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SIJMMAEY 

The use of meteor trails an reflectors of radio waves provides a 

method of sending radio messages -;o distances beyond the horizon. For a 

long time the ionized layers of the upper atmosphere have been used for 

this purpose. However, these ionized layers are not always effective at 

radio frequencies greater than 1§ to kO megacycles. But meteor trails 

provide dense columns of ionization which will reflect radio waves of 

even higher frequencies for a short time. Therefore,, meteor-trail com

munication is being increasingly studied because there is an ever in

creasing demand for additional channels of radio communication. 

This research was concerned with certain aspects of the usefulness 

of these meteor trails as reflectors. Specifically, a study has been 

made to determine how the number of meteor signals received per unit of 

time varies with the time of day e.nci the month of the year over an arbi

trary meteor trail communication link. An additional result has been 

the development of a basis for predicting the relative number of useable 

meteor trails in various regions cf the sky. The number of useable trails 

at a given region of the sky is dependent on the radiant distribution, 

which is the distribution of points on the celestial sphere from which 

the meteors appear to come. The effect of radiant distributions on 

meteor-trail communication was studied, and this effect was demonstrated 

by a number of computations based on several different radiant distribu

tions. The computed results were compared with experimental data taken 

by workers at the Georgia Institute of Technology and with some experi

mental results of others. 
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Two analyses were first male on the "basis of two highly idealized 

radiant distributions^ the uniform and the ecliptic. For the uniform 

distribution the radiants were assumed to be evenly distributed over the 

entire celestial sphere, and the results essentially led to a measure of 

the geometrical effectiveness of various parts of the sky. However, the 

uniform-distribution analysis of course completely failed to predict the 

characteristic diurnal variations in meteor signal rate which are always 

observed experimentally. 

For the ecliptic radiant distribution sill radiants were assumed 

to be spread uniformly on the ecliptic. This distribution represented 

an approximation in much the same sense that the uniform distribution was 

an approximation but from an opposite point of view. This analysis led 

to a strong diurnal variation in meteor signal, rate but did not take into 

account the geometrical effectiveness of various sky regions. 

An analysis was also made of the effects of a single point-

radiant. It was found that a point-radiant leads to a narrow band across 

the sky from which reflections may come. The analysis also included the 

computation of a measure of effectiveness along this band. Some very 

favorable comparisons were made between these point-radiant results and 

experimental data taken during meteor showers over the Atlanta-Knoxville 

meteor scatter link. 

It was shown that the point-radiant results may be used as a basis 

for analyses of arbitrary radiant distributions. The procedures in such 

cases is to compute the effect of each point-radiant individually and 

then to weight and superimpose the results. An approximation to the 



xii 

sporadic radiant distribution was ms.de in this manner by using three 

point-radiants having equal weight. Several computations made on the 

basis of this three-point approximation were found to agree well with 

experiment. 

Three meteor-scatter links operated by the author and his asso

ciates were used to obtain data for comparison with theory. These 

links are the Atlanta-Khoxville, Atlanta-Boston and Columbia-Boston 

paths- The characteristics of ea3h link and the method of reducing 

the data is described, 

ms.de


CHAPTER I 

INTRODUCTION 

Many have observed a meteor as it streaks across the nighttime 

sky. But perhaps few have realized the part that these ephemeral 

events may soon play in radio communication. Each meteor produces a 

long thin trail of free electrons and ionized molecules that can re

flect radio signals and thus permit radio communication around the cur

vature of the earth. As is well known, the ionized layers of the upper 

atmosphere which are now used to reflect radio waves toward distant 

points beyond the horizon are not effective at frequencies greater than 

about 30 megacycles per second. Meteor trails provide dense columns of 

ionization which will reflect ever., higher frequencies for the brief in

terval of a second or less during which time most of the trails diffuse 

and become ineffective as reflectors. The need for such reflected sig

nals is rapidly increasing. Already the channels of communication at 

the lower radio frequencies are becoming crowded because each additional 

radio channel requires a small additional band in the frequency spectrum. 

But meteor trails can alleviate this situation by providing effective 

reflectors for additional frequency channels at higher frequencies. 

The purpose of the research reported here is to investigate 

certain aspects of the usefulness 3f these meteor trails as reflectors. 

Specifically, an attempt has been made to determine how the number of 

meteor signals received per unit of time varies with the time of day and 
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the month of the year over an arbitrary meteor-scatter communication link. 

An additional aim has been to develop a basis for evaluating the relative 

number of useable meteor trails i:i various regions of the sky. 

A meteor trail is formed by the evaporation of a meteoroid (or 

primary meteor particle) having t;yplcally a few milligrams of mass, as 

it moves rapidly through the air „ The subsequent collisions between 

evaporated meteoroid atoms and the molecules of the upper atmosphere form 

a trail of ionization., These trails have typical lengths of from 15 to 

35 kilometers and are essentially long straight columns of ionized mole

cules and electrons that diffuse rapidly in the rare upper atmosphere. 

Trails are known to occur in a, region, called the "meteor-trail zone," 

that lies roughly between 80 and 120 kilometers above the earth's sur

face2'3. 

In order to be useable as a reflector, a trail must be oriented 

so that the bisector of the angle formed between the directions of propa

gation of the incident wave from the transmitter and the reflected wave 

toward the receiver is perpendicular to the trail axis (non-specular 

reflection is of secondary importance). The orientation of a trail is 

determined by the coordinates of che point on the celestial sphere from 

which the meteor appears to have come. This point is called the "meteor 

radiant.?? 

On certain dates each year many meteors can be observed that 

appear to radiate from the same spot, or radiant, among the stars. These 

events are called "meteor showers"' and occur when the earth moves through 

a stream of meteor particles all traveling approximately along the same 

path around the sun„ Meteor showers represent only about 5 Per cent of 
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the total meteor influx to the earth . The remainder is due to "sporadic 

meteors'" whose radiants are distributed over the entire celestial sphere. 

The way in which this sporadic radiant distribution affects meteor-trail 

communication is the principal area of investigation of this study. 

Whether or not a given meteor trail can reflect a useable signal 

in the desired direction depends on its orientation and position with 

regard to the transmitter and receiver and on the number of free elec

trons initially formed per unit of trail length. The arrival of mete-

oroids is a random process and it can be assumed that on the average the 

meteor flux is the same at all points over a horizontal surface above 

the earth in the neighborhood of a given transmitter and receiver. 

The distributions of trail orientation and ionization densities 

are not known with precision. If the distribution of these quantities 

were accurately known, the usefulness of various sky regions could be 

determined in principle<, although the calculation would be long and intri

cate on account of purely geometrical difficulties. The available infor

mation indicates that for sporadic meteors the radiants tend to be con

centrated near the ecliptic with three strong concentrations respectively 

toward the apex of the earth's way and roughly toward the sun and anti-

I4. 5 
sun . In additionj, radiants of the principal meteor showers have been 

determined with considerable precision by visual and photographic tech

niques, 

The distributions of free electron line densities have been meas

ured for both shower and sporadic meteors, and the results can be fitted 

by an empirical expression of the form 

HeU) , 4- (1) 
q. 
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where N (q.) is the number of meteor trails having electron densities 

greater than q which pass through unit area per second, and K and k are 

constantso The best fit to experimental data on sporadic meteors is 

obtained for k ~ 1, while for the major showers, k has been estimated to 

be somewhat less than 1« 

For a given transmitter and receiver on the earth's surface, it 

is desirable to know the contribution of each region of the sky to the 

signal, communicated by meteor-trail reflections. This investigation is 

both a theoretical, and experimental study of this problem. The theoret

ical procedure is to analyze the problem for various assumed radiant 

distributions beginning with the simplest and most easily analyzed dis

tribution and proceeding toward more realistic distributions. Each of 

these analyses affords a better understanding of the effects of various 

types of radiant distributions. 

The results of the analyses based on the various radiant distri

butions are compared with experimental data taken at the Georgia Insti

tute of Technology oyer three meteor scatter links and with published 

data of others. The experimental data are in the form of diurnal dis

tributions of the number of times per minute that the received signal 

due to meteor-trail reflection rises above a threshold level. Ordi

narily a burst of signal above the threshold is the result of a single 

meteor trail and such a burst is called a "meteor echo." 



CHAPTER II 

DEVELOPMENT OF EQUATIONS FOR 

PREDICTING METEOR ECHO RATES 

The problem to be considered in this chapter is the computation 

of the relative rate at which metesor echoes are received as a function 

of time for a given transmitter and receiver. The procedure will be to 

determine the number of echoes observed at the receiver per unit time 

from a unit volume of space and then to integrate this number over the 

illuminated portion of the meteor-trail zone. This zone is considered 

relatively thin and therefore in many cases can be represented by a 

surface at a height of h kilometers above the earth. Initially then the 

problem is to determine the number of echoes received per minute that 

are associated with a unit area of this so-called h-surface. 

The magnitude of a meteor echo is a function of the ionization 

density of the reflecting trail. Hence it is necessary to consider the 

theory of meteoric ionization. This theory was developed first by 

f\ i ft 
Whipple and Herlofson and later reviewed by Kaiser . According to 

this theory the number q of free electrons per meter of trail length 

may be written as 

q. = mf(p9v) cos £, (2) 

where m i s the i n i t i a l meteoroid. mass, £ i s the zenith angle of the t r a i l 

axis,, and f (p ; v) represents the functional, dependence of q_ on atmospheric 
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pressure p and meteor velocity v. For the purposes of the present develop

ment a suitable average over p anI v is made. After the averaging process 

this equation essentially says that the ionization density is proportional 

to m cos £. Thus an expression consistent with (l) for the distribution 

of meteoroid masses arriving from a given radiant point is taken to "be 

-T / v const. ,oX 
\W ^ "T— (3) 

m 

where E. (m) is the number of meteor particles wi.th masses greater than m. 

The desired expression for the meteor flux from an arbitrary 

radiant results from a combination of equations (2) and (3)« This ex

pression is 

H ( q ) = I ^ a t i y (k) 

where N(q.) is the total number of trails per second per normal unit area 

having ionization densities exceeding q. The parameter R is assumed 

constant "for a given radiant but its absolute value is of no consequence 

here since we are only interested in relative meteor rates. 

Echoes of sufficient magnitude to be observed at the receiver 

must result from trails that have ionization densities exceeding some 

threshold value q . If this threshold value is known, then the number 
HO ' 

of echoes associated with a horizontal unit area of the h-surface and 

with an arbitrary radiant is given "by N(q ) cos £. 

The value of q is determined \>j considering the amplitude of the 

signal received from a single trail. This received power will vary 

directly as the transmitted power and as the antenna gains in the 
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respective directions to the reflecting trail. The received signal will 

2 
also he proportional to a polarization factor, S , given "by the square of 

the dot product of unit vectors in the directions of the transmitted and 

received electric fields at the trail. The received signal is subject to 

the free space attenuation factor which in this case varies inversely as 

the square of the product of the ranges from transmitter to trail and 

trail to receiver. Other factors affecting the received power from a 

single trail are the effective reflecting area of an electron and the 

effective number of electrons contributing to the reflection, 

As the trail diffuses all waves scattered by individual electrons 

do not remain in phase, and the reflected signal decreases exponentially. 

By assuming that only the electrons within the principal Fresnel zone 

contribute to the reflection,, Eshleman has derived an equation embodying 

the above factors for the received power from a single properly-oriented 

Q 
trail . Eshleman's equation modified to include a general polarization 

factor is 

2 2 2 2 
P+ /P. e \ , 3 G Ĝ  q S , 0 0 2 . , . 

•o t fY~o \ X r t _ / -32rr t d \ ft.\ 
l6ir \ km / \\(\^2) 1-cos 0sin * \ ^ sec ^ 

where 

P and P are the received and transmitted powers, 

u is the permeability of free space, 

e and m are the electronic charge and mass, 

X is the wavelength, 

R and R are ranges from trail to transmitter and receiver, 
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G, and G are antenna gains, 
t r ' 

2<J> is the angle between lines along IL and R , 

S is the dot product of a unit incident electric vector 

and a unit vector of the reflected wave in the direc

tion of the polarization of the receiving antenna, 

P is the angle "between the axis of the meteor trail and 

the plane containing the transmitter, receiver and 

meteor trail, 

d is the diffusion coefficient, and 

t is the time elapsed since formation of the trail. 

All quantities in this equation are expressed in m.k.s. units. The 

geometry is shown in Figure 1. Ir. deriving this equation Eshleman assumed 

a meteor trail to he represented "by a long circular cylinder having uni

form ionization along its length and having a Gaussian distribution of 

ionization in cross section. Free passage of radio waves through the 

trail was also assumed which means that the equation holds for q less 

than some critical value. For values of q which exceed this critical 

value, total reflection occurs, and then as q is further increased the 

initial amplitude of the reflected signal remains constant hut the time 

duration of the echo increases. Such trails are called "overdense" or 

"long-enduring" trails and as indicated hy Equation (l) are relatively 

rare. 

The expression for a may nsw be found hy solving Equation (5) 

for q after setting t ~ 0 and P = P where P is the minimum detectable 
r :n m 

power in the receiver. Thus q becotoes 
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% 

p 1 

m l -
2 2 

203 p s i n <t> 
p t Q 

-| 1/2 

(6) 

where 

« = " V ^ ^ °r 0t S
2 (T) 

16V \ 4m / Rj Hg (X + R2) 

An analysi s "based on a_ uniform radiant di s t r ibu t ion . - - I t wi l l f i r s t be 

assumed that the sporadic meteor radiants are d i s t r ibu ted uniformly over 

the en t i re c e l e s t i a l sphere. An analysis "based on t h i s d i s t r ibu t ion has 

been previously made by Eshleman azid Manning^, however, the analysis pre

sented here involves fewer approximations. Hines and Pugh ' have 

also independently performed and reported work equivalent to the analy

s i s presented here 

The procedure i s to compute the number of observable echoes 

associated with an a rb i t r a ry uni t area of the h-surface, which i s done 

by in tegra t ing N(Q ) cos £ over those radiants yielding properly^oriented 

t r a i l s . N(q.) now refers to the number of t r a i l s a r r iv ing from a un i t 

sol id angle of the c e l e s t i a l sphere. Eshleman and Manning^ have shown 

for the uniform d i s t r ibu t ion tha t the useful radiants f a l l within a 

narrow band of the ce l e s t i a l sphere having an approximate width of: -2ty 

(see Figure l ) where 

L ( ^ + R2) 2 2 

*m * k ^ R2 g l ( 1 " S l n * C ° S ' P ) ( 8 ) 
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Here L is the mean length of the "rails and it is assumed that L <̂ .R, 

and R . Results equivalent to (8) when L is assumed proportional to 

sec £ have been derived in quite different fashions by both Pugh and 

13 
Meeks . That it is proper to set the mean trail length proportional to 

Q 

sec £ is indicated by the theory of meteoric ionization . The useful 

region of the celestial sphere then will be taken to be 2ty sec £ where 

L is a constant. This band lies on the celestial hemisphere visible to 

an earth observer and is symmetrical, about the intersection of the M-

plane with the celestial hemisphere. The M-plane is perpendicular to 

the bisector of lines along R and R as shown in Figure 1. 

As a convenient but good approximation, the surface integration 

of N(q ) cos £ over the relatively narrow 2\|r sec £ band will be re

placed by a line integration along the center line of the band. 

The desired result then for the number, n, of observable echoes 

associated with an arbitrary unit area of the h-surface is 

7T-e 

n = / 2*ffi N(qQ) d6, (9) 

-€ 

where the angles f3 and e are shown in Figure 1 and defined in the 

Glossary of Notations and Definitions given in the Appendix, 

In principle n can be evaluated for specific cases at points over 

the h-su.rface. In practice this computation is very lengthy because of 

the complexity of the explicit expression for nj in fact closed forms of 

the integral in (9) have been obtained only for k = 1 and 2. However, 
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evaluations of n have "been obtained "by the use of a high-speed digital 

computer . Samples of these computations will he shown later. 

The computer program for the n-computation was written so that 

another factor f would be simultaneously computed. This f-factor repre^ 

sents the '"duty cycle" of meteor echoes, that is, f is the sum of the 

durations above noise of individual signals occurring per second from a 

unit h~surface area. Echo duty cycle is often of more importance than 

echo rate for the communications engineer,, and as will be shown does not 

vary with h-surface position in the same fashion as does echo rate. The 

derivation of f proceeds as follows, 

The duration above noise of an echo from a single trail is deter

mined from Equation (5) by solving for t with P replaced by P . This 

duration time T is 

,2 2 
\ sec <f> _ q. log„ *- (10) 

iGtFd e % 

Each echo i s now mult ipl ied by I t s duration T and the in tegrat ion over 

the 2i|/- sec * band i s performed. The r e su l t i s expressed as 

f2nm SSjal T (<1) dqdp 

• e q. o 

, 2 2 * 
A, s e c <J /. n x 

• a , (11) l6r2d k 

•* 
The UNIVAC SCIENTIFIC ERA 1101 at the Rich Electronic Computer 

Center was used. 
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where - \ represents the number of trails per unit q_. Note that the 

ratio of f to n will "be largest near the path midpoint where <t> is largest. 

A total of nine computations are presented as Figures 2 through 10 

to illustrate the uniform-distribution effect on echo rate and duty cycle 

for various sets of parameters. Contour lines of constant n or f have 

been drawn over one quadrant of the projected h-surface; the other quad

rants are mirror images in the x <*ind y axes. The coordinate system is 

shown in Figure 1 in which the x~axis is along a straight line between 

transmitter and receiver and the y axis intersects the x-axis as a hori

zontal line at the path midpoint. 'Che two stations are at x = D and 

x = -D respectively. 

The contour values in Figures 2 through. 10 have been determined 

for constant values of the parameters \, d, P^* P , G , and G,. In a 
' ? t7 nr r t 

particular case, the factor \j} G ] ' can be put back in by inte

grating the product of this factor with n or f over the illuminated 

portion of the h-surface. The absolute contour values have so signifi

cance. 

Figures 2 through k show f-contours for a 250 kilometer path, 

for k = 1.00, and for z = 100 kilometers, which indicates a flat-earth 

approximation. Figure 2 is for optimum polarization which is had by 

setting S = 1. Figure 3 applies when one antenna illuminates the point 

in question with horizontal polarization and the other antenna is ad

justed for optimum reception, and Figure k applies for horizontal polari

zations on both antennas. The contour values in these three figures 

have been worked out on a consistent basis so that they may be compared. 

As the polarization is changed fro:n optimum in Figure 2 to horizontal 
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Figure 2. A Distribution of Sources of Signal Duration Above a Given Amplitude Level with 
Optimum Polarization for Each Illuminated Point. £ 



2D = 250KM h = 100KM k = 1.00 
ANTENNA POLARIZATIONS: ONE HORIZONTAL; ONE 
ADJUSTED FOR MAXIMUM SIGNAL FROM EACH h-PLANE 

POINT. 
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Figure 3. A Distribution of Sources of Signal Duration with Optimum Polarization on One 
Antenna and Horizontal Polarization on the Other. 
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Figure k A Distribution of Sources of Signal Duration with Horizontal Polarization on 
Both Antennas. 



Figure 5- A Distribution of Signal Sources for D = 115 Kilometers 
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Figure 7. A Distribution of Signal Sources for k = 1.0. 
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Figure 8. A Distribution of Soiurces cf Signal Duration for k = 1.0. 
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Figure 9- A Distribution of Signal Sources for k - lA. 

Figure 10. A Distribution of Signal Sources for k = 0.6. 
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in Figure h9 the contributions at the two maxima (near x = 0, y = + 60 km) 

are cut almost in half. These maxima in Figure 2 are reduced by roughly 

a quarter in Figure 3» Along the x axis all three combinations of polari

zations give the same values for the distribution of sources of signal 

duration,, but well off the x axis, where the uniform radiant distribution 

predicts the highest duty cycle,, the choice of polarization becomes im

portant. When the station separation is relatively small as it is in the 

present case, the difference between the optimum polarization and hori

zontal polarization is significant. Figure k shows a null on the circle 

passing through the transmitter and receiver with its center at the path 

midpoint. This null circle is the; locus of points where the polariza

tions are mutually perpendicular, if each point on the xy plane is 

assumed to be illuminated and observed with horizontal polarization. 

The discontinuity which appears in Figure k- at x = 125 km> y = 0 is a 

consequence of the fact that horizontal polarization is not uniquely de

fined for an antenna directed vertically upward. 

Figures 5 through 10 show n and f contours for a spherical earth. 

Therefore for these computations s; was made to be a function of x and y 

according to the approximate expression 

_2 2 2 
z . h + 5-^pLi- , (12) 

where R is the earth radius. The computations in these figures are all 

for optimum polarization. These figures serve to illustrate the relation 

between n and f and the dependence of meteor echo rate on D and k. The 

particular set of parameters used in each, case is shown on the figure. 
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Except for a scale factor and the antenna gain functions, only those 

factors that are functions of x arid y were used in the f-computations. 

The relationship between the n and f contours is n = 4f cos 4». Other

wise all contour values in these figures may be directly compared pro

vided the values for k =1.4 are divided by kO and those for k = 0.6 

are multiplied by 100. 

Even though these curves are based on a radiant distribution that 

is not completely realistic they c.o serve to show very well the effect 

of the geometry on the relative effectiveness of various sky regions. 

Note in particular that the regions of highest effectiveness as far as 

echo rate is concerned are generally those regions directly above the 

transmitter and receiver. 

An analysis based on an. ecliptic distribution of meteor radiants.--The 

following analysis serves to emphasize some characteristics of a radiant 

distribution for which all meteor trails lie in the ecliptic plane. 

Recent studies indicate an ecliptic concentration for sporadic meteors 

4 5 
on the basis of radio, visual, and photographic observations ' . But 

the observed ecliptic concentration is not sufficiently strong to justify 

a distribution which is confined precisely to the ecliptic. Thus the 

strict ecliptic distribution is viswed here as an approximation in much 

the same sense that the uniform distribution is itself an approximation 

from a different point of view. 

The effect of an ecliptic distribution may be seen by considering 

the goemetrical. requirement for trail reflection. If all radiants are 

distributed around the ecliptic and if the ecliptic plane itself coin

cides with the M-plane in Figure 1, then all trails will be properly 
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oriented to produce reflections . This situation occurs when the ecliptic 

plane is tangent to a spheroid having the transmitter and receiver as 

foci. The point of tangency occurring at some specified height h will 

be referred to as the "ecliptic tangent point." If h is chosen at the 

center of the meteor trail zone, then every metepr trail in the neighbor

hood of the ecliptic tangent point will be properly oriented. 

With a strongly ecliptic concentration of radiants, the ecliptic 

tangent point will be the best point in the sky to illuminate, unless 

polarization or geometrical factors intervene. The contours in Figures 

2 to 10 indicate roughly the combined influence of these factors. For 

radiant distributions which are less strongly concentrated toward the 

ecliptic one would expect the ecliptic tangent point to have less sig

nificance than before, and other regions with more favorable geometry 

might become more active than the ecliptic tangent point. This question 

can be examined by tilting the ecLiptic plane slightly in various direc

tions and observing how far the ecliptic tangent point moves from its 

true position. 

The ecliptic plane moves wLth respect to a fixed observer on the 

earth in such a way that the ecliptic tangent point describes a simple 

closed orbit once each sidereal day. The computation of this tangent-

point orbit is most easily performed in the cartesian coordinate system 

of Figure 11. The family of prolate spheroids is described by 

Rj+Bg « V (x-D) + y2 + z~ + V (x+D)2 + y2 + z2 = const, (13) 

Any plane that intersects the earth and is parallel to the 
ecliptic is here referred to as an ecliptic plane. 
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Meteor Trail 

X=-D 

Figure 11.. Geometry of the Reflection From a Meteor Trail. 

and the unit vector n for this faixily ia given by 

§rad (R, -:- R^) 

g?ad (R, + R2) 
(1*0 

The uni t normal v.. i s used tc find the e c l i p t i c tangent point by 

requiring that n(x^ y,, z: coincid,-: with a uni t vector m(t) which i s 

normal to the e c l i p t i c plane a t a time to As the ear th ro ta te s and moves 

in i t s o rb i t around, the sun the normal to the e c l i p t i c , referred to an 

earth-fixed coordinate .system, nutates about a l i ne point ing approxi

mately toward, the north star* The angle between m and t h i s l i ne i s 

23 27° 9 the t i l t angle of the e a r t h ' s a id s . The period of the nutation 
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is one sidereal. day. Since the length of a sidereal day is about four 

minutes less than a mean solar day5 the direction of the ecliptic normal 

is a function of both the time of day and the day in the year. 

The determination of the orbit of the ecliptic tangent point for 

height h above the earth is straightforward ."but numerically very involved, 

The components of the spheroid normal are given explicitly by 

n 
1__ 

x " 2 cos 

y 2 cos 4> 

r x ( V + fc 
1 h + *a 

D L. . L_ 
Rl *V 

(l^a) 

n z 2 cos $ \ R2. 

in the coordinate system cf Figure 11. The corresponding components of 

the ecliptic normal m(t) must be determined in the same coordinate system. 

The x<, y and z components cf the vector m can be obtained directly 

from the transformation matri.x relating the earth-fixed, x, y? z coordinate 

system of Figure 1.1 to an x'j, v0, z' system fixed with respect to the 

ecliptic plane. This ecliptic coordinate system is chosen so that z! is 

normal to the ecliptic plane and x5 is along the direction from the sun 

to the earth at the Autumnal equinox• The transformation from the x̂  y, 

z system to the x% y \ z1 system is made by using two Eulerian transfor-

mations , In the first transformation the Eulerian angles are 6 - ^ 

Ho Goldstein^ Classical Mechanics, Add! son-Wesley Press, Inc., 
Cambridges Mass,,,, 1950^ pp„ 107-109• 
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9 - — j, and -f respectively9 and in the second they are — 5 a, and 0 

respectively,, where 

is the azimuth angle measured from north clockwise 

to the x-axis so that 0 < & < 180 9 

is the latitude of the midpoint between T and R. 

(in the northern hemisphere 6 > 0 and in the 

southern hemisphere 9 < 0.) 

i s 23 2f? % the angle "between the e a r t h ' s axis and 

the ecliptic normals and 

is the nutation angle which is equal to a>nt_, where 
d d 

t is elapsed time in solar days since noon of 

September 23 and ea. is the rotation of the earth 
d 

per solar daŷ : to is ^60o^Q^6 degrees per day„ 

The transformation matrix is denoted by A where 

A ~ 

A 11 

% 

A, 
31 

h.2 

A 
22 

A 32 

*13 

23 

A. 
33 

J (15) 

sin 0 sin 5 + sin 8 cos S cos 0 

sin a cos 8 cos S — cos a cos 0 sin 5 

+ cos <; sin 8 cos S sin 0 

sin o cos 0 sin 8 + cos a cos 8 cos S 

- sin a sin 0 cos S sin 0 

sin d tin h cos 0 — sin 0 cos 5 

cos a cos 0 cos 8 + sin a cos 8 sin fi 

+ :os i? sin Q sin S sin 0 

cos a cc E 0 sin 8 — sin <? cos 0 cos S 

- sin a sin 6 sin 5 sin 0 

cos 0 cos 

sin a sin 6 

cos o sin 0 cos 

cos a sin & 

+ sin a sin 0 cos 
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In the x% j % z1 system lis a unit vector along z' and "by means 

of the transformation A the vector m can "be written in the x, y, z 

system as follows. 

[ m 
m 

m 

m 

A 

h~-
A, 32 

33 

(16) 

I f now the r e s p e c t i v e components of n and m as given by Equat ions 

( l ^ a ) and ( l 6 ) a r e r e q u i r e d to be equa l , the d e s i r e d exp re s s ions for the 

pa th of the e c l i p t i c t angen t point- a r e ob t a ined . Thus the r a t i o s 

(n / n ) and (n /n ) a r e s e t equal to the r e s p e c t i v e r a t i o s (m /m ) and 
x z 2f z x z 

(m /m ) which a r e given i n terras cf &> 9, a, and f by Equation ( l 6 ) . 
y z 

Express ions for t he se r a t i o s a r e s i m p l i f i e d by u s i n g two o t h e r a n g l e s , 

a and g, where a i s the t i l t angle cf the e c l i p t i c p lane with r e s p e c t to 

an o b s e r v e r ' s z e n i t h and g i s t he angle between the x - a x i s and the i n t e r 

s ec t i on of the e c l i p t i c p lane with the e a r t h ' s s u r f a c e . The d i r e c t i o n 

cosine of m wi th r e s p e c t to the z - a x i s i s given by Equation ( l 6 ) t o be 

A„„. The complement of t h i s d i r e c t i o n angle i s aj hence 

s in a % 
(17a) 

An expression for angle g is found by working with a unit vector 

that lies along the intersection of the ecliptic plane with the earthLs 

surface. The x^ y? and z components of this vector are cos g, sin g, 

and zero respectively. ~By using tliese components and the transformation 

A the z' component of this unit vector is found to be 
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A cos g + A sin g j 

but this z? component must be zero because it lies in the ecliptic plane 

Hence 

tan B - - ? k (17b) 
^2 

and by using a trignometric identity 

2 2 
A + A 2 2 32 i H 3 1 

s e c g = 1 4 t a n g = •••••• •• . - • — 
A A32 

Matr ix A produces only a r o t a t i o n of a x e s ; t h e r e f o r e 

2 2 2 
A31 * A32 + A33 ' 

Thus 

2 
2 X " ^ 3 c o s 2 a sec g = ——gr— = g -

A32 ^ 2 

and 

A32 cos ff ~ 
cos a 

S imi l a r ly ; 

A 3 l 
s in g = ' & cos i 
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Thus 

JL = J g m cos_g ( l 8 a ) 
m A~,, t an a 

z 33 

and 

m / 
J £ = .31 s sin_g ^ ( l 8 b ) 
m A-- tan a z 33 

The corresponding ratios fcr the unit normal n in Equations (l̂ -) 

are as follows; 

-l » 2 (19a) 
:?, z 

z 

and 

n
X x . D R2 ' \ ,_„> 

r = z+ z R—i~^ • ( 1 9 t ' 

n a n m 
When — is equated to -*• and ;— is equated to — and Equations (l8) 

z z z z 

are used, the coordinates x and y of the ecliptic tangent point are found 

to he 

x s z siS-S.1. D f ^ L l ^ N (20a) 
t an a V R, 4- R 

and 

y - - gJf • <*») 
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Thus for given values of f and. z the coordinates x and y of the ecliptic 

tangent point can be found- For the case of a spherical earth when the 

height of the reflection point above ground is desired to be kept constant, 

the correct value of z depends upon the values of x and y as given by 

Equation (12). 

Solutions to Equations (20) and (12) for x and y cannot be easily 

obtained in closed form,, and it was found necessary to use a numerical 

method of successive approximations to obtain the orbit of the ecliptic 

tangent point. Ihese computations -were also performed on a digital com

puter = 

For a 250 km north-south link, the orbit of the ecliptic tangent 

point is shown in Figure 2. Thfi position of the ecliptic tangent point 

for an arbitrary time and date may be obtained by interpolation on the 

dotted, path shown in that figure. The contours shown indicate roughly 

the effectiveness of the ecliptic tangent point from a geometrical point 

of view. The effect of spreading Dut the radiant concentration to with

in + 10 of the ecliptic has been considered ~by tilting the ecliptic by 

this amount in various directions and observing the calculated displace-

12 
ment of the ecliptic tanger.t point . The resulting displacements de<-

pend strongly on the distance of the ecliptic tangent point from the 

north station (x ~ 125 km. y = 0). For .x < 200 km in Figure 2, the dis-

o 
placement for a tilt of + .10 is seldom greater than 50 km. However, 

far out on the path for x > 300 km, the displacement is frequently 

greater than 100 km. Ttms one may regard the ecliptic tangent point as 

reasonably well, defined during the 9"hour period each day when x < 200 km. 
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When the line joining transmitter and receiver is rotated from 

the north-south direction,, the or'oit of the ecliptic tangent point is 

moved over the xy plane and changed in shape. The orbit, however, re

mains centered roughly north of the midpoint of the transmitter-receiver 

axiso Figures 12 and 13 each show four computed orbits of the ecliptic 

tangent point for a short link. (250 km between stations) with the 

transmitter-receiver axis at four different angles 5 measured east of 

northo Figures ik and 15 show a similar group of orbits for a much 

longer link. (1000 km between stations)- Figures 12 and 1^ are for a 

latitude of 35 and. Figures 13 and 15 apply to a J+5 latitude, 

The extent to which the eci.iptic tangent point may be regarded 

as a strong source of scatter signals depends on its position on the 

orbito A rough gauge of the effect of broadening the radiant distri

bution about the ecliptic may be obtained by observing the distance 

that the tangent point moves during a 2-hour interval. Where this 

distance is smallest^ the assumptions of this section may be expected 

to remain most appropriate if the radiant distribution spreads out 

about the ecliptic 

An analysis for meteor-shower radiants„ -"Roughly 5 per cent of the 

total meteor influx appears in showers which consist of meteors that 

k 
strike the atmosphere in a number of well-defined streams . The meteors 

in a given stream all move with nearly the same velocity and in nearly 

the same direction. From the standpoint of meteor-scatter communication 

these showers offer a number of interesting possibilities. Even though 

the shower meteors form a small .fraction of the total meteor influx 

during the year,, they may provide signal rates that are several times 



-200 -100 0 100 200 300 400 500 
x IN KILOMETERS 
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the sporadic background at certain intervals when the showers are near 

their maximum. The shower radiants and periods of occurrence are well 

known for the larger showers., so it is possible to predict for a given 

meteor-scatter link the times when showers would make large contribu

tions to the signal rate. Furthermore it is possible to predict the 

most favorable areas in the sky to illuminate in order to make maximum 

use of a given shower, 

Forward scatter by meteor showers over long transmission paths 

l4 15 

has been studied experimentally by Canadian workers ' . The associ

ated theoretical treatment has been worked out using an approximation 

which breaks down if the transmission path is much shorter than 1000 km 

It, therefore, has seemed desirable to generalize the theoretical analy

sis so that it might be applied to transmission paths of arbitrary 

length . Theoretical computation of the locations and relative useful

ness of reflection points for showers have been made. Because of the 

complex geometry in such calculations it was again necessary to make use 

of a high-speed digital computer. The computer code was written in such 

a way that the geographical position and length of the transmission path 

for an arbitrary communication link can be inserted. Arbitrary celestial 

coordinates of the radiant can also be used. 

The analysis may be summarized briefly as follows. The problem 

of scattering by meteor showers is viewed within the framework of pre

vious calculations for sporadic meteors based on uniform and ecliptic 

Hin.es has recently made an independent analysis comparable to 
that presented here. Both the present work and that of Hines have 
recently been published. See references 17 and l8 in the Bibliography. 

Hin.es
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distributions of radiants. The regions in which shower meteors are 

properly oriented for the desired forward scatter are determined, and 

the relative effectiveness within these regions is calculated. The 

results can then be plotted on a series of maps which show the regions 

of sky which should be illuminated at successive times during the day 

or, alternatively, the times when a shower will contribute to a given 

arrangement of antenna beams. 

The details of the calculation of the forward scatter from meteor 

showers proceeds as follows. Consider a system of axes like the one 

shown in Figure 11. Let T be a unit vector directed toward the radiant, 

so that T , T , T are the direction cosines of a line toward the radiant, 
x y z 

The condition that the shower trails be properly oriented for reflection 

can now be expressed in terms of the unit normal n to the spheroid fam

ily which is given in (l^). This condition is 

T • n(ac, y, z) = 0, (21) 

or 

'2-*! Tx + T / + V + ^ - ^ TxD = 0 (21a) 

Expressions for T « T « and T in tenn.s of celestial coordinates are 
x' y z 

given in the Appendix. The coordinates x, y , and z are the components 

of a vector extending from the origin to the reflection point on a 

meteor trail. In the flat-earth approximation z would be the height of 

the meteor trail above the earth and hence z could be set equal to mean 

height at which the trails occur. In the present calculation a spherical 
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earth is assumed,, so z becomes a function of x, y and the assumed height 

of the trail. This function is given in (12). If h is specified, (12) 

and (21a) may be combined so that an implicit function of the form 

g(x, y) = 0 is obtained,, which gives a value of y for each value of x, 

or vice versa. 

Now it can be seen that a given shower radiant-point gives rise 

to a line at a height h above the earthfs surface, this line specified 

"by g(x^ y) ~ 0 being the locus of points at which shower meteors are 

properly oriented for the desired forward scatter. If h is allowed to 

vary between 80 km and 120 km, then a family of loci will result. These 

curves may be drawn on the xy plane so that a map of the scattering 

region is obtained. A map such as this is shown in Figure l6. This 

map would apply to a given link and a given shower at a particular time. 

lb make the preceding analysis more useful, it is necessary to 

know something about the relative effectiveness of points along a shower 

locus. The measure of effectiveness that has been chosen is proportional 

to the number of observable shower meteors to be associated with the unit 

length of locus. 

Calculation of the measure of effectiveness involves many of the 

same considerations that were used to analyze the uniform radiant dis

tribution. The number of observable meteors to be associated with a 

segment of the scattering band shown in Figure l6 is proportional to the 

h-surface area through which shower meteors can pass with the proper 

orientation to produce a scattered signal within this segment. The width 

of this area is determined by a unit length of locus and the direction 

of the shower radiant. As is shown in Figure 1.6 this width is designated 
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SHOWER LOCUS 

h - 120 KM 
PROJECTION OF - T ON THE xy PLANE 

Figure 16. An Example cf Shower Loci 

DIRECTION 
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B • 
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Figure 17. An I l l u s t r a t i o n of the Surface Through Which Shower Meteors 
Must Pass to Produce Signals with Ref lect ions Occurring Along 
Some Line Between R and R ' . 
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w. The depth of this area varies along the band. Figure 17 illustrates 

the method used in determining this depth which, is labeled RB. The dis

tance RA can be measured directly on an xy projection like the one in 

Figure l6 or it can be computed from the approximate formula 

RA = T̂ - (sin an + cot bn cos an ) A h (22) 
dz v 1 1 1 ' v ' 

where a, and b are respectively the angles from the azimuth direction of 

dy 
the radiant to the positive x axis and the locus* 5*- refers to the point 

of reflection and can be obtained from (21a). The distance AB can be cal

culated knowing the zenith angle £ of the shower radiant and the distance 

A h (taken here to be h-0 km). The result is 

RB = RA + A h tan £ . (23) 

The area A through which meteors are captured for a given segment then 

is 

A = w(KB) (2k) 

and the number of meteor signals per second from the segment is then 

given by 

n s = NC^) Ae cos £ , (25) 

where W(Q ) is obtained by combining Equations (k) and (6) as was done 

for the uniform distribution analysis. A measure of effectiveness F 

which is independent of antenna gains and polarizations can be obtained 

by writing the preceding equation as 
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n const VXGi 
k 

F ; (25a) 

where 

F = 
A (cos £) 
c ' 

1 + k 

Rl R2 ^ + R2^ ̂  ~ C ° s 2 P S i n 2 *) 

k/2 
(26) 

The measure of effectiveness F does not take into account the proper-
g 

ties of the transmitting and receiving antennas so that it is quite 

generalo Values of F can therefore be indicated at intervals along the 

shower locus. The meteor signal rates for shower meteors with a given 

arrangement of antennas can be determined by inserting the appropriate 

values of G 9 G and S in (25) and performing a numerical integration 
t r 

along the shower locus. 

As an example, computations based on this analysis when k = 1.0 

have been, made for the Quadrantid Shower with the Atlanta-Knoxvi lie link. 

Figures l8 through 20 show the loci of properly-oriented trails in the 

Quadrantid stream for a height h = 100 km at two-hour intervals. Values 

of the measure of effectiveness F are indicated at points along each 
S 

locus. These loci actually represent roughly the center of narrow bands 

lying between similar loci for h = 80 km and h = 120 km. The depth of 

these bands, measured parallel to the projection of the shower direction 

on the xy plane9 varies between zero and 80 km for the loci shown in 

Figures 1.8-20. The contribution of the shower to the meteor signal rate 

is obtained by summing the contributions n^ in (25) along the shower 
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Figure 18. Loci of Properly-Oriented Quadrantid-Shower Meteors for the 
Atlanta-Knoxville Link. 
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Figure 19. Loci of Properly-Oriented Quadrantid-Shower Meteors for the 
Atlanta-Knoxville Link. 
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Figure 20. Loci of Properly-Oriented Quadrantid-Shower Meteors for the 
Atlanta-Knoxville Link. 
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loci. The contribution to the duty cycle could, be obtained from n and 
s 

the relation between rate and duty cycle as given by (ll). 

The three-point approximation to the sporadic radiant distribution.--In 

principle any given radiant distribution can be approximated as closely 

as desired by using a large number of point-radiants.. The effect of such 

a distribution on the meteor signal rate could then be had by computing 

the effect of each single radiant individually and then summing the re

sults. This is the procedure that will be followed to predict the 

signal rate due to sporadic meteors except that only three-point radiants 

are used to represent the sporadic radiant distribution. A representation 

by a large number of points seems not to be justified at the present time 

because the actual sporadic distribution is not precisely known. Further

more, there seems to be a certain amount of day to day variation in the 

sporadic radiant distribution. Thus it seems wise at the present time 

to seek a simple model that yields good results rather than an elaborate 

model that yields perfect results. 

The basis for choosing the three points is readily apparent in 

Figure 21 which is a reproduction of an approximate sporadic radiant 

k 
distribution as determined by Hawkins . This distribution is based on 

experimental data and on the assumptions of symmetry about the ecliptic 

plane and about the apex of the earth's way. Three peaks are shown to 

occur all in the ecliptic. Three point-radiants are chosen at these 

three peaks and are given the descriptions Apex, Anti-Sun, and Sun<> The 

Apex radiant is in the direction of the apex of the earth's way, and the 

Anti-Sun and Sun radiants are respectively plus and minus 65 in ecliptic 

longitude from the earth's apex. These Sun and Anti-Sun radiants used 



Figure 21. An Approximation for the Sporadic Radiant Distribution as Given by Hawkins k 
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here are not of course exactly at the sun and anti-sun positions "because 

these positions differ in ecliptic longitude from the apex by 90 and 

not 65 . 

Predictions "based on this three-point approximation are made by 

treating each of the three points as a shower radiant and thus following 

the procedure outlined in the previous section on shower radiants. The 

results of the three separate computations are then superimposed. The 

celestial coordinates, right ascension and declination, of the three 

radiants are computed for a given day in a straightforward manner from 

the known position of the sun. From these coordinates and the parameters 

defining a given meteor-scatter link a set of shower-type locus lines are 

computed for each hour of the day. Figures 22 and 23 show four sample 

sets of these loci for the Boston-Atlanta link on February 2. The 

shaded region shows approximately that part of the h-surface illuminated 

by both antenna beams. The predicted echo rates are determined by per

forming line integrations along each of the illuminated loci and summing 

the results. Figure 2k- shows the contributions of each of the three 

radiants and also the total predicted signal rate» Another example of 

the contribution of each of the three radiants for a different time and 

a different link is shown in Figure 25» For a given link the general 

shape of the contributions (plotted vs time) of a radiant is determined 

by the declination of the radiant. The appropriate declinations are 

indicated in Figures 2k and 25« 

Antenna illumination patterns.--As indicated by the previous theory 

(i.e., Equations 9 and 25) it is necessary to know the antenna illumina

tion pattern, S-i/ G G, , in order to predict meteor echo rates. 
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Figure 22a. Sample Loci for the Three-Point Approximation at 0000 on 
February 2 for "he Boston-Atlanta Link. 
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Figure 22b. Sample Loci for the Three-Point Approximation at 0̂ -00 on 
February 2 for the Boston-Atlanta Link. 
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Fi gure 23a. Sample Loci for the Three-Point Approximation at 0800 on 
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Figure 23b. Sample Loci for the Three-Point Approximation at 1200 on 
February 2 for the Boston-Atlanta Link. 
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This factor represents the combined h-surface illumination by the two 

antennas, and can be computed from a knowledge of the free-space antenna 

patterns, the relative polarizations, and the ground-reflection effects 

at the antennas. Only a relative antenna pattern is needed because only 

relative counting rates will be computed, The pattern (for k = l) is 

simply the vector dot product of two electric-field vectors at the trail. 

The angle between the vectors is determined by the relative polarization; 

the amplitudes of the vectors represent the relative field strengths at 

the trail due to the transmitting and receiving antennas, (it is both 

convenient and valid here to assume that both antennas transmit.) 

The field at the trail due to a single antenna is often the resul

tant of a direct wave and a ground-reflected wave. When this is the 

case, for an antenna having a horizontal axis, the field strength is 

— z sin <f 

where D is the free-space field strength in some direction having an 

elevation angle <f , and where z, is the antenna height above a flat re

flecting surface. When there is no ground reflection the field strength 

is simply n. which of course is a function of direction relative to the 

antenna axis and which can usually be fitted to a simple function. The 

orientation, or polarization, of the vector representing the transmitted 

(or received) field strength must satisfy two conditions" The vector 

must be perpendicular to the direction of travel of the wave and it must 

be in a plane defined by the direction of travel, and the antenna dipole. 

The polarization factor S results from a straightforward enforcement of 

these two conditions upon two unit vectors representing the transmitted 

and received waves, respectively. 
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Figures 26 and ZJ show two sample antenna patterns computed 

according to the above principles after first fitting the free-space 

patterns to sin x/x type functions. 'Hie algebraic manipulations re

quired for these computations were quite involved and so were performed 

with a high-speed digital computer . These patterns are for two meteor-

scatter links to be described later and apply specifically for k = 1.0 

and h .= 100 km, A spherical earth and no atmospheric bending of the 

waves were also assumedo The antenna heights for Figure 26 were equal 

and were adjusted, so that the main lobes would intersect at 95 kilo

meters above the earth„ The free-space antenna beamwidths were both 

assumed to be 50 between half-power points in both azimuth and ele

vation. The antenna heights for Figure 2'J were 3°2X and 2.8\, respec

tively, and the free-space antenna beamwidths were both assumed to be 

65 in azimuth and 55 in elevation. Horizontal polarization was used 

in both examples. 

The IBM 65O at the Rich Electronic Computer Center was used. 



GREENWOOD-OTTAWA 

Figure 26. The Computed Antenna Illumination Pattern Used for the 
Greenwood-Ottawa Link:. 

BOSTON - COLUMBIA 

Figure 27. A Computed Antenna Illumination Pattern Used for the 
Columbia-Boston Link. 



CHAPTER III 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

The primary purpose of the radio meteor experiments was to 

procure diurnal distributions of meteor echo rates under various con

ditions. Data were obtained over three meteor-transmission paths. 

Each link consisted of a transmitting station and a receiving station 

separated by a distance of 2D kilometers,, The three sets of station 

locations were Atlanta-Knoxville, Atlanta-Boston, and Columbia-Boston. 

Table 1 lists some pertinent characteristics of each linko The three 

parameters A, A, and 6 are measured at the midpoint of the great-

circle path and are respectively- the azimuth, bearing of the transmitter-

receiver line measured north to east, the number of degrees east of the 

nearest time-zone meridian,, and the number of degrees of north latitude. 

The transmissions in each ca.se were unmodulated continuous waves with 

station identifications each half hour and a quiet period of about five 

minutes each hour0 The Atlanta receivers were at Smyrna, Georgia, 12 

miles northwest of the Georgia Tech campus. The Columbia receivers were 

at the Congaree Air Basê , 15 miles east cf Columbia, South Carolina, and 

they were operated by radio technicians of the South Carolina Air National 

Guard. The Khoxville transmitter was 12 miles south of Khoxville, Tenn

essee, and it was operated by University of Tennessee personnel<> The 

Boston transmitters were at Walpole, Massachusetts., and they were oper

ated by Piekard and BurnSj, Incorporated,, The construction and operation 

ca.se


TABLE 1. 

CHARACTERISTICS OF THREE METEOR-SCATTER LINKS FOR WHICH RECEIVERS WERE 

OPERATED BY GEORGIA TECH PERSONNEL 

LINK FREQUENCY 
f (MC) 

TRANSMITTED 
POWER 
P, ( M 

TRANSMITTER 
TYPE 

STATION 
SEPARATION 

2D (km) 

T-R LINE 
AZIMUTH 
A (DEG) 

TIME-ZONE 
OFFSET 
A (DEG) 

LATITUDE 
6 (DEG) 

ANTENNA 
BEAMWIDTH 
AZ-EL (DEG) 

RECEIVER 
TYPE 

RECORDER 

ATLANTA-
KNOXVILLE 

41.94 0.5 AN/FRT-1 
(MODIFIED) 

230 13 -9.0 34.9 40-40 HAMMARLUND 
SUPER-PRO 
BC-779B 

SANBORN 

ATLANTA-
BOSTON 

49.44 

73.82 

5 to 10 

3 

COLLINS 
205G-1 

RCA BTF-3B 
(MODIFIED) 

1480 51.5 -3.2 3:"'.:': 65-55 

65-55 

HAMMARLUND 
SUPER-PRO 
BC-779B 

HAMMARLUND 
SUPER-PRO 
BC-778 

EDIN 

EDIN 

COLUMBIA-
BOSTON 

49.44 

73.82 

5 to 10 

3 

COLLINS 
205G-1 

RCA BTF3-V 

1250 44.1 -1.4 38.G 65-55 

65-55 

HAMMARLUND 
SP-600 

HAMMARLUND 
SP-600 

EDIN 

EDIN 

\J1 
4=-



55 

of the receiving stations and all data reductions were under the super

vision of personnel of the Engineering Experiment Station of the Georgia 

Institute of Technology*, 

The noi.se figure;-; of the receiving equipment were in all cases 

less than five db and the Intermediate frequency passband was ordinarily 

three kc. 

The Atl.anta»Kro:x;/Il,le facility employed at each site a seven-

element Yagi antenna mounted on a rotator so that any part of the sky 

could be illuminated with, any polar!zation. The antennas had a front-

lobe to back-lone gain ratio of 30 db which was desirable because^ at 

tirneŝ  areas directly behind the transmitter or receiver were illumi

nated,., Figure 28 is a photograph of the antenna and rotator at the 

receiving station in Smyrna., Figure 29 shows a block diagram of the 

receiving equipment 0 The crysta*"Controlled high.-frequency converter., 

originally designed by personnel an the National, Bureau, of Standards., 

had constant gain and "low noise figure. The receiver operated at 5 mc 

and used a separate crystal..-controlled, local, oscillator operating at 

5̂ -65 kc. The receiver bean-frequency oscillator was adjusted to pro

duce a 1000 cpp audio-frequency signal which passed through a 200 cps 

bandpass filler and was then recorded on a, Sanborn paper recorder* 

The transmitted signal, was held, within the filter passband by an 

occasional adjustment of the 5 mc local-oscillator- frequency. This 

filter was followed hy the second, detector and hence was very effec

tive in improving tie 3ignal-to-noi.se ratio. The Sanborn recorder used 

paper tape which co^ld he fed at a number of speeds. The frequency 

response of this recorder was from ẑ re to approximately 80 cps. 

noi.se
-noi.se
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Photograph by Kenneth Rogers 

Figure 28. A Photograph of the Antenna, Antenna Rotator, and Tower 
Used at Smyrna on the Atlanta-Knoxville Link. 
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Figure 29o Block Diagram of the Receiving Equipment Used 
0:1 tha At/iax.ta-Kho:<ville Link: 

Figure 3^a shows some sampi.es of da t a taken over the A t l a n t a -

Knoxvi l le patho The ampli tude of the pen d e f l e c t i o n i s approximate ly 

d i r e c t l y p r o p o r t i o n a l t o the ampli tude of the antenna s i g n a l . Severa l 

types of echoes a re i l l u s t r a t e d i n F igure 30» By f a r the m a j o r i t y of 

the echoes a re of the underdense type which a r e c h a r a c t e r i z e d by a sharp 

r i s e and an exponent ia l ' - type decay o Th& overdense or long-endur ing 

echoes may or may no t have s h o r t r i s e t imes and u s u a l l y decay in a f l u c 

t u a t i n g mannero Only the s h a r p - r i s e echoes above a given t h r e s h o l d were 

countedj the s l o w - r i s e types a re a t t r i b u t e d t o overdense t r a i l s t h a t 
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Figure 30a. Samples of Meteor Echoes for the Atlanta-Knoxville Link. 

Figure 30b. Samples of Meteor Echoes for the Columbia-Boston Link. 
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were not oriented properly initially,, but were distorted by upper-

atmosphere winds. In Figure 30a, echo number 1 is underdense type, 

number 2 a slow-rise overdense, and number 3 a rapid-rise overdense 

type- The data were reduced by simply counting the acceptable type 

echoes that are larger than, a given threshold and dividing by the 

appropriate counting time. 

On the Atlanta-Khoxville link there was at certain times a 

considerable amount of background signal, present. This signal is be

lieved to be of tropospheric origin and was larger during the winter 

months than during the summer months. This signal was usually larger 

during the daytime when it exhibited a rapidly fluctuating naturej it 

was so large in fact that during the winter daytime hours very little 

data were useable. In general one can circumvent the effects of this 

background signal In either of two ways: (l) by increasing the count

ing threshold to such a level that the background signal never appre

ciably affects the meteor-echo amplitude or (2) by adjusting the 

threshold in accordance with the amount of background signal present 

so that on the average the meteor counting rate is not affected. Method 

(l) was not found to be feasible primarily because of the inherently low 

counting rates on the Atlanta-Khoxville link even under good conditions. 

Method (2) therefore was used with a threshold of y B + M , where B 

is the amplitude of the background signal, and M is the desired threshold 

level in the absence of background. It can be shown that this adjustment 

is approximately the correct one when meteor amplitudes are distributed 

according to Equation (l) with a k of unity. 
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The Atlanta-Boston and Columbia-Boston paths each operated 

simultaneously on k-9.kk mc and 73.82 mc and in a l l cases employed f ive-

element Yagi antennas. These antennas had axes pa ra l l e l to the ground 

but the antenna heights were adjustable (in some cases up to 92 f e e t ) . 

The receiving equipment used was very similar to tha t for the Atlanta-

Knoxville l ink (see Figure 29) except tha t no special f i l t e r was used 

and the automatic-volume-control signal was recorded on a six-channel 

Edin recorder. This Edin recorder had a frequency response of from 

zero to approximately 30 cps aficL produced records with curvi l inear pen 

movements on paper tape tha t o u l d be fed a t a number of speeds. 

Figure 30b shows some data samples taken over the Columbia-

Boston l i n k s . The pen deflection for these data i s approximately pro

port ional to the logarithm, of the antenna s ignal . Note tha t the i n d i 

vidual time durations are longer than they were for the Atlanta-Khoxville 

l ink even though the frequencies are higher. This i s due to the la rger 

2 
value of sec <t> for the longer pa ths . Note also tha t for a given path 

the individual time durations are longer for the lower frequency. These 

effects are predicted by Equation (5)n The counting ra t e s for these 

longer paths were much la rger than the average ra te for the shorter 

Atlanta-Khoxville path due to a much greater coverage of the h-surface 

by the antenna beams. 

The data reduction of the 73.82 mc and ^9.44 mc data consisted 

simply of counting the acceptable echoes above a given threshold l e v e l . 

This level, was always a t l e a s t 10 db above noise or background s ignal . 

A considerable amount of ionospheric s ca t t e r signal was received on the 
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49.44 mc channel but very l i t t l e was present a t 73-82 mc. Care was 

always taken to dis t inguish noise pulses that might be present . 



CHAPTER IV 

A COMPARISON OF PREDICTED 

AMD MEASURED ECHO RATES 

The purpose of this chapter is to show comparisons "between pre

dicted variations in meteor echo rate and experimental, data. The 

theories on which the predictions are based were presented in Chapter 

II. The experimental data are from two sources, namely from field 

stations of the Georgia Institute of Technology and from published 

19 results of Vogan and Campbell , The experimental facilities used by 

personnel of the Georgia Institute of Technology were described in 

Chapter III. The data of Vogan and Campbell were taken over a Canadian 

link between Greenwood^ Nova Scotia, and Ottawa, Ontario. This path 

was almost exactly east-west (.1 93 E) with a station separation of 

860 kilometerso The transmitted power was 100 watts at ̂ 9.98 BIC, ancL 

the antennas were five-element Yagis (beamwidth 50 ) for which the 

h-surface illumination was shown in Figure 26. The experimental data 

from these various sources will be shown later plotted adjacent to the 

predicted, results, 

The predicted results of the analysis based on a uniform distri

bution do not show a variation in echo rate with time,. For this reason 

no comparisons of diurnal variations in echo rate can be made with these 

results; however^ they are quite useful in several ways^ especially for 

indicating the most effective h-surface regions as far as geometry is 
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concernedo On the other hand the ecliptic radiant distribution does 

predict a time variation in counting rate but the analysis based on 

this distribution only shows qualitative variations in the effective

ness of various h-surface regions. Therefore comparisons of these 

results with experiment will be made only in a qualitative fashion. 

The point-radiant studies described in Chapter II lead to predicted 

results that can be compared directly with measured diurnal variations 

of echo rate- The quantitative comparisons in this chapter therefore 

will be between experimental data and either predicted data for shower 

meteors or predicted data for sporadic meteors based on the three-point 

approximation. 

A Geminid shower study. ---The Atlanta-Knoxville link is particularly well 

suited for the study of meteor showers because of the small separation 

of stations and because of the antenna mounts that permit the antennas 

to be rotated with three degrees of freedom. Several showers have been 

studied and some results for the August Perseid shower have previously 

been reported 

Figure 31 shows a plan view of the Atlanta-Knoxville link to

gether with some sample locus lines due to the December Geminid shower. 

The shaded area indicates the illuminated region of the h-surface on 

the night of December 12-13,. 1957° The locus line moves slowly into 

the shaded region at about 2100 and then rapidly out of it after 0000. 

A predicted rate due to the Geminid shower for this experiment was 

computed according to the procedures discussed in Chapter II. This 

predicted rate is shown in Figure 32 along with the measured echo rates. 
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0200 OFF SCALE 

Figure 31. Geminid-Shower Loci for the Atlanta-Knoxville Link 

RADIANT TRANSITS 
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1800 2200 0200 
EASTERN STANDARD TIME 

0600 

Figure 32. Comparison of Predicted and Experimental Results for a 
Gerninid Shower Experiment on the Atlanta-Knoxville Link 
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The experimental data include "both shower and sporadic meteors; however, 

on the basis of tests made December k the sporadic background is ex

pected to be less than one count per minute during the interval of the 

test. From about 0030 until 0300 there were a large number of echoes 

of the slow-rise, long-enduring type which were not counted.. These 

echoes are attributed to overdense trails that occur in the illuminated 

region with an orientation that differs very little from the proper 

orientation for reflection„ It is surmised that upper-atmosphere winds 

distort and break up these trails so that sections of them become 

properly oriented a short while after the trail is formed. 

The agreement of predicted and measured results in Figure 32 is 

very good. This and similar results for other showers indicates that 

the procedures used in making point-radiant computations are correct 

and that good results should always be had if the correct radiant 

point is used, 

Three-point approximation comparisons»--These comparisons will be made 

between predicted results on the basis of the three-point approximation 

described in Chapter II and experimental data taken on the Greenwood-

Ottawa, Atlanta-Knoxville? Atlanta-Boston sand Columbia-Boston links. 

The predicted results were computed according to the procedures out

lined in Chapter II. 

The comparisons between predicted and experimental results for 

the Greenwood-Ottawa link are shown in Figures 33 through 38• In each 

case the predicted results for these comparisons were made for the 

fifteenth day of the month except for the June results which are an 

average of June 7 and June 21 predictions* The amplitudes of the 
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FEBRUARY 1956 

(9,154) 

PREDICTED FOR 2/15 

J= 
2000 

EASTEF.'N STANDARD TIME 

Figure 33. A Comparison of Experimental and Predicted Results Using 
the Three-Point Approximation for the Greenwood-Ottawa Link 
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Figure 3̂ -- A Comparison of Experimental and Predicted Results Using 
the Three-Point Approximation for the Greenwood-Ottawa Link 
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JUNE 1956 
(12,618) 

1200 1600 

EASTERN STANDARD TIME 

Figure 35• A Comparison of Experimental and Predicted Results Using 
the Three-Point Approximation for the Greenwood-Ottawa Link. 
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Figure 36 • A Comparison of Experimental and Predicted Results Using 
the Three-Point Approximation for the Greenwood-Ottawa Link 
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Figure 37- A Comparison of Experimental and Predicted Results Using 
the Three-Point Approximation for the Greenwood-Ottawa Link. 
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Figure 38- A Comparison of Experimental and Predicted Results Using 
the Three-Point Approximation for the Greenwood-Ottawa Link 
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predicted results for each month have been normalized to agree with the 

k 
monthly average echo rates as reported by Hawkins „ Thus on this basis 

the relative amplitudes of all the predicted results for the Greenwood-

Ottawa link can be compared among themselves, 

The published data of Vogan and Campbell for the Greenwood-

Ottawa link are in the form of twelve monthly averages of the diurnal 

distributions of echo rates0 There is one averaged curve for each month 

of the year and on each curve is shown the total number of echoes from 

which the average was taken and an indication of the hourly spread about 

the mean. Six of these twelve plots have been reproduced in Figures 

33-38. 

The results in Figures 33-38 show generally good agreement. 

Figure 33 shows a broad maxima at 0400 on both predicted and experimental 

results and in general the two curves matcsh very well. The predicted 

result in Figure J>K shows a broad maxima at 08OO and the experimental 

results show essentially a constant rate from. 0000 to 1200 hours. Figure 

35 shows a sharp peak at 0400 and an interesting sub-peak at 1600 on both 

predicted and experimental curves. This predicted sub-peak is due to 

the Sun radiant and thus it seems that the experimental results confirm 

a concentration of radiants about this location. The plots of Figure 36 

both show a high activity at midnight and a sharp peak at 0400 but the 

predicted sub-maxima at 1100 and l600 do not show up very strongly in the 

experimental results. However, the agreement is generally goodo The 

experimental data of Figure 37 do not show a relative minimum at 0300 as 

predicted but the relatively high, ra.te on the experimental data at 1130 

is present as predicted. The results in Figure 38 show very good agreement 
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with peaks on "both predicted and experimental curves appearing at 

0800 and 19OO. These peaks are more pronounced on some days than on 

others as indicated hy the spread of points about the averaged curve. 

Atlanta-Boston comparisons of prediction and experimental re

sults are shown in Figures 39 through 42. The experimental data were 

taken simultaneously for the two frequencies for a total of two to 

five days within the time interval shown on each figure. The total 

number of echoes used for each average plot is also shown. Note that 

the 49.44 mc and 73«82 mc plots do not agree perfectly even though the 

antenna illumination patterns were nominally equivalent. The main 

source of difference between the two experimental curves is believed 

to be due to a difference in the relative threshold levels used for 

making the two counts. 

The agreement of theory and experiment is in general good for 

these data0 The better agreements sire generally found for the experi

mental data with the better statistics. The December comparisons in 

Figure 42 are particularly good. The relative minimum that occurs on 

all the predicted results around 0200 to 0400 is due to the Anti-Sun 

locus moving northward out of the antenna pattern at about this time. 

The experimental data do not in all cases show this minimum. Except 

for this variance the February comparisons in Figure 39 are particu

larly good. The two sets of comparisons shown by Figures ho and 41 

have poorer statistics and, although the comparisons are not bad, they 

are not as good as those in Figure 39 and 42, 

Figures 43 and 44 show two sets of predicted and experimental 

comparisons that have been made for the Columbia-Boston link. The 
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antenna pattern used for the predicted results in these two figures has 

been shown as an example in Figure 2J. The predicted and experimental 

rates of Figure kh show better agreement than those of Figure k-3» How

ever, if one would permit a smoothing of the predicted data in Figure 

^3 so that the relative maxima and minima were not as severe, the agree

ment would be much better with a slow increase in counting rate before 

0800 and a slow decrease after 0800 with a minimum occurring around 1800. 

Three sets of comparisons using Atlanta-Knoxville data are shown 

in Figures k-5, ^6 and 47° Each figare shows both a predicted and a 

measured diurnal distribution of echo rates. For the experimental data 

in these figures the antenna beams were in each case directed alternately 

to intersect with optimum polarization at two geometrically equivalent 

points on the h-surface. In Figure +̂5 these two points are A(x = 200 km, 

y = 75 km) and. B(x = 200 km, y = -75 km). In Figure k-6 they are 

A(x = 0 km, y = 60 km) and B(x = 0 km, y = -60 km), and in Figure ^7 

they are A(x = 115 km, y = 0 km) and B(x » -115 km, y = 0 km). The 

computed results are shown plotted for 30-niinute intervals but in each 

case the computations were made to apply on the hour0 

The regions of the h-surface illuminated by the antennas for this 

relatively short link are much smaller in absolute magnitude than the 

illuminated region for the Greenwood-Ottawa link'. The illuminated region 

applicable to Figure Kj, when areas directly above Atlanta and Knoxville 

were alternately searched, is very £.mall indeed. For this case the gain 

factor, S l K G, , decreases to approximately one-half of peak value 

on a circle of radius 50 km about the center of the illuminated zone, 

In computing the predicted rates for this case (Figure Vf) an analytical 
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procedure was used in which the width of each locus line was taken to 

be 100 km» The magnitudes of the predicted results are, however, 

comparable among the Figures 45, 46 and 47. The magnitudes of the 

experimental rates are believed to be comparable; however, no attempt 

to make rigorous absolute calibrations was made. 

The agreement of predicted and experimental results for these 

Atlanta-Khoxville data is not as good as was obtained for the Greenwood-

Ottawa data. There are at least two reasons for this, (l) The Atlanta-

Khoxville statistics are, by comparison, poor. A total of only 2071, 

1474, and 1.598 echoes were used to obtain the averaged data in Figures 

45, 46 and 47, respectively, while the Greenwood-Ottawa curves in each 

case are the results of averages made using 9>000 to 28,000 echoes. 

Furthermore, appreciable day-to-day variations in the shapes of diurnal 

distributions of echo rates even for data with good statistics have 

sometimes been observed. This means that experimental data obtained by 

averaging over many days as well as over many echoes should be expected 

to show better comparisons with predictions. (2) A large antenna illum

ination pattern has a smoothing and averaging effect on the discrete 

nature of the three-point approximation. That is, a large antenna 

pattern has the general effect of replacing each point-radiant by a 

distribution of radiants in the vicinity of the point, as far as the 

predicted results are concerned. 

The data in Figures 4-5-, 46 and kls however, show several points 

of agreement. For example, the experimental data of Figure 45 show a 

higher count for point A at 0700 and a higher count for point B at 
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1̂ -00 as predicted. Points of agreement in Figure k-6 are the higher 

count for point A from 2200 until 0800,> the higher count for point B 

from 1200 until 1800, and the very Low count for point A from 1200 

until 2200o The points of agreement in Figure ^7 are the peaks at 

about 0600 with the rate for A being larger than the rate for B, and 

the larger relative rate for B at about 2200. 

The predictions on the basis of the three-point approximation 

that have been shown here for the four links represent all such pre

dictions that have been made. They are not a selected sample from a 

larger number of such computations. 

Some predictions of diurnal, variations of meteor echo rates 

20 
have been made previously by Bines „ He used a symmetric radiant 

distribution centered on the apex of the earth's way to make sample 

predictions for days near the solstices. Good agreement was claimed 

but no comparisons with experimental data were shown, 

Eclipt ic- tangent-point comparisons.--The significance of the e c l i p t i c 

tangent point will be deduced on the basis of comparisons of the 

Greenwood-Ottawa and Atlanta-Khoxville data with the appropriate 

tangent-point paths shown in Figures 12-15* For the Greenwood-Ottawa 

link, which has a station separation of 860 kilometers, the curve 

labeled 5 ~ $0 in Figure 15 is the most appropriate of the orbits 

shown. When the appropriate tangent-point orbit is determined and 

superimposed, on the antenna pattern given in Figure 26 it can be seen 

that the ecliptic tangent point moves through the central region of 

this pattern for about four hours each. day. For each succeeding month 

this four-hour interval appears two hours earlier in the day. In 
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Junej for example, this interval appears at midnight, in September at 

1.800, in December at 1200, and in March at 0600 hours, When the proper 

four-hour interval is in this manner associated with each of the Figures 

33-38 and. the relative experimental rates during these four-hour inter

vals are noted, there seems to be little correlation between high rela

tive echo rates and the movement of the ecliptic tangent point. This 

is especially true around 1800 hours. However, during the morning 

Lours, the movement of the ecliptic tangent point is correlated with a 

shift in the time of maximum echo rate for the experimental data from 

about 0800 in December to about OkOO in June. Hence these data indi

cate that, the ecliptic tangent point may have some significance during 

the morning hours. 

Figures 4 5 and k-J show two sets of data taken on the Atlanta-

Knoxville link that can be compared with the ecliptic-tangent-point 

resultso For the experimental data of Figure k^ the antennas were 

directed alternately toward two points on the orbit of the tangent 

point . Oiese points were A;x = 200 km, y = 75 km) and B(x = 200 km, 

y K -75 km), F'rcm the standpoint of scattering geometry these points 

are mirror images about the path axis,, and any difference in counting 

rate can therefore be assigned to the radiant distribution. Points A 

and B were observed alternately every thirty minutes and Figure k-5 

Shovfl the average meteor signal rate for a period of three days. When 

the antenna beamwidths are taken into account, one would expect on the 

basis of the orbit shown in Figure 12 that point A should receive a 

contribution from the ecliptic tangent point from about 0500 until 

10009 and point B should receive a contribution from about 1500 until 
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2000o Figure k-5 shows a significantly higher counting rate for A from 

roughly 0530 until 0900. The degree by which the two counting rates 

differ may be judged by observing the 95 Per cent confidence limits 

which have been indicated for each counting period. The meteor signal 

rate for point B in Figure k-5 shows higher values during the entire 

afternoon period until roughly 1930« The experimental data show clearly 

a higher activity for point B from 1530 until 1730 as predicted. The 

low counting rate during the period 1730-2000 does not permit a clear 

statistical distinction between the rates at points A and B. Thus, 

one finds good agreement between the measurements and predictions based 

on a rather diffuse concentration of radiants near the ecliptic. The 

comparatively high counting rate observed at point B during the interval 

I.33O-l400 is,, however, not expected on this basis. 

For the data of Figure '+7 the {antennas were directed alternately 

toward a point on the tangent-point orbit and a geometrically equivalent 

point off the orbit0 These points were A(x = 125 km, y = 0 km) and 

B(x = -125 km, y - 0 km)„ Figure kf shows the meteor signal rate averaged 

for a period of two days. On the basis of the orbit shown in Figure 12, 

and the computed antenna coverage,,, point A should receive a contribution 

from about 1700 until 2100 and point. B should receive no contribution at 

all from the ecliptic tangent point„ However, Figure ^7 shows a higher 

counting rate for point B from 1700 until 2100, which is just the reverse 

from what is predicted on the basis of the ecliptic tangent point, and 

therefore again no evidence of the effect of this ecliptic tangent point 

is observed around 1800 hours. 



CHAPTER V 

CONCLUSIONS 

The effect of radiant distributions on meteor-trail communica

tion has been demonstrated by a number of computations based on several 

different radiant distributions. An analysis based on a uniform dis

tribution of meteor radiants over the celestial sphere shows that the 

relative effectiveness of various regions of the sky is a function of 

many geometrical factors and also of k. This parameter k, which is 

defined in Equation (l), is determined by the size distribution of the 

meteoroids incident upon the atmosphere. The results of several sets 

of computations based on different values of k, station separation, 

and antenna polarization are shown in Figures 2-10. The uniform dis

tribution plots in. Figures 2-k serve to show that the antenna polari

zations are important for meteor-scatter links having small station 

separations. The effect of increasing k is to intensify the relative 

differences in. the effectiveness of various regions of the meteor-trail 

zone. 

The relative-effectiveness computations have been performed for 

two parameters that are of interest and that can be measured for a 

given meteor-scatter link. These parameters are meteor signal rate 

and duty cycle. The relationship between the two is proportional to 

2 
sec 0 as shown by Equation (ll). Duty cycle is more difficult to 

measure directly but is perhaps of more value to the communications 

engineer„ 
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The predictions based on a uniform radiant distribution are not 

time dependent and are symmetrical about both the x and the y axes. 

These predictions indicate that the regions of the largest potential 

contribution to the meteor signal rate are those regions directly 

above the transmitter and receiver and that the regions having the 

largest potential duty-cycle contribution are to either side of the 

midpoint of the transmitter-receiver line. It is convenient to think 

of the contribution of a given region of the meteor-trail zone as being 

due to the product of three factors; an antenna illumination factor, 

a geometrical factor, and a factor determined by the radiant distribu

tion. To a first approximation the prediction based on the uniform 

radiant distribution is the geometrical factor; however, the geometri

cal and the radiant distribution factors cannot be completely separated. 

A radiant distribution in which all radiants are near the 

ecliptic has been investigated and it was found that a region of high 

activity, as far as the radiant distribution factor is concerned, moves 

over a fixed path on the h-surface once each sidereal day„ This region 

of high predicted activity, called the ecliptic tangent point, becomes 

diffuse when all radiants are not exactly on the ecliptic. When these 

results were compared with experimental data no evidence of an ecliptic 

distribution was found for the evening hours around 1800. However, 

some indication of an ecliptic distribution was found for the morning 

hours. Just how strong the ecliptic concentration is cannot be deter

mined from this analysis because no provision is made for the computa

tion of the relative effectiveness at all points on the h-surface. 
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An analysis based on a single radiant has been made, and the 

results show that a line across the h-surface represents the locus of 

points at which the meteor trails are properly oriented for a reflec

tion at a height ho When account is taken of the variation of h, from 

about 80 km to 120 km, this locus becomes a long narrow band. A measure 

of effectiveness at points along the locus has also been determined. 

This analysis applies directly to meteor-shower studies and is basic to 

studies of arbitrary radiant distributions that are represented by a 

number of point-radiants. 

The validity of the single-radiant analysis has been verified 

experimentally with data taken over the Atlanta-Knoxville link during 

strong meteor showers. The agreement of predicted and experimental 

results for these showers has always been good. This implies that compu

tations for sporadic meteors based on this analysis will agree with 

experiment provided the correct radiant distribution is used. 

An approximation to the sporadic radiant distribution has been 

made by using three point-radiants placed respectively at the apex of 

the earth's way and •+ 65 in ecliptic longitude from the apex. This 

selection of three points was suggested by an approximate sporadic 

k 
radiant distribution determined by Hawkins . Numerous comparisons have 

been made between predicted results made on the basis of this three-

point approximation and experimental data. Some of the experimental 

data used for these comparisons were measured over the Atlanta-Knoxville, 

Atlanta-Boston and Columbia-Boston meteor-scatter paths. Comparisons 

were also made with data published by Vogan and Campbell for a path be-

19 tween Greenwood,, Nova Scotia, and Ottawa, Ontario . The comparisons, 
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Figures 33 through hf, in some; cases show remarkably good agreement. 

All comparisons show at least reasonably good agreement except for one 

comparison for the Atlanta-Knoxville path shown in Figure kf. The poor 

agreement in this case is perhaps due to the relatively small illuminated 

region of the h-surface which tends to emphasize the discrete nature of 

the assumed three-point radiant distribution. Also the experimental 

data for this comparison were statistically very poor. 

The good results obtained with the three-point approximation 

imply that this approximation can be used in further research as a basis 

for determining where in the sky the antenna beams should be oriented in 

order to make the most effective use of specular reflections from the 

meteor trails. These predictions would be in terms of average signal 

rates, however, and should not necessarily be expected to apply to any 

one particular day. Furthermore the choice of k in the distribution of 

signal amplitudes may in some cases influence the best region to illumi

nate and more experimental work needs to be done on this problem. 
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GLOSSARY OF NOTATIONS AND DEFINITIONS 

English letters 

a the angle between the ecliptic plane and a 

vertical line 

D one-half the straight-line distance between 

t ransmit ter and receiver 

d the gaseous diffusion coefficient in the region 

where ref lec t ions occur 

f the sum of the durations above noise of ind i -

vidugQ. signals occurring per second from 

a square kilometer of the h-surface. The 

duty cycle i s obtained by in tegra t ing f 

over the h-surface and applying a s ta 

t i s t i c a l correction for the overlapping of 

s ignals . 

G and G, the receiving- and transmitting-antenna power 
r c 

gains over an i so t ropic radia tor 

g the angle between the x-axis and the i n t e r 

section of the e c l i p t i c plane with the 

earth r s surface 

h the height of the h-surface in kilometers above 
the t ransmit ter and receiver 



an exponent used in the formula giving the 

assumed distribution of trails as a 

function of their ionization densities 

the assumed length of the meteor trails 

a unit normal to the ecliptic plane equal to 

i m + j m + k m . 
- x i y - z 

the number of meteor trails incident on a 

square kilometer of the h-surface per 

second having a line density greater 

than q electrons per meter of trail 

length 

a unit normal to an ellipsoid having the 

transmitter and receiver as foci. 

n==in + j n + k n . 
- - x sL y - z 

the number of individual s ignals above noise 

level a r i s ing from a square kilometer of 

the h-surface per second 

the number of meteor signals per second from 

tha t pa r t of the meteor t r a i l zone repre

sented by a uni t length of shower locus 

the minimum, detectable power in the receiver 

the received and transmitted powers, 

respect ively 
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English letters 

q the ionization density of a trail in electrons 

per meter of trail length 

q the line density of the trail that produces the 

minimum detectable signal when the trail is 

oriented to produce a reflection to the re

ceiver; q is a function of transmitter 

power, minimum detectable power, antenna 

gains and polarizations, receiving antenna 

aperture, frequency, and the location and 

orientation of the trail 

R- and R the respective distances from the reflection 

point on the meteor trail to the transmitter 

and receiver 

S the dot product of a unit incident electric 

vector and a unit vector of the reflected 

wave in the direction of the polarization 

of the receiving antenna. When "both anten

nas are oriented for the maximum signal for 

each h-surface point, S is unity. 

t the elapsed time since the formation of a trail 

w the width of an area through which meteors that 

contribute to the effectiveness of a shower 

locus line must pass 
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English l e t t e r s 

x, y and z the var iables of a right-handed cartesian 

coordinate system such tha t the origin 

i s a t the midpoint of the s t ra igh t l i ne 

between t ransmit ter and receiver , x i s 

along the direct ion of t h i s l ine and z 

i s v e r t i c a l 

Greek l e t t e r s 

the angle between the axis of the meteor t r a i l 

and the p lane def ined "by the t r a n s m i t t e r , 

receiver and the ref lec t ion point on the 

t r a i l 

the angle between a ve r t i c a l l ine and the M-

plane., A useful formula for y i s 

1/2 

arc sin 
z2(RL + R 2 ) 2 

\ * 2 ( \ + H 2) 2 - k R^gD2 

A the distance in degrees longitude from a time-

gone meridian to the midpoint of the 

t ransmit ter - receiver l i n e . Eastward d i s 

tances from the meridian are pos i t ive and 

westward distances are negative. 

e the angle between the in te rsec t ion of the M-

plane with the h-surface and the i n t e r 

section of the M-plane with the plane 
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Greek letters 

determined "by lines along R. and R . A useful 

formula for e i s 

y 
arc cos 

y y + z sin (<t> - Kj 

where 

V z + y 
K = arc cos 

R2 

£ the angle between a vertical line and the 

axis of the meteor t r a i l . 

cos £ = cos x sin (P + e)-

5 the azimuth angle measured eastward from 

north to the direction of the transmitter-

receiver line. 

0 < & < l80° 

9 earth latitude of the midpoint of the transmitter-

receiver line 

A. the free-space wavelength of a radio wave 

a 23°27 % the angle "between the earth's axis and 

the ecliptic normal 

T the duration above noise of a signal from a 

single meteor t ra i l 

4> one-half the included angle "between lines along 

R̂  and R 
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t 
m 

the nutation angle of the unit vector m as it 

precesses around a line parallel to the 

earth's axis at the midpoint of the trans-

m 
mission pathj \|r is equal to 360.9856 t 

where t is elapsed time in solar days 

since midnight of March 21 or noon of 

September 23. 

a factor that determines the width of a narrow 

band on the celestial sphere where the 

radiants of the meteors piercing a given 

unit area of the h-surface must lie in 

order to "be properly oriented to produce 

a reflection between two stations 

Terms 

Celestial sphere 

Declination 

Duty cycle 

Echo 

a sphere of arbitrary radius with center at the 

earth and upon which the stars appear to 

lie 

the angular distance of a point from the celes

tial equator. Points in the northern hem

isphere have positive declinations. 

the fraction of time that a signal is received 

by meteor-trail reflection 

a term referring to a burst of radio signal due 

to a meteor-trail reflection 
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Terms 

Echo rate 

Ecliptic 

Ecliptic plane 

Ecliptic tangent point 

Eclipti c-tangent-
point path 

First Point of Aries 

the number of individual signals received per 

unit time. One signal is assumed to 

result from each properly oriented meteor 

trail of sufficient ionization. 

the great circle of the celestial sphere which 

is the apparent path of the sun 

the plane defined by the center of the sun and 

the path of the earth's center around the 

sun. This term is also used to refer to 

any plane which intersects the earth and 

which is parallel to the true ecliptic 

plane. 

a point of the meteor-trail zone at which an 

ecliptic plane is tangent to a spheroid 

having the transmitter and receiver as 

foci 

the path described on the h-surface by the 

ecliptic tangent point as the earth 

rotates 

a reference point on the celestial sphere 

which moves less than 0.01*4- degrees per 

year with respect to the stars. The sun 

passes through this point when moving from 

south to north of the equator. 
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Terms 

h - su r face 

Hour angle 

M-plane 

Meteor 

Meteoroid 

Meteor scatter 

Meteor-trail zone 

Observable meteor 

Radiant 

a shell h kilometers above and concentric with 

the earth. This surface is used to repre

sent the meteor-trail zone,, 

the interval of sidereal time that has elapsed 

since a radiant (or star) was on the 

meridian 

the plane in which a trail must lie to present 

a principal Fresnel zone to a given trans

mitter a.nd receiver 

a transient fiery streak in the sky produced 

by a meteoroid passing through the earth's 

atmosphere 

a small heavenly body that produces a meteor 

when it plunges into the atmosphere 

a term referring to the scattering or reflecting 

of radio energy by means of meteor trails 

that regl.cn of the atmosphere from about 80 to 

1.20 kilometers above the earth's surface 

in which meteor trails are formed 

a meteor large enough t>o produce a radio signal 

of sufficient size to be observed in the 

presence of noise 

a point on the celestial sphere from which a 

meteor appears to come 

regl.cn
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Terms 

Radiant distribution a term referring to the density of meteor 

radiants over the celestial sphere 

Right-ascension the angular distance measured eastward along 

the celestial equator from the First 

Point of Aries to the meridian line of 

a point 

Shower locus a line drawn across the h-surface that repre

sents the locus of points at which trails 

due to a given shower (or single radiant) 

are oriented to yield reflections 

Shower meteors meteors occurring on certain dates that result 

when the earth moves through a stream of 

particles all traveling approximately 

along the same path around the sun 

Sidereal day the length of time it takes the earth to make 

one complete revolution with respect to 

the First Point of Aries 

Specular reflection a mirror-type reflection that is essentially 

the resultant of reflected wavelets from 

the principal Fresnel zone 

Sporadic meteors meteors that have not been associated with 

meteor showers. These meteors account 

for most of the meteor influx. 
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I I 

THE DIRECTION COSINES, T , T AND T , OF A TWIT VECTOR 
9 x7 y z' 

IN THE DIRECTION OF A METEOR RADIANT 

The direction cosines T , T and T of a meteor radiant can "be 
x y z 

writ ten in terms of the azimuth angle, A (measured north to e a s t ) , and 

the zenith angle, Z, of the meteor radiant , and in terms of the azimuth 

angle, B, of the t ransmit ter - receiver l ine as follows: 

T = sin Z cos (B - A) 
x v ' 

T = sin Z sin (B - A) 
y 

T = cos Z z 

If the "hour angle ," E? and "declination, " Dec, of the radiant are given, 

A and Z may he found "by the formulae of spherical trigonometry. These 

angles may be expressed as follows where 9 i s the ear th l a t i t u d e of the 

midpoint of the t ransmit ter - receiver l i n e , 

cos A = —•—n —s sin (Dec) - sin 6 cos Z cos 0 sin Z I v ' 

cos Z = sin B sin (Dec) + cos 9 cos H cos (Dec) 

The coordinates of a radiant (or s ta r ) are customarily given as " r igh t . 

ascension," RA, and decl inat ion. The re la t ion between RA and H i s 
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H = 99»4C0 + A + O.9856 d + 15.04l n - RA 

where d is the number of days since January 1, n-, the number of hours 

since midnight,, and A, the number of degrees that the path midpoint is 

east of the standard time meridian. 
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