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SUMMARY

Industry demands for high precision automation equipment have led to heavy,

sti� and therefore expensive, ine�cient, and potentially dangerous serial link manipulators.

Industry has been reluctant to move towards lighter, and therefore inherently more �exible

manipulators, despite the potential bene�ts of lower costs, increased throughput and impro-

ved safety. Advancements in data processing capabilities, sensing capabilities and control

theory during the past couple of decades can potentially solve the perceived problems with

�exible serial manipulators.

In general, there is no such thing as a fully rigid manipulator: even current industrial

robots exhibit small �exibilities. In addition, there are applications such as space-robotics

and nuclear waste tank inspection/cleaning jobs where light and long links are the only

option. Most research in the past has focused on single link manipulators and planar robot

arms rather than spatial multi-link robots.

This dissertation presents a systematic approach for obtaining natural frequencies and

mode-shapes for n-link spatial serial structures based on transfer matrices. The method

is validated with experiments and software simulations. A low-order dynamical model for

n-link �exible manipulators in spatial con�gurations is presented. The model is veri�ed with

�nite element simulations, and hardware experiments.

The low-order model is the basis of an extended Kalman �lter based estimator that

allows sensor-based predictions of the �exible states. Accelerometer and strain gage based

feedback is examined. Accelerometer based feedback is veri�ed with experiments.

In order to damp out he oscillations multi-link �exible arms caused by the reference

command, an optimized input shaping algorithm for multiple frequency ranges is presented.

The results are con�rmed with FEA analysis and experiments. The controllability of natural

modes is discussed and analyzed. An inversion based closed-loop controller is presented

that guarantees stable joint trajectory tracking for �exible manipulator arms. A singular

xv



pertubation based controller is presented to actively damp out the vibrations in the arm.

A test bed that provided veri�cation of the claims made in this dissertation was designed

and constructed. The test bed has 3 actuators and 2 �exible links.

The main contributions of the dissertation are therefore:

� A systematic extension of the transfer matrix method for n-link spatial serial structures

� A low order model for �exible serial manipulator based on exact modes of the system

� Development of a 2-link, 3-joint �exible manipulator testbed

� An extended Kalman �lter based estimator for �exible states based on strain and

acceleration feedback

� An optimized input-shaping method based for �exible manipulators

� Modal accessibility analysis for serial �exible manipulators

� An inversion based and a singular pertubation based closed-loop controller for �exible

manipulators

xvi



Chapter I

INTRODUCTION

1.1 Motivation For Research

Industry demands for high precision automation equipment led to heavy, sti� and thus

expensive, ine�cient, and potentially dangerous serial link manipulators. Industry has

been reluctant to move towards lighter, and therefore inherently more �exible manipula-

tors, despite great potential bene�ts of lower costs, increased throughput and improved

safety.

In general, there is no such thing as a fully rigid manipulator and even current industrial

robots exhibit some �exibility [65]. The majority of previous research on �exible robot arms

has focused on single-link manipulators and planar robot arms. The class of more complex,

yet more useful spatial multi-link robots has been neglected to some extent. The general

view is that multi-link robots can be treated as a simple combination of single-link arms.

There are very few examples of �exible (by design) manipulators used in industry. An

example application where it is vital for the mechanical structure to be light with a large

workspace is space robotics. Weight must be kept to a minimum in order for them to be

launched into outer space. To date, such serial arms have not used modern control techniques

to reduce structural vibrations; instead they reduce the control bandwidth and have used

the damping properties of the structure to slowly damp the oscillations. For example, it has

been estimated that about 10 cumulative hours (about 30 % of total operational time) were

spent waiting for the oscillations to damp down on the Space Shuttle remote manipulator

system during the 15 �ights it took to build the Space Station Freedom [115].

Flexible Serial Manipulator arms would be bene�cial to a broad range of industrial

applications if active and passive vibration could enable robots to be lighter, and therefore

cheaper, and faster. Additional bene�ts include the machines being safer for humans in the

workspace due to lower inertia forces.
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Reducing the mass of the the robot arm could improve the performance by shifting more

actuator power to moving the payload, rather than the arm structure itself. This would

allow the motors to move faster, and reduce cycle times. Additionally, if the arms were

made lighter per unit length then the reach of the robot can be increased to have a greater

workspace. This can also allow fewer robots to be installed in a given workspace, or they

can move larger objects.

If the robot arms are lighter, the foundation, to which they are attached, does not need

to be as strong. This reduced requirement would decrease the cost of building factories.

Similarly, accurate robot arms could be installed on moving platforms. Given that less power

is being used to move the robot arms, energy costs to run the robot would also decrease.

The costs to build the robot could potentially be lower as well, since less high-performance

actuators would need to be used along with the accompanying power electronics.

The large mass of robot arms pose a real danger to humans or other objects in the

workspace due to risks of collision. Research by the German Aerospace Center (DLR) has

illustrated that collisions with current robot arms could very easily be deadly [61]. To

reduce this risk, humans are generally excluded from being in the direct vicinity of robot

manipulators. Reducing the weight of the arm and making the system more compliant,

would enable use in more fragile environments, and even in the vicinity of humans.

In general, robots with �exible links are much harder to control compared to ones with

rigid links. Even though oscillations in systems where the model can be considered linear,

such as cranes, can be controlled with high precision, this linear assumption does not extend

to �exible link robots. In addition robot arms with rigid links have non-linear, yet well

understood dynamics, that have been utilized for years.

Industry has not widely adopted modern control techniques for vibration control of

�exible structures due to research and implementation challenges. One of the biggest ob-

stacles still lies in obtaining high �delity models for multi link �exible manipulators that

is implementable on real-time controllers. In addition, measuring �exure so that feed-back

controller could be used with sensors that are a�ordable and usable in a variety of industrial

environments is not a solved problem. Another complexity associated with �exible serial
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(a) FANUC M-2000iA/2300 (b) Kuka LBR IIWA 7 R800

Figure 1: Modern Serial Manipulators

manipulators is the control theory required to accurately control them.

Advancements in data processing capabilities, sensing capabilities and control theory

during the past couple of decades could potentially solve the perceived problems with �exible

serial manipulators.

1.1.1 Modern Serial Manipulators

There has been continual improvement in the mainstream serial manipulators since their

introduction in the 1960s. However, with a few exceptions, the end-e�ector location is still

determined based on the joint angles. For this approach to yield accurate end-point locations,

the links need to exhibit very little compliance when actuated [15, 143]. This is achieved

using strong, heavy materials, which also dictates the use of powerful, and therefore, heavy

actuators. Therefore, large high-performance motors and power-electronics must be used to

move these arms with acceptable performance. This also leads to higher initial costs [15].

The size of the workspace is limited in order to maintain rigidity and to allow the motors

to move the links su�ciently fast. The rigidity of a beam is linear to the second moment

of area, I. Therefore, to keep the arm rigid I needs to be large, which necessitates heavy

arms. This is a problem due to the fact that the moment torque at a joint grows linearly

with the mass but with the square of the length of the arm (τ = 1
3mL

2α).
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Two examples of modern serial manipulators are shown in Figure 11. Figure 1a shows

a serial arm that has a Payload capcity of 2300 kg, reach of 3.734 m and weight of 11,000

kg, while Figure 1b displays a serial arm that has a payload capacity of 7 kg, reach of 0.8

m and weight of 24 kg. These robots represent the range of modern manipulators out there

and all of them have very limited capabilities when it comes to reach and payload capacity

for their mass.

Based on a survey2 of modern manipulator arms from major robot manufacturers such

as ABB, MotoMan, Fanuc, and Kuka, it can be seen that in general industrial robots have

a rated maximum payload from about 5% (usually for the robots that have a rated payload

of up to 5kg) to about 20% (generally robots that have a rated payload of 165 kg+) of the

robots total weight. The reach of the robots varies greatly based on the payload weight and

the weight of the robot.

The large motors and drivers are expensive and require substantial energy to operate.

These e�ects drive up the cost of building and operating manipulators [15]. Signi�cant

energy is used to move the massive structure itself around, leaving only a fraction of the

power to move the payload. This means the payload must be substantially lighter than the

robot itself. Due to advances in material science and production capabilities the ratio of

robot mass to payload capacity has come down signi�cantly in the past decades. However,

the robots are still designed to be rigid. Therefore, there is substantial opportunity for robot

arms become faster and carry heavier payloads.

1.1.2 Example Use Cases For Flexible Robot Arms

One application of robotics where mass is of utmost importance is robots that get laun-

ched into space. The arms that were mounted to the space shuttles su�ered from vibration

problems [115]. Currently, the only robot arm on another celestial body is on Mars, where

the Curiosity rover has an arm mounted on it to take measurements, as seen in Figure 23.

This arm currently moves very slowly so that minimal energy is used and vibrations are not

1Images from www.robots.com
2The speci�cations for the robots were found on https://www.robots.com/
3Image from http://mars.nasa.gov/msl/multimedia/images/
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Figure 2: Curiosity Rover

excited. However, if humans attempt more substantial projects on other planets, robots will

need to work faster and do more with their end-e�ectors.

Another example applications of FSMs is inspection and maintenance of nuclear waste

tanks [46]. This task is hard to accomplish with traditional manipulators due to the large

workspace (arm span of 25 m or more) and small openings through which the arms can

access the tanks (between 0.1 m - 1 m) [93]. Traditional robots cannot be used for such

applications due to their weight and limited reach. Additionally, there are plans are to use

long reach robot arms in Fusion Reactors for maintenance and inspection work [107].

1.2 Problem Statement

Past research has not addressed some important issues with multi-link spatial �exible

manipulators well. A big de�ciency has been how the arms have been modeled. The research

on methods to estimate �exible states of spatial arms has also been very limited. Controllers

rely on a good model of the system and estimation of all of the state variables to accurately

position the end-e�ector. Very few �exible (by design) multi-link robots, where the controller

and estimation algorithms could be tested on, have been built, and therefore most work has

not been validated by experimental tests.
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1.3 Research Overview

The research in the dissertation is broken down into three complimentary research pro-

blems. First, a suitable modeling strategy for �exible serial arms is developed. Second, an

estimation algorithm that can quickly, and robustly, provide the states to a feedback con-

troller is formulated. Finally, a controller that allows for the �exible arm to move without

signi�cant oscillations is derived.

1.3.1 Modeling Flexible Manipulators

While modeling serial robots and �exible bodies are by themselves an area that is well

established, work on multi-link �exible bodies is much less developed. The models for single

link �exible arms are fairly straight forward and can, in many cases, be assumed to be linear.

The mathematical models are most often derived from energy based methods. The

resulting equations governing multi-link �exible robot arms are nonlinear, coupled, ordinary

and partial di�erential equations. Most commonly the �nite dimensional dynamic equations

are derived with the Assumed Modes Method (AMM) or the Finite Element Method (FEM).

Use of exact in�nite dimensional models are not practical in the real world.

The FEM is a fairly straight forward method and has been proven to give fairly accurate

results. The big problem with this method is that numerous boundary conditions have to

be considered, which makes the model hard to realize in real-time.

The AMM is a much more elegant method that uses modal amplitudes as the �exible

state variables. The major hurdle with this method is that when the arm con�guration

changes, the mode-shapes change as well. The problem lies with recomputing the modes

and making sure that the model is consistent from one con�guration to the next. In addi-

tion, methods for �nding a good basis of modes in spatial con�gurations has not been well

established.

The modeling method used in this dissertation makes an extension to the Transfer Matrix

Method (TMM) to utilize the natural modes for any spatial serial structure. These modes are

then used in a dynamical model, that was derived using energy methods, where the natural

modes associated with each con�guration have to be scaled and ordered properly to make
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the model continuous. The TMM and the dynamical model are then both independently

veri�ed.

1.3.2 Estimation for Flexible Manipulators

Although open-loop controllers by de�nition work without knowing the internal states

of the dynamical model, they cannot, guarantee performance when the model of the system

is not known well or when disturbances exist. For closed-loop control to work estimates of

states are required.

Serial robot arms typically have sensors at the joints, which are su�cient to use for full

state feedback in the rigid link case. However, with these sensors it is very di�cult, or

even impossible, to sense the �exibilities in the system. This de�ciency in turn, leads to

poor end-e�ector position accuracy. Flexible states themselves are generally not directly

measurable, therefore estimates of the �exible states are needed for the accurate positioning

of the end-e�ector. However, accurate and e�cient sensing of the �exible states generally

requires a good model of the system.

Since the dynamical models for �exible robot arms are nonlinear, the estimators for the

�exible coordinates need to be nonlinear as well. Unfortunately, nonlinear estimation is

much less researched when compared to the linear counter part. Extended Kalman �ltering

was chosen as the estimator in this work due to the inherent capability to deal with both

noise in the system and noise in the measurements.

Strain gages are commonly used for estimation of �exible variables. However, strain gages

require careful conditioning and signal ampli�cation. In addition, estimating �exibilities in

3D would make the placement of strain gages very di�cult, which is ampli�ed further when

the links do not have �at surfaces. Therefore, strain gages, might not be the most practical

sensors to use when dealing with vibrations. Low-cost MEMS accelerometers are used as the

practical alternative due to their cost and ease of incorporation into the overall controller

architecture.

The performance of the estimator is proven both in simulation and experiments.
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1.3.3 Control of Flexible Manipulators

Controllers can be divided into the categories of open-loop controllers and closed-loop

controllers. Open-loop controllers work by generating the command signals so that the

unwanted dynamics of the system are canceled out. Closed-loop controllers, on the other

hand, work by measuring or estimating the current states and forcing them to follow desired

trajectories.

If the dynamics of the �exible manipulator are known with high accuracy, then an

open-loop controller could satisfy performance criteria. The biggest advantage of open-loop

controllers is the lack of required sensors. Open-loop controllers, however, cannot guarantee

performance if the dynamics of the system are not known well, or problematic disturbances

exist.

The big disadvantage of closed-loop control is that the use of (often noisy) sensors is

necessary. In addition, some state variables may need observers, which adds in extra com-

putational di�culties. In the case of �exible manipulators, the measurements of the joint

positions are readily available from encoder readings. The de�ection variables, however, are

typically not directly measurable. Since models for �exible serial manipulators are nonli-

near, the controllers will need to be nonlinear as well. In addition, the stability of many

closed loop controllers depend on knowing system dynamics relatively well.

Open and closed loop controllers can be used concurrently and independently from one-

another. This design allows for the unwanted dynamics caused by following the reference

trajectory to be minimized, while still being able to handle disturbances and some unknown

dynamics. An additional bene�t is the actuator e�ort lowering due to the closed loop

controller not needing to suppress all of the unwanted dynamics.

This dissertation will explore both open-loop and closed-loop control independently. The

performance of the open-loop controller is evaluated both in simulations and experiments,

while the closed loop controller is examined in simulations only.
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1.4 Dissertation Contributions

This dissertation presents a new way to e�ciently model both static serial structures

through an extension to TMM, as well as the complex dynamics of �exible serial manipulator

by using the true modes of a �exible manipulator as the basis. The dynamical model is

computationally e�cient and therefore suitable for real-time controls applications. Both

of the modeling techniques are veri�ed by comparisons to commercial FEA software and

experimental data.

An estimation algorithm based on accelerometer data is developed and analyzed. An

extended Kalman �lter is used to estimate the �exible system states.

An open loop controller based on Speci�ed Insensitivity shaping techniques is presented.

This controller uses the predicted frequency variation along the desired trajectory to create

a optimized sequence of impulses that greatly reduces the amount of residual and transient

vibration.

A closed loop nonlinear controller is presented to further reduce vibrations in the �exible

arms. The controller uses the estimation data from the Kalman �lter. Proofs on the system

stability are given.

The contributions from this dissertation can potentially be applied to other �elds where

structural vibration is a problem and there are limited methods to sense the �exible sta-

tes directly. Examples of these �elds include building structures [133], machining [5] and

piezoelectric energy harvesting [27].

1.5 Dissertation Roadmap

Chapter 2 shows a summary of the work done by researchers in the realm of �exible

serial robot arms. An overview of previous modeling, estimation, and control techniques is

presented. A brief discussion on the strengths and weaknesses of di�erent methods is given.

Chapter 3 consists of two main parts: 1) modeling static n-link serial structures and 2)

modeling the dynamics of n-link serial arms. An extension is made to the Transfer Matrix

Modeling technique so that generic n-link serial structures can be handled algorithmically.

In the dynamics part, the dynamic model for serial arms is derived using the mode obtained
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from the static part.

Chapter 4 describes the design process used to create the testbed to validate the work

presented in this dissertation. Chapter 5 presents estimator algorithms that are suitable for

a serial �exible manipulators. An empirical evaluation is carried out for the estimators.

Chapter 6 presents the work done in both open-loop and closed-loop control. Analytical

proofs are given for the stability analysis. The controllers are evaluated for di�erent per-

formance criteria. Finally, the work of this dissertation is concluded with Chapter 7, where

the work is summarized, and potential future work is described.
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Chapter II

BACKGROUND AND LITERATURE REVIEW

The majority of previous work on �exible robots has been performed on single link arms.

The work on multi-link arms has often been theoretical and supported by simulations or

planar experiments. Evidence for these statements can be found in [47] where a literature

review of more than 400 papers in the �led of �exible robots is presented. The following

sections will give a brief overview of what has been done in the areas of modeling, estimation,

and control for multi-link �exible serial manipulators.

2.1 Dynamic Modeling of Flexible Robot Arms

Controller design and estimation require the availability of an accurate system model

that can characterize the entire robot. Modeling classical serial robot arms can successfully

omit �exible states because the sti�nesses of the links is high. However, modeling �exible

robots, especially when dealing with multiple links in 3D space, is not straight forward.

2.1.1 Modeling Traditional Rigid Serial Arms

For rigid manipulators, the dynamics of the manipulator is fully described by:

M(q)q̈ +C(q, q̇) +G(q) = τ, (1)

where q is the vector of joint variables, M is the joint variable dependent inertia matrix,

C is the vector containing all Coriolis and centrifugal terms, G contains the in�uence of

gravity, and τ is the vector of input torques. Among numerous examples in literature,

these equations were derived in [114,126]. The controlled variables q and its derivatives are

generally directly readable from encoder or tachometer measurements. Although (1) can be

coupled, the torques τ act on q directly, and therefore, controller design is straight forward

for these type of manipulators.

In reality, however, there is no structure that is absolutely rigid and, therefore, (1) is an

approximation that holds under limited conditions. Research has shown that there exists
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a critical ratio between the poles of the closed loop control for the joints and the �rst

natural frequency of the structure ωcl
ωstr

, under which the assumption for rigid manipulators

is valid [23, 24]. It was shown that the controller should have bandwidth less than 1/3 of

the �rst natural mode of the structure, otherwise the there can be signi�cant vibration in

the end-e�ector motion due to structural vibrations.

2.1.2 Flexible Joint Serial Robot Manipulators

In addition to �exibilities from the structure, the joints of the serial arm could have

�exibilities of their own [36]. Joint �exibilities originate from �exible elements in the drive-

train, such as belt or even gears. When dealing with �exible joints, an additional variable,

θ is introduced to the manipulator dynamics (1). θ represents the displacement of the

actuator, while q represents the displacement of the link. The dynamics of �exible joint

manipulators can, therefore, be described as:

M(q)q̈ +C(q, q̇) +K(q − θ) +G(q) = 0

Bθ̈ +K(θ − q) = τ, (2)

where K is the joint sti�ness matrix and B is the matrix of rotor inertias of the actuators.

The state observability problem can be solved by using input and output side encoders.

Numerous researchers have tackled this problem and have presented di�erent controllers to

decrease the e�ect of joint �exibility. Among the large body of work in [37] a PD regulation

control algorithm was designed. In [4] a passivity based controller framework was presented

to handle the problem. In [34] an adaptive controller to cope with time-varying uncertainties

in �exible joints.

2.1.3 Flexible Link Serial Robot Manipulators

Generally, dynamic models of �exible link manipulators can be described by partial dif-

ferential equations (PDEs) or approximate �nite-dimensional ordinary di�erential equations

(ODEs). Thus the dynamics of �exible beams is represented by an in�nite dimensional

variable space. In practice a truncated �nite series of modes is used to represent the ma-

nipulator dynamics. However, un-modeled higher modes can cause problems and drive the
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system unstable. This e�ect is known as modal spillover [10].

The �exible states are generally not directly measurable and observers are required to

estimate the state variables [63]. In addition, in [21] it was recognized, that unlike single-link

manipulators, multi-link manipulators cannot be accurately modeled using linear models.

The di�culties lie with nonlinearities of the rigid-body motions and the mode shapes of the

linearized model as the robot con�guration varies.

In some earlier studies, the e�ect of elastic link de�ections on the rigid-body motion was

assumed negligible. The importance of coupling between the elastic and rigid-body motion

was discussed in [150], where a cantilever beam attached to a rotating rigid hub was studied.

It was shown that there is a signi�cant di�erence in dominant resonance frequencies obtained

from simulations using coupled and uncoupled equations.

2.1.3.1 Field Descriptions of Vibrating Beams

The study of the manipulator's structural vibration can be directly linked to the study of

vibrating beams. Links are often assumed to be Euler-Bernoulli beams [29] because of their

large length to diameter ratios. The dynamics of a �exible Euler-Bernulli beam is described

by:

− ∂
2

∂x2
[EI(x)∂

2w(x, t)
∂x2

] + f(x, t) = µ(x)∂
2w(x, t)
∂t2

, (3)

where E is the Young's modulus, I(x) is the second moment of area, w(x, t) is the transverse

displacement of a point, f(x, t) is the force acting on a point, and µ(x) is the distributed

mass of the beam. A general solution to the unforced system di�erential equation (3) is of

the form [56,96]:

W (x) = C1 sinβx +C2 cosβx +C3 sinhβx +C4 coshβx, (4)

where β4 = ω2m
EI . The natural modes are determined from the constants C that are are

calculated by applying the boundary conditions to (4). The solutions like (4) to the PDEs

are often analytically not available due to non-uniform mass and sti�nesses, damping, and

other e�ects. Exact solutions, that are the solutions to (3), to planar serial static structures
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have been found in [42] where work was veri�ed with �nite element analysis (FEA) with

structures of 2, 3 and 4 links. In addition in [97] exact solutions were found for a planar

2 link robot arm with varying elbow angle at static location. In [137] a procedure was

presented to use exact solutions for robot arms using Lagrangian formulations.

2.1.3.2 Finite Element Modeling

Finite Element modeling (FEM) discretizes the structure into smaller elements where

every element is considered as a part of the continuous member of the link. The method

requires that the forces and displacements be compatible at certain positions along the

structure. The equations of motion for the whole system are derived by assembling the

individual element's equation of motion through polynomial interpolation functions. This

technique has been used in many �exible robotics projects [45,135,142,148].

In [3] FEM analysis was used to study the e�ecitveness of viscoelestic damping augmen-

tion for active control of a large �exible space manipulator. In [100] elemental and system

equations were derived for systems with both elastic and rigid links. In [80] a single-link

�exible manipulator in a 3D work space using FEM was studied. The major bene�t of FEM

is that it allows for irregularities (such as non constant cross section in the beams) in the

structure. The major disadvantage of FEM is the computational complexity. In [22] a met-

hod for solving the inverse dynamics was formulated for a model derived with FEM. In [71]

a method for modeling was developed using nonlinear �nite elements, that treats vibration

as a �rst order perturbation to the rigid motion.

2.1.3.3 Assumed Modes Method (AMM)

The assumed modes approach is an energy-based method that uses basis functions, that

satisfy at least the geometric boundary conditions, to approximate the displacement �eld of

the �exible element through a Ritz series expansion. The number of terms in the series cor-

responds to the number of modes considered. The accuracy of AMM increases by increasing

the number of trial functions as the eigenvectors of the system become asymptotically close

to the exact modes of the system. This also means that, the more modes considered, the

more computationally burdensome this approach becomes. The method uses the Lagrange's
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equations [56,96] or the Newton-Euler approach to derive the systems equation of motion.

In [14] 4 × 4 transfer matrices from AMM were developed for manipulators with rotary

joints. In general, as the number of links increases, so does the computational complexity

and the number of state variables needed. In [81] a computationally e�cient method for

deriving the mass and gravity matrices by expressing the velocity vector as a function of a

Jacobian matrix and generalized coordinates was proposed. A simple way to derive state-

space models from the assumed modes method was shown in [62].

Dynamic models for planar two-link manipulators using a Lagrangian-based �nite di-

mension model assumed mode method were developed in [35, 39]. A Newton-Euler and

AMM based technique for deriving dynamical models for manipulators with �exible links

and joints was developed in [129]. Comparisons between the assumed modes and �nite ele-

ment models for �exible multi-link manipulators indicated that FEM is less demanding in

terms of computation [135]. In [9] the virtual work principle was used to allow n serial links

to be connected together using the assumed modes approach.

Global Modal Parametrization allows static modal con�gurations to be used for systems

where the con�gurations change [20]. This work is especially relevant since it provides a

framework on how to incorporate �exible states with rigid body motion in a mathematically

rigorous way. This method has been proven to lessen computational load, while maintaining

accuracy for �exible multi-body dynamics [99].

The issue of changing mode-shapes during large motions with �exible robots has not

been thoroughly investigated, and when AMM is used, the modes are considered to be

constant [47]. The e�ect of changing mode shapes based on robot con�gurations was studied

in [33, 77, 97, 140]. However, a systematic way to obtain a modes for varying con�gurations

of the manipulators has not yet been presented.

2.1.3.4 Transfer Matrix Method

Transfer Matrix Method (TMM) [18,36,78] is an extension to the solutions of the PDEs

governing the �exible elements. The basis of this method is that each element of the system

can be represented as a transfer matrix so that states (displacements, de�ections, moments
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Figure 3: Mass-Spring System

and forces) can be related from one point on the system to the next, as a function of

frequency. Natural frequencies of the system can be found by calculating the frequencies

at which the transfer matrix for the system has a non-trivial null-space when all of the

boundary conditions are taken into consideration [13, 16]. The system mode shapes can

then be found by calculating the states along the system for the corresponding natural

frequency. The simplest example showing how the transfer the transfer matrix metod works

is the mass-spring system shown in Figure 3. The states for the system are xi and Fi. Using

Newton's second law yields the transfer matrix between the states at 0 and 1:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1

F1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 1/k

ms2 ms2/k + 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0

F0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (5)

where s represents the the derivative in the Laplace domain. The boundary conditions for

the system are x0 = 0 and F1 = 0. Substituting in the boundary conditions into (5) and

writing out the bottom row gives:

(ms2/k + 1)F0 = 0 (6)

Therefore, the non-trivial null-space is:

ms2 = −kÔ⇒ s = ±i
√
k/m, (7)

where the imaginary part of s is the natural frequency of the system. For such a simple sy-

stem the bene�ts of TMM are not apparent. What makes TMM attractive for �exible robots,
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is its inherent ability to take into consideration distributed elements without discretization

and incorporating lumped elements.

For �exible robot arms the base can be considered one boundary and the end-e�ector

the second, while the links and actuators form the system transfer matrix. In [78] the 4 × 4

transfer matrix method was extended to three dimensional �exure in a systematic manner,

and [17] developed state space models using the transfer matrix method via an iterative

procedure. Bending-Torsion coupling [54] mode-shapes computed through the TMMmethod

were used by Book and Majette in [17] to determine assumed modes models for control. This

approach results in very accurate low-order approximations of the �exible system which that

can be transformed into state space form. Recently, this method has seen use in piezoelectric

energy harvesting [27]. This method has not been demonstrated to work on a general spatial

n-link serial arm.

When using TMM with state space representations physical intuition is lost due to the

somewhat abstract system states. This method could, however, be used as an e�cient tool to

generate the basis functions for a very low order model for �exible robots. Most researchers

use approximated modes from polynomial series to represent the mode shapes of the system

that do not give a good �t for the entire system. This problem is ampli�ed greatly when

spatial mode shapes are in question. The �nite element method is another possible solution

to �nd accurate modes for any system.

2.2 State Estimation for Flexible Serial Manipulators

For traditional rigid manipulators, encoders and tachometers are typically used to mea-

sure all of the states of the dynamical model. Flexure, on the other hand, is generally not

directly measurable as a state of the system. For feedback control to be used to damp out

oscillations, �exible state measurements are needed. Therefore, additional sensors should

be used to capture �exure. State observers are then used to provide the estimates of the

�exible states from the inputs and outputs of the system.
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2.2.1 Sensor Selection

There are many types of sensors that could potentially provide data about oscillations;

however, not all are practical. Sensors need to placed in correct locations along the links

to assure that measurements capture the states of the system. Examples of sensors used in

vibrations for feedback include: vision systems [51, 70, 103, 147], optical de�ection sensors

[50,59,102,103], strain sensors [2,52,63,83,139,147], Fiber-Bragg-Grating sensors [53], PZT

sensors [59], and accelerometers [105, 108, 127]. In addition to the type of sensor, their

location must be carefully selected because some locations, such as nodal points of mode

shapes, do not provide any information about the magnitudes of those modes. This issue

was thoroughly investigated in [109].

2.2.2 State Estimation Algorithms

A dynamic system can be generally represented by:

ẋ = f(x,u, t)

y = h(x,u, t)
(8)

where x is the vector of unknown sates, u is the input to the system.An observer can estimate

the states based on measurements y. An observer can be represented by the following system:

˙̂x = f(x̂, u, t) −L(y − ŷ)

ŷ = h(x̂, u, t)

x̂(0) = x0,

(9)

where x̂ is the estimate of the states. There are numerous algorithms for selecting the

observer gain L that minimizes the di�erence between x and x̂.

For linear systems, the Kalman �lter [84] is an optimal estimator for a stochastic system

whose model and sensor noises are zero-mean, Gaussian, and whose noise covariances are

known. In practice, these values are nearly impossible to �nd exactly, however, the Kalman

�lter has been proven to be powerful tool for numerous applications [146,154].

While estimation techniques for linear systems are quite straight-forward, for non-linear

systems the problem is much more di�cult and fewer tools exist in the literature. By far the
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most popular technique for estimating nonlinear systems is an adaptation to the Kalman

�lter, called the Extended Kalman Filter (EKF) [84]. The main idea is that the system

can be linearized locally around the last state estimate. The EKF is not an optimal �lter

for a stochastic non-linear system, but it is a minimal error variance estimator. In [82] an

Extended Kalman �lter was to improve the tip position of a planar 2 link �exible robot arm

using a infrared-light detector. In [64] and EKF was used to improve the positioning on the

tool on a traditional serial robot using acceleration feedback.

Another nonlinear observer that has been proven to work for noisy non-linear systems

is the H∞ [72] type �lter. While some of the requirements that exist for EKF, such as zero

mean noise, have been relaxed for the H∞ �lter, its implementation is trickier because the

magnitude of some of the parameters are abstract and must be chosen ad-hoc, non-linear

extensions non-trivial, and the computation e�ort is more extensive.

Sliding mode estimators have been developed for single link and 2 link planar arms using

the joint position measurement to estimate �exure [25, 91]. Poor convergence and chatter

have been reported when there exists parametric error [109]. In [28] it was claimed that

for non-linear systems EKF produced more accurate results than Sliding Mode observer,

although the former is harder to implement. Neural network based observers were presented

in [1].

Monte-Carlo based methods like the particle-�lters [8] have been proven to produce more

accurate estimates than EKF, and are more numerically stable. However, these type of �lters

are not implementable in real-time for any moderately sized state-space.

2.3 Control of Flexible Serial Manipulators

As with rigid robots, the goal of a controller for a �exible serial arm manipulator is

generally to force the the end e�ector to follow a desired trajectory. To formulate the control

and estimation problem, two physical limitations associated with �exible serial robot arms

must be taken into consideration: 1) torque can only be applied at the joints, and 2) �nite

number of sensors with limited bandwidth can be used. In addition, robot arms that have

signi�cant �exure are under-actuated and, therefore, the typical control laws for rigid robots
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such as the computed torque control law:

τ =M(q)(q̈d −Kpe −Kdė) +C(q, q̇)q̇ + g(q) (10)

cannot be used.

In addition, controller strategies developed for a rigid robot directly on a robot with

�exible links could lead to instabilities due to unstable zero dynamics [38] because the

system is non-minimum phase. Furthermore, research has shown that depending on the

con�guration of the robot arm, actuators that can only apply torques at the joints may

not be able to have any e�ect on some �exible states and, therefore, the controllability of

the �exible states is con�guration dependent [33, 138, 153]. In those previously presented

methods, the modes shapes for the spatial con�gurations were not rigorously analyzed.

To reduce vibrations from �exible manipulators, two approaches can be used: open-

loop, and closed-loop control. Open-loop control works by modifying the control input to

the plant, and closed-loop control works by applying control input based on the states of

the system. Open-loop and close-loop control can be used together in one controller.

2.3.1 Open Loop Control of Flexible Robot Arms

When the plant of a control system is well known, the commands can be shaped to

give a slower, but much less oscillating, response. A common problem for open-loop control

methods is that the reference command times will lengthen. Additionally, large changes in

the plant dynamics can limit the e�ectiveness of the control method. A popular open-loop

control method is input shaping. It is a command-�ltering technique where the nominal

command is convolved with a series of impulses, known as the input shaper [120]. The main

idea of input- shaping is shown in Figure 4, where a pulse velocity command is convolved with

a series of impulse to produce a staircase command that signi�cantly reduces the residual

vibration of the plant.

A signi�cant advantage of input shaping is the simplicity of controller design. In [122] it

was shown that input shapers are shorter in length than traditional low-pass �lter such as

Finite Impulse Response (FIR) and In�nite Impulse Response (IIR) �lters. This was further
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Figure 4: Input Shaping Process

expanded in [123], where it was shown that input-shapers had the shortest duration of all

digital �lters while having good vibration suppression characteristics.

Because �exible robots can have numerous signi�cant modes multi modal shapers should

be used [69].The main drawback with this approach is that the shaper duration will be the

sum of all of the individual shapers. A more optimal approach could be the use of Speci�ed

Insensitivity (SI) shapers that can be optimized for the shaper duration [124]. In addition

SI shapers can be optimized for ranges of frequencies.

Comparison of robust input shapers showed that Extra Insensitivity (EI) and SI shapers

e�ciently provide robustness to modeling errors and parameter uncertainty [144]. Input

shaping has been successfully applied to �exible robot arms in [11, 88, 98, 111]. Reduction

of multiple modes for a �exible robot arm was �rst shown in [88]. In [111, 132] adaptive

input shapers were presented for �exible manipulators. Input-shaping techniques have been

combined with position control of joints [106]. None of the works to date have explicitly

taken into account the changes in the natural frequencies in the con�guration space for

�exible manipulators.
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2.3.2 Closed Loop Control of Flexible Robot Arms

When there are signi�cant model uncertainties and/or disturbances involved, feedback

control is the only way to obtain a high-accuracy response. There are numerous feedback

control methods described in literature and the choice is ultimately a compromise between

the closed-loop behavior, the level of accuracy that the model has, and the ease of imple-

mentation on real manipulators. Linear state feedback control is, perhaps, the most well

developed control strategy. However, for �exible arms it requires modeling simpli�cations

of the continuum and nonlinear structure of the �exible system. All techniques developed

to date rely on estimates of the �exible system states or end e�ector position measurements

to provide the appropriate control e�ort.

2.3.2.1 Classical Controls

The classical control method in this dissertation encompass forms of feedback linearized

control approaches. The main idea of this approach is that the nonlinear parts in the system

dynamics can be negated with appropriate control e�ort. State feedback terms are then

added to make the error dynamics stable. In [40] a PD type controller for the joint motion

of a robot arm under gravity was presented. Although the traditional joint PD controller

can stabilize �exible robots, the system performance is not very satisfactory because there

is no explicit e�ort introduced to suppress the residual vibrations. In [86] a PID controller

with feed forward terms for tracking the joint motion and damping vibrations was derived

by using the second method of Lyapunov for a multi-link �exible manipulator. In [76] an

extra term dependent on the �exible states to damp vibration was added to a PD controller

for the joint motion.

In [6] inversion based tracking control was presented where a desired trajectory for �exible

coordinates was computed online. Damping in the system was increased by modifying the

equations for calculating the desired trajectories. Tests were conducted on a two-link planar

arm. In [38] a stable inversion technique was presented for tip tracking. Three methods

were provided that would always keep the joint error and torques bounded.

In [136] a two stage controller was designed, where an inversion based sliding mode
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controller would move the joints of the robot along the desired joint trajectory and then an

impedance based controller would reduce the vibration in the arm at the end point of the

trajectory.

2.3.2.2 Two-time scale control

Singular perturbation theory [75] has been proven to be an e�ective method to reduce

the sizes of models need to be controlled. This is known as "Reduced-order modeling." In

order for singular perturbation theory to be applied on a system, the model must be able

to be written in the following form:

ẋ = f(x, z, ε)

εż = g(x, z, ε),
(11)

where x and z are state variables, f() and g() are functions, and ε is a small parameter. This

method allows the formation of a "fast" system and a "slow" system. The controller for the

system in (11) can be designed in two stages: one for the fast system and one slow one. This

method is applicable to the study of �exible manipulator because generally, the dynamics

governing the joint motion is much slower than the fast dynamics. The goal for this approach

is to simplify the the controller design and improve hardware implementation of the control

algorithms. For this theory to work a su�ciently, a small parameter ε must be found so that

the operating frequencies of the two controllers are separated and do not interfere with one

another. Generally, it has been advised that the lowest structural frequency be chosen as

the separation constant ε.

Singular perturbation based controllers have been demonstrated in [95,117,118]. In [118]

the slow controller is the feedback linearized torque control and a pole placement strategy

was chosen for the fast subsystem.

In [32] the rigid system was separated from the �exible system through the passivity

based approach and a PID type controller was used to cancel out the oscillations. In [79,85]

a two-time scale controller where the fast system is stabilized with a fuzzy logic based

controller was used was presented. The time scale was based on the closed loop dynamics

of the slow subsystem. Experiments were done on a single link beam.
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2.3.2.3 Modern Control Methods

A number of feedback compensation approaches are available for the control of �exible

manipulators. Robust control methods like H∞ [116, 145] and sliding mode control [12, 73,

151] have been applied with moderate success. Adaptive algorithms have also been applied

to improve the controller performance given model uncertainties or time varying system

parameters. However, adaptive control with no compensation for the �exible behavior yields

little improvement [51].

In [68] a LQR based controller was used on a �exible robot arm. More recently, fuzzy

logic [19] and neural network based control schemes [113] have been applied to the problem.

A Hybrid Neural-Fuzzy control was used for a robot with an uncertain model [26]. In [58] a

two-link planar arm was controlled with a repetitive learning self adapting fuzzy controller

to track a trajectory in simulation. An LQR controller together with the sliding mode

approach was used in [48]. An adaptive controller for a �exible robot with an updating

internal model was presented in [43]. In [130] hybrid fuzzy neural control for two link planar

�exible manipulators was derived. In [79] a fuzzy logic based controller was used with

singular perturbation based approach. A real time adaptive controller using reinforcement

learning for tracking tip trajectory was shown in [110], experiments were conducted on a

planar two link arm with strain feedback.

2.3.3 Other Methods to Reduce Vibrations in Flexible Manipulators

To avoid the problem of only having control input available at the joints some researchers

have added other actuators to the arm or tried to change the arms themselves to be less prone

to vibrations. In [44, 55, 131] piezoelectric materials were added to single link manipulators

to measure and reduce vibrations in the arms. In [101] a spring and dashpot were attached

to reduce the vibrations of a single link arm. In [112] a study was undertaken to �nd the

optimal structural design of lightweight manipulators. In [3] a �nite element analysis was

performed to study viscoelastic passive damping augmentation on a space shuttle remote

manipulator system.
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Figure 5: Quanser Flexible Link Test Bed

Figure 6: Typical 2 Link Planar Test Bed [97]

2.4 Test Beds

As evident from [47] the vast majority of test beds for �exible manipulators use a single

link and one actuated degree of freedom. A commercial �exible link test bed by Quanser

can be seen in Figure 51.

Typical two link planar �exible manipulator test beds are mounted on air bearings to

minimize any torsional and gravity e�ects and provide a very low friction surface. An

example of such a test bed is shown in Figure 6.

The rarest test beds have multiple links and operate in spatial con�gurations. TUDOR

[90] at Technische UniversitÃ¤t Dortmund is a 2 link robot that has been used for that

1Image from: http://www.quanser.com/products/rotary_flexible_link
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Figure 7: TUDOR

Figure 8: POSTECH Flexible Robot II [31]

has the capability to move in spatial con�gurations, however vibration control has only

been demonstrated for the planar case. A picture of TUDOR is shown in Figure 72. The

POSTECH Flexible Robot II has been used for a vast number of papers from the researchers

at the Pohang University of Science and Technology. The robot can be seen in Figure 8. The

robot arm is one of the only test beds to have used feedback control for spatial oscillations.

2Image from http://www.rst.e-technik.tu-dortmund.de/cms/en/research/robotics/TUDOR_engl/

index.html
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Instead of using torque control, this manipulator arm uses high gain velocity servos.

Other two-link spatial robots include the robot from Univesidad de Castilla-La Man-

cha [49]. This robot's kinematics were designed after the industrial robot PUMA 560. The

parallel linkage mechanism makes modeling this arm extremely cumbersome using traditi-

onal methods. The ADAM test bed is 2 link �exible manipulator from Tohoku Univeristy

that can be used in spatial con�gurations [141]. What makes this test bed special is that

it consist of two identical arms. If only one arm is used (which is the case for most of the

research reported from that group) it looks like the POSTECH arm described earlier.

27



Chapter III

MODELING FLEXIBLE SERIAL MANIPULATORS

This chapter presents a method to derive low-order models for general n-link robot arm

that adequately characterizes the behavior of the �exible serial robot arm. Low-order models

are preferred because they typically are computationally less taxing and can, therefore, be

used for real-time control and estimation applications. The most common approach in the

literature for modeling multi-link robot arms is to assign mode shapes and modal amplitudes

to each link separately while using clamped-mass boundary conditions. A small subset of

papers that have used this approach include [7, 30, 39]. The approach, however, is not fully

consistent with real-world dynamics.

To obtain more consistent dynamic models, a hybrid approach of both frequency and

time domain modeling methods can used to form the non-linear equations of motion that

describe the rigid-�exible dynamics. To model �exible serial structures in static spatial

con�gurations, an extension to the transfer matrix method is utilized. This approach is

veri�ed with commercial FEA software and experimental testing. The varying mode shapes

from the TMM approach are then used in the derivation for the low-order model for �exible

serial robot arms.

3.1 Denavit-Hartenberg Parameters

Denavit-Hartenberg (DH) Parameters [41] are commonly used to describe the con�gu-

ration of serial robots. These parameters can also be used to describe any serial structure.

The DH parameters are used as a basis for the systematic algorithm used for the TMM

analysis presented here

Each joint i, along with the base 0 and end-e�ector n + 1, is assigned a frame O with

the location p. Figure 9 shows how the frames and DH coordinates are related. θi is the

joint angle measured from xi−1 to xi about zi. αi is the link twist angle measured from zi to
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Axis 𝑖 − 1

Axis 𝑖

Link 𝑖 − 1 Link 𝑖

𝜃𝑖

𝛼𝑖−1

𝑑𝑖
𝑎𝑖−1

𝑎𝑖

𝑋𝑖−1

𝑌𝑖−1𝑍𝑖−1 𝑋𝑖

𝑍𝑖
𝑌𝑖

Figure 9: Link Frames

Figure 10: Coordinate Frames in DH Coordinates

zi+1 about xi. d is the joint o�set measured from Oi−1 to Oi along zi. a is the link common

normal measured from Oi to Oi + 1 along xi. An example of how the coordinate frames

are located for a Puma-class robot is shown in Figure 10. Starting from the lower left side

the 0 frame is placed at the base. After that each joint gets a frame while �nally frame 7

is place at the end-e�ector. The zi axis are in the direction of the joints and xi is chosen

to be orthogonal to zi and zi+1. Generally multiple options exist for placing the coordinate
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frames.

3.2 The Transfer Matrix Method(TMM)

In order to incorporate the �exible states in to the dynamical model of the system the

mode shapes of the �exible arm can be found. These mode shapes are used in the next section

where the equations that govern the entire serial �exible arm are derived. However, the use

of this method on a general spatial n-link serial arm has not been previously demonstrated.

The main idea of transfer matrix method based modeling is that a matrix U(jω) can

be derived to relate state vectors z in one location on the structure to another (for example

from one joint to the next).

zi+1 = Ui(jω)zi (12)

These expressions can be combined to form a system relating one end of the structure to

the other:

zL = ...U2U1U0z0 = Utotz0 (13)

In general, the solutions to the partial di�erential equations that govern multi-link �exi-

ble serial structures are almost always impossible to solve in closed form. However, transfer

matrices of di�erent elements can be combined together to compute the system in arbitrary

poses. The roots of the resulting boundary value problem are the natural frequencies, or

in general, the eigenvalues of the individual modes of vibration. The state vector that fully
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describes the spatial deformable link at a point is:

z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

θx

Mx

Fx

wy

θy

My

Vy

wz

θz

Mz

Vz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Displacement in the x direction

Rotation about x axis

Moment about x axis

Shear force about x axis

Displacement in the y direction

Rotation about y axis

Moment about y axis

Shear force about y axis

Displacement in z direction

Torsion about z axis

Moment about z axis

Axial Force along the z axis

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

In the next subsections the transfer matrices for beams, rigid structures, and rotations

are derived. In this work, only small de�ections with negligible damping e�ects that can be

approximated with linear behavior are considered.

3.2.1 Beam Transfer Matrix

The three dimensional transfer matrix will be of dimension 12x12 and can be represented

as:

zL = UBz0 =

⎡⎢⎢⎢⎢⎢⎢⎣

Bxy 0

0 ATz

⎤⎥⎥⎥⎥⎥⎥⎦

z0 (15)

where ATz is a 4x4 matrix that includes the torsional and axial components and Bxy is a

8x8 matrix that has the bending components in the x and y directions.

3.2.1.1 Axial and Torsional Matrix

The well-known equation describing axial beam motion is:

EA
∂2wz(z, t)

∂z2
= ρA∂

2wz(z, t)
∂t2

, (16)
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where E is the modulus of Elasticity, A is the cross-sectional area of the beam, ρ is the

density of the beam, and wz(z, t) is the axial deformation. Separation of variables is used

to separate the spatial and time-dependent components:

wz(z, t) = Z(z)T (t) (17)

Therefore, an ODE describing the spatial variable is:

Z ′′ − σ2Z = 0, (18)

where,

σ2 = −ω2 ρ

E
, (19)

where, ω is the system natural frequency.

The solution to this equation will be of the form:

Z = c1eσz + c2eσz, (20)

where c1 and c2 are constants that are to be determined based on the boundary conditions.

We also know that:

Fz = EAZ ′. (21)

Substituting (20) into (21) and then putting it in a matrix form yields:

⎡⎢⎢⎢⎢⎢⎢⎣

wz

Fz

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

eσz e−σz

EAeσz −EAeσz

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

c1

c2

⎤⎥⎥⎥⎥⎥⎥⎦

= UAzc (22)

After evaluating (22) at 0 and the beam length, L, the transfer matrix from 0 to L is found

to be:

A = UAz(L,σ)[UAz(0, σ)]−1 =
⎡⎢⎢⎢⎢⎢⎢⎣

1
2
(eσL + e−σL) 1

2EAσσ (eσL − e−σL)
1
2EAσ (eσL − e−σL) 1

2
(eσL + e−σL)

⎤⎥⎥⎥⎥⎥⎥⎦

(23)

The equation that governs a shaft in torsion is:

GJ
∂2wz(z, t)

∂z2
= ρJ ∂

2wz(z, t)
∂t2

, (24)

32



where G is the modulus of rigidity, J is the polar moment of area. The derivation of the

transfer matrix is equivalent to the process used for the axial vibration, and therefore:

T =

⎡⎢⎢⎢⎢⎢⎢⎣

1
2
(eσL + e−σL) 1

2GJσσ (eσL − e−σL)
1
2GJσ (eσL − e−σL) 1

2
(eσL + e−σL)

⎤⎥⎥⎥⎥⎥⎥⎦

(25)

where,

σ2 = −ω2 ρ

G
(26)

Combining (23) and (25) produces:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wz

θz

Mz

Fz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭L

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 0 A12

0 T11 T12 0

0 T21 T22 0

A21 0 0 A22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wz

θz

Mz

Fz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭0

= ATx

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wz

θz

Mz

Fz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭0

(27)

3.2.1.2 Bending Matrix

The well-known equation governing beam bending for an Euler-Bernulli beam is:

−EIy
∂4wx(z, t)

∂z4
= µ∂

2wx(z, t)
∂t2

, (28)

where E is Young's modulus, I is the area moment of inertia, µ is the mass per length, and

wx(z, t) is the bending deformation. We also know:

θx = −
∂wy

∂z
(29)

Mx = −EIx
∂2wy

∂z2
(30)

Vy =
∂Mx

∂z
(31)

The solution for (28) can again be found by using separation of variables:

wx(z, t) = Z(z)T (t) (32)

this leads to the ODE for the spatial part:

Z(4) − (β
L
)
4

Z = 0, (33)
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where,

(β
L
)
4

= ω
2µ

EIy
(34)

The solution to (33) is of the form:

Z = c1 sin
βz

L
+ c2 cos

βz

L
+ c3 sinh

βz

L
+ c4 cosh

βz

L
, (35)

where ci are constants that are dependent on the boundary conditions. By substituting (35)

into (29)-(31) the following relation is found:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

θy

My

Vx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= U(z, β)c (36)

By evaluating (36) at 0 and L, the following relationship is found:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

θy

My

Vx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭L

= U(L,β)[U(0, β)]−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

θy

My

Vx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭0

= Ba

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

θy

My

Vx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭0

, (37)

where,

Ba =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(1) Lc(4)
2β

ac(3)
2β2 −Lac(2)

2β3

βc(2)
2L c(1) ac(4)

2βL −ac(3)
2β2

β2c(3)
2a

βLc(2)
2a c(1) −Lc(4)2β

−β
3c(4)
2La −β

2c(4)
2a −βc(2)2L c(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)

where,

a = L2

EIy
, c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 cos(β) + 1

2 cosh(β)

− sin(β) + sinh(β)

− cos(β) + cosh(β)

sin(β) + sinh(β)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

Analogously, the bending equation in the orthogonal direction is:

−EIx
∂4wy(z, t)

∂z4
= µ∂

2wy(z, t)
∂t2

(40)
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where,

θy = −
∂wx
∂z

(41)

My = −EIy
∂2wx
∂z2

(42)

Vx =
∂My

∂z
(43)

Finally, the transfer matrix can be written:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wy

θx

Mx

Vy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭L

= Bb

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wy

θx

Mx

Vy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭0

, (44)

where,

Bb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(1) −Lc(4)2β −ac(3)
2β2 −Lac(2)

2β3

−βc(2)2L c(1) ac(4)
2βL

ac(3)
2β2

−β
2c(3)
2a

βLc(2)
2a c(1) Lc(4)

2β

−β
3c(4)
2La

β2c(3)
2a

βc(2)
2L c(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (45)

where,

β4 = ω
2µL4

EIx
,

a = L2

EIx
, c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2cos(β) +

1
2 cosh(β)

− sin(β) + sinh(β)

− cos(β) + cosh(β)

sin(β) + sinh(β)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

Matrices Ba and Bb are combined to form Bxy according to the state vector convention (14)
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in the following way:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

θx

Mx

Vx

wy

θy

My

Vy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭L

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ba11 0 0 Ba14 0 Ba12 Ba13 0

0 Bb22 Bb23 0 Bb21 0 0 Bb24

0 Bb32 Bb33 0 Bb31 0 0 Bb34

Ba41 0 0 Ba44 0 Ba42 Ba43 0

0 Bb12 Bb13 0 Bb11 0 0 Bb14

Ba21 0 0 Ba24 0 Ba22 Ba23 0

Ba31 0 0 Ba34 0 Ba32 Ba33 0

0 Bb42 Bb43 0 Bb41 0 0 Bb44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

θx

Mx

Vx

wy

θy

My

Vy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭0

(47)

3.2.2 Rigid-Body Transfer Matrix

Like the Beam Transformation Matrix, the Rigid Body transfer matrix can be broken

down into smaller sub-matrices:

zL = URz0 =

⎡⎢⎢⎢⎢⎢⎢⎣

RBxy 0

0 RBz

⎤⎥⎥⎥⎥⎥⎥⎦

z0 (48)

The rigid-body transfer matrices are derived by summing moments and forces about the cen-

ter of gravity and deriving the displacements and rotations by kinematic relations, assuming

the body is fully rigid. The local rotation of the body does not change, therefore:

θL = θ0 (49)

When assuming small angles of rotation, the translational changes are:

wxL = wx0 + θyL (50)

wyL = wy0 + θxL (51)

wzL = wz0 (52)

In the following relations, s = jω, m is the mass of the rigid body L is the length of

the rigid body along the z axis, r is the distance to the center of mass from the beginning

of the link in the z direction, and Ix, Iy, Iz are the moments of inertia in the x, y, z axis,
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respectively. Summing forces and moments about the center of gravity in the y direction

and moments in the x direction gives the following transfer matrix:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

θy

My

Vx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭L

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −L 0 0

0 1 0 0

ms2(L − r) s2Ix −ms2r(L − r) 1 L

ms2 −ms2r 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

θy

My

Vx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭0

= RBa

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

θy

My

Vx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭0

(53)

Analogously, summing the forces in the x direction and moments in the y direction, the

following transfer matrix is found:

RBb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 L 0 0

0 1 0 0

−ms2(L − r) s2Iy −ms2r(L − r) 1 −L

ms2 ms2r 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(54)

Finally, summing the forces and moments about the z axis gives:

RBz =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 s2Iz 1 0

ms2 −ms2r 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(55)

The full Rigid-Body transfer matrix is found by deriving RBxy from Ra and Rb with the

same algorithm as used to obtain (47).

3.2.3 Rotation Matrices

To be able to use the TMM for serial arms in arbitrary positions, rotation matrices are

needed for the joints. The 12 × 12 rotation matrices are derived directly from the standard

3 × 3 rotation matrices by multiplying every element with the 4 × 4 identity matrix I4×4.

Thus, for rotation about the z axis, the transfer matrix is:

Rz(α) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(α)I4×4 sin(α)I4×4 0

− sin(α)I4×4 cos(α)I4×4 0

0 0 I4×4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(56)
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For rotation about the y axis the, transfer matrix is:

Ry(α) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(α)I4×4 0 − sin(α)I4×4

0 I4×4 0

sin(α)I4×4 0 cos(α)I4×4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(57)

For rotation about the x axis the, transfer matrix is:

Rx(α) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I4×4 0 0

0 cos(α)I4×4 sin(α)I4×4

0 − sin(α)I4×4 cos(α)I4×4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(58)

3.2.4 TMM Analysis

The TMM can be used to �nd the natural frequencies and mode shapes for complex serial

structures. The method requires the multiplication of the various matrices corresponding to

�exible bodies, rigid bodies, and rotations:

ztip = Usys(UB, UR, US ,Ri)z0 (59)

Partitioning Usys appropriately gives:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

⋮

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

= (subU)ẑ0 (60)

The natural frequencies of the system correspond to the values of s that cause subU to have

a null-space. After �nding the values of s, the kernel vector ẑ0 can be found. By combining

ẑ0 with the known boundary conditions in z0, we can form z0. Once z0 has been found we

can use the transfer matrices along the link to �nd the intermediate states along the entire

serial arm.

The mode shapes of the system can be calculated by iterating the coordinate x along

the beams:

z(x) = UB(x)ẑ0, (61)
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where z(x) is the state vector at position x and z0 is the state vector at the beginning of

the beam. Note that for a serial arm, each beam will have a separate z0 that can be found

by �nding the Ũsys that corresponds to the system matrix up to the start of the beam:

ẑ0 = Ũsys(UB, UR, Us,Ri)z0 (62)

Conventionally, in continuous vibration problems, the mode shapes consist of one com-

ponent. For example, for a planar bending problem, the mode shape consists of the dis-

placement in the direction perpendicular to the beam axis. The complete mode shape for

a serial arm in 3D space consists of 4 components: wx, wy, wz, θz. (Recall that θx is a

function of wy, θy is a function of wx, and we can extract those components from the state

vector z calculated along the arm.)

By using the DH parameters from Section 3.1, an algorithm can be used to form the

transfer matrix of the system. This algorithm is required because the traditional DH para-

meters use di�erent coordinate systems than those required by the TMM. If dh.x represents

the array of parameters starting with the index 0, then the algorithm is:

function GetSystemMatrix

Usys = I12x12

for link=1 to NumberOfLinks do

if dh.a(link)==0 then

Usys = Rx(dh.α(link))Usys

else

Usys = Ry(π2 )Usys

end if

Usys = Rz(link ⋅ π2 )Usys

Usys = GetBeamTM(link) ⋅Usys

Usys = GetRigidBodyTM(link) ⋅Usys

Usys = Rz(link ⋅ (−π2 ))Usys

if dh.a(link)!=0 then

Usys = Rz(dh.f(link))Usys
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Usys = Ry(−π2 )Usys

end if

Usys = Rz(dh.θ(link + 1))Usys

end for

return Usys

end function

This algorithm requires that �exible beams are located either i) between joints or ii)

between the base and the joint or iii) a joint and the tip or the arm. The rigid attachments

are An illustration of how the coordinate frames for TMM are oriented is shown in Figure

11. The frames for the robot are given to each link in the system. Note that some links can

have zero length and are only included to make the DH convention work. zi axis is always

pointed towards the direction of the link. These coordinate frames are di�erent than those

used in the DH notation in Figure 10, where the zi axis was always in the direction of the

joint.

Figure 11: Coordinate Frames for TMM analysis
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Table 1: Comparison with Castri et al [42]

2 Link 3 Link 4 Link
Castri TMM %dif. Castri TMM %dif. Castri TMM %dif.

ω1 6.687 6.687 0 3.218 3.217 0.03 2.034 2.033 0.05
ω2 30.371 30.374 0.01 17.168 17.170 0.01 11.567 11.568 0.01
ω3 124.25 124.27 0.02 33.815 33.818 0.01 21.060 21.062 0.01

3.2.5 Model Veri�cation

In order to verify the spatial TMM technique, comparisons with previous work, FEA

modeling, and hardware testing were performed. The previous studies were for planar n-link

structures. Comparisons were made with previous work by Castri et al. [42] who veri�ed

his work with FEA analysis with planar structures of 2, 3 and 4 links. The results are

compared in Table 1, where 2 link represents the 2 link structure presented in their paper at

con�guration θ2 = 45○; 3 Link represents the 3 link structure with θ2 = −30○, θ3 = 60○; 4 link

represents the 4 link structure in con�guration θ2 = 45○,θ2 = −60○, θ3 = 90○, wi represents

the ith natural frequency. As can be seen from Table 1 the results match well . The small

error could be attributed to the root solving algorithms or the numerical precision of terms,

such as π used in the calculations.

Comparisons were also made with Milford et al. [97] who veri�ed their work with expe-

riments using a 2-link planar robot arm at various elbow joint displacements. The results

obtained in [97] are shown in Figure 12. The results obtained with the TMM technique are

shown in 13. Since the y-axis is in the logarithmic scale it is clear that the two methods

produce equivalent results. Researchers in [42] and [97] used methods that were similar in

principle (solving for the constants in the partial di�erential equations in a matrix fashion).

However, unlike the method proposed in this chapter, their methods were limited to the

planar structures.

In a PhD dissertation from Malzahn [89] impact hammer tests were done in one con�-

guration with di�erent tip masses as shown in Figure 14. The modeling in that dissertation

was done using the assumed modes method using clamped-mass boundary conditions. It
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Figure 12: Elbow Angle Dependent Natural Frequencies From [97]
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Figure 13: Elbow Angle Dependent Natural Frequencies From TMM

can be seen that TMM produces results that are much closer to the actual values. The

discrepancy in the second mode could have come from improper clamping. Knowing the
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Figure 14: First (a) and second (b) dominant frequencies determined for varying payloads
from strain measurements on the second (solid, gray) and third link (solid, black). The
averages, minima and maxima are obtained from ten hammer excitation experiments per
payload. Additionally the theoretical values for the �rst two natural frequencies of the
second link (dashed, black) and the �rst natural frequeny of the third link (dashed, gray)
are shown. [89] The natural frequencies obtained with TMM are shown with the blue line.

e�ective sti�ness of the joint controller would have potentially yielded better results.

3.2.6 Experimental Veri�cation of TMM

Validation in the previous section was in planar con�gurations, therefore, experiments

in spatial con�gurations are in order. Figure 15 shows three di�erent test �xtures that were

constructed to show TMM working for di�erent beam sizes and con�gurations. The �xture

parameters are listed in Table 2. ai is the link thickness in the yi direction and bi is the

thickness in the xi direction. For �xtures 2 and 3 the "second" link is of length 0 in order to

do the proper rotations. Two additional con�gurations were tested: Fixture 1 with an added

tipmass (all parameters the same as Fixture 1, except mt = [0.01,0.1323]) and Fixture 2

with two concentrated masses at the end of beams 1 and 2 (all parameters are the same as

Fixture 2, except mt = [0.0125,0,0155,0]).
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Table 2: Fixture Parameters

Fixture 1 Fixture 2 Fixture 3

i 0 1 2 0 1 2 3 4 0 1 2 3 4

dh.θ (rad) - −π2 0 - 0 π
6 - 0 0 - 0 2.32 0 0

dh.d (m) - 0.432 0 - 0.442 0 0 0.3429 - 0.508 0 0 0.406

dh.a (m) 0 0.381 - 0 0 0.3446 0 0 0 0 0.4775 0 -

dh.α (rad) 0 0 - 0 0 π
2 0 0 0 π

2 0.8727 0 -

a (m) - 0.032 0.024 - 0.0095 - 0.0063 0.0063 - 0.0318 - 0.019 0.0024

b (m) - 0.0381 0.0254 - 0.0063 - 0.0063 0.0063 - 0.0032 - 0.0024 0.019

ρ kg/m3 - 2700 2700 - 2700 - 2700 2700 - 2700 - 2700 2700

G (GPa) - 26.3 26.3 - 26.3 - 26.3 26.3 - 26.3 - 26.3 26.3

E (GPa) - 69.0 69.0 - 69.0 - 69.0 69.0 - 69.0 - 69.0 69.0

mt (kg) - 0.01 0 - 0.001 - 0.004 0 - 0.01 - 0.005 0

Ixt (kgm
2) - 0 0 - 0 - 0 0 - 0 - 0 0

Iyt (kgm
2) - 0 0 - 0 - 0 0 - 0 - 0 0

Izt (kgm
2) - 0 0 - 0 - 0 0 - 0 - 0 0

Note that the tipmasses also include the material added by the welds. These �xtures

were placed in a shaker. Laser Doppler velocimeters (LDV) were directed at re�ective tape

on the �xtures. The shaker excited the �xtures with white-noise displacement at the clamp.

Frequency response functions (FRF) from the accelerometer at the base to the displacements

on the beam were obtained by averaging test data from 10 trials using Hanning windowing.

National Instruments Signal Express software was used to run the experiments and calculate

the FRFs.

Figure 16 shows the experimentally obtained FRFs. The peaks in FRF correspond to

the natural frequencies of the modes. The natural frequencies can be found from the FRFs

with 0.01 Hz accuracy. The y axes are in log scale. The FEA program used in this study

to compare with TMM was COMSOL. The structures were modeled as they appear in real

world and not as beam elements, to investigate weather welds and tip mass geometry has a
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(a) Fixture 1 With Tip Masses (b) Fixture 2

(c) Fixture 3

Figure 15: Fixtures for TMM Veri�cation

signi�cant e�ect on the results. Table 3 shows the natural frequencies obtained from Fixture

1 testing with experimental results from Figure 16a along with FEA and TMM results. All

results match up fairly well, except ω4 did not show up on the FRF because that mode was

perpendicular to the LDV and the �xture was too thin to measure it from the side. Table

4 shows the results when the tipmass was attached at the end of �xture 1. The results still

match up very well and there was no completely orthogonal mode to the LDV measurement
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Figure 16: Experimental FRFs

direction. As expected the natural frequencies went down with the addition of the mass.

Table 5 shows the results from Fixture 2, with all predictions matching up very closely to the

experimental data. Table 6 show the results when 2 masses we attached to Fixture 2. TMM

and FEA predicted the results very accurately. As expected the natural frequencies went

down very slightly, since the added masses were not big relative to the structure itself. Table
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Table 3: Fixture 1 Natural Frequencies (Hz)

Experiment FEA %error TMM %error

ω1 6.22 6.84 9.97 6.71 7.87
ω2 14.78 15.84 7.17 14.44 2.30
ω3 59.92 63.84 6.54 64.27 7.26
ω4 77.27 76.88
ω5 87.94 91.28 3.85 85.76 2.43

Table 4: Fixture 1 with Tipmass Natural Frequencies (Hz)

Experiment FEA %error TMM %error

ω1 2.88 3.16 9.72 2.72 5.56
ω2 10.24 11.37 11.04 11.03 8.01
ω3 30.80 35.03 13.73 31.09 0.94
ω4 52.01 55.72 7.15 51.63 0.71
ω5 71.42 77.89 9.05 77.64 8.71

Table 5: Fixture 2 Natural Frequencies (Hz)

Experiment FEA %error TMM %error

ω1 6.19 6.15 0.65 5.96 3.71
ω2 8.18 8.20 0.24 8.03 1.83
ω3 18.74 19.39 3.47 18.16 3.09
ω4 19.25 19.76 2.65 19.28 0.16
ω5 37.75 41.78 10.68 37.90 0.40

Table 6: Fixture 2 With 2 Mass Loads Natural Frequencies (Hz)

Experiment FEA %error TMM %error

ω1 5.84 6.09 4.28 5.50 5.82
ω2 7.86 8.126 3.43 7.643 2.80
ω3 17.47 17.18 1.65 16.78 3.94
ω4 18.62 18.63 0.11 19.09 2.58
ω5 33.58 35.80 6.61 33.60 0.06

7 show the natural frequencies for Fixture 3, both FEA and TMM predicted the natural

frequencies accurately. The FEA and TMM predicted the results with relatively the same

accuracy.
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Table 7: Fixture 3 Nature Frequencies (Hz)

Experiment FEA %error TMM %error

ω1 2.89 2.67 7.61 2.66 7.96
ω2 3.39 3.51 3.54 3.28 3.24
ω3 6.63 6.67 0.60 6.58 0.75
ω4 13.41 14.10 5.15 13.34 0.52
ω5 18.87 18.34 2.81 18.35 2.75

(a) Mode 1 FEA (b) Mode 1 TMM (c) Mode 2 FEA (d) Mode 2 TMM

(e) Mode 3 FEA (f) Mode 3 TMM (g) Mode 4 Fea (h) Mode 4 TMM

(i) Mode 5 FEA (j) Mode 5 TMM

Figure 17: Fixture 2 Mode Shapes

As indicated by the consistent results comparing frequencies, the mode shapes obtained

with the TMM also match very well with the ones obtained from FEA. Figure 17 shows the

mode shapes of Fixture 2 from both FEA and the TMM. The minor di�erences are due to

scaling.
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The models used in FEA were designed to match the actual structure very closely. The

models included material for the welds and fasteners. When doing the TMM analysis there

is some ambiguity in determining where the beams actually start, and what length values

are. One can potentially select those variables to match the experimental data even closer,

but in these experiments the lengths of the beams were measured along the center of each

beam. In addition, the tip-masses were not located precisely at the tip. The added mass for

welds was approximated using CAD software.

3.3 Flexible Serial Arm Dynamics

In this section the dynamical model for a serial �exible robot arm will be derived using

mode shapes that are de�ned for the whole structure. The mode shapes can be conveniently

found with the method described in the previous section, however, other methods such as

FEA could be used as well. The derivation follows similar procedures as found in [7, 152].

However, the major di�erence is that the mode shapes are de�ned for the entire structure,

and the dynamics of the tip attachments, inertia due to motor shafts, and torsional e�ects

are taken into account. The following approximations are used for this derivation: 1) The

vibration in the links can be considered linear (no shear e�ects); 2) the joint position must

be controlled.

3.3.1 Flexible Arm Kinematics

Before the equations of motion can be derived the relationships between the joint angles

and the mass-elements of the serial arm must be found. A point on link i can be related to

the coordinate system �xed to link i − 1 by a transfer matrix Ai. Any point on the serial

arm described in the local coordinate system i can be related to the inertial frame 0 with

the transformation:

0ri = ri = Tiiri, (63)

Ti =
i

∏
j=1

Aj (64)

T0 = I,
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Figure 18: Frame Transformations

xi

yi

zi

zi+1

xi+1
yi+1

0

0

( )
( )

1

i
i

iz
r

s
s

 
 
 
 
 
 



1 ( )

0

0( )

0( )
( )

( )

1

j

x

j

i
m

y

j

zj

i j

w s

w s
r s

w ss z




   
   
   
   
   

  



Figure 19: Coordinates on Link i

where iri is the position vector of the rigid arm in the local i coordinate frame. When

the leading superscript is 0 (0()) it is omitted in the derivations for simplicity. Ai is the

modi�ed homogeneous matrix that ensures the neutral axis always matches the zi direction

of the neutral axis of a the link i. An algorithm on how to calculate Ai will be presented in

a later Section. Figure 18 shows the relationships between the coordinate frames. Matrix

Ti is always in the form of

⎡⎢⎢⎢⎢⎢⎢⎣

Ri3×3 pi3×1

01×3 1

⎤⎥⎥⎥⎥⎥⎥⎦

, where Ri is the rotation of frame i with respect

to the inertial frame and pi is the location of the origin of the ith frame with respect to the

inertial origin.
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Point s on link i with respect to the frame i can be represented by a �nite sum of

separable mode shapes which are products of a time varying amplitudes and kinematically

admissible mode shapes:

iri(s) =
m

∑
j=1

δj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wijx(sz)

wijy(sz)

wijz(sz)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sx

sy

sz

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (65)

where δj is the mode shape amplitude for the jth mode; wijy , w
i
jz
are the de�ections of mode

j on link i in the xi, yi and zi directions; and m is the number of mode to be considered.

These parameters are illustrated in Figure 19

3.3.2 Algorithms for �nding Ai and Ti

An algorithm for �nding the transformation matrices Ai and Ti, that were used throug-

hout this chapter, is presented in this section. The "for loop" cycles through the number of

links and �nds the appropriate transfer matrices based on the DH parameters. The reason

the standard homogeneous transfer matrix generally used in serial robot arms is not used,

is so that the �exible co-ordinates can be consistent, the local link frames must always have

the z axis pointed in the direction of the normal axis in the link. This was illustrated in

Figures 10 and 11. Note that this algorithm is very similar to the one used for the TMM

analysis.

function Find Ai Ti

Ai = I3×3

Ti = I3×3

Rtot = I3×3

for link=1 to NumberOfLinks do

if dh.a(link)==0 then

Rtot = Rtot ⋅Rx(dh.α(link))T

else

Rtot = Rtot ⋅Ry(π2 )
T
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end if

RTot = RTot ⋅Rz(link ⋅ π2 )
T

if (link>1) then

Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RTot

0

0

linkLengthi−1

01×3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ti = Ti−1Ai

else

Ai =

⎡⎢⎢⎢⎢⎢⎢⎣

RTot 03×1

01×3 1

⎤⎥⎥⎥⎥⎥⎥⎦
Ti = Ai

end if

RTot = I3×3

RTot = RTot ⋅Rz(link ⋅ (−π2 ))
T

if dh.a(link)!=0 then

RTot = RTot ⋅Rz(dh.α(link))T

RTot = RTot ⋅Ry(−π2 )
T

end if

RTot = RTot ⋅Rz(dh.θ(link + 1))T

end for

return Ai Ti

end function

All of the rotation matrices are of standard dimension (3 × 3). Note that the A1 and T1 do

not contain the joint variable q1. This is because the robot might have links before the �rst

actuator. For derivatives ∂Ai
∂qi

the joint angle vector is de�ned as q = [0, q1, q2, ..., qn]T . Since

the derivative ∂A1

∂q0
= 0, A1 and T1 do not contain any joint variables q, but they are required

for generality of the equations and to �nd the absolute positions of each point of the robot

arm.
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3.3.3 Kinetic energy

Next the expression for kinetic energy for the serial �exible arm will be derived. Kinetic

energy of link i can be expressed as

KEi =KEilink +KEimot +KEitor , (66)

where KEilink is the kinetic energy that is from motion of of the links ; KEimot is the kinetic

energy that is associated with the shaft of the motor; KEitor is the kinetic energy associated

with only the torsion of the link. The kinetic energy of a rotational joint is expressed as:

KEmoti = Jimot q̇2i , (67)

where Jimot is the polar moment of inertia of the shaft of the motor after gearing, and q̇i

is the rotational speed of the output shaft after the gearbox. Analogous expressions can be

derived for prismatic joints. The translational kinetic energy for a link i is:

KEilink =
1

2
∫
Bi
Tr (dri

dt

drTi
dt

)dm (68)

where Tr() represents the trace operator, dm is the di�erential mass element, and the

integration is taken over the entire link Bi, that includes tip attachments. Often in derivation

of kinetic energy, the order of the vectors is reversed and therefore the trace operator is not

needed. However, it is essential for this derivation, as will become evident in the following

steps. Similarly the torsional kinetic energy for a link is:

KEitor =
1

2
∫
li

⎛
⎝
dΘiz

T

dt

dΘiz
dt

⎞
⎠
dz, (69)

where Ji is the polar moment of inertia of link i, Θiz = ∑mj=1 δjθiz is the torsion of link i. Note

that this energy term only takes into account the local torsional energy, not the de�ection

caused by torsion of other parts of the arm. The other kinetic energy due to torsion is

already included in (68) because the mode shapes are de�ned over the whole structure.

The vector velocity of ri can be calculated in the following form:

dri
dt

= Ṫiiri + Tiiṙi (70)
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Therefore (68) becomes:

1

2
∫
Bi
Tr(ṪiiriirTi Ṫ Ti + 2Ṫi

iri
iṙTi T

T
i + TiiṙiiṙTi T Ti )dm (71)

Hence the total kinetic energy is the summation of kinetic energies over all the links:

KE =
n

∑
i=1
KEi =

n

∑
i=1

(Tr(ṪiB3iṪ
T
i + 2ṪiB2iT

T
i + TiB1iT

T
i ) + Toi + Jimot q̇i2) (72)

where,

Toi =
1

2

m

∑
j=1

m

∑
k=1

δ̇j δ̇k (∫
li
ρiJi(θijz)

T θikzdz + Jtiθ
i
jz(li)θ

i
kz(li)) =

1

2

m

∑
j=1

m

∑
k=1

δ̇j δ̇kPijk

(73)

B1i =
m

∑
j=1

m

∑
k=1

δ̇j δ̇k(Cikj +C∗
ijk) (74)

Cijk =
1

2
∫
Bli

[wijx ,w
i
jy ,w

i
jz ,0]

T [wikx ,w
i
ky ,w

i
ky ,0]dm (75)

C∗
ijk =

1

2
mi[wijx(li),w

i
jy(li),w

i
jz(li),0]

T [wikx(li),w
i
ky(li),w

i
ky(li),0]

+1

2
Itxi [w

i
jx

′(li),0,0,0]T [wikx
′(li),0,0,0]

+1

2
Ityi [0,w

i
jy

′(li),0,0]T [0,wiky
′(li),0,0]

(76)

B2i =
m

∑
j=1

δ̇j(Cij +C∗
ij) +

m

∑
j=1

m

∑
k=1

δ̇jδk(Cijk +C∗
ijk) =

=
m

∑
j=1

δ̇j (Cij +C∗
ij +

m

∑
k=1

δk (Cijk +C∗
ijk)) =

m

∑
j=1

δ̇jDij

(77)

Cij =
1

2
∫
Bli

[xi, yi, zi,1]T [wijx ,w
i
jy ,w

i
jz ,0]dm (78)

C∗
ij =

1

2
mi[0,0, li,1]T [wijx(li),w

i
jy(li),w

i
jz(li),0] (79)

B3i = (Ci +C∗
i +

m

∑
j=1

δj([Cij +CTij] + [C∗
ij +C∗T

ij])

+
m

∑
k=1

m

∑
j=1

δkδj(Cijk +C∗
ijk) = Fi

(80)

Ci =
1

2
∫
Bli

[xi, yi, zi,1]T [xi, yi, zi,1]dm (81)
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C∗
i =

1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Itxi 0 0 0

0 Ityi 0 0

0 0 mil
2
i mili

0 0 mili mi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(82)

In the formulas above xi, yi and zi represent all the points on the links in the local x y and

z coordinates; li is the length of link i; Bi represents the entire link, while Bli represents

the link without the tip attachments; ρi is the density of link i; Itxi and Itxi are the mass

moments of inertias for the tip attachments on link i in the x and y directions, respectively;

Jti is the moment of inertia of the tip attachment in the zi direction; mi is the mass of

the tip-attachments on link i. The C∗ terms are analogous to C terms, except they are

calculated at the end of the link. C∗
i is written out explicitly to show the inertias of the

rigid attachment. The di�erential mass dm can be expressed as dm = ρidV = ρidxdydz. The

calculations are simpli�ed when the link is symmetric about the local z axis in the local x

and y directions. In such cases, all products of integrals with xi and yi are 0; except with

themselves, i.e xi ⋅ xTi .

It is well known that kinetic energy can be expressed by:

KE = 1

2
ẊTMẊ, (83)

where Ẋij = [q̇T δ̇T ]T is the velocity vector including all generalized velocities. In order to

equate (72) to (83), Ṫ must be derived by starting with

Ti =
i

∏
n=1

An(qn(t)), (84)

where An ∈ R4×4 and qn ∈ R1. Therefore,

Ṫi =
i

∑
h=1

T̆h−1Uh
hT̃iq̇h, (85)

where,

Uh =
∂Ah
∂qh

, (86)

T̆h−1 =
h−1
∏
j=1

Aj (87)
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hT̃i =
i

∏
j=h+1

Aj (88)

The kinetic energy for the system can, therefore, be represented as:

KE = 1

2

n

∑
i=1

⎧⎪⎪⎨⎪⎪⎩
Tr(

i

∑
h=1

(T̆h−1UhhT̃ i) q̇hFi (
i

∑
α=1

(T̆α−1UααT̃i))
T

q̇α )+

Tr(2
i

∑
h=1

T̆h−1Uh
hT̃iq̇h

m

∑
j=1

δ̇jDijT
T
i )+

Tr(Ti
m

∑
j=1

m

∑
k=1

δ̇j δ̇k(Cikj +C∗
ijk)T Ti ) +

m

∑
j=1

m

∑
k=1

δ̇j δ̇kPijk + Jimotq2i }

(89)

The trace and sum operations are exchanged and terms are collected. The inertia coef-

�cients in (89) can be divided into 3 groups: the joint angles q̇αq̇h, joint angle and mode

shape amplitude q̇hδ̇j , and mode shape amplitudes δ̇j δ̇k.

Separating similar terms in (89) enables the joint angles q̇αq̇h extracted as:

1

2

n

∑
i=1

i

∑
h=1

i

∑
α=1

{Tr[T̆h−1Uhh T̃iFi (T̆α−1UααT̃i)
T ] + Jimotη} q̇αq̇h, (90)

where,

η =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if α = h

0 otherwise

The rigid-�exible coupling terms q̇hδ̇j from (89) appear as:

n

∑
i=1

i

∑
h=1

m

∑
j=1

Tr(T̆h−1UhhT̃iDijT
T
i )q̇hδ̇j (91)

All terms contain terms δ̇j δ̇k and can be expressed as:

1

2

n

∑
i=1

m

∑
j=1

m

∑
k=1

(Tr(Ti(Cikj +C∗
ijk)T Ti ) + Pijk) δ̇j δ̇k (92)

We can further simplify (92) by using the fact that Tr(A) = Tr(AT ) and T is of the form
⎡⎢⎢⎢⎢⎢⎢⎣

Ri3×3 pi3×1

01×3 1

⎤⎥⎥⎥⎥⎥⎥⎦

and (Cikj +C∗
ijk) is of the form

⎡⎢⎢⎢⎢⎢⎢⎣

A3×3 03×1

01×3 0

⎤⎥⎥⎥⎥⎥⎥⎦

. We can write out the following

property remembering that R−1 = RT :

Tr(TBT T ) = Tr

⎡⎢⎢⎢⎢⎢⎢⎣

RART 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦

= Tr(A) (93)
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Therefore, (92) becomes:

1

2

m

∑
j=1

m

∑
k=1

n

∑
i=1

(∫
li
(ρiAiwij

T
wik + ρiJiθijz

T
θikz)dz +miw

i
j(li)wik(li) + Jtiθij(li)θik(li)+

Itxiw
′i
jy(li)w

′i
ky(li) + Ityiw

′i
jx(li)w

′i
kx(li))δ̇j δ̇k =

1

2

m

∑
j=1

m

∑
k=1

n

∑
i=1
Nijkδ̇j δ̇k,

(94)

where,

wij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wijx(z)

wijy(z)

wijz(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(95)

This is the same form for the the kinetic energy due to �exible states as derived in Appendix

B using more traditional modeling methods.

3.3.4 Potential Energy

The system can have potential energy from two sources: gravity and link deformation.

In general, joint elasticity should be added to the sources for potential energy but is outside

the main scope of this work.

Gravitational potential energy can be calculated by:

dPEgi = −gTTiiridm, (96)

where g is the gravity vector in the local link coordinates g = [gx, gy, gz,0]T . The total

gravitational potential energy is:

PEg = −gT
n

∑
i=1
Ti(Mihmi +Mtihmti +

m

∑
k=1

δkε
i
k), (97)

where Mi is the total mass of the link, hmi = [0,0, hzi,1]T a vecotr to the center of the

gravity from the origin of frame i, Mti is mass at the end of link i (either the mass of a

joint or the mass of the end-e�ector), hmti = [0,0, li,1]T a vector to the center of the gravity

from the origin of frame i and εik = ∫Bi[w
i
kx
,wiky ,w

i
kz
,0]Tdm which is the de�ection from the

undeformed line on link i

The potential energy due to link deformations can be given by:

PEe =
n

∑
i=1

{1

2
∫
li
EiIyyi(

∂2W i
x

∂z2
)
2
dz + 1

2
∫
li
EIxxi(

∂2W i
y

∂z2
)
2
dz + 1

2
∫
li
GiJi(

∂Θi

∂z
)
2
dz} (98)
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Taking into account that W i
x = ∑mj=1 δjwijx , W

i
y = ∑mj=1 δjwijy and Θi = ∑mj=1 δjθijz equation

(98) can be further broken down to:

Iyyi(wijy
′′)Twiky

′′ +Ei

PEe =
1

2

n

∑
i=1

m

∑
j=1

m

∑
k=1

(∫
li
(EiIyyi(w

i
jy

′′)Twiky
′′ +EiIxxi(wijy

′′)Twiky
′′ +GiJi(θizj

′)T θizk
′
dz)δjδk,

(99)

where, ()′ ≡ ∂
∂z (), Ixxi , Iyyi are the second moments of area in the xi and yi directions,

respectively; Ei is the Young's modulus of link i and Gi is the shear modulus of link i.

Equations (97) and (99) are summed to form the total potential energy for the system:

PE = PEg + PEe (100)

3.3.5 Equations of Motion

Using the energy expressions derived in the previous section, the equation of motion are

derived using Lagrange's Equation:

d

dt
(∂KE
∂ẋi

) − ∂KE
∂xi

+ ∂PE
∂xi

= Qi, (101)

Equations (90)-(92) are used to �nd the inertia matrix of the system. In the case of

linear vibrations it can be assumed that the e�ect of de�ection variables on the intertia

matrix is negligible (δ = 0). The inertia matrix can be partitioned in the following way:

M =
⎛
⎜⎜
⎝

Mqq(q) Mqδ(q)

MT
qδ(q) Mδδ(q)

⎞
⎟⎟
⎠
, (102)

where the elements of Mqq are de�ned as:

Mqqhα =
n

∑
i=1
TR[T̆h−1Uhh T̃iFi (T̆α−1UααT̃i)

T ] + Jimotη, (103)

Similarly the elements of Mqδ are:

Mqδhj =
n

∑
i=1
TR(T̆h−1Uhh T̃iDijT

T
i ), (104)

and, �nally the elements of Mδδ

Mδδkj =
n

∑
i=1

n

∑
i=1
Nikj (105)
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The dimensions of the matrices are as follows:

h,α = 1,2...n

k, j = 1,2...m

Per [135] the matrix that contains the Coriolis and centrifugal terms can be de�ned to be

C(X, Ẋ)Ẋ where C(X, Ẋ) is the matrix of Christo�el symbols of the �rst kind and can be

calculated as:

C(X, Ẋ)ij =
1

2

n+m
∑
k=1

(∂Mij

∂Xk
+ ∂Mik

∂Xj
− ∂Mkj

∂Xi
) Ẋk (106)

where i = 1,2...(n+m). Note that although δ is assumed to be negligible, its derivatives can

have a big in�uence and therefore must be included in the derivation.

Taking derivatives of the potential energy (100) yields the gravity terms and the sti�ness

matrix. The gravity terms can be represented as:

gqj = −gT
n

∑
i=j+1

∂Ti
∂qj

(Mihmi +Mtihmti +
m

∑
k=1

δkε
i
k), (107)

where j = 1,2...n. The summation index starts from j+1 because q1 does not appear until

transfer matrix A2 in Ti = A1...An

gδj = −gT
n

∑
i=1
Tiε

i
j , (108)

where j = 1,2...m. The sti�ness matrix Kff can be found in the following way:

Kδδjk =
n

∑
i=1

(∫
li
(EiIyyi(w

i
jy

′′)Twiky
′′ +EiIxxi(wijy

′′)Twiky
′′ +GiJi(θizj

′)T θizk
′
dz) (109)

The only sti�ness in the system is due to the link deformations. The generalized force comes

from virtual work done by the actuator forces:

δWi = τiδqi (110)

Finally, using equations (102), (106), (107), 109, and (110) yields the full equation of

motion for the system:

M(X)Ẍ +C(X, Ẋ)Ẋ +KX +G(X) = Q, (111)
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In general, Q =
⎛
⎜⎜
⎝

Γ

0

⎞
⎟⎟
⎠
and Γ = τ , where τ is the vector of joint torques. The expanded

equations of motion for a n-link �exible serial manipulator with m signi�cant modes are as

follows:

⎛
⎜⎜
⎝

Mqq(q) Mqδ(q)

MT
qδ(q) Mδδ(q)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q̈

δ̈

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

Cr(q, q̇, δ̇)

Cf(q, q̇, δ̇)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q̇

δ̇

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

gr(q)

gf(q)

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0 0

0 K(q)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q

δ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

Γ

0

⎞
⎟⎟
⎠
, (112)

where, M is the (n +m) x (n +m) generalized mass matrix, h is the (n +m) vector matrix

containing the Coriolis and centrifugal terms and the terms accounting for interaction of

joint variables and their rates and �exible variables and their rates, C is the (n +N) vector

of gravitational terms, K is the (m×m) �exural sti�ness matrix, Γ is the n-vector of torques

applied by the motors.

Note that the di�erential equations governing the �exible and rigid states are fully cou-

pled. In addition, the only input to the system Γ goes directly into the equation governing

the rigid states q, while the �exible states δ are excited only through the coupling terms.

Modal damping can easily be added to the equation.

Note that the �exible sub-system is only valid for a speci�c con�guration of the mani-

pulator, therefore the model needs to be constantly recomputed to get the correct response

of the system.

3.3.6 Model Continuity

Because the model derived in the previous section is dependent on the system mode-

shapes (that by de�nition can be of an arbitrary magnitude) that vary based on the joint

con�guration of arm, care must be taken to ensure that the model is continuous over time.

In general, the eigenvalue problem for the �exible states can be given in the form:

(Kδδ(q) − ω2Mδδ(q))φ(q) = 0 (113)

This problem was examined by Bruls [20] where it was shown that if the modes are norma-

lized with the conditions:

Mδδ(q) = I (114)
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then the model is continuously smooth in the con�guration space. Relationship (114)is

always solvable because the modes are orthogonal to one another by de�nition when using

exact system-wide modes. This will also lead to:

Kδδ = Ω2(q), (115)

where Ω(q) is the diagonal matrix of the modal natural frequencies. The structure of the

model also matches the one found in [20].

For a selected eigenvalue ωi and the associated mode φi, (113) can be di�erentiated with

respect to a joint coordinate qj to show the continuous nature of the modes and natural

frequencies.

(∂K
∂qj
− ω2

i

∂M

∂qj
− ω2

i

∂qj
)φi + (K − ω2

iM) φi
∂qj

= 0 (116)

Pre-multiplying (116) with φTi eliminates the second terms since it is in the kernel of

(K − ω2
iM), and gives the term ω2

i

∂qj
, while taking into account that M = I:

ω2
i

∂qj
= φTi (∂K

∂qj
− ω2

i

∂M

∂qj
)φi (117)

Because the right side of (117) is well de�ned, it can be concluded that ωi exhibits smooth

variations with respect to the change of qj . φi in general can have have an arbitrary mag-

nitude because it is the kernel of (K −ω2
iM). However, the normalization condition forbids

it. Therefore it can be concluded that the proposed model is well-de�ned, as long as the

necessary conditions are taken for the selection and normalization of the mode-shapes. A

more thorough analysis of the smooth variation of modes can be found in [20]. Therefore,

the equations of motion (112) can be rewritten as:

⎛
⎜⎜
⎝

Mqq(q) Mqδ(q)

MT
qδ(q) I

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q̈

δ̈

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

Cr(q, q̇, δ̇)

Cf(q, q̇, δ̇)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q̇

δ̇

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

gr(q)

gf(q)

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0 0

0 Kδδ(q)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q

δ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

I

0

⎞
⎟⎟
⎠
τ, (118)

3.3.6.1 Changing mode order

The changing con�guration of the serial structure could lead to conditions where vari-

ation of natural frequencies wr and wk cause their order to switch or can even lead to a
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Figure 20: Crossing Natural Frequencies

double root as, is illustrated in Figure 20. The Modal Assurance Criterion (MAC) can be

used to track the progression of these modes from one con�guration to the next [104]. In

general, the MAC value between mode 1 and mode 2 is a number between 0 and 1, where

0 indicates no correlation between the modes, and 1 is a perfect match between the modes.

For one dimensional mode shapes φi, the MAC condition is:
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For mode shapes de�ned in 3D space, over multiple links, the MAC condition can be altered

to take the form:

MAC1,2 =
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The MAC value, however, does not tell us if the computed mode shape has the correct

sign value.

A simple cantilever beam is used to illustrate this problem in Figure 21, where both φ

and φ̄ satisfy the normalization and the MAC value criteria. Hence, for mode shapes to be

continuous, they need to be re-calculated with the following expression:

Mode1 =Mode1 × sign(
n

∑
i=0

(wi1xw
i
2x

T +wi1yw
i
2y

T +wi1zw
i
2z

T )) (121)
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Figure 21: First Mode Shape for a Simple Cantilever Beam

This expression makes sure that the mode shapes are always on the same "side" (above or

below in the case of Figure 21) of the links.

When the system exhibits a double root, any linear combination of the two mode shapes

αφr + βφk, where α and β are linear parameters, is a valid mode shape mathematically, as

long as they are orthogonal to one another. Therefore, for computational simplicity, it is

advised that the double root not be used to calculate the mode shapes, however, to preserve

continuity, they can be approximated based on the ones in the direct vicinity (θ+∆θi, where

∆θ is su�ciently small) of the double root.

3.3.6.2 Strategies for Computation

Recalculating the system natural frequencies and mode shapes for the full system equa-

tions of motion (118) during execution is computationally taxing. However, one can take

advantage of the fact that all of the modes can be computed a-priori based on the joint

con�guration space, if all of the end-e�ector loads are known. Two strategies for generating

the terms in (118) include: 1) spline �t, where all of the terms in the matrices are �t to a

polynomial based on the joint angles q; and 2) piecewise �t where the model is discretized

in the con�gurations space. An illustration of the piecewise �t method is shown in Figure

22 where the terms that are dependent on the mode shapes are chosen based on the current

joint con�guration (qi and qj in this case). The values ∆q must be chosen small enough so

that the model can still be considered to be varying smoothly.
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Figure 22: Piecewise Fit for Computing the Equations of Motion

Figure 23: 3 Joint 2 Link Robot With Coordinate Frames in the DH Convention

3.3.7 Case Study

In order to illustrate the e�ectiveness of this model, simulations were carried out, and

were then compared to results obtained with commercial FEA software (Comsol in this

case.) The robot arm used in the simulations had 2 �exible links and 3 joints. Figure 23

shows the robot arm in the con�guration where all joint angles q are 0. All of the parameters

for the robot arm are shown in Table 8, where dh.x are the DH parameters presented in
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Figure 24: 3 Joint 2 Link Robot Arm With C-ordinate Frames in the Local Link Convention
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Figure 25: Varying Natural Frequencies of The Robot Arm Due to Change in q3

Section 3.1, ai is the link thickness in the local yi direction, and bi is the thickness in the

local xi direction, ρ is the density of the links, G is the shear modulus, E is the Young's

modulus, mt is the mass at the end of the links, and the I terms are the moments of inertia

of the mass at the end of each link. The local link coordinate frames are shown in Figure
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Figure 26: Varying Natural Frequencies of The Robot Arm Changing Continuously

24. Note that two �ctitious links of zero length have been used to make the desired robot

con�guration obtainable with the DH parameters. Figure 25 shows the natural frequencies

with respect to the elbow angle q3 calculated every 1.5○. There is a �at part in the graph

at 90○ where link 2 coincides with link 1 and there are numerous double roots that are

approximated based on the modes next to 90○. Notice that there are large variation in the

structural frequencies based on q3. It can be observed that in numerous con�gurations the

modes cross each other in the mode order, however, it is not intuitively clear which line the

modes actually follow. Figure 26 shows the modes when the modi�ed MAC value algorithm

has been used to track the modes, as was described in Section 3.3.6.1. As can bee seen in

the �gure, the frequencies change smoothly with respect to q3.

3.3.7.1 Simulations

The simulations were carried out such that the joint angles q followed a prescribed

trajectory, i.e, perfect tracking of the joint trajectories. The torques that would have been

needed to carry out such a motion was calculated from the �rst row of (118). The �exible

variables were calculated from the second row of (118). All of the moves performed in this
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Table 8: Robot Parameters

i 0 1 2 3 4
dh.θ (rad) - q1 q2 q3 0
dh.d (m) - 0 0 0 1
dh.a (m) 0 0 1 0 -
dh.α (rad) 0 −π

2
0 −π

2
-

a (m) - 0 0 0.005 0.005
b (m) - 0 0 0.007 0.007
ρ kg/m3 - 0 0 2700 2700
G (GPa) - 0 0 26.9 26.9
E (GPa) - 0 0 69.0 69.0
mt (kg) - 0 0 0 0
Ixt (kgm2) - 0 0 0 0
Iyt (kgm2) - 0 0 0 0
Izt (kgm2) - 0 0 0 0

Table 9: Joint Trajectories for Veri�cation

q10 q1f q20 q2f q30 q3f
Move 1 0 -1 0 -1 0 -1
Move 2 0 0 0 -1 0 -1
Move 3 0 -π 0 0 0 0

study used bang-bang acceleration pro�les which leads to a "S-curve" in the positions as

illustrated in Figure 27. The positive acceleration lasts for 1 second followed by a negative

acceleration for the same time duration. Five signi�cant modes were calculated in all of

the cases, although in most cases two or three modes would have been enough because

the amplitudes for the higher modes were negligible. Gravity was neglected in all of the

simulations. The three moves shown in Table 9 describe the joint trajectories used for

simulations. qi0 represents the initial angle of joint i in rad and qif represents the �nal angle

of joint i for the move.

During move 1, when all joints move from 0 to −1 rad with a 2 second move time. Results

from simulating this move are shown in 28. The δ variables shown are the �exible variables

used in (118). The �rst and second modes had the biggest e�ect on the structure. Figure

29 shows the location of the end-e�ector compared to results obtained from FEA program
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Figure 28: Flexible Variables for Move 1

Comsol. It is clear that the proposed model produces results that are almost identical to the

FEA software. Note that because all of the joints are moving the �exible subsystem exhibits

variable mode shapes. The torques that are required to produce that move based on the
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Figure 29: Tip Displacement Compared to FEA for Move 1
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Figure 30: Torques compared to FEA for Move 1

FEA model and the proposed model are shown in Figure 30. There are minor di�erences in

phase, but the magnitude of the torques remains very close throughout the move.
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Figure 31: Tip Displacement Compared to FEA for Move 2
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Figure 32: Tip Displacement Compared to FEA for Move 3

Move 2 is de�ned by moving joints 2 and 3 from 0 to π in 2 seconds, while keeping joint

1 locked. This move corresponds to a purely planar trajectory; however because joint 3 is

moving the mode shapes of the system change with the system con�guration. Figure 31
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shows the results obtained from the proposed model compared to the FEA model. Similarly

to move 1 the displacements are almost indistinguishable when comparing the two modeling

methods. The Z co-oridinate is 0 since the move is purely planar.

Move 3 is de�ned by having joint 1 move from 0 to π in 2 seconds, while keeping joints 2

and 3 locked. This move corresponds to the con�guration shown in Figure 23 being rotated

around the Z axis. Figure 32 shows the tip displacement based on the proposed model and

the FEA simulation. The response from the TMM based model is very close to the FEA

generated one During this movement the terms in (118) that depend on mode shapes do not

need to be recalculated since the mode shapes of the system do not change with the motion

of q1.

These results are remarkable because the responses from the proposed model and the

commercial FEA simulation are almost identical, yet the basis for calculation each of them

are vastly di�erent. The Comsol simulations took an average of 4 minutes to compute at

10 ms sampling rate. While the TMM based model that was implemented in Simulink,

completed the same simulations in less that 2 seconds with a 1 ms sampling rate. This

implies that the proposed model is suitable for real time implementations without losing

�delity, unlike the current FEA models.

3.3.8 Comparison with other AMM modeling techniques

The major bene�t of modeling serial-elastic actuators with the methods described in

the previous section is that the number of state variables will be less than with previous

works, for example [57,87,134,152]. The bene�t comes from the fact that we a given mode

shape and its modal amplitude for the entire n-link structure and, therefore, the number

of control variables is n − 1 +m, where n is the number of links, and m is the number of

signi�cant modes. When using traditional approaches the number of states is n−1+m ⋅n ⋅d,

where n is the number of links, m is the number of signi�cant modes per link and d is

the number of relevant compliant directions. For example, a 4 link robot with 2 signi�cant

modes, 2 �exural directions of interest, and one torsional de�ection, then the number of

state variables based on the TMM based approach is 3 + 2 = 5. Previous methods would
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typically have 3 + 2 ⋅ 4 ⋅ 3 = 27 state variables.

The downside of this proposed method is that the entire model needs to be recalculated

for every robot con�guration. Fortunately, this can be done o�-line. Depending on the

boundary conditions used by the traditional methods the model may or may not have to

be recalculated. In previously reported experiments, researchers have used one set of mode

shapes for the entire task-space, while claiming that the results were good enough to damp

out the oscillations [40,90,136].

An illustration of why the TMM approach is in some ways superior to the traditional

methods can be achieved by comparing the mode shapes and the natural frequencies they

produce. Consider a two link serial arm with an angle of 2.75rad between the links is. The

lengths of the links are 1 and 1.5 m. There is a tip mass of 1 kg added to the end of the second

link. The �exural rigidity used is 10.7813 Nm2. Only 1D �exure is considered. The natural

frequencies obtained from TMM are compared to FEA and the other boundary conditions

used by some researchers in the past. The derivation on how to obtain natural frequencies

from the "traditional" approach to modeling �exible robot arms is shown in Appendix C.

The results are shown in Table 10. It can be seen that there are serious shortcomings when

the full system modes are not taken into account. �C" in the table means clamped, �P"

pinned, �F" free and �M" mass. �C-M" for example refers to the use of clamped boundary

conditions at the start of the link and mass at the distal end. To reiterate, this example was

Table 10: Natural Frequencies for Di�erent BCs

BCs ω1 ω2

TMM 1.3750 16.1550
FEA 1.3610 15.808
C-F 2.5920 14.6689
P-P 32.0045 72.0160
P-F 11.3444 38.0352
C-C 72.4 199.5
C-P 49.9330 112.2779
C-M 2.5884 14.6355

the simplest case where �exure was only in one direction and no torsinal e�ects were taken
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into consideration. It can be seen that it makes more sense to obtain the mode shapes and

natural frequencies with the TMM, rather than with the methods used in the past for serial

�exible robot arms.

3.3.9 Chapter Summary

A systematic approach to �nding natural frequencies and mode-shapes for n-link spatial

serial structures was presented. The model was validated using Finite Element Analysis

and experiments. There was good agreement between the predictions and the experimental

measurements. This method could be used for generating more e�cient models for diverse

applications such as �exible robotics, and characterizing vibrations in solar panel arrays,

and lattice crane structures.

A new low-order dynamical model based on varying mode-shapes for serial �exible robot

arms was presented. The model was veri�ed with commercial FEA software, that produced

results very similar to the proposed method. The main bene�ts of this model are the

systematic approach for derivation and the computation speed compared to other high

�delity models. In the following chapters this model will be used for estimation and control

of �exible serial robot arms.
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Chapter IV

DEVELOPMENT OF A FLEXIBLE SERIAL ARM TESTBED

The literature regarding �exible robots is �lled with modeling techniques and controller

approaches that have never been validated on hardware, as was discussed in Chapter 2. In

order to verify the claimed contributions of dissertation, real-world experiments are in order.

A new multi-link �exible robot test bed was designed and built following inspiration from

robots described in Section 2.4. The following goals were adhered to in the design of the

�exible manipulator arm:

� Motion capability in all spatial coordinates

� Fabrication using "standard" manufacturing equipment

� Recon�gurability of the links on the arm

� Standard communication protocols with all electrical components

� Large rotations that illustrate changing modes and natural frequencies of the system

� The lowest natural frequencies of the �exible arm should be signi�cantly below the

control bandwidth of the motors

The need to use standard manufacturing equipment comes from the fact that having parts

done professionally adds signi�cant time between design iterations in addition to high costs.

Since this test bed is to be used for research, standard communication protocols are required

so that the user does restrict themselves to a speci�c software or hardware ecosystem, thus

forbidding to use of products from a variety of vendors.

4.1 Physical Design

The robot testbed is shown in Figure 33 in a con�guration with the links pointing roughly

downward. The robot is mounted on overhead horizontal beams with an aluminum bracket.
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Figure 33: 2-Link Flexible Serial Arm Test Bed

The end-e�ector on the robot is made of steel. A close up of the elbow joint can be seen

in Figure 34; the design of the shoulder joint is analogous. The belt on the joints is of type

GT2 to handle torque well and provide su�cient positional accuracy. The shafts have keys

between them and the pullies and link couplers to avoid slipping. Belt tighteners were added

to avoid backlash in the system. The joint housings were manufactured using 3D printing

with PLA material.

The motors chosen for the testbed are from Harmonic Drive. Models RH-14D, RH-

11D, and RH-8D are used for the top motor, shoulder motor, and elbow motor respectively.

These motors were chosen for their high positioning precision, suitable rated speed, and

torque characteristics. The most important speci�cations of the motors are listed in Table
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Figure 34: Elbow Joint

Table 11: Motor Parameters

Top Motor Shoulder Motor Elbow Motor
Gear Reduction 1:50 1:50 1:50
Mass(kg) 0.77 0.5 0.3
Max Momentary Torque (Nm) 14 4.9 2.7
Rated Torque (Nm) 3.2 2.2 1.4
Max Speed (r/min) 100 100 100
Rated Speed (r/min) 60 60 60
Rated Voltage (V ) 24 24 24
Encoder Resolution* (count/r) 1000 1000 1000

*before gearbox

11. All of the characteristics are shown in Appendix D.

The links are comprised of very thin walled tubes made out of 3003 Aluminum. They

have 12.7 mm outer diameter and a wall thickness of 0.41 mm. The length of Link 1 is 0.47

m and Link 2 is 0.48 m. Note that the length of the joints and end e�ector are not included

in lengths of the links, therefore, the "link-length" in the DH parameters are longer than

the values given here.

Figure 35 depicts how the coordinates on the robot are de�ned. Joint q1 allows for

rotation about the vertical axis. q1 is not physically limited (in control software, it is limited

to 0... − 180○). Joints q2 and q3 are limited between 0...180○ and 0... − 180○, respectively,

due to the design of the joints. The dashed lines show the robot con�guration in the limit
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Figure 35: Joint De�nitions (Dashed Lines Show Limiting Con�gurations)

conditions. For the right dashed arm, q2 = 0 and q3 = 0. For the left dashed arm q2 = 180○

and q3 = −180○. The reason for negative magnitudes for the coordinates comes from the

DH convention. The parameters of the the robot used in the Dynamical Model presented

in Chapter 3 are shown in Table 12.

4.1.1 Alternative Design

The use of belt drives on this test bed was not the �rst choice, but rather a practical

solution that achieves good performance. Figure 36 shows a design where the motion is

connected to the link directly. This design requires one coupler that is �xed to the frame

of the motor and a rotating coupler that is connected to the output shaft of the motor and

to the body of the motor through a slim bearing. The bene�ts of this design include no

additional backlash, friction, �exure due to belts. In addition, the mass of the joint would

be concentrated at the axis of the joint.

Numerous attempts were made to achieve the direct-drive design; however suitable mo-

tors could not be obtained. This design is di�cult to manufacture because all tolerances
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Table 12: Robot Parameters

i 0 1 2 3 4
dh.θ (rad) - q1 q2 q3 0
dh.d (m) - 0 0 0 0.48
dh.a (m) 0 0.53 0 0 -
dh.α (rad) 0 −π

2
0 −π

2
-

id (m) - 0 0 0.00127 0.00127
od (m) - 0 0 0.0127 0.0127
ρ kg/m3 - 0 0 2700 2700
G (GPa) - 0 0 26.9 26.9
E (GPa) - 0 0 69.0 69.0
mt (kg) - 0 0 0.53 0.15
Ixt (kgm2) - 0 1120e-6 517e-6 25.2e-6
Iyt (kgm2) - 0 0 72e-6 78.5e-6
Izt (kgm2) - 0 0 520e-6 56.700e-6
Jmot (kgm

2) - 21.6e-3 11.0e-3 3.7e-3 -

Motor

Fixed 
Coupler

Rotating 
Coupler

Slim 
Bearing

Figure 36: Alternative Joint Design

need to be low to mitigate wobble in the links.

4.2 Sensor Selection

While the joint angles and velocities are readily measurable from encoders and tacho-

meters, the �exible states, δ, are not directly measurable and an observer must be used.

The model for the observer is dependent on what type of sensors are used. The following

sections describe the pros and cons for common sensors used in �exure sensing.
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4.2.1 Vision

Direct measurement of link �exure is possible with optical sensing, such as with cameras.

The location of a point for a beam when measured with a camera can be represented as:

x = w(x, t) =
m

∑
j=1

δj(t)wj(x), (122)

where m is the number of signi�cant modes, δj is the amplitude of the jth mode shape and

wj(x) is the mode shape evaluated at the measured point. While �exure with vision based

sensors seems straight forward, there are several cons in the following list:

� Cons

� For fast measurements, equipment is very expensive

� Accurate 3D vision systems require numerous cameras

� Lighting in the room can a�ect measurements

� Markers on the structures can be occluded from the cameras' point of view

� Pros

� Flexure estimation from vision data is straight forward

� Measurements can be very accurate

After considering these design trade o�s, it was concluded that a vision system, is not a

practical sensor solution for sensing �exure, outside of a laboratory environment. Although

the work done in this dissertation is done in a such an environment, the goal is for this work

to be used in a variety of applications.

4.2.2 Strain Gages

Strain gages are by far the most common sensor used in structural vibrations. They

work on a simple principle where the electrical resistance varies in proportion to the amount

of strain in the device. Bonded metallic strain gages that consist of very �ne wire or metallic

foil arranged in a grid pattern are most widely used. It is known that in bending strain on
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a beam can be represented as:

ε = −ad
2W

dx2
, (123)

where, ε is the measured strain, a is the distance from the neutral axis of the beam to the

surface where the strain gage lies and d2W
dx2

is the curvature of the beam, at the location of

the strain gage. Furthermore, using the modal representation, the curvature of the beam

can be represented as:
d2W

dx2
=
m

∑
1

δj(t)w
′′
j (x), (124)

where m is the number of signi�cant modes, δj is the jth modal amplitude and w
′′
j (x) is the

second spatial derivative of the mode shape.

Regardless of the type of strain gage, typical pros and cons include:

� Cons

� Signal conditioning hardware is expensive

� Temperature a�ects readings

� Bonding agent adds local rigidity to beam

� Signals are susceptible to electro magnetic interference (EMI)

� Strain beyond elastic region induces permanent damage

� Pros

� Gages themselves are low cost ( $10+)

� No feed-through from rigid motion

� The measurements are proportional to the modal amplitudes and not their deri-

vatives

� Accurate measurements

Although strain gages have been proven to be an e�ective and accurate sensor for numerous

structural vibrations applications, the list of cons is long. In particular, expensive signal

conditioning is always required and environmental conditions need to be constantly taken

into account.
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4.2.3 Accelerometers

A good alternative to vision and strain gages are accelerometers that can often measure

3 directions in one small sensor. Micro-electromechanical systems (MEMs) accelerometer

technology has advanced signi�cantly in recent years and are included in most small mobile

devices, such as smartphones, tablets, smart-watches, etc. MEMs accelerometers work by

measuring a capacitance change due to the motion of a small proof mass connected to the

outside chassis through springs. Voltage measurement due to the change in the proof mass

location is proportional to the acceleration. In addition, modern MEMs accelerometers often

have on board processors that do signal processing.

For a simple beam, the acceleration of a point can be described as:

ẍ = ẅ(x, t) =
m

∑
j=1

δ̈j(t)w(x), (125)

where m is the number of signi�cant modes, δ̈, is the modal acceleration and w(x) is the

mode shape at the location where the acceleration is measured.

A list of common pros and cons for accelerometers includes:

� Cons

� Direct feed-through from the input to the structure

� Drift in low frequencies

� Pros

� MEMS accelerometers are very low cost

� Sensors are durable to shock and environment changes

� MEMS accelerometers do not generally require extra signal conditioning

� Digital communication protocols can be used to shield data from EMI

Accelerometers were chosen to be used on this test bed, as it is a sensor, that is easy

to incorporate into a control system and its performance does not su�er from environmen-

tal e�ects. Additionally, accelerometers are much easier to physically mount on a surface

compared to strain gages.
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Figure 37: Multifunction Input/Output device PCIe-6363

Figure 38: 12A8 Motor Driver

4.3 System Architecture

The controller for the system is a standard desktop PC running a custom version of Real-

Time Linux by National Instruments. The processor of the computer is a Intel i7-2600K and

it has 4 GB of RAM. The multifunction input/output device inserted into a PCI-e slot on

the computer's motherboard is a PCIe-6363, shown in Figure 371 by National Instruments.

The card has 32 Analog Inputs, 4 Analog Outputs, 48 multifunction digital inputs/outputs,

including 4 counters.

The 12A8 motor drivers, shown in Figure 382, from Advanced-Motion-Control were

used. These drives can operate in either velocity or torque mode. A PWM signal is sent

to the motors. The control input and the current monitoring output use analog signals to

1Image from http://www.ni.com/en-us/support/model.pcie-6363.html
2Image from https://www.a-m-c.com/products/?page=product&cid=root&id=12A8
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Figure 39: Diagram of the System

communicate. The maximum and continuous current limits of the drives are beyond what

the selected motors can draw.

The full system schematic can be seen in Figure 39. In the diagram (A) represents an

analog signal and (D) a digital signal.

4.4 System Natural Frequencies

The �rst four modeled natural frequencies of the test bed are shown in Figure 40. It

can be seen that in the workspace of q3 (180-360○), there is signi�cant changes in modes 3

and 4 and slight change in the frequencies of modes 1 and 2. Figure 41 shows the �rst four

mode shapes at con�guration q3 = 270○. Note that mode 1, shown in Figure 41a, and mode

4, shown in Figure 41d, are very similar to the �rst two mode shapes of a beam if �exure

is only considered in the x3 and x4 direction. Similarly, mode 2, shown in Figure 41b, and

mode 3, shown in Figure 41c, are the �rst two mode shapes for a beam in the y3 and y4

directions.

Figure 42 shows the mode shapes when the angle q3 is set to 350○. The reason why the

natural frequencies of mode 1, whos shape is seen in Figure 42a, and mode 2, whos shape

is seen in Figure 42b, increase slightly is because the "moment arm" to the base of the tip
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Figure 40: Modeled Natural Frequencies of the Test Bed

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

Figure 41: First Four Modes at q3 = 270○

mass and link 2 is lower in con�guration q3 = 350○ compared to q3 = 270○. The physical

reason why the natural frequency form mode 3 drops from 11.6 Hz at q3 = 270○ to 5.6 Hz at

q3 = 350○ is evident by comparing Figures 41c and 42c. In Figure 42c, the robot e�ectively

has much more "torsional" inertia.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 42: First Four Modes at q3 = 350○

4.5 Test Bed Veri�cation

If this test bed is to be con�dently used for veri�cation, its characteristics need to align

with the model derived in Chapter 3. First, the natural frequencies in the robots work space

are evaluated. Second, the response to motion is compared to the responses obtained from

the model.
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Figure 43: Limiting Con�gurations for Impulse Tests

4.5.1 Natural Frequency Tests

Impulse tests were conducted on the test bed by varying angle q3 by 10○ increments from

350○(=-10○) to 270○(=-90○). Figure 43 shows the test bed at those limiting angles. Only a

half of the work space for q3 is tested since the other half is symmetric. The three joints of

the robot were controlled by P controllers with gains of 120, 100, 90 Nm/rad for joints q1,

q2, and q3, respectively. These values were added into the model as joint sti�nesses. Data

was gathered from two three-axis accelerometers at a data acquisition rate of 5000 Hz. Data

points were gathered from the peaks of the Fast Fourier Transform (FFT) graphs calculated

for each acceleration signal. No windowing nor averaging was used in the calculations. For

example, Figure 44 shows the FFT of the accelerometer data at the end e�ector in the link

x direction at q3 = 300○. Four distinct peaks can be found at 2, 2.4, 8, and 9 Hz.

Figure 45 shows the results obtained from all of the impulse tests, marked by an asterisk,

versus the modeled values. It can be seen that the experimentally obtained frequencies match

the modeled values very well. These results further validate the model presented in Section

3.2 in the sense that the model is also valid for structures with hollow cross-sections.
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Figure 45: Experimental Data From Impulse Tests at Various Con�gurations

4.5.2 Motion Tests

In the previous section, the test bed was validated for only static con�gurations. While

such tests are important, they are not su�cient to validate the test bed for all relevant

motions. Results from 3 motions are presented in this section to illustrate the capabilities

of the testbed. The control law used in all of the tests was a standard feed-forward torque

type controller commonly used with serial robot arms:

τ =Mqq(q)q̈d +Kdė +Kpe + g(q), (126)
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Figure 46: Desired and Measured Joint Angles For Move 1

where Mqq is the upper left inertia sub matrix and g(q) is the gravity matrix from Section

3.3; e = qd − q is the error between the desired joint angle and the actual joint angle; Kd

is the derivative gain, and Kp is the proportional gain. Kd = diag(20,20,10) and Kp =

diag(100,90,60) were used. The e�ects of gravity were subtracted from the accelerometer

reading, and a high-pass �lter with a cut-o� frequency of 0.2 Hz was used to �lter out the

errors due to sensor alignment.

Move 1 is performed by giving all joints are given a bang-bang acceleration that results

in a change of 1 rad for each joint. The duration of the motion is 1 s. Joint q1 moves from

0 to -1 rad, joint q2 moves from 1 to 2 rad, and joint q3 moves from 5.2 to 4.2 rad. Figure

46 shows the desired joint values versus the measured angles during the transient stage. It

can be seen that the motor controller is able to track the motion relatively well, with minor

di�erences between the signals.

Figure 47 shows the acceleration signals gathered from the accelerometer on the tip

of the robot arm versus the accelerations obtained from simulating the motion using the

recorded joint position data. The accelerations are in reference to the inertial frame and
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Figure 47: Accelerometer Reading vs Modeled Acceleration For Move 1

will be discussed in detail in Section 5.4.2. It can be seen that the simulation results match

the experimental results relatively well. In all directions, the magnitude is very similar.

However, there are slight di�erences in phase. The reasons for disparities include imperfect

clamping of the links, non-linear spring e�ects in the belt and, motor shafts slipping in the

pullies.

Move 2 is a planar move where joint q1 remains stationary, joint q2 moves from 1 to

2 rad, and joint q3 moves from 6.28 to 5.28 rad. Figure 48 shows the accelerometer data

obtained during and after the motion versus accelerations from simulating the motion using

the recorded joint motion. It can be seen that data in the X direction matches relatively well
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Figure 48: Accelerometer Reading vs Modeled Acceleration For Move 2

in magnitude, but has a slight delay in phase. Since this move is purely planar, the simulated

Y direction acceleration is 0 throughout the motion. In the experiment, the accelerometer

recorded non zero signals that had a relatively small amplitude. Y axis measurements

also illustrate the high-pass �lter working as the signal trends towards zero mean after 1

second of motion. Acceleration in the Z direction matches the simulated one with the same

characteristics as the X axis data.

During move 3, joints q2 and q3 are held stationary and joint q1 moves from 0 to -1

rad. Figure 49 shows the accelerometer signals from the the experiment versus the modeled

values. It can be seen that the results do not match as well compared to moves 1 and 2.

In the simulation, an extra mode was excited that was not consistent with the experiment.

The magnitude of the vibration was similar between the simulation and experiment. High

stress on the components might have caused improper clamping conditions to occur.
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Figure 49: Accelerometer Reading vs Modeled Acceleration For Move 3

The test bed does not match the model presented in the previous Chapter perfectly.

However, the experiments show that the data obtained from the test-bed does show similar

characteristics compared to the model can be con�dently used for hardware validation of

estimation and control.

Appendix F contains additional �gures showing all joint motions for all moves.

4.6 Chapter Summary

In this chapter the development of a 3 joint, 2 �exible link test bed was described. The

test-bed illustrates how the natural frequencies of the system are con�guration dependent

and match the theory presented in Chapter 3. The data obtained during motions of the

manipulator did not match the model presented in the previous chapter perfectly; however,

it was close enough to use for estimation and control. In the following chapters, the test bed
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will be used to test estimation and controller algorithms.
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Chapter V

ESTIMATION FOR FLEXIBLE MANIPULATOR ARMS

Even though open-loop controllers can theoretically move a robot without any signi�cant

oscillations, they cannot handle disturbances caused by the environment or in the presence

of signi�cant model error. It is, therefore, vital that the �exible states are known for a closed-

loop controller to ensure that oscillations are damped e�ectively. This chapter presents an

estimator for the �exible states based on Kalman �ltering techniques. Acceleration and

strain signals are used for reconstructing the states.

5.1 Measuring Flexible State Variables

Taking advantage of the fact that de�ection can be separated into a summation of

time dependent variables (modal amplitudes) multiplied by space dependent variable (mode

shapes), and assuming that the mode shapes of the entire structure are known in advance,

the estimation problem comes down to �nding the time-dependent variables.

Assume that at point zs link de�ection w(zs, t) is measurable. The de�ection is therefore

described as:

w(zs, t) =
∞
∑
i=1
ψi(zs)δi(t), (127)

where δi is the ith modal amplitude and ψi(zs) is the modal de�ection at point zs. The

signi�cance of higher modes in the response becomes insigni�cant and a truncated model of

n �nite modes is appropriate. The �exure at point zs becomes

w(zs, t) ≈ [ψ1(zs)ψ2(zs)...ψn(zs)]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1(t)

δ2(t)

⋮

δn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(128)

If p (p > n) measurements at locations zi (i = 1,2, .., p) are available, then the modal
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Figure 50: First and Second Mode of a Fixed-Free Beam

amplitudes can be approximated in the least squares sense:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1(t)

δ2(t)

⋮

δn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈ [ΨTΨ]−1ΨT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(z1, t)

w(z2, t)

⋮

w(zp, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (129)

where

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(z1) ψ2(z1) ... ψn(z1)

⋮ ⋮ ⋮ ⋮

ψ1(zp) ψ2(zp) ... ψn(zp)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(130)

This approach can be extended to 3D �exure estimation. Therefore using the least

squares estimation for �exible coordinates requires at least one sensor per unknown state

variable. Generally the state variables also contain the derivatives of the modal amplitudes δ̇

and 2n sensors are required. The modal velocities can be calculated by taking derivatives of

the modal amplitudes, however, this approach is not advisable if signi�cant noise is expected

to be in the measurements. One additional requirement is that the sensors cannot lie on

nodal points since they provide no information about speci�c modes. If the measurements

were to be taken close to the nodal points they would induce high gains for the corresponding

coordinates. This could lead to noisy or even unstable estimations. An example of this

situation is illustrated in Figure 50 where the �rst two modes for a �xed-free beam are

shown. A sensor on point S1 will not have any information about mode 2 since it is the

nodal point for that mode. Hence the least square estimation is not a good strategy for

�nding �exible state variables.
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Figure 51: Observer Schematic

To estimate the full state of the system with a limited set of sensors, a state observer

must be utilized. An observer uses a model of the system and the available sensing data to

estimate the states that are not directly measurable.

An illustration of a state observer for a linear system is shown in Figure 51. The observer

is a dynamic system that has a loop gain L that drives the predicted state estimates ẑ to

the true values z by acting on the error between the measured outputs and the predicted

outputs (y(t) − ŷ(t)). The convergence properties and robustness to measurement noise

are altered by the gain L. Care must be taken when choosing the controller gain, as a

high gain introduces noise and a low gain might not make the system converge fast enough.

For a single link manipulator an observer like this could be utilized, however, multi link

manipulators are non-linear and therefore nonlinear observers must be used.

5.2 Non-linear Observation

Although the formulation for a non-linear observer is much harder than for linear systems,

analogous methodologies apply. Consider a non-linear system given by

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t)),
(131)
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where x represents state variables, y is the output of the system, u is the input to the system,

and f and h are nonlinear vector functions. Similarly to linear observers the a non-linear

observer can be de�ned by:

˙̂x = f(x̂(t), u(t)) +K(y(t) − ŷ(t))

y(t) = h(x̂(t), u(t)),
(132)

where (̂) represents the estimated states, the observer gain K = K(x,u) is chosen that the

observation error e(t) = x(t) ⋍ x̂(t) tends to zero. The observation error dynamics are

therefore given by:

ė = ẋ − ˙̂x = f(x,u) − f(x̂, u) −K(g(x,u) − h(x̂, u)) (133)

Substituting x̂ = x − e into 133 we obtain

ė = f(x,u) − f(x − e, u) −K(h(x,u) − h(x − e, u)) = χ(x,u, e,K) (134)

at steady state (ė = 0) it can be seen that e = 0 is a solution for equation (134). The observer

gain K must therefore be chosen such that the error dynamics are asymptotically stable

(force the error at steady state to zero). The stability of the observer can be examined by

the �rst method of Lyapunov. The Jacobian for the error equation (134) is given by

A = ∂f(x − e, u)
∂e

−K(x,u)∂g(x − e, u)
∂(x − e) (135)

By the �rst stability method of Lyapunov, the Jacobian matrix A must have negative real

parts for all its eigenvalues for xεX and uεU , where X and U are sets of admissible state

and control variables.

5.2.1 Observability

A system is said to be observable if the current state can be reconstructed from observing

its input-output behavior. Without the loss of generally consider an autonomous system

(136).

ẋ = f(x)

y = h(x)
(136)
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To determine the initial condition x0 from measurement y(t), 0 ≤ t ≤ T derivatives of y must

be taken:

y = h(x)

ẏ = hx(x)ẋ = hx(x)f(x) = h(1)(x)

ÿ = h(1)x (x)ẋ = h(2)(x)

⋮

y(m) = h(m)(x)

, (137)

where the subscript x represents the partial derivative with respect to x ∂
∂x . If system (137)

is solvable then it implies observability. Alternatively system (137) can be written in terms

of Lie derivatives

hx(x)f(x) = Lfh(x), (138)

where Lfh(x) is the Lie derivative of h along the vector �eld f . The higher order derivatives

in the Lie formulation can be given by

Ljfh(x) =
∂Lj−1f h(x)

∂x
f(x) (139)

Therefore system (137) can be written as:

O(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂L0
fh(x)
∂x

⋮
∂Ln−1f h(x)

∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(140)

System 136 is therefore observable if O(x) has full rank n. A more rigorous explanation of

nonlinear observability can be found in [66].

For linear systems

ẋ = Ax +Bu

y = Cx
(141)

(140) can be written in the form:

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

⋮

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(142)
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For linear time varying systems

ẋ = A(t)x +B(t)u

y = C(t)
(143)

(140) is represented by

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

∂C
∂t +CA

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(144)

5.3 Flexible Manipulator Arm Kinematics

Before an observer can be designed the kinematics of a �exible arm must be discussed.

A point on link i can be related to the coordinate system �xed to link i − 1 by a transfer

matrix Ai. Therefore every point s on link i can be represented in the inertial frame 0 by

the relation

0ri(s) = 0Ti
iri(s) (145)

where

jTi =
i

∏
m=j+1

Am(q(t)) (146)

0T0 = I,

where iri is the position vector of the rigid arm in the local i coordinate frame. Ai is the

transfer matrix that makes sure that the neutral axis always matches the zi direction of the

neutral axis of the link i. Refer to Chapter 3 for the full nomenclature. Figure 52 shows

the relationships between the coordinate frames. Matrix Ti = 0T i is always in the form of
⎡⎢⎢⎢⎢⎢⎢⎣

Ri3×3 pi3×1

01×3 1

⎤⎥⎥⎥⎥⎥⎥⎦

, where Ri is the rotation of frame i with respect to the inertial frame and pi

is the position vector of the origin of the i-th frame with respect to the inertial origin

Furthermore point s on link i with respect to the frame i can be represented by a

�nite sum of separable mode shapes which are products of time varying amplitudes and

98



Inertial Frame

dmTi

Ti+1
X

Z

Y

xi

yi

zi

zi+1

xi+1
yi+1

Ai+1

Figure 52: Frame Transformations

xi

yi

zi

zi+1

xi+1
yi+1

0

0

( )
( )

1

i
i

iz
r

s
s

 
 
 
 
 
 



1 ( )

0

0( )

0( )
( )

( )

1

j

x

j

i
m

y

j

zj

i j

w s

w s
r s

w ss z




   
   
   
   
   

  



Figure 53: Coordinates on Link i

kinematically admissible mode shapes

iri(s) =
m

∑
j=1

δj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wijx(s)

wijy(s)

wijz(s)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

s

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (147)

where δj(t) is the mode shape amplitude for the jth mode; wijx , w
i
jy
, wijz are the de�ections

of mode j on link i in the xi, yi and zi directions; m is the number of modes considered.

This is illustrated in Figure 53.

Therefore the acceleration of a point s on link i can be represented in frame 0 by taking
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two time derivatives of (145) yielding

0r̈i(s) = T̈i(q, q̇, q̈)iri(s) + 2Ṫi(q, q̇)iṙi(s) + T (q)ir̈i(s) =

= T̈i(q, q̇, q̈)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m

∑
j=1

δj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wijx(s)

wijy(s)

wijz(s)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

s

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ 2Ṫi(q, q̇)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m

∑
j=1

δ̇j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wijx(s)

wijy(s)

wijz(s)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ Ti(q)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m

∑
j=1

δ̈j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wijx(s)

wijy(s)

wijz(s)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(148)

The Ṫ and T̈ terms can be found by di�erentiating (146)

dAi
dt

= ∂Ai
∂qi

q̇i = Uiq̇i, (149)

j Ṫi =
i

∑
h=j+1

jTh−1Uh
hTiq̇h, (150)

0T̈i =
i

∑
h=1

(0Ṫh−1UhhTiq̇h + 0T h−1(U̇hhTiq̇h +Uh(hṪiq̇h + hTiq̈h))) =

i

∑
h=1

(
h−1
∑
k=1

(0Tk−1UkkTh−1q̇k)UhhTiq̇h + 0T h−1(VhhTiq̇2h+

+Uh
i

∑
k=h+1

(hTk−1UkkTiq̇k)q̇h + hTiq̈h))),

(151)

where

U̇i =
∂Ui
∂qi

q̇i = Viq̇i (152)

0r̈i(s) represents the acceleration in the inertial frame 0. However, an accelerometer on

link i measures acceleration in reference to the local frame i. Therefore, the following

transformation must be used to relate the acceleration from the accelerometers to the inertial

frame:

0r̈i(s) = 0Tir̈l, (153)

where 0Ti is the homogeneous transfer matrix from the inertial frame to frame i, and r̈l =

[ẍl, ÿl, z̈l,0]T is the vector of accelerations in the local link frame i. Additionally, if the

accelerometers used are MEMs type then gravity must also be subtracted from (148).
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5.4 Estimation of Flexible States

To estimate states of a system

ẋ = f(x,u)

y = h(x)
(154)

the plant f() and the measurements h() must be de�ned before estimator algorithms can

be presented.

5.4.1 Model of the Plant for Flexible State Estimation

As described in Chapter 3 the dynamics of a �exible robot can be represented by the

following equation:

⎛
⎜⎜
⎝

Mqq(q) Mqδ(q)

MT
qδ(q) I

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q̈

δ̈

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

Cqq(q, q̇, δ̇) Cqδ(q, q̇, δ̇)

Cδq(q, q̇, δ̇) Cδδ(q, q̇, δ̇)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q̇

δ̇

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

gr

gf

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0 0

0 K

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q

δ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

τ

0

⎞
⎟⎟
⎠
, (155)

where (qT , δT )T is the n-vector of generalized joint variables q , and m- vector of �exible

deformation variables δ, M is the (n + m) × (n + m) generalized mass matrix, I is the

m×m identity matrix, C is the n+m vector matrix containing the Coriolis and centrifugal

terms and the terms accounting for interaction of joint variables and their rates and �exible

variables and their rates, g is the n+m vector of gravitational terms, K is the m×m �exural

sti�ness matrix, τ is the vector of input torques. In state space form of system (155) can be

represented as:

ẋ = f(x, τ), (156)

where x is the 2(n +m) vector joint positions q, joint velocities q̇, modal displacements δ,

and modal velocities δ̇. Generally the joint position, q and velocities, q̇, can be directly

measured from encoders and tachometers. Therefore it is not necessary to construct an

observer that includes those terms since computational complexity increases with a larger

number of states. The �exible state variables δ and δ̇ cannot be directly measured and

observers must be used. Therefore a reduced order observer should be constructed.

From equation (155) the bottom row can be written out to give the di�erential equation
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governing the �exible coordinates:

δ̈ = −Cδδ(q, δ̇)δ̇ −K(q)δ −Mqδ(q)q̈ −Cδq(q, δ̇)q̇ − gδ(q) (157)

This equation can be converted to the following state space form:

⎡⎢⎢⎢⎢⎢⎢⎣

δ̇

δ̈

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

δ̇

−K(q)δ −Cδδ(q, δ̇)δ̇ −Cδq(q, δ̇)q̇ − u

⎤⎥⎥⎥⎥⎥⎥⎦

(158)

where u = −Mδq(q)q̈ − gδ(q). u includes all the terms that do not have the �exible states in

them directly and are therefore considered as a known input to the system. Equation (158)

is non-linear but can be linearized around the operating point:

⎡⎢⎢⎢⎢⎢⎢⎣

δ̇

δ̈

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 I

−K(q) −C̃δδ(q, δ̇) − C̃δq(q, δ̇)q̇

⎤⎥⎥⎥⎥⎥⎥⎦∣δ̇=δ̇o

⎡⎢⎢⎢⎢⎢⎢⎣

δ

δ̇

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

0

I

⎤⎥⎥⎥⎥⎥⎥⎦

u, (159)

where δ̇o is the operating point at which (159) is linearized about;

C̃δδ(q, δ̇) =
∂Cδδ(q, δ̇)

∂δ̇
, (160)

and

C̃δq(q, δ̇) =
∂Cδq(q, δ̇)

∂δ̇
(161)

Note that (159) is not linear but is linear time-varying since the terms depend on joint angles

q and q̇. A short form of equation (159) can be represented by:

∆̇ = F (q, q̇)∆ +Bu(q, q̇), (162)

where ∆ =

⎡⎢⎢⎢⎢⎢⎢⎣

δ

δ̇

⎤⎥⎥⎥⎥⎥⎥⎦

5.4.2 The Measurement Model for Acceleration Feedback

Equation (148) yields the acceleration that a 3 three axis accelerometer at point p on

link i would measure. Since 0r̈i(p) includes a term that is purely from the rigid motion serial
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arm, the adjusted acceleration 0 ¨̃ri(p) that excludes that term is de�ned:

0 ¨̃ri(p) =0 r̈i(p) − T̈i(q, q̇, q̈)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

p

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

= T̈i(q, q̇, q̈)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m
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δj
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⎠
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⎝
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⎠

+ Ti(q)
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⎝

m
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δ̈j
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wijx(p)
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(163)

Because the state vector of the system consists of only δ and δ̇, δ̈ must be eliminated

from the measurement equation (163). Therefore, substituting the bottom row of (158) into

(163) the measurement from one 3 axis accelerometer can be written in terms of the state

vector

⎡⎢⎢⎢⎢⎢⎢⎣

δ

δ̇

⎤⎥⎥⎥⎥⎥⎥⎦

:

0 ¨̃ri(p) = [T̈iWi + TiWi(−K) 2ṪiWi + Ti(−C̃δδ − C̃δq q̇)]
δ̇=δ̇o

⎡⎢⎢⎢⎢⎢⎢⎣

δ

δ̇

⎤⎥⎥⎥⎥⎥⎥⎦

+TiWiu

(164)

where

Wi(p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wi1x(p) wi2x(p) . . . wimx(p)

wi1y(p) wi2y(p) . . . wimy(p)

wi1z(p) wi2z(p) . . . wimz(p)

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(165)

Wi is the matrix containing the mode shapes at the location of the sensor.

Because 0r̈i(p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0ẍi(p)
0ÿi(p)
0z̈i(p)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where ẍ, ÿ, z̈ are the accelerations in the �xed 0 frame,

only the �rst three rows of equation (164) are useful. If the accelerometer has less than 3

measurement axis, only the directions that measurements must be kept. When additional
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accelerometers are used (164) can easily be expanded to accommodate that. For example

using one accelerometer on link i at point p1 and the other accelerometer on link j at point

p2, extra lines are added to (164) as shown in:

⎡⎢⎢⎢⎢⎢⎢⎣

0 ¨̃ri(p1)
0 ¨̃rj(p2)

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

T̈iWi + TiWi(−K) 2ṪiWi + Ti(−C̃δδ − C̃δq q̇)

T̈jWj + TjWj(−K) 2ṪjWj + Tj(−C̃δδ − C̃δq q̇)

⎤⎥⎥⎥⎥⎥⎥⎦δ̇=δ̇o

⎡⎢⎢⎢⎢⎢⎢⎣

δ

δ̇

⎤⎥⎥⎥⎥⎥⎥⎦

+

+

⎡⎢⎢⎢⎢⎢⎢⎣

TiWiu

TjWju

⎤⎥⎥⎥⎥⎥⎥⎦

(166)

In compact form Equation (166) can be expressed as

y =H∆ +Du (167)

Equations (162) and (167) are therefore in the standard state space form that form the basis

of the estimation algorithm.

The nonlinear system with N accelerometers is represented by:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣

δ̇

−Cδδ(q, q̇)δ̇ −K(q)δ −D(q)δ̇ −Mqδ(q)q̈ −Cδq(q, q̇, δ̇)q̇ − gδ(q)

⎤⎥⎥⎥⎥⎥⎥⎦

= f(x,u) (168)

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̈1W1δ + 2Ṫ1W1δ̇ + T1W1(−Cδδ δ̇ −Kδ −Dδ̇ −Mqδ q̈ −Cδq q̇ − gδ) + T̈1p1

⋮

T̈NWNδ + 2ṪNWN δ̇ + TNWN(−Cδδ δ̇ −Kδ −Dδ̇ −Mqδ q̈ −Cδq q̇ − gδ) + T̈NpN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= h(x,u)

(169)

5.4.3 The Measurement Model for Strain Feedback

Although the estimator used in this dissertation uses acceleration signal, the derivation

for a measurement model, using the �exible arm dynamics given by (155), for strain gages

is in order. This is important as strain gages are currently by far the most utilized sensor

in vibration control as described in Section 2.2.1.

The strain of a point p on link i is represented by:

εi(p) =
m

∑
j=1

δj

⎡⎢⎢⎢⎢⎢⎢⎣

axw
i
jx

′′(p)

ayw
i
jy

′′(p),

⎤⎥⎥⎥⎥⎥⎥⎦

(170)
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where εi(p) is the measured strain on link i at point p; ax and ay are the distances from the

neutral axis of the beam in the xi and yi directions; wijx
′′(p) and wijy

′′(p) are the second

spatial derivatives (()′′ ≡ ∂2

∂z2i
) of the jth in the x and y axis respectively; and δj is the

jth modal amplitude. the strain in only the x and y con�gurations is considered as axial

deformation for serial robots is insigni�cant.

Therefore, in the standard state-space formulation the measurement for one pair of strain

gages represented by

y1 = [Wsi(p) 02×m]

⎡⎢⎢⎢⎢⎢⎢⎣

δ

δ̇

⎤⎥⎥⎥⎥⎥⎥⎦

, (171)

where,

Wsi(p) =

⎡⎢⎢⎢⎢⎢⎢⎣

ax [wi1x
′′(p) ⋯ wimx

′′(p)]

ay [wi1y
′′(p) ⋯ wimy

′′(p)]

⎤⎥⎥⎥⎥⎥⎥⎦

(172)

is the matrix that holds all of the second derivatives of the mode shapes on location p on

link i. If strain from only one direction is available the only one row in (171) is kept. Strain

from multiple locations can be combined to the measurement vector by adding more rows:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

⋮

yr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wsi(p1) 02×m

⋮ ⋮

Wsj(pr) 02×m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

δ

δ̇

⎤⎥⎥⎥⎥⎥⎥⎦

(173)

Although it is obvious that the measurement model for stain given in (173) is much

less computationally intensive than the one for accelerations (169), strain gages themselves

might not be the best choice as the sensor for serial robot arms as was discussed in Section

4.2. The full state space formulation with strain gage measurements is given by:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣

δ̇

−Cδδ(q, q̇)δ̇ −K(q)δ −D(q)δ̇ −Mqδ(q)q̈ −Cδq(q, q̇, δ̇)q̇ − gδ(q)

⎤⎥⎥⎥⎥⎥⎥⎦

= f(x,u)

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

⋮

yr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wsi(p1) 02×m

⋮ ⋮

Wsj(pr) 02×m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

δ

δ̇

⎤⎥⎥⎥⎥⎥⎥⎦

= h(x)

(174)
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5.4.4 Extended Kalman Filter

The Kalman �lter was originally derived for linear stochastic systems that can be repre-

sented as

ẋ = Ax +Bu +w

y = Cx + v

w (0,Q)

v (0,R),

(175)

where w represents the model noise that is zero mean, Gaussian with a covariance of Q, v is

the measurement noise that is zero mean, Gaussian and with a covariance of R. The most

general formulation for a Kalman �lter is given by [119]:

x̂(0) = E[(0)]

P (0) = E[(x(0) − x̂(0))(x(0) − x̂(0))T ]

K = PCTR−1

˙̂x = Ax̂ +Bu +K(y −Cx̂)

Ṗ = −PCTR−1CP +AP + PAT +Q,

(176)

where x̂ is the estimation of state x, P is the estimation-error covariance, and K is the

Kalman gain. Furthermore, x̂(0) is the initial guess for the estimator E[] represents expected

value, and P (0) is the initial guess for the error covariance. By de�nition P must always

be positive de�nite, real, symmetric. Numerically, however, this condition does not always

hold and care must be taken to condition P . The equation for Ṗ is often referred to as

the algebraic Riccati equation [119]. For a linear stochastic system the Kalman �lter is an

optimal �lter with respect to virtually any criteria [92].

For a non-linear system model given by:

ẋ = f(x,u,w, t)

y = h(x, v, t)

w (0,Q)

v (0,R),

(177)
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where, f() is the system equation and h() is the measurement function, the Kalman �lter

can be applied to if the system can be linearized about a known trajectory (x0, y0, w0, v0)

based on a-priori knowledge of the system behavior. The actual trajectories of the system

will naturally di�er from the nominal one due to disturbances and errors in the model.

How the Extened Kalman Filter (EKF) di�ers from the linearized �lter is that the nominal

trajectory x0(t) is equal to the linearized Kalman �lter estimate x̂(t). The linearized system

around x̂ system is given by:

A = ∂f
∂x ∣x̂

L = ∂f

∂w ∣x̂

H = ∂h
∂x ∣x̂

M = ∂h
∂x ∣x̂

Q̃ = LQLT

R̃ =MRMT

(178)

The Extended Kalman Filter is realized by [119]:

x̂0 = E[x(0)]

P (0) = E[(x(0) − x̂(0))(x(0) − x̂(0))T ]

˙̂x = f(x̂, u,w0, t) +K[y − h(x̂, v0, t)]

K = PHT R̃−1

Ṗ = AP + PAT +Q − PCR̃−1CP

(179)

Matrix P is the error covariance matrix which quanti�es the uncertainty of the estimated

states. If the nonlinearities are not too severe, P gives an idea on how accurate the estimates

are. A large Q indicates less con�dence in the accuracy of the model, and relatively more

con�dence for the measurements. In general, increasing Q increases the Kalman gain K

which also changes the estimation x̂ more aggressively. Similarly, a large R represents that

the measurements are relatively less trustworthy and the gain K is lower, and therefore x̂

changes less aggressively. Furthermore, P increases as Q and R increase, indicating lower
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con�dence for the state estimate x̂. Although stability and convergence are readily available

for the Kalamn �lter, they are substantially much harder to �nd for nonlinear systems.

Although theoretically P (t) should always be symmetric positive de�nite (because it is

a covariance matrix), numerical errors due to the way processors handle numbers can make

the matrix go non-symmetric or inde�nite. Variable step ODE solvers will generally not have

a problem keeping P properly conditioned, but problems can arise when �xed step solvers

are used. In order to use and deploy continuous Kalman �lters in real-time, �xed step solver

are required. Typical recommendations [119] for improving the numerical stability include:

� Increase numerical precision of variables

� Use some form of Square root �ltering

� Force P to be symmetric at each iteration P = P+PT
2

� Initialize P so that no large changes in P happen

� Include �ctitious process noise

5.4.4.1 Square Root Filtering

One of the numerous techniques used to make P more numerically stable is the square

root �lter. The idea is based on �nding a matrix S such that:

P = SST , (180)

where S is the matrix square root of P . Because P is symmetric positive de�nite an upper

triangular matrix S satisfying P = SST can always be found. Using the de�nition of S, it is

substituted into the Riccati equation in (179):

ṠST + SṠT = ASST + SSTAT − SSTCtR−1CSST +Q (181)

Pre-multiplying (181) by S−1 and post-multiplying by S−T yields:

S−1ṖS−T = S−1AS + STATS−T − STCTR−1CS + S−1QS−T (182)
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Per [119] Mu, the upper triangular matrix of S−1ṖS−T , allow �nding Ṡ:

Ṡ = SMu (183)

Incorporating the square root �lter into EKF is computationally more expensive than

solving for the pure Riccati equation in (179), but is numerically more stable.

5.5 Case Study

The e�ectiveness of an EKF for �exible serial robot arms is presented in this section.

Simulations are performed using both accelerometer feedback and strain feedback. The

same two-link robot model that was used for simulation studies in Section 3.3.7 is used

here, because it was validated using FEA analysis. The �rst three modes are used in the

simulations since it was shown in the earlier section that higher modes have an insigni�cant

e�ect on the behavior of the robot. The moves that were used in Section 3.3.7 are again

summarized in Table 13.

Table 13: Joint Trajectories for Veri�cation

q10 q1f q20 q2f q30 q3f
Move 1 0 -1 0 -1 0 -1
Move 2 0 0 0 -1 0 -1
Move 3 0 −π 0 0 0 0

The plant model does not change due to feedback type and is given by (158), and the

linearized version is given in (159). The measurement noise characteristics can often be

taken from sensor datasheets, the process model noise Q required by the Kalman �lter,

however, is almost always much harder to �nd [94]. Therefore Q was empirically chosen to

be a good balance between being able to reduce the e�ect modeling errors and help recover

the state with inaccurate measurements. The process noise covariance value of

Q = 5 ⋅ 10−6I (184)

was used for all simulation tests, where I is the 6 × 6 identity matrix. The dimension is due

to three signi�cant modes and their derivatives.
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Figure 54: Comparison of Tip Acceleration Signals for Move 1 From The TMM Based Model
and FEA Analysis

5.5.1 Acceleration Feedback

The nonlinear measurement equation is given in (169) and the linearized measurement

equation in (168). The measurement comes from two three-axis accelerometers mounted at

the end of each link. The noise characteristics were modeled after the sensors used on the

testbed described in Chapter 4. Therefore the noise covariance matrix for two accelerometers

used in EKF is

R = (250 ⋅ 10−6g)2 ⋅ I, (185)

where g = 9.8 m/s2, and I is the identity matrix of size r×r, where r is the number of sensor

signals. The band-limited white noise with the same covariance was added to the simulated

accelerometer signals.

The accelerometer model, given in (148), was compared against the acceleration values

obtained from FEA analysis performed with the commercial package COMSOL. Figure 54

shows the acceleration signals as if they were read by a three axis accelerometer at the

tip during move 1. The dashed lines obtained from FEA match very closely to the ones

obtained from (148). The signals in the x and z match very well, however there are small
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Figure 55: Comparison of Tip Acceleration Signals for Move 2 From The TMM Based Model
and FEA Analysis

discrepancies between the accelerations in the y axis. It can also be seen that there is a

small discrepancy between the frequencies for the two models, with the peaks of the signals

from FEA lagging the ones obtained from the TMM based model (155).

The acceleration signals from move 2 are shown in Figure 55. The signals from the FEA

simulation and the ones obtained from the model derived with TMM match up well. Note

that since move 2 is purely planar there are no signals in the y axis. Again, it is clear that

the peaks in the oscillations are slower in the FEA model.

Figure 56 shows the acceleration signals from move 3. The TMM based model diverges

most during the motion where the torsional e�ects are the biggest. The response, however,

still matches relatively well, with the magnitudes and the phase being very similar.

Taking into account that the acceleration signals matched well between the TMM based

model and the FEA model, the acceleration signals from the TMM based model can be used

evaluate the performance of the proposed EKF for �exible state reconstruction. Figure 57a

shows the position of the tip from the TMM based model (solid lines) and the estimates
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Figure 56: Comparison of Tip Acceleration Signals for Move 3 From The TMM Based Model
and FEA Analysis
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(b) Tip Position Error for Move 1

Figure 57: Move 1 Tip Position

(dashed lines) for Move 1. It is clear that the estimator was able to accurately track the

modal amplitudes correctly. Figure 57b shows the error in the tip position for move 1. There

is noisy random walk around 0 which is expected from a Kalman Filter.
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(a) Tip Position and Estimates for Move 2

0 5 10

Time (s)

-1

-0.5

0

0.5

1

P
o

s
it
io

n
 E

rr
o

r 
(m

)

10
-4

(b) Tip Position Error for Move 2

Figure 58: Move 2 Tip Position
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(a) Tip Position and Estimates for Move 3
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(b) Tip Position Error for Move 3

Figure 59: Move 3 Tip Position

Figure 58a shows the position of the tip for move 2. Again, the tip position from the

estimated modal amplitudes match well with the modeled position. Figure 58b shows the

same tip position error with the estimated modal amplitudes and its look resembles the

113



response in Figure 58b which is to be expected.

Figure 59a shows the position of the tip for move 3. Similarly to moves 1 and 2 there is

very little di�erence between the estimated tip position and Figure 58b shows the same tip

position error with the estimated modal amplitudes Figure 59b.

Extra �gures for all moves showing details of modal amplitude errors and modal velocity

errors can be found in Appendix G.1.

5.5.1.1 Robustness Analysis

If the initial state and the model dynamics are known by the estimator exactly, the sensor

data is unbiased and the correct noise properties are known then the states are estimated

correctly. Figure 60a shows the state variables δ and their estimates δ̂ for move 1. In

Figure 60b, the di�erence between the estimated and modeled modal amplitudes, ∆δ, are

shown. It can be seen that the error is three orders of magnitude smaller than the modeled

values. Similarly Figure 61a shows the modal velocities for move 1. The error magnitude

(∆δ̇ = δ̇ − ˆ̇
δ) is shown in Figure 61b. As with the modal amplitudes, the error is three orders

of magnitude smaller than the modeled modal amplitudes. In this section various parameters

in the model and sensor signal are varied to illustrate the robustness of the proposed EKF.

All the simulations in this section are done with move 1 where all of joints move and �exures

in all directions are excited.

Changing the initial guess to 0.1 for all states yielded results seen in Figure 62. Figure

62a show the modal amplitude error, and it can be seen that the estimator is able to quickly

recover from the erroneous state estimate. The modal velocity error, seen in Figure 62b,

took longer to converge to the correct value.

Adding a sensor o�-set of 0.5 m/s2 to all of the acceleration signals yielded results that

can be seen in Figure 63. The modal amplitude errors seen in Figure 63a show that the

error is still one order of magnitude lower than the modeled modal amplitudes seen in Figure

60a. The modal velocity errors, however, seen in Figure 63b, have an error magnitude about

as large as the the modeled modal velocities as seen in Figure 61a and the states do not
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(b) Modal Amplitude Error

Figure 60: Move 1 with Initial Guess Errors
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(b) Modal Velocity Error

Figure 61: Move 1 with Initial Guess Errors

converge to zero.

This problem can, however, be alleviated by adding a high-pass �lter to the measure-

ments. A high-pass �lter with a cut-o� frequency of one decade below of the lowest natural
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(b) Modal Amplitude Error

Figure 62: State Errors to Wrong Initial Condition
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(a) Modal Amplitude and Estimates
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(b) Modal Amplitude Error

Figure 63: State Errors to Sensor O�-Set

frequency in the system was used. Figure 64 shows the state errors when the high-pass �lter

was used. Figure 64a shows magnitude of the error has not decreased, however the error is

now zero mean. Figure 64b shows an improvement over to Figure 63b as the modal velocity
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(b) Modal Amplitude Error

Figure 64: State Errors to Sensor O�-Set

error now has a smaller magnitude and the response is trending towards zero-mean. The

modal amplitudes and the modal velocities have an oscillating error because the high-pass

�lter adds a phase shift into the signal. If the sensor o�set is constant throughout, then the

problem is solved by letting the �lter eliminate the o�-set before using them to make any

measurements.

Figure 65 shows the modal amplitude and velocity errors when the system model in

the estimator has a 40% model error in the sti�ness Matrix. As can be seen in Figure

65a the error magnitude is about 4 times smaller than the nominal values shown in Figure

60a. Figure 65b shows that the modal velocities have an error magnitude that is about

20 times smaller than compared to Figure 61a. The error magnitude is oscillating since

the frequencies in the estimator are di�er from the model used to create the accelerometer

signals.

The state errors when the estimator model excludes Coriolis and centrifugal terms are

shown in Figure 66. Figure 66a shows small modal amplitude errors during the motion and

then quickly converging to the modeled states once the joint motion has stopped. Figure
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(b) Modal Amplitude Error

Figure 65: State Errors to Increased Sti�ness
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(a) Modal Amplitude and Estimates
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(b) Modal Amplitude Error

Figure 66: State Errors to Exclusion of Coriolis and Centrifugal Terms

66b shows similar results as the modal velocities have small errors in the motion phase and

after two seconds the states converge to the modeled states.
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Figure 67: Comparison of Link 1 Strain Signals for Move 1 From The TMM Based Model
and FEA Analysis

5.5.2 Strain Feedback

The measurement equation for strain feedback is given in (173). The noise covariance

in this simulation study matches that of [60], where the authors used a strain gage and a

high-speed analog input device to measure and control beam vibration in experiments. This

choice was made to use realistic noise parameters. Therefore, the noise covariance matrix is

de�ned as:

R = 9 ⋅ 10−14I, (186)

where I is the r × r identity matrix, and r is the number of sensor signals. Band-limited

white noise with the same covariance was added to the simulated strain signals. Two strain

gage pairs (one for x axis and the other for y) are placed on each link 5 cm from the start

of the link.

The strain signals calculated in (173) were compared to the strain values that were

calculated with COMSOL. Figure 67 shows the two strain signals from link 1 during move

1. The dashed lines obtained from FEA match very closely to the ones obtained from (173).

The signals have a good match in terms of signal amplitude. It can also be seen that there
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Figure 68: Comparison of Link 1 Strain Signals for Move 2 From The TMM Based Model
and FEA Analysis

is a small discrepancy between the frequencies for the two models, with the peaks of the

signals from FEA lagging the ones obtained from the TMM based model.

The strain measurements from move 2 are shown in Figure 68. The signals between the

FEA simulation and the ones obtained from the model derived with TMM match up well.

There is a small discrepancy between the magnitudes of the but the motion overall looks

very similar. Note that since move 2 is purely planar there are no signals in the y axis

based on the TMM model, there is, however a small amount of strain calculated in the FEA

model.

Figure 69 shows the strain signals from move 3. The TMM based model diverges during

move 3 due to unmodeled torsional e�ects. In the response, however, the signals still show

a good trend and magnitude.

Taking moves 1-3 in consideration, it is evident that the strain signals from the TMM

based model can be used evaluate the performance of the proposed EKF for �exible state

reconstruction. Figure 70a shows the position of the tip from the TMM based model (solid
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Figure 69: Comparison of Link 1 Strain Signals for Move 3 From The TMM Based Model
and FEA Analysis
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(a) Tip Position and Estimates for Move 1 from Strain
Feedback
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(b) Tip Position Error for Move 1

Figure 70: Move 1 Tip Position

lines) and the estimates (dashed lines) for move 1. It is clear that the estimator was able

to accurately track the modal amplitudes using strain data. Figure 70b shows the error in
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(a) Tip Position and Estimates for Move 2
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(b) Tip Position Error for Move 2

Figure 71: Move 2 Tip Position

the tip position for move 1. There is noisy random walk around 0 which is normal behavior

from a Kalman �lter.

Figure 71a shows the position of the tip for move 2. Again, the tip position from the

estimated modal amplitudes matches well with the modeled position. Figure 71b shows the

same tip position error with the estimated modal amplitudes and as expected it has similar

characteristics to 71b.

Figure 72a shows the position of the tip for move 3. Similarly to moves 1 and 2 there is

very little di�erence between the estimated tip position and Figure 71b shows the same tip

position error with the estimated modal amplitudes Figure 72b.

Extra Figures for all moves showing details of modal amplitude errors and modal velocity

errors can be found in Appendix G.2

5.5.2.1 Robustness Analysis

If the initial guess initial guess and the model dynamics are known by the estimator

exactly, the sensor data is unbiased, and the correct noise properties are known, then the

states are estimated correctly. Figure 73a shows the state variables δ and their estimates
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(a) Tip Position and Estimates for Move 3
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(b) Tip Position Error for Move 3

Figure 72: Move 3 Tip Position

δ̂ for move 1. In Figure 73b, the di�erence between the estimated and modeled modal

amplitudes ( ∆δ = δ̂− δ) is shown. It can be seen that the error is three orders of magnitude

smaller than the modeled values. Similarly Figure 74a shows the modal velocities for move

1. The error magnitude (∆δ̇ = δ̇ − ˆ̇
δ) is shown in Figure 74b. As with the modal amplitudes,

the error is three orders of magnitude smaller than the modeled modal amplitudes. In this

section various parameters in the model and sensor signals are varied to �nd out how robust

the proposed EKF is. Similarly to measurements from accelerometers, the robustness of

strain based estimation is evaluated with move 1.

Changing the initial guess to 0.1 for all states yielded results seen in Figure 75. Figure

75a shows the modal amplitude error, and it can be seen that the estimator is able to

quickly recover from the erroneous state estimate. The modal velocity error, seen in Figure

75b, converged relatively quickly but it did induce a large error directly after the start of

estimation.

Adding a strain o�set of 5 ⋅ 10−5 ( 10% of the signal magnitude) to strain signals yielded

results that can be seen in Figure 76. The modal amplitude errors seen in Figure 76a show
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(b) Modal Amplitude Error

Figure 73: Move 1 with Initial Guess Errors
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(b) Modal Velocity Error

Figure 74: Modal Amplitudes for Move 1

that the error is still one order of magnitude lower than the modeled modal amplitudes seen

in Figure 73a and has a bias. The modal velocity errors, however, seen in Figure 76b, have

an error magnitude about as large as the modeled modal velocities as seen in Figure 74a.
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(b) Modal Amplitude Error

Figure 75: Move 1 with Initial Guess Error
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(a) Modal Amplitude and Estimates
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(b) Modal Amplitude Error

Figure 76: State Errors to Sensor O�-Set

Adding a high pass-�lter to the strain signals should help the estimation process. A high-

pass �lter with a cut-o� frequency of 1/10 of the lowest natural frequency in the system was

used. Figure 77 shows the state errors when the high-pass �lter was used. Figure 77a shows
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(b) Modal Amplitude Error

Figure 77: State Errors to Sensor O�-Set

magnitude of the error has not decreased, however the error is now zero mean. Figure

77b implies that the high-pass �lter has improved the estimation of modal velocities as the

modal velocity error now has a smaller magnitude and the response is trending towards zero-

mean. The modal amplitudes and the modal velocities have an oscillating error because the

high-pass �lter adds a phase shift into the signal.

Figure 78 shows the modal amplitude and velocity errors when the system model in

the estimator has a 40% model error in the sti�ness Matrix. As can be seen in Figure 78a

the error magnitude is about 4 times smaller than the nominal values shown in Figure 73a.

Figure 78b shows relatively large error when compared to Figure 74a. The error magnitude

is oscillating since the frequencies in the estimator di�er from the model used to create the

strain signals.

The state errors when the estimator model excludes Coriolis and centrifugal terms are

shown in Figure 79. Figure 79a shows small modal amplitude errors during the transient

motion and then quickly converging to the modeled states once the joint motion has stopped.

Figure 79b shows similar results as the modal velocities have small error during the transient
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(b) Modal Amplitude Error

Figure 78: State Errors to Increased Sti�ness
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(a) Modal Amplitude and Estimates
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(b) Modal Amplitude Error

Figure 79: State Errors to Exclusion of Coriolis and Centrifugal Terms

phase and after two seconds the states converge to the modeled states.
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5.5.3 Simulation Study Summary

The simulations showed that the EKF is a good solution for estimating �exible states

even in the presence of uncertainties. These simulations were performed with noise charac-

teristics found on certain real-world sensors. Therefore the estimator performance is not

representative of other accelerometer or strain measurements. The simulation results also

depend heavily on the process noise covariance, which is hard to estimate for any real mo-

del. Additionally, because �exible robot dynamics are derived in continuous time, real-time

implementation requires �xed step-solvers and they are numerically less robust that variable

step solvers because the latter can use small step sizes when the solutions are not converging.

It was empirically determined that di�erent R and Q matrices result in di�erent numerical

stability. Therefore care must be taken before real-world implementation.

5.6 Experiments using Accelerometer Feedback

In order to illustrate the e�ectiveness of the estimator further, tests were conducted

on the test bed that was described in Chapter 4. The estimator implemented on the test

bed is used to observe the �rst three modes. Although, the fourth mode has a similar

frequency to mode three, it was neglected because the belt drives damp it out very quickly.

The mode shapes for the estimated modes were shown in Section 4.4 for two illustrative

con�gurations. Tracking three modes instead of four allows for a signi�cant drop in the

computational demand, and allows the estimator to run at 1 kHz. This loop rate was

empirically determined to be the speed at which the �xed step ODE solvers are numerically

stable for integrating the estimator models.

5.6.1 Impulse Tests

This section illustrates the estimators response to impulse-type disturbances. Figure

80 shows the two con�gurations that are tested. Figure 80a shows the order and direction

where the impulses were given to the arm when q3 = 270○. Analogously, Figure 80b shows

the locations and directions where impulses were given to the arm when q3 = 360○. All of
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Figure 80: Direction and Location of Impulses for Two Con�gurations

the impulses were manually induced by a rapid tap.

Figure 81 shows the responses from impulse tests in the q3 = 270○ con�guration. Figure

81a shows the response of the estimator to the �rst impulse. As can be expected from the

mode shapes, shown in Section 4.4, mode 2 is excited the most. The estimator was able to

quickly recover the state from the disturbance.

Figure 81b shows the response from the estimator for the second impulse. This time

mode 1 is excited most since the impulse is in the direction of its mode shape. Comparing

Figures 81a and 81b illustrates that mode 1 has a signi�cantly higher damping ratio, due to

the joint orientations, than mode 2, even though their natural frequencies are very close (2

vs 2.4 Hz).

Figure 81c shows the response to the third impulse. It can be seen that, unlike the

responses from the �rst 2 impulses, the third mode is clearly evident, even though it damps
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(b) Response to Impulse 2
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(c) Responses to Impulse 3

Figure 81: Response to Impulses at q3 = 270○

out relatively quickly due to its higher frequency.

Figure 82 shows the responses from impulse tests in the q3 = 360○ con�guration. Figure

82a shows the response of the estimator to the �rst impulse. Mode 2 is excited the most and

it dominates the response. Mode 1 also shows up in the respons; however, its magnitude

is much lower. In general, we would expect that other modes would be excited, but with

lower magnitudes, because the impulse is not exactly applied in the orthogonal direction of

modes 1 and 3.

Figure 82b shows the response from the estimator for the second impulse. Again mode

1 is excited the most since the impulse is in the direction of its mode shape. Similarly to

Figure 81b, the magnitude of mode 1 damps out relatively fast due to imperfect clamping
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Figure 82: Response to Impulses at q3 = 360○

at the joints.

Figure 82c shows the response to the third impulse. It can be seen that all of the modes

are present in the response. Unlike in Figure 81c, mode 3 retains it magnitude for longer

since its frequency is lower in this con�guration than the previous one. Recall that the

con�guration-dependent frequencies were presented in Section 4.4.

During all of these tests the estimator responded to the disturbances in the order on

milli-seconds. Taking into account the locations and directions of the impulses, and the

mode shapes, all of the responses made sense physically. Therefore, it can be concluded

that the estimator is a suitable disturbance observer.
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Figure 83: Modeled and Experimental Modal Amplitudes for Move 1

5.6.2 Motion Tests

In order to experimentally validate the estimator during the motion of the arm, three

motions were tested. The same three motions that were used in Section 4.5.2 were used for

this evaluation.

During move 1 all joints are given a bang-bang acceleration command resulting in a

change of 1 rad for each joint. The duration of the motion is 1 s. Joint q1 moves from 0

to -1 rad, joint q2 moves from 1 to 2 rad, and joint q3 moves from 5.2 to 4.2 rad. Figure

83 shows how the modal amplitudes, obtained from simulating the motion using recorded

data, match the experimentally obtained ones. Mode 1 slightly lags the model; however,

the amplitudes match well. The experimentally obtained Mode 2 data slightly leads the

modeled data and has a similar magnitude. Mode 3 data does not match well between the

model and the experiment. However, their amplitudes are very low compared to modes 1
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Figure 84: Modeled and Experimental Modal Velocities for Move 1

and 2, and do not have a big e�ect on the end-e�ector position.

Figure 84 shows the modal velocities from simulating move 1 using recorded data, and

the experiment. The experimentally obtained mode shape lags the simulated one, but has

a similar amplitude. There is a region of fast vibrations at around the 1 second mark. This

is due to the noisy calculation of the second derivative of the encoder position. The value

is then used in the estimator model and in the simulation. The experimentally obtained

mode 2 leads the simulated data but has similar magnitudes. The experimentally obtained

mode 3 is not zero mean in the transient motion phase. This is due to imperfect gravity

compensation of the accelerometers, and the high pass �lter not being able to get rid of the

o�set terms fast enough. Interestingly, the frequency in the third mode follows mode 1 after

2 seconds. This might also be an artifact of the improper gravity compensation.

Move 2 is a planar move where joint q1 remains stationary, joint q2 moves from 1 to 2

rad, and joint q3 moves from 6.28 to 5.28 rad. Figure 85 shows the experimentally-obtained
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Figure 85: Modeled and Experimental Modal Amplitudes for Move 2

modal amplitudes and those obtained by simulating the model. In this, move only the �rst

mode is excited. The experimentally obtained modal amplitude matches the simulation well.

After the transient phase, the frequency is slightly lower than the simulated one. This is

consistent with the results from move 1. The second and third modes are, theoretically, not

excited. Their experimental values are 2 orders of magnitude lower than mode 1 and do not

perceivably a�ect the motion of the tip.

During move 3 joints q2 and q3 are held stationary and joint q1 moves from 0 to -1 rad. As

described in Section 4.5.2, the accelerometer readings obtained from this move did not match

well with the simulation. It can be seen that the experimentally-obtained mode 1 and mode

2 data match their simulated counterparts well. The experimental mode 3, however, has a

much lower amplitude after the transient phase when compared to the simulation. Because

mode 3 has a big in�uence in the accelerometer readings, the accelerations presented in

Section 4.5.2 are inaccurate. However, only mode 3 that is damped out due to an modeled

e�ect. The same kind of behavior could be seen with the di�erent move time and distances.
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Figure 86: Modeled and Experimental Modal Amplitudes for Move 3

Overall, the estimator works well. The modal discrepancies seen in this section can be

explained by the accelerometer readings presented in Section 4.5.2 and vice-versa. Noted

that it took a considerable amount of e�ort �ne tuning the initial conditions for the estimator

to make it numerically stable. Furthermore, during some experiments it would go unstable.

This behavior was not consistent and usually re-running the experiment would correct the

problem. Additionally, the model for the accelerometers requires joint acceleration, that is

generally not smooth after two derivatives from the encoder readings. Aggressive low-pass

�ltering helps smooth the signal, but also introduces a phase lag into the system and does

not allow genuine fast acceleration signals through.

Additional plots from modal velocities can be found in Appendix G.3.
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5.7 Chapter Summary

In this chapter, a novel use of Kalman �ltering techniques was used to estimate the

�exible states for a multi-link spatial �exible robot arm using data from accelerometers and

strain gages. The use of a very e�cient model for �exible robots allows real-time computation

when using a modern computer. The �lters were proven to be robust to various errors in

the signals and the model.
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Chapter VI

CONTROL OF FLEXIBLE SERIAL MANIPULATORS

For rigid robot arms, the controller be can generated with feedback linearizion to cancel

the robot's dynamics. The controllers for �exible robot arms are more complicated, because

the controller also has to minimize oscillations. The most challenging problem in the design

of controllers for �exible link manipulators is under actuation and non-minimum phase

dynamics. Under actuation occurs because there are only a �nite number of actuators to

control the in�nite degrees of freedom that arise from link �exibility.

A high-level block diagram of the proposed controller is shown in Figure 87. The trajec-

tory generator gives the desired positions, velocities, and accelerations along the entire move

based on solving the inverse kinematics problem. The command generator is an open-loop

controller that modi�es the original trajectories, such that signi�cant �exure induced by the

joint motion will be suppressed. The drawback of using this control element is that the

command duration increases. The feedback controller forces the robot to follow the prescri-

bed trajectory and reduces oscillations in the arm due to disturbances. The state observer

estimates the �exible states for use in the feedback controller.

Command 
Generation

State 
Observer

Feedback 
Controller

Manipulator
yu

Ƹ𝑧

e
+

Trajectory 
Generation

𝑞, ሶ𝑞, ሷ𝑞 -

Figure 87: Controller Schematic
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Figure 88: Input Shaping Process

6.1 Open Loop control of Flexible Serial Manipulators

Open loop control can play a vital role in the system's response since, if designed properly,

the unwanted system dynamics can be reduced signi�cantly. It has been shown that input

shaping has the lowest rise time in addition to being one of the most robust open-loop

techniques available. The lowest rise time is given priority since move speeds are one of the

main reasons why one might want to use �exible robot arms instead of rigid alternatives.

6.1.1 Input Shaping

Input shaping convolves the baseline input command with a series of impulses at speci�c

time intervals. The result is a shaped command that is a little slower than the original

command, but greatly reduces residual vibration. This process is illustrated in Figure 88.

In order to determine the impulse amplitudes and time locations of an input shaper,

certain design constraints must be satis�ed. The primary design constraint is a limit on the

amplitude of vibration caused by the shaper. The normalized, percentage residual vibration

(PRV) amplitude of an under-damped, second-order system from a sequence of n-impulses

is given by [121]:

PRV = V (ω, ζ) = e−ζωtn
√

[C(ω, ζ)]2 + [S(ω, ζ)]2 (187)
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where,

C(ω, ζ) =
n

∑
i=1
Aie

ζωti cos(ωti
√

1 − ζ2) (188)

S(ω, ζ) =
n

∑
i=1
Aie

ζωti sin(ωti
√

1 − ζ2) (189)

and ω is the natural frequency of the system, ζ is the damping ratio, and Ai and ti are the

ith-impulse amplitude and time, respectively.

Equation (187) gives the ratio of vibration with input shaping to that without input

shaping. A constraint on residual vibration amplitude can be formed by setting (187) less

than or equal to a tolerable level of residual vibration at the estimated natural frequency

and damping ratio. For the simplest Zero Vibration (ZV) shaper, the tolerable amount of

vibration is set to zero. This results in a shaper of the form [121,125]:

ZV =

⎡⎢⎢⎢⎢⎢⎢⎣

Ai

ti

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1+K

K
1+K

0 π

ω
√
1−ζ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (190)

where,

K = e
−ζπ√
1−ζ2 . (191)

The sensitivity of the shaper that has been calculated for 1 Hz can be seen in Figure 89.

Note that the response is not only zero at 1 Hz but also at its odd number multiples (3,5,7...

Hz). The slope of the PRV curve near 1 Hz is relatively steep, which means that if the

frequency of the system is not known very well, then the resulting response might be poor.

However, if the frequency is known well, then the response will have minimal oscillations.

The downside of convolving the baseline command with this shaper is that the command

duration has increased by half the period of the unwanted frequency.

6.1.2 Multi-Mode Shaping

Because there can be several signi�cant modes in a �exible robot arm, an input shaper

designed for a single frequency is generally not enough to suppress the vibration. Input

shapers designed for individual modes can be convolved together to create a multi-mode
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Figure 90: Convolving 2 ZV Shapers Together

input shaper. An illustration on how two ZV shapers are convolved together can be seen in

Figure 90. Figure 91 shows the PRV graph of a two mode input shaper that was derived

from a ZV shaper for 1Hz and a ZV shaper for 2.5 Hz. It can be seen that the vibration is

exactly zero at those targeted frequencies. Note that the PRV curve is also generally lower

than in Figure 89. The biggest downside of convolving 2 shapers together is that the shaper

length is the sum of the the length of the individual shapers, and therefore, all commands

will last longer.
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6.1.3 Speci�ed Insensitivity Shaping

Although, robust expansions of the ZV shaper such as ZVD, EI, etc. exist, and they

have been used in numerous instances where the natural frequencies of the system are not

well known, they are not necessarily robust enough for large variations in natural frequency

during a motion of a �exible robot arm. Directly convolving shapers together, as in the

previous section, with the goal of having a PRV curve that has a low magnitude at all of

the possible natural frequencies the robot arm might have, will most likely increase the rise

time to unacceptable durations. This is a poor choice because one of the main reasons to

use a �exible robot arm is the increased speed of motion.

A better approach would be to use a speci�ed insensitivity (SI) shaper. The most

straightforward method for generating a shaper with speci�ed insensitivity to frequency

errors is to use the frequency-sampling technique. This method requires repeated use of

the vibration amplitude equation (187). In each case, V (ω, ζ) is set less than or equal to a
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tolerable level of vibration Vtol:

Vtol ≤ e−ζωtn
√

[C(ωs, ζ)]2 + [S(ωs, ζ)]2, s = 1, ...,m, (192)

where m is the number of points at which the vibration is limited. The other constraints

for �nding an SI shaper are:

� All of the amplitudes are positive (Ai > 0)

� The sum of all amplitudes in the shaper must equal 1 (∑ni=1A1 = 1)

� Minimize the time location of the last amplitude (min(tn))

Note that although in general Ai can be negative, this approach has the potential drawbacks

of exiting unmodeled high modes and saturating the actuators.

A more thorough derivation of SI shapers can be found in [124].

If there are multiple ranges of frequencies that must be suppressed then, (192) can be

de�ned for each of those frequency ranges. Increasing m on each of those ranges increases

the number of constraint equations that need to be solved for.

An algorithm for suppressing n frequency ranges with an SI shaper is:

1. De�ne frequency ranges ωimin - ωimax , damping ζi, and tolerable amount of residual

vibration Vtoli , i = 1,2, ...n

2. De�ne the insensitivity points Ii on each frequency range i where Vtoli will be calculated

3. Crate an initial guess for the shaper amplitudes and their time locations. For example

convolving together n EI shapers designed for the average frequency in range i (ωavg =
ωibegin−ωiend

2 ). This gives in amplitudes Aj and time locations tj , j = 1,2...max(j)

4. Minimize tmax(j) with constraint equations Vtol(Ii) < Vtoli , Aj > 0, tj > 0, ∑max(j)j=1 Aj =

1, t0 = 0

5. Remove all amplitudes Aj < εA and sum Aj and Aj+1 if (tj − tj+1) < εt. Go to step 4

with this new initial guess if any any changes in impulses, end algorithm otherwise.
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Figure 92: SI Shaper for 3 Frequency Ranges

In the algorithm, Aj and tj are the amplitudes and time locations of impulse j, with 1 = 1,2...;

ωimin is the start of frequency range i, ωimax is the end of frequency range i; ζ is the damping

of the ith frequency range; εA is the lowest impulse amplitude allowed and εt is the shortest

time duration allowed between the impulses.

Figure 92 shown the PRV curve for a SI shaper designed for frequency ranges of:

� ω1min = 3, ω1max = 4, ζ1 = 0, Vtol1 = 5%

� ω2min = 9, ω2max = 13, ζ2 = 0, Vtol2 = 5%

� ω3min = 20, ω2max = 24, ζ3 = 0, Vtol3 = 5%

It can be observed that the PRV value is under the 5% line in those frequency ranges and

variable elsewhere. The duration of the shaper is 0.3192 s. For comparison, an ZV shaper

designed for 3.5 Hz has a duration of 0.1429 s. A more robust EI shaper designed for 3 Hz

has a duration of 0.286 s. Designing EI shapers for the midpoints of the frequency ranges

results in a shaper of with a PRV Curve that can be seen in Figure 93. The EI shaper for 3
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Figure 93: EI Shaper for 3 Frequency Ranges

modes generally has a PRV magnitude that is lower that the one for the SI shaper, however

the duration of the shaper is 0.422 s, that is 38% longer than the SI shaper. Furthermore

the EI shaper does not guarantee that the entire frequency range is under the required Vtol

line.

6.1.4 Optimal SI Shaping For Flexible Arms

In the previous section a routine was presented to create an SI shaper that e�ectively

cancels out vibration from all of the signi�cant modes. How to optimally choose the Vtol

levels is discussed next.

In Chapter 3 the equations of motion governing the �exible robot were:

⎛
⎜⎜
⎝

Mqq(q) Mqδ(q)
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⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q̈

δ̈

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

Cr(q, q̇, δ̇)

Cf(q, q̇, δ̇)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q̇

δ̇

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0 0

0 Kδδ(q)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q

δ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

τ

0

⎞
⎟⎟
⎠

(193)

It can be seen that the joint states q are coupled to the �exible states, δ, through matrices

M , and C. Matrix C a�ects the vibrations non-linearly and input-shaping will not directly
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be able to cancel out the contributions from that matrix because the method relies on

the super-position principle holding. In addition, in numerous �exible robot experiments,

Coriolis and centrifugal forces have been neglected from the equations of motion since they

do not have a large e�ect [46,76]. Writing out the second row of (193) shows how the �exible

and rigid states are coupled:

δ̈ +Kδδ(q)δ = −MT
qδ(q)q̈ (194)

Therefore, MT
qδ(q) determines which modes get excited what their contribution are overall

response.

If the desired trajectory, qd is known before hand then (194) can be used to determine

the Vtol levels based on −MT
qδ(q)q̈. Furthermore the de�ection of a point p at time t is

calculated as:

w(p, t) =
m

∑
j=1

wj(p)δj(t), (195)

where m is the number of considered modes, wj(p) is the displacement of mode j at point p,

and δj is the jth modal amplitude. However note that, as described in Chapter 3, the mode

shapes wj for �exible manipulators change with the con�guration q. The direct method

for �nding the contributions of each mode at the end of the motion would be to integrate

(194) and evaluate the amplitudes of δ at the end of the trajectory. Such a calculation,

however, can be cumbersome to perform. An approximation for this method would be to

simply calculate:

r = ∫
tf

t0
∣MT

qδ(qd(t))∣∣q̈d(t)∣dt ⋅wij(p) (196)

where r is the column vector of relative contributions from each mode; t0 is the start time

of the trajectory, tf is the end time of the trajectory; qd is the desired trajectory; i is the

link where point p lies, and

wij(p) =
√

(wijx(p))
2
+ (wijy(p))

2
+ (wijz(p))

2

∣qf
(197)

is the total modal displacement evaluated at the end of the desired trajectory qf . Assuming

that mode j has the highest value in the vector r, then Vtolr is set to V , the Vtol values for

the rest of the modes s can be assigned based on the relative di�erence in r:

Vtols =
rj

rs
V, Vtols <= 1 (198)
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Figure 94: Optimized SI Shaper for 3 Frequency Ranges

When rs = rj , then Vtols = Vtolj . If rs → 0 then Vtols = 1.

Using the example from the previous section and assuming that the relative contributions

for a trajectory are r = [4 2 0.3]T . Then, Vtol1 = 0.05, Vtol2 = 0.05, Vtol3 = 0.67. The

corresponding shaper will have a duration of 0.30 s. This is 6% shorter than the shaper

without the optimal Vtol values and is only 5% longer than an EI shaper designed for 3.5

Hz, which is an optimal shaper for that frequency when only positive impulses are used.

Figure 94 shows the resulting PRV curve of the optimized SI shaper. Notice that the overall

PRV curve has shifted upwards in most areas but is still lower than Vtol at the corresponding

frequency ranges. Although, it is well known that the higher modes have a lower e�ect

on the magnitude of the oscillations than the lower modes, it is worth noting that in real

systems damping will also play a role. The curve of e−ζωnt is the envelope function under

which the oscillations occur, as illustrated in Figure 95.

For example, assuming that mode 3 has a damping ratio of ζ = 0.05, the contribution

from that mode would damp down to 5% of its original amplitude in 0.73 seconds. That is
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Figure 95: Free Response of an Under Damped Second Order System

about 3 periods of Mode 1 in this example. Therefore, even if the higher modes are excited

they will damp down very fast and having a high Vtol �r mode 3 is appropriate.

Although the previous example only gave a 6% reduction in shaper length it's true value

of the technique will become evident when it is determined that a low mode is not excited

during the motion. Assigning Vtol1 = 0.99, Vtol2 = 0.05, Vtol1 = 0.05 yields a shaper with a

duration of 0.11 s that is 64% shorter than if we had included a limitation on mode 1.

6.1.5 Case Study

In order to illustrate the e�ectiveness of the input-shaping control algorithm, experiments

in both simulation and real hardware were conducted.

6.1.5.1 Simulations

The motions and the manipulator parameters for the simulation study are the same ones

as used in Section 3.3.7.1. The natural frequencies of the system are shown in Figure 96.

Only the �rst three modes are taken into consideration.

During move 1, all the joints move from 0 to -57○ (-1 rad). The frequencies during

the motion change in the range shown in Table 14. Calculating the relative de�ection

contributions of each mode using (196) yields the normalized (with respect to the highest

contribution) r values of [0.647 1 0.13]. This means that the second mode has the biggest
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Figure 96: Natural Frequencies of the Robot Arm vs q3

Table 14: Frequency ranges for Moves 1 and 2

min max
ω1 6.64 8.26
ω2 9.36 11.9
ω3 23.36 35.21

in�uence in the response, the �rst mode has a slightly lower signi�cance, and the third mode

has the lowest signi�cance Therefore based on (198) Vtol1 = 0.078, Vtol2 = 0.05, Vtol3 = 0.36.

The shaper duration is 0.87 s. Figure 97 shows the comparison between the shaped and

unshaped responses for move 1. In Figure 97a the unshaped response is shown and it

shows that the tip of the arm oscillates in every direction. Figure 97b shows a much better

response where the oscillations have almost completely been canceled due to input shaping.

A small amount of residual oscillation exists in the response due to non-linear e�ects and

the non-zero value of Vtol that were used to design the shaper.

During move 2, joints 2 and 3 move from 0 to -57○ (-1 rad) and joint 1 is stationary,

so the motion is fully planar. Because the trajectory for q3 is the same as for move 1 the

natural frequencies are the same as well and can be seen in Table 14. However, during this
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Figure 97: Move 1 Tip Position

motion the relative de�ection contributions are r=[0 1 0]. Therefore, Vtol1 = 1, Vtol2 = 0.05,

Vtol3 = 1. The shaper duration is 0.53 s, which is 40% shorter than the one used for move

1. Figure 98 shows the comparison between the shaped and unshaped responses for move 2.

Figure 98a shows the unshaped response and it can be seen that the tip of the arm oscillates

in the X and Y directions. Figure 98b shows an improved response where almost all of the

residual vibrations has been eliminated. Since this motion was planar, the non-linear e�ects

have not in�uenced the motion much and the response is cleaner compared to move 1.

During move 3, joint q1 moves from 0 to -180○. The natural frequencies do not change

during this motion because q3 is stationary. The natural frequencies for this motion are

ω1 = 8.26 ω2 = 11.93, ω3 = 23.37, rad/s, however it is a good idea to add a range (for

example ±20% ) around those frequencies to the shaper calculation, since the model will

always have errors. The relative contributions from the modes are r=[1 0 0.38]. Therefore,

Vtol1 = 0.05, Vtol2 = 1, Vtol3 = 0.13. The duration of the shaper is 0.39 s, which is 55% shorter

than during move 1 and 27% shorter than during move 2. Figure 99 shows the comparison

between the shaped and unshaped responses for move 3. Figure 99a shows the unshaped

response where the tip oscillates mainly in the Y direction. Figure 99b shows the shaped

149



0 1 2 3 4 5

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2
P

o
s
it
io

n
 (

m
)

FEA X FEA Y FEA Z X Y Z

(a) Unshaped

0 1 2 3 4 5

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
o
s
it
io

n
 (

m
)

FEA X FEA Y FEA Z X Y Z

(b) Shaped

Figure 98: Move 2 Tip Position
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Figure 99: Move 3 Tip Position

response and where most of the residual vibration has been canceled out.

6.1.5.2 Experiments

Input shaping was applied to the test bed described in Chapter 4. The motions used in

section are the exact same ones used to validate the test bed.
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Figure 100: Unshaped vs Shaped Response For Move 1

During move 1, all joints are given a bang-bang acceleration refernce command resulting

in a change of 1 rad for each joint. Joint q1 moves from 0 to -1 rad, joint q2 moves from

1 to 2 rad, and joint q3 moves from 5.2 to 4.2 rad. The parameters to calculate the input

shaper are given in Table 15. Robustness of ±20% was given to each frequency range.

Table 15: Frequency Ranges for Move 1

min max Vtol
ω1 1.9 1.95 0.05
ω2 2.5 2.5 0.25
ω3 9.0 11.2 0.74

Figure 100 shows the accelerometer readings from both the shaped and the unshaped

cases. It is clear that input shaping has signi�cantly reduced the vibration amplitude in

both the transient and residual motion phases.

Utilizing the estimator presented in Chapter 5, the position of the tip can be estimated
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Figure 102: Unshaped vs Shaped Response For Move 2

based on the mode shapes and modal amplitudes during the motion. Figure 101 shows the

magnitude in all spatial directions summed (mag =
√

(x2 + y2 + z2)) of the tip oscillation.

During the transient phase the input shaper reduced the vibration by 75% and about 80%

during the residual period.

Move 2 is a planar move where joint q1 remains stationary, joint q2 moves from 1 to 2

152



0 1 2 3 4 5 6

Time (s)

0

0.01

0.02

0.03

0.04

0.05

|T
ip

 D
e
fl
e
c
ti
o
n
(m

)|

Unshaped Shaped

Figure 103: Shaped vs Unshaped Tip De�ection Move 2

rad, and joint q3 moves from 6.28 to 5.28 rad. The parameters to calculate the input shaper

are given in Table 16. Robustness of ±20% was given to each frequency range.

Table 16: Frequency Ranges for Moves 2

min max Vtol
ω1 1.93 1.95 0.05
ω2 2.45 2.5 1
ω3 9.0 11.2 1

Figure 102 shows the accelerometer readings from both the shaped and the unshaped

cases. It can be seen that in the X axis the shaped response has a much lower amplitude

than the unshaped one. The magnitude in the Y axis is near the sensor noise level for both

cases. The acceleration in the Z axis is much lower with input shaping. Figure 103 shows

the magnitude of the tip oscillation for both the shaped and the unshaped cases. During

the transient phase the input shaper reduced the vibration by about 90% and about 85%

during the residual period.

During move 3 joints, q2 and q3 are held stationary and joint q1 moves from 0 to -1

rad. The parameters to calculate the input shaper are given in Table 17. Robustness of
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Figure 105: Shaped vs Unshaped Tip De�ection Move 3

±20% was given to each frequency range. Figure 104 shows the accelerometer readings from

both the shaped and the unshaped cases. As described in Section 4.5.2, the accelerometer

readings obtained from this move did not match well with the simulated one. It can be

seen that input shaping is not as successful at canceling oscillations as with moves 1 and

154



Table 17: Frequency Ranges for Moves 3

min max Vtol
ω1 1.93 1.93 1
ω2 2.5 2.5 0.05
ω3 9.5 9.5 0.16

2. However, the magnitude of the accelerations in each axis has been lowered signi�cantly.

Figure 105 shows the magnitude of the tip oscillation for both the shaped and the unshaped

cases. During the transient phase the input shaper reduced the vibration by about 70% and

about 60% during the residual period.

6.1.6 Summary Of Open Loop Control

In this section open an open loop controller based on input shaping was presented. The

design of the input shaper intelligently takes into consideration what frequency ranges are

signi�cant during the planned trajectory and reduces both transient and residual oscillations.

This method was proved to be e�ective both in a simulation study with comparisons to FEA

models, and in experiments.

6.2 Feedback Control of Flexible Serial Manipulators

The previous section illustrated that if the model is known relatively well, and there are

no disturbances, then open-loop control can be used to e�ectively move a �exible arm from

one location to the next without much residual vibration. In the presence of larger model

error and/or disturbances feedback control is required to damp out the oscillations in the

arm.

6.2.1 Modal controllability

Before control algorithms can be presented, the controllability for �exible robot arms

must be discussed. The equations of motion that were derived in Chapter 3 are:

⎛
⎜⎜
⎝

Mqq(q) Mqδ(q)

MT
qδ(q) I

⎞
⎟⎟
⎠

⎛
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⎝

q̈

δ̈

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

Cqq(q, q̇, δ̇) Cqδ(q, q̇, δ̇)
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q

δ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

τ

0

⎞
⎟⎟
⎠
(199)
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Writing out the second row yields the di�erential equation governing the �exible variables

δ:

δ̈ +Cδδ(q, δ̇)δ̇ +Cδq(q, δ̇)q̇ +K(q)δ + gδ(q) = −Mqδ(q)q̈ (200)

Without the loss of relevance the Cδδ and Cδq terms that contain the centrifugal and Coriolis

terms, and g containing the gravity terms are excluded from the controllability analysis.

The centrifugal and Coriolis terms only a�ect the system when relatively high velocities are

present in the system. Additionally, as many other researchers have noted, those terms do

not have a large e�ect on the response of the system [46,76]. Therefore this section presents

a conservative estimate of controllability.

From (200) it can be seen that the �exible states (δ), and the rigid states q are coupled

through matrix Mqδ(q). The state space form of (200) is:

⎡⎢⎢⎢⎢⎢⎢⎣

δ̇

δ̈

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 I

−K(q) 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

δ

δ̇

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

0

−Mqδ

⎤⎥⎥⎥⎥⎥⎥⎦

q̈ (201)

In short form, (201) is:

ẋ = A(q)x +B(q)u, (202)

where A is of dimension 2m × 2m and B is of dimension 2m × n; m is the number of

modes considered, and n is the number of joints. A and B are con�guration dependent and

therefore, the controllability is con�guration dependent as well. The controllability matrix

Gc is de�ned as

Gc(q) = [B,AB⋯A2m−1B] (203)

If rank(Gc(q)) < 2m then at least one mode is not controllable.

Unfortunately, the rank condition does not give any information about which modes

are not controllable. However, because K(q) is always diagonal, the entries in Mqδ can

be evaluated to physically interpret the "accessibility" of the modes. The accessibility of

a mode i depends on the elements in row i of Mqδ(q). If all the elements are zero, then

none of the joints can have any e�ect on mode i. The larger the relative magnitude of the

elements in Mqδ, the more accessible the mode is. Therefore, system is fully controllable at
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con�guration q if the Mqδ(q) has non-zero entries on each row. The accessibility index [77]

of mode i at con�guration q can be de�ned as a norm of the ith row of Mqδ(q):

ai(q) = sqrt (Mqδi(q) ⋅ (Mqδi(q))
T ) , (204)

where, Mqδi(q) is the i
th row of matrix Mqδ(q). Therefore the accessibility index serves as

a con�guration-dependent measure of controllability for the modes.

6.2.1.1 Case Study

Consider the 2 link robot model presented in Section 3.3.7. To investigate the control-

lability of the modes, the accessibility indexes are needed. To physically understand the

indexes we need to look at the mode shapes of the system and how they change with the

change of the con�guration. Figure 106 shows the arm at a vertical con�guration with

q2 = 90○ and q3 = 270○. It can be seen that mode 1, shown in Figure 106a, has displacements

in the direction of the joints (i.e perpendicular to the motion they cause). Mode 2, shown

in Figure 106b, is in the direction of the joint motion. Mode 3, shown in Figure 106c, is in

the same direction as mode 1, so it should also not be a�ected by any motion of the joints.

Figure 107 shows the mode shapes in the con�guration q2 = 90○ and q3 = 225○. It can be

seen that the overall shape of the modes has not changed greatly, however, mode 1, shown in

Figure 107a, and mode 3, shown in Figure 107c, should now be more susceptible to changes

in joint q1.

The magnitude of q1 does not in�uence the accessibility index for any of the modes.

Figure 108 shows the accessibility index for the �rst mode. It can be seen that the acces-

sibility of the �rst mode is largely dependent on q2. When q2 is near 90○ the �rst link of

the arm is directly under q1 and, therefore, it cannot have an e�ect on it. When q2 = 90○

and q3 = 270○ the mode is not accessible. As can be seen in Figure 107a the mode is exactly

orthogonal to the motion of all of the joints. When q2 changes from 90○, the mode shape

becomes accessible by joint q1, as is illustrated in Figure 107a.

Figure 109 shows the accessibility index for mode 2. It can be seen that q3 has a small
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(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 106: First Three Modes at q2 = 90○, q3 = 270○

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 107: First Three Modes at q2 = 90○, q3 = 225○

e�ect on accessibility, and q2 has no e�ect. Therefore, the mode can be controlled throughout

the workspace. This makes physical sense since this mode is in the direction of joint q2 and

q3, as was seen in Figures 106c and 107c.
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Figure 110 shows the accessibility index for mode 3. The accessibility of the mode is

similar to mode 1. The accessibility is mostly dependent on q2. When q2 = 90○ and q3 = 270○,

the mode is not accessible. As can be seen in Figure 107c, the mode is exactly orthogonal

to the motion of all of the joints. When q2 changes from 90○, the mode shape is accessible

by joint q1, as was illustrated in Figure 107c.

Therefore, the trajectory of the �exible robot must be carefully chosen such that at

least the end-con�guration allows for vibration controllability. Additionally, the controllers

could leave the uncontrollable con�gurations to ones where the excited modes are accessible
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and then return to the uncontrollable con�gurations using a open loop controller so that

additional vibrations would not be created.

6.2.2 Inversion Based Control

The feed-forward and computed torque methods used to control traditional serial mani-

pulator arms are not necessarily guaranteed to be stable along arbitrary trajectories. The

aim of this section is to provide a stable controller for joint trajectory tracking. This con-

troller will not focus on damping out the oscillations in the arm. However, using this type

of controller, in conjunction with an open-loop controller such as input-shaping can signi�-

cantly reduce the transient and residual �exure in the arm, while guaranteeing stability of

the joint trajectories.

Trajectory tracking for multi-input/multi-output nonlinear systems is most often done

with input-output inversion control techniques. The premise of the method is that based

on the output of the system, a nonlinear state feedback controller is designed so that the

resulting closed-loop controller transforms the system into a linear one with a nonlinear

feed-forward term. The stability of the system is determined based by stability of the

unobservable, also known as, zero-dynamics. Recall from Chapter 3 that the equations of
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motion of a �exible robot arm are:

⎛
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(205)

From the second row the "�exible" subsystem is:

δ̈ = −Cδq(q, q̇, δ̇)q̇ −Cδδ(q, q̇, δ̇)δ̇ −K(q)δ −MT
qδ(q)q̈ (206)

Plugging (206) in to the top row of (205) yields the following relation:

Mqq q̈ +Mqδ(−Cδq q̇ −Cδδ δ̇ −Kδ −MT
qδ q̈) +Cqq q̇ +Cqδ δ̇ = τ (207)

Grouping terms leads to:

(Mqq −MqδM
T
qδ)q̈ +Cqq q̇ +Cqδ δ̇ −Mqδ(Cδq q̇ +Cδδ δ̇ +Kδ) = τ (208)

It can be shown that (Mqq −MqδM
T
qδ) has full rank by using the fact that the full inertia

matrix has full rank and using Sylvester's rank equality property of the right side of the

following expression:

⎡⎢⎢⎢⎢⎢⎢⎣

Mqq Mqδ

MT
qδ I

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

I 0

−MT
qδ I

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

Mqq −MqδM
T
qδ Mqδ

0 I

⎤⎥⎥⎥⎥⎥⎥⎦

(209)

Input-Output linearization works by di�erentiating a desired output y until the input u

directly appears in the equations. Per (208), the input torques τ are already on the same

di�erential level as the joint accelerations q̈. Therefore, the input torques τ can be directly

obtained from (208):

τ = (Mqq −MqδM
T
qδ)v +Cqq q̇ +Cqδ δ̇ −Mqδ(Cδq q̇ +Cδδ δ̇ +Kδ) (210)

where v = q̈d.

For this control law to work, measurements or estimates of states q, q̇, δ, and δ̇ are

required. By plugging (210) into (208) we �nd the input-output linearized form:

q̈ = v (211)
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The "�exible" subsystem, which is also the unobservable dynamics, is therefore:

δ̈ = −Cδq(q, q̇, δ)q̇ −Cδδ(q, q̇, δ)δ̇ −K(q)δ −MT
qδv (212)

Trajectory tracking will be achieved by stabilizing the system with:

v = q̈d +Kd(q̇d − q̇) +Kp(qd − q), (213)

Where Kd > 0 and Kp > 0 are the feedback matrices that will stabilize the linear system

shown in (211). Note that, unlike many other inversion-based methods, there is not a single

inverted matrix present in the control law.

6.2.2.1 Stability Analysis

To prove the asymptotic stability along any trajectory q̈d, the stability of (206) must be

investigated. The equation can be represented in the following form:

δ̈ = −Cδδ(q, q̇, δ)δ̇ −K(q)δ + u, (214)

where u = −Cδq(q, q̇, δ)q̇−MT
qδv can be treated as a disturbance to the system. Constraining

the input to the system to a constant, and without the loss of generality, zero. Equation

(214) is simpli�ed to:

δ̈ = −Cδδ(q, q̇, δ)δ̇ −K(q)δ (215)

Recall that Ṁ − 2C is by de�nition skew symmetric, and because Mδδ = I, its derivative is

0, and therefore, Cδδ is skew symmetric. In the following derivation Cδδ ≡ C and K(q) ≡K.

De�ning

x = δ̇ + αδ, (216)

where, α is a constant whose magnitude is to be determined. Writing out δ̇ from (216)

yields:

δ̇ = −αδ + x (217)

Taking the derivative yields:

δ̈ = −αδ̇ + ẋ = α2δ − αx + ẋ (218)
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Therefore, rewriting (215) by inserting (217) and (218) leads to:

α2δ − αx + ẋ +C(−αδ + x) +Kδ = 0 (219)

Grouping terms gives:

ẋ + (C − αI)x + [K −Cα + α2]δ = 0 (220)

Rearranging yields:

ẋ + D̄x + K̄δ = 0 (221)

For non-linear system the Lyapunov's second method is a useful tool for stability analysis.

The method requires that a positive de�nite candidate function, V , be de�ned, then its

derivative, V̇ , determines the stability [74]. The following Lyapunov candidate can be used

to prove that the origin of the system δ = δ̇ = 0 of the system (214) is stable:

V = xTx + δT K̄δ, (222)

Taking derivative of the Lyapunov function (222) and inserting it into (221) and (217)

yields:

V̇ = 2xT ẋ + 2δT K̄δ =

= −2xT D̄x −����
2xT K̄δ +����

2δT K̄x − 2αδT K̄δ + δT K̇δ

= −xT D̄x − δT (2αK̄ − K̇)δ

(223)

Recall that

D̄ = C − αI, (224)

where C is skew symmetric and alpha is a constant. Therefore, α > 0 guarantees that:

xT D̄x > 0 (225)

Therefore, the condition that guarantees the asymptotic stability of the system is:

(2αK̄ − K̇) > 0 (226)

Because K ≡K(q), (226) de�nes the bounds for q̇ that the joint trajectories have to satisfy.

Furthermore, the system is exponentially stable if the following relation can be established

[74]:

V̇ − γV = 0 (227)
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Figure 111: Joint Angles For Move 1

This can be achieved by enforcing the conditions:

xT D̄x ≥ λmin(xTx) (228)

and,

2αK̄ − K̇ ≥ β (229)

De�ning:

γ =min(λmin(xTx), β) (230)

This is called exponential stability since:

V (t) ≤ e−γtV (0) (231)

Input-to-State Stability can be inferred from the exponential stability [149]. Furthermore,

real systems have modal damping which further ensures the stability of the system.

6.2.2.2 Case Study

Consider the model of the two-link spatial robot presented in Section 3.3.7. The gain

matrices in (210) are Kp = diag(1,1,1)Nm/rad and Kd = diag(2,2,2)Nms/rad. In order

to illustrate the behavior of the inversion-based controller, three characteristic moves are

performed in simulation.
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Figure 112: Torques For Move 1
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Figure 113: Tip Response to Move 1

Move 1 is performed by giving all joints a bang-bang acceleration that results in a change

of 1 rad for each joint. The duration of the motion is 2 s. Joint q1 moves from 0 to -1 rad,

joint q2 moves from 1 to 2 rad, and joint q3 moves from 6.2 to 5.2 rad. Figure 111 shows

that the actual joint values, qi, follow the desired joint values, qd, well.

The torques that are required to perform the motion are shown in Figure 112. It can be

seen that the torque amplitudes remain constant in steady state. This is due to the �exure

not damping out.

Figure 113 show the response of the tip to move 1. Figure 113a shows the tip position
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Figure 114: Joint Angle Errors for Move 1 for Traditional Feed forward Control Control
Law

in the inertial frame and Figure 113b shows the tip de�ection. Due to the joint remaining

constant there is nothing that damps out the oscillations.

Figure 114 shows the joint motion for the same desired trajectory using the well known

feed-forward control law for serial robots:

τ =Mqq (q̈d +Kd(q̇d − q̇) +Kp(qd − q)) +Cqq q̇, (232)

where, qd is the desired joint position and q is the actual joint position. The same values

of Kp and Kd are used in (232) as in (210). It can be seen that the oscillations in the arm

cause perturbations in the joint position, in contrast to the control law presented in this

section that allows for very precise joint trajectory tracking.

Simulations were also performed of move 2, where, joint q1 remains stationary, joint q2

moves from 1 to 2 rad, and joint q3 moves from 6.28 to 5.28 rad; and of move 3, where,

joints q2 and q3 are held stationary and joint q1 moves from 0 to -1 rad. The results are

analogous to move 1 and are shown is Appendix H.1.

6.2.3 Singular Perturbation based control

The inversion-based controller presented in the previous section was not designed to di-

rectly damp out vibration, rather, provided a stable joint trajectory response in the presence

of �exure. In this section, a controller that is designed to actively damp out oscillations is
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presented. The equations of motion, that were derived in Chapter 3 are:

⎛
⎜⎜
⎝

Mqq(q) Mqδ(q)

MT
qδ(q) I

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q̈

δ̈

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

Cqq(q, q̇, δ̇) Cqδ(q, q̇, δ̇)

Cδq(q, q̇, δ̇) Cδδ(q, q̇, δ̇)
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⎠

⎛
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⎝
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⎠
+
⎛
⎜⎜
⎝
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0 K(q)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

q

δ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

τ

0

⎞
⎟⎟
⎠

(233)

Without loss of generality, the gravity terms have been omitted. Equation (233) has n +m

states, but only n inputs. The singular perturbation based approach allows for the creation

of a composite controller where the controller e�ort is divided into two components: slow

control and fast control.

Since M is by de�nition symmetric positive de�nite, its inverse always exists:

M−1 =H =

⎡⎢⎢⎢⎢⎢⎢⎣

Hqq Hqδ

Hδq Hδδ

⎤⎥⎥⎥⎥⎥⎥⎦

, (234)

where,

Hqq = (Mqq −MqδM
T
qδ)−1 (235)

Hqδ = −M−1
qqMqδ(I −MT

qδM
−1
qqMqδ)−1 (236)

Hδq = −MT
qδ(Mqq −MqδM

T
qδ)−1 (237)

Hδδ = (I −MT
qδM

−1
qqMqδ)−1 (238)

Therefore, solving (233) for q̈ and δ̈ yields:

q̈ = −Hqq(Cqq q̇ −Cqδ δ̇) −Hqδ(Cδq q̇ −Cδδ δ̇) −HqδKδ +Hqqτ (239)

δ̈ = −Hδq(Cqq q̇ −Cqδ δ̇) −Hδδ(Cδq q̇ −Cδδ δ̇) −HδδKδ +Hδqτ (240)

By using the shorthand:

Cqq q̇ −Cqδ δ̇ = cr (241)

Cδq q̇ −Cδδ δ̇ = cf (242)

The equation can be represented in a more compact form as:

q̈ = −Hqqcr −Hqδcf −HqδKδ +Hqqτ

δ̈ = −Hδqcr −Hδδcf −HδδKδ +Hδqτ

(243)
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Selecting the size of the pertubation parameter is not a trivial task, but is often based

on the physical interpretation of system dynamics. In [85, 117] it has been suggested that

the reciprocal of lowest natural frequency k in the sti�ness matrix, K, be chosen as the

pertubation parameter, ε2 (ε2 is often de�ned as µ in singular pertubation based works).

Introducing the coordinate change ε2ξ = δ in (243) yields the standard form for singularly

perturbed models:

q̈ = −Hqq(q)cr(q, q̇, ε2ξ̇) −Hqδcf(q, q̇, ε2ξ̇) −HqδK̃(q)ξ +Hqq(q)τ (244)

ε2ξ̈ = −Hδq(q)cr(q, q̇, ε2ξ̇) −Hδδcf(q, q̇, ε2ξ̇) −Hδδ(q)K̃(q)ξ +Hδq(q)τ, (245)

Typical steps of singular perturbation formulation can be taken [75]. Due to ε, the

system of equations (244,245) exhibit a boundary layer phenomenon with the fast variables

ξ. If the boundary layer decays, then q and δ vary slowly. Setting ε = 0 in (245) reduces the

order of the system (244,245) to n and solving for ξ from (245) yields:

ξ̄ = K̃(q̄)−1−Hδδ
−1(q̄)[Hδq(q̄)cr(q̄, ¯̇q,0) +Hδq(q̄)τ] − K̃(q̄)−1cf(q̄, ¯̇q,0) (246)

The overbars indicate that the system was evaluated at ε = 0. Substituting (246) into (244)

with ε = 0 yields the reduced order subsystem for the slow part:

¯̈q = [Hqq(q̄) −Hqδ(q̄, ¯̇q,0)H−1
δδ (q̄)][−cr(q̄, ¯̇q,0,0) + τ̄] (247)

From (235) it can be seen that (247) is the well known equation that governs the dynamics

of a traditional rigid robot:

Mqq(q̄)¯̈q +Cqq(q̄, ¯̇q)¯̇q = τ̄ (248)

To derive the fast subsystem, also know as the boundary layer system, it is assumed that

ξ = ξ̄ = 0 and q = q̄ = const. Therefore, the equilibrium trajectory for the fast variables is

η = ξ − ξ̄ and, therefore, η̇ = ξ̇. By holding the slow variables constant from (245), the fast

subsystem becomes:
d2η

dt2f
= −Hδδ(q̄)K̃(q̄)η +Hδqτf , (249)

where fast time scale is de�ned as:

tf =
t

ε
(250)
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The system in (249) is parameterized in the slow variables q̄. The state space form of

system (249) is given by:

dη

dtf
=

⎡⎢⎢⎢⎢⎢⎢⎣

0 I

−Hδδ(q̄)K̃(q̄) 0

⎤⎥⎥⎥⎥⎥⎥⎦

η +

⎡⎢⎢⎢⎢⎢⎢⎣

0

Hδq(q̄)

⎤⎥⎥⎥⎥⎥⎥⎦

τf (251)

6.2.3.1 Composite Control

The dynamics of the �exible manipulator have now been divided into two reduced-

order subsystems (248) and (251). A composite control strategy [75] can now be pursued.

Therefore, the controller consists of two parts: a slow controller for the rigid coarse motion

of the robot τ̄ , and a fast controller τf to damp out the vibrations in the system caused by

the motion of q̄.

For the slow part, well established control techniques for serial arms can be used. For

the fast subsystem, a Linear-quadratic regulator (LQR) can be used.

For a system de�ned as:

ẋ = Ax +Bu (252)

with a cost function:

J = ∫
∞

0
(xTQx + uTRu)dt (253)

the feedback control law that minimizes the value of the cost function is:

u = −Kx (254)

The feedback gain K is given by:

K = R−1BTP, (255)

where P satis�es the continious time Algebraic Riccati equation:

ATP + PA − PBR−1BTP +Q = 0, (256)

where Q > 0. Technically, the Riccati equation would need to be recalculated every joint

position. However, if that is not computationally feasible then, the feedback gain matrices

can be calculated at the end of the trajectory [118]. This is a valid approach since the main
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Figure 115: Joint Angles For Move 1

objective of the controller for �exible robots is to damp out the oscillations as fast as possible

at steady state. However, care must be taken so that the boundary layer system does not

go unstable along the trajectory qd.

6.2.3.2 Case Study

In order to illustrate the singular pertubation based control law, a simulation study

was performed. Consider the model of the two-link spatial robot presented in Section

3.3.7. In order to keep the slow and fast systems separated, the slow control uses Kp =

diag(1,1,1)Nm/rad and Kd = diag(2,2,2)Nms/rad, corresponding to a double pole at 1

rad/s. These gains were also used in the inversion based controller. The lowest natural

frequency in the system for any trajectory is 6.35 rad/s. A standard LRQ approach with

R = 10I and Q = 1I, where I is the identity matrix, was used. The feedback gains for the

fast control were calculated at the end of the trajectory, where the controller must quickly

eliminate the oscillations in the arm.

Recall that Move 1 is performed by giving all joints a bang-bang acceleration that results

in a change of 1 rad for each joint. The duration of the motion is 2 s. Joint q1 moves from

0 to -1 rad, joint q2 moves from 1 to 2 rad, and joint q3 moves from 6.2 to 5.2 rad. Figure

115 shows that the actual joint values, qi, do not perfectly follow the desired trajectory, qid.
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Figure 116: Torques For Move 1
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Figure 117: Tip Response to Move 1

The torques that are required to perform the motion are shown in Figure 116. It can

be seen that shortly after the transient phase is over, the torques go to zero, this is because

the oscillations have been damped out.

Figure 117 shows the response of the tip to move 1. Figure 117a shows the tip position

in the inertial frame and Figure 117b shows the tip de�ection. After the transient period,

the oscillations are quickly damped out and the arm remains stationary for the rest of the

simulation.

Simulations were also performed of move 2, where, joint q1 remains stationary, joint q2
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Figure 118: Tip Response to Move 1 with an Impulse disturbance at t = 3s without Fast
Controller enabled

moves from 1 to 2 rad, and joint q3 moves from 6.28 to 5.28 rad; and of move 3, where,

joints q2 and q3 are held stationary and joint q1 moves from 0 to -1 rad. The results are

analogous to move 1 and are shown is Appendix H.2.

To illustrate the disturbance rejection characteristics, an impulse disturbance was added

to the model at t = 3s during move 1.

Figure 118 shows the response of the tip, when the fast controller is enabled i.e there is

no active oscillation cancellation. It can be seen that de�ection is about 20 cm in all spatial

directions after the impulse and the oscillation amplitude remains consistent during the rest

of the simulation. Figure 119 shows a greatly improved result when the fast controller is

enabled. After the impulse disturbance at t = 3s, the controller keeps the de�ection much

smaller compared to when it was not enabled. The de�ection of the tip damps out as the

simulation progresses. It can be seen from Figure 119a that the tip reaches its steady state

value about 3 seconds after the impulse.

In order to illustrate the e�ect of modal accessibility that was presented in Section 6.2.1,

responses to non-zero initial conditions in the �exible variables δ at three con�gurations are

presented. All con�gurations have the same elbow angle (q3=-π/2). The shoulder angles
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Figure 119: Tip Response to Move 1 with an Impulse disturbance at t = 3s with Fast
Controller enabled
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Figure 120: Accessibility indexes at q3 = −π/2

used for this illustration are: q2 = 0 rad (arm fully horizontal con�guration); q2 = 1 rad; and

q2 = π/2 rad (arm fully vertical con�guration). The accessibility indexes for the �rst modes

(a1, a2, a3) when q3 = −π/2 are shown in Figure 120. It can be seen that the accessibility

of mode 2 is not a�ected by the change in the shoulder angle. The accessibility for modes

1 and 3 drops signi�cantly when the arm nears the vertical con�guration (q2 = 90○). This
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Figure 121: Response to initial condition at q2 = 0, q3 = −π/2

con�guration was illustrated in Figure 107. The gains for the controller were calculated

for the horizontal con�guration (q2 = 0), and were kept consistent for all con�gurations to

illustrate the concept of modal accessibility.

Figure 121 shows the response of the robot arm to non-zero initial conditions in the

�exible variables when the arm is in the horizontal con�guration (q2 = 0). Figure 121a

shows the tip de�ection from the undeformed structure. It can be seen that the initial

de�ection of about 5 cm is damped out in about 4 seconds. The modal amplitudes for this

response can be seen in Figure 121b. It can be seen that all the modes damp down to

insigni�cant magnitudes at the same time.

Figure 122 shows the response of the robot arm to non-zero initial conditions in the

�exible variables when the arm is at con�guration (q2 = 1 rad). Figure 122a shows the

tip de�ection from the undeformed structure. Relative to the response in the horizontal

con�guration, it took almost twice as long for the oscillations to damp out. The reason for

this can be seen in Figure 122b, where the modal amplitudes are shown. Mode 2 is damped

out at about the same rate as in the horizontal con�guration, which is to be expected because

the accessibility index for mode 2 is the same. However, for modes 1 and 3, the accessibility

index has lowered and using the same gains it takes the controller much longer to damp out

oscillations. In order to damp the oscillations faster, the controller gains would need to be
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Figure 122: Response to initial condition at q2 = 1 rad, q3 = −π/2

higher, this, however increases the actuator e�ort.

Figure 123 shows the response of the robot arm to non-zero initial conditions in the

�exible variables when the arm is in the vertical con�guration. Figure 123a shows the tip

de�ection from the undeformed state. It can be seen that the oscillations in the X and Z

axis do not damp out. The modal amplitudes, shown in Figure 123b, show that modes 1

and 3 do not damp out, while mode 2 has the same behavior as in the earlier examples.

The reason why modes 1 increases in amplitude is due to non-linear e�ects while damping

out mode 2. This behavior is explained by the accessibility indexes dropping to 0 for both

modes 1 and 3. Physically, this means that none of the joints has any e�ect on those modes,

regardless what the controller does. In order to reduce a the oscillations the arm would need

to be taken to a con�guration where the accessibility indexes are non-zero.

6.3 Chapter Summary

This chapter described controlling a �exible manipulator arm with both open-loop and

closed-loop techniques. An optimized input-shaping algorithm was presented and the results

were con�rmed with FEA analysis and physical experiments. The controllability of natural

modes was discussed and analyzed. An inversion based closed-loop controller was presented

that guarantees stable joint trajectory tracking for a �exible manipulator arm. A singular
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Figure 123: Response to initial condition at q2 = π/2, q3 = −π/2

pertubation based controller was presented to actively damp out the vibrations in the arm.

Simulation results were presented for the closed-loop controllers.
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Chapter VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The motivation for this work arose from the understanding that traditional serial mani-

pulators are constructed to be very sti�, and therefore, ine�cient with regards to numerous

performance criteria. Reducing the weight and sti�ness of manipulators generally introdu-

ces unwanted �exible behavior. Complications modeling �exible manipulators, especially

the ones with multiple �exible links in spatial con�gurations, has consistently been a pro-

blem for researchers. In addition, without the availability of a low-order high-�delity model,

estimation and controller design are di�cult to achieve. Therefore, a considerable amount of

work in this dissertation is directed at deriving a universal model for �exible manipulators

that includes tip attachments, motor inertias, and is applicable to arms of n links in spatial

con�gurations. This model can be used as the basis for estimation and controller design.

A systematic approach to �nding natural frequencies and mode-shapes for n-link spatial

serial structures is presented. The model relies on using the transfer matrix modeling method

extended to spatial degrees of freedom. Algorithms are presented for assembling the transfer

matrices and combining them for any serial structure. The model was validated using Finite

Element Analysis and experiments. The test body experiments were carried out with a

shaker setup. There was good agreement between the predictions and the experimental

measurements. This method can be used for generating more e�cient models for structures

that consists of serially connected beams, such as solar arrays, �xtures, and crane structures.

A new low-order dynamical model based on varying mode-shapes for serial �exible ro-

bot arms is presented. The model is derived using a Lagrangian approach, and allows for

inclusion of rigid attachments. Because the model is based on locally de�ned mode shapes,

a method called Global Modal Parametrization is used to ensure that the model varies

continuously in the con�guration space by scaling the modes appropriately. A modi�ed
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Modal Assurance Criterion algorithm is presented to track the physical interpretation of

the modes, from one con�guration to the next, during model generation. The model was

veri�ed with commercial FEA software, that produced results very similar to the proposed

method. The main bene�ts of this model are the systematic approach for derivation and

the computational e�ciency compared to other high �delity models.

In order to verify the claims made in this dissertation, a two-link, three-joint, test bed

was designed and constructed. The joints of the test bed have harmonic drives and belt

drive systems to move the links. The controller for the test bed runs on a real-time PC with

a data acquisition card for inputs and outputs. Two accelerometers on the arm are used to

sense �exure. The test bed illustrates how the natural frequencies of the system change with

the con�guration. The data obtained during motions of the manipulator did not match the

model perfectly; however, it was close enough to use for estimation and control.

A novel use of Kalman �ltering techniques is used to estimate the �exible states for a

multi-link spatial �exible robot arm using data from accelerometers and strain gages. The

system, and measurement models were derived for an extended Kalman �lter for both strain

and accelerometer feedback. A simulation study was conducted to illustrate the estimator's

performance for various errors in the model. The �lters were proven to be robust to various

errors in the signals and the model. There was no inherent di�erence between the accu-

racy of strain and acceleration based feedback. Impulse tests were conducted to illustrate

the disturbance observation characteristics of the estimator. The estimator successfully re-

stored the state during motions of the robot arm, and the simulated states matched the

experimental ones well.

Open-loop controllers can be used to cancel out the vibrations that trajectory tracking

would induce. Therefore, an optimized input shaping algorithm based on Speci�ed Insensi-

tivity shaping for multiple frequency ranges is presented. The results were con�rmed with

FEA analysis and experiments with the test bed. The proposed shaper allows for a large

reduction in both residual and transient de�ection, while increasing the command duration

only slightly.

The controllability of natural modes is discussed and analyzed. It was shown that in
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certain con�gurations some modes are either completely inaccessible or very hard to access.

An inversion based closed-loop controller is presented that guarantees stable joint trajectory

tracking for �exible manipulator arms. Simulations were performed to show the response of

the arm to the controller. A singular pertubation based controller is presented to actively

damp out the vibrations in the arm. Simulations show that the oscillations in the arm can

be damped out quickly.

7.1.1 Summary of Contributions

This dissertation makes contributions in the areas of modeling, estimation, open- and

closed-loop control for �exible serial manipulators. All of the contributions were made

possible thanks to the low-order high �delity model. The speci�c contributions include:

� A systematic extension of the transfer matrix method for n-link spatial serial structures

� The results were veri�ed with FEA analysis and experiments

� A new low order model for �exible serial manipulator based on exact modes of the

system

� The results were veri�ed with FEA analysis and experiments

� Development of a 2-link, 3-joint �exible manipulator testbed

� An extended Kalman �lter based estimator for �exible states based on strain and

acceleration feedback

� The strain based feedback was investigated in simulation

� Acceleration based feedback was investigated in simulation and veri�ed experi-

mentally

� An optimized input-shaping method based for �exible manipulators

� The results were veri�ed with FEA analysis and experiments

� Modal accessibility analysis for serial manipulators
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� An inversion based and a singular pertubation based closed-loop controller for �exible

manipulators

� Numerical examples were provided

7.2 Future Work

7.2.1 Inclusion of Joint Flexibility

The dynamical model presented in Chapter 3 assumes that the �exibility in the joint is

negligible. There are numerous examples from the real world where signi�cant joint �exure.

Therefore, the model could be extended to include such conditions. The system model would

then be a function of the motor angles θ, link angles q, and �exible states δ:

M(q, θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̈

θ̈

δ̈

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+C(q, q̇, δ̇)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇

θ̇

δ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+K(q)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q

θ

δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+G(q, θ) = Q(q, θ)τ (257)

There has been some work done in this area, for example [67,128]. However, their models do

not take into account that the modes of the �exible robot arms can be used for a low-order

high-�delity model. The joint �exure can be added into the transfer matrix model as joint

sti�ness.

7.2.2 Robust Estimation

The estimation and controller algorithms presented in this dissertation work e�ectively

when the model of the robot is known well. In reality, however, the kinematic properties

change based on the task that is being performed. In general, the end-e�ector load might

not be known. Therefore, the estimator would not only have to reconstruct the state of the

robot, but also estimate which end-e�ector loads are present. To achieve this goal, multiple

estimators can be used concurrently and then a high-level algorithm could select the model

whose estimate �ts the current situation best.

Running multiple estimators on traditional processors is computationally expensive. To

achieve fast enough loop rates, a fairly powerful (Intel i7-2600K) processor was used in the

real-time controller in this research. Due to the complexity of the model, the estimator
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utilized over 90% of the computational power of a single core while, running a ODE4 solver

at 1 kHz loop rates.

The solution to this limitation could be solved with graphical processing units (GPUs)

and other specialized computing platforms that have a large number of parallel cores. An

estimator could be implemented to run on its own core and then communicate to a high-level

coordinator.

7.2.3 Collision Detection

One of the big bene�ts of using �exible arms is that they are intrinsically safer due to

less moving mass. Therefore, it is conceivable that robots with �exible arms can be allowed

to work alongside humans or fragile environments. With the inclusion of sensors on the

manipulator arm, a collision detector can be derived that calculates the reference states of

the robot. If an estimate based on a sensor signal, such as acceleration, signi�cantly deviates

from the reference states, then a collision event has occurred. Depending on the task, the

robot then either stops or moves backward in the trajectory. The estimator presented in

this dissertation is shown to respond quickly to disturbances and, therefore, can be used as

the base for such a collision detector.
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Appendix A

RIGID ROBOT KINEMATICS

A.1 Forward Kinematics

The frames of a serial robot are numbered consecutively from 0 to n starting from the base

of the manipulator and ending with the tip of the end-e�ector. Each frame has a coordinate

system and a position associated with it. We can use 4 × 4 homogeneous transformation

matrices to transform coordinate system i to i + 1

i−1jB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosθi −sinθi 0 ai−1

cosαi−1sinθi cosαi−1cosθi −sinαi−1 −sinαi−1di

sinαi−1sinθi cosαi−1cosθi cosαi−1 cosαi−1di

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (258)

where θi, d, a, α are the DH parameters. This transformation can also be represented as:

i−1jB =

⎡⎢⎢⎢⎢⎢⎢⎣

i−ijO iP (oioj)

0 1

⎤⎥⎥⎥⎥⎥⎥⎦

, (259)

where inO is the rotation of the axes in frame j with respect to frame i and iP (oioj) is

the position of the origin in frame i. We can multiply these matrices together to �nd the

location and rotation of any frame in the system relative to one-another:

ikB = (ijB)(jkB) (260)

A.2 Inverse Kinematics

The inverse kinematics involves a procedure of �nding the joint angles or distances based

on the desired end-e�ector location and rotation. This procedure has to be completed for

each robot separately. The inverse kinematics problem is not as simple as the forward

kinematics one. Because the kinematic equations are nonlinear, their solution is not always

easy (or even possible) in a closed form. Often multiple choices(branches) exist. There are
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also con�gurations, known as singularities, where there is an in�nite number of solutions.

The existence or nonexistence of a kinematic solution de�nes the workspace of a given

manipulator.

A.3 Velocity Analysis

Velocity analysis maps velocities in the Cartesian space to the joint space using a matrix

quantity called a the Jacobian. The number of rows in the Jacobian equals number of

degrees of freedom in the Cartesian space (displacements and rotations) and the number of

columns equals the number of joints in the manipulator. For a general 6 joint robot in 3D

space the Jacobian is of dimension 6x6. The general form of the Jacobian written in frame

i is ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iv

iω

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=i J(θ)θ̇ (261)

To �nd the velocities of the joints we simply invert the Jacobian

θ̇ =i J−1(0n+1)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iv

iω

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(262)

We can transform the Jacobian between di�erent points by using the Jacobian shifting law:

J(o) =X(oc)J(c), (263)

where

X(oc) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 p(oc)×

0 1

⎤⎥⎥⎥⎥⎥⎥⎦

, (264)

where p(oc)x is the matrix cross product operator. The transformation of the Jacobian to

di�erent frames is the following:

iJ(o) =ij Z(oc)jJ(o) =i X(oc)ijYjJ(o) =i X(oc)

⎡⎢⎢⎢⎢⎢⎢⎣

ijO 0

0 ijO

⎤⎥⎥⎥⎥⎥⎥⎦j

J(o) (265)
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Appendix B

DYNAMICAL MODEL FOR A N-LINK FLEXIBLE STRUCTURE

B.1 Kinetic and Potential Energy of the Flexible subsystem

When analyzing a rigid structure with n serial links equations of motion can be found

easily using energy based methods. Kinetic energy, potential energy, and energy dissipation

equations are formulated using assumed mode shapes, that satisfy the kinematic boundary

conditions, as basis functions. The equation of motion can then determined by the La-

grange's Equation (266).
d

dt
(∂T
∂q̇i

) − ∂T
∂qi
+ ∂V
∂qi

= Qi, (266)

where T is the kinetic energy, V is the potential energy, D is the dissipative term, and Q

is the Forcing. The Kinematics of a �exible manipulator in 3D space can be expressed as

a sum of of mode shapes φ multiplied with the time-varying amplitudes q(t). Remember

from Chapter 3 that the mode-shapes consist of 4 components.

φ(z, t) =
∞
∑
i=1
δi(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wx(z)

wx(z)

wy(z)

θz(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(267)

The amplitudes and derivatives of δi(t) become the states of the model. Compatible joint

angle variables and their derivatives are also included as the rigid state variables. The

�exible and rigid kinematics combined describes the position and velocity of every point on
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the arm and can be used to express the kinetic energy T and the potential energy V .

Θ(z, t) = ∑
i

δi(t)θiz(z)

W (z, t) = ∑
i

δi(t)wi(z)

wi(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wix(z)

wiy(z)

wiz(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(268)

The Kinetic energy of the �exible system can be expressed as:

T = 1

2
∫

L

0
ρA(∂W

∂t
)
2
dz + 1

2
∫

L

0
ρJ(∂Θ

∂t
)
2
dz +∑

n

1

2
mn(

∂W

∂t
)
2
(zn, t)+

∑
n

1

2
Izz(

∂Θ

∂t
)
2
(zn, t) +∑

n

1

2
Iyy(

∂2Wx

∂t∂z
)
2
(zn, t) +∑

n

1

2
Ixx(

∂2Wy

∂t∂z
)
2
(zn, t)

(269)

By collecting the terms we can separate the time-dependent variables from the spatial vari-

ables

T = 1

2
∑
j
∑
i

δ̇iδ̇j[∑
n

(∫
Ln

Ln−1
(ρnAnwiwj + ρnJnθiθj)dz) +∑

n

mnwi(zn)wj(zn)+

+∑
n

Izznθi(zn)θj(zn) +∑
n

I(xx)nw
′
iy(zn)w

′
iy(zn) +∑

n

I(yy)nw
′
ix(zn)w

′
ix(zn)]

(270)

We then get the elements of the mass matrix Mδδ

mij = ∑
n

(∫
Ln

Ln−1
(ρnAnwiwj + ρnJnθiθj)dz) +∑

n

mnwi(zn)wj(zn)+

+∑
n

Izznθi(zn)θj(zn) +∑
n

I(xx)nw
′
iy(zn)w

′
iy(zn) +∑

n

I(yy)nw
′
ix(zn)w

′
ix(zn)

(271)

Analagous steps can be taken to �nd the potential energy to get the elements of the

sti�ness matrix K

V = 1

2
∫

L

0
EIy(

∂2Wx

∂z2
)
2
dz + ∫

L

0
EIx(

∂2Wy

∂z2
)
2
dz + 1

2
∫

L

0
GJ(∂Θ

∂z
)
2
dz (272)

V = 1

2
∑
j
∑
i

δiδj[∑
n

(∫
Ln

Ln−1
(EnI(xx⋁yy)nw′′

ixx⋁yyw
′′
jxx⋁yy +GnJnθ

′
iθ
′
j)dz)] (273)

kij = ∑
n

(∫
Ln

Ln−1
(EnI(xx⋁yy)nw′′

ixx⋁yyw
′′
jxx⋁yy +GnJnθ

′
iθ
′
j)dz) (274)
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This results in a dynamical equation of the form:

δ̈ +Dδ̇ +Kδ = Q, (275)

where Q=

The matrices D and K are constant with

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2
1 0 ⋯ 0

0 ω2
2 ⋯ 0

⋮ ⋱

0 0 ⋯ ω2
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(276)

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ζ1ω1 0 ⋯ 0

0 2ζ2ω2 ⋯ 0

⋮ ⋱

0 0 ⋯ 2ζnωn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(277)
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Appendix C

PROBLEM WITH TRADITIONAL MODELING APPROACHES

We will write out the full kinetic energy based on the methodology that many researchers

have done in the past. The way we get the kinetic energy for link k is to modify the standard

�exure wk(x, t) = ∑modesi=1 δ̇ikφik with the displacement at the beginning of the link k so we

get wk(x, t) = ∑modesi=1 δ̇ikφik +∑k−1f=1∑modesi=1 δ̇ifφif(Lf)

K = 1

2

modes

∑
i=1

modes

∑
j=1

links

∑
k=1

(∫
Lk

0
ρkAk

⎛
⎝
δ̇ikφik +

k−1
∑
f=1

δ̇ifφif(Lf)
⎞
⎠
⎛
⎝
δ̇jkφjk +

k−1
∑
f=1

δ̇jfφjf(Lf)
⎞
⎠
dx

+mk

⎛
⎝
δ̇ikφik(Lk) +

k−1
∑
f=1

δ̇ifφif(Lf)
⎞
⎠
⎛
⎝
δ̇jkφjk(Lk) +

k−1
∑
f=1

δ̇jfφjf(Lf)
⎞
⎠
) =

1

2

modes

∑
i=1

modes

∑
j=1

links

∑
k=1

(ρkAk ∫
Lk

0
(δ̇ikδ̇jkφikφjk + δ̇ikφik

k−1
∑
f=1

δ̇jfφjf(Lf) + δ̇jkφjk
k−1
∑
f=1

δ̇ifφif(Lf)+

k−1
∑
f=1

δ̇if δ̇jfφjf(Lf)φif(Lf))dx +mk(δ̇ikδ̇jkφik(Lk)φjk(Lk) + δ̇ikφik(Lk)
k−1
∑
f=1

δ̇jfφjf(Lf)

+ δ̇jkφjk(Lk)
k−1
∑
f=1

δ̇ifφif(Lf) +
k−1
∑
f=1

δ̇if δ̇jfφjf(Lf)φif(Lf)))

(278)

where mk is the mass at the end of link k
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if we have 2 modes per link and 2 links we can expand K to:

2K = ρ1A1 ∫
L1

0
δ̇11δ̇11φ11φ11dx +m1δ̇11δ̇11φ11(L1)φ11(L1)+

ρ1A1 ∫
L1

0
δ̇21δ̇21φ21φ21dx +m1δ̇21δ̇21φ21(L1)φ21(L1)+

ρ2A2 ∫
L2

0
δ̇12δ̇12φ12φ12 + δ̇12δ̇11φ12φ11(L1) + δ̇12δ̇11φ12φ11(L1) + δ̇11δ̇11φ11(L1)φ11(L1)dx+

m2 (δ̇12δ̇12φ12(L2)φ12(L2) + δ̇12δ̇11φ12(L2)φ11(L1) + δ̇12δ̇11φ12(L2)φ11(L1) + δ̇11δ̇11φ11(L1)φ11(L1))

2(ρ1A1 ∫
L1

0
δ̇11δ̇21φ11φ21dx +m1δ̇11δ̇21φ11(L1)φ21(L1))+

2(ρ2A2 ∫
L2

0
δ̇12δ̇22φ12φ22 + δ̇12δ̇21φ12φ21(L1) + δ̇22δ̇11φ22φ11(L1) + δ̇11δ̇21φ11(L1)φ21(L1)dx+

m2 (δ̇12δ̇22φ12(L2)φ22(L2) + δ̇12δ̇21φ12(L2)φ21(L1) + δ̇22δ̇11φ22(L2)φ11(L1) + δ̇11δ̇21φ11(L1)φ21(L1)))+

ρ2A2 ∫
L2

0
δ̇22δ̇22φ22φ22 + δ̇22δ̇21φ22φ21(L1) + δ̇22δ̇21φ22φ21(L1) + δ̇21δ̇21φ21(L1)φ21(L1)dx+

m2 (δ̇22δ̇22φ22(L2)φ22(L2) + δ̇22δ̇21φ22(L2)φ21(L1) + δ̇22δ̇21φ22(L2)φ21(L1) + δ̇21δ̇21φ21(L1)φ21(L1))
(279)

We will now take the derivatives that we will result in the mass matrix

d

dt
( ∂K
∂δ̇11

) = δ̈11 (∫
L1

0
ρ1A1φ11φ11dx +m1φ11(L1)φ11(L1))

+ δ̈21 (∫
L1

0
ρ1A1φ11φ21dx +m1φ21(L1)φ21(L1))+

+ δ̈12 (∫
L2

0
ρ2A2φ12φ11(L1)dx +m2φ12(L2)φ11(L1))+

+ δ̈11 (∫
L2

0
ρ2A2φ11(L1)φ11(L1)dx +m2φ11(L1)φ11(L1))+

+ δ̈22 (∫
L2

0
ρ2A2φ22φ11(L1)dx +m2φ22(L2)φ11(L1))

+ δ̈21 (∫
L2

0
ρ2A2φ11(L1)φ21(L1)dx +m2φ11(L1)φ21(L1)) (280)

d

dt
( ∂K
∂δ̇12

) = δ̈12 (∫
L2

0
ρ2A2φ12φ12dx +m2φ12(L2)φ12(L2))

+ δ̈11 (∫
L2

0
ρ2A2φ12φ11(L1)dx +m2φ12(L2)φ11(L1))+

+ δ̈22 (∫
L2

0
ρ2A2φ12φ22dx +m2φ12(L2)φ22(L2))+

+ δ̈21 (∫
L2

0
ρ2A2φ12φ21(L1)dx +m2φ21(L1)φ11(L1)) (281)
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d

dt
( ∂K
∂δ̇21

) = δ̈21 (∫
L1

0
ρ1A1φ21φ21dx +m1φ21(L1)φ21(L1))

+ δ̈11 (∫
L1

0
ρ1A1φ11φ21()dx +m1φ21(L1)φ11(L1))+

+ δ̈22 (∫
L2

0
ρ2A2φ22φ21(L1)dx +m2φ22(L2)φ21(L1))+

+ δ̈21 (∫
L2

0
ρ2A2φ11(L1)φ11(L1)dx +m2φ11(L1)φ11(L1))+

+ δ̈12 (∫
L2

0
ρ2A2φ12φ21(L1)dx +m2φ12(L2)φ21(L1))

+ δ̈11 (∫
L2

0
ρ2A2φ11(L1)φ21(L1)dx +m2φ11(L1)φ21(L1)) (282)

d

dt
( ∂K
∂δ̇22

) = δ̈22 (∫
L2

0
ρ2A2φ22φ22dx +m2φ22(L2)φ22(L2))

+ δ̈21 (∫
L2

0
ρ2A2φ22φ21(L1)dx +m2φ22(L2)φ21(L1))+

+ δ̈12 (∫
L2

0
ρ2A2φ12φ22dx +m2φ12(L2)φ22(L2))+

+ δ̈11 (∫
L2

0
ρ2A2φ22φ11(L1)dx +m2φ12(L2)φ11(L1)) (283)
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using the state vector:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ11

δ21

δ12

δ22

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

we get the mass matrix with elements:

m11 = ∫
L1

0
ρ1A1φ11φ11dx+m1φ11(L1)φ11(L1)+∫

L2

0
ρ2A2φ11(L1)φ11(L1)dx+m2φ11(L1)φ11(L1)

m12 =m21 = ∫
L1

0
ρ1A1φ11φ21dx+m1φ21(L1)φ21(L1)+∫

L2

0
ρ2A2φ11(L1)φ21(L1)dx+m2φ11(L1)φ21(L1)

m13 =m31 = ∫
L2

0
ρ2A2φ12φ11(L1)dx +m2φ12(L2)φ11(L1)

m14 =m41 = ∫
L2

0
ρ2A2φ22φ11(L1)dx +m2φ22(L2)φ11(L1)

m22 = ∫
L1

0
ρ1A1φ21φ21dx+m1φ21(L1)φ21(L1)+∫

L2

0
ρ2A2φ21(L1)φ21(L1)dx+m2φ21(L1)φ21(L1)

m23 =m32∫
L2

0
ρ2A2φ12φ21(L1)dx +m2φ12(L2)φ21(L1)

m24 =m42 = ∫
L2

0
ρ2A2φ22φ21(L1)dx +m2φ22(L2)φ21(L1)

m33 = ∫
L2

0
ρ2A2φ12φ12dx +m2φ12(L2)φ12(L2)

m34 =m43 = ∫
L2

0
ρ2A2φ12φ22dx +m2φ12(L2)φ22(L2)

m44 = ∫
L2

0
ρ2A2φ22φ22dx +m2φ22(L2)φ22(L2) (284)

similarly we can derive the sti�ness matrix by using the potential energy of the system which

is due to the deformations in the links. The de�ection of link k can be expressed as w′′
k (x, t) =

∑modesi=1 δikφ
′′
ik + ∑modesi=1 ∑k−1f=1 δifφ

′′
if(Lf) Therefore following an analogous derivation we get
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the sti�ness matrix with elements of:

k11 = ∫
L1

0
EI1φ

′′
11φ

′′
11dx + ∫

L2

0
EI2φ

′′
11(L1)φ′′11(L1)dx

k12 = k21 = ∫
L1

0
EI1φ

′′
11φ

′′
21dx + ∫

L2

0
EI2φ

′′
11(L1)φ′′21(L1)dx

k13 = k31 = ∫
L2

0
EI2φ

′′
12φ

′′
11(L1)dx

k14 = k41 = ∫
L2

0
EI2φ

′′
22φ

′′
11(L1)dx

k22 = ∫
L1

0
EI1φ

′′
21φ

′′
21dx + ∫

L2

0
EI2φ

′′
21(L1)φ′′21(L1)dx)

k23 = k32∫
L2

0
EI2φ

′′
12φ

′′
21(L1)dx

k24 = k42 = ∫
L2

0
EI2φ

′′
22φ

′′
21(L1)dx

k33 = ∫
L2

0
EI2φ

′′
12φ

′′
12dx

k34 = k43 = ∫
L2

0
EI2φ

′′
12φ

′′
22dx

k44 = ∫
L2

0
EI2φ

′′
22φ

′′
22dx (285)

The natural frequencies are found after solving the eigenvalue problem ∣K −ω2M ∣. Bear

in mind that the mode shapes on the second link are o�set by the values at the end of the

�st link i.e φi2(0) = φi1(L1) and φ′′i2(0) = φ′′i1(L1).
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Appendix D

MOTOR DATASHEET
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6

Rating: Continuous
Excitation device: RE Permanent magnet
Insulation: Class B
Insulation voltage: AC 500V, one minute

Vibration: 2.5 g (5 . . . 400 Hz)
Shock: < 30 g (11 ms)
Construction: Totally enclosed
Lubrication: Grease (SK-2)

Rated Output Power 1)

Rated Voltage 1)

Rated Current 1)

Rated Output Torque 1) TN

Rated Output Speed 1) nN

Max. Continuous Stall 

Torque 1) 2)

Peak Current 1) 2)

Maximum Output Torque 1) 2) Tm

Maximum Output Speed 1)

Torque Constant

Voltage Constant (B.E.M.F.)

Inertia at Output Shaft 3)

Mechanical Time Constant

Rated Power Rate 1)

Thermal Time Constant 1)

Thermal Resistance 1)

Gear Ratio

Maximum Radial Load 6)

Maximum Axial Load

Motor Rated Output 1) 5)

Motor Rated Speed 1)

Armature Resistance

Armature Inductance

Electrical Time Constant

No-Load Running Current4)

Actuator Accuracy

Actuator Repeatability

Servo Drive Combinations

Item

W

V

A

in-lb

Nm

rpm

in-lb

Nm

A

in-lb

Nm

rpm

in-lb/A

Nm/A

V/rpm
in-lb -sec2

kgm2   x10-3

msec

kW/sec

min

1:R

lb

N

lb

N

W

rpm

mH

ms

A

arc-min

arc-sec

DC 20V

DC 24V

AC 100V

Actuator RH-8DRH-5A RH-11D RH-14D
 6006 3006 8002 5502 4402  6001 3001  6002 3002

Please Note:
1) The values are for saturated 
actuator temperature. Other values 
(not marked with 1)) are for actuator 

2) The values given represent an 
upper limit and actual load values 
should be lower.

3) The tabulated value is the 
moment of inertia reflected to the 
output shaft resulting from the sum 
of the motor inertia and the gear 
inertia.

4) Values are for rated output speed.

5) Values are for reference only.

6) Cantilevered load applied at the 
midpoint of the shaft extension.

Additional information

* Actuator specifications show 
output characteristics, including 
gear efficiency. 
* All specifications are applicable 
for actuators mounted on alumi-
num heat sink of the following 
sizes:  
RH-5: 100 x 100 x 3 mm, 
RH-8, 11, 14: 150 x 150 x 6 mm.

Table 2

 8.6 6.2 13.6 12.3 20.3 18.5

 24 24 24 24 24 24

 1.0 0.8 1.3 1.3 1.8 1.8

 12 17 19 34 28 52

 1.4 2.0 2.2 3.9 3.2 5.9

 60 30 60 30 60 30

 13 20 22 39 48 69

 1.5 2.3 2.5 4.4 5.4 7.8

 1.6 1.1 2.4 2.1 5.4 4.1

 24 31 43 69 122 174

 2.7 3.5 4.9 7.8 14 20

 100 50 100 50 100 50

 19 37 22 43 26 51

 2.10 4.20 2.46 4.91 2.92 5.76

 0.22 0.44 0.26 0.50 0.30 0.60

 0.033 0.13 0.095 0.38 0.18 0.72

 3.7 15.0 11.0 43.0 21.6  81.6

 8.5 8.5 8.5 8.5 7.0 7.0
 0.51 0.26 0.43 0.36 0.51 0.42

 9 9 10 10 11 11

 4.2 4.2 3.3 3.3 2.8 2.8

 50 100 50 100 50 100

 44 44 55 55 88 88

 196 196 245 245 392 392

 22 22 44 44 88 88

 98 98 196 196 392 392

 (10) (10) (20) (20) (30) (30)

 3000 3000 3000 3000 3000 3000

 10 10 4.7 4.7 2.7 2.7

 2.2 2.2 1.6 1.6 1.1 1.1

 0.22 0.22 0.34 0.34 0.41 0.41

 0.38 0.36 0.61 0.55 0.89 0.91

 2.5 2.5 2.0 2.0 2.0 2.0

 ±60 ±60 ±60 ±60 ±60 ±60

 – – – – – –

  DCJ-055-09, DDP-090-09,         DCJ-055-09, DDP-090-09,        DCJ-055-09, DDP-090-09,

            DEP-090-09                         DEP-090-09                        DEP-090-09

      HS-360-1B           HS-360-1C         HS-360-1D

 1.5 1.7 1.4

 12 12 12

 0.5 0.5 0.5

 1.4 2.6 2.6

 0.16 0.29 0.29

 88 55 44

 2.1 3.5 3.8

 0.24 0.39 0.43

 0.83 0.78 0.77

 3.5 5.2 6.1

 0.39 0.59 0.69

 180 110 90

 6 10 12

 0.69 1.11 1.38

 0.08 0.12 0.15

 0.006 0.014 0.022

 0.63 1.6 2.5

 13.3 13.3  13.3

 0.039 0.055 0.034

 5.2 5.2 5.2

 11.4 11.4 11.4

 1:50 1:80 1:100

 13 13 13

 59 59 59

 7 7 7

 29 29 29

 (2.6) (2.6) (2.6)

 4500 4500 4500

 8.6 8.6 8.6

 2.7 2.7 2.7

 0.31 0.31 0.31

 0.27 0.24 0.28

 4.5 4.5 4.5

 ±90 ±90  ±90

 DCJ-055-09, DDP-090-09, DEP-090-09

  
–

  HS-360-1A
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Appendix F

TEST BED EXTRA PLOTS
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Figure 124: Desired and Measured Joint Angles For Move 2
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Figure 125: Desired and Measured Joint Angles For Move 3
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Appendix G

ESTIMATOR VERIFICATION EXTRA PLOTS

G.1 Acceleration Feedback Extra Plots
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(b) Modal Amplitude Error

Figure 126: Modal Amplitudes for Move 2
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(b) Modal Velocity Error

Figure 127: Modal Velocities for Move 2
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(b) Modal Amplitude Error

Figure 128: Modal Amplitudes for Move 3
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(b) Modal Velocity Error

Figure 129: Modal Velocities for Move 3

G.2 Strain Feedback Extra Plots
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(b) Modal Amplitude Error

Figure 130: Modal Amplitudes for Move 2
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(b) Modal Velocity Error

Figure 131: Modal Velocities for Move 2
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Figure 132: Modal Amplitudes for Move 3
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Figure 133: Modal Velocities for Move 3
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G.3 Estimator Veri�cation Experiments Extra Plots
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Figure 134: Modeled and Experimental Modal Velocities for Move 2
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Figure 135: Modeled and Experimental Modal Velocities for Move 3
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Appendix H

CONTROL EXTRA PLOTS

H.1 Inversion Based Controller Extra Plots
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Figure 136: Joint Angles For Move 2
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Figure 137: Torque For Move 2
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Figure 138: Tip Response to Move 2
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Figure 139: Joint Angles For Move 3
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Figure 140: Torque For Move 3
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Figure 141: Tip Response to Move 3
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H.2 Singular Pertubation Based Controller Extra Plots
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Figure 142: Joint Angles For Move 2
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Figure 143: Torque For Move 2
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Figure 144: Tip Response to Move 2
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Figure 145: Joint Angles For Move 3
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Figure 146: Torque For Move 3
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Figure 147: Tip Response to Move 3
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