and Randall, G., “Region tracking on level-sets
methods,” IEEE Transactions on Medical Imaging, vol. 18, no. 5, pp. 448–451, 1999.

[12] Bertrand, G., “A Boolean characterization of three-dimensional simple points,”
Pattern Recognition Letters, vol. 17, pp. 115–124, 1996.

[13] Bethuel, F. and Ghidaglia, J.-M., Geometry in Partial Differential Equations,
ch. 1, pp. 1–17. World Scientific Publishing Co., 1994.

[14] Beymer, D., McLauchlan, P., Coifman, B., and Malik, J., “A real-time com-
puter vision system for measuring traffic parameters,” in Proceedings of the Conference
on Computer Vision and Pattern Recognition, pp. 495–501, IEEE, 1997.

131



[15] Bhanu, B., Dudgeon, D. E., Zelnio, E. G., Rosenfeld, A., Casasent, D.,
and Reed, I. S., “Introduction to the special issue on automatic target detection and
recognition,” IEEE Transactions on Image Processing, vol. 6, no. 1, pp. 1–6, 1997.

[16] Blake, A., Curwen, R., and Zisserman, A., “A framework for spatio-temporal
control in the tracking of visual contours,” International Journal of Computer Vision,
vol. 11, no. 2, pp. 127–145, 1993.

[17] Blake, A. and Isard, M., Active Contours. Springer Verlag, 1998.

[18] Blake, A., Isard, M., and Reynard, D., “Learning to track the visual motion of
contours,” Artificial Intelligence, vol. 78, pp. 101–134, 1995.

[19] Blake, A. and Yuille, A., eds., Active Vision. MIT Press, 1992.

[20] Burchard, P., Cheng, L., Merriman, B., and Osher, S., “Motion of curves
in three spatial dimensions using a level set approach,” Journal of Computational
Physics, vol. 170, pp. 720–741, 2001.

[21] Caselles, V., Catte, F., Coll, T., and Dibos, F., “A geometric model for active
contours in image processing,” Numerische Mathematik, vol. 66, pp. 1–31, 1993.

[22] Caselles, V., Kimmel, R., and Sapiro, G., “Geodesic active contours,” Interna-
tional Journal of Computer Vision, vol. 22, no. 1, pp. 61–79, 1997.

[23] Chen, Y., Tagare, H. D., Thiruvenkadam, S., Huang, F., Wilson, D.,
Gopinath, K. S., Briggs, R. W., and Geiser, E. A., “Using prior shapes in
geometric active contours in a variational framework,” International Journal of Com-
puter Vision, vol. 50, no. 3, pp. 315–328, 2002.

[24] Chen, Y., Thiruvenkadam, S., Tagare, H. D., Huang, F., Wilson, D., and
Geiser, E. A., “On the incorporation of shape priors into geometric active contours,”
in Proceedings of the Conference on Variational and Level Set Methods in Computer
Vision, pp. 145–152, IEEE, 2001.

[25] Cootes, T. F., Edwards, G. J., and Taylor, C. J., “Active appearance models,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6,
pp. 681–685, 2001.

[26] Cootes, T. F. and Taylor, C. J., “Statistical models of appearance for medical
image analysis and computer vision,” in Proceedings of the Conference on Medical
Imaging, vol. 4322, pp. 236–248, SPIE, 2001.

[27] Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J., “Active shape
models – their training and application,” Computer Vision and Image Understanding,
vol. 61, no. 1, pp. 38–59, 1995.

[28] Corke, P., Visual Servoing, vol. 7 of Robotics and Automated Systems, ch. Visual
control of robotic manipulators – a review, pp. 1–31. World Scientific, 1993.

[29] Courant, R. and Hilbert, D., Methods of Mathematical Physics, vol. 2. Wiley,
1989.

132



[30] Cox, I. J., “A review of statistical data association techniques for motion correspon-
dence,” International Journal of Computer Vision, vol. 10, no. 1, pp. 53–66, 1993.

[31] Crandall, M. G., Ishii, H., and Lions, P.-L., “User’s guide to viscosity solutions
of second order partial differential equations,” Bulletin of the American Mathematical
Society, vol. 27, no. 1, pp. 1–67, 1992.
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