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Annual Progress Report for NASA Grant NAGW-3117 
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Date: April 12, 1993 

Progress Report: 

This report will be divided into 4 categories to document progress 
that has been made in 1) modern sediment studies, 2) stable isotope 
studies, 3) ancient sediment studies, and 4) a brief description of 
future plans. 

1) Modern sediment studies 

My emphasis on modern sediment studies has been to understand 
the circumstances leading to organic carbon preservation, and the 
importance of Fe and Mn oxide reduction in sedimentary organic 
carbon oxidation. Since the preservation of organic carbon in 
sediments allows for the input of 02 to the atmosphere, to 
understand the evolution of atmospheric Oz, it is paramount to 
understand under what circumstances organic carbon is preserved. I 
have compiled a data set quantifying organic carbon preservation in 
a variety of different sedimentary environments (Fig. 1 ). Part of my 
research has been directed at modeling this data to understand how 
various factors including the availabillity of oxidants, sedimentation 
rate, and the presence of bioturbation, controls preservation. This 
model contains new elements with respect to how organic carbon 
oxidation is controlled, and was presented at the annual GSA meeting 



last fall. It will soon be submitted to Marine Chemistry for inclusion 
in a special volume on organic carbon preservation. 

0 Normal marine 
e Euxlnlc 

I) low02BW 

Fig. 1 % organic carbon preservation as a function of sediment deposition rate. 
Included are normal marine sediments, ewdnic sediments, and low ~ 
sediments from the California borderlaJt\d. basins. 

In an early Proterozoic ocean, before sulfate reduction was a major 
process (we ass~me), organic matter •oxidation by metal oxide 
reduction may have been quite significant, mainly because these 
oxides should have been abundant at this time {as evidence by 
massive Banded Iron Formation deposition). Adding weight to this 
possibility is our discovery that metal oxide reduction Is very 
imponant in modem sediments· (Fig. 2), even with competition by 
sulfate reducing organisms. A mathernatical model is being 
developed to explore how much carbon may be oxidized by metal 
oxide reduction in Proterozoic-like conditions; namely, in the absence 
of oxic respiration, sulfate reduction. and bioturbation. This work has 
resulted in two papers which are now in press. 
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Fig. 2. Rates of carbon oxidation by vari()US pathways in 3 sediments from 
coastal Denmark. The area above the dashed line represents the sum of carbon 
oxidation by ~ respiration and denitrificsltion. Hatched area represents 
carbon oxidation by metal oxide reductic)n. (Fe reduction and Mn reduction. 

2) Stable isotope studies 

I have just completed my sulfur extraction Une and anticipate that I 
will obtain isotopic values \\·ithin the 'next month. This will not be too 
soon as there are several projects which have been completed except 
for isotopic analysis. One project is a study of sulfate reduction and 
sulfur Isotopic fractionation in stromatolites from Walker Lake, 
Nevada. I have determined that sulfate reduction Is active within the 
stromatolite and is retained as pyrit4~. If the sulfur bound in pyrite is 
isotopically fractionated, then stromatolites may prove to be an 
imponant environment by which to trace the evolution of sulfate 
reduction. In another study I have collected both sulfate and sulfide 
from an newly discovered elemental sulfur disproportionating 
organism. If isotopic fractionation is observed during the 
dlsproportlonatton, this may go far i:n explaining the large sulfur 

300 



isotopic fractionation found in modern sediments. Samples have also 
been collected to explore isotopic fractionation in microbial mats. 

3) Ancient Sediments 

I have, with my student Richard jakiel, traveled to the 2.5 bybp Mt 
McRae shale in Newman Western Australia. We were able to collect 
core material of the shale, which has very pyritiferous sections. 
Together with Doug Crowe at University of Georgia, we will explore 
fine-scale sulfur isotopic composition with a laser/mass spec. This 
will allow us to see if different generations of pyrite have obviously 
different isotopic compositions. We hope to distinguish possible 
sulfate reduction sulfur from other sources including assimilatory 
sulfur. This work is in progress and publishable results are 
anticipated within the next year. 

4) Upcoming projects 

In addition to work in progress as discussed above, in the next year 
we will make an additional trip to the McArther Basin in Northern 
Australia. The sediment was depositE~d here about 1. 7 bybp and will 
allow to "step forward in time" in our look for the evolution of sulfate 
reduction, and the effects of this evolution on ocean chemistry. In 
another project I will explore the isotopic fractionation of sulfate in 
thermophylic sulfate reducing bact~eria. This should prove 
informative as many believe the Archean and early Proterozoic 
oceans to have been much wanner than today. 
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Progress Report: 

This report will be divided into 4 categories to document progress 
that has been made in 1) tnodern sediment studies, 2) stable isotope 
studies, 3) ancient sediment studies, and 4) a brief description of 
future plans. 

1) Modern sediment studies 

My emphasis on modern sediment studies has been to understand 
the circumstances leading to organic carbon preservation, and the 
importance of Fe and Mn oxide reduction in sedimentary organic 
carbon oxidation. Since the preservation of organic carbon in 
sediments allows for the input of 02 to the atmosphere, to 
understand the evolution of atmospheric 02, it is paramount to 
understand under what circumstances organic carbon is preserved. 
This subject has also been the topic of considerable debate. I have 
recently completely a thorough literature review and modelling 
study which quantifies the preservation of carbon under various 
circumstances of sediment deposition (Canfield, Marine Geology, in 
press). Of special interest is the observation that bottom water anoxia 
does not in all cases lead to the enhanced preservation of carbon, as 
has often been thought. It is only in slowly depositing sediments that 
the less effecient anaerobic decomposition of carbon leads to 



enhanced preservation. This situation is explored in a new model for 
carbon preservation. This model is further unique in that 
cometabolism of "refractory" organics by active microbial populations 
has been considered. Cometabolisrr.t tnay dramatically influence the 
preservation of the refractory organics, and has never before been 
considered as an influence on seditnentary carbon preservation. 

In an early Proterozoic ocean, before sulfate reduction was a major 
process (we assume), organic matter oxidation by metal oxide 
reduction may have been quite significant, mainly because these 
oxides should have been abundant at this time (as evidence by 
massive Banded Iron Formation deposition). Adding weight to this 
possibility is our discovery that metal oxide reduction is very 
important in modern sediments, even with competition by sulfate 
reducing organisms. This work has resulted in two papers (Canfield 
et al. 1993 a,b). As a continuation of this project sediments from 
Costa Rica and the coast of Chile have been sampled this winter. 
These sediments are interesting because they span a wide range of 
bottom water Oz values; in some way:s analogous to the changing 
ocean chemistry through the Proterozoic. Also, a mathematical model 
is being developed to explore the significance of various carbon 
oxidation pathways under Proterozoic-like conditions; namely, with 
progrssively increasing amounts of sulfate reduction, Oz respiration 
and finally, bioturbation. 

2) Stable isotope studies 

Major progress has been made in this area over the past year. The 
isotope extraction line is up and running, with several significant 
results. First, in cooperation with Bo Thamdrup at the Max-Planck 
Institute fr Marine Microbiology in Bremen, Germany, we have 
isolated and identified a marine seditnentary bacteria which 
disproportionates S0 to sulfate and sulfide. The organism also 
fractionates sulfur during the process such that sulfate is 20o/oo 
heavier than the initial S0 , and sulfide is lOo/oo lighter. This is 
extremely significant because 90% of all sulfide formed in sediments 



by sulfate reduction is oxidized to S0 , and subsquently 
disproportioanted. This processes explains the large 60o/oo 
fractionations between sulfate and sulfide commonly observed in 
marine sediments, as sulfate reducing bacteria alone can only 
account for about 20-2So/oo of the fractionation. The important 
implications are: 1) we can now explain the isotopic composition of 
sulfides in modem sediments, and importantly: 2) disproportionation 
requires an oxidative sulfur cycle, vvhich requires Oz. Hence, the 
oxygenation of surface ocean waters to near present-day levels 
should be obvious in the emergence of light, modern day-like sulfur 
isotopic values. The disproportionation work is currenty being 
written for submission to Science n1agazine. Further laboratory work 
on isotopic discrimination during other sulfur oxidation pathways 
(thiosulfate and sulfite diproportionation, for example) is underway. 
A full accounting of the isotopic composition of sulfides in modern 
microbial mats and stromatolites, as homologs to ancient 
sedimentary systems, is also underway. 

3) Ancient Sediments 

We have collected samples from the 2.5 bybp Mt McRae shale in 
Newman, Western Australia. We were able to collect core material of 
the shale, which has very pyritiferous sections. Careful petrographic 
observation shows that much post depositional fluid flow has occured 
in the core, as is true for many (if not most) early Proterozoic 
sediments. We are characterizting the nature of the fluid flow 
together with sulfur isotopic implication of the flow. However, we can 
be certain that the only source for sulfur within the shale was either 
sulfate reduction or the liberation du1ring thermal maturation of 
organic sulfur cpmpounds. We should, with the help of element 
analysis of the shale, be able to distinguish between these two 
possibilities, and to offer a reasonable estimate of sulfate reduction 
rates during the deposition of the shale. This will be an important 
constraint on the timing of the emergence of significant sulfate 
reduction during the Proterozoic. This work is in progress and 
publishable results are anticipated within the next year. 



4) Upcoming projects 

In addition to the work discussed above, in the next year we will 
make an additional trip to the McArther Basin in Northern Australia. 
The sediment was deposited about 1. 7 bybp and will allow us to 
"step forward in time" in our look for the evolution of sulfate 

reduction, and the effects of this evolution on ocean chemistry. I 
have also been in contact with Andy Knoll at Harvard, who has made 
available to me his excellent collection of the Mesoproterozoic 
Amadeus basin, also in Australia. I am also beginning a systemic 
literature and san1ple collecting program to look for the beginnings of 
"modern" sedimentary sulfide values, and the emergence of the 
oxidative sulfur cycle as outlined above. In another project I will 
explore the isotopic fractionation of sulfate in thermophylic sulfate 
reducing bacteria. This should prove informative as many believe the 
Archean and early Proterozoic oceans to have been much warmer 
than today. 
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f~ational: 

The sediment geochemical record is rich with indicators of 
environmental change over the course of Earth history. The challenge 
in understanding this record is first to collect information that has 
been minimally affected by post depositional processes, and second, 
to learn to faithfully interpret the information. This research has 
focused primarily on the interpretation of the ancient sulfur 
isotopic record as it pertains to the~ E!volution of the sulfur cycle on 
Earth. The modern oceans are rich in dissolved sulfate, and sulfate 
reduction is a major process of sedirnentary carbon oxidation. The 
accumulation of sulfate in ancient oceans was a major milestone in 
the evolution of the Earth surface environment. This is because 
sulfate is the largest reservoir of oxidized species on the Earth 
surface, and the significant accumulation of sulfate in seawater 
signalled the beginnings of modern-style carbon cycling. 

The sulfide produced during sulfate reduction is depleted in the 
isotope 34S, compared to the startin~;} sulfate. This phenomena 
creates the basis for interpreting the ancient sulfur record. 



However, the range in possible fractionations during sulfate 
reduction, and environmental controls on the fractionation, is poorly 
known. Also, the complete suite of factors other than sulfate 
reduction by which modem sediments acquire their sulfur isotopic 
signature is not known. This is demonstrated by noting that pure 
cultures of sulfate reducing bacteria cannot produce the isotopic 
composition of sulfide in modern marine sediments (Fig. 1 ). Our 
goals have been: 1) to understand the controls on the isotopic 
composition of sulfide in modern marine sediments, and to apply 
this understanding to ancient sedirnents; 2) to better define the 
history of sedimentary sulfur, allowing us to better understand how 
this history speaks to environmental change; 3) to explore case­
studies of sediment diagenesis in ancient sediments to compliment 
the isotopic record. We have rnade significant progress in all of 
these areas. 
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Fig 1. Isotopic fractionation during sulfate reduction for pure cultures of sulfate 
reducing bacteria (open bars), compared to isotopic composition of sulfide in marine 
sediments (Closed bars). 



Modem Sediment studies: 

To explore the dilernma posed in IFi!~· 1, we have explored the 
isotopic consequences of the oxidative part of the sedimentary S­
cycle. Our interest in this part of the S-cycle is spurred by the fact 
that most of the sulfide produced by sulfate reduction in sediments 
is reoxidized and lost from the sediment. We have first documented 
that elemental sulfur is an important intermediate in sulfide 
oxidation, and that the rnost likely fate of elemental sulfur is 
disproportionation (Eqn. 1; Canfield and Thamdrup, in press). 

1) 

We have documented that elemental sulfur disproportionation is an 
autotrophic, bacterial process, conducted by a range of 
microorganisms. We are presently e!xploring the diversity of this 
bacterial population. Further, we have discovered that accompanying 
the disproportionation, there is an isotopic fractionation such that 
the sulfide is isotopically depleted in 34S, and the sulfate is 
isotopically enriched in 34S compare~d to the elemental sulfur (Fig. 
2). Hence, with continuE~d cycles of sulfide oxidation to elemental 
sulfur, and disproportionation, we can generate the isotopically 
light (34S-depleted) sulfides in Fig. 1. 
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Fig. 2. The isotopic composition of sulfur species are shown in duplicate time course 
experiments on elemental sulfur-amended sediment undergoing active elemental sulfur 
disproportion a tion. 



This is a major finding as it allows us for the first time to 
understand the isotopic composition of marine sedimentary sulfides, 
and provides an important basis for interpreting the sulfur isotope 
record through the Cambrian-Precan1brian boundary (see below). 
These findings have been summarized in Canfield and Thamdrup 
(1994). 

Previous workers have suggested that sulfate reduction has been an 
active process in marine sediments since 3.5 bybp. It is clear that 
little fractionation is obse~rved in marine sedimentary sulfides from 
3.5 bybp until about 2.2 bybp. However, these authors have argued 
sulfate reduction has taken place at very rapid rates in an ancient­
warm ocean. The rational is that at high rates of sulfate reduction, 
the demand for sulfate by an organism may be so high that no or 
little fractionation will occur, similar to the carbon fractionation 
during photosynthesis. We tested this model by exploring 
fractionation in microbial mats from Solar Lake, Sinai. Microbial 
mats support the highest rates of sul·fate reduction on the modem 
Earth and provide an excellent environment to test the influence of 
rate on fractionation. Our results den1onstrate that at different 
temperatures (to induce different ratE~s, rate data not shown) and at 
different concentrations of sulfate (between seawater to 3 times 
seawater) relatively high fractionations of between 18 to 35 per mil 
were observed. (Fig. 3). Hence, rapid rates of sulfate reduction do 
support isotopic fractionation, and the ancient isotopic record 
between 2.2 and 3.5 bybp is consistE~nt with limited rather than 
significant sulfate reduction in the ocean. Also note that sulfate 
reduction alone does not give enough fractionation to explain the 
isotopic composition of the sedimentary sulfides, consistent with 
discussion above. These results are presently being prepared for 
publication. 

Additional studies on modern sedim~~nts have documented the 
significance of sulfate reduction on carbon oxidation in modem 
coastal sediments (Canfield et al., 1993a,b). Significantly, we have 
also for the first time documented the importance of Fe-oxides as 
an electron acceptor in carbon mineralization. The large importance 
of Fe-oxides in modem environments gives us an indication that Fe­
reduction may have been a very significant process of carbon 
mineralization in ancient Fe-oxide~rich sediments deposited as 
Banded Iron Formations (BIF's). In a pair of papers (Van Cappellen and 
Canfield, 1993; Canfield, 1994) we have explored the relationship 
between the presence and absence of oxygen on the efficiency of 



carbon preservation in sediments. Since the burial and preservation 
of carbon in sediments liberates oxygen to the atmosphere, an 
understanding of the factors influencing preservation is crucial to 
understanding the progressive oxidation of the Earth's sur1ace 
environment. Also, we have explored the reaction kinetics of sulfide 
with Fe minerals, allowing us to use Fe mineralogy as an indicator 
of ancient depositional environments, and to explore if extensive 
periods of sulfidic waters persisted in the past (Canfield et al., 
1992; Raiswell and Canfield, submitted). Finally, we have presented 
a model for the deposition of Fe in the modern euxinic Black Sea 
which shows that modern and anciient euxinic basins have a more 
similar Fe cycle than previously appreciated (Canfield et al, 
submitted). 
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Sulfur Isotopic Record: 

We have conducted an extensive literature survey of sedimentary 
sulfur isotopic compositions from present through the 
Mesoproterozoic (1.6 bybp). In compiling the data, no sediment that 
has experienced any documented hydrothermal input has been used. 
Also, sediment with high degrees of metamorphism have also been 
excluded. The record (Fig. 4), shows the isotopic composition of 
sulfides, the isotopic composition of sulfate over time (open band), 
and the isotopic composition of sulfate displaced by 55 per mil. Key 
points include a consistent offset behveen seawater sulfate and 
most depleted sulfides from present to about 650 mybp. As 
discussed above (Fig. 2) an offset of this magnitude requires an 
initial fractionation by sul'fate reduction (20-30 per mil), modified 
substantially by disproportionation during sulfide oxidation 
(variable from 0 to about 40 per mil). Before about 650 mybp, 
fractionations are reduced, and maximum displacements in seawater 
sulfate are 20 to 30 per rnil, consistent with frac,1ionation during 
sulfate reduction without modification by the oxidative S-cycle. We 
conclude that between about 7 50 to 650 mybp conditions became 
conducive to the operation of the oxidative S-cycle. The most likely 
way this could happen is if oxygen became more available. Thus, we 
believe that we see in the S-isotope record between, 750 and 650 
my ago, the first direct indication of the rise in atmospheric 02 that 
preceded the evolution of the Metazoans. 
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We have further indications for the rise of atmospheric 02 from the 
molecular phylogeny of sulfide oxidiziing gradient bacteria that 
require 02 for their metabolism. An internally calibrated molecular 
clock puts their evolution at about the same time. These results are 
currently being prepared for publication. 

Site Studies: 

We have travelled to the McRae shale in Western Australia. This 

shale was deposited about 2.5 bybp and we wish to explore the 

extent to which sulfate reduction dorninated sediment diagenesis at 

this time. Our goal is to apply sedirne!nt analysis in addition to 

sulfur isotopic examination to evaluate the importance of sulfate 

reduction. Results are still preliminary, but sulfur isotopic 

compositions range frorn 0 to+ 15 per mil, indicative of, perhaps 

some sulfate reduction. Isotopic fractionations are, however, also 

consistent with modification by post-depositional S mobilization. 
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More informative is obtained from the sediment geochemical 

analysis. (Fig. 5). Here, we find that the concentration of organic 

carbon tracks that of sulfur. This mt~ans that suHur is buried with 

carbon, as occurs in modem sediments supporting sulfate reduction. 

Hence, sulfate reduction is indicated. However, far more Fe oxides 

deposit in the sediment than are preserved as sulfide (Fig. 5; sulfur 

vs organic carbon would look like Fe vs organic carbon if all Fe was 

pyritized). In· modem euxinic basins roughly 10 times more sulfide is 

produced than Fe deposits into the basin. Hence all Fe oxides are 

reacted with sulfide, and most of the suHide is reoxidized back to 

sulfate at the chemocline. The predominance of Fe in McRae shale 

sediments, and during the time of BIF formation in general, requires 

that sulfate red~ction must have been far less important than today. 

Otherwise all Fe oxides would havt~ been reacted to form pyrite. 

Work on the McRae shale, and Fe mass balances for Precambrian 

oceans is still in progress. 
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