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SUMMARY 

 

Skeletal muscle has an integral role in many activities.  Although mechanical 

stretch and active force generation are known to be required for the maintenance of 

healthy muscle function, the mechanism by which those signals mediate muscle growth is 

unknown.   

This project was based on the hypothesis that stretch and force generation 

activate the Calcineurin/NFAT pathway and induce Cox-2 expression and initiate 

muscle hypertrophy. The specific aims of this study were to 1) develop a minimally 

invasive system capable of initiating hypertrophic signaling in mice, 2) characterize the 

effects of isometric activation, passive lengthening, and active lengthening on signaling 

cascades, and 3) determine the involvement of the Calcineurin/NFAT pathway and 

activation of COX-2 gene expression. We propose a pathway in which stimuli increase 

intracellular calcium, which activates the phosphatase calcineurin.  Calcineurin 

dephosphorylates NFAT, which is translocated into the nucleus and initiates transcription 

of the COX-2 gene.  COX-2 mediated synthesis of PGG2 is the rate-limiting step in 

bioactive prostaglandin synthesis.  Prostaglandins then stimulate known hypertrophic 

signals including the PI-3 Kinase and MAP Kinase signaling cascades.  

Adult female mice were subjected to passive stretch, isometric activation or active 

stretch of the tibialis anterior muscle.    Phosphorylation of p42 MAP kinase, p38 MAP 

kinase, p70 S6 Kinase, 4E-BP1 and NFAT was evaluated after a 3-hour recovery period.  

COX-2 gene expression was evaluated by quantitative PCR.  There were significant, 

protocol dependent responses within the PI-3 Kinase and MAP Kinase signaling 



 

 xx

cascades, but no significant dephosphorylation of NFAT and no detectable induction of 

COX-2 expression.    These findings demonstrate that stretch and activation 

independently activate a range of signaling cascades, but suggest that initiation of the 

response does not involve dephosphorylation of NFAT or upregulation of COX2.  This 

represents incremental understanding of the specific mechanisms of hypertrophy and 

suggests alternate mechanisms that may promote muscle hypertrophy and prevent 

atrophy.
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INTRODUCTION 

 

CLINICAL RELEVANCE 

Growth and adaptation of skeletal muscle are ongoing processes.  Skeletal muscle 

adapts to muscle loading, injury, or disease by hypertrophy or atrophy (1-6).   

Muscle hypertrophy, which is an increase in muscle mass, is mediated through 

two mechanisms, cell growth and proliferation.  Muscle overload initiates hypertrophy 

(1-4) by increasing protein synthesis and decreasing protein degradation (1,2), elevating 

amino acid synthesis and transport (3), increasing total cellular RNA content (4), and 

increasing satellite cell proliferation (5,6,7).   Satellite cells are normally quiescent in 

adult muscle, but can be activated by extensive stretch, severe exercise or injury.  

Activated satellite cells proliferate and migrate to the injury site where they differentiate 

and fuse to form new fibers or enlarge existing fibers (8,9,10).  Early indicators of 

hypertrophic signaling can be observed within one hour of the stimulus (11). 

Muscle atrophy, the loss of mass and force generating capacity, can be induced by 

aging (12,13), inactivity (14), spaceflight (15), muscle disorders (16), and repeated 

muscle injury (17) (figure 1). During normal aging, the muscle cross sectional area is 

reduced (18), strength is reduced (19), and muscles are more susceptible to damage and 

degeneration (20).   Sarcopenia, an age related loss of muscle mass and function has the 

effect of reducing force generation and mobility in the aged (21).  As a person approaches 

70 years of age, sarcopenia symptoms arise, and nearly half of all persons over 80 years 

of age suffer from sarcopenia (22).  The  2000 United States census estimated the 

population of people older than age 65 would increase by 137% between 1999 and 2050.   
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Fig. 1. Muscle atrophy occurs through aging, spaceflight, muscle disorders and injury 

through various mechanisms. 
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Several mechanisms contribute to sarcopenia, including loss of motor neurons in 

the spinal column, impairment of endogenous growth hormone, androgen and estrogen 

production, inadequate protein intake, deregulation of catabolic cytokines, and reduced 

physical activity (23).  Key elements necessary for muscle maintenance including 

myogenin, MyoD, and growth hormones are reduced in aged muscle (24).   Despite 

reductions in these factors, aged muscle has been shown to maintain the ability to 

hypertrophy through resistance exercise (25), demonstrating that extensive sarcopenia 

may be prevented.  Although exercise can reduce this atrophy, aging skeletal muscle 

cannot respond to the extent to which younger muscle responds to the physical activity 

(24) and may still lose mass (26).  The resulting reduction in force further limits mobility 

(27), promoting a downward spiral of functional degeneration. Functional limitations can 

promote more sedentary lifestyles for older individuals, which is another causative 

mechanism for atrophy. 

The Centers for Disease Control and Prevention (CDC) reported that four out of 

ten Americans age 45-64 are sedentary, increasing to six out of ten for those 75 and older 

(28).  These individuals are not active enough to derive health benefits from their activity 

(29).  The fraction of adults that do not achieve the recommended activity levels 

continues to rise (27).  Muscle inactivity reduces the load on the muscle, leading to 

atrophy (21), enzymatic and contractile property changes (30), reduced peak power (31), 

and fiber type change (32).  It is not clearly understood how inactivity initiates these 

deficits but research into the effects of spaceflight produced valuable information on the 

results of decreased loading. 

Spaceflight causes dramatic reduction in the loads applied to muscles, and 

consequently inhibits expression of genes for cell proliferation and growth factor 
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cascades, including cell cycle genes and signal transduction proteins (33).  Reductions in 

force generating capacity, and increases in the proportion of fast myosin in some fibers 

are also seen in rats and humans during spaceflight (34,35,36).    Atrophy in the extensor 

muscles is exaggerated in space due to their normal function to maintain extension 

against gravitational loads, which in these limbs is greatly reduced (37).  Hindlimb 

suspension, which unloads the anti-gravity muscles to simulate microgravity, induces 

atrophy in rat muscles similar to spaceflight (38,39).   Exogenous growth hormones and 

insulin-like growth factor I (IGF-I) along with exercise have shown to prevent this 

muscle wasting in suspended rats (40).  These factors are normally found to be secreted 

from cells during force generation and act as paracrine and autocrine factors for chemical 

signaling. 

Muscle disorders, including the muscle dystrophies, disrupt the transmission of 

muscle force and the associated signaling cascades.  Muscle cells are anchored to the 

extracellular matrix (ECM) and surrounding cells through membrane receptors including 

integrins, cadherins, selectins and cell adhesion molecules (41,42).  These receptors, 

clustered within focal adhesion complexes and intercellular complexes, are physically 

attached to the cell cytoskeleton (43). Cell-generated stresses and external mechanical 

forces converge on adhesion sites and the transmembrane receptors present in these sites 

provide molecular supports for the transfer of mechanical signals across the cell surface 

(44).   Without the ability of the cell to sense changes in its structure and environment, it 

loses its ability to adapt, which in skeletal muscle is essential (16,45,46).  Deficits in 

mechanical signaling in dystrophic muscle lead to abnormal repetitive cycles of 

degeneration-regeneration and compromised function (47).  This  
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degeneration-regeneration cycle is typically associated as a result of fiber damage and not 

normal activity. 

Muscle fiber damage requires the removal of damaged or necrotic tissue and 

regeneration by satellite cells (48).  Chronic exposures to repeated strains result in 

extensive muscle fibrosis (49) and this active lengthening can induce the inflammatory 

response (50,51).  Although it is important for healing, inflammation is associated with 

phagocyte infiltration to the injured muscle, elevation of protein degradation, and often 

aggravation of the initial insult.   Inflammation subsequently leads to pain (52), swelling 

(53), and cellular release of cytokines.  Cytokines mediate inflammation and are involved 

in cell proliferation, cell migration, and regeneration.  Myocytes in culture respond to 

damage by upregulating a number of these proinflammatory cytokines (interleukin-1 (IL-

1), IL-6), and also prostaglandin E2 (PGE2).  Interleukin-1 enhances the expression of 

cyclooxygenase-2 (COX-2), a proinflammatory enzyme, which plays an important role in 

the synthesis of prostanoids such as PGE2 and prostaglandin F2 alpha (PGF2α) (54,55).   

Eccentric injuries (EI) are also accompanied by factor release although through a 

different mechanism.  An EI occurs when an active muscle is forcibly lengthened (56,57).  

This leads to rupture of the cell plasma membrane, loss of sarcolemmal integrity (58,59), 

and subsequent release of chemical mediators associated with cell growth (60).   Non-

steroidal anti-inflammatory drugs, which target COX enzyme activity, are often 

prescribed to decrease the painful effects of inflammation.  However, they have been 

shown to cause side effects of slowing the regenerative process (61).   These observations 

have made these enzymes appear very important in mediating the hypertrophic response 

and have helped to form a strong basis for studying countermeasures that may activate 

them. 
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COUNTERMEASURES 

The loss of muscle mass and function associated with aging, inactivity, 

spaceflight, and disease can be minimized by appropriate interventions.  Increased 

physical activity provides a direct antagonistic signal.  In situations in which increasing 

activity is not possible, direct application of growth factors associated with exercise may 

be a suitable alternative. 

Exercise 

Exercise combines mechanical stretch and muscle fiber activation and promotes 

muscle growth and maintenance by inducing gene expression and increasing protein 

synthesis (62,63).  While the exact mechanism is not known, exercise increases 

intracellular calcium (64) and initiates many muscle signaling pathways thought to be 

involved in growth (65,66).  Passive lengthening, isometric activation, and active 

lengthening, actions done during exercise, generate different intensities of muscle force 

and involve different structures and pathways to elicit responses. 

Passive force in muscle involves the connective tissue, cellular membrane, and 

structures within the normal myofibrillar structure, such as titin.  It is used to maintain 

muscle strength, length, and mass in patients who are recently injured or immobilized in 

the clinical setting (67).  During passive stretch, mechanically induced bilayer distortions 

may influence the conformational change of membrane-associated proteins.  These 

changes in the membrane local curvature or thickness could activate mechanically gated 

channels (68).  It is also thought that this change in structure can activate cytoskeletal 

associated signaling molecules, thus setting off growth cascades.    
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Calcium, one of the predominant signaling molecules, can be released into cells 

independent of biochemical signals from the plasma membrane in response to physical 

forces (69).  Voltage gated calcium channels can also participate in myogenic responses 

through opening by a direct effect of stretch (70).  This influx is not likely due to 

disruptions in the membrane because stretches in relaxed fibers generally cause no 

detectable damage (71).  An effect of repetitive passive stretch to the gastrocnemius 

muscle of anesthetized rats is an increase in the expression of myogenin mRNA (72).   As 

stated previously, myogenin is a key element is maintaining muscle mass.  Stretches 

overloading skeletal muscles in chickens have also led to an increase in α-actin, one of 

the muscle structure proteins (73).   Stretching passive myotubes in culture induces 

increases in the efflux of PGE2 and PGF2α in a time and frequency dependent manner.   

Passive stretching of a rabbit extensor digitorum longus also showed an increase in  

IGF-1.  These second messengers regulate skeletal muscle protein turnover rates (74). 

An isometrically activated muscle is held at a constant length during force 

generation.  Excitation-contraction coupling that result in tension increase in the muscle 

produces force generation.  Depolarization of the cellular membrane allows for calcium 

influx through voltage-gated channels and subsequent activation of the contractile 

apparatus (75). Isometric activation of denervated muscle reduces atrophy (76), increases 

force capacity (77,78), restores specific tension, and stabilizes fiber number.  Electrical 

stimulation induced isometric activity is effective in elevating intracellular calcium, but it 

produces non-physiological chronic membrane depolarization and tonic elevation of 

intracellular calcium (79).  Those conditions do not mimic cellular responses to 

physiological patterns of phasic neuronal activity (79).  Calcium dependent pathways 

including the calcineurin/NFAT (Nuclear Factor of Activated T cells) pathway and 
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phosphatidylinositol-3-OH kinase (PI3K) pathway can be activated by the influx, and 

associated cytoskeletal signaling molecules can be affected by the change in tension (80). 

The muscle being forcibly lengthened while activated denotes active lengthening 

or eccentric stretch.  These components (figure 2) are widely viewed as normal during 

exercise.  The eccentric component of movement provides the deceleration forces needed 

for the maintenance of balance, stability, posture, and mobility (81).  Along with the 

results of passive lengthening, and isometric activity, active lengthening can incur 

damage to muscle cells, setting off inflammation and degeneration (50,51). Disruptions in 

the plasma membrane may mediate the increases in protein synthesis associated with this 

type of activity (58,59) and through increases in calcium and release of growth factors 

like basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (74,82,83). 

 

 

Fig. 2. The components of exercise lead to activation of signaling molecules, 

which initiate the various hypertrophic pathways.  These events result in hypertrophy. 
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Second Messengers  

The components of exercise are thus associated with the release and synthesis of 

factors including bFGF (84), IGF-1 (85), and PGF2α (54,55).  Direct use and treatment of 

muscles with these growth factors can mimic the effects of exercise by activating 

signaling molecules associated with muscle hypertrophy.   

The FGF family has nine different isoforms. In addition to an increasing satellite 

cell proliferation, the FGF family also slows the conversion of satellite cells to myofibers 

(86).   Basic Fibroblast growth Factor 2 (FGF-2) and bFGF are released by stretch in 

whole muscle and culture and stimulate proliferation, repress differentiation by 

suppressing MyoD and myogenin, and activate the mitogen-activated protein kinase 

(MAPK) pathway (87).  The MAPK pathway is also important in transducing the FGF-

induced increase in satellite cell proliferation but does not mediate the FGF-mediated 

repression of satellite cell differentiation (88).   

IGF-I also utilizes the MAP kinase (89) along with the calcineurin/NFAT (90), 

and PI3K pathways (91).  Skeletal myofibers secrete IGF-I, which is important in skeletal 

muscle regeneration and has been shown to enhance satellite cell proliferation and 

increase muscle mass in aged animals (92,93).   Exercise elevates IGF-I levels in the 

muscle, which leads to an increase in DNA content and ensuing hypertrophy of skeletal 

muscle (85,94).     

PGF2α promotes the skeletal muscle growth by increasing protein synthesis 

efficiency at the ribosomes (95) and activating NFAT (96), which is a calcium dependent 

factor.  Intermittent stretching of isolated rabbit muscles induces a calcium dependent 

increase in protein synthesis and prostaglandin-F2 alpha release (97).    Repetitive 

mechanical stimulation of differentiated skeletal muscle in tissue culture also increases 
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the long-term production of PGF2α (98).  It is thought that an initial intracellular event 

following PGF2α binding to its receptor involves the activation of a G-protein-sensitive 

phospholipase C (PLC).  Activation of PLC generates the second messenger inositol 

trisphosphate (IP3) that binds to receptors in the sarcoplasmic reticulum to stimulate the 

release of calcium ions and an elevation in the concentration of cytoplasmic calcium (99).  

This suggests that PGF2α not only is regulated by calcium, but also plays a role in 

calcium release.  This suggests that PGF2α is important in the downstream activation of 

calcium dependent signaling pathways like the MAP kinase and PI-3 Kinase pathways. 

Prostaglandins are often produced as part of an inflammatory response and are 

involved in initiation of pain and swelling.  Non-steroidal anti-inflammatory (NSAIDs) 

are widely used to alleviate these symptoms and are found in many over-the-counter 

drugs. NSAIDs inhibit prostaglandin synthesis, reducing inflammation and pain but also 

muscle regenerative capacity (100).  Although NSAIDs initially protect muscle cells from 

inflammatory degradation, they impair functional capacity and histology in late stage 

regeneration (61).  The histology of tibialis anterior muscle in rats that had undergone 

controlled uniaxial strain to induce injury and then immobilized post-injury, showed a 

delay in inflammatory reaction and muscle regeneration (61,103).    

Molecules downstream of bFGF, IGF-1 and PGF2α, also modulate the 

regenerative effect.  These molecules are integral in the transduction of the signaling 

cascades.  Responses to muscle stimulation have shown kinase activation (P70 S6, P42 

(ERK2), p38) in vivo and changes in 4E binding protein phosphorylation within these 

signaling cascades (figure 3). These molecules all play roles in cell growth and adaptation 

signaling cascades (figure 4). These molecules all play roles in cell growth and adaptation 
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within the calcium dependent PI3 kinase pathway, MAP kinase pathway, and 

calcineurin/NFAT pathways (figure 3).   

 

 

Fig. 3.  Calcium plays a role in inducing skeletal muscle hypertrophy through pathways 

that include each of the signaling molecules: Calcineurin, P70S6K, ERK, p38, and 4EBP1.  

Mechanical stretch and electrical stimulation induce increases in intracellular calcium. 

 

HYPERTROPHIC PATHWAYS  

Exercise and growth factors induce hypertrophy and are associated with activation 

of specific signaling cascades.  Identification of how the cascades (figure 3) mediate the 

hypertrophic response would allow rational design of pharmacological interventions to 

most effectively counteract the deleterious effects of aging and disease.   
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Fig.4. The PI3 Kinase, MAP Kinase and Calcineurin/NFAT pathways induce 

hypertrophy through activation by internal stimuli.  IGF-I is the only ligand capable of 

activating PI3 kinase.  These stimuli include increases in receptor binding, and 

intracellular concentration of calcium in response stress including electrical stimulation 

and mechanical stretch. These pathways initiate responses in transcriptional activity.   
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Calcium Dependent Signaling 

Force development is controlled by calcium, which is rapidly released from the 

sarcoplasmic reticulum through the opening of ryanodine receptors (RyR) and 

dihydropyridine receptors (DHPR) channels following sarcolemmal depolarization (101).  

Elevations in intracellular calcium levels activate the calcium dependent molecules that 

include calpains, calmodulin, PKC and the phosphatase calcineurin (102,103).   

Calcineurin is a calcium dependent phosphatase that plays an important role in the 

adaptive response (104,105,106). Repetitive high-amplitude calcium spikes associated 

with excitation-contraction coupling activates calcineurin.   Calcineurin directly 

dephosphorylates and activates the transcription factors NFAT and myocyte enhancer 

binding factor 2 (MEF2) (107) which controls the transcription of, among other things, 

myogenin and MyoD (108).  Calcineurin is also essential for induction of hypertrophy by  

mechanical overload (109,110). 

 

NFAT 

Five distinct isoforms of Nuclear factor of activated T cells (NFAT) have been 

identified (111,112).    Phosphorylated NFATc1 remains in the cytoplasm when calcium 

channels remain inactive in unstimulated cells (113).   Activation of calcineurin causes 

NFATc1 to be rapidly dephosphorylated and become nuclear transport ready, but actual 

nuclear transport proceeds slowly (114).  Electrical stimulation results in elevated 

cytosolic calcium resulting in nuclear translocation and appearance of foci of intranuclear 

NFATc1 (115).   
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Fig. 5.  External stimuli induce a change in intracellular calcium that activates the 

phosphatase calcineurin.  Calcineurin dephosphorylates NFAT, which allows NFAT to 

enter the nucleus to stimulate gene expression. 

 

Dephosphorylation of NFATc1 reveals a nuclear localization signal, which allows 

it to migrate into the nucleus (figure 5).  Once in the nucleus, NFATc1 binds to AP-1, 

which is a dimer composed of Fos and Jun proteins (116,117).  Induction of NFAT and 

AP-1 requires both calcineurin, which promotes NFAT dephosphorylation, nuclear 

translocation, and Ras, which promotes the synthesis, phosphorylation and activation of 

members of the Fos and Jun families of transcription factors (116).  NFAT acts 

synergistically with AP-1 proteins on composite DNA elements that contain adjacent 

NFAT and AP-1 binding sites, where they form highly stable ternary complexes to 

regulate the expression of diverse inducible genes (118).  These include the inflammatory 

and adhesion factors like cytokines IL-2, IL-3, IL-4, IL-5, granulocyte-macrophage 
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colony-stimulating factor, tumor necrosis factor-alpha, as well as several cell-surface 

molecules, such as CD40L and Fas Ligand (119).  There is recent evidence that 

Cyclooxygenase-2 (COX-2) gene expression in human T lymphocytes is also specifically 

regulated by NFAT (120).  

 

COX-2  

COX-2 is one of three isoforms of cyclooxygenase.  A wide variety of stimuli 

including antigens, mitogens, hormones, growth factors and inflammatory mediators 

induce Cox-2 (121,122,123,).  The COX-2 gene has consensus sequences in its promoter 

region for the NFAT protein.    The Cox-2 promoter includes a NFAT sequence at 

nucleotides 117 to 91 and an NFAT/AP-1 sequence at nucleotides -82 to -58 

(120,124).  Expression of COX is associated with stretch.  An increase in cyclooxygenase 

enzyme activity was observed within 4 hours of mechanical stretch of muscle in tissue 

culture and that increase remained for 24 hours.  This increase in activity was also 

accompanied by cellular hypertrophy (125) through a G-protein dependent process.  

Human myometrial cells grown on flexible bottom culture plates and subjected to 1 or 6 

h static stretch produced increases in COX-2 mRNA expression (126).  Also, cultured rat 

bladder smooth muscle cells subjected to continuous cycles of stretch/relaxation showed 

time-dependent increases in COX-2 expression after stretch, with maximal mRNA and 

protein levels occurring after 4 h (127). 

COX is also responsible for mediating conversion of arachidonic acid to primary 

prostaglandins (figure 6).  These primary prostaglandins all have a common metabolic 

origin (128).  The first step is the synthesis of cyclic endoperoxide prostaglandins (PGG) 

from arachidonic acid by oxygenation and cyclisation catalyzed by the endoperoxide 
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synthase component of COX isoenzymes. The second step is catalyzed by the peroxidase 

component of COX isoenzymes, in which prostaglandins of G class are reduced to form 

prostaglandins of H class.  H class prostaglandins are later acted upon by respective 

enzymes to form primary prostaglandin molecules including PGE2 and PGF2 alpha 

(128).  Since COX-2 is associated with stretch and mediates prostaglandin synthesis, it 

appears to be associated with the cellular hypertrophic response. (125,126,127) 

 

 

Fig. 6. Biosynthesis of prostaglandins involves cyclooxygenase enzymatic activity.   

Cyclooxygenase isoenzymes act to convert arachidonic acid to G class prostaglandins 

and reduce G class prostaglandins to H class prostaglandins.  Specific enzymes then 

convert the H class prostaglandins into the respective prostaglandin molecules. 

PGE2 and PGF2 alpha both exist in skeletal muscle.  H class prostaglandins are acted 

upon by insoluble endoperoxidase isomerase enzymes and endoperoxidase reductase. 
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PGF2α is one of the factors that can activate the PI3K signaling cascade.  This 

cascade is also affected through interactions with IGF-1 and calcium.  Downstream 

effectors of this pathway include P70 S6 Kinase and 4E binding protein, which modulate 

translational efficiency and translational activity respectively. 

 

P70 S6 Kinase  

P70 S6 Kinase (P70S6K) is a member of the Ser/Thr kinase family and enhances 

the translation of mRNAs encoding ribosomal proteins and elongation factors, integral 

components of the protein synthesis machinery (129).   The nuclear form of P70 

phosphorylates the ribosomal S6 subunit in the nucleoplasm and this modification may 

have a role in ribosome biogenesis in the nucleolus (130).  P70S6K plays a role in 

regulating the translation of mRNA transcripts that contain an oligopyrimidine tract at 

their transcriptional start site (131).  Protein synthesis in response to insulin is blocked by 

inhibition of P70S6K (132), and the mammalian target of rapamycin activates P70S6k 

through phosphorylation.  P70S6K phosphorylation increases rapidly after plantar flexor 

caused by strong bouts of electrostimulation exercises (133,134), and this increase in 

phosphorylation is closely correlated with muscle hypertrophy after repeated exercise 

(134).  

 

 4E Binding Protein 

 Like P70, 4EBP1 is phosphorylated in vivo on multiple residues and 

phosphorylated by FRAP/mTOR (135). In quiescent cells, dephosphorylated 4E-BP1 

competes with eIF-4G for binding to eIF-4E (figure 7) and represses translation by 

preventing assembly of eIF4.  Initiation factor 4F complexes with mRNAs through the 
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interaction of its eIF-4G subunit with eIF-4E, and is necessary for translation all 

eukaryotic mRNAs.  Active mTOR phosphorylates 4E-BP1, which decreases its affinity 

for eIF-4E and releases the block on cap-dependent translation.    Phosphorylation of 4E-

BP1 increases protein synthesis and promotes muscle hypertrophy (135). 

 

 

Fig. 7. Phosphorylation of 4E Binding protein results in dissociation from eIF4E.  This 

allows eIF4E to initiate translation.  

 

 Other downstream targets that are activated during exercise are extracellular-

regulated kinase (ERK) and p38 MAP kinases.  Another of the MAP kinase family 
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includes the stress-activated protein kinases JNK (136).  It was proposed that PGF2α 

activates phorbol ester-sensitive protein kinase C isoforms, which phosphorylate and 

activate Raf to initiate the ERK MAP kinase signaling cascade. Activated Raf then 

phosphorylates MEK1, which leads to the phosphorylation and activation of ERK1 and 

ERK2 (137).  ERK Map kinases are also activated by bFGF (138) while cytokines and 

metabolic stressors have an effect on P38 activation (139).  PGE2 was found to activate 

p38 in fibroblasts (140) and may be a method of its activation in skeletal muscle. 

ERK and p38 

The mitogen-activated protein kinase (MAPK) signaling network (figure 8) 

regulates gene transcription and protein synthesis and may be a mechanism through 

which exercise/muscle contraction leads to increased expression of muscle proteins 

(141). 

 

Fig. 8. The MAP kinase pathway is activated through mitogens binding to the 

tyrosine receptor that set off a chain of kinase activity. 
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MAP kinases ERK and p38 are activated in human and rat skeletal muscle by 

exercise (142).  Muscle contraction evoked by electrical stimulation also leads to the 

activation of p42/44 ERK and p38 MAP kinase (143).  MAP kinases have been shown to 

translocate to the nucleus and directly phosphorylate numerous transcription factors such 

as c-Jun, which is involved in the induction of structural muscle proteins including 

skeletal -actin (144), c-Myc, which plays a role in apoptosis mediation (145), and 

myocyte enhancer binding factor 2 (MEF2) (146,147).  MAP kinases can also activate 

other downstream substrates that can translocate to the nucleus and phosphorylate 

numerous transcription factors (148).   

These MAP kinases are essential for hypertrophy and increased transcription. 

Activation of ERK1/2 and JNK by exercise and contraction is associated with the rapid 

induction of immediate early genes such as c-fos and c-jun.  These associated proteins 

form the AP-1 complex through which NFAT initiates transcription in the 

calcineurin/NFAT pathway.  The interdependencies of these three pathways led us to 

research them to determine the effects of stretch and activation. 

This project hypothesizes that stretch and force generation act to independently 

activate the calcineurin/NFAT pathway and induce Cox-2 expression. The specific 

aims of this study were to 1) show the ability to initiate biochemical hypertrophic 

signaling through muscle force generation and lengthening 2) provide an analysis of the 

independent effects of passive lengthening, isometric activation, and active lengthening 

on known hypertrophic initiators, and 3) determine the involvement of the 

calcineurin/NFAT pathway and activation of COX-2 gene expression. 
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RESEARCH DESIGN 

 

Research Rationale 

 

 

Fig. 9.  The proposed pathway has a link between calcium dependent activation of 

NFATc1 and expression of the Cox-2 gene.  Increases in calcium due to passive 

lengthening or isometric activation during exercise may lead to increases in prostaglandin 

synthesis and subsequent muscle hypertrophy. 

 

Although stretch and activation have been shown to activate the signaling 

cascades described above, there is no unified signaling model describing the response.  

This project is based on the model illustrated in figure 9. Our model derives from the 

observation that passive lengthening, isometric activation, and active lengthening of the 

muscle stimulate the release of calcium into the cell (69,70,71).  Increased calcium may 

activate calcineurin leading to dephosphorylating NFAT (114,115).  NFAT is able to 
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translocate into the nucleus to upregulate COX-2 (127).  This isoenzyme then plays a role 

in the biosynthesis of PGF2α from arachidonic acid (128).  We believe that this PGF2α 

not only leads to sustained increases in intracellular calcium but also plays a role in 

activating the MAP kinase pathway and PI3 kinase pathways (137).  These pathways are 

known protein synthesis pathways, which result in cellular and consequently muscle fiber 

hypertrophy and atrophy prevention (135,141).  This research uses separate bouts of 

passive lengthening, isometric activation and active lengthening in vivo to separate the 

effects of stretch and force generation and to test the proposed signaling model.   

 

Subject Selection 

Mice were selected for this work because their short life span, proclivity for 

reproduction, known genetic background, minimal expense for purchase and 

maintenance, and fast metabolism.  Due to their size, mouse subjects, were simple to 

work with within our laboratory and apparatus constraints.  We selected CFW (Carworth 

Farm-Webster) Mice.   They originate from the stock of non-consanguineous Swiss-

Webster mice of Carworth Farm; consanguine since 1964. This model was chosen 

because outbred mice are less susceptible to genetic aberrations that might be associated 

with inbred lines.  Mice represent the primary species used in research.   

The selection of mice in this foundational work gives us the ability to determine 

baseline levels of activation as a precursor to more detailed genetic mutation studies.  The 

existing data would allow for genuine comparison studies as the lab continues to study 

the effects of exercise with the purpose of defining these hypertrophic pathways. 
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Muscle Selection 

 

 

Fig. 10. Location of the Tibialis anterior and its capacity to be stretched uniaxially during 

flexion and extension of the ankle joint. 

 

The Tibialis anterior muscle is located at the anterior calf.  It originates on the 

lateral condyle of the tibia (figure 10), proximal two thirds of the lateral tibial surface and 

interosseus membrane and deep facia of the leg and inserts on the medial cuneiform at 

the base of the first metatarsal (149).  The simple architecture and anatomy of this muscle 

allows straightforward determination of fiber deformation from externally imposed 

motion of the ankle joint.  The tibialis anterior muscle in mice is almost entirely made up 

of Type IIA (fast oxidative glycolytic - FOG) and IIB (fast glycolytic - FG).  The 

majority of the fibers are of the FOG variety (150). 
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Several properties of calcineurin signaling suggest that it may participate in the 

control of slow skeletal muscle gene expression.  A) Its selective activation by prolonged 

elevation of calcium and insensitivity to high amplitude calcium spikes correspond to the 

type of signaling thought to activate slow fiber-specific genes. B) The control regions of 

several slow fiber-specific genes contain adjacent binding sites for NFAT and MEF2 

factors, C) transplant patients maintained on calcineurin inhibitors, develop skeletal 

myopathy and lose skeletal muscle oxidative capacity (151).  Since fast muscle has less 

dependency on calcium signaling than slow muscles, it will be more sensitive to an 

interaction with calcium during the protocols.  This may allow for observation of more 

pronounced reactions through less intense exercise. 

 

Testing Apparatus 

The stretch platform (figure 11) was used as a controlled stimulation environment 

for experimentation.  A foot pedal system was chosen to limit variation in movement 

between animals and to focus the strain on the tibialis anterior muscle.  This provides a 

controlled environment and movement in which we could relate the movement to the 

pending results. 
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Fig. 11.  The stepper platform allows for easy access to subjects and integrated force 

feedback.  The mice were kept warm via a connected water heater, which circulated 

warm water through tubing that ran underneath the top plate.   

 

Selection of signaling cascade markers 

Western blotting was used for cellular proteins due to their general high 

specificity separation and for accepted protocols for relative quantification.  We used 

real-time PCR as the method for analyzing COX-2 because our protocols called for early 

COX-2 gene expression.  Using real-time PCR, we would be able to quantify our results 

and the primary sequences would enable high specificity and accuracy in our target 

analysis. 
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Sample size calculations 

We utilized the formula, where n = number of replications, σ = true standard 

deviation, δ= the smallest true difference that it is desired to detect, v = degrees of 

freedom of the sample standard deviation with the number of groups and n replications 

per group, α = significance level, P = desired probability that a difference will be found to 

be significant, and [ ] ( )[ ]vPv tt −+ 12α  = values from a two tailed t-table with v degrees of 

freedom and corresponding to probabilities of α and 2(1-P), respectively.  This formula 

helped us devise the sample population that we would need to study for this research.  

The signaling cascades examined in this work are extremely sensitive markers of 

biological changes, with increases of 5-10 folds being common, but the assays for 

activation of those cascades are relatively imprecise.  For this reason, the difference 

desired to detect was set to 1.5 standard deviations.  P was set to 0.85, which gave us 

v=16.  By convention, the statistical confidence was set to 0.05.  This gave us a number 

of replications needed to detect a given difference between means of 4.67 samples.  We 

utilized minimum of 5 subjects per test. 
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MATERIALS AND METHODS 

 

EXPERIMENTAL ANIMALS 

Adult female CFW (n = 22 total, n = 5 (Passive, Isometric, None), n = 7 

(Eccentric), mass = 27.3g +/- 3.38g) mice were used in the experiments.  The mice were 

housed in a controlled animal housing facility (Georgia Institute of Technology).  They 

were allowed access to rat chow and water ad libitum.   The Georgia Tech Institutional 

Animal Care and Use Committee approved all procedures. 

 

STRETCH PLATFORM 

 

 

 

 

 

 

 

 

 

 

The stretch apparatus is comprised of two platforms connected by standing 

columns, which are spaced appropriately for optimal free user movement (figure 12).  

The upper plate temperature is maintained by a recirculating water bath to provide 

thermal homeostasis.  A foot pedal (152) is mounted above the upper plate to allow 

Fig. 12. Photo of Stretch Platform 
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consistent horizontal plane rotation of the mouse foot.  Parameters of that movement and 

the relative timing of muscle activation can be fully adjusted through associated Lab 

View software.   

A stepper motor mounted to the underside of the bottom plate was attached to the 

foot pedal by a steel shaft and provided control of ankle angle.  A torque transducer was 

added in later experiments to give an indication of torque produced in our subjects.  

Muscle Stimulation 

For all experimental procedures, the animals were anesthetized through 

intraperitoneal injection (ketamine 90 mg/kg, acepromazine 2 mg/kg, supplemented as 

necessary).   All animals were positioned in the testing apparatus with left heels flush 

with the rear of the pedal and the foot restrained to prevent sliding within the pedal.  The 

mouse body was secured to prevent momentum shifts and the tibia was immobilized at 

the knee by a spring clamp to prevent movement.  A stainless steel stimulating electrode 

was used to transcutaneously activate the left peroneal nerve. Animals were randomly 

assigned to one of three groups. 

Isometric Stimulation Protocol.  External stimulating electrodes were attached 

and voltage applied (1.5-4 V) to the electrode was adjusted to produce maximal palpable 

contractile force.  Further stimuli were delivered at twice this intensity to assure maximal 

activation.  Muscle contractions were generated by delivering 300 ms trains of 0.1ms 

square pulses at 100 Hz, while the ankle was held fixed at 90 degrees in the foot pedal. 

Activation of the gastrocnemius muscles was occasionally observed, but is not expected 

to affect the observations in TA.  Stimuli were applied every 30 seconds for 30 minutes, 

for a total of 60 stimuli. 
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Passive Stretch Protocol. The foot was moved from an ankle angle of 40 degrees 

(50 degrees dorsiflexion) to 140 degrees (50 degrees of plantarflexion) in 100 ms, held 

for 300 ms and returned to its starting position in 1 s. This motion produces a stretch of 

approximately 15% to the TA and was repeated every 30 seconds for 30 minutes. 

Eccentric Stretch Protocol.  A combination of the stimulation protocol and the 

stretch protocol was conducted.  The peroneal nerve was stimulated as described above.  

Electrical stimulation was applied as described previously, but with the foot initially at 40 

degrees.  After 100ms of stimulation, the foot was plantarflexed to 140 degrees under the 

same conditions as the passive stretch group.  The 100 ms delay allowed isometric 

tension to fully develop, and the motion was completed 100 ms prior to the termination of 

electrical stimulation.  The muscle was fully relaxed before the foot was returned to the 

starting position.  This protocol was also conducted once every 30 seconds for 30 

minutes. 

 

TISSUE COLLECTION 

 After a recovery period of 3 hours, animals were sacrificed by CO2 asphyxiation, 

and the tibialis anterior was exposed.  Muscle length was measured with the ankle held at 

90 degrees.  The muscle was harvested by cutting the tendon at its insertion on the foot 

and separating the muscle from the connective tissue at its origin.  Tissue was pinned to 

corkboard at the measured length and flash frozen in melting isopentane.  The tissue was 

immediately placed in an -80 degree freezer until later use.  Muscles were harvested from 

both the experimental and the contralateral limb. 
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ANTIBODIES 

The following antibodies were used: Phospho-44/42 Map Kinase Thr202/Tyr204 

Antibody (Cell Signaling Technology, Cat. No. 9101), ERK2 (BD Transduction 

Laboratories, Cat. No. 610104), P38 Map Kinase alpha Antibody (Cell Signaling 

Technology, Cat. No. 9218), Phospho-p38 MAP Kinase Thr108/Tyr182 Antibody (Cell 

Signaling Technology, Cat. No. 9211), 4E-BP1 Antibody (Cell Signaling Technology, 

Cat. No. 9452), NFAT2 Antibody (Affinity Bioreagents, Cat. No. MA3-024), NFATc1 

7A6 (Santa Cruz Biotechnology, Cat. No. sc-7294), P70 S6 Kinase C-18 (Santa Cruz 

Biotechnology, Cat. No. sc-230), Phospho-P70 S6 Kinase, Thr 389 1A5 Monoclonal 

Antibody (Cell Signaling Technology, Cat. No. 9206),  

 

PROTEIN ANALYSIS 

Protein Collection.  Muscle tissue was homogenized at medium speed with a 

mechanical homogenizer in 10µl/mg of tissue of cold non-denaturing lysis buffer (5 mM 

tris,  3 mM NaCl, 0.25 mM EDTA, 1% Triton X-100) containing 4mg/ml sodium 

fluoride (Sigma), 4µg/ml Sodium Vanadate (Sigma) and 1ul/ml protease inhibitors 

(Sigma).  The tissue was then enzymatically digested for 30 minutes on ice.  Tissue 

homogenate was then centrifuged at 13000g at 4 °C for 5 minutes.  The supernatant was 

removed and placed in fresh tubes and stored at -20 °C. 

Bicinchronic Acid Assay.  The protein concentration was assayed using the 

Bicinchronic Acid assay (BCA) kit according to the manufacturer's instructions.  Protein 

standards were diluted from 10mg/ml bovine serum albumin (BSA) stock in TNE (10 

mM tris, 15 mM NaCl, 0.5 mM EDTA) to produced standards from 2mg/ml to 

0.032mg/ml BSA.  Aliquots of standards and protein samples were loaded and 200ul of 
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working reagent (50 parts reagent A with 1 part Reagent B) was subsequently added.  

The plate was covered and incubated at 37 degrees for 30 minutes, allowed to cool to 

room temperature and read with a microplate reader (Biotek: µQuant) at 562nm using 

977nm as a reference. 

SDS Page and Immunoblotting.  Equal masses of protein samples were diluted in 

SDS sample buffer (Tris, SDS, b-ME), denatured by boiling for 5 minutes and separated 

by SDS-PAGE (7.5%, 10%, or 12.5% polyacrylamide gel). Resolved proteins were 

transferred onto nitrocellulose membranes and incubated in blocking solution (5% fat-

free milk) for 1 hr at room temperature.  The membranes were then incubated for 1 hr 

with monoclonal antibodies against phospho-44/42 (1/2000), phospho-p38 (1/2000), 

phospho- P70S6K (Thr-389, 1/1000), 4EBP1 (1/2000), or NFATc1 (1/5000).  The 

membranes were washed three times in TBS-T and incubated with the appropriate 

horseradish peroxidase linked secondary antibody (1/10,000).  After the secondary 

incubation, the membrane was washed three times and visualized with enhanced 

chemiluminescence (ECL, Amersham) by exposure to radiographic film (Kodak).  

Membranes probed with phospho-specific antibodies were subsequently stripped and 

reprobed with non-phospho specific antibodies. 

Gel Analysis.  Exposed films were digitized using a transmission flatbed scanner 

(Epson).  A densitometry program was created in MatLAB to calculate integrated optical 

densities from the ECL Western blots.  These raw optical density measurements were 

subsequently processed to produce consistently interpretable results. 

Data Normalization.  P42 MAP kinase and P38 MAP kinase calculated from the 

ratio of phosphorylation specific signal to non-phosphorylation specific signal to account 

for differences in loading and variation in basal expression of these MAP kinases within 
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each animal.  Each sample ratio was then given as a percent control of the mean of the 

non stimulated controls limb.  

Myoblast cell extracts, cultured with IGF-I, were used as positive controls for 

P70S6K phosphorylation.  Ten micrograms of these extracts were used in each western 

blot to normalize with experimental animal protein samples.  The level of Thr389 

phosphorylation in whole tissue homogenates was normalized as a percent of the IGF-I 

positive controls.   

Phosphorylation of 4EBP1 was estimated by differential mobility. This protein 

migrates as α, β, and γ, depending on the extent of phosphorylation, and the γ form is 

known to permit translation (153).  Phosphorylation of 4EBP1 is expressed as the ratio of 

γ to (α+β+γ) optical densities, which precludes the necessity to normalize to controls. 

NFAT migrates as an extended smear ranging from approximately 175 kD to 91 

kD.  The moment of optical density about 175 kD (based on Ramos Jurkat cell lysate 

obtained from Affinity Bioreagents) was calculated by multiplying each pixel intensity 

by its distance from 175kD, then summing the intensity-distance values for all pixels in 

each lane.  This value was then normalized to the summed intensity of the total NFAT 

present to account for variations in exposure conditions and total NFAT.  This procedure 

results in a determinate value that increases with decreasing net phosphorylation of 

NFAT.  Sure would be nice if we had a couple control samples with which to 

demonstrate that claim. 

 

REAL TIME PCR 

RNA.  Muscle tissue was homogenized in 1ml of Trizol for 30 seconds in a 

microcentrifuge tube.  The homogenate was then allowed to incubate for 5 minutes at 
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room temperature.  RNA was separated by phenol-chloroform extraction and precipitated 

with isopropanol.  The precipitated RNA was pelleted by centrifugation at 12000g for 10 

min at 4 degrees.  The supernatant was aspirated and the RNA pellet was washed with 

75% ethanol.  This was mixed gently and centrifuged at 7500g for 5 minutes at 4 degrees.  

The supernatant was removed and the pellet allowed to air dry for 10-15 minutes before 

resuspension in 30µl of diethylpyrocarbonate (DEPC) treated water and stored at -20 

degrees. 

Reverse Transcriptase/PCR.  Reverse transcription was performed using a 

commercial kit (Invitrogen) according to the manufacturer's instructions.  

Standards.  cDNA standards were generated from COX-2 cDNA (kindly 

provided by Brenda Bondesen and Grace Pavlath, Emory University).  The 539 bp 

standard was amplified by conventional PCR and resolved on a 1-1.5% agarose gel 

containing 50µl of ethidium bromide for 35 minutes at 100 volts.  The amplicon size was 

confirmed and each band was cut from the gel with a scalpel and placed into pre-weighed 

Eppendorf tubes.  The PCR product was then purified using the QIAquick gel extraction 

kit (Qiagen), and the resulting DNA was eluted in 50µl of buffer.  DNA concentration 

was determined by A260 at a 1:20 dilution in the spectrophotometer.  Standard stock and 

working dilution (1ng/µl) aliquots were stored at -80 degrees C. 

Primer Sequences. Two Cox-2 reverse primers were obtained with one Cox-2 

forward primer.  Reverse 1 primer, short sequence (COXR1), was used in real time 

application while Reverse 2, long sequence (COXR2), was used to generate COX-2 

standards using PCR.  The forward primer was used in both applications (Table 1). 
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β-actin was used as a normalizing agent to account for differences in total sample 

cDNA.  It was also used as a verification of sample integrity.  It consists of a forward 

primer and a reverse primer (Table 1). 

 

Table 1.  Primer Sequences for COX-2 and β-actin. 

Primer 
Short 
Name Sequence 

COX-2 Standard Fwd COXF 5’CCTGCT GCCCGA CACCTT CA 3’ 
COX-2 Standard Rev COXR2 5’CAGATG AGAGAC TGAATT GAGGCA G 3’ 
COX-2 Real Time Fwd COXF 5’CCTGCT GCCCGA CACCTT CA 3’ 
COX-2 Real Time Rev COXR1 5’AGCAAC CCGGCC AGCAAT CT 3’ 
β-actin Fwd BACTF 5’TTCAAC ACCCCA GCCATG T 3’ 
β-actin Rev BACTR 5’TGTGGT ACGACC AGAGGC ATA C 3’ 

 

 

Cycle parameters. COX2 and β-actin were amplified by 40 cycles of denaturation 

at 95 degrees for 30 seconds, annealing at 56 degrees for 30 seconds, and extension at 72 

degrees for 30 seconds.  Thermocycling was performed in a real-time PCR system 

(BioRad), using SYBR green as an indicator. 

Purity.  Melt curve.  Product purity was analyzed by separating samples on a 1-

1.5% agarose gel.  Gels were visualized by ethidium bromide staining on a UV 

transilluminator.  

 

IMMUNOHISTOLOGY 

Histology. Blocks of tissue were embedded in O.C.T cryoembedding medium 

(Tissue-Tek) and sectioned using a Leica cryostat.  Nominal section thickness was set at 

8µm.   
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Immunoblotting. Sections were fixed for 20 minutes (4% paraformaldehyde in 

0.1M phosphate buffer) at room temperature in a humidified slide box.  They were then 

washed twice in PBS/1%BSA.  The sections were permeabilized in 1% Triton X-100 for 

five minutes and then rinsed twice for 5 min with PBS/0.1% Triton X-100.  All 

subsequent rinses and incubation were carried out in PBS/0.1% Triton X-100.  The 

sections were then blocked in Avidin/Biotin blocking system (Vector) for 1 hr, and rinsed 

twice.  The sections were then incubated for 1 hour in working solution of Mouse Ig 

blocking reagent (Vector), rinsed twice and incubated with the anti-NFATc1 antibody at 

a 1:100 dilution for 1 hr.  The slides were then rinsed three times for 10 min and 

incubated with anti-mouse IgG reagent secondary antibody (Vector) for 1 hr.  They were 

then rinsed three times for 10 min, incubated in fluorescein isothiocyanate (FITC) 

conjugated streptavidin at manufacturer’s recommended concentration for 10 min.  The 

sections were rinsed twice, coverslipped with glycerol for visualization.  We also 

alternatively used DAB staining and followed the manufacturer’s protocol (Vector). 

STATISTICS 

STATview software was used to view and analyze data.  Differences among 

groups were determined by two-way ANOVA, factorial by Protocol with repeated 

measure of Intervention against contralateral.  Fisher’s PLSD correction was applied to 

post-hoc T-tests used to identify individual group differences. Log transformations were 

applied to MAP kinase results to correct for normalization to controls.   Statistical 

threshold was set to p ≤ 0.05, and trends in this study were identified using p<0.15.  

Unless otherwise noted, results are reported as mean +/- SD.   
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RESULTS 

 

 We tested whether muscle activation and mechanical stretch acting on a muscle 

separately could produce hypertrophic signaling within the tibialis anterior muscle.  

Complications during experiments resulted in the death of one animal during the recovery 

period.   

 

4E BINDING PROTEIN PHOSPHORYLATION  

Increased 4E binding protein phosphorylation has been correlated with increased 

rates of protein translation (135,154).  Cell culture samples were used as positive and 

negative control to determine the authenticity of results of our protocols. C2C12 cells 

treated with IGF-1 showed increased intensity of the hyperphosphorylated γ form while 

treatment with rapamycin to block mTOR activation increased the hypophosphorylated α 

form (figure 13).   

 

 

 

 

 

Fig. 13. IGF-1 induces a maximal hyperphosphorylation state in 4EBP1.  

Phosphorylation at the γ site permits translation. 
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   CL      CR        PC       PS         IC       IS           EC      ES 

       

Fig. 14. Representative Western blots for 4E Binding Protein of (L-R) control animals, 

passively lengthened animals, isometrically activated, and actively lengthened animals. 

4EBP1 is seen between 18kb and 22kb. 
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Fig. 15.  Significant differences in 4EBP1 were seen based on protocol  (n ≥ 5).  

 

A significant effect of intervention was found (p=0.05) in the phosphorylation of 4EBP1 

(figure 14, 15).  However, a wide variation was observed to occur between stimulation 

groups.  While changes in phosphorylation in each protocol could not be statistically 
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resolved, the EC protocol resulted in a dramatic increase in the phosphorylation ratio of 

the stretch-stimulated limb versus its contralateral control limb.     

  

P70S6K PHOSPHORYLATION 

The kinase activity of P70S6K is correlated with its phosphorylation on Thr389; 

the level of phosphorylation of the molecule was investigated by Western blot (figure 

17).   

 

      IGF         CL    CR       PC           PS             IC           IS               EC           ES 

    
 

Fig. 16.  Representative Western blots demonstrating P70S6K phosphorylation observed 

after a 3-hour recovery period.  (L-R) Control animal with IGF control, passively 

lengthened, electrically stimulated, and actively lengthened.  P70S6K is seen ~70kb. 
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Fig. 17.  P70S6K phosphorylation varied with protocol  (*) denotes statistical confidence 

p<0.05, (#) trends, p<0.15 in the results.  We used the results of the Thr389 Western blots 

in comparison to the IGF-1 controls to determine differences in phosphorylation. (n ≥ 5). 

 

Changes in P70S6K phosphorylation were more evident between animals than was 

seen in 4E Binding protein (figure 16, 17). Though they are both regulated by mTOR, 

they showed differences in phosphorylation.  ANOVA revealed a significant effect of 

intervention and, while there was no global effect of protocol, a significant interaction 

(p=0.05) between protocol and intervention indicates that the intervention effect is 

limited to the ISO and EC protocol.  Muscle activation induced a 16-fold induction 

(p=0.0385) in phosphorylation of Thr389 versus the non-stimulated subjects.  We also 

observed significant differences in phosphorylation of actively lengthened muscles versus 

isometrically activated muscle (p=0.015).   No effects were seen by just passively 

lengthening the muscle on the phosphorylation of P70S6K. 

*

#
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P42 PHOSPHORYLATION 

Stimulating the animals by mechanical stretch and electrical stimulation caused a 

significant increase (p=0.015) in phosphorylation. Isometric activation increased ERK2 

phosphorylation by 300% (p=0.02) over controls 3 hours after the stimulation (figure 18, 

19).    A similar 262% (p=0.05) increase was seen after active lengthening of the muscle.  

Isometric activation and active lengthening also proved to have a trend to be different 

than passively lengthened muscle at this time point (p=0.053 and p=0.091, respectively).   

 
 
 
  IGF         CL   CR          PC           PS              IC              IS             EC            ES 

       

       
 
Fig. 18.  Phospho Western blot ERK2 (P42) was analyzed versus non-phospho Western 

blot ERK2.  Values of phosphorylation were then shown as percent phosphorylation of 

experimental muscle versus mean phosphorylation of controls. 
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Fig. 19. Effects of stimulation seen in Western blots on p42 protein expression in mouse 

skeletal muscle. Phospho. ERK-2 is labeled p42 in the above figures. (*) denotes 

statistical significance p<0.05. (n ≥ 5).  

 

 

P38 PHOSPHORYLATION 

   Significant effects (p<0.0001) of intervention and protocol (p=0.03) were found 

on the phosphorylation of p38MAPK (figure 20,21).  A significant interaction (p< 0.05) 

indicates the response to PAS and EC is significantly different than None and ISO.   We 

observed a 280% increased (p=0.038) in P38 phosphorylation during passive lengthening 

(figure 20,21).  We also observed that combining this passive lengthening with isometric 

activation produced a 270% increase (p=0.041) in phosphorylation.   

 

*
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Fig. 20.  Phospho Western blot P38 was analyzed versus non-phospho Western blot P38.  

Values of phosphorylation were then shown as percent phosphorylation of experimental 

muscle versus mean phosphorylation of controls. 
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Fig. 21. Phosphorylation of p38 in mouse skeletal muscle induced by bouts of passive 

lengthening, isometric lengthening and active lengthening. (*) denotes statistical 

significance p<0.05. (n ≥ 5).   
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NFAT 

We hypothesize that NFAT dephosphorylation is a key element in the induction 

of COX-2 mRNA.  Through our Western blotting (figure 22) we found no significant 

increases in dephosphorylation of NFAT (p=0.7) (figure 23).   

 

Jurkat       CL    CR         PC           PS               IC           IS               EC          ES 

       
 

Fig. 22.  These Western blots show the range of NFAT from MW 91-175.  The Jurkat 

cell extracts were obtained from Affinity Bioreagents and used as the positive control. 
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Fig. 23.   NFAT showed no increase in phosphorylation under the analysis of total 

cellular protein.   
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COX-2 

Quantitative real time PCR failed to detect COX2 expression following 

combinations of stretch and activation.  The integrity of cDNA was verified by expected 

amplification of b-actin in parallel with COX-2.  BLAST search revealed that the COX2 

primers used for qPCR are specific to COX2, indicating that the 200-1000 bp smear 

(figure 24, 25) is an amplification artifact.  Validity of these primers was verified by 

amplification of COX-2 from freeze injury induced muscle and COX-2 myoblast cell 

extract (figure 25).  Amplification conditions were optimized by running samples through 

a temperature gradient. 

 

 

Fig. 24.  COX-2 Standards declined in specificity as they decreased in 

concentration from 1x102 pg/µl to 1x 10-3 pg/µl.   
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Fig. 25.  Agarose gels led us to determine that no COX-2 product was being amplified at 

detectable levels.  A representative Control and Isometric activated sample shows no 

product at the correct 139bp weight.   When compared to a myoblast and a Day 5 injured 

samples, the EC sample showed no product amplification.  Arrows indicate the proper 

location for COX-2 cDNA product. 

 
 
BAND PURITY AND BETA ACTIN 

 Cox-2 cDNA standards were found to be pure based on acrylamide gel separation 

(figure 26).  Band purity was determined based on singleness of bands and correct size.  
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The standard bands migrated to the appropriate 539bp weight and did not contain extra 

product.   Also, experimental samples did show the ability to be amplified using Beta 

Actin primers (figure 27).  

 

 
 

 

 

 

 

 

Fig. 26. Agarose gel showing COX-2 cDNA standards. Arrow denotes the 600bp marker.  

COX-2 standards are 539bp in size. 

 

 

 

Fig. 27.  Representative gel showing experimental samples amplified using Beta Actin 

primers. 

 

 

IMMUNOHISTOCHEMISTRY 

 The initial process of evaluating NFATc1 dephosphorylation involved 

immunohistochemical staining of muscle sections.  We were unable to detect the 
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presence of NFATc1 located within the tissue (figure 28).  We therefore utilized the 

Western blot method to quantify NFATc1 dephosphorylation in our sample tissue. 

 

 

 
 

 
 

Fig. 28.  Muscle sections with immunoprobed with NFATc1 antibody and fluorescein 
conjugated secondary failed to detect NFATc1 protein. Top - Control Bottom - Isometric 

Activation. 
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HISTOLOGY 

Random tissue sections were collected and stained with hematoxylin and eosin to 

observe if changes in gross morphology due to electrical stimulation and/or mechanical 

strain were present (figure 29).  This was an effort to test whether our interventions were 

causing damage to the tissue or inducing an inflammatory response.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29.  Visualization with Light Microscopy showed no gross morphological damage to 

the muscle.    
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DISCUSSION 

 

The objective of this study was to determine if stretch and force generation 

activate the calcineurin/NFAT pathway and induce Cox-2 expression and initiate 

muscle hypertrophy.   Previous studies have shown that exercise, a combination of 

isometric activation and passive lengthening, acts as stimulus for increase in muscle mass 

and as a countermeasure for atrophy.  The signaling cascades that mediate these effects 

are numerous and interdependent, but consistent with activation by PGF2α (95). 

 

THE ROLE OF NFAT 

We observed no differences in NFAT dephosphorylation during the stimulations.  

The phosphorylation of 4EBP1, p70S6k, P42 MAP kinase and P38 MAP kinase increased 

in the absence of detectable NFAT dephosphorylation, which suggests that NFAT does 

not play a role in initiating the growth response following exercise, contrary to the 

proposed model.    

 

EXPRESSING COX-2 

Likewise, COX-2 expression was not detected following mechanical stretch and 

electrical stimulation in skeletal muscle, contrary to the proposed model.  Increased 

COX2 activity would be required for increased PGF2α synthesis, which has been shown 

to be an early signal in hypertrophy (74,97,128).  However, NSAIDs, which inhibit pain 

by specifically blocking COX-2, and have side effects of delaying muscle growth (61), 

demonstrate a role must exist for these isoenzymes during muscle growth and 
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regeneration.  COX-2 expression is seen in smooth muscle cells 4-24 hours after stretch 

(127), so COX-2 may have a role in maintaining or enhancing the hypertrophy response 

rather than being the initiator.  Also, COX-2 expression is elevated after injury in 

regenerating muscle at 24 hours; therefore this is another indication that COX-2 may 

have a later role muscle adaptation (155).  There are other mechanisms capable of 

initiating stretch and activation dependent activation of the hypertrophic pathways.  One 

of these mechanisms may be the influx of circulating growth factors to exercised muscle 

through increased blood flow.  This increased blood flow, specifically to slow muscle, 

may act to increase the binding of growth factors to membrane receptors that activate the 

kinase pathways (156). 

 

KINASE ACTIVATION 

The activation of PI-3 kinases and MAP kinases in this study are consistent with 

previous results.  Nader and Esser (157) used intense stimulation of the sciatic nerve in 

unconstrained rats to produce lengthening activations of the TA.  They demonstrated that 

a 20 minutes of high frequency electrical stimulation resulted in a four-fold increase in 

phosphorylation of p70S6k at 3 hr, where the present study shows a 16-fold increase after 

30 minutes intervention (figure 30).  A key difference between the two protocols is 

within the fixation of the limb and our use of specifically targeting the Thr389 site as the 

one producing the greatest kinase activation.  Also, our system controls limb length thus 

limiting the lengthening of the TA. 

   Nader and Esser report a 280 ± 62% increase of p38 phosphorylation 

immediately following a single bout of high frequency electrical stimulation, where the 

present study shows a 270% increase following controlled active lengthening.    We 
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found that even at 3 hours after 30 minutes of passively lengthening the muscle, we could 

still resolve increases in phosphorylation that were very similar to the ones determined by 

Nader and Esser.  The increase in phosphorylation after mechanical stretch also confirms 

the initiation of signaling through mechanical intervention.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 30.  Nader and Esser observed changes in phosphorylation that compared to the 

present study. 

 

Martineau and Gardiner conducted a study that looked at increasing and 

shortening the length of the plantaris muscle during activation (158).  They conducted 

their test by isolating the plantaris from the surrounding musculature, detaching it from 

its tendon, and tying it to a motor.  This allows for direct extension of the muscle without 

dissipation of strain within the elastic tendon. 
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They reported a 5-fold increase in P42 phosphorylation compared to a 3-fold 

increase in the current study during active lengthening (figure 31).  They observed 

increased levels of phosphorylation as tension increased as they applied stimulation to 

their isolated plantaris muscle.  This removal of the muscle from its tendon and 

surrounding muscle allows for increased stretch without the structural impediments of a 

limb.  They also observed no changes in P38 MAP kinase regardless of their protocol and 

conditions.  We found that mechanical stretch induced a rise in P38 phosphorylation, 

which was absent within the Martineau and Gardiner studies.  The specific increase in 

P38 phosphorylation during mechanical stretch showed an ability to induce muscle 

response in our system with muscle lengthening alone. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31.  Matineau and Gardiner saw no change in phosphorylation due to passive 

lengthening and no elevations in P38 phosphorylation. 
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PROTEIN PHOSPHORYLATION TRENDS: MECHANICAL STRETCH V. MUSCLE 

ACTIVATION 

Our second aim was to characterize activation of these markers of hypertrophy.  

Phosphorylation of the signaling molecules was not consistent with generic activation of 

classical signaling cascade groups and demonstrates the complexity of these cascades and 

their interactions.   

4EBP1 and p70S6k are classical effectors of the PI3K cascade (135), and P42 and 

P38 are representative of the MAP kinase family (141).  Each of these proteins is linked 

to protein translation and transcription and might be expected to show similar changes in 

stimulated muscle due to common upstream regulation in each cascade (148).  However 

the results of these experiments demonstrate the complex control of muscle hypertrophy, 

in that these markers showed different responses to the same stimulations. 

Phosphorylation of p70S6k and p42 MAP kinase was increased following ISO and 

EC, both protocols that include generation of active force.   MAP kinases do act to 

phosphorylate p70S6k, which may be a cause for their common response.  The primary 

response to force generation suggests that calcium signaling plays a key role in their 

activation.  The response of these kinases to electrical stimulation also has an implication 

of the effectiveness of intermittent electrical stimulation of muscle during extended bed 

rest for maintaining muscle mass.   

In contrast, p38 MAP kinase phosphorylation was increased following PAS and 

EC, both protocols that included a stretch component.  It is thought that passive stretch 

plays a role in muscle maintenance but not much is known on its mechanisms (159).  

Phosphorylation of p38 shows that changing the physical structure of the muscle and its 

underlying cytoskeletal network in some way allows it to turn on its protein synthesis 
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machinery.  P38 is required for the expression of MyoD responsive genes and muscle 

differentiation (160).  Inhibition of P38 prevents the differentiation program in muscle 

cells (161).  Passive stretch showed in this study to activate only P38, possibly linking 

cell stretch to a switch for initiation of differentiation.   

Differences between the two MAP kinases may be attributable to their function. 

The p42/p44-Extracellular-signal Responsive Kinases is classically activated by growth 

factors including PGF2α (99,100), where p38-Stress Activated Protein Kinase is 

activated by cytokines, heat stress, and oxidative stress (148).  ERKs have been shown to 

be reliably activated by stretch (158) but our data suggest that prolonged activation may 

be more strongly calcium dependent, through processes like calcium-dependent PKCs.  

In contrast, P38 phosphorylation increases following stretch, which may indicate that the 

stress response is due to physical stress to the cell structure, while not directly regulated 

by depolarization dependent processes. 

Although 4EBP1 and p70S6K are both members of the PI-3 Kinase cascade 

regulated by mTOR, they responded very differently to the applied stimuli.  There are 

differences in their regulation that may explain these differences.  P70 activation is 

activated in sequence in that approximately four sites have to be phosphorylated to allow 

it functional ability (130).  Both molecules depend on multi-stage phosphorylation:  only 

the γ form of 4E allows translation, and only the β form can be phosphorylated into the γ 

form (135).  Though similar in sequential phosphorylation, the entire P70S6K pseudo 

substrate domain must be phosphorylated before Thr389 is exposed (129). 

  It has been suggested that PDK1 might directly phosphorylate P70S6K thus 

making its activation sites more accessible than those of 4EBP1 (132,162).  It has also 

been suggested that MAP kinases play a role in the early parts of this sequential 
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phosphorylation (132).  MAP kinases were activated during our protocols so if they made 

the P70S6K more accessible for mTOR activation then this could be a reason for the 

difference in its activity.   Since P42 was activated in the same manner as P70S6K it is 

conceivable that P42 is more apt to play a role in the regulation of P70S6K than is P38.   

The complex nature of the hierarchy of phosphorylation of the other sites in 4E-

BP1 suggests that they are targets for a range of proline-directed kinases but they have 

yet to be identified.  Mitogenic stimuli induce the phosphorylation of 4EBPs and the 

release of eIF4E.   Several kinases have been found to phosphorylate 4E-BP1 in vitro, 

including ERK16; these have not been studied in vivo (163).  Although rapamycin has an 

effect on both of these, our results suggest that there are differences in the effectors that 

allow each of these proteins to become active.   The data suggests that the calcium 

dependent PI3K pathway is only one of the control mechanisms for p70 and 4EBP1 

phosphorylation since there is differential activation under the same stimuli.  Another of 

the PI3 pathway controls is Insulin and IGF-I.  Insulin has also been shown to increase 

the phosphorylation of P70S6K, 4EBP1 and Protein Kinase B (PKB/Akt) in skeletal 

muscle, indicative signal proteins in the PI 3-kinase pathway.  IGF-I increases PKB/Akt 

phosphorylation in skeletal muscle, but has no effect on P70S6K phosphorylation (164).  

Exercise induces increases in calcium and sensitivity to insulin, both, which are active in 

mediating the PI3 kinase pathway responses.  This suggests multiple activators and 

amplifiers of the cascade. 

 

COMBINATION OF MECHANICAL STRETCH AND ELECTRICAL STIMULATION 

Active lengthening has previously been shown to have a greater effect on some of 

these cascades than either lengthening or activation alone (158).  This observation 
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highlights the ongoing controversy surrounding the relative benefits of concentric, 

isometric, and plyometric exercise.  Within the four markers, only 4EBP1 

phosphorylation was numerically increased by the combination of stretch and activation, 

although this increase was not significant.   These results gave the first indication that 

there may not be one pathway that activates each of these molecules like that of the 

proposed NFAT/COX-2 pathway.  In fact, it could be suggested that the mechanical 

stretch and electrical stimulation processes may be redundant or work as primary or 

secondary mechanisms to provide the necessary adaptation to the muscle.   

 

COX-2 AND INITIATION OF HYPERTROPHY 

This study suggests that the pattern of effector activation does not begin with 

NFAT dephosphorylation and COX-2 expression.   It is however known that 

prostaglandins are involved in the hypertrophic response and the conversion of 

Arachidonic acid to prostaglandin by COX-2 is the rate-limiting step.  Prostaglandin 

synthesis can be initiated by the activation of MAP kinases.  Recent evidence has 

demonstrated that MAP kinases are able of activating cytoplasmic phospholipase A 

c(PLA) that can mediate the release of arachidonic acid from the cell membrane (165).  

MAP kinase pathways can be activated by the binding of growth factors to membrane 

receptors (141).  Exercise has been shown to increase growth factors in the bloodstream 

and during exercise blood flow is increased to the musculature (84, 85,161).  While the 

original model suggested that increases in intracellular calcium stimulated upregulation 

of COX-2 and the accelerated conversion of arachidonic acid to prostaglandins, we 

conclude that activation of the MAP kinase and the PI3 kinase effectors are not 

associated with simultaneous NFAT dephosphorylation or COX-2 upregulation.   Further 
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study could help to establish alternate time period at which these exercise protocols could 

induces activation and upregulation of these targets. 

 

DISCUSSION SUMMARY 

 
In summary, the results of this study indicate mechanical stretch and isometric 

activation influence the hypertrophic signaling in the tibialis anterior.  The increases in 

activation support the hypothesis that calcium plays an important role in activating these 

pathways either by depolarization of the membrane or through indirect action by changes 

in the membrane structure.  It is also suggested that at 3 hour after the recovery of 

exercise these pathways are not mediated through a calcineurin dependent mechanism.  

However, a definite conclusion cannot be made from this study that activity of NFAT and 

COX-2 are not present during alternate stages after exercise recovery.  Stretch and 

activation initiate separate but overlapping signaling cascades, as evidenced by the 

activation the MAP kinases and PI-3 kinases targets.  This type of interaction in vivo 

shows the complexity of controls within its native environment, and demonstrates that 

effective countermeasures to atrophy will need to compensate for both the chemistry of 

activation and the mechanics of stretch.   
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APPENDIX 

 
 

APPENDIX A – COX-2 REAL-TIME 
 
 

 

 

 
Fig. 32.  Melt curves for standard maintained shape and form in the higher standards but 
around 1e-2 pg/ul they began to lose shape and were therefore unresolvable. 
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APPENDIX A CONT. 
 
 

 
 
 

 
 
 
Fig. 33.  This same pattern was observed in the sample which also when quantified were 
within the low standard range. 
 
 
 
 
 
 
 
 
 

 



 

 60

APPENDIX A CONT.  
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Fig. 34.  Initial inspection of the unresolvable levels showed no differences between 
control and stretched samples. 
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APPENDIX B – TIME POINT 
 
 

0
2
4
6
8

10
12
14

Con
tro

l 0 60 18
0

36
0

14
40

Time Post Exercise - Minutes
4e binding protein P70 S6 Kinase

n=2

0
2
4
6
8

10
12
14

Con
tro

l 0 60 18
0

36
0

14
40

Time Post Exercise - Minutes
4e binding protein P70 S6 Kinase

n=2

 
 
Fig. 35.  Initial experiments showed that PI-3 Kinase activity was maximized by 
analyzing the effect at 3 hours after stimulation. 
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