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SUMMARY

This thesis consists of three distinct components: (1) a test of Slocnzewski’s theory of

spin-transfer torque using the Boltzmann equation, (2) a comparison of macrospin models

of spin-transfer dynamics in spin valves with experimental data, and (3) a study of spin-

transfer torque in continuously variable magnetization.

Slonczewski developed a simple circuit theory for spin-transfer torque in spin valves with

thin spacer layer. We developed a numerical method to calculate the spin-transfer torque

in a spin valve using Boltzmann equation. In almost all realistic cases, the circuit theory

predictions agree well with the Boltzmann equation results.

To gain a better understanding of experimental results for spin valve systems, current-

induced magnetization dynamics for a spin valve are studied using a single-domain approx-

imation and a generalized Landau-Lifshitz-Gilbert equation. Many features of the experi-

ment were reproduced by the simulations. However, there are two significant discrepancies:

the current dependence of the magnetization precession frequency, and the presence and/or

absence of a microwave quiet magnetic phase with a distinct magnetoresistance signature.

Spin-transfer effects in systems with continuously varying magnetization also have at-

tracted much attention. One key question is under what condition is the spin current

adiabatic, i.e., aligned to the local magnetization. Both quantum and semi-classical cal-

culations of the spin current and spin-transfer torque are done in a free-electron Stoner

model. The calculation shows that, in the adiabatic limit, the spin current aligns to the

local magnetization while the spin density does not. The reason is found in an effective field

produced by the gradient of the magnetization in the wall. Non-adiabatic effects arise for

short domain walls, but their magnitude decreases exponentially as the wall width increases.

xi



CHAPTER I

INTRODUCTION AND BACKGROUND

This thesis is dedicated to understanding spin-transfer effects in magnetic nanostructures.

By “spin-transfer” we mean angular momentum transfer between itinerant electrons and

the localized magnetization of a ferromagnet. This chapter provides the background needed

to understand the specific calculations that make up the thesis.

1.1 Spin Valve

The most widely studied magnetic nanostructure is the spin valve (Figure 1.1), where a

thin-film non-magnet (spacer) is sandwiched between two thin-film ferromagnets. In the

range of film thicknesses most commonly used, the magnetization M of the “fixed” layer

and the magnetization m of the thinner “free” layer lie in the plane of the film. M and m

form an angle θ. Nonmagnetic leads connect the spin valve to electron reservoirs.

1.2 Giant Magneto-Resistance

Spin valves exhibit a phenomenon called Giant Magneto-Resistance (GMR) [1, 2], which

is a consequence of its structure composed of alternating ferromagnetic and non-magnetic

layers (Figure 1.2). The resistance of such multilayers is low when the magnetizations of

neighboring ferromagnetic layers are parallel and high when they are antiparallel. The

relative change of resistance can be as high as 200%.

lead lead

R
es

er
vo

ir

R
eservo

ir

M
m

S
p

acer

NFM FM

Figure 1.1: Schematic view of a spin valve (not to scale). FM and N layer thicknesses are
very small compared to the distance between reservoirs.

1



FeCr Cr Cr CrFe Fe

FeCr Cr Cr CrFe Fe

(a)

(b)

Figure 1.2: Magnetic multilayer structure and GMR.

The reason for the resistance difference between parallel and antiparallel configurations is

the following: in a ferromagnet, the majority electrons and minority electrons carry current

in parallel, but the majority electrons experience lower resistance than the minority elec-

trons. When a large external field is applied, the magnetizations in different ferromagnetic

layers align to the field, and hence parallel to each other as in structure (b) in Figure 1.2.

The majority spin-up electrons are majority electrons in all layers. Therefore the spin-up

(majority) channel forms a short circuit throughout the multilayer, which leads to lower

resistance. At low magnetic field, the magnetostatic interaction causes the magnetizations

in adjacent ferromagnetic layers to align antiparallel as in structure (a) in Figure 1.2. In

this case, the spin-up (down) electrons are alternatively majority and minority electrons

in adjacent layers. Therefore, both the spin-up and spin-down channels have the same

resistance. There is no short circuit, and the multilayer has higher resistance.

1.3 Spin-transfer in a Spin Valve

In spin valves experiments, one finds that the resistance depends on the direction of the

applied current [3–7]: high resistance when the current flows from fixed layer to free layer,

low resistance when the current flows from free layer to fixed layer. Figure 1.3 illustrates

2



Figure 1.3: Spin valve differential resistance hysteresis curve. (Katine et. al. [3])

this with a plot of differential resistance versus current, where the high resistance and low

resistance correspond to the anti-parallel and parallel configuration due to the GMR effect.

More precisely, the current dependence of the resistance forms a hysteresis loop. This

current polarity dependent resistance makes it possible to use a spin valve as a storage bit

unit, which can be written as 0 or 1 by applying current in opposite directions.

To understand Figure 1.3 qualitatively, we need the concepts of both electric current I

and spin current Q. The electric current is the sum of the current carried by spin-up and

spin-down electrons: I = I↑ + I↓; The spin current is the difference: Q = I↑ − I↓. The

direction of Q is along the spin-up direction in spin space. 1

For simplicity, we will assume that when an electron spin hits a non-magnet/ferromagnet

interface from the non-magnet side (see Figure 1.4), it passes through if its spin is parallel

to the magnetization of the ferromagnet, but it is reflected if its spin is anti-parallel to the

magnetization. This perfect filter assumption implies that the longitudinal component of an

arbitrarily oriented spin current passes through a ferromagnetic layer, while the transverse

component is absorbed by the interface. This fact has been shown to be correct to a good

approximation in quantum mechanical calculations for realistic materials [8].

1This definition of spin current is not rigorous, Ref. [8] gives a more rigorous one.

3



Figure 1.4: Spin dependent interface scattering at a NM/FM interface, the insets are the
Fermi surfaces for spin up and spin down electrons in Cu and Co.

out
Qin

Q

in
Q ||

in
Q

stN

e− M

m

I

freefixed

θ

spacer

Figure 1.5: This current polarity stabilizes the parallel configuration.

Now, suppose an unpolarized electric current I is sent through a spin valve such that

electrons flow from the fixed layer to the free layer (Figure 1.5). If we treat the ferromagnetic

layer as a perfect filter as in the previous paragraph, the electric current becomes polarized

as it passes through the fixed layer. In other words, in the non-magnetic spacer layer,

there is a non-zero spin current Qin that is parallel to M. If for any reason, the free layer

magnetization m is not parallel to M, Qin can be decomposed into components longitudinal

and transverse to m. The longitudinal (parallel) component Q
‖
in passes through the free

layer and becomes Qout (see Figure 1.5),

Qout = Q
‖
in. (1.1)

However, the transverse (perpendicular) component Q⊥in is absorbed by the interface and

the angular momentum associated with Q⊥in is deposited into the free layer. Equivalently

the absorption produces a torque Nst on the free layer magnetization m. This torque,

Nst, is called spin-transfer torque. In Figure 1.5, we see that Nst pulls m towards M.

4



in
Q

in
Qin

Q || stN

e−

M

m

I

freefixed

θ

spacer

Figure 1.6: This current polarity de-stabilizes parallel configuration.

Therefore this current polarity stabilizes the parallel configuration, and thus leads to low

GMR resistance. We can also see the following relations from Figure 1.5:

Nst = Q⊥in = Qin −Qout. (1.2)

This equation simply states that spin-transfer torque equals the transverse component of the

incoming spin current, or the difference between the incoming and outgoing spin current.

On the other hand, if the electric current is applied in the opposite direction, the “in-

coming” spin current towards the free layer comes from electrons that reflect backwards

from the fixed layer. Remember that the spin anti-parallel to the magnetization (M in this

case) is reflected. Therefore Qin is anti-parallel to M (Figure 1.6), which results in oppo-

site Q
‖
in and Q⊥in compared to the previous case. Consequently, the spin-transfer torque

Nst = Q⊥in pulls m away from M. Therefore, this current polarity de-stabilizes the par-

allel configuration and stabilizes the anti-parallel configuration, which leads to high GMR

resistance.

Finally, if the current polarization in the spacer layer is η(θ) = (I↑ − I↓)/(I↑ + I↓), the

spin current is

Qin = η(θ)
I~

2e
M̂. (1.3)

where M̂ denotes the unit vector in M direction. Since Q⊥in = Qin sin θ (see Figure 1.5 and

Figure 1.6)

Nst = Q⊥in = η(θ)
I~

2e
sin θ Q̂⊥in = η(θ)

I~

2e
m× (M×m). (1.4)

This formula, first derived by Slonczewski [9], is widely used in the literature.

5



Figure 1.7: Domain wall.

1.4 Spin-transfer in a Domain Wall

Current-induced spin-transfer torque also occurs in continuous nanostructures like a domain

wall (Figure 1.7), where the magnetization rotates continously to connect two regions of

uniform and antiparallel magnetization. When an electric current passes through a domain

wall, one observes domain wall motion [10–19], where the motion direction depends on the

current polarity. This can also be explained using spin-transfer torque, at least qualitatively.

A spin-transfer torque (density) formula for continuous magnetization can be derived

from Eq. (1.2):

Nst = lim
δx→0

Qin −Qout

δx
= lim

δx→0

Q(x)−Q(x+ δx)

δx
= −∇Q(x), (1.5)

where δx is the thickness of the slab in the domain wall under consideration. If we assume

that the spin current Q(x) follows the continuous magnetization adiabatically, i.e. Q(x) ‖

M(x), then

Nst = −∇Q(x) ∝ ∇M(x). (1.6)

In this thesis, we study spin-transfer torque and some of its consequences for

a spin valve and for a domain wall. For the spin valve structure, we calculate

an analytic spin-transfer torque formula (η(θ) in Eq. (1.4) essentially), and use

a Boltzmann equation calculation to confirm the correctness of the formula

(Chapter 2). Then, using this formula, we perform a thorough study of the

6



magnetization dynamics due to spin-transfer torque in a spin valve using the

Landau-Lifshitz-Gilbert equation (Chapter 3). For a domain wall structure, we

used both analytic and numerical tools to study the adiabaticity of the spin

current as a function of on the domain wall width (Chapter 4).

7



CHAPTER II

SPIN-TRANSFER TORQUE FOR A SPIN VALVE

In this chapter, we calculate the spin-transfer torque acting on the ferromagnetic layers of

a spin valve. Section 2.1 describes an analytic circuit theory approach. Section 2.2 gives

a numerical approach using a matrix Boltzmann equation. Section 2.3 presents the results

from both approaches and compares them.

2.1 Circuit Theory

In pure ferromagnetic material the simple circuit theory used in Figure 1.2 to explain the

GMR effect works well. The up-spin and down-spin currents act in parallel. But in a

spin valve, there is no obvious choice for the spin quantization axis in the spacer layer that

connects the two non-collinear ferromagnetic layers. Based on this observation, Slonczewski

developed [20] a theory of spin-transfer torque for a spin valve that combines a density-

matrix description of the spacer layer with a circuit theory [21] description of the remainder

of the structure. In this section, we generalize the symmetric case studied by Slonczewski

to the case of a spin valve with arbitrary geometry.

We start with the region outside of the spacer layer where a circuit theory applies. We

then use a density matrix method to study transport inside the spacer layer. Combining the

results from outside and inside the spacer layer, we find the spin currents at the interfaces

of the spacer layer. We compute the spin-transfer torque from these spin currents.

2.1.1 Outside of the Spacer Layer

We replace the part of the spin valve outside of the spacer layer by the effective circuit

shown in Figure 2.1. In this circuit: I = I↑i + I↓i is the total electric current, and I↑,↓i are

the currents carried by spin-up and spin-down electrons at the left/right (i = L,R) edge

of the spacer layer. R↑,↓i are the effective resistances experienced by spin-up and spin-down

electrons between the reservoir and the spacer layer, including all resistances from the bulk

8



FM leadSpacerFMlead
ReservoirReservoir

I I

I↑L

I↓L

R↑LR↑L

R↓L

V ↑L

V ↓L

I↑R

I↓R

R↓R

V ↑R

V ↓R

V1 −V1

xL xR

x

∆VL ∆VR

Figure 2.1: Slonczewski’s model.

and the interfaces. The V ’s are the electric potentials at various points (for different spin

types). Applying Kirchoff’s laws to the circuit gives

∆VL = I↓LR
↓
L − I

↑
LR
↑
L = −QLRL + IrL, (2.1a)

∆VR = I↑RR
↑
R − I

↓
RR
↓
R = QRRR − IrR, (2.1b)

where Qi = I↑i − I
↓
i is the spin current at the left/right edge of the spacer layer. Ri =

(R↑i + R↓i )/2 is the average resistance for spin-up and spin-down and ri = (R↓i − R
↑
i )/2 is

the resistance difference between spin-up and spin-down. The relations between QL,R and

∆VL,R in Eq. (2.1) are all we need from outside the spacer layer.

2.1.2 Inside the Spacer Layer

Inside the spacer layer, we use a density matrix description to obtain two more relations

between QL,R and ∆VL,R. The two new relations combine with Eq. (2.1) to give four

equations with four unknowns (QL,R and ∆VL,R). From these, we can solve for QL,R, and

compute the spin-transfer torque.

We need three steps to find the two new relations: (1) define eigenstates for spin-up and

spin-down in the spacer layer using the spin valve’s left and right FM layers’ spin quanti-

zation axes respectively; (2) write down the density matrix using postulated distribution

functions with undetermined chemical potentials for each type of spin in the spacer layer;

(3) express QL,R and ∆VL,R in terms of the chemical potentials, and find the relations

between them by eliminating the undetermined chemical potentials.
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Figure 2.2: States in the spacer layer.

1. Spin states in the spacer layer

In Figure 2.2, the left and right ferromagnetic layers are denoted by FML and FMR.

Their magnetizations are M and m, respectively, and inclined from one another by an angle

θ. FML and FMR are separated by a non-magnetic metal spacer layer denoted by N. The

two interfaces of the spacer layer, FML/N and N/FMR, are located at x = xL and x = xR.

We assume there is no scattering within the spacer layer because the spacer layer thickness

is much smaller than the mean free path.

The natural electron spin quantization axes in the two ferromagnetic layers align along

M and m respectively. The spin operators for FML and FMR can be written as σL and σR,

where σL|L, σ〉 = ±|L, σ〉 and σR|R, σ〉 = ±|R, σ〉 (σ =↑, ↓). The matrix elements between

these spin states are

〈L, σ|R, σ′〉 =







cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)






and 〈i, σ|i, σ′〉 = δσσ′ (i = L,R). (2.2)

2. Construct a density matrix

We postulate a Fermi distribution function in the spacer layer expanded linearly with

respect to one of four chemical potentials µγ
σ with γ =→ or ← and σ =↑ or ↓ (µ→σ denotes

the potentials for right going electrons from FML, µ←σ denotes the potentials for left going

electrons from FMR):

fγ
σ (ε) =

[

1 + exp

(

εF + µγ
σ − ε

kBT

)]−1

≈ f0(ε)−
(

∂f0

∂ε

)

εF

µγ
σ. (2.3)

In the spacer layer the right going (→) electrons are either transmitted from FML
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through the FML/N interface or backscattered from N by the FML/N interface (see Fig-

ure 2.2), so we decompose the right going electron spin using |L, ↑〉 and |L, ↓〉. Similarly, we

decompose the left going (←) electron spin using |R, ↑〉 and |R, ↓〉. Therefore, the density

matrix ρN in the spacer layer is,

ρN =
∑

σ=↑,↓



|L, σ〉
∑

kx>0

|k〉f→σ (k)〈k|〈L, σ|+ |R, σ〉
∑

kx<0

|k〉f←σ (k)〈k|〈R, σ|



 . (2.4)

3. Two more relations between QL,R and ∆VL,R

With the density matrix, we can express the number densities for each spin type (nσ
i )

and electric current carried by each spin type (Jσ
i ) using either the left (i = L) or right

(i = R) magnetization quantization axis,

nσ
i = 〈i, σ|

B.Z.
∑

k

〈k|ρN |k〉|i, σ〉, (2.5a)

Jσ
i = − e

m
〈i, σ|

B.Z.
∑

k

〈k|pxρN |k〉|i, σ〉. (2.5b)

In Eq. (2.5b) px is the x component of the electron momentum.

We assume f0 is a symmetric function of k and approximate ∂εf
0 = −δ(ε − εF ). Let

nF = −2
∑

k ∂ǫf
0 be the total electron state density at the Fermi level, and let n0 =

∑

k,σ f
0
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be the electron density. Then Eq. (2.5) can be calculated as

nσ
i = 〈i, σ|

B.Z.
∑

k

〈k|ρN |k〉|i, σ〉

=
∑

σ′

〈i, σ|L, σ′〉
B.Z.
∑

k

k
′
x>0
∑

k′

〈k|k′〉f→σ′ 〈k′|k〉〈L, σ′|i, σ〉

+
∑

σ′

〈i, σ|R, σ′〉
B.Z.
∑

k

k
′
x<0
∑

k′

〈k|k′〉f←σ′ 〈k′|k〉〈R, σ′|i, σ〉

=
∑

σ′



〈i, σ|L, σ′〉2
k
′
x>0
∑

k,k′

〈k|k′〉2f→σ′ + 〈i, σ|R, σ′〉2
k
′
x<0
∑

k,k′

〈k|k′〉2f←σ′





=
∑

σ′

〈i, σ|L, σ′〉2
k
′
x>0
∑

k,k′

〈k|k′〉2f0 +
∑

σ′

〈i, σ|R, σ′〉2
k
′
x<0
∑

k,k′

〈k|k′〉2f0

+
∑

σ′



µ→σ′ 〈i, σ|L, σ′〉2
k
′
x>0
∑

k′

(−∂ǫf
0)F + µ←σ′ 〈i, σ|R, σ′〉2

k
′
x<0
∑

k′

(−∂ǫf
0)F





=
1

2

∑

k,σ

f0(ε) +
1

2

∑

k′

(−∂ǫf
0)F

∑

σ′

(

µ→σ′ 〈i, σ|L, σ′〉2 + µ←σ′ 〈i, σ|R, σ′〉2
)

=
n0

2
+
nF

4

∑

σ′

(

µ→σ′ 〈i, σ|L, σ′〉2 + µ←σ′ 〈i, σ|R, σ′〉2
)

. (2.6)

The calculation for Jσ
i is very similar. But to avoid inessential formal integrations, we make

the replacement px → mv0 sgn(kx) where v0 is a constant parameter,

Jσ
i = − e

m
〈i, σ|

B.Z.
∑

k

〈k|pxρN |k〉|i, σ〉

= −ev0
∑

σ′

〈i, σ|L, σ′〉
B.Z.
∑

k

k
′
x>0
∑

k′

〈k|k′〉sgn(k′x)f→σ′ 〈k′|k〉〈L, σ′|i, σ〉

− ev0
∑

σ′

〈i, σ|R, σ′〉
B.Z.
∑

k

k
′
x<0
∑

k′

〈k|k′〉sgn(k′x)f←σ′ 〈k′|k〉〈R, σ′|i, σ〉

=
enF v0

4

∑

σ′

(

−µ→σ′ 〈i, σ|L, σ′〉2 + µ←σ′ 〈i, σ|R, σ′〉2
)

. (2.7)

Plugging Eq. (2.2) into Eq. (2.6) and Eq. (2.7), nσ
i and Jσ

i can be rewritten in matrix form
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in terms of the chemical potentials µγ
σ:



















n↑L

n↓L

n↑R

n↓R



















=
n0

2
+
nF

4



















1 0 cos2 θ
2

sin2 θ
2

0 1 sin2 θ
2

cos2 θ
2

cos2 θ
2

sin2 θ
2

1 0

sin2 θ
2

cos2 θ
2

0 1





































µ→↑

µ→↓

µ←↑

µ←↓



















, (2.8a)



















J↑L

J↓L

J↑R

J↓R



















=
enF v0

4



















−1 0 cos2 θ
2

sin2 θ
2

0 −1 sin2 θ
2

cos2 θ
2

− cos2 θ
2
− sin2 θ

2
1 0

− sin2 θ
2
− cos2 θ

2
0 1





































µ→↑

µ→↓

µ←↑

µ←↓



















. (2.8b)

There are four relations between nσ
i ’s and Jσ

i ’s embedded in Eq. (2.8). Two of them are

n↑R + n↓R = n↑L + n↓L , (2.9a)

J↑R + J↓R = J↑L + J↓L . (2.9b)

These equations say that the total electron density and total charge current do not depend

on the choice of quantization axis.

To extract the other two relations, we need two equations: (1) the spin current Qi =

S(J↑i − J↓i ) where S is the cross-sectional area of the device, and (2) the voltage differ-

ence near the interfaces for spin-up and spin-down is proportional to the number density

difference: ∆Vi = (2/enF )(n↓i − n
↑
i ). Using these two equations, Eq. (2.8) reduces to



















QL

QR

G∆VL

G∆VR



















=
enF v0

4



















−1 1 cos θ − cos θ

− cos θ cos θ 1 −1

−1 1 − cos θ cos θ

− cos θ cos θ −1 1





































µ→↑

µ→↓

µ←↑

µ←↓



















, (2.10)

where G = Se2k2
F /4π

2
~ and kF is the Fermi wave vector. From Eq. (2.10), we obtain two

more equations that contains Q’s and ∆V ’s by eliminating µ’s:

0 = QL(1 + cos2 θ)− 2QR cos θ −G∆VL sin2 θ, (2.11a)

0 = ∆VL(1 + cos2 θ)− 2∆VR cos θ −G−1QL sin2 θ. (2.11b)
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Note that QL and QR are the components of the total spin current parallel to the magne-

tization of the left and right ferromagnet. Therefore, if Q is the spin current in the spacer

layer, QL = Q ·M and QR = Q ·m. With Eq. (2.1) and Eq. (2.11), we can express QL,R

in terms of the resistances rL,R and RL,R.

2.1.3 Spin-transfer Torque Formula

To relate the spin-transfer torque to QL,R, we examine the total torque acting on the spacer

layer and the total spin current injected into it. If NL,R is the spin-transfer torque acting

on the spacer layer at the left/right interface (FML/N interface at xL and N/FMR interface

at xR), the total torque acting on the spacer layer is equal to the total angular momentum

deposited by spin current,

NL + NR =
~

2e
(QL M̂−QR m̂). (2.12)

Since the spin-transfer torque equals the transverse spin current, the torques at the left and

right interface should be perpendicular to the adjacent magnetization,

NL · M̂ = 0 and NR · m̂ = 0, (2.13)

From Eq. (2.12) and Eq. (2.13), we conclude that the magnitude of the spin-transfer

torque that acts on FMR is

NR
st (θ) = −NR =

~

2e

QR cos θ −QL

sin θ
(2.14)

Collecting Eq. (2.11), Eq. (2.1), Eq. (2.13) and Eq. (2.14), and solving for NR
st, gives the

spin-transfer torque in the form derived in Chapter 1 [Eq. (1.4)]:

NR
st(θ) = η(θ)

~I

2e
m̂× (m̂× M̂), (2.15)

where

η(θ) =
q+

A+B cos θ
+

q−
A−B cos θ

, (2.16)

and

q± =
1

2

[

PLΛ2
L

√

Λ2
R + 1

Λ2
L + 1

± PRΛ2
R

√

Λ2
L − 1

Λ2
R − 1

]

,

A =
√

(Λ2
L + 1)(Λ2

R + 1) and B =
√

(Λ2
L − 1)(Λ2

R − 1). (2.17)
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The parameters PL,R and ΛL,R are defined in terms of the effective resistance parameters

rL,R and RL,R:

Pi =
1
2
(R↓i −R

↑
i )

1
2
(R↓i +R↑i )

=
ri
Ri

and Λ2
i = GRi (i = L,R), (2.18)

If the spin valve is symmetric, i.e. both the geometry and the material are the same on

both side of the spacer layer, then ΛL = ΛR = Λ and PL = PR = P . This makes q− = 0

and Eq. (2.15) reduces to Slonczewski’s formula [9, 20]. An equivalent spin-transfer torque

formula was obtained by Manschot et. al. [22] independently.

2.1.4 Determine the Parameters in the Spin-transfer Torque Formula

To determine the parameters ΛL,R and PL,R, we start with an exact expression for the

voltage difference ∆VL in Eq. (2.1): 1

∆VL =

xL
∫

−∞

dx[I↓(x)ρ↓(x)− I↑(x)ρ↑(x)]. (2.19)

ρ↑,↓(x) is the resistivity experienced by spin-up/down electrons at position x. The average

resistivity (used below) is ρ̄ = (ρ↑+ρ↓)/2, and the resistivity difference is ∆ρ = (ρ↓−ρ↑)/2.

Both ρ̄ and ∆ρ contain delta functions at the non-magnet/ferromagnet interfaces to take

account of spin-dependent interface scattering.

From the drift-diffusion approximation [23], we know that close to the outer x = x0

interface (see Figure 2.2), I↑(x) and I↓(x) approach the corresponding bulk values expo-

nentially in both directions. 2 The decay length is the spin-flip length in each material, lFsf

for the ferromagnet (F) and lNsf for the non-magnet (N), and the thickness of each layer are

t
L/R
N for left/right lead, and t

L/R
F for left/right ferromagnet. In that case, an approximate

expression for Eq. (2.19) can be written as

∆VL = Q0ρ̄Nd
L
N +Q0ρ̄Fd

L
F + I∆ρFd

L
F + ∆VI + ∆VC . (2.20)

1Here, we are working in the Ohmic limit and not the ballistic limit.
2If I↓(x) and I↑(x) take the bulk value, either in non-magnet or ferromagnet, then I↓(x)ρ↓(x) =

I↑(x)ρ↑(x). So the non-zero contribution to Eq. (2.19) comes from the region where I↑,↓ has deviation
from its bulk value, which is corresponding to the spin accumulation region.
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Table 2.1: Material parameters used in circuit theory.
Parameter Material Value Units Reference

ρ Cu 6 nΩ·m [24]
ρ↑ Co 40.5 nΩ·m [24]
ρ↓ Co 109.5 nΩ·m [24]

R↑I Co/Cu 0.117 fΩ·m2 [24]

R↓I Co/Cu 0.903 fΩ·m2 [24]
lsf Cu 450 nm [25]
lsf Co 59 nm [26]

G Cu 2.3 · 10−15 Ω−1·m−2

R̄I Co/Cu 0.51 fΩ·m
∆RI Co/Cu 0.393 fΩ·m
ρ̄ Co 75 nΩ·m

∆ρ CO 34.5 nΩ·m

Q0 = Q(x0), ∆VI and ∆VC are voltage drops at the internal interfaces and at the reservoir

contact. The effective lengths

dL
F = lFsf

[

1− exp(−tLF/lFsf)
]

and dL
N = lNsf

[

1− exp(−tLN/lNsf)
]

, (2.21)

appear because, due to spin-flip scattering, only electrons within dF or dN of the ferromag-

netic interfaces can accommodate the dissimilar spin-currents characteristic of the ferro-

magnets and the non-magnets in equilibrium.

The relationship between Q0 and QL(x) is nontrivial [23] except when the ferromagnet

is very thin (tLF ≪ lFsf). In that case, Q0 = QL(x0) ≃ QL(x), and we can connect Eq. (2.20)

to Eq. (2.1) and Eq. (2.15) to get

Λ2
L = G(ρ̄Nd

L
N + ρ̄Ft

L
F + R̄I + R̄C) and PL = GΛ−2

L (∆ρFt
L
F + ∆RI + ∆RC). (2.22)

Here, the interface resistances R̄I , and ∆RI and the contact resistance R̄C , and ∆RC are

defined similar to ρ̄ and ∆ρ. These two formulas (and similar ones for ΛR and PR), together

with Eq. (2.15) and Eq. (2.17) are the principal results of this section. The numerical values

for the various parameters used in Eq. (2.21) and Eq. (2.22) for a spin valve are listed in

Table. 2.1.
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2.2 Boltzmann Approach

This section describes a method to calculate spin-transfer torque in spin valve systems

using a matrix Boltzmann equation. 3 The main improvement over the circuit theory is

a consideration of the differences between the electrons from different parts of the Fermi

surface.

The calculation proceeds in eight steps: (1) make simplifications for the Fermi surfaces;

(2) construct a matrix distribution function and a matrix Boltzmann equation to handle

the ferromagnetic layers and discretize the Boltzmann equation on the Fermi sphere; (3)

solve the Boltzmann equation for the eigensolutions in the non-magnetic bulk and the

ferromagnetic bulk; (4) use the eigensolutions to construct a scattering matrix for each

bulk layer in the spin valve; (5) construct the scattering matrix for each interface in the

spin valve; (6) connect the bulk and interface scattering matrices into a single system-wide

scattering matrix; (7) apply boundary conditions from the reservoirs to the system-wide

scattering matrix to calculate the coefficients of the distribution function expansion; (8)

calculate the spin density (spin accumulation), spin current and spin-transfer torque using

the distribution function. 4

2.2.1 Approximations

The actual shape and/or size of the Fermi surface is not so important, as long as we allow

different electrons to have different quasi-momentum vectors k in a Boltzmann equation

calculation. Therefore, to simplify calculations, we assume that the Fermi surfaces in both

the non-magnet and the ferromagnet (both spin up and spin-down) are the same and are

perfectly spherical. We will use different mean free paths to distinguish the differences

between the electrons in the non-magnet and the ferromagnet: lN for non-magnet, l↑,↓F for

spin-up and spin-down electrons in ferromagnet. Another commonly used approximation

in Boltzmann equation studies is the relaxation-time approximation. We will use this also.

3Many of the results of this section were obtained by Dr. Mark Stiles (NIST) for a three-layer geome-
try. I confirmed his (unpublished) results and extended them to a five-layer geometry with new boundary
conditions appropriate to the presence of reservoirs (see Figure 2.3 below).

4Spin accumulation is the spin density that deviates from its equilibrium value.
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2.2.2 Matrix Distribution Function and Matrix Boltzmann Equation

The usual spin independent Boltzmann equation is

vk ·
∂f(r,k)

∂r
− eE · vk =

∫

dk′Pk,k′ [f(r,k′)− f(r,k)]. (2.23)

where f(r,k) is a spin independent distribution function, and Pk,k′ is the probability that

an electron scatters from k′ to an empty state k. The principle of microscopic reversibility

tells us that Pk,k′ = Pk′,k.

Matrix Distribution function

The spin valve structure contains ferromagnetic layers that are spin dependent. To use

the Boltzmann equation in ferromagnetic materials, we generalize the distribution function

and the Boltzmann equation to be spin dependent. First, the spin dependent distribution

function is constructed in matrix form

f̂(r,k) =







f↑(r,k) 0

0 f↓(r,k)






= f↑(r,k)σ↑+f

↓(r,k)σ↓ with σ↑,↓ =
1

2
(1±σz). (2.24)

Here, (σx, σy, σz) are the Pauli matrices, and f↑,↓(r,k) describes the occupancy of spin-up

and spin-down electrons in the phase space volume drdk. If we choose a quantization axis

other than the one that aligns to spin-up/down as in Eq. (2.24), the distribution function

is generally written

f̂(r,k) = Û







f↑(r,k) 0

0 f↓(r,k)






Û † = f0 + fxσx + fyσy + fzσz, (2.25)

where U is the unitary rotation matrix

Û(θ, φ) =







cos(θ/2)e−iφ/2 − sin(θ/2)e−iφ/2

sin(θ/2)eiφ/2 cos(θ/2)eiφ/2






. (2.26)

θ and φ are the polar angle and azimuthal angle that describe the quantization axis. In all

of our later discussions, we have φ = 0, which means the magnetizations always lie in x-z
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plane. In that case,

Û



















σ0

σx

σy

σz



















Û † =



















1 0 0 0

0 cos θ 0 − sin θ

0 0 1 0

0 sin θ 0 cos θ





































σ0

σx

σy

σz



















. (2.27)

Consequently, the rotation of quantization axis transforms (ignoring the y component, since

it won’t appear in later calculations)













f0

fx

fz













−→













f ′0

f ′x

f ′z













=













1 0 0

0 cos θ sin θ

0 − sin θ cos θ

























f0

fx

fz













≡ Û













f0

fx

fz













. (2.28)

Matrix Boltzmann Equation

Taking into account both spin-conserving scattering and spin flip scattering, the analog

of the spin independent Boltzmann equation Eq. (2.23) for a spin dependent distribution

function fσ (σ =↑, ↓) is

vk ·
∂fσ(k)

∂r
− eE · vk =

∫

dk′P σ
k,k′ [fσ(k′)− fσ(k)] +

∫

dk′P sf
k,k′ [fσ′

(k′)− fσ(k)]. (2.29)

Similar to the definition of P σ
k,k′ , P sf

k,k′ is the probability that an electron scatters from k′ to

an empty state k but with spin-flip. We assume that the probability is the same for spin flip

in both directions, up to down or down to up. Eq. (2.29) is used for both the non-magnetic

bulk and the ferromagnetic bulk in the spin valve.

The Boltzmann equation is analytically solvable only in a few very limited cases; other-

wise, we must rely on numerical solutions. The first thing we need for a numerical calculation

is an angular mesh for the Fermi sphere. We define θ as the polar angle measured from the

external electric field E = Ex̂, and φ is the azimuthal angle. 5 For perpendicular transport,

transport properties are independent of the azimuthal angle φ, hence the integration of

5Here, the θ and φ are used to describe the angle on Fermi sphere, they are different from the θ and φ
used before for the spin quantization axis, which is in spin space.
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some transport property h(k) = h(θ) over the Fermi sphere is 6

∫

FS

h(k)dk =

∫ 2π

0

dφ

∫ π

0

h(θ, φ) sin θdθ = 2π

∫ 1

−1

h(µ)dµ, (2.30)

where we assume kF = 1 and substitute µ = cos θ. To discretize the integration in Eq. (2.30),

we use Gauss-Legendre integration [27] with sampling poinst {µi} (−1 ≤ µi ≤ 1) and

weighting {wi}, such that
∫ 1

−1

h(µ)dµ =

N
∑

i=1

wih(µi). (2.31)

N is the number of sampling points. {wi} is the weighting when taking integrations over

the Fermi sphere. {µi} is the angular mesh on the Fermi sphere. The half of the µi that

are positive (i = 1 to N/2) are denoted by µ+
i ; the half that are negative (i = N/2 + 1 to

N) are denoted by µ−i .

Since the external electric field is along x̂, fσ(r,k) = fσ(x, kx), and the Boltzmann

equation Eq. (2.29) becomes

vx
k

∂

∂x
fσ(kx)− eExv

x
k

=

∫

dk′P σ
k,k′ [fσ(k′x)−fσ(kx)]+

∫

dk′P sf
k,k′ [fσ′

(k′x)−fσ(kx)]. (2.32)

We use Eq. (2.31) to discretize the integrals in Eq. (2.32), i.e. kx → µi, k
′
x → µj and

P σ
k,k′ → P σ

ij , etc. The discretized version of Boltzmann equation is

∂fσ
i

∂x
− eEx =

∑

j,σ′

[V̂ −1B̂]σσ′

ij fσ′

j , (2.33)

where V̂ and B̂ are 2N × 2N (2 from spin index, N from µi index) matrices with matrix

elements

V σσ′

ij = vx
i δ

σσ′

ij , (2.34a)

Bσσ′

ij = wjP
σ
ijδσσ′ −

δσσ′

ij

τσ
i

+ wjP
sf
ij (1− δσσ′)−

δσσ′

ij

τ sf
i

, (2.34b)

where 1/τσ
i =

∑

j wjP
σ
ij , 1/τ sf

i =
∑

j wjP
sf
ij , and δσσ′

ij = δijδσσ′ .

6To calculate spin density h(k) = fσ(k), to calculate spin current h(k) = kxfσ(k).
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2.2.3 Numerical Solutions to the Boltzmann Equation

The Appendix in Ref. [28] describes how to solve a Boltzmann equation like Eq. (2.33).

Basically, one solves the particular equation,

∑

j,σ′

[V̂ −1B̂]σσ′

ij fσ′

j = −eEx, (2.35)

and the homogeneous equation,

∑

j,σ′

{

δσσ′

ij

∂

∂x
− [V̂ −1B̂]σσ′

ij

}

fσ′

j = 0. (2.36)

Adding solutions to the particular and homogeneous equations, and assuming P σ
ij = P σ =

1/τσ and P sf
ij = P sf = 1/τ sf (relaxation time approximation), 7 the solutions for the distri-

bution function have the form:

f̂(x, µi) = f↑σ↑ + f↓σ↓ with fσ =
2N
∑

n=1

αnF
σ
n (x, µi) (σ =↑, ↓), (2.38)

where

F σ
1 (x, µi) = 1 and F σ

2 (x, µi) = x− lσµi,

F σ
n (x, µi) = gσ

n(µi)e
λnx with n ∈ [3, 2N ]. (2.39)

In the equation above, lσ = vσ
Fτ

σ is the mean free path for spin-up (σ =↑) and spin-down

(σ =↓) electrons. 8 gσ
n(µi) = giσ

n and λn are the n-th eigenvector and eigenvalue of V̂ −1B̂: 9

∑

j,σ′

[V̂ −1B̂]iσ,jσ′gjσ′

n = λng
iσ
n . (2.40)

Half of the eigenvalues are positive; and the other half are negative. The 2N unknown

coefficients αn in Eq. (2.38) are to be determined (N unknowns for each of f↑ and f↓). We

7τ sf and τσ are related to spin diffusion length lsf by l2sf = Dτsf = (v2
F τ/3)τsf , therefore,

τ sf = 3
l2sf
vF

„

1

l↑
+

1

l↓

«

in FM and τ sf = 3
l2sf
vF

1

l
in NM, (2.37)

where lσ = vF τσ and l = vF τ , lsf = vF τsf .
8vσ

F is the Fermi velocity for σ =↑ or ↓ electrons. But in our calculation we chose the identical Fermi
sphere for up and down electrons, so v↑

F = v↓
F. However, the mean free path for up and down electrons is

still different.
9Notice the matrices B̂ and V̂ −1B̂ are both asymmetric and singular, since

P

j,σ′ Bσσ′

ij = 0. This leads
to the eigenvectors F σ

0 and F σ
1 with zero eigenvalue being degenerate. See the Appendix in Ref. [28] for

more details.
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use Eq. (2.39) as the basis for the distribution functions in the ferromagnet, in which f↑,↓

are used to represent the distribution function as in Eq. (2.24).

In the non-magnet layers, we use f0,x,y,z to represent the distribution function as in

Eq. (2.25), so we can construct a different basis set for the non-magnet (l↑ = l↓ = l in

non-magnet):

F 0
n(x, µi) =

1

2
[F ↑n(x, µi) + F ↓n(x, µi)] n ∈ [1, 2N ], (2.41a)

F z
n(x, µi) =

1

2
[F ↑n(x, µi)− F ↓n(x, µi)] n ∈ [1, 2N ], (2.41b)

F x
n (x, µi) = F z

n(x, µi) n ∈ [1, 2N ]. (2.41c)

Therefore, in the non-magnet layers (especially in the spacer layer), the general solution

for distribution function is

f̂(x, µi) = f0σ0 + fxσx + fzσz with fs =
2N
∑

n=1

αs
nF

s
n(x, µi) (s = 0, x, z). (2.42)

Eq. (2.41) tells us that fx and fz share the same set of eigenvectors. This is reasonable

because the Boltzmann solution does not depend on the choice of spin quantization axis,

which also implies that fx, fz, fx′
, and fz′ all share the same set of eigenvectors.

At first glance, Eq. (2.42) doubles the number of unknown coefficients in the expansion:

2N instead of N for each of f0, fx, and fz. But it is not the case because of the following:

The eigenvectors F σ
n (x, µi) break up into separate eigenvectors for charge transport and spin

transport, for instance the eigenvectors with n = 1 and 2 correspond to charge transport

because F ↑1,2 = F ↓1,2. In general, half of the eigenvectors (assume for the first half: n ∈ [1, N ])

corresponds to the charge transport with F ↑n = F ↓n , the other half (for the second half:

n ∈ [N + 1, 2N ]) is for the spin transport with F ↑n = −F ↓n . This fact implies that

F 0
n(x, µi) = 0 for n ∈ [N + 1, 2N ], (2.43a)

F x
n (x, µi) = F z

n(x, µi) = 0 for n ∈ [1, N ]. (2.43b)

Therefore, we still have exactly N unknown coefficients for each of f0, fx, and fz.
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Figure 2.3: Schematic view of spin valve structure.

2.2.4 Layer Scattering Matrix

Figure 2.3 shows a schematic picture of a spin valve, where lead/FM/spacer/FM/lead are

labeled by layer 1 to layer 5, and x0,1,2,3,4,5 denotes the x coordinate of each interface. In the

ferromagnetic layers (layer 2 and layer 4), we choose the magnetization direction (z-direction

in layer 2 and z′ in layer 4) as the natural spin quantization axis, i.e. f̂ = f↑σ↑ + f↓σ↓ for

layer 2, and f̂ = f↑
′
σ↑′ + f↓

′
σ↓′ for layer 4. 10

For non-magnetic layers, there is no spontaneous magnetization to keep the electron

spin aligned to some axis. Therefore, we write f̂ = f0σ0 + fxσx + fzσz in the non-magnetic

layers. The σy term does not appear because the magnetizations of the FM layers are

confined to the x-z plane. Since the magnetization of layer 2 is along z and layer 1 is

connected to layer 2, the natural spin quantization axis in layer 1 is chosen as the z axis.

Hence, there is no σx term in the distribution function in layer 1. Similarly, there is no

σx′ term in layer 5. The spacer layer (layer 3) connects to two non-collinear FM layers,

the natural quantization direction varies along x, so the distribution function in the spacer

layer has both σx and σz terms.

We now focus on the values of the distribution functions near each interface. These

are denoted by f
in/out

m,L/R
in Figure 2.3. These are evaluated inside the m-th layer at its

left(L)/right(R) edge 11 for electrons moving into/out-of layer m. The unprimed (f
in/out

m,L/R
)

and the primed (f
in/out′

m,L/R
) versions mean the distribution functions using z and z′ as the

10↑ and ↓ denote the up and down relative to z, ↑′ and ↓′ denote the up and down relative to z′.
11Evaluated at x+

m−1 and x−
m, where x±

m denotes the immediate vicinity at right(+)/left(-) side of xm.
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spin quantization axes respectively. We use the unprimed version for layer 1 and 2, and the

primed version for layers 3, 4, and 5 (see Figure 2.3). However, layer 3 uses both depending

on which side it attaches to in the calculation. Since we expand the distribution function

differently in ferromagnetic and non-magnetic layers, f
in/out

m,L/R
takes different forms in them:

ferromagnet (m = 2, 4) non-magnet (m = 1, 3, 5)

f
in/out

m,L/R
=







f
in/out,↑
m,L/R

f
in/out,↓
m,L/R






f

in/out

m,L/R
=













f
in/out,0
m,L/R

f
in/out,x
m,L/R

f
in/out,z
m,L/R













.
(2.44)

What we want to calculate next is the layer scattering matrix Sm that relates the

incoming and outgoing distribution functions for layer m:







fout
m,L

fout
m,R






=







SLL
m SLR

m

SRL
m SRR

m













f in
m,L

f in
m,R






≡ Sm







f in
m,L

f in
m,R






, (2.45)

SLR
m accounts for the scattering from the right side to the left side of the layer (from f in

m,R

to fout
m,L).

Sm for Ferromagnetic Layers (m = 2, 4)

For the left FM layer (m = 2), using the solutions in Eq. (2.38), we have,







f in
2,L

f in
2,R






=



















f↑2,L(µ+
i )

f↓2,L(µ+
i )

f↑2,R(µ−i )

f↓2,R(µ−i )



















=



















F ↑1 (x1, µ
+
i ) · · · F ↑2N (x1, µ

+
i )

F ↓1 (x1, µ
+
i ) · · · F ↓2N (x1, µ

+
i )

F ↑1 (x2, µ
−
i ) · · · F ↑2N (x2, µ

−
i )

F ↓1 (x2, µ
−
i ) · · · F ↓2N (x2, µ

−
i )





































α1

α2

...

α2N



















, (2.46a)







fout
2,L

fout
2,R






=



















f↑2,L(µ−i )

f↓2,L(µ−i )

f↑2,R(µ+
i )

f↓2,R(µ+
i )



















=



















F ↑1 (x1, µ
−
i ) · · · F ↑2N (x1, µ

−
i )

F ↓1 (x1, µ
−
i ) · · · F ↓2N (x1, µ

−
i )

F ↑1 (x2, µ
+
i ) · · · F ↑2N (x2, µ

+
i )

F ↓1 (x2, µ
+
i ) · · · F ↓2N (x2, µ

+
i )





































α1

α2

...

α2N



















. (2.46b)

As we defined previously µ±i denotes µi > 0 and µi < 0, or right going and left going
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wave-vectors. By canceling αn’s in the equation above, we get the layer scattering matrix

S2 =



















F ↑1 (x1, µ
−
i ) · · · F ↑2N (x1, µ

−
i )

F ↓1 (x1, µ
−
i ) · · · F ↓2N (x1, µ

−
i )

F ↑1 (x2, µ
+
i ) · · · F ↑2N (x2, µ

+
i )

F ↓1 (x2, µ
+
i ) · · · F ↓2N (x2, µ

+
i )





































F ↑1 (x1, µ
+
i ) · · · F ↑2N (x1, µ

+
i )

F ↓1 (x1, µ
+
i ) · · · F ↓2N (x1, µ

+
i )

F ↑1 (x2, µ
−
i ) · · · F ↑2N (x2, µ

−
i )

F ↓1 (x2, µ
−
i ) · · · F ↓2N (x2, µ

−
i )



















−1

. (2.47)

The layer scattering matrix for the right ferromagnet S4 (m = 4) is obtained similarly by

replacing [x1, x2] → [x3, x4]. For ferromagnetic layers (m = 2, 4), since each element like

F ↑n(x1, µ
+
i ) is a 1 × N

2
matrix, the layer scattering matrix Sm is a 2N × 2N matrix. It is

worth mentioning that the scattering matrix is independent of the choice of the origin for

x, so we choose x1 = 0 when calculating S2 and choose x3 = 0 when calculating S4.
12

Sm for Non-magnetic Layers (m = 1, 3, 5)

For the left lead (m = 1), using the solutions in Eq. (2.42), we have







f in
1,L

f in
1,R






=

































f0
1,L(µ+

i )

fx
1,L(µ+

i )

fz
1,L(µ+

i )

f0
1,R(µ−i )

fx
1,R(µ−i )

fz
1,R(µ−i )

































=

































F 0
n(x0, µ

+
i ) 0 0

0 F x
n′(x0, µ

+
i ) 0

0 0 F z
n′(x0, µ

+
i )

F 0
n(x1, µ

−
i ) 0 0

0 F x
n′(x1, µ

−
i ) 0

0 0 F z
n′(x1, µ

−
i )













































α0
n

αx
n′

αz
n′













, (2.48a)







fout
1,L

fout
1,R






=

































f0
1,L(µ−i )

fx
1,L(µ−i )

fz
1,L(µ−i )

f0
1,R(µ+

i )

fx
1,R(µ+

i )

fz
1,R(µ+

i )

































=

































F 0
n(x0, µ

−
i ) 0 0

0 F x
n′(x0, µ

−
i ) 0

0 0 F z
n′(x0, µ

−
i )

F 0
n(x1, µ

+
i ) 0 0

0 F x
n′(x1, µ

+
i ) 0

0 0 F z
n′(x1, µ

+
i )













































α0
n

αx
n′

αz
n′













, (2.48b)

where n runs from 1 to N and n′ runs from N + 1 to 2N . We omit the zero eigenvectors

due to Eq. (2.43). By canceling αn’s in the equation above, we have the 3N × 3N layer

12µ+

i runs from i = 1 to i = N/2 and µ−
i runs from i = N/2 + 1 to i = N .
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scattering matrix:

S1 =

































F 0
n(x0, µ

−
i ) 0 0

0 F x
n′(x0, µ

−
i ) 0

0 0 F z
n′(x0, µ

−
i )

F 0
n(x1, µ

+
i ) 0 0

0 F x
n′(x1, µ

+
i ) 0

0 0 F z
n′(x1, µ

+
i )

































































F 0
n(x0, µ

+
i ) 0 0

0 F x
n′(x0, µ

+
i ) 0

0 0 F z
n′(x0, µ

+
i )

F 0
n(x1, µ

−
i ) 0 0

0 F x
n′(x1, µ

−
i ) 0

0 0 F z
n′(x1, µ

−
i )

































−1

.

(2.49)

The layer scattering matrix for the spacer layer S3 (m = 3) and the right lead S5 (m =

5) are obtained similarly by replacing [x0, x1] → [x2, x3] and [x0, x1] → [x4, x5]. For the

non-magnetic layers (m = 1, 3, 5), the layer scattering matrix Sm is a 3N × 3N matrix.

2.2.5 Interface Scattering Matrix

Similar to the layer scattering matrix, the interface scattering matrix Rm relates the out-

going and the incoming distribution functions at the interface between layer m and layer

m+1: 13






f in
m,R

f in
m+1,L






=







RLL
m RLR

m

RRL
m RRR

m













fout
m,R

fout
m+1,L






= Rm







fout
m,R

fout
m+1,L






. (2.50)

RLR
m accounts for the scattering from the right side to the left side of the interface (from

fout
m+1,L to f in

m,R).

All the interfaces in our problem are non-magnet/ferromagnet interfaces, so we consider

the interface shown in Figure 2.4. Suppose there is an electron with a longitudinal wave-

vector kx = µi injected from the non-magnet (N) side onto the interface. If its wave-function

is

|φout
N (µi)〉 =







a(µi)

b(µi)






, (2.51)

the wave-functions for the reflected state (with kx = −µi) in the non-magnet and for the

13Notice the incoming and outgoing relative to the interface are opposite to the incoming and outgoing
relative to the layers.
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Figure 2.4: Wave functions at a non-magnet/ferromagnet interface.

transmitted state (with kx = µi) in the ferromagnet are 14

|φin
N(−µi)〉 = R̂NN(µi)|φout

N (µi)〉 and |φin
F (µi)〉 = T̂NF(µi)|φout

N (µi)〉, (2.52)

where R̂NN and T̂NF are reflection and transmission scattering matrices:

R̂NN(µi) =







R↑NN(µi) 0

0 R↓NN(µi)






and T̂NF(µi) =







T ↑NF(µi) 0

0 T ↓NF(µi)






. (2.53)

The off-diagonal elements in these scattering matrices are zero, because we assume there

is no spin flip scattering at the interface. 15 The subscript in R̂NN means the reflection

is from non-magnet (N) to non-magnet (N), and in T̂NF it means the transmission is from

non-magnet (N) to ferromagnet (F). We define R̂FF and T̂FN in the same way. Due to the

conservation law, these scattering matrices satisfy

R̂NNR̂
†
NN + T̂NFT̂

†
NF = Î and R̂FFR̂

†
FF + T̂FNT̂

†
FN = Î . (2.54)

The matrix elements in R̂’s and T̂ ’s are calculated in Ref. [29]:

|T σ
NF(µi)|2 = |T σ

FN(µi)|2 =
µ2

i

ασ + µ2
i

and |Rσ
NN(µi)|2 = |Rσ

FF(µi)|2 =
ασ

ασ + µ2
i

, (2.55)

where σ =↑ or ↓, and the dimensionless number ασ is proportional to the square root of the

strength of the δ-function like interface potential, which can be read off from the horizontal

axis of Fig. 1 of Ref. [29] using experimental spin dependent interface resistance data.

14We’ve made the approximation that the transmitted state has the same transverse and longitudinal wave-
vector (k⊥, kx) in the ferromagnet as in the non-magnet because in the previous subsection we assumed that
electrons at both sides of the interface have the same Fermi surface. This approximation is good as long as
the interfaces are not too close to each other.

15Because the spin flip scattering is mainly due to spin-orbit interaction. And at an interface, the situation
that a spin encounters is a discontinuity of the Fermi levels from one side to the other. Therefore, we assume
there is no spin flip scattering at the interface.
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Figure 2.5: Distribution functions at a non-magnet/ferromagnet interface.

Using the wave-functions, we can construct the corresponding distribution functions

depicted in Figure 2.5 by using a density matrix:

f̂out
N (µi) = |φout

N 〉〈φout
N |, f̂ in

N (−µi) = |φin
N〉〈φin

N |, and f̂ in
F (µi) = |φin

F 〉〈φin
F |. (2.56)

From Eq. (2.52), it is easy to check that

f̂ in
N = R̂NNf̂

out
N R̂†NN, and f̂ in

F = T̂NFf̂
out
N T̂ †NF. (2.57)

Similarly, if we start with an incoming electron from the FM side, we will have

f̂ in
F = R̂FFf̂

out
F R̂†FF, and f̂ in

N = T̂FNf̂
out
F T̂ †FN. (2.58)

Since the electrons are injected from both sides, we combine Eq. (2.57) and Eq. (2.58) to

get

f̂ in
N = R̂NNf̂

out
N R̂†NN + T̂FNf̂

out
F T̂ †FN, and f̂ in

F = T̂NFf̂
out
N T̂ †NF + R̂FFf̂

out
F R̂†FF. (2.59)

By expanding all the f̂ ’s above using Pauli matrices as in Eq. (2.25), we can rewrite

Eq. (2.59) in terms of f0,x,y,z. But before that, we need the following identity (let X̂ be any

one of R̂NN, R̂FF, T̂NF, and T̂FN, and let σ1 = σx, σ2 = σy, and σ3 = σz):

X̂σiX̂
† =

3
∑

j=0

X
j
iσj with (i = 0, 1, 2, 3), (2.60)

where

X =



















XΠ(µi) 0 0 X∆(µi)

0 X⊥(µi) −X×(µi) 0

0 X×(µi) X⊥(µi) 0

X∆(µi) 0 0 XΠ(µi)



















, (2.61)
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with

XΠ(µi) =
1

2
[|X↑(µi)|2 + |X↓(µi)|2], X⊥(µi) = Re[X↑(µi)X

∗
↓ (µi)] ≃ 0,

X∆(µi) =
1

2
[|X↑(µi)|2 − |X↓(µi)|2], X×(µi) = Im[X↑(µi)X

∗
↓ (µi)] ≃ 0. (2.62)

In the ferromagnet, the transverse component of the distribution function is ignored, 16

so fx,y
F = 0 (fx′,y′

F = 0 if the magnetization aligns z′ axis). We also ignore the y component

in the non-magnet, since the magnetization of the FM layer is always in the x-z plane. By

using the orthogonality between the σi’s, Eq. (2.59) can be written in terms of f0,x,y,z in

the non-magnet and in terms of f↑,↓ in the ferromagnet as: 17.



























f0
N(µ−i )

fx
N(µ−i )

fz
N(µ−i )

f↑F(µ+
i )

f↓F(µ+
i )



























=



























RΠ
NN 0 R∆

NN
1
2
|T ↑FN|2 1

2
|T ↓FN|2

0 R⊥NN 0 0 0

R∆
NN 0 RΠ

NN
1
2
|T ↑FN|2 −1

2
|T ↓FN|2

|T ↑NF|2 0 |T ↑NF|2 |R↑FF|2 0

|T ↓NF|2 0 −|T ↓NF|2 0 |R↓FF|2





















































f0
N(µ+

i )

fx
N(µ+

i )

fz
N(µ+

i )

f↑F(µ−i )

f↓F(µ−i )



























. (2.63)

If the FM layer is on the left side of the NM layer, we should make some appropriate

rearrangement of the rows and columns in Eq. (2.63):



























f↑F(µ−i )

f↓F(µ−i )

f0
N(µ+

i )

fx
N(µ+

i )

fz
N(µ+

i )



























=



























|R↑FF|2 0 |T ↑NF|2 0 |T ↑NF|2

0 |R↓FF|2 |T ↓NF|2 0 −|T ↓NF|2

1
2
|T ↑FN|2 1

2
|T ↓FN|2 RΠ

NN 0 R∆
NN

0 0 0 R⊥NN 0

1
2
|T ↑FN|2 −1

2
|T ↓FN|2 R∆

NN 0 RΠ
NN





















































f↑F(µ+
i )

f↓F(µ+
i )

f0
N(µ−i )

fx
N(µ−i )

fz
N(µ−i )



























. (2.64)

All quantities in these equations are µi dependent. If we expand the µi index, the matrix

on the LHS has dimension 5
2
N ×1, and the matrices on the RHS have dimensions 5

2
N × 5

2
N

16If there is any transverse component, it disappears due to the damping towards the magnetization of
the ferromagnet [8].

17We need to make linear combinations: f↑
F = f0

F + fz
F and f↓

F = f0
F − fz

F, and make the replacements like
f in,0

N → f0
N(µ−

i )
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and 5
2
N × 1. Each element like RΠ

NN becomes a 1
2
N × 1

2
N matrix:

RΠ
NN =



















RΠ
NN(µ1) 0 · · · 0

0 RΠ
NN(µ2) · · · 0

...
...

...
...

0 0 · · · RΠ
NN(µN

2

)



















. (2.65)

Similar expansion can be made for other R’s and T ’s.

From Eq. (2.63) we have the interface scattering matrices for the NM/FM type interfaces

at x1 and x3 and for FM/NM type interfaces at x2 and x4,

R3 = R1 =







RLL
1 RLR

1

RRL
1 RRR

1






=



























RΠ
NN 0 R∆

NN
1
2
|T ↑FN|2 1

2
|T ↓FN|2

0 R⊥NN 0 0 0

R∆
NN 0 RΠ

NN
1
2
|T ↑FN|2 −1

2
|T ↓FN|2

|T ↑NF|2 0 |T ↑NF|2 |R↑FF|2 0

|T ↓NF|2 0 −|T ↓NF|2 0 |R↓FF|2



























, (2.66a)

R4 = R2 =







RLL
2 RLR

2

RRL
2 RRR

2






=



























|R↑FF|2 0 |T ↑NF|2 0 |T ↑NF|2

0 |R↓FF|2 |T ↓NF|2 0 −|T ↓NF|2

1
2
|T ↑FN|2 1

2
|T ↓FN|2 RΠ

NN 0 R∆
NN

0 0 0 R⊥NN 0

1
2
|T ↑FN|2 −1

2
|T ↓FN|2 R∆

NN 0 RΠ
NN



























. (2.66b)

2.2.6 System Scattering Matrix

We now have all the layer and interface scattering matrices S1,2,3,4,5 and R1,2,3,4 as indicated

at the top of Figure 2.3, so we are ready to construct a system-wide scattering matrix that

relates the incoming and outgoing distribution functions at the left and right reservoir.

The system scattering matrix is obtained by joining all the layer scattering matrices and

interface scattering matrices. But when joining the matrices, we must be careful at the

spacer layer, because the scattering matrices on the left and right side of the spacer layer

use different spin quantization directions: left side uses z, right side uses z′. So we make a

rotation at the spacer layer to match the quantization axis at two sides.

30



The scattering matrix joining procedure is follows. First we join S1 to R1 (see Fig-

ure 2.3). S1 is a 3N × 3N matrix, and relates the distribution functions:






fout
1,L

fout
1,R






=







SLL
1 SLR

1

SRL
1 SRR

1













f in
1,L

f in
1,R






. (2.67)

R1 is a 5
2
N × 5

2
N matrix, and relates the distribution functions:







f in
1,R

f in
2,L






=







RLL
1 RLR

1

RRL
1 RRR

1













fout
1,R

fout
2,L






. (2.68)

To have a joint scattering matrix Slr
18 covering the left lead (layer 1) and the interface at

x1, we have to eliminate the intermediate distribution functions f
in/out

1,R in Eq. (2.67) and

Eq. (2.68), to get






fout
1,L

f in
2,L






= Slr







f in
1,L

fout
2,L






, (2.69)

with

Slr =







SLL
1 + SLR

1 (1−RLL
1 SRR

1 )−1RLL
1 SRL

1 SLR
1 (1−RLL

1 SRR
1 )−1RLR

1

RRL
1 (1− SRR

1 RLL
1 )−1SRL

1 RRR
1 +RRL

1 (1− SRR
1 RLL

1 )−1SRR
1 RLR

1






.

(2.70)

This is a 5
2
N × 5

2
N matrix. 19

Using the same routine, we join the scattering matrix Rlr with S2 to have the joint matrix

Slrf that covers the space (x+
0 , x

−
2 ) (including the left lead (layer 1), lead/FM interface

(interface at x1), and left FM layer (layer 2)). We keep on going to include the interface at

x2, then the scattering matrix becomes Slrfr and covers the space (x+
0 , x

+
2 ).

Since the scattering matrix S3 for the spacer layer uses z′ axis instead of z as its spin

quantization axis, we need to make a rotation to join Slrfr with S3. Using the left quantiza-

tion axis z and the right quantization axis z′, respectively, the scattering matrix Slrfr and

18We continue to construct Slrf , Slrfr, Slrfrn, Slrfrnr, Slrfrnrf , Slrfrnrfr, and Slrfrnrfrl, where the last one is
the system-wide scattering matrix we want. The subscript “l” denotes a lead, “r” denotes an NM/FM or
FM/NM interface, “f” denotes a ferromagnet, and “n” denote the spacer layer.

19Rlr can also take the following form, which is used in the program,

Rlr =

»

SLL
1 + SLR

1 RLL
1 (1 − SRR

1 RLL
1 )−1SRL

1 SLR
1 [1 + RLL

1 (1 − SRR
1 RLL

1 )−1SRR
1 ]RLR

1

RRL
1 (1 − SRR

1 RLL
1 )−1SRL

1 RRR
1 + RRL

1 (1 − SRR
1 RLL

1 )−1SRR
1 RLR

1

–

.
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S3, relate






fout
1,L

f in
3,L






= Slrfr







f in
1,L

fout
3,L






and







fout′

3,L

fout′

3,R






= S3







f in′

3,L

f in′

3,R






. (2.71)

To join Slrfr with S3, we write f
in/out

3,L in terms of f
in/out′

3,L in the left equation of Eq. (2.71).

From Eq. (2.28), we have f
in/out′

3,L = Ûf
in/out

3,L , therefore







fout
1,L

Û
†f in′

3,L






= Slrfr







f in
1,L

Û
†fout′

3,L






=⇒







fout
1,L

f in′

3,L






= S′lrfr







f in
1,L

fout′

3,L






, (2.72)

with the rotated scattering matrix

S′lrfr =







1 0

0 Û






Slrfr







1 0

0 Û
†






, (2.73)

which can be joined with S3 using the same joining procedure as described above, and

becomes Slrfrn. After joining all the scattering matrices, we will have a system wide 3N×3N

scattering matrix S = Slrfrnrfrl which relates







fout
1,L

fout′

5,R






=







SLL SLR

SRL SRR













f in
1,L

f in′

5,R






≡ S







f in
1,L

f in′

5,R






. (2.74)

2.2.7 Boundary Condition and System-wide Solutions

If we use Eq. (2.41) as the basis to expand the distribution functions f
in/out

1,L and f
in/out′

5,R in

Eq. (2.74), there are in total 6N unknown coefficients, 3N for f
in/out

1,L and 3N for f
in/out′

5,R .

But there are only 3N equations in Eq. (2.74). The equations related to the x component

of the distribution functions are all useless because there is no σx (or σx′) term in the

distribution functions in layer 1 or layer 5. So if we ignore the x component, there are 2N

equations, and 4N unknowns.

To reduce the number of unknowns, we examine the properties of the distribution func-

tions near the reservoirs. Specifically, electrons that leave the reservoirs have a bulk-like

distribution function and electrons with any distribution function can be absorbed by the

reservoir. Based on these two facts, we propose that the distribution function near the

reservoirs should satisfy: (1) for the electrons going from the reservoir to the lead, the
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distribution function is bulk-like, namely f in
1,L and f in′

5,R have only the contributions from

F 0
1 and F 0

2 in the basis for non-magnet Eq. (2.41); 20 and (2) for the electrons going from

the lead to the reservoir, the distribution function has whatever structure it wants to have,

namely fout
1,L and fout′

5,R have contributions from all F 0,z
n .

To determine the form of the distribution functions near the reservoirs, we need a new

set of basis G0,z
n constructed from linear combinations of the old basis F 0,z

n (x, µi), so each

G0,z
n meets the constraints above. Since the constraints are required only at the boundaries

at x+
0 and x−5 , the new basis G0,x,z

n = G0,x,z
n (µi) is not a function of x but is evaluated at

the boundaries. Without loss of generality, we let all the following functions be evaluated

at x = 0.

First, we write down the old basis F 0,z
n (x, µi) in the following form,



















F s
1

F s
2

F s
p

F s
q



















=





















F 0
1 (µ+

i ) F 0
1 (µ−i ) F z

1 (µ+
i ) F z

1 (µ−i )

F 0
2 (µ+

i ) F 0
2 (µ−i ) F z

2 (µ+
i ) F z

2 (µ−i )

F 0
p (µ+

i ) F 0
p (µ−i ) F z

p (µ+
i ) F z

p (µ−i )

F 0
q (µ+

i ) F 0
q (µ−i ) F z

q (µ+
i ) F z

q (µ−i )





















, (2.75)

where F 0,z
p denotes the N − 1 eigenvectors with positive eigenvalues: λp > 0; and F 0,z

p

denotes the N − 1 eigenvectors with negative eigenvalues: λq < 0. 21 The new basis Gs
n can

be constructed using linear combinations of F s
n as following:



















Gs
1

Gs
2

Gs
p

Gs
q



















=





















F 0
1 (µ+

i ) F 0
1 (µ−i ) F z

1 (µ+
i ) F z

1 (µ−i )

F 0
2 (µ+

i ) F 0
2 (µ−i ) F z

2 (µ+
i ) F z

2 (µ−i )

0 G0
p(µ
−
i ) 0 Gz

p(µ
−
i )

G0
q(µ

+
i ) 0 Gz

q(µ
+
i ) 0





















, (2.76)

20F 0
1 (x, µi) accounts for the uniform shift of the chemical potential, F 0

2 (x, µi) accounts for the charge
current.

21The eigenvalues of F 0,z
1 (x, µi) and F 0,z

2 (x, µi) are zero. And many elements in Eq. (2.75) are zero due
to Eq. (2.43).
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with







⋆

Gs
p






=







F s
1

F s
p






−







F 0
1 (µ+

i ) F z
1 (µ+

i )

F 0
p (µ+

i ) F z
p (µ+

i )













F 0
1 (µ+

i ) F z
1 (µ+

i )

F 0
q (µ+

i ) F z
q (µ+

i )







−1 





F s
1

F s
q






, (2.77a)







⋆

Gs
q






=







F s
1

F s
q






−







F 0
1 (µ−i ) F z

1 (µ−i )

F 0
q (µ−i ) F z

q (µ−i )













F 0
1 (µ−i ) F z

1 (µ−i )

F 0
p (µ−i ) F z

p (µ−i )







−1 





F s
1

F s
p






, (2.77b)

where ⋆ represents the first element in the column which we are not going to use.

We see that the new basis is constructed such that half of the basis vectors have bulk like

right going behavior (G0
p(µ

+
i ) = Gz

p(µ
+
i ) = 0), and the other half have bulk like left going

behavior (G0
q(µ
−
i ) = Gz

q(µ
−
i ) = 0). The value of the distribution function at the boundary is

taken as a linear combination of the new basis Gn
σ to satisfy the constraints of the reservoir:

f0
1,L(µi) = α0G

0
0(µi) +G0

1(µi) +
∑

p

αpG
0
p(µi), (2.78a)

fz
1,L(µi) = α0G

z
0(µi) +Gz

1(µi) +
∑

p

αpG
z
p(µi), (2.78b)

f0′

5,R(µi) = β1G
0
1(µi) +

∑

q

βqG
0
q(µi), (2.78c)

fz′

5,R(µi) = β1G
z
1(µi) +

∑

q

βqG
z
q(µi), (2.78d)

The incoming and outgoing states are determined by their side (L or R) and the sign of µi.

In these equations, α1 = 1 fixes the current, and β0 = 0 fixes the chemical potential at the

right boundary to be zero. Since the indexes p and q each have N − 1 numbers, the total

number of unknown coefficients are 2N , instead of 4N when using F s
n as basis. Therefore,

using Eq. (2.78) as the boundary distribution functions, we can solve for the coefficients

α0, β1, αp, and βq using Eq. (2.74).

If we make the replacements

Gn(µi) ≡







G0
n(µi)

Gz
n(µi)






, (2.79)
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then Eq. (2.78) can be written as

f1,L(µi) = α0G0(µi) +G1(µi) +
∑

p

αpGp(µi), (2.80a)

f ′5,R(µi) = β1G1(µi) +
∑

q

βqGq(µi). (2.80b)

To simplify the notation, we abbreviate G±n ≡ Gn(µ±i ), and use the Einstein convention

(repeated indexes, p and q, are summed over). By plugging the boundary states Eq. (2.80)

into Eq. (2.74), 22 we have







α0G
−
0 +G−1 + αpG

−
p

β1G
+
1 + βqG

+
q






=







SLL SLR

SRL SRR













α0G
+
0 +G+

1 + αpG
+
p

β1G
−
1 + βqG

−
q






, (2.81)

The LHS of Eq. (2.81):

LHS =







G−1

0






+







G−0 G−p 0 0

0 0 G+
1 G+

q

























α0

αp

β1

βq



















, (2.82)

and the RHS of Eq. (2.81):

RHS =







SLLG
+
1

SRLG
+
1






+







SLL SLR

SRL SRR













G+
0 G+

p 0 0

0 0 G−1 G−q

























α0

αp

β1

βq



















=







SLLG
+
1

SRLG
+
1






+







SLLG
+
0 SLLG

+
p SLRG

−
1 SLRG

−
q

SRLG
+
0 SRLG

+
p SRRG

−
1 SRRG

−
q

























α0

αp

β1

βq



















. (2.83)

22Remember to omit the y components in both distribution functions and scattering matrix S.
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Figure 2.6: Back-propagation matrices.

By equating Eq. (2.82) and Eq. (2.83), we have which can be rearranged as







G−1 − SLLG
+
1

−SRLG
+
1







=







SLLG
+
0 −G−0 SLLG

+
p −G−p SLRG

−
1 SLRG

−
q

SRLG
+
0 SRLG

+
p SRRG

−
1 −G+

1 SRRG
−
q −G+

q

























α0

αp

β1

βq



















. (2.84)

In this equation, each of the G±n is a 1×N matrix. Each symbol like SLL is a N×N matrix.

Eq. (2.84) has 2N equations and 2N unknowns (α0,p and β1,q), so it is solvable. We use the

solved α and β to retrieve the boundary distribution function values f1,L(µi) = f1(x0, µi)

and f ′5,R(µi) = f ′5(x5, µi) using Eq. (2.80).

Once we have the distribution function values at the boundaries, it is straightforward to

calculate the distribution function anywhere in the system because we have all the scattering

matrices relating them to the boundary values. Here we only demonstrate how to calculate

the distribution function in the spacer layer. As shown in Figure 2.6, S is the scattering

matrix covering (x+
0 , x

−
3 ), and T is the scattering matrix covering (x−3 , x

−
5 ):







fout
1,L

fout′

3,R






=







SLL SLR

SRL SRR













f in
1,L

f in′

3,R






and







f in′

3,R

fout′

5,R






=







TLL TLR

TRL TRR













fout′

3,R

f in′

5,R






.

(2.85)

In these equations, f
in/out

1,L and f
in/out′

5,R are already known from above, and there are only 3N

36



unknown coefficients for f ′3,R(µi), which can be written out using Eq. (2.42) and Eq. (2.43):

f ′3,R(µi) =













f0′

3 (x3, µi)

fx′

3 (x3, µi)

fz′
3 (x3, µi)













=

























N
∑

1

α0
nF

0
n(x3, µi)

2N
∑

N+1

αx
nF

x
n (x3, µi)

2N
∑

N+1

αz
nF

z
n(x3, µi)

























≡ αnFn(x3, µi). (2.86)

However, there are 6N equations in Eq. (2.85), so these equations are redundant. We choose

half of the equations that use the incoming boundary values and not the outgoing ones, i.e.,

fout′

3,R = SRLf
in
1,L + SRRf

in′

3,R, (2.87a)

f in′

3,R = TLLf
out′

3,R + TLRf
in′

5,R. (2.87b)

Plugging Eq. (2.86) into this equation, we have







Fn(x3, µ
+
i )− SRRFn(x3, µ

−
i )

Fn(x3, µ
−
i )− TLLFn(x3, µ

+
i )






αn =







SRLf
in
1,L

TLRf
in′

5,R






, (2.88)

where the coefficients α0,x,z
n can be easily solved by inversion. The full distribution function

in the spacer layer f3(x, µi) is calculated from these coefficients using Eq. (2.42). For the

distribution functions in other layers, it is quite similar except we use different left and right

scattering matrices.

2.2.8 Transport Properties

With the distribution functions in hand, it is straightforward to calculate transport prop-

erties like the spin density and spin current. Using Eq. (2.31), for layer m we have

spin density: ns
m(x) =

N
∑

i=1

wif
s
m(x, µi), (2.89a)

spin current: js
m(x) =

N
∑

i=1

wiµif
s
m(x, µi), (2.89b)

where s = 0, x, z for m = 1, 3, 5 (non-magnetic layers) and s =↑, ↓ for m = 2, 4 (ferromag-

netic layers). The spin current at x = x−3 written in x′-z′ frame is

Q(x−3 ) = jx
3 (x−3 )x̂′ + jz

3(x−3 )ẑ′, (2.90)
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Table 2.2: Material parameters used in Boltzmann calculation.
Parameter Material Value Units Reference

l Cu 110 nm [30]
lsf Cu 450 nm [24]
l↑ Co 16.25 nm [30]
l↓ Co 6.01 nm [30]
lsf Co 59 nm [25]

α↑ Co/Cu 0.051 [30]
α↓ Co/Cu 0.393 [30]

where the jz
3(x−3 ) is the longitudinal piece parallel to the right FM layer’s magnetization (z′

direction), and jx
3 (x−3 ) is the piece perpendicular to that. From Ref. [8], we know that the

perpendicular spin current is absorbed at the NM/FM interface, therefore the spin-transfer

torque acting on the right FM layer is

Nst = jx
3 (x−3 )x̂′. (2.91)

2.3 Results and Comparison

We now have two different approaches to calculate the spin-transfer torque in a spin valve:

one is the full analytic approach described in Section 2.1 using Slonczewski’s circuit theory,

the other is the full numerical approach described in Section 2.2 using the Boltzmann

equation. In this thesis, we examine a spin valve composed of Cu and Co, the results are

quite similar if we replace Cu and Co by other non-magnet and ferromagnet materials. The

input values in the Boltzmann calculation are listed in Table 2.2. The various l’s are used

in Eq. (2.37) and Eq. (2.39), and the α↑,↓ are used in Eq. (2.55) to evaluate the interface

scattering coefficients.

In the circuit theory, the interface resistances for the Co/Cu interface used in Eq. (2.22)

are: GR̄I ≃ 0.97 and ∆RI/R̄I ≃ 0.72. These values differ from the experimental value

listed in Table 2.1 by about 15%. 23 These interface resistance values are actually obtained

by fitting Eq. (2.15) to the spin-transfer torque calculated using the Boltzmann equation.

The values of the contact resistance GR̄C ≃ 1.1 and ∆RC/R̄C = 0 used in Eq. (2.22)

23The relationship between the Boltzmann and experimental values for RI is not straightforward. The
experimental values are accurate to 10%-20% [Jack Bass (private communication)].
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Figure 2.7: Spin-transfer torque at the right interface of the spacer layer in a spin valve
with layer thicknesses 5 nm/40 nm/t3/1 nm/180 nm with t3 = 1 nm, 80 nm, and 160 nm.
The solid curves are calculated from the Boltzmann equation. Solid circles are calculated
by Eq. (2.15) from circuit theory. The latter do not depend on t3.

are extracted from the Boltzmann calculation. The other material parameters used in the

circuit theory can be found in Table 2.1.

The solid curves in Figure 2.7 show the angular dependence of the spin-transfer torque

acting on the second (thin) Co layer calculated with the Boltzmann approach for a spin

valve with geometry.

Cu(5 nm)/Co(40 nm)/Cu(t3)/Co(1 nm)/Cu(180 nm),

The spacer layer thickness t3 varies from 1 nm to 160 nm (the mean free path in Cu is

l = 110 nm). The magnitude of the spin-transfer torque goes down as spacer layer thickness

t3 gets large is because the spin current injected into the right ferromagnet is smaller when

the spacer layer thickness is larger due to the healing of Fermi surface after the interface

scattering and spin flip scattering in the spacer layer.

The maxima of the spin-transfer torque curve does not occur for perpendicular align-

ment of the magnetizations (θ = 90◦), but rather happens nearer to anti-parallel alignment.

For a symmetric structure with magnetizations perpendicular to each other, the current
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polarization is only 45◦ away from the magnetization. The current polarization becomes

perpendicular to the magnetizations as they become antiparallel, but the amount of polar-

ization decreases to zero in that limit. Therefore, the asymmetry of the curve comes from

the competition between the direction and the magnitude of the current polarization.

Note that in the circuit theory, we ignored any kind of scattering in the spacer layer,

which means we treat the spacer layer to be infinitely thin. In the case t3 = 1 nm, the

spacer layer thickness satisfies the condition of the circuit theory. If we fit the spin-transfer

torque curve calculated from the Boltzmann equation using the spin-transfer torque for-

mula Eq. (2.15) from the circuit theory (see Figure 2.7 for the fit), we find that the fitted

interface resistance values agree with the experimental values within 15%. This is very good

agreement considering the experimental values themselves are only accurate to 10%-20%.

However, if the spacer layer thickness becomes comparable to the mean free path in Cu,

the torque curves (the solid curve in Figure 2.7 with t3 = 80 nm and 160 nm) cannot be

fitted by the circuit theory for any values of the interface resistances.

Next, we study a spin valve with geometry:

Cu(5 nm)/Co(40 nm)/Cu(1 nm)/Co(1 nm)/Cu(t5).

Figure 2.8 shows how the spin-transfer torque curve acting on the second (thin) Co layer

changes when we vary the right lead length t5 from 10 nm to 160 nm. A second bump

around θ = 30◦ appears as t5 becomes large. From Eq. (2.15), we see that the second bump

arises from the q− term. The value of q− is typically close to zero and negligible, but it

gets prominent when the spin valve becomes highly asymmetric. By asymmetry, we mean

that the left and right side of the spacer layer have different spin dependent properties. For

instance, for a spin valve with the geometry

Cu(5 nm)/Co(40 nm)/Cu(1 nm)/Co(1 nm)/Cu(160 nm),

the left side of the spacer layer has 5 nm Cu and 40 nm Co and two Cu/Co interfaces, which

can be considered mostly ferromagnetic, because both Co and Cu/Co interfaces have spin

dependent resistances. However, on the right side of the spacer layer, there is only 1 nm of

Co and two Cu/Co interfaces, but 160 nm Cu. So the 160 nm Cu dilutes the ferromagnetic
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with layer thicknesses 5 nm/40 nm/1 nm/1 nm/t5 with t5 = 10 nm, 80 nm, and 160 nm.
All solid curves are calculated from the Boltzmann equation.

character of the Co bulk and the Cu/Co interfaces and makes the right side of the spacer

layer more like a non-magnet. This asymmetry of the spin valve, ferromagnet-like on the left

and non-magnet like on the right, leads to the emergence of the second bump in Figure 2.8.

The parameterization Eq. (2.15) is well suited to study the behavior of NR
st (θ) when

we vary the geometry of the magnetic heterostructure and the material parameters in our

Boltzmann calculations. For convenience, we did this for symmetric geometries, so Λ2
L =

Λ2
R = Λ2. The left panel in Figure 2.9 confirms that Λ2 is a linear function of tN (see

Eq. (2.22)) when lNsf ≫ tN but saturates when tN ∼ lNsf . 24 Interestingly, the saturated value

of Λ2 varies linearly with lNsf − lN (lN is the inelastic scattering length) rather than with

lNsf as predicted by Eq. (2.22). For long leads, this can be understood from the fact that

conventional resistive scattering is needed to build up non-equilibrium spin accumulation in

the non-magnet while spin-flip scattering works to return the non-magnet to equilibrium.

The right panel in Figure 2.9 shows the variation of Λ2 with lead length for different

24The value of Λ2 is obtained by fitting the spin-transfer torque calculated by Boltzmann approach using
Eq. (2.15).
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values of the spin-flip length in the ferromagnet. This calculation puts lNsf → ∞, so we

expect from Eq. (2.22) that Λ2 ∝ tN. This is indeed the case when lFsf ≫ tF. However, when

the lFsf is comparable (or less than) the ferromagnetic layer thickness, the torque parameter

saturates. This is a signal that our approximation Q0 ≃ QL used in Eq. (2.22) in the circuit

theory has broken down. In this limit, fast spin-flipping in the ferromagnet reduces Q0 to

a value much less than QL.

The break down of the approximation Q0 ≃ QL can also be seen from Figure 2.10, where

we show how the spin-transfer torque curve changes when varying the thickness of the left

ferromagnetic layer t2. Since t2 = 10 nm is small compared to the spin flip length lFsf = 59

nm in the ferromagnet, the circuit theory and the Boltzmann calculation agree with each

other very well. But when t2 = 160 nm becomes comparable or larger than lFsf , the circuit

theory fails. 25 The reason is that Q0 ≃ QL no longer holds when t2 & lFsf . In this case, Q0

actually depends on t2 in a non-trivial way.

A characteristic difference between spin-transfer torque for a symmetric geometry and

for an asymmetric geometry can be seen from the difference between the curves in Figure 2.8.

The curve with t5 = 10 nm has a bump (maximum) in the interval π/2 < θ < π only. The

curve with t5 = 160 nm has a small additional bump in the interval 0 < θ < π/2 that

25The input values in the circuit theory here in Figure 2.10 are the same as those used in Figure 2.7.

42



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  30  60  90  120  150  180

sp
in

 t
ra

n
sf

er
 t

o
rq

u
e:

 N
st

 (
I− h

/2
e)

θ

200nm/t2/1nm/1nm/160nm

t
2

160 nm

10 nm

Boltzmann

Circuit Theory

Figure 2.10: Spin-transfer torque at the right interface of the spacer layer in a spin valve
with layer thicknesses 200 nm/t2/1 nm/1 nm/160 nm with t2 = 10 nm, and 160 nm. Solid
curves are calculated from the Boltzmann equation, dotted curves are from circuit theory.

comes from the q− term in Eq. (2.15). This small change is enough to produce stable

magnetization precession for some asymmetric geometries.

Consider a spin valve in the presence of an external magnetic field aligned with the

magnetization of the thick ferromagnet. In equilibrium, the magnetizations in both layers

align with the external field; they are in parallel configuration. If we ignore shape anisotropy

and lattice anisotropy, the total torque acting on the right ferromagnetic film when electrons

flow from right to left in Figure 2.2 is the sum of the spin-transfer torque LR(θ) and a Gilbert

damping torque γH sin θ (top panel of Figure 2.11). 26

The spin-transfer torque (positive torque in the top panel of Figure 2.11) pulls the

magnetization of the right ferromagnetic layer away from parallel configuration, and the

damping torque (negative torque) pulls the magnetization back to parallel. As the current

increases, the spin-transfer torque increases and the total torque becomes positive, and

the positive torque destabilizes parallel state. The total torque pulls the magnetization

away from parallel until the total torque becomes zero again. Therefore, stable precession

26We will discuss Gilbert damping more thoroughly in Section 3.1.2 .
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occurs at angles where the total torque changes from positive to negative (middle panel

of Figure 2.11). When the total torque becomes everywhere positive, the system abruptly

switches to the anti-parallel configuration (bottom panel of Figure 2.11). There is no regime

of stable precession if the zero-current state is anti-parallel. 27

In summary, we have shown that Slonczewski’s circuit theory of spin-transfer torque in

spin valves can reproduce the results of Boltzmann equation calculations when the non-

magnetic spacer layer is thin. When the ferromagnetic layers and the spacer layer are thin,

the parameters of the theory can be calculated from first principles. The results also show

that asymmetric spin valves have qualitative differences from symmetric spin valves.

27The anisotropy-driven precession state found by Bazaliy et al. [31] occurs only when the magnetization
and the external field are nearly anti-parallel.
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CHAPTER III

MACROSPIN MODELS OF SPIN-TRANSFER

DYNAMICS

The effect of spin-transfer torque on a spin valve (Figure 3.1) is to induce hysteretic switch-

ing and/or precession of the magnetization m in the (thinner) free layer. Because of the

phenomenon of giant magnetoresistance [24], voltage measurements are sufficient to reveal

that hysteretic switching of m occurs as a function of the applied current density J when

a magnetic field H smaller than the coercive field is applied along the easy axis of the free

layer. For larger values of H, it is believed that m exhibits one or more types of stable

precession as a function of J until the current density is large enough to induce switching

(see the left panel of Figure 3.2). This conclusion [6, 32–35] is based on the experimental

observation of narrow band microwave emission (right panel of Figure 3.2) combined with

calculations using a generalized Landau-Lifshitz-Gilbert (LLG) equation that predict pre-

cession of the free layer. Other observed dynamical behavior includes telegraph noise that

is interpreted as rapid switching between two distinct states of magnetization. [5, 36–38]

Several experimental groups have used a macrospin (single domain) approximation to

propose “phase diagrams” that identify the dynamical state of their spin valves as a func-

tion of J and H [3, 5, 32, 38–42] There have also been purely theoretical studies of the

LLG equation (generalized to include spin-transfer torque) using both macrospin models

[31, 43–48] and micromagnetics simulations [49–55] that do not make the single-domain
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Figure 3.1: Schematic view of a spin valve.
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Figure 3.2: Left: differential resistance phase diagram. Right: microwave power (color
scale) as function of frequency and current at fixed field (from Ref. [32]).

approximation. Unfortunately, it is difficult to extract a coherent picture from all this work

because different authors make different choices for the physical effects they believe most

affect the dynamics. There is not even unanimity amongst authors for the form of the

spin-transfer torque itself.

This state of affairs motivated us to perform a thorough study of the LLG dynamics

of a model spin valve for the purpose of a quantitative comparison with the data (Fig-

ure 3.2) reported by Kiselev et al. [32] for a Co/Cu/Co nanopillar. We make the macrospin

approximation, but otherwise systematically examine the effects of different forms of spin-

transfer torque, thermal fluctuations, spin-pumping, incomplete absorption of transverse

spin current, and angle-dependent damping. We find that a “minimal” macrospin model

can reproduce many (but not all) features of the experiment. The most important points

of disagreement are the current dependence of the precession frequency and the existence

of a microwave quiet magnetic phase with a distinct magnetoresistance signature. In light

of these results, we comment on micromagnetic simulations [52, 55] designed to model the

identical set of experimental data.

The plan of this chapter is as follows. Section 3.1 describes the macrospin models of
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interest and the generalized Landau-Lifshitz-Gilbert equation we solve numerically. Section

3.2 presents results for a “minimal” model and compares them to the measurements reported

in Ref. [32]. Section 3.3 examines several variations of the minimal model within the context

of the macrospin approximation. Section 3.4 compares our results with micromagnetic

simulations. Section 3.5 compares our results to experiment. Appendix A provides some

details omitted from the main body of the chapter.

3.1 The Macrospin Model

Our macrospin model of the spin valve shown in Figure 3.1 assumes that the magnetization

is spatially uniform in both ferromagnetic layers with saturation value Ms. The fixed layer

magnetization is M = Msẑ, but we allow the unit vector in the direction of the free layer

magnetization m̂ = m/Ms to point in any direction. In the coordinate system used here

(Figure 3.3),

m̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ. (3.1)

The experiments of interest [32] use a “free” ferromagnetic layer with a thickness d ≈ 3

nm and an elliptical shape of dimensions about 130 nm × 70 nm. Under these conditions,

magnetostatic shape anisotropy makes the y-z plane an easy plane for m. The z-axis

is an easy axis in that plane. The control parameters are an external magnetic field H
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Table 3.1: Physical quantity values in LLG calculation.
Quantity Material Value Unit Reference

Ms Co 0.127 · 107 A/m [32]
µ0Ms Co 1.6 T
γ Co 2.4 · 105 m/(As) [57]
Ku 0.5 · 10−3 J/m2 [58]
α Co 0.01 [59]

g↑↓/S Cu 2.94 · 1019 1/m2 [60]
ν Co/Cu 0.98 [60]

directed along +z and an electric current J that is reckoned positive when negatively charged

electrons flow from +x to −x.

We describe the dynamics of m̂ using a generalized Landau-Lifshitz-Gilbert (LLG) equa-

tion [9, 56],

dm̂

dt
= −γm̂× [Heff + HT] + αm̂× dm̂

dt
+

γ

µ0Ms
N. (3.2)

It will be convenient to discuss each term in Eq. (3.2) in turn.

3.1.1 Energy

The first term on the right side of Eq. (3.2) is a conventional magnetic torque with gyro-

magnetic ratio γ. This torque is driven by an effective field derived from the total energy

E of the free layer with volume V :

µ0Heff = − 1

V

∂E

∂m
. (3.3)

Taking account of magnetostatics, the external field, and a uniaxial surface anisotropy, we

show in Appendix A that E can be written in the form

2E

µ0M2
s V

= hZ cos2 θ + hY sin2 θ sin2 φ+ hX sin2 θ cos2 φ− 2h cos θ. (3.4)

Here, h = H/Ms and the constants hX , hY , and hZ are computed in Appendix A using the

free layer data given just below Eq. (3.1) and the material constants listed in Table 3.1.

3.1.2 Damping

The “Gilbert damping” term αm̂ × ˙̂m in Eq. (3.2) takes account of energy dissipation

mechanisms such as coupling to lattice vibrations [61] and spin-flip scattering. [62] While
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there is active debate among researchers whether this form of the damping is correct [63–

66], this is the form that is used by almost all practitioners. The pre-factor α is usually

treated as a phenomenological constant (Table 3.1) although it is not known whether this

is a good approximation for situations where the amplitude of precessional motion is large.

The Landau-Lifshitz approach to damping replaces the Gilbert term in Eq. (3.2) by

λm̂× (m̂×Heff). (3.5)

The constant λ can be calculated in some microscopic models, [67] but a phenomenological

treatment is almost universal. When N = 0 in Eq. (3.2), the Gilbert and Landau-Lifshitz

expressions for the damping torque are known to be equivalent, at least formally [68].

Section 3.1.4 gives a reason why we prefer the Gilbert form, but we performed calculations

using both forms for purposes of comparison. No significant differences were found.

3.1.3 Thermal Fluctuations

The stochastic vector HT in Eq. (3.2) is used to simulate the effect of finite temperature.

Each Cartesian component is chosen at random from a normal distribution with a variance

chosen so the system relaxes to a Boltzmann distribution at equilibrium [69]. Specifically,

〈H i
T(t)Hj

T(t′)〉 =
2kBTα

γV µ0Ms
δijδ(t− t′), (3.6)

where i, j = x, y, z.

We solve the stochastic LLG equation using the Ito calculus [70] and a numerical method

described by Milshtein [71]. We have confirmed numerically that this procedure does indeed

produce a Boltzmann distribution of energies at temperature T when N = 0 in Eq. (3.2):

n(E) = g(E)e−E/kBT , where n(E) is the possibility of the magnetization with energy E,

and g(E) is the density of states at energy E.

In the absence of anisotropies (only external magnetic fieldH existing), E = VMsH cos θ,

where V is the volume of the magnetic film and θ is the angle between H and the magne-

tization. In this case, the density of states can be computed as:

g(E) =
1

4π

∫ π

0

dθ δ(E − VMsH cos θ) =
1

4π

1
√

1− (E/VMsH)2
, (3.7)
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Figure 3.4: Various forms of (dimensionless) spin-transfer torque as a function of the angle
θ between the fixed layer and the free layer. The sine torque does not depend on the spin
valve geometry. The symmetric Slonczewski (SS) and asymmetric Slonczewski (AS) torques
are essentially identical for the standard spin valve geometry studied in this chapter (AS/SS
solid curve). The dashed curves show the difference between the symmetric and asymmetric
Slonczewski torques for a geometry discussed in Section 3.3.2.

in which only the angle θ is integrated, but not the precessional angle φ. The reason is

that the damping only occurs in the θ direction, the motion in φ direction is deterministic,

therefore there is no stochastic process in φ direction.

3.1.4 Spin-transfer

As discussed in Chapters 1 and 2, the spin-transfer torque in a spin valve has the form

Nst = η(θ)
~

2e

J

d
m̂× [m̂× M̂], (3.8)

where M̂ = M/Ms and cos θ = m̂ · M̂. The different forms of spin-transfer torque one

finds in the literature correspond to different choices for η(θ). If one simply puts η(θ) = η0,

the result is a “sine” approximation to the torque because the remaining angular factors

in Eq. (3.8) give Nst ∝ sin θ (Figure 3.4). This form of the torque arises when there is

spin-dependent scattering at the free layer interface and the polarization of the electron

current that flows from the fixed layer to the free layer is independent of the orientation of

the free layer. The prefactor η(θ) is not constant if there is a diffusive component to the
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current anywhere and/or spin-dependent reflection occurs at the fixed-layer interface. To

our knowledge, one or both of these effects is present in all transport theory calculations

of Nst. On the other hand, the corresponding sin2(θ/2) approximation for the angular

dependence of the magnetoresistance describes real spin valve data [72] better than one

would expect based on the transport theory predictions, to which we turn next.

Our results from Chapter 2 gave

η(θ) =
q+

A+B cos θ
+

q−
A−B cos θ

. (3.9)

We will call this the asymmetric Slonczewski (AS) approximation. If q− = 0, we have the

symmetric Slonczewski (SS) torque. One of the solid curves in Figure 3.4 shows that the

symmetric and asymmetric Slonczewski torques are essentially identical for the particular

spin valve geometry we use to model the experimental sample of Ref. [32] (see Section 3.2).

The two dashed curves show the difference between the the symmetric and asymmetric

Slonczewski torques for a spin valve geometry we will discuss in Section 3.3.2.

Spin-transfer torque accounts for non-equilibrium processes that cannot be described by

an energy functional. This means that Nst does not produce an effective field like Eq. (3.4)

and no damping of spin-transfer dynamics occurs if Heff = 0 and the Landau-Lifshitz form

Eq. (3.5) is used for damping. On the other hand, if one believes that it must be possible

to influence spin-transfer driven motion by transferring energy to other degrees of freedom,

it is necessary to use the Gilbert form of damping in the magnetization equation of motion.

This is what we do in Eq. (3.2).

3.1.5 Current-Induced Effective Field

First principles calculations [8, 73] show that the absorption of a transverse spin current

at a ferromagnetic interface is not 100% efficient. Part of the fraction that survives gives a

small correction to η(θ) in Eq. (3.8). The remainder is polarized perpendicular to both m

and M and contributes a torque density on the free layer of the form

Neff = η(θ)β
~

2e

J

d
m̂× M̂. (3.10)
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Evidently, Neff produces motion of m̂ identical to that produced by an effective external

field oriented along the magnetization direction M̂ of the fixed layer. This contribution is

usually neglected because the cited calculations find β ≈ 0.05. We include it here because

at least one experiment [41] has been interpreted as demonstrating that β ≈ 0.20.

3.1.6 Spin Pumping

A final contribution to the torque on the free layer comes from a phenomenon called “spin

pumping”. Since a spin polarized current incident from a non-magnet can produce mag-

netization dynamics in an adjacent ferromagnet, it is not unreasonable that motion of the

magnetization of a ferromagnet can influence the spin current in an adjacent non-magnet.

The most prominent effect is the injection of a spin current into the non-magnet whenever

the magnetization moves. One consequence of the injected spin current is a back-reaction

torque that increases the damping of the spin motion [74–76]. This effect has been confirmed

by experiments [77–80]. The torque density due to spin-pumping is given by Tserkovnyak

et al. [60] as

Nsp =
1

d
m̂× Jexch

s × m̂, (3.11)

where

Jexch
s =

1

2

[

Jsp
s − ν(Jsp

s · M̂)
M̂− νm̂ cos θ

1− ν2 cos2 θ

]

(3.12)

with

Jsp
s =

~g↑↓

4πS
m̂× dm̂

dt
. (3.13)

S is the cross-sectional area of the free layer. Table 3.1 gives numerical values for the

parameters ν and g↑↓ (defined in Ref. [81]) for the Co/Cu/Co spin valve of interest to us

here.

3.2 Minimal Model

This section compares LLG simulation results with the experimental results reported in

Ref. [32]. Our “minimal” model is Eq. (3.2) with N = Nst from Eq. (3.8) and the asymmetric

Slonczewski (AS) choice in Eq. (3.9) for η(θ). This model takes account of magnetostatic and

surface anisotropy, an external magnetic field, current-induced spin-transfer torque, Gilbert
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damping, and thermal fluctuations. Most of our calculations use a spin valve geometry (see

Figure 1.1) designed to mimic the nanopillar samples studied by Kiselev et al. [32]:

Cu(80 nm)/Co(40 nm)/Cu(thin)/Co(3 nm)/Cu(10 nm).

The notation Cu(thin) indicates that the thickness of the spacer layer is immaterial as long

as it is smaller than the mean free path in copper. The precise choice of lead lengths is

subject to uncertainty due to the approximations needed to model finite width and reservoir

effects in a one-dimensional Boltzmann equation calculation of spin valve transport [82].

3.2.1 Computational Details

The simulations proceed by fixing the external field H and sweeping the current density J

in steps of size δJ . Before changing to the next value of J , we integrate the LLG equation

for a “waiting time” t∗ using N time steps of length δt. After each time step, we use the

instantaneous value of the angle θ between M and m and the results of Ref. [30] to evaluate

the instantaneous magnetoresistance R(θ). A time-average over these N values gives the

resistance we report for each J .

Figure 3.5 shows the calculated high-field and low-field magnetoresistance as a function

of J for three values of the simulated sweep rate SR = δJ/t∗. The curves in this figure are

averages over 20 realizations of the stochastic simulation. In each realization, the system

switches abruptly at a particular value of current between states with distinctly different

magnetoresistance (to be discussed below). Since the switching current depends on the

realization, an average over essentially vertical transitions at slightly different switching

currents gives the not-quite-vertical lines seen in the figure. As expected, the hysteresis

loops close as the sweep rate decreases. Less obviously, the rate of closing is much greater

at high field than at low field. It is important to appreciate that the simulated current

sweeps are limited by the degree of numerical convergence, available computing resources,

and the simulator’s patience. The slowest sweep rate we found we could practically use in

our simulations [1011A/(cm2·s)] is still five orders of magnitude faster than the sweep rate

used in the Cornell experiments.
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function of current density sweep rate (SR) in units of A/(cm2·s). The up arrows identity
the parts of the hysteresis loops traced out when J is scanned from negative values to
positive values. The down arrows correspond to scanning from positive values to negative
values of J .

For fixed values of H and J , the N values of resistance collected between t = 0 and

t = t∗ constitute a time series for the resistance. Spin valves are Ohmic devices, so the

Fourier transform of this series is proportional to the associated power spectrum. We use

this numerical data below to compare with the microwave noise data reported in Ref. [32].

3.2.2 J-H Phase Diagrams

Figure 3.6 compares spin valve “phase diagrams” at T = 3 K, T = 300 K, and T = 3000 K

for our minimal model. These should be compared with the diagram on the left side of

Figure 3.2. Our diagrams were constructed by sweeping the current twice (once increasing

the current and once decreasing the current) for each value of H. There is some noise at

higher temperature because we did not average over multiple realizations of the simulation.

Solid lines divide each diagram into phase fields with labels like A, B and A/B. The latter

means that the field is occupied by phase A when the current is scanned from left-to-right

in the diagram and by phase B when the current is scanned from right-to-left. Thus, a label
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like A/B is a signal that hysteresis is present.

The phase fields in Figure 3.6 are labeled P (parallel), AP (anti-parallel), IPP (in-plane

precession) and OPP (out-of-plane precession). The static P and AP states are labeled by

the relative orientation of m and M. The precessing states are identified from the microwave

power (not shown) as described above. IPP denotes a dynamic state where m precesses

symmetrically (or nearly so) around an axis that lies in the y-z easy plane. OPP denotes

a dynamic state where m precesses symmetrically (or nearly so) around an axis that does

not lie in the easy plane. Section 3.2.4 describes these states in more detail.

We focus first on the 3 K diagram. This is similar (but not identical) to T = 0 K diagrams

published by others [32, 40] using the symmetric Slonczewski spin-transfer torque. Using

sharp peaks in the measured noise power spectrum to identify states of stable precession,

Kiselev et al. pointed out the topological similarity between their computed T = 0 K phase

diagram and their measured T = 300 phase diagram [32].

When H exceeds the coercive field, our 3 K phase diagram shows hysteresis for the

P↔IPP and OPP↔AP phase transitions. The experiment shows no hysteresis in this regime

(see below). At low field, the P→ AP transition occurs abruptly while the reverse-current

AP → P transition does not. Instead, there is a long, skinny, triangular-shaped P/IPP
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phase field within which the magnetization m exhibits stable, elliptical precession around

the −ẑ axis. The precession amplitude increases as the current becomes more negative. The

system crosses the phase boundary into the P phase when the precession angle between m

and −ẑ exceeds 90◦ and the vector m spirals irreversibly toward ẑ. We will see below that

this asymmetry has its origin in the details of the dependence of the spin-transfer torque

on the angle between the free layer and the fixed layer.

We draw special attention to the lower limit of the OPP/AP phase field in the 3 K

phase diagram. The perfectly horizontal portion of this phase boundary is an artifact of

the current scanning mode used to generate the diagram. If we fix J and scan the external

field H from large values to small values, the OPP phase does not give way to the AP phase

until the dashed line in the diagram is crossed. The exact shape of this boundary depends

on the H-scan rate, but it is reasonable to suppose that the corresponding horizontal phase

boundary found in Ref. [32] may also be an artifact of the method of taking data. 1

Reading Figure 3.6 from left to right shows that the regions of hysteresis shrink as the

temperature increases. More details can be seen in the line scans of Figure 3.7. The effect

of increasing temperature is very similar to the effect of decreasing the current density

sweep rate in Figure 3.5. Indeed, since our simulated current sweep rate is always much

faster than experiment, the temperatures indicated on the phase diagrams in Figure 3.6

must be regarded as nominal. The true phase diagram at each temperature we show would

exhibit less hysteresis. Equivalently, each panel actually corresponds to a lower physical

temperature than the temperature we quote. Thus, our T = 3000 K diagram indicates

(qualitatively) how the 300 K phase diagram might look if we could use current sweep

rates comparable to those used experimentally. We note also that substantial Joule heating

occurs in real spin valve samples, perhaps 15 K to 20 K per 107 A/cm2 [38].

Our highest temperature simulation shows P↔AP hysteresis when H is small and com-

plete reversibility when H is large. This resolves the disagreement between theory and

experiment noted above. Moreover, state-to-state switching characterizes every reversible

1Ilya N. Krivorotov and Jack Sankey (private communication).
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phase boundary. Figure 3.8 illustrates this for the dynamics of switching between the anti-

parallel AP state and out-of-plane precession (OPP). The time-series data for the magne-

toresistance was collected on the OPP/AP phase boundary at 3000 K. Clearly, the system

switches back and forth between the AP state (small fluctuations around unit normalized

resistance) and the OPP state (periodic oscillations of the normalized resistance between

zero and one). Experiments show precisely this sort of telegraph noise [5, 36–38] if we

replace the full scale excursions of the OPP resistance with small scale fluctuations around

the average resistance of the OPP state. We are not aware of experiments that study the

telegraph noise at our 300 K IPP/OPP boundary or our 3000 K P/OPP boundary. Indeed,

at the latter, our simulations actually show random switching between three states: AP,

IPP, and OPP.

The variations of the computed resistance near the 3000 K P/OPP and OPP/AP phase

boundaries lead to two peaks in the differential resistance, dIV/dI = R + I dR/dI. These

agree well with the peaks in dIV/dI observed experimentally. On the other hand, Kiselev

et al. [32] identify a “W”-phase that is completely absent from our 3000 K phase dia-

gram. However, the experimental W-phase field appears exactly where our model predicts

OPP/AP phase bistability at 3 K and 300 K (two left panels of Figure 3.6). The experi-

mental W-phase is microwave quiet above the experimental low frequency cut-off (0.1 gHz)

and it exhibits a magnetoresistance that is slightly, but distinctly, smaller than that of the

AP configuration. This would occur in our macrospin model if the free layer were frozen

into a static configuration with m neither parallel nor anti-parallel to M. We will return

to the W-phase when we discuss micromagnetic simulations in Section 3.4.

Quantitatively, our calculated coercive field is about half the experimental value. This

discrepancy may reflect an inaccurate description of the shape (and therefore the magneto-

static anisotropies) of the free layer. Another possibility is our complete neglect of dipolar

coupling to the fixed layer. At low T , we also find that the magnitude of the critical current

J+
c for the P→AP transition is much greater than the magnitude of the critical current J−c

for the AP→P transition. Experiments show that J+
c and J−c are more symmetric around

zero current. The calculated critical currents are determined by the angular derivatives of
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Figure 3.9: Relative microwave power at different frequencies as a function of field H at
T = 3 K. The gray/color scale is logarithmic. Left panel: J = 0.3 × 108A/cm2; the black
curve is twice the resonance frequency given by the Kittel equation Eq. (3.14).

the torque for small angles around parallel and antiparallel. These quantities are [9] η(0)

and η(180◦) for the Slonczewski torques in Figure 3.4. A straightforward interpretation of

the experimental results would imply that the actual torque is more nearly symmetric than

would be implied by the transport calculations that have been done to date. On the other

hand, our simulations at 3000 K more nearly resemble the experiments at 300 K because

J+
c decreases strongly with temperature while J−c is nearly temperature independent.

3.2.3 Precession Frequency

The gray/color scale in Figure 3.9 quantifies the relative microwave power (on a logarithmic

scale) at frequency f as a function of magnetic field for two values of current density

J . The numerical data was obtained by Fourier transforming our simulated time series

data for the magnetoresistance. The narrow bands of peak microwave power trace out

the frequency ω(H) of stable precession (and its harmonics). The left panel corresponds

to small-amplitude, noise-driven, in-plane precession at a value of current just before the

parallel phase becomes unstable to steady in-plane-precession. As with the experimental

data [6, 32], ω(H) in this regime can be described by the Kittel equation (black curve) for

thin film magnetic resonance [83]. In the notation of Appendix A, the resonance frequency

is

ωK = γ
√

[H + (hY − hZ)Ms][H + (hX − hZ)Ms]. (3.14)
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Our simulation data agree with 2ωK because the periodicity of the resistance is twice the

periodicity of the magnetization oscillation frequency. No analytic theory is available for

comparison with our results at a higher value of J (right panel) where large amplitude

out-of-plane precession occurs. But our results do show the same relative magnitude and

H-dependence as seen in the experiments.

Figure 3.10 shows the relative microwave power at frequency f as a function of increasing

J (left panel) and decreasing J (right panel). Similar plots for comparison with experiment

have been presented by others using the symmetric Slonczewski torque [32] and the sine

torque [48]. The zero power regions at low and high J correspond to the static P and AP

magnetization states. In between, the narrow bands of peak microwave power trace out

ω(J) (and its harmonics) for stable precession. Just above the limit of the parallel state,

there is a very narrow range of in-plane precession where ω(J) decreases monotonically. At

slightly higher J , the system evolves to a state of out-of-plane precession (OPP) where ω(J)

first increases and then decreases. Comparison of the two panels in Figure 3.10 illustrates

the hysteresis present at this low temperature.

Our results for ω(J) do not agree with observations for real spin valves. [6, 32] Putting

aside the fact that no hysteresis is seen in the experiments (which we attribute to the current

sweep rate as discussed above), the experimental data always show that ω decreases as J
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Figure 3.11: Left: In-plane precession (IPP) orbits for two nearby values of J . The thick
segments are points on each orbit where the magnitude of the demagnetization field Hd =
−hXm̂xx̂ is smaller than the magnitude of the external field H = H ẑ. The y-z easy
plane and the equatorial circle of the unit sphere in the x-y plane are indicated as guides
to the eye. Right: Out-of-plane precession (OPP) orbits. The geometry is the same as
Figure 3.11 except that the north (N) and south (S) poles of the unit sphere are indicated.
The orbit labeled “AS/SS” is produced by Slonczewski’s spin-transfer torque. Along the
thick segment, the spin-transfer torque and demagnetization field torque point in opposite
directions. The orbit labeled “sine” is produced by a sine-type spin-transfer torque for the
same value of J .

increases. Naively, it is as if in-plane precession persisted all the way to the anti-parallel

state with no intervening state of out-of-plane precession. This is a serious issue because,

in our model, in-plane precession occupies an extremely small portion of the J-H phase

diagram.

3.2.4 Precession Trajectories

To help shed light on our simulation results for ω(J), it is instructive to analyze the rela-

tionship between this quantity and the trajectory of the tip of m̂ on the unit sphere. We will

call this the orbit of the precessional motion. Without loss of generality, we set hY = hZ = 0

and retain only the external field H = H ẑ and the local, out-of-plane demagnetization field

Hd = −hXm̂xx̂. It is crucial that the magnitude Hd changes along the trajectory because

the component m̂x of m̂ changes along the trajectory.
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It is common to think of precession as the steady motion of a vector on a cone that

makes a small angle with respect to its symmetry axis. The orbit in this case is a circle.

The precessional states in the present problem are more complicated. The left panel in

Figure 3.11 shows two large amplitude, saddle-shaped, in-plane precession (IPP) orbits for

two nearby values of J . We call these “in-plane” precession modes because each orbit moves

symmetrically (or nearly so) around an axis (the z-axis) that lies in the easy y-z plane.

Let us partition each orbit into two segments. The short thick segments lie near the easy

plane where the demagnetization field Hd is smaller than the external field H. Along these

segments, the orbital azimuthal angle φ precesses mainly around H with angular speed

γH. Along the remaining segment of each orbit, Hd is larger than H and the orbital polar

angle θ precesses mainly around Hd with angular speed γHd. The left panel in Figure 3.11

shows that the angular range swept out by both the thick and thin segments increases as

the current density (and the spin-transfer torque) increases, i.e., the total arc length of the

orbit increases. Since the orbital speeds change very little with J , we conclude that the

orbital period increases as current density increases. This implies that ω(J) is a decreasing

function for in-plane-precession orbits.

As J continues to increase, the apices of the two thick segments of the in-plane precession

saddle orbit approach and then touch one another near the negative z-axis. When this occurs

the orbit bifurcates into two elliptical orbits, each centered on an out-of-plane axis not far

from the x-axis. [32, 47, 48, 84] Precessional states at higher current density correspond

to one or the other of these out-of-plane (OPP) trajectories, e.g., the AS/SS orbit in the

right panel of Figure 3.11. This orbit precesses mostly around Hd. Spin-transfer torque

tends to push the orbit away from the easy plane in the northern unit hemisphere. The

effect on the orbit in the southern unit hemisphere is more complex. The net result is that

the “center” of the orbit moves away from the easy plane. In other words, as the current

density increases, the component m̂x of m̂ increases, which increases Hd, and thus increases

the frequency γHd of the orbit.

Along the thick segment of the out-of-plane orbit, the spin-transfer torque and the torque

from the demagnetization field point in (nearly) opposite directions. This means that the net
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Figure 3.12: Phase Diagrams at 3 K (top panels) and 3000 K (bottom panels). Left
panel: sine torque; middle panel: sine torque plus current-induced effective field; right
panel: Slonczewski torque plus current-induced effective field. For fixed H, a bistable
region labeled A/B exhibits the A state when J is scanned from left to right and the B
state when J is scanned from right to left. The dashed curves are the OPP→AP phase
boundaries for a field scan from large H to small H at fixed J .

torque, and thus the orbital speed along that segment, decreases as J increases. Eventually,

this slowing down overwhelms the speeding up described just above and the total orbital

period begins to increase. This is why ω(J) decreases for the largest values of J where

precession occurs in the left panel of Figure 3.10.

3.3 Beyond the Minimal Model

There are two major discrepancies between the Cornell experiment [32] and our minimal

model results: the variation of the precession frequency ω with current density J and the

absence of a microwave quiet “W-phase”. Within the context of the macrospin model, we

examined several variations of our model, mostly with the hope they would improve the

agreement between theory and experiment. We studied the influence of (A) a sine-type

spin transfer torque for the standard geometry; (B) asymmetric vs. symmetric Slonczewski

spin-transfer torque for a special asymmetric geometry; (C) the current-induced effective
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field that arises due to incomplete absorption of transverse spin currents; (D) spin-pumping;

and (E) angle-dependent Gilbert damping.

3.3.1 Sine Spin-Transfer Torque

Figure 3.4 shows the geometry-independent “sine” torque that is widely used in the litera-

ture. The top left panel in Figure 3.12, shows the 3 K phase diagram when this sine torque

replaces the AS/SS torque. Several differences with the corresponding Slonczewski torque

phase diagram (left panel of Figure 3.6) should be noted.

First, with a sine torque, the low-field P→AP transition is mediated by in-plane pre-

cession in the same way that precession mediates the AP→P transition for both the sine

and Slonczewski torques. This occurs because sin θ is symmetric around θ = π/2 while the

minimal model torque is not. Second, the sine torque generates no hysteresis in the high-

field transitions P↔IPP and IPP↔OPP. Third, the lower limit of the OPP phase boundary

determined by a field scan from large H to small H (dashed curve) greatly reduces the size

of the AP phase field compared to the Slonczewski case. This feature does not appear to

have been noticed in previous discussions of this phase diagram [46, 47].

Unlike the Slonczewski torque, increasing current or field eventually drives the sine

torque model to a transition from out-of-plane precession (OPP) to a static phase where

the macrospin m is “fixed” (F) at some angle between zero and π. This is intriguing because

the magnetoresistance and microwave power characteristics of this phase match exactly to

those of the experimentally observed “W-phase”. Unfortunately, the location of the F phase

in the sine torque phase diagram does not agree with the location of the W-phase in the

experimental phase diagram (see the penultimate paragraph of Section 3.2.2)

The bottom left panel in Figure 3.12 shows the 3000 K phase diagram for the sine torque

macrospin model. Compared to the corresponding diagram for the minimal model (right

panel of Figure 3.6), thermal effects eliminate OPP/AP bistability only when J is small.

Hysteresis between these phases remains when J is large. In this sense, the sine torque

model is more resistant to thermal fluctuations than the Slonczewski torque model.

Finally, the out-of-plane precession frequency for the sine torque is a strictly increasing
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function of J . The argument is similar to the one in Section 3.2.4 for the Slonczewski

torque. However, as the current increases, the different angular dependence of the sine

torque causes the orbit of m̂ to push steadily away from the easy plane everywhere and

contract on the unit sphere (see Figure 3.11). The frequency γHd increases monotonically

because the demagnetization field Hd increases. The outward motion and areal contraction

of the orbit continues as the current increases until the orbit area shrinks to a single point

on the unit sphere. This is the signature of the fixed (F) phase.

3.3.2 AS vs. SS Spin-Transfer Torque

The AS/SS curve in Figure 3.4 shows that the asymmetric Slonczewski torque used in our

minimal model is essentially identical to the symmetric Slonczewski torque for the spin

valve geometry of Ref. [32]. This is not always the case. For example, compared to the

geometry of Kiselev et al. [32], a spin valve with film thicknesses,

Cu(10 nm)/Co(40 nm)/Cu(thin)/Co(3 nm)/Cu(180 nm),
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is very asymmetric. The Cu/Co bilayers on opposite sides of the spacer layer are very

different: the left bilayer is mostly ferromagnet, the right bilayer is mostly non-magnet. The

difference between the symmetric and asymmetric Slonczewski torques for this geometry is

still small (compare the two dashed curves in Figure 3.4). Nevertheless, it is large enough to

produce small-angle, in-plane precession that “rounds” the low-to-high resistance jump in

the AS hysteresis curve at the P→AP transition in the lower panel of Figure 3.13. The same

panel shows similar precessional rounding for the sine-type spin-transfer torque. However,

the latter rounding disappears when shape anisotropy is turned off. The corresponding

rounding for the asymmetric Slonczewski torque does not disappear when shape anisotropy

is turned off [82].

Figure 3.13 also shows that the critical current J+
c for the P→AP transition differs for

all three spin-transfer torques while the critical current J−c for the reverse AP→P transition

distinguishes only the sine torque. This is a consequence of the fact that J+
c (J−c ) is inversely

proportional the slope of the torque function η(θ) sin θ (plotted in Figure 3.4) at θ = 0

(θ = π) [9]. The fact that J+
c is smaller for the AS torque than for the SS torque suggests

that an asymmetric geometry like the one above may be desirable for some applications.

3.3.3 Current-Induced Effective Fields

We mentioned in Section 3.1.5 that a current-induced torque that acts like an effective

external magnetic field can arise due to incomplete absorption of a transversely polarized

spin current at the interface between the spacer and the free layer. A recent experimental

report [41] has been interpreted by its authors to mean that the size of this torque —

displayed in Eq. (3.10) — is much larger than theoretical estimates. Accordingly, Figure 3.12

shows how the spin valve 3 K phase diagram changes if we augment the sine torque (top

middle panel) and the minimal model torque (top right panel) by an effective field torque

that is 20% of the spin-transfer torque, as suggested by this experiment. For comparison,

the bottom middle and bottom right panels respectively show the phase diagrams for these

two situations at 3000 K. We find that the topology of the phase diagram does not change,

although the precise positions of the phase boundaries do. The qualitative behavior of the
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precession frequencies is not affected.

3.3.4 Spin-Pumping

The original discussion of spin-pumping [81] focused on the enhancement of Gilbert damp-

ing that occurs when a normal metal is in intimate contact with a precessing thin film

ferromagnet. Subsequent work [60] has emphasized that the torque due to spin-pumping

is generally of the same order of magnitude as spin-transfer torques. Since the analytic

form of the torque Nsp in Eq. (3.11) differs considerably from simple damping for, e.g.,

large-angle, out-of-plane precessional motion, this raises the possibility that spin-pumping

alters the dynamical behavior of a spin valve more profoundly than merely enhancing the

Gilbert damping.

In the small angle limit, the parameters for intrinsic Gilbert damping and spin-pumping

suggested in Ref. [60] for the Co/Cu/Co system (Table I) produce a total effective Gilbert

damping of αeff = 0.148. Therefore, in Figure 3.14, we compare the phase diagram at 3 K

obtained with our minimal model (no spin pumping) using α = αeff (solid lines) with the

phase diagram obtained including both (reduced) Gilbert damping and the spin-pumping

torque density Nsp (dashed lines). The small differences we find between the two show that

spin-pumping does not much affect the sort of precessional motion produced by our minimal

model. There is also no qualitative change in the current dependence of the precession

frequency. We conclude that neither effective fields nor spin pumping affects improves the

agreement between experiment and the minimal model.

3.3.5 Angle-Dependent Gilbert Damping

The numerical value of the Gilbert damping constant α in 3.2 is usually extracted from

ferromagnetic resonance or Brillouin light scattering experiments [63]. Since the magneti-

zation is never tilted far from equilibrium in these situations, it is relevant that Back et al.

[85] reported an effective increase in the damping constant for large magnetization rotation

angles in cobalt films under pulsed field conditions. More recent pulsed-field experiments

have been successfully analyzed using conventional Gilbert damping [86, 87]. Since tran-

sient magnetization dynamics is a common feature of all these experiments, it is not obvious
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that the results address the validity of the constant α approximation for large-angle, steady

precession of the sort discussed in this chapter. With one exception [3], we are unaware of

any models that allow the damping constant to vary during the course of precession.

A glance back at Figure 3.9 shows that the precession frequency ω(J) decreases mono-

tonically (as seen in experiment) for in-plane-precession and also for out-of-plane precession

near the boundary with the anti-parallel state. Using the damping “constant” ansatz

α(θ) = a+ b sin2 θ, (3.15)

we have been able to produce dynamical phase diagrams with (i) only in-plane-precession

or (ii) only out-of-plane precession with (in both cases) the “correct” behavior for ω(J), or

nearly so. Unfortunately, other features appear in the simulated phase diagram that do not

appear in the data, e.g., an extended region of precession when the external field H is less

than the coercive field. It may be possible to fine-tune the phase diagram to the desired

form, but this seems unwarranted without some justification for Eq. (3.15) and the relative

paucity of theoretical information about damping far from equilibrium [88].
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3.4 Micromagnetics

Our macrospin approach to the Landau-Lifshitz-Gilbert (LLG) equation replaces the free

layer magnetization m(r) by a constant vector m. The numerical method of micromagnetics

is a better approximation to reality because it retains spatial gradients of m(r) down to a

fixed minimum length scale. Treating the spatial variation of the magnetization allows the

inclusion of two effects that we have neglected because they do not contribute when the

magnetization is uniform. First, the experimental samples are polycrystalline so we ignore

any intrinsic magnetocrystalline anisotropy because the non-uniform effective fields tend to

average to zero over the whole sample. Second, the Oersted magnetic field produced by the

current itself largely averages to zero over the whole sample. While these two effects are

not important for the macrospin dynamics we have considered here, full simulations [55]

show that the inhomogeneities in the magnetization that result can be quite important.

There is an emerging consensus amongst micromagnetic practitioners [49–55, 89] that

the inclusion of spin-transfer torque excites incoherent spin waves in the free layer (and

thus inhomogeneous magnetization) if the current density is sufficiently great to induce

switching and microwave emission. However, since the method takes full account of local

exchange and non-local magnetostatics, systematic survey calculations of the sort we have

presented in this chapter are prohibitively expensive, even for systems as small as a spin

valve free layer. Using a torque density Nst ∝ sin θ to model spin-transfer, Ref. [52] reports

zero-temperature micromagnetic simulations designed to mimic the experimental conditions

reported by Kiselev et al. [32] Like our Figure 3.6, the calculated phase diagram agrees

topologically and semi-quantitatively with the experimental diagram, with one important

improvement. The micromagnetics simulation identifies the experimental “W-phase” with

a dynamical phase field where vortices of magnetization continuously form and annihilate.

The calculated noise power in this regime is concentrated at very low frequency and thus

appears to be microwave quiet in the experiment.

It seems plausible that the extra degrees of freedom present in the micromagnetic ap-

proximation allow the bistable OPP/AP phase present in our macrospin model to break

up into a spatially inhomogeneous state. The same logic suggests that the fixed F phase of
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the macrospin sine torque phase diagram breaks up similarly into a state of inhomogeneous

magnetization. On the other hand, the micromagnetic simulation produces a nearly hori-

zontal line for the AP phase boundary that we identify as an artifact of the current-scanning

mode of data collection.

It is worth noting that the microwave power output in this micromagnetic calculation

is nearly independent of J in the high-field precession regime (as we find for a macrospin)

while the power output observed experimentally varies considerably in this part of the phase

diagram. The precession frequency ω(J) in the same regime has been studied by Berkov

and Gorn [55], who find that they are able to qualitatively reproduce the experimental

frequency dependence with a highly inhomogeneous magnetic state. The inhomogeneous

state arises from the non-uniform Oersted field and an (assumed) random distribution of

granular magnetocrystalline anisotropy. It would be interesting to discover if this type of

micromagnetic simulation can produce resonance linewidths with Q ≈ 100 as observed in

the most recent nanopillar experiments [35].

3.5 Summary & Conclusion

In this chapter, we have studied the Landau-Lifshitz-Gilbert (LLG) dynamics of a sin-

gle macrospin as a model for current-driven magnetization motion in the free layer of a

spin valve. We parameterized our model specifically to compare our results with those

reported by Kiselev et al. [32] for a Cu/Co/Cu nanopillar. Due to the simplicity of the

model (compared to micromagnetics), we were able to explore systematically the effects of

temperature, spin-pumping, current-induced effective fields, various forms of spin-transfer

torque, and angle-dependent damping. We focused most of our attention on a “minimal

model” where Slonczewski’s spin-transfer torque supplements the terms usually found in

the LLG equation.

Low-Field Behavior: Our minimal macrospin model captures the essential features of

the experiment when the external field H does not exceed the coercive field of the free

layer. As a function of current density J , there is hysteretic switching between parallel

and anti-parallel orientations of the free layer and the fixed layer. In the experiment, the
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critical currents for P→AP and AP→P switching have opposite sign but are approximately

equal in magnitude . This is not a feature of our T = 3 K phase diagram, but it is much

more nearly true in our simulation at 3000 K, where thermal fluctuations are large enough

to mimic the effect of the (slow) current sweep rate used in the experiment. The scale we

calculate for H is about half as large as seen in the experiment.

High-Field Behavior: The macrospin model correctly models noise-driven, low ampli-

tude, in-plane precession when H is larger than the coercive field and the current density

is low. The existence of large-amplitude, in-plane and out-of-plane precession at higher

J agrees qualitatively with observation, but the precession frequency function ω(J) is not

monotonically decreasing as found in experiment. The simulation predicts peaks in dIV/dI

associated with telegraph-noise switching between two (or more) states of magnetization.

These peaks are present in the experiment, as is two-state telegraph noise. We find an

OPP/AP bistable phase field that is occupied in the experiment by a microwave quite

“W”-phase. Micromagnetic simulations by others suggest that that vortex creation and

annihilation occurs in this phase field.

Other Effects: The phase diagram of the sine-torque model differs mostly in detail with

the phase diagram of the minimal model. An exception is the presence of a high-field, high

current “fixed” phase for the sine torque where the macrospin freezes into a fixed angle with

respect to the fixed layer. This phase does not seem to occur in micromagnetic simulations.

Another exception is the relative persistence of the OPP phase when we scan from high

values of H to low values of H. This behavior is also absent from the micromagnetics

simulations. Spin-pumping and current-induced magnetic fields do not change the phase

diagram in any significant way. Large topologically changes do occur if we allow the Gilbert

damping parameter to change with angle, but we have no guidance for the form α(θ) should

take. This seems like a fruitful direction for future research.
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CHAPTER IV

SPIN-TRANSFER TORQUE FOR VARIABLE

MAGNETIZATION

In the previous chapters, we focused on spin-transfer in a spin valve. There, a single domain

ferromagnet feels a torque because it absorbs the component of an incident spin current

that is polarized transverse to its magnetization. The same idea generalizes to systems with

continuously non-uniform magnetization [44, 90]. This realization has generated a flurry

of experimental [10–19] and theoretical work [91–97] focused on current-driven motion of

domain walls in magnetic thin films.

The magnetization in a domain wall generally can be described by

M = Ms(sin θ cosφ, sin θ sinφ, cos θ), (4.1)

where θ and φ denote the spacial orientation of the magnetization in some frame, and Ms

is the saturation magnetization of the material. Figure 4.1 shows a cartoon picture of a one

dimensional Néel type domain wall 1 along the x axis where the magnetization rotates in

the x-z plane from one domain to the other. If we define θ as the polar angle measured from

the positive z axis and φ as the azimuthal angle in x-y plane, this wall can be described by

Eq. (4.1) with

θ(x) = − arcsin
[

tanh
( x

w

)]

+
π

2
, φ(x) = 0. (4.2)

1Néel type domain wall is one in which the magnetization rotation axis is perpendicular to the domain
wall direction (x-direction in Figure 4.1).

x2 w θ ( x )zy �
Figure 4.1: Cartoon of a Néel type domain wall.
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x2 π / p θ ( x ) z y
x 'z '
Figure 4.2: Cartoon of a spin spiral.

The parameter w is called the domain wall width.

Because of the complicated form of θ in Eq. (4.2), some theorists study a domain wall

with a simpler form of θ which is a linear function of x inside the wall:

θ(x) =























π, x < −w
π

2

(

1− x

w

)

, −w ≤ x ≤ w

0, x > w.

(4.3)

Even the domain wall defined by Eq. (4.3) is sometime too complicated, so we also study

an even simpler magnetic structure — a spin spiral. A spin spiral is a helical magnetic

structure where the direction of the magnetization rotates continuously as one moves along

a fixed axis in space. Spin spirals occur in the ground state of some rare earth metals [98]

and also for the γ phase of iron [99]. Figure 4.2 shows a cartoon picture of a spin spiral

where the magnetization rotates uniformly in the x-z plane of a fixed coordinate system

with M̂(x) · ẑ = cos θ. The inset shows a local coordinate system where M(x) always points

along the z′ axis. This spin spiral can be described using Eq. (4.1) with

θ(x) = p x and φ(x) = 0, (4.4)

where θ and φ have the same definition as in domain walls.

The experiments cited at the beginning of this chapter employ Néel-type domain walls

with widths w ≈ 100 nm. This length is very large compared to the characteristic length

scales of the processes that determine the local torque [8, 100]. Therefore, it is appropriate

to adopt an adiabatic approximation where the spin current is assumed to lie parallel to

the local magnetization [44, 90]. Surprisingly, the adiabatic prediction for the current

dependence of the domain wall velocity [93, 101, 102] agrees very poorly with experiment.

This has led theorists [91–95] to consider non-adiabatic effects and experimenters [103, 104]
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to study systems with domain wall widths that are much shorter (w ≈ 10 nm) than those

studied previously.

Two groups [92, 102] have studied the effect on domain wall motion of a distributed spin-

transfer torque represented by a sum of gradients of the local magnetization with constant

coefficients. For a one-dimensional magnetization M(x), the torque function can be written

in terms of two vectors perpendicular to the magnetization

Nst(x) = c1∂xM̂ + c2M̂× ∂xM̂. (4.5)

In general, the coefficients c1 and c2 are functions of position. The well-established adiabatic

piece of the torque is the first term in Eq. (4.5) with a constant coefficient. Consistent with

usage in the literature, we call all deviations from the adiabatic torque non-adiabatic. Any

contributions of the second term are then called non-adiabatic. Zhang and Li [92] derive a

contribution along this second direction in Eq. (4.5) from a consideration of magnetization

relaxation due to spin-flip scattering in the context of an s-d exchange model of a ferro-

magnet. [100, 101] Their arguments lead them to the estimate c2/c1 ≈ 0.01. The authors

of Ref. [94] report that a similar value of c2/c1 produces agreement with experiment when

Eq. (4.5) is used in micromagnetic simulations.

In this Chapter, we study the applicability of Eq. (4.5) to a free-electron Stoner model

for a domain wall and a spin spiral structure. We begin with the spin spiral. This system

turns out to be perfectly adiabatic; the torque is described by Eq. (4.5) with c2 = 0. The

same is true for realistic domain walls of the sort usually encountered in experiment. Non-

adiabatic effects appear only for very narrow walls. In that case, we find that the torque is

non-local and cannot be written in the form Eq. (4.5). The non-adiabatic torque decreases

exponentially as the wall width increases for all realistic domain wall profiles. Finally, our

analysis casts doubt on the existence of the Zhang-Li non-adiabatic contribution to the

torque mentioned above.

This Chapter is organized as follows. Section 4.1 describes our Stoner model and the
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methods we use to calculate the spin current and the spin-transfer torque. Section 4.2 re-

ports our results for an infinite spin spiral and Section 4.3 does the same for one-dimensional

domain walls that connect two regions of uniform magnetization. Section 4.4 relates these

calculations to previous work by others. Section 4.5 discusses the effects of scattering. We

summarize our results and offer some conclusions in Section 4.6. Appendix B and Appendix

C provide some technical details omitted in the main body of the Chapter.

4.1 Model & Methods

The free electron Stoner model provides a first approximation to the electronic structure of

an itinerant ferromagnet. The Hamiltonian is

H = − ~
2

2m
∇2 − µσ ·Bex(x), (4.6)

where σ = (σx, σy, σz) are the three Pauli matrices and µ = g~e/2m. The magnetic field

Bex(x) is everywhere parallel to M(x) but has a constant magnitude. 2 That magnitude is

chosen so the Zeeman splitting between the majority and minority spins bands reproduces

the quantum mechanical exchange energy in the limit of uniform magnetization:

Eex = 2µ|Bex| = ~
2k2

B/m. (4.7)

If EF = ~
2k2

F /2m is the Fermi energy, the constant kB in Eq. (4.7) fixes the Fermi wave

vectors for up and down spins, k+
F and k−F , from

k±F =
√

k2
F ± k2

B. (4.8)

Given Bex(x), we use both quantum mechanics and a semi-classical approximation to

calculate the spin accumulation, spin current density, and spin-transfer torque. The building

blocks are the single-particle spin density s±(x, kx) and the single-particle spin current

density 3 Q±(x, kx) for an up/down (±) electron with longitudinal wave vector kx.

2In reality, the magnetization is oppositely directed to the spin density since the g factor for electrons is
negative. For simplicity, we ignore this sign difference and assume that the magnetization is parallel to the
spin density. Care is required when using spin currents to compute torques on magnetizations.

3The spin current density is a tensor quantity (Ref. [8]). However, since the current defines the only
relevant direction in space for this problem, we suppress this dependence and use the components of the
vector Q to denote the Cartesian components of the spin degree of freedom in the spin current density.
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Summing over all electrons and using the relaxation time approximation gives the non-

equilibrium majority and minority spin density s±(x) and spin current density Q±(x) in

the presence of an electric field Ex̂:

s±(x) =

∫ [

f±(k− eEτ

~
x̂)− f±(k)

]

s±(x, kx)d3k (4.9a)

Q±(x) =

∫ [

f±(k− eEτ

~
x̂)− f±(k)

]

Q±(x, kx)d3k (4.9b)

Our use of the function f±(k) = Θ(k±F−|k|) implies that the distribution of electrons out-

side the region of inhomogeneous magnetization are characteristic of the zero-temperature

bulk. 4 We shall expand this point and comment on the general correctness of Eq. (4.9) in

Section 4.5.

The sum s(x) = s+(x)+s−(x) is the total spin accumulation (spin density) and Q(x) =

Q+(x)+Q−(x) is the total spin current density. Finally, the distributed spin transfer torque

is (see Eq. (1.5))

Nst(x) = −∂xQ(x). (4.10)

The adiabatic approximation [90] to the spin dynamics leads to a spin current density that

is proportional to the local magnetization, Qad(x) ∝M(x). This means that

Nad(x) ∝ ∂xM(x). (4.11)

A main goal of this chapter is to study the extent to which the spin-transfer torque associated

with real domain wall configurations satisfies Eq. (4.11).

4.1.1 Quantum

In light of Eq. (4.1), the exchange magnetic field that the enters the Hamiltonian in Eq. (4.6)

is

Bex(x) = Bex (sin θ cosφ, sin θ sinφ, cos θ) . (4.12)

4When Eτ is sufficiently small, as we assume here, the difference in the square brackets in Eq. (4.9) is
zero except in the immediate vicinity of the Fermi surface. In this limit, the integral over reciprocal space
in Eq. (4.9) reduces to an integral over wave vectors restricted to the Fermi surface, reflecting the fact that
nonequilibrium transport involves states near the Fermi surface. The reduction of the integration in this
manner leads to the linearized Boltzmann equation. On the other hand, the equilibrium spin densities and
currents, as shown in Figure 4.3, involve contributions from all occupied states, not just those near the Fermi
surface.
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For a given energy, the eigenfunctions for a conduction electron with wave-vector k take

the form Ψ±(r,k) = ψ±(x, kx)eikyy+ikzz where the spinor ψ±(x, kx) satisfies






− d2

dx2
− k2

B







cos θ e−iφ sin θ

eiφ sin θ − cos θ












ψ± = κ2

±ψ±. (4.13)

In this expression,

κ2
± = k2

x ∓ k2
B, (4.14)

and ± refers to majority/minority band electrons. The single-electron spin density and spin

current density are [8]

s±(x, kx) =
~

2

∑

α,β

ψ∗±,α(x, kx)σα,βψ±,β(x, kx) (4.15)

and

Q±(x, kx) = − ~
2

2m

∑

α,β

Im[ψ∗±,α(x, kx)σα,β
d

dx
ψ±,β(x, kx)]. (4.16)

As a check, we used this formalism to calculate the equilibrium (zero applied current)

spin density seq(x) and equilibrium spin current density Qeq(x) for a magnetization distri-

bution chosen arbitrarily except for the constraint that |M(x)| be uniform. The densities

seq(x) and Qeq(x) are obtained by retaining only the second term in square brackets in

Eq. (4.9). The lines in Figure 4.3(a) are the Cartesian components of the imposed M(x).

The solid dots in Figure 4.3(a) show that the spin density seq(x) is parallel to M(x),

as expected. Similarly, the electron-mediated spin-transfer torque should equal the phe-

nomenological exchange torque density discussed by Brown [105]. This is confirmed by

Figure 4.3(b), which shows that Neq(x) is proportional to M×M′′(x) for the M(x) shown

in Figure 4.3(a).

4.1.2 Semi-classical

A semi-classical approach to calculating the spin current density is useful for building phys-

ical intuition. Accordingly, we write an equation of motion for the spin density of ev-

ery electron that contributes to the current. This idea has been used in the past, both

semi-quantitatively [90] and qualitatively [91]. Our derivation is based on the behavior of
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Figure 4.3: Equilibrium (zero-current) results: (a) Cartesian components of an arbitrarily
chosen magnetization M(x) (lines); Cartesian components of the calculated spin density
seq(x) (solid dots); (b) Exchange torque (solid line) and calculated spin-transfer torque
(solid dots).

an electron with energy E that moves along the x-axis through a uniform magnetic field

Bex = Bexẑ. The wave function for such an electron is

ϕ(x,E) =







a eik+x

b eik−x






, (4.17)

where

k2
± = 2mE/~2 ± k2

B. (4.18)

We compute the spin density s(x,E) and the spin current density Q(x,E) for this electron

using the right sides of Eq. (4.15) and Eq. (4.16), respectively, with ψ± → ϕ.

It is straightforward to check that the components of these densities transverse to the

magnetic field satisfy the semi-classical relations

Qx = sx〈v〉 and Qy = sy〈v〉, (4.19)

where 〈v〉 is the velocity

〈v〉 =
~

m

k+ + k−
2

=
~

m
〈k〉. (4.20)
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Moreover, the transverse components of the spin density satisfy

〈v〉dsx

dx
= −~k2

B

m
sy, (4.21a)

〈v〉dsy

dx
= −~k2

B

m
sx. (4.21b)

These equations are the components of the vector equation

ds

dx
= − k

2
B

〈k〉s× B̂ex (4.22)

where B̂ex = ẑ.

We now make the ansatz that all three Cartesian components of the semi-classical ma-

jority and minority spin densities s±(x, kx) satisfy Eq. (4.22) when the direction of the

magnetic field varies in space. Specifically, if Bex(x) = BexB̂ex(x), we suppose that

ds±(x, kx)

dx
= − k

2
B

〈k〉s±(x, kx)× B̂ex(x), (4.23)

where k+ and k− for s+(x, kx) are defined by Eq. (4.18) with E = ~
2(k2

x − k2
B)/2m. 5

Similarly, k+ and k− for s−(x, kx) are defined by Eq. (4.18) with E = ~
2(k2

x+k2
B)/2m. With

suitable boundary conditions, we solve the differential equation Eq. (4.23) to determine the

semi-classical, one-electron spin densities. The total, spin-resolved, spin densities follow by

inserting these one-electron quantities into

s±(x) =

∫ [

f±(k− eEτ

~
x̂)− f±(k)

]

s±(x, kx)
kx

〈k〉d
3k. (4.24)

This equation differs from Eq. (4.9) by the weighting factor kx/〈k〉. 6 This factor guarantees

that the flux carried by each electron is proportional to its velocity (see Appendix B). This

is confirmed by Figure 4.4(b) which shows quantitative agreement between a fully quantum

calculation of s(x) using Eq. (4.13), Eq. (4.15) and Eq. (4.9) and a semi-classical calculation

using Eq. (4.23) and Eq. (4.24).

In light of the foregoing, it is reasonable to calculate the semi-classical single-electron

spin current density from

Q±(x, kx) = s±(x, kx)
~kx

m
(4.25)

5For k2
x < 2k2

B , otherwise k− = 0 ⇒ 〈k〉 = k+/2, which ensures that 〈k〉 is a continuous function of kx.
6We note that kx and 〈k〉 have the same algebraic sign.
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Figure 4.4: (a) Cartesian components of an imposed magnetization M(x) used in the other
panels; (b) comparison of quantum (lines) to semi-classical (solid dots) calculations for
the Cartesian components of the spin density s(x); (c) same comparison for the Cartesian
components of the spin current density Q(x).

and use the second equation in Eq. (4.9) to find Q±(x). The correctness of this prescription

is illustrated in Figure 4.4(c).

4.2 Spin Spiral

As a preliminary to our discussion of domain walls, it is instructive to discuss the spin

density and spin current density for a spin spiral. Here, we focus on a spiral with uniform

pitch p where the magnetization rotates in the x-z plane, i.e., in Eq. (4.1),

θ(x) = p x and φ(x) = 0. (4.26)

A cartoon version of this M(x) is shown in Figure 4.2. This figure also defines a local

coordinate system that will be useful in what follows. The system (x′, y′, z′) rotates as a

function of x so the magnetization M(x) always points along +z′.

Calvo [106] solved Eq. (4.13) to find the eigenstates and eigen-energies of this spin spiral.

In our notation,

ε±(k) =
~

2

2m

(

k2 +
1

4
p2 ±

√

(kxp)2 + k4
B

)

, (4.27)
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and

ψ±(k, r) = eik·re−iσyθ/2e−iσxα/2η±, (4.28)

where

sinα =
kxp

√

(kxp)2 + k4
B

, (4.29)

and

η+ =







1

0






, η− =







0

1






. (4.30)

From these results, it is easy to compute the single-electron spin densities defined in

Eq. (4.15). In the local (x′, y′, z′) frame,

s′±(x, kx) = ±(0, sinα, cosα). (4.31)

The corresponding calculation of the single-electron spin current densities Eq. (4.25)

is straightforward but tedious and not very illuminating. Therefore, we pass directly to

the total spin current density calculated by summing over all electrons as indicated in the

second line of Eq. (4.9). Again in the local (x′, y′, z′) frame,

Q′(x) = A(p, kB)(0, 0, 1). (4.32)

where A(p, kB) is a constant. This shows that Q(x) ∝M(x), i.e., the spin current density

for a free electron spin spiral is perfectly adiabatic. Wessely et al. [107] found consistent

results in their density functional calculation of the steady-state spin current density asso-

ciated with the helical spin density wave in erbium metal. We emphasize that Eq. (4.32) is

independent of pitch for an infinite spin spiral. As we discuss below, a similar independence

does not hold for domain walls. In that case, wide walls are adiabatic, but narrow ones are

not.

The semi-classical formula Eq. (4.25) provides an appealing way to understand the

adiabaticity of the spin current density in the spin spiral defined by Eq. (4.26). The key

point is that the angle α in Eq. (4.29) which fixes the direction of s±(x, kx) in Eq. (4.31)

is positive when kx is positive and negative when kx is negative (Figure 4.5). Moreover,

for every kx electron that contributes to the shifted Fermi surface sums in Eq. (4.9), there
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Figure 4.5: Electrons (wave vector kx) and holes (wave vector −kx) move in an effective
field that is the sum of the exchange field Bex(x) ‖ ẑ′ and a fictitious, velocity-dependent
“gradient” field induced by the spatial dependence of the exchange field. The spins align
to the total effective field in an infinite spin spiral. The x axis lies in x′-z′ plane.

is a contribution from a −kx hole. Now, a hole has opposite spin density to an electron

and the spin current density Eq. (4.25) contains an additional factor of kx. Therefore, the

two spin density vectors in Figure 4.5 subtract to give a net spin density along ŷ while the

corresponding two spin current density vectors add to give a net spin current density along

ẑ′. This occurs for all kx in the sums so Q(x) aligns exactly with the local exchange field

and thus with the local magnetization.

The opposite situation occurs for fully occupied states below the Fermi energy. The spins

of the forward and backward moving electrons combine to produce a net moment aligned

with the exchange field, as necessary for self-consistency. Further, the spin currents, with

the additional factor of kx add to give a net spin current along ŷ, so that its gradient gives

the correct form of the phenomenological exchange torque density.

To summarize: an electric current that passes through a spin spiral generates a spin

accumulation with a component transverse to the magnetization. The spin current density

possesses no such component due to pairwise cancellation between forward and backward

moving spins of the same type (majority or minority). Moreover, since the cancellation

occurs within each band, the final result is insensitive to the details of intraband scattering.
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It remains only to understand the origin of the misalignment angle α. Why does each

spin not simply align itself with Bex? Berger [90] was the first to notice this fact and the

physics was made particularly clear by Aharonov and Stern [108]. These authors studied

the adiabatic approximation for a classical magnetic moment that moves in a slowly varying

field B(x). Not obviously, the moment behaves as if were subjected to a effective magnetic

field Beff(x) that is the sum of Bex(x) and a fictitious, velocity-dependent, “gradient” field

Bg(x) that points in the direction ∇B̂(x)× B̂(x). For our problem,

Beff = Bex +
~

2kx

2mµ

dB̂ex

dx
× B̂ex. (4.33)

The presence of this gradient field is apparent from Eq. (4.27) where the square root is pro-

portional to |Beff |. The adiabatic solution corresponds to perfect alignment of the moment

with Beff(x). This alignment is indicated in Eq. (4.31) and in Figure 4.5. More generally,

the expected motion of the magnetic moment is precession around Beff(x).Nevertheless, as

indicated above, the total spin current density for the spin spiral aligns with Bex(x) (which

is the conventional definition of adiabaticity for this quantity) when the net effect of all

conduction electrons is taken into account.

The existence of the gradient field Bg can be shown classically in a simple model. Imag-

ine there is a magnetization M moving in a non-uniform magnetic field H(x). Equivalently,

the variation of H that M feels due to the motion can be modeled as a time dependent

magnetic field H(t). We assume the field rotates about the ŷ axis with constant speed:

H(t) = H(cosωt ẑ− sinωt x̂) (Figure 4.6). We now look for a steady state solution for M,

i.e. a state where the relative orientation between H and M doesn’t change over time. The

dynamics of the magnetization M is governed by

dM

dt
= −γM×H(t). (4.34)

In Figure 4.6, x̂, ŷ and ẑ are the axes for a fixed frame, and X̂, Ŷ and Ẑ are axes for a

rotating frame where H always aligns to Ẑ. We write M and H in the rotating frame,

M = MXX̂ +MY Ŷ +MZẐ and H = HẐ. (4.35)

In the steady state, M doesn’t change its orientation in the rotating frame. This means

84



z

H
ω

M

x

X

y, Y

Z

Figure 4.6: Magnetization in rotating magnetic field

that MX ,MY and MZ are all constants in the rotating frame, so ṀX = ṀY = ṀZ = 0.

Therefore, in the rotating frame Eq. (4.34) is (
˙̂
Y = 0)

MX
˙̂
X +MZ

˙̂
Z = −γH(MY X̂−MXŶ). (4.36)

Since
˙̂
X = ωẐ and

˙̂
Z = −ωX̂, Eq. (4.36) becomes

(MZω − γHMY )X̂− γHMXŶ +MXωẐ = 0. (4.37)

This implies that MX = 0 and MY /MZ = ω/γH. Thus, M aligns to an effective field

Heff = HẐ +
ω

γ
Ŷ = H +

1

γ

dĤ

dt
× Ĥ, (4.38)

which is exactly same as Eq. (4.33) if we replace the spacial derivative by the time derivative

d/dt = (~kx/m)d/dx and make appropriate unit conversion.

Eq. (4.38) tells us that no matter how slowly the magnetic field changes, the magne-

tization does not align to the magnetic field unless the field does not change in time or is

uniform in space.

4.3 Domain Walls

Our main interest is the spin-transfer torque associated with domain walls that connect

two regions of uniform and antiparallel magnetization. A realistic wall of this kind can be

described by Eq. (4.1) with [109]

θ(x) =
π

2
− arcsin

[

tanh
( x

w

)]

, (4.39)
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Figure 4.7: Distributed spin-transfer torque for a long Nèel domain wall with w = 50 and
L = 6.25 (kF = 1 and kB = 0.4): semi-classical calculation of Nst (solid dots) compared to
Eq. (4.41) for Nad(x) (solid curve).

The wall is Néel-type if φ(x) = 0 and Bloch-type if φ(x) = π/2. We will speak of the domain

wall width w as “long” or “short” depending on whether w is large or small compared to

the characteristic length

L =
EF

Eex

1

kF
=
kF

k2
B

. (4.40)

Intuitively, the adiabatic approximation should be valid when w ≫ L. When applied to

Eq. (4.9), the predicted adiabatic spin-transfer torque for our model is

Nad(x) = −~

2
η
neEτ

m
∂xM̂(x), (4.41)

where n is the electron density, and η is the polarization of the current. The calculations re-

quired to check this for long domain walls are difficult quantum mechanically (for numerical

reasons) but straightforward semi-classically. At the single-electron level, adiabaticity again

corresponds to alignment of the spin moment with the effective field defined in Eq. (4.33).

The results for a typical long wall (Figure 4.7) demonstrate that summation over all elec-

trons produces alignment of Q(x) with M(x) so the adiabatic formula Eq. (4.41) is indeed

correct in this limit.
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Figure 4.8: Distributed spin-transfer torque for a short Nèel domain wall with w = 4 and
L = 6.25 (kF = 1 and kB = 0.4): in-plane piece a(x) (heavy solid curve); out-of-plane piece
b(x) (dashed curve); adiabatic prediction (light solid curve); second term in Eq. (4.5) scaled
to match the maximum of b(x) (light solid curve).

For short walls, we have carried out calculations of Nst(x) both quantum mechanically

and semi-classically. The two methods agree very well with one another (see Figure 4.4)

but not with the proposed form Eq. (4.5). Bearing in mind that, when the magnetization

changes, x̂′ points along ∂xM and ŷ points along M×∂xM, our result for the spin-transfer

torque is

Nst(x) = Nad(x) + a(x)x̂′ + b(x)ŷ. (4.42)

Nst(x) differs from Nad(x) because gradients in the gradient field induce single electron

spin moments to precess around Beff(x) rather to align perfectly with it. Figure 4.8 shows

a(x) and b(x) as calculated for a typical short domain wall. The associated torques lie in

the plane of the magnetization and perpendicular to that plane, respectively. These non-

adiabatic contributions to the torque are both oscillatory functions of position that do not

go immediately to zero when the the magnetization becomes uniform. In other words, a(x)

and b(x) are generically non-local functions of the magnetization M(x). The positive-valued

function that falls to zero at the edges of the domain wall (light solid curve in Figure 4.8) is
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the second function in Eq. (4.5) with c2 chosen to match b(x) at their common maximum.

Evidently, the proposed torque function Eq. (4.5) gives at best a qualitative account of the

out-of-plane non-adiabatic torque.

A convenient measure of the degree of non-adiabaticity of the spin-transfer torque is

Q =
max |b(x)|

max |Nad(x)|
. (4.43)

Left panel of Figure 4.9 plots this quantity as a function of scaled domain wall width w/L

on a log scale. The observed exponential decrease of the non-adiabatic torque as the wall

width increases can be understood from the work of Dugaev et al. [110] These authors

treat the gradient field in Eq. (4.33) as a perturbation and calculate the probability for an

electron in a (kx ↑) state to scatter into a (k′x ↓) state in the Born approximation. If we

choose kx and k′x as k+
F and k−F , respectively, their results imply that the probability P that

a majority electron retains its spin and becomes a minority electron as it passes through a

domain wall is

P ∝ exp(−γw/L), (4.44)

where γ is a constant of order unity. This rationalizes the result plotted in the left panel

of Figure 4.9 because the magnitude of the minority spin component determines the am-

plitude of the spin precession around Beff(x) and thus the magnitude of the non-adiabatic

component of s and Q in Eq. (4.25). In fact, Nad ∝ 1/w, so it is the case that

max |b(x)| ∝ 1

w
exp(−γw/L). (4.45)

The slope of the straight line in the left panel of Figure 4.9, i.e., the value of the constant

γ in Eq. (4.44) depends on the sharpness of the domain wall. Using Eq. (4.39) and other

simple domain wall profile functions, it is not difficult to convince oneself that a suitable

measure of domain wall sharpness is the maximum value of the second derivative θ′′(x) for

walls with the same width. The numerical results shown in the right panel of Figure 4.9

confirm this to be true. The sharper the domain wall, the less rapidly the non-adiabatic

torque disappears with increasing domain wall width.
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4.4 Relation to Other Work

4.4.1 Waintal & Viret

Waintal and Viret [91] (WV) used a free-electron Stoner model and the Landauer-Büttiker

formalism to calculate the spin transfer torque associated with a Néel wall with magnetiza-

tion Eq. (4.1) and

θ(x) =























0, x < −w

(π/2) (x/w + 1) , −w ≤ x ≤ w

π, x > w.

(4.46)

For this wall profile (which is exactly one half-turn of a uniform spin spiral in the interval

−w ≤ x ≤ w), WV reported oscillatory non-adiabatic contributions to the torque similar

to our functions a(x) and b(x). This contrasts with the perfect adiabaticity we found in

Sec. 4.2 for the infinite spin spiral. Moreover, the amplitude of the non-adiabatic torque

reported by WV for this wall decreases only as 1/w rather than (1/w) exp(−γw/L) as we

found above.

The disparities between Ref. [91] and the present work all arise from the unphysical

nature of the domain wall Eq. (4.46). Specifically, the divergence of θ′′(x) at x = ±w

locates this wall at the origin of right panel of Figure 4.9 where γ = 0. This brings their

result into agreement with Eq. (4.45). Any rounding of the discontinuity in slope at x = ±w
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would yield a finite value for θ′′(x) and thus a non-zero value of γ.

In Appendix C, we calculate the spin-transfer torque for the wall Eq. (4.46) using our

methods. Qualitatively, the pure 1/w behavior of the non-adiabatic torque comes from the

fact that there is a sudden jump in θ′(x) at x = ±w. There is a corresponding jump in the

direction of Beff(x) as defined by Eq. (4.33). Spins propagating along the the x-axis cannot

follow this abrupt jump and thus precess around the post-jump field direction with an

amplitude determined by the sine of the angle between the before-and-after field directions.

The latter is proportional to the jump in θ′(x), which is π/2w for the wall Eq. (4.46).

4.4.2 Zhang & Li

In spin spirals and long domain walls, we find that the non-equilibrium spin current is adi-

abatic, i.e., Q(x) is aligned with M(x) [or Bex(x)]. At the same time, we find in both cases

that the non-equilibrium spin density s(x) is not aligned with the magnetization; there is

component of s(x) transverse to M(x). The corresponding transverse component of the spin

current density cancels between pairs of electrons moving in opposite directions. Zhang and

Li [92] found exactly the same form of non-equilibrium spin accumulation (called δm(x)

by them) using a phenomenological theory. They proposed that this non-equilibrium spin

density relaxes by spin-flip scattering toward alignment with the magnetization. Such a

relaxation would produce a non-adiabatic torque of the form given by the second term in

Eq. (4.5). The correctness of this predicted non-adiabatic torque depends on the correct-

ness of the assumed model for relaxation of transverse spin accumulation through spin flip

scattering.

Zhang and Li assume a form for the rate of spin flip scattering, δm/τsf , that has been

used successfully as a phenomenological description of longitudinal spin relaxation in systems

with collinear magnetization. While it is plausible to extend this form, as they do, to

describe transverse spin relaxation in non-collinear systems, our calculations indicate that

it is not likely to be correct. Our reasoning is simplest to appreciate for a spin spiral

with small pitch p. In this limit, Eqs. Eq. (4.29) and Eq. (4.31) show that the transverse

component of the spin for every electron eigenstate is proportional to its velocity. This
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means that the majority band electrons contribute a transverse spin accumulation and

an electric current that are proportional to one other. The same is true, separately, for

the minority band electrons. This conclusion is independent of the details of the electron

distribution. Therefore, for a fixed total current, it is impossible to relax the transverse

spin accumulation without changing the longitudinal polarization of the current. No such

change occurs in the model in Ref. [92], casting doubt on the validity of the form of the

spin flip scattering assumed there.

Microscopic considerations also argue against this form of the relaxation. As we have

emphasized, the natural basis for an electron spin moving though a non-collinear mag-

netization is not along the local exchange field Bex(x), but rather along a local effective

field Beff(x), which includes the corrections due to the gradient of the magnetization [see

Eq. (4.33)]. Any spin that deviates from parallel or antiparallel alignment with the effective

field will precess around the effective field, and on average will point parallel or antiparallel.

Thus, we expect that there is no tendency for electron spins moving in a non-uniform mag-

netization to align themselves with the local exchange field Bex(x) by spin-flip scattering

(or any other mechanism). Rather, the adiabatic solution is precisely alignment of their

spins with the local effective field Beff(x). Without further microscopic justification, we be-

lieve that the phenomenological form of spin flip scattering assumed in Ref. [92] should not

be used in systems with non-collinear magnetizations. Hence, this analysis argues against

the existence of the resulting contribution to the “non-adiabatic” torque from spin flip

scattering.

4.5 Scattering

We do not explicitly treat scattering in any of our calculations. However, the distribution

function in Eq. (4.9), a shifted Fermi distribution, is an approximate solution of the Boltz-

mann equation in certain limits. First, the electric field must be small enough that the

transport is in the linear regime. Then, the appropriate limits are determined by three

important length scales, the Fermi wavelength, the mean free path, and the characteristic

length of the structure, either the pitch of the spin spiral or the width of the domain wall.
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In all cases, we consider the limit in which the Fermi wavelength is short compared to the

mean free path. This limit allows the description of the states of the system in terms of

the eigenstates of the system in the absence of scattering. Different limits apply to the

cases of domain walls and of spin spirals because the distribution functions are interpreted

differently for these two structures.

We use the Boltzmann equation in two different ways. When the mean free path is much

longer than the characteristic size of the structure, the distribution function describes the

occupancy of the eigenstates of the entire system. This distribution function is independent

of the spatial coordinate and we refer to this approach as global. In the opposite limit, the

distribution function is spatially varying and describes the occupancy of eigenstates of the

local Hamiltonian, which includes the exchange field and the gradient field. We refer to this

approach as local, as the distribution function can vary spatially.

For spin spirals, the distribution functions are shifted Fermi functions of the eigen-

energies of the spin spiral. In the limit that the pitch of the spiral is much shorter than

the mean free path, the shifted distribution given in Eq. (4.9) is a solution of the global

Boltzmann equation in the relaxation time approximation. The distribution function also

becomes a solution in the opposite limit, where the mean free path is much shorter than

the pitch of the spiral. In this limit, the Boltzmann equation is considered locally rather

than globally. At each point in space the states are subject to the local exchange field,

and the local gradient field. The distribution function is defined for states that are locally

eigenstates of the sum of the fields. The local distribution function is given by the adiabatic

evolution in the rotating reference frames of the distribution function specified in Eq. (4.9).

In the limit that the pitch of the spiral goes to infinity, this distribution function locally

solves the Boltzmann equation in the relaxation time approximation. Thus, for spin spirals,

the distribution function given in Eq. (4.9) is a solution in the limits that the mean free

path is much greater than or much less than the pitch. We speculate that the corrections

in between these limits are small.

Domain walls are not uniform in the way that spin spirals are, so the distribution

functions need to be given a different interpretation. For these structures, the distribution
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function is determined from the properties of the states in the leads. For example, in the

Landauer-Büttiker approach to this problem,[91] scattering is ignored in the domain wall

itself and confined to the “leads” adjacent to it (these leads are assumed to be “wide” and

function as electron reservoirs). An applied voltage is assumed to raise the energy of electron

states in one lead relative to the other. Thus, in a formula like Eq. (4.9), the distribution

function is shifted in energy rather than in velocity.

We also do not treat scattering within the domain wall explicitly, but we assume that

the wall is bounded by long leads that are as “narrow” as the domain wall region and have

resistances per unit length that are comparable to that of the domain wall region. Thus, the

distribution of the states approaching the domain wall region is similar to the distribution

of states in an extended wire, i.e., to that given by Eq. (4.9). For domain walls in long

wires, the distribution function for left going states is determined by the right lead and

for right going states by the left lead. With this interpretation, the distribution given in

Eq. (4.9) is a solution in the limit that the scattering in the domain wall is weak, that is,

the domain wall is much narrower than the mean free path.

The distribution in Eq. (4.9) is also a solution in the limit that the mean free path is

much shorter than the domain wall width. Since the Fermi wave length is much shorter

than the mean free path, it is much less than the domain wall width. In this case, quantum

mechanical reflection is negligible and the quantum mechanical states are closely related to

the semiclassical trajectories. With a similar interpretation of the distribution function as

was made for the spin spirals in this limit, the same conclusion holds for the domain walls.

4.6 Summary & Conclusion

In this chapter, we analyzed spin-transfer torque in systems with continuously variable

magnetization using previous results of Calvo [106] for the eigenstates of an infinite spin

spiral and of Aharonov and Stern [108] for the classical motion of a magnetic moment

in an inhomogeneous magnetic field. Adiabatic motion of individual spins corresponds

to alignment of the spin moment not with the exchange field (magnetization) but with

an effective field that is slightly tilted away form the exchange field by an amount that
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depends on the spatial gradient of the magnetization. Nevertheless, when summed over all

conduction electrons, the spin current density is parallel to the magnetization both for an

infinite spin spiral and for domain walls that are long compared to a characteristic length

L that depends on the exchange energy and the Fermi energy.

Non-adiabatic corrections to the spin-transfer torque occur only for domain walls with

widths w that are comparable to or smaller than L. The non-adiabatic torque is oscillatory

and non-local in space with an amplitude that decreases as w−1 exp(−γw/L). The constant

γ is largest for walls with the sharpest magnetization gradients. This suggests that non-

adiabatic torques may be important for spin textures like vortices where the magnetization

varies extremely rapidly.

Using microscopic considerations, we have also argued that the role of the gradient

field to tilt spins away from the exchange field casts serious doubt on a recent proposal

by Zhang and Li [92] that a non-negligible non-adiabatic contribution to the torque arises

from relaxation of the non-equilibrium spin accumulation to the magnetization vector by

spin flip scattering. We conclude that, if the second term in Eq. (4.5) truly accounts for

the systematics of current-driven domain wall motion, the physics that generates this term

still remains to be identified.

Finally, we have carefully discussed the role of scattering in this problem with particular

emphasis on the approximation used here to neglect scattering within the domain wall itself

but to treat the adjacent ferromagnetic matter as bulk-like. We argue that this approxi-

mation is valid in limits that either include or bracket the most interesting experimental

situations and therefore is likely to be generally useful.
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APPENDIX A

ENERGY EXPRESSION

The energy of the free layer includes a Zeeman energy EZ from the external field H, a

magnetostatic shape anisotropy energy Es, and a surface anisotropy energy (parameterized

by Ku) that vanishes in the limit that the free layer thickness d→∞.

The Zeeman energy is

EZ = V µ0Msm̂ ·H. (A.1)

The shape anisotropy energy is

Es = V
1

2
µ0Msm̂ ·Hd = V

1

2
µ0M

2
s m̂ · N · m̂, (A.2)

where Hd = MsN · m̂ and N are the demagnetization field and demagnetization tensor,

respectively. Referring to Figure 3.3, the total energy is

E =
1

2
µ0M

2
s V [L cos2 θ +M sin2 θ sin2 φ+N sin2 θ cos2 φ]

− µ0MsV H cos θ − 2V Ku

d
sin2 θ cos2 φ (A.3)

where L,M,N are the demagnetization factors for the ẑ, ŷ, x̂ directions. These terms can

be combined to give

2E

µ0M2
s V

= −2h cos θ + hL cos2 θ + hM sin2 θ sin2 φ+ hN sin2 θ cos2 φ, (A.4)

where h = H/Ms, and

hL = L− Hk

Ms
, hM = M, hN = N − 4Ku

µ0M2
s d
. (A.5)

If we model the thin free layer as a very flat ellipsoid with semi-axis a ≥ b≫ c, Eqs. (2.23-25)
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in Ref. [111] give

L =
c

a
(1− e2)1/2K − E

e2
, (A.6a)

M =
c

a

E − (1− e2)K
e2(1− e2)1/2

, (A.6b)

N = 1− cE

a(1− e2)1/2
, (A.6c)

where K and E are complete elliptic integrals with argument e =
√

1− b2/a2. For the

nominal geometry of Ref. [32], we have 2a = 130 nm, 2b = 70 nm, 2c = 3 nm, so L ≈

0.017,M ≈ 0.035, N ≈ 0.948.
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APPENDIX B

SEMI-CLASSICAL WEIGHTING FACTOR

The weighting factor kx/〈k〉 used in Eq. (4.24) brings the amplitude of the dynamic (trans-

verse) part of the semi-classical, one-electron spin density into accord with the corresponding

quantum mechanical amplitude. This can be seen from a simple model problem that we

solve both quantum mechanically and semi-classically. Namely, a spin initially oriented

along the +x̂ direction propagates from x = −∞ to x = ∞ through a magnetization that

changes abruptly from M(x) = M(1, 0, 0) for x < 0 to M(x) = M(0, 0, 1) for x ≥ 0. For

x < 0, the eigenstates are

ψ−↑ (x) =
1√
2







1

1






eik↑x, ψ−↓ (x) =

1√
2







1

−1






eik↓x, (B.1)

and for x > 0, the eigenstates are

ψ+
↑ (x) =







1

0






eik↑x, ψ+

↓ (x) =







0

1






eik↓x. (B.2)

If we choose the incoming state as

ψ(x) = ψ−↑ (x), (B.3)

the reflection and transmission amplitudes for spin flip (r↑↓, t↑↓) and no spin flip (r↑↑, t↑↑)

are determined by matching the total wave function and its derivative at x = 0:

ψ−↑ + r↑↑(ψ
−
↑ )∗ + r↑↓(ψ

−
↓ )∗ = t↑↑ψ

+
↑ + t↑↓ψ

+
↓ , (B.4a)

k↑ψ
−
↑ − r↑↑k↑(ψ−↑ )∗ − r↑↓k↓(ψ−↓ )∗ = t↑↑k↑ψ

+
↑ + t↑↓k↓ψ

+
↓ . (B.4b)

It is straightforward to confirm that these equations are solved by

r↑↑ =
k2
↑ − k2

↓

k2
↑ + 6k↑k↓ + k2

↓

, r↑↓ =
2k↑(k↓ − k↑)

k2
↑ + 6k↑k↓ + k2

↓

, (B.5a)

t↑↑ =
4
√

2k↑k↓
k2
↑ + 6k↑k↓ + k2

↓

, t↑↓ =
2
√

2k↑(k↑ + k↓)

k2
↑ + 6k↑k↓ + k2

↓

. (B.5b)
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We are interested in the transmitted wave function,

ψtr(x) = t↑↑ψ
+
↑ (x) + t↑↓ψ

+
↓ (x) =







t↑↑e
ik↑x

t↑↓e
ik↓x






, (B.6)

which carries a spin density,

sqm
tr (x) =

~

2

[

2t↑↑t↑↓ cos(δkx), 2t↑↑t↑↓ sin(δkx), (t2↑↑ − t2↑↓)
]

, (B.7)

where δk = k↑ − k↓. Notice that the oscillation is transverse to the x → ∞ magnetization

and of amplitude ~t↑↑t↑↓.

If we analyze the same problem semi-classically, a majority electron propagates freely

until it reaches x = 0. At that point, the electron feels a magnetization perpendicular to its

magnetic moment and begins precession around that magnetization with unit amplitude.

The associated spin density is

ssc
tr(x) =

~

2
[cos(δkx), sin(δkx), 0] . (B.8)

Comparing Eq. (B.7) to Eq. (B.8) shows that the transverse oscillation amplitudes will

be equal if we multiply the semi-classical result by the weighting factor

2t↑↑t↑↓ =
32k2
↑k↓(k↑ + k↓)

(k2
↑ + 6k↑k↓ + k2

↓)
2
≈ 2k↑
k↑ + k↓

=
kx

〈k〉 . (B.9)

Figure B.1 illustrates the quality of the approximation in Eq. (B.9) if we identify k↑ and k↓

with k+
F and k−F (respectively) in Eq. (4.8). Of course, kx plays the role of k↑ in Eq. (4.24).
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Figure B.1: The semi-classical weighting factor for the spin density. Solid (dotted) curve
is the expression on the left (right) side of the ≈ symbol in Eq. (B.9).
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APPENDIX C

SPIN SPIRAL DOMAIN WALL

The semi-classical spin density associated with electron propagation through a magnetiza-

tion like Eq. (4.1) is the solution of Eq. (4.23) with suitable boundary conditions. Choosing

φ = 0, we simplify the notation by using the prefactor λ = k2
B/〈k〉 and an overdot for d/dx

to write the components of Eq. (4.23) as

ṡx = −λsy cos θ (C.1a)

ṡy = −λsz sin θ + λsx cos θ (C.1b)

ṡz = λsy sin θ. (C.1c)

In the local frame (x′, y′, z′) defined in Figure 4.2, the components of the spin density,

s′x = sx cos θ − sz sin θ (C.2a)

s′y = sy (C.2b)

s′z = sx sin θ + sz cos θ, (C.2c)

satisfy

ṡ′x = −λs′y − s′z θ̇ (C.3a)

ṡ′y = λs′x (C.3b)

ṡ′z = s′xθ̇. (C.3c)

Eliminating s′y gives

s̈′x + (λ2 + θ̇2)s′x + s′z θ̈ = 0. (C.4)

The differential Eq. (C.4) cannot be solved analytically for realistic domain wall profiles.

However, it is easily solvable for the wall defined by Eq. (4.46) where one-half turn of a spin

spiral with pitch p = π/2w connects two regions with uniform (but reversed) magnetization.
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In the limit π/w ≪ λ of a long wall, the components of the spin density transverse to the

wall magnetization for the range x ∈ [−w,w] are (after multiplying the weighting factor

kx/〈k〉 for the semi-classical approach)

s′x(x) =
~

2

kx

〈k〉
π

2wλ
sin(λ(x± w)) (C.5a)

s′y(x) =
~

2

kx

〈k〉
π

2wλ
[1− cos(λ(x± w))] , (C.5b)

where the plus (minus) refers to electrons that flow from left (right) to right (left). The

associated spin current density and spin transfer torque carried by each electron follow from

Eq. (4.25) and Eq. (4.10), respectively. Bearing in mind that x̂′ varies with x, our final

result for the torque (in the local frame) generated by a single electron moving from right

to left is

N ′x =
~

2

~kx

m

kx

〈k〉
π

2w
[1− cosλ(x− a)] x̂′ (C.6a)

N ′y =
~

2

~kx

m

kx

〈k〉
π

2w
sinλ(x− a) ŷ. (C.6b)

This may be compared with the results of Ref. [91] which pertain to the entire ensemble of

conduction electrons.

101



Bibliography

[1] M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau, F. Petroff, P. Eitenne, G. Creuzet,
A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Mag-
netic Superlattices,” Phys. Rev. Lett. 61, 2472 (1988).

[2] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance
in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev.
B 39, 4828 (1989).

[3] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-
Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars,”
Phys. Rev. Lett. 84, 3149 (2000).

[4] M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, , and P. Wyder,
“Excitation of a Magnetic Multilayer by an Electric Current,” Phys. Rev. Lett. 80,
4281 (1998).

[5] S. Urazhdin, N. O. Birge, W. P. Pratt, Jr., , and J. Bass, “Current-Driven Magnetic
Excitations in Permalloy-Based Multilayer Nanopillars,” Phys. Rev. Lett. 91, 146803
(2003).

[6] W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, , and T. J. Silva, “Direct-Current
Induced Dynamics in Co90Fe10/Ni80Fe20 Point Contacts,” Phys. Rev. Lett. 92, 27201
(2004).

[7] A. Fert, V. Cros, J.-M. George, J. Grollier, H. Jaffrès, A. Hamzic, A. Vaurès, G. Faini,
J. B. Youssef, and H. L. Gall, “Magnetization reversal by injection and transfer of
spin: experiments and theory,” J. Magn. Magn. Mater. 272, 1706 (2004).

[8] M. D. Stiles and A. Zangwill, “Anatomy of spin-transfer torque,” Phys. Rev. B 66,
14407 (2002).

[9] J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn.
Magn. Mater. 159, L1 (1996).

[10] L. Gan, S. H. Chung, K. H. Ashenbach, M. Dreyer, and R. D. Gomez, “Pulsed-current-
induced domain wall propagation in permalloy patterns observed using magnetic force
microscope,” IEEE Trans. Magn. 36, 3047 (2000).

[11] H. Koo, C. Krafft, and R. D. Gomez, “Current-controlled bi-stable domain configura-
tions in Ni81Fe19 elements: An approach to magnetic memory devices,” Appl. Phys.
Lett. 81, 862 (2002).

[12] J. Grollier, P. Boulenc, V. Cros, A. Hamzic, A. Vaures, A. Fert, and G. Faini, “Switch-
ing a spin valve back and forth by current-induced domain wall motion,” J. Appl.
Phys. 83, 509 (2003).
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