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SUMMARY

An in depth study of the pricing of Game contingent claims under a general diffusion

market model, in which interest rate is non constant, is presented.

With the idea of providing a few numerical examples of the valuation of such claims, we

present a detailed description of a Bootstrapping procedure to obtain interest rate informa-

tion from Swaps rates. We also present a Stripping procedure that can be used to obtain

initial spot (caplet) volatility from Market quotes on Caps/FLoors. These methods are of

general application and could be used in the calibration of diffusion models of interest rate.

Then we show several examples of calibration of the Hull–White model of interest rates.

Our calibration examples are later used in the numerical approximation of the value of a

particular form of Game option.
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CHAPTER I

INTRODUCTION

1.1 Opening thoughts

Particularly after the 1970’s, Mathematics has found a fertile field of application in the

Economical Sciences, and in particular in Finance.

With financial institutions eager for solutions to their most complex problems, new

programs have been opened in several universities to satisfy the high demand for scientists

and mathematicians trained in the solution of these new kinds of problems.

In Finance, an always present consideration is that of the need for an understanding

of the sources of risk. Such studies may include the behaviour of interest rates, whose

fluctuation is a source of market and credit risk, or the understanding of default and financial

distress, main sources of default risk. For example, in the study of derivative pricing,

mathematical market models are introduced to carefully account for all sources of systematic

risk. Under various sets of additional conditions, such models are used to study the behavior

of agents involved in a particular contract, the strategies available to those agents, and their

ability to hedge their positions.

Although no clear definition of the concept of risk exists, the apparent random behavior

of the many manifestations of the concepts we call risk make them suitable subjects for the

general theory of stochastic processes and probability.

In a paper by Yuri Kifer published in Finance and Stochastics1, the author proposes the

study of a new kind of financial option called the Game Option.

A game option is a contract between two parties (a Holder —also known as the Investor,

or the Buyer, and a Writer —also known as the Seller) based on a zero sum game of stopping,

that allows the seller to terminate the contract and the holder to exercise his rights in the

1[101] Kifer, Yuri. Game optionsFinance and Stochastics; Springer—Verlag, 4 443–463 (2000).
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contract, at any time throughout the life of the contract. If the seller cancels or if the holder

exercises, the contract ends with certain predetermined actions taken. This game option

contains two payoff processes X (the cancellation payoff) and Y (the exercise payoff), with

0 ≤ Yt ≤ Xt, and a given maturity T > 0. If the seller decides to cancel the contract at

a given time t, he will pay to the holder the amount Xt; if on the other hand the holder

decides to exercise his rights at time t, then the seller will pay Yt to the holder. In any case,

the contract ends at the moment of cancellation/exercise. If both, seller and holder, decide

to act (that is to cancel or to exercise) at the same time t, the holder is given priority and

is paid Yt. If neither decides to act prior to maturity, the holder is paid YT at maturity.

Naturally, the goal of the holder is to maximize his expected gain, while the seller’s goal

(and this is the novelty of this contract) is not only to be able to hedge his position at any

time but also to minimize the payment he will have to give to the holder.

Different from European options (where the seller’s position is static after the settlement

of the contract) and from American options (where the seller’s activity is reduced to hedge

his position while waiting for the holder to act), in a game option the two parties behave

like adversaries in a zero–sum game. The goal of the buyer is to maximize his gain as much

as possible; on the other hand, the goal of the writer is now more complex (when compared

with the role of a writer in an American or European option), since he not only has to

hedge his position (to ensure he will be able to cover his obligation in the contract) but also

to minimize the payment he will have to make to the holder. From the pure mathematical

point of view, such contracts offer an interesting source of problems of different levels of

complexity. Since both parts of the contract can be active, at least two random times are

required to model their decisions (a difference from American style options in which only

one part is active and one stopping time can be used to signal the time of execution).

From the point of view of the Mathematician, the problem of finding a fair price for a

Game Option is a very interesting one, it involves the theories of Stochastic Games, Game

Theory, Optimal Stopping theory and the general theory of Stochastic processes and a fair

amount of financial theory. If the numerical approximation of prices is also to be considered,

the problem will also involve Partial differential equations, the theory of Diffusion processes,
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numerical analysis, plus the knowledge of some market conventions required to combine real

market data with the theoretical models.

Although we have no knowledge of derivatives or any other form of contracts of this

exact kind being traded in a market, it is not difficult to us to see the applicability of this

idea in the form of cheap insurance (it is not difficult to argument that the price of a game

contingent claim should always be lower than the price of its corresponding American option

counterpart), and in the form of embedded options (that is, options that are part of other

contracts, for example a bond containing in its indenture a conversion feature in the name

of the holder and a re–purchase/cancelation feature in the name of the writer).

In this thesis we extend the work of Kifer [101] on game options to a full fledged stan-

dard market model with non–constant stochastic interest rates. We show that under mild

conditions a price for such contracts exists and a characterization of the investors strategies

is given.

We also study the numerical pricing of a particular case of game option that does not

only depend on the price of an underlying asset but that is also sensitive to changes in an

interest rate.

1.2 Thesis outline

We have divided this Thesis into four main chapters. Chapter 2 offers an intuitive introduc-

tion to interest rates and to the basic Financial instruments known as Swaps, Forwards and

Bonds. The chapter ends with a detailed description of a bootstrapping procedure, based

on Market conventions, that allows us to obtain initial interest rates (initial yield curve)

information from Swaps data. The input data in this boostrapping procedure is a table of

swap rates as it is typically quoted in the Swaps market. This data can be obtained from

different sources (Bloomberg© for example).

Chapter 3 contains the theoretical part of our work, in this chapter we describe the

market model used and its main properties. We show that the price of a Game contingent

claim exists.

Chapter 4 is a detailed study of the Hull–White interest rate model and its calibration
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to both initial yield and initial spot volatility. A detailed stripping procedure, based on

market conventions, is given in this chapter that allows us to obtain initial spot volatility

data from flat (Caps/Floors) volatility.

Finally, in Chapter 5 we offer the numerical valuation of an American Game Call on a

Forward Price. This kind of contract gives us a nice simple example of a Game option that

is also sensitive to changes in interest rates (in this case a zero coupon bond with a given

maturity).
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CHAPTER II

A LITTLE BIT OF FINANCE

2.1 Brief introduction to Financial Securities

In this chapter we will introduce several financially related terms and basic financial in-

struments either found in real markets or of theoretical importance due to their use in the

study and actual pricing of other, more complex financial instruments.

Instruments as Zero coupon bonds (which constitute the central core around which many

more financial instruments are constructed), forward rate agreements, interest rate swaps

and caps will be introduced in the following sections; we will also consider their arbitrage

pricing according to market practice. The material reviewed in the initial sections will be

used as the background in the construction of Section §2.2.

The last section (§2.2) of the present chapter will deal with the bootstrapping of interest

rate information from Swaps data taken from the market (in this particular case, swap

quotes retrieved from Bloomberg©). Bootstrapping procedures are not only used to obtain

graphical depictions of the behavior of interest rates but are also of key importance in any

interest rate model calibration. Results from this chapter and in particular from section

§2.2 will be used both in Chapter 4 where we present the calibration of Hull-White model

of interest rates, and in Chapter 5, where some numerical examples will be presented.

Still, our exposition will be far from complete and will be driven mainly by our utilitarian

needs, which are: a) to provide the reader with the minimal lexicon and tools required to

read through this thesis, and b) to introduce the topics we need to give a detailed description

of the calibration of Hull–White’s model of interest rates coming in a following chapter (see

Chapter 4).

More detailed and complete descriptions of common financial instruments and lexi-

con can be found elsewhere. In particular, the textbooks by Bodie, Kane and Marcus

([17]) and Ross, Westerfield and Jaffe ([152]) should provide the reader with the general
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lexicon and basic ideas related to simple financial instruments and their market pricing.

Useful glossaries containing definitions of usual financial terms can be found in the In-

ternet, for example Axone’s multilingual glossary (http://tradition.axone.ch/, finan-

cial terms in English, German, French and Italian are provided here, free of charge for

non–commercial purposes), “Reuters Fixed Income Services Financial Glossary” (http:

//www.ejv.com/bp/html/glossary3.html), etc.. Musiela and Rutkowski ([133], in par-

ticular the second part of the book) and Brigo and Mercurio ([19]) provide descriptions of

some of the instruments mentioned here. Additional comments regarding time fractions

and day counting conventions are included in our Maple© worksheet ([78]) dealing with

the bootstrapping of a yield curve, such a document can be obtained from the author.

Additional sources are mentioned in the bibliography section of this work.

2.1.1 Interests and time fractions

The first two meanings of “interest”, according to the Merriam–Webster dictionary are:

� (1): right, title, or legal share in something; (2): participation in advantage and

responsibility

� (a): a charge for borrowed money generally a percentage of the amount borrowed; (b):

the profit in goods or money that is made on invested capital; (c): an excess above

what is due or expected

It is thus clear that an interest is perceived as that amount that is received as the

result of an investment or payed on behalf of money borrowed from someone. Similarly the

corresponding rate of interest will be the fraction (or percentage) defined as interest over

total amount invested or borrowed, per period of time.

Still, such a simple concept may be represented in many different ways related to the

interpretation one gives to such a number or to the local practices regarding its uses. For

example, interests are usually payed or received as a lump sum at the end of a given

(predetermined) period of time (at or after the end of the contract), or in installments at

predetermined dates after every certain period of time throughout the life of the contract.
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As an example, you may have a savings account in a bank that pays a given annual

interest rate on the money you keep in your account (maybe not for all of it, but for the

average amount in a given, predetermined, period of time) and such interest is payed to

your account in installments every month, the last Friday of the month. Or maybe, such

interest is payed four times a year, etc.

As we can see, although the concept is a simple one, in practice its uses and definitions

may turn a little complex.

A usual concept used in practice is that of the time for which an interest rate is valid, for

example a year, a month, a semester, etc. Also important are the number of installments

in which interest is payed (the frequency per time period), the times between installments,

and if such amounts will be included into the computation for the future installments

(compounded interest) or not (simple interest).

Also of importance are the conventions used in the computation (or measurement) of

time periods (“time” usually stands for ellapsed or remaining time, after or before a par-

ticular date, etc.). Which units of time are to be used? Which is the effective or base unit

of time? One may compute time in seconds, or in days, etc. and such computation may be

discrete or continuous. Although time may be measured in days, the effective unit of time

used could be years and interests and interests rates computed and reported in years.

In practice, time is computed discretely in days, weeks, months, years, etc. But even

if such convention is clearly stated some problems may come from the conversion from one

basic period of time to another. For example not all months are of equal length (in days)

and not all years are of equal length. Also of importance are the practices regarding business

days, observance of holidays, etc.

Depending on the situation, time could be measured as remaining time (that is, how long

until the end of the contract, or until a particular date) or as elapsed time (how long since

the beginning of the contract, or since a particular date). For example, time to maturity

(sometimes referred as TtM) is measured as remaining time, while most time fractions used

in interest computations are measured as a fraction of elapsed time.

We call symbol ϕ(t, s) the time fraction between dates t and s. Time fractions are
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defined as the “number” of “small” time periods or subunits of time (designated using a

given conventional unit of time, days usually, but they could be defined in terms of weeks,

months, hours, etc.) per “base” time period or effective unit of time (also designated using

a given conventional unit of time, usually years —in days—, —here years can be “standard”

years of 365 days, or actual years, etc. see below—, but months, weeks, quarters –measured

in days– could be used if days are used as small periods, etc.). In practice ϕ(t, s) depends

on “day counting conventions” (how to count how many days are between date t and date

s), “business days conventions” (what to do if dates t and/or s are not business days) ,

“holiday conventions” (what to do if t and/or s happen to fall on a holiday), etc.

Notation 2.1.1. Common day counting conventions assume that years are measured in

days (days of 24 hours), but months, weeks, quarters –measured in days– examples of day

counting conventions are:

� Actual/Actual: assumes a year consists of 365 or 366 days (in case the year is a

leap year)1 and that days between dates t and s, t prior to s, are counted as the

actual number of calendar days between those two dates, including the first but not

the second. If we identify t and s with their corresponding Julian day number2, the

following formulas can be given to compute the corresponding time fraction. First, if

both t and s are dates belonging to the same year and n is the actual number of days

in that year

ϕa/a(t, s) =
s− t

n
(1)

is the Actual/Actual time fraction in years. If t and s are dates belonging to two

different years, let Ji be the first of January of the second year, Jf be the first of

1This adds another problem, since different conventions could be used regarding the insertion, and in

particular the place of insertion, of a leap day in a leap year. Additional information in this regard can be

found in our Maple© worksheet [78] regarding interest rate bootstrapping (this document can be obtained

from the author).
2 For a definition of this concept please visit the Calendar FAQ, by Claus Tøndering at http://www.

tondering.dk/claus/cal/calendar26.html. Similar information can be found in the first section of our

Maple© worksheet [78] regarding interest rate bootstrapping (this document can be obtained from the

author).

8



January of the final year, ni the number of days in the first year, nf the number of

days in the final year, and y the number of years between first and final years (none

of them included),

ϕa/a(t, s) =
Ji − t

ni
+ y +

s− Jf

nf
(2)

For example, the Actual/Actual time fraction (of days per year) between t = 9/9/2003

and s = 3/4/2004 is

ϕa/a(9/9/2003, 3/4/2004) =
22 + 31 + 30 + 31

365
+ 0 +

31 + 29 + 3
366

=
21573
44530

∼ 0.4844599
(3)

ϕa/a(9/9/2003, 3/4/2004) is the fraction of a year between September 9th, 2003 and

March 4th, 2004. Thus ϕa/a(t, s) is also called the Actual/Actual year fraction be-

tween t and s.

� Actual/365: assumes a year consists of 365 days (that is, there is no distinction

between leap and non–leap years). As in the Actual/Actual convention, days between

dates t and s, t prior to s, are counted as the actual number of calendar days between

those two dates, including the first but not the second. The corresponding time

fraction can be computed as

ϕa/365(t, s) =
s− t

365
(4)

Using the same sample dates t = 9/9/2003 and s = 3/4/2004 we obtain the Ac-

tual/365 time fraction (or year fraction) between September 9th, 2003 and March

4th, 2004 as

ϕa/365(9/9/2003, 3/4/2004) =
22 + 31 + 30 + 31 + 31 + 29 + 3

365

=
177
365

∼ 0.4849315
(5)

� Actual/360: assumes that a year consists of 360 days and that in that regard there is

no distinction between leap and non–leap years. As before, days between dates t and

s, t prior to s, are counted as the actual number of calendar days between those two
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dates, including the first but not the second. The corresponding time fraction can be

computed as

ϕa/360(t, s) =
s− t

360
(6)

Thus, the Actual/360 time fraction (or year fraction) between September 9th, 2003

and March 4th, 2004 is

ϕa/360(9/9/2003, 3/4/2004) =
22 + 31 + 30 + 31 + 31 + 29 + 3

360

=
177
360

∼ 0.4916667
(7)

� 30/360: assumes that a year consists of 360 days and that all months are 30 day

months, with no distinction between leap and non–leap years. Assuming dates t and

s are Gregorian dates3, t prior to s, t = mi/di/yi and s = mf/df/yf we have

ϕ30/360(t, s) =
360(yf − yi) + 30(mf −mi − 1) + df ∧ 30 + (30− di) ∨ 0

360
(8)

From formula (8) we see that the 30/360 year fraction between September 9th, 2003

and March 4th, 2004 is

ϕ30/365(9/9/2003, 3/4/2004) =
360 + 30(3− 9− 1) + min(4, 30) + (30− 9)+

360

=
175
360

=
35
72

∼ 0.4861111
(9)

Day counting conventions are also known as day counting bases. Once a day counting

convention is selected, time fractions are to be computed using that day counting convention.

If ϕ(t, s) is the time fraction between dates t and s we may use the symbol ϕ to represent the

day counting convention used. Similarly if we call ϕ the day counting convention selected,

we will use the symbol ϕ(t, s) to represent the corresponding time fraction between dates t

and s.

If date t precedes date s, the symbol ϕ(s, t) is to interpreted in the sense of remaining

time. That is, we still compute ϕ(t, s) following the rules implied by the day counting basis

ϕ, but the resulting number is used to measure the time remaining until date s.

3For calendar definitions and conventions please refer the to Calendar FAQ, by Claus Tøndering at

http://www.tondering.dk/claus/cal/calendar26.html, Footnote 2.
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Notation 2.1.2. We will denote the maximum between two numbers (variables, functions,

etc.) a and b as max(a, b) = a ∨ b. If one of the two numbers is zero, we use (a)+ =

max(a, 0) = a ∨ 0. Similarly, we will use min(a, b) = a ∧ b to represent the minimum

between two quantities a and b, and if one of the numbers considered is zero, −(a)− =

min(a, 0) = a ∧ 0. When needed, the notation max(. . .) and min(. . .) will be extended to

represent the maximum and minimum of more than two quantities.

The previous list of day counting conventions and corresponding year fractions is by

no means complete and has been given only as an example. Many more day counting

conventions are used in practice.

In formula (8), taken from [19], as well as in our previous examples, dates are represented

in standard American (USA) notation m/d/y, where m is the month number, d the day of

the month, and y the year (year is AD –Anno Domini–, remember we assume Gregorian

dates are used).

The reader should be aware that the formulas provided above must be corrected to

include any possible “business day convention” or “holiday convention” in use.

Common “business day conventions” are, for example:

� Prior day, if date t falls on a Saturday, Sunday or any other non business day, such

date should be corrected to the prior business date.

� Next day, if date t falls on a Saturday, Sunday or any other non business day, such

date should be corrected to the next business date.

“Holiday conventions” correspond to the selection of observed holidays. If a date t falls

on a holiday, the accepted “Holiday conventions” will dictate if such day is considered a

business day or not. The following definitions assume that a particular day counting basis,

a particular basic unit of time and a particular basic period of time, T , (expressed in terms

of the selected unit of time, for example a time period of a year expressed as 360 days

in accordance with a day counting convention of 30/360) have been selected and that two

calendar dates t (the “start” or “initial” date) and s (the “terminal” or “final” date) are

given. As we have done before, we will abuse notation and assume also that t and s can
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be identified with their corresponding Julian day number (see Footnote 2) so that they can

be compared using common order operators like “<” and so that formulas from Notation

2.1.1 can be used.

Definition 2.1.1 (Simple compounded interest rate). Denote the following: P is the

principal (that is the amount invested or borrowed), T is the basic period of time (or

effective unit of time; years, for example), and ϕ(t, s) the time fraction between times t and

s (that is the “number” of time periods between times t and s), t < s. We define simple

(compounded) interest rate per period of time T as such rate ri that satisfies

I = Pϕ(t, s)ri (10)

where I is the total interest payed.

When interests are simple, the frequency of installments is taken as one.

If on the other hand, the frequency of installments (per basic period of time) is bigger

than one and interests are accrued, then we have the following.

Definition 2.1.2 (Several times compounded interest rate). Denote the following:

P is the principal, T the basic period of time, f is the frequency of installments per time

period of length T , and ϕ(t, s) the number of time periods between times t and s, t < s.

We define the compounded interest rate per time period T of frequency f as the rate rc

such that

I = P

((
1 +

rc

f

)fϕ(t,s)

− 1

)
(11)

where I is the total interest payed.

Continuous interest rates are also used, but are less common in practice4.

4I still remember the first savings account I ever had. That was when I was a kid back in Costa Rica,

several years ago; it payed 6% annual rate continuously compounded over the average balance of the account

(up to a million colones) in the three months prior to the payment of interests. Interest was computed four

times a year, the last day of the third, sixth, ninth and twelfth month of the year and payed to the account

the next (business) day.

12



Definition 2.1.3 (Continuously compounded interest rate). Denote the following:

P is the principal, T the basic period of time, and ϕ(t, s) the number of time periods between

times t and s, t < s. We define the continuously compounded interest rate per time period

T as the rate r such that

I = P
(
erϕ(t,s) − 1

)
(12)

where I is the total interest payed.

From (11) and (12) it is clear that continuously compounded interest rates are the

limiting case of several times compounded interest rates when the frequency of installments

approaches infinity. On the other hand, if the time fraction ϕ(t, s) decreases approaching

zero, all three kinds of interest rates mentioned here are equivalent.

2.1.2 Bonds and Bond Pricing

In our work, a concept that shows up around every corner is that of a bond. To us

Definition 2.1.4. A bond is a contract according to which, two parties agree to exchange

cash flows following a predetermined schedule.

Clearly, our definition is a bit too general, and thus encloses many other contracts not

usually seen or regarded as bonds. Examples of bonds are: Treasury Notes, Treasury Bills,

and of course Treasury Bonds. But bonds also include Mortgages, loans, Interest rate

swaps, or a Bank Account. Several different kinds of embedded options and provisions can

be attached to a bond in order to create more complex instruments, for example: Callable

Bonds, Convertible Bonds, lottery tickets, etc. Here we are assuming that the cash flows are

to be given in the same currency. If one allows for different currency cash flows, then our

definition is general enough to cover almost all existing financial contracts (but of course

this is not the issue, but a simple by–product of our simple definition).

Bonds, in practice, go from the very complex contracts to the very simple, the simplest

of them being a Zero Coupon Bond.

Definition 2.1.5. A Zero Coupon Bond (zcb) is a bond consisting of two times t and T

(the maturity of the bond), with t < T , and two cash flows: one from party A (the buyer),
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B(t, T ) ≤ 1 given at time t, which we call the price of the zcb, and a second cash flow of size

1 from party B (the seller), given at time T . The zcb’s are also known as discount bonds

or simply zeroes.

In actual markets, bonds promise the payment of an amount N, known as the nominal

or principal of the bond, and that quantity is rarely close to 1 unit of currency. The

convenience of our definition of a zcb as a bond paying a nominal of 1 at maturity will be

apparent in the coming pages.

Notation 2.1.3. In what follows we will use the notation

B(t, s) (13)

to denote the time t price of a zcb whose maturity is s, t ≤ s, and whose nominal or principal

is one unit of currency.

Zero coupon bonds are of fundamental importance, both practical and theoretical. And

as we will see in the following pages, they can be used to describe and, or, define more

complex financial instruments.

In what follows, unless otherwise specified, we will assume that we are dealing with

a “perfect world” in which there is no default risk or frictions and in which securities are

perfectly divisible5. Even if uncertainty is allowed, we will assume that there is no arbitrage

and that (quoted) interest rates are non-negative.

Under these conditions, the time T price of a T maturity zcb should be B(T, T ) = 1.

Definition 2.1.6. The time t and maturity T , t < T , spot rate is defined as the theoretical

yield (interest rate) of a (t, T )–zcb6.

5That is, investors are allowed to acquire or sell any fractional amount of a security. Although this

assumption (when compared to real market practices where investors must trade in integer multiples of

securities) may be considered extreme, it is in perfect accordance with our assumption of no frictions. Non

divisibility forces investors to buy or sell more than what they should, which in turn translate into a form of

friction. On the other hand, wealthy investors can achieve near zero friction and almost perfect divisibility

in real markets. Thus this kind of assumption is not considered too far off.
6In practice, due to the relationship between (0, T )(–zcb) spot rates and yield curves (see Definition

2.1.12) some tend to regard as spot rates only the theoretical yields of (0, T )–zcb’s.
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Please refer to §2.1.3 for a detailed description of interest rates in relation to zcb’s.

Zero coupon bonds have been in the market since very long ago, offered by governments

as well as by companies, responding to the different needs and interests of lenders and

investors. They may be pure discount bonds or synthetic. For example STRIPS7 are

examples of synthetic zero coupon bonds. In the USA the STRIPS market has grown

with the years. Now, data from the STRIPS market can be used to reconstruct the yield

curve8 (see Definition 2.1.12) without the need to worry about carrying out a bootstrapping

using all other Treasury securities. Although such simplification reduces the effort required,

many other problems remain. For example, liquidity, seniority, or if a STRIP is coming

from coupons or from principal, to mention a few. Please see [168] for a description of

STRIPS.

Notation 2.1.4. In what follows we will use family to refer (in a loose way) to a set

of contracts with a common set of characteristics, but differing in maturity. After some

clarification, this use may be extended to situations where some other characteristic is

allowed to change.

Remark 2.1.1. Due both to the size and efficiency of the market, we can assume that the

bond market is arbitrage free. In our applications we will assume that there is a special

family of zcb’s and that such a family conforms to a family of arbitrage free zcb’s.

Definition 2.1.7. A Coupon Bond starting at time T0 is a contract in which one party

(the issuer), for a price CB payed up front, ensures to another party (the holder) the future

payment, at times {Ti}i∈Nm , T0 < T1 < T2 < . . . < Tm, of a certain number, m, of cash

flows, {Ci}i∈Nm ,

Ci = ϕ(Ti−1, Ti)KN (14)

based on a rate9 K relative to the day counting basis ϕ, and a nominal, N, also called the

7The acronym STRIPS stands for Separate Trading of Registered Interest and Principal of Securities;

basically, STRIPS are obtained when coupons and principal are stripped from a Treasury security.
8See [153] for a detailed analysis of this issue.
9We assume a particular day counting basis (as 30/360, or Actual/Actual for example) is used to compute

the time fraction ϕ when interest payments related to rate K are computed.
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principal.

Cash flows (interest payments) {Ci}i∈Nm are called coupons10. The times {Ti}i∈Nm are

called the coupon dates, and the last of such dates Tm = T is also called the maturity of

the bond. Dates {Ti}i∈N∗m−1
are also known as reset dates. At maturity, the issuer of the

Coupon Bond will pay the nominal N (plus the last coupon) to the holder.

Notation 2.1.5. In what follows, as well as in the preceding definition, we will use the

notation Nm to represent the subset of N containing the first (non null) m integers. That is,

for m ∈ N we define Nm = {x ∈ N : x ≤ m}. Similarly, for m ∈ N we define N∗
m = {0}∪Nm.

Looking at the structure of cash flows in a Coupon Bond,
Ci = ϕ(Ti−1, Ti)KN 0 ≤ i < m

N + Cm = N (1 + ϕ(Tm−1, Tm)K)
(15)

it is easy to see that we can decompose a Coupon Bond into a portfolio of zcb’s maturing

at the coupon dates {Ti}i∈Nm . Since we can see B(t, Ti) as the time t price of a dollar at

time Ti, the total value of cash flows, at time t, t ≤ T0, of a Coupon Bond will be

NB(t, T ) +
m∑

i=1

CiB(t, Ti) = N

(
B(t, T ) +

m∑
i=1

ϕ(Ti−1, Ti)KB(t, Ti)

)
(16)

Thus, for t ≤ T0, the time t fair price of a Coupon Bond of rate K starting at time T0

and with maturity T = Tm, paying coupons at times {Ti}i∈Nm is

CB(t, T0, T1, . . ., Tm, ϕ,K,N) = N

(
B(t, T ) +

m∑
i=1

ϕ(Ti−1, Ti)KB(t, Ti)

)
(17)

A contract very similar to a Coupon Bond is a generalized forward rate agreement (see

Definition 2.1.14).

2.1.3 Zero coupon bonds and interest rates

In this section we will briefly describe some accepted conventions regarding interest rates and

their relation with zero coupon bonds. In particular we will introduce here the concept of

10Such a name is due to the old practice of printing coupons in the contract that were stripped off or cut

out by the holder at the coupon dates and carried to an office to exchange them for cash.
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Yield curve. Together with Swap curves, Cap curves, etc., Yield curves are a very important

piece of information from which much insight about the market can be obtained11. In

particular, Yield curves are one of the key ingredients in any interest rate model of the risk

free rate. The topics presented in this section will be used in §2.2 and in Chapter 4, where

we will present a calibration procedure for the Hull–White model (255) of interest rates.

In this section we will assume that dates are given relative to a known, fixed, conveniently

chosen date. That is, we will measure time as elapsed time from that particular date. In

that way the expression “time t” will mean a date t days, months, etc. after our special

initial date which conveniently corresponds to time t = 0.

Definition 2.1.8. If T is the maturity of a given contract, and t represents a time prior to

T , t ≤ T , we define the time to maturity or TtM as T − t, the actual time count in the

selected units of time (days, years, minutes, etc.).

Interest rates can be defined based on the prices of zcb’s and day counting conventions

as a measure of the return (interest) in an investment on bonds. For example, if B(t, T )

is the time t price of a (risk-less) zcb with maturity T of less than one year, and ϕ(t, T ) is

the year fraction, with respect to day counting convention ϕ, one may see that the (yearly)

interest in such an investment is given as the quotient of 1 − B(t, T ) and ϕ(t, T )B(t, T ),

thus we obtain

rϕ(t, T ) =
1−B(t, T )

ϕ(t, T )B(t, T )

the simply compounded, annual rate12 r reset at time t and with maturity T 13. If time t is

well known or clearly implied from context we may reduce the notation writing rT . Notice

that the applied day counting convention influences the value of r, and thus the perception

we have of the return in the investment. Similarly, if ϕ(t, T ) represents not the year fraction

but the monthly fraction, etc. one may correspondingly change the interpretation of rate

11See for example Bodie, Kane and Marcus [17] chapter 15 for an introduction to the analysis of Yield

curves.
12If the day counting convention can be easily implied from the context, we will omit the subindex ϕ

from the symbol representing the interest rate.
13Essentially if t is not zero, this is a “forward” rate, see Definition 2.1.13 and (36).
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r. Thus, in general we may define

Definition 2.1.9. Simple compounded rate. Let B(t, T ) be the time t price of a

zcb of maturity T , and let ϕ represent a day counting convention, with ϕ(t, T ) being the

corresponding time fraction between t and T (with respect to the convention). We define

the simply compounded ϕ–rate rs
ϕ(t, T ), with reset t and maturity T as

rs
ϕ(t, T ) =

1−B(t, T )
ϕ(t, T )B(t, T )

. (18)

We use notation rs
T for rs

ϕ(t, T ) when both t and ϕ are known.

Clearly, Definition 2.1.9, implies also a pricing procedure for a simple compounded zcb

defined with respect to a rate rs
ϕ(t, T ) valid for the time period [t, T [, since

B(t, T, ϕ) =
1

1 + ϕ(t, T )rs
ϕ(t, T )

(19)

should be the time t price of a zcb yielding an interest of rs
ϕ(t, T ) in a time fraction of

ϕ(t, T ) maturing at time T . Thus we can also regard r as the simple compounded yield of

the bond.

Examples of simple compounded rates are the interbank rates, or LIBOR rates. Simple

compounded rates are also used when quoting the price of short maturity14 bonds.

Definition 2.1.9 does not describe the only possible type of interest rate formulation. In

fact, Definition 2.1.9 may not be appropriate in some situations.

Consider the case in which an investment is placed on a long maturity bond,15 a 30 year

maturity bond for example. Such a bond could be paying at maturity 4.3 times the initial

investment. But such a payment, representing a return of 3.3 (or 330%) in 30 years,16 is

not easy to compare to other short lived investments.

Therefore, we need to change our approach.

We assume that bonds are perfectly divisible, and that there are no transaction costs,

nor liquidity or reinvestment risk. Consider the scenario where a sum ($1 as usual) is

14less than one year
15In this context “long maturity” is use to refer to a maturity longer than one time period —year, month,

etc.— while “short maturity” is mostly used in cases where the maturity is shorter than a time period.
16or 3.3/30 = 0.11 = 11% yearly interest simple compounded
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invested in one year maturity zcb’s, and then, at maturity, all proceeds reinvested in a

similar one year maturity zcb. Now say we carry over this scheme for thirty years, and that

over that period of time, the prices of one year maturity zcb’s do not change. Let r be the

simple compounded (yearly) rate of such bonds. At the end of the thirty years the proceeds

of our reinvestment scheme will be

(1 + r)30

What should be the (constant) value of r that ensures (1 + r)30 = 4.3?

That will be the value of r that will allow us to replicate, through reinvestment on one

year maturity zcb’s, the earnings of a thirty year bond.

Solving we obtain r ' 0.049821869 ' 4.98%, per year.

Thus r represents the yearly compounded rate of our 30 year maturity bond, with the

advantage that we can now compare such a rate with short maturity investments in an

easier way.

Definition 2.1.10. Annually compounded rate. Let B(t, T ) be the time t price of

a zcb of maturity T , and let ϕ represent a day counting convention (ϕ(t, T ) being the

corresponding year fraction between t and T with respect to such a convention). We define

the ϕ–annually compounded rate, ra
ϕ(t, T ), with reset t and maturity T , as

ra
ϕ(t, T ) =

(
1

B(t, T )

) 1
ϕ(t,T )

− 1 . (20)

Similarly, if ra
ϕ(t, T ) is the ϕ–annually compounded rate of our bond,

B(t, T ) =
1

(1 + ra
ϕ(t, T ))ϕ(t,T )

(21)

as before, we may suppress t, T , a or ϕ when those are known or clearly implied from the

context.

Similarly, if ϕ(t, T ) does not represent a year fraction, but any other time fraction (with

respect to a given base time period), we can use Definition 2.1.10 to define rates compounded

multiple times with respect to a different base time period.
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Definition 2.1.11. Continuously compounded rate. As before, let B(t, T ) be the time

t price of a zcb of maturity T , and let ϕ represent a day counting convention, being ϕ(t, T )

the corresponding time fraction between t and T . The continuously compounded interest

rate rc
ϕ(t, T ) is defined as

B(t, T ) = exp(−ϕ(t, T )rc
ϕ(t, T )) (22)

or equivalently as

rc
ϕ(t, T ) = − lnB(t, T )

ϕ(t, T )
(23)

Many more definitions are used in the market, but we will not go into further details in

this topic. The interested reader is referred to the bibliography.

Simple compounded and annually compounded rates are used to define the Yield Curve.

Note 2.1.1. It is also market use to quote short maturity zcb’s using their corresponding

simply compounded yield and to quote mid to long maturities using their annually com-

pounded yield. In this way, yield curves can be defined for families of zcb’s.

Definition 2.1.12. Yield Curve. Let rs(t0, t) be the ϕ–simple compounded interest rate,

t− t0 ≤ 1 year, quoted at time t0, and let ra(t0, t) be the ϕ–annually compounded interest

rate, t − t0 > 1 year, as quoted at time t0. We define the Yield Curve as the graph of the

maturity t yields (theoretical spot rates) y(t0, t), for t0 < t, where

y(t0, t) =


rs(t0, t) t− t0 ≤ 1

ra(t0, t) t− t0 > 1
(24)

and time is measured in years following the day counting convention implied by ϕ.

As mentioned before, yield curves are one of the main ingredients in the calibration of

an interest rate model. Thus, some attention must be payed to the construction of yield

curves (sometimes referred as bootstrapping of interest rates).

In practice (that is in real markets) not all maturities are offered or quoted, thus instead

of a curve, only a finite set of rates are available. This forces the introduction of conventions

and uses proper to the market. For example, it is common practice to linearly interpolate
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Figure 1: This plot shows an Implied Yield Curve extracted from Swap rate data as on
May 12 2003. May 12 2003 was used as the reference date, and time is counted from that
date on (thus t = 1 corresponds to Wed. May 12 2004, etc.).
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Figure 2: Implied zcb price curve extracted from Swap rate data as on May 12 2003

rates not available using the two closest maturities available. Both, Figure 1 and Figure 2,

are using linear interpolation. This off course is not the only problem, bonds introduced

into the market at some date will “age”; a two year maturity zcb introduced last year will

be “like” a one year maturity zcb today. Thus we have the problem of seniority. Similarly,

many other issues come in play, like liquidity (that is the ease to turn such instruments into

cash), the discontinuance of a particular bond maturity, etc.

The number of available points in a Yield Curve also changes from market to market,
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and from country to country. That number also changes depending on the methodology

adopted to estimate those points. We will come back to this topic in §2.2.

Since only a finite number of maturities are available in a real market, it makes sense to

talk about a term structure, to make reference to the set of available maturities of a given

financial instrument; for example the term structure of zcb’s. Similarly one may talk about

the term structure of interest rates (for a given financial instrument), to make reference

to the fact that only a finite number of maturities, and therefore of corresponding interest

rates, is available.

In order to avoid many of the problems mentioned here, we will introduce in section §2.2,

a bootstrapping procedure that uses information from the Swaps market. The following two

subsections will introduce the background required.

2.1.4 General Forward Rate Agreements

Definition 2.1.13. A Forward Rate Agreement or FRA is, simply put, a contract

starting at time S in which two parties agree at time t ≤ S to exchange cash flows at a

given date T > S in the future; both cash payments are quoted as interest rate payments

with respect to a nominal amount N which is not exchanged, and two interests rates K and

V r(S, T ). At time t rate K is known and constant throughout the life of the contract. On

the other hand, rate V r(S, T ) is only known at time S, t ≤ S < T . The dates t, S, and T

are known as the settlement, the reset or start, and the maturity dates, respectively.

It is assumed that the rates involved are simply compounded and that each of them may

carry a different day counting basis, which means that up to two different time fractions

will be involved in the computation of the payments. If ϕK(S, T ) and ϕV r(S, T ) are the

time fractions between dates T and S corresponding to rates K and V r(S, T ), respectively;

interests payed by the two parties involved in an FRA are:

NϕK(S, T )K

NϕV r(S, T )V r(S, T )
(25)

Forward rate agreements are usually priced to make their initial value equal to zero

and are quoted in the market using the particular fixed rate K = Kf (t, S, T ), the forward
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rate, that makes the contract valueless at settlement. Therefore, there are no payments at

settlement or reset dates.

Consideration of this contract is given in several books and other bibliographical re-

sources17. In our particular case, we are interested in the following simple generalization.

Definition 2.1.14. A Generalized Forward Rate Agreement or gFRA is a contract

in which two parties agree at time t to exchange a series of variable interest rate cash

flows, at times {Ti}i∈Nn , where t ≤ T0 < T1 < · · · < Tn−1 < Tn = T , with one fixed rate

payment at time Tn = T . As in the case of an FRA, cash flows are quoted as interest rate

t T0 T1 T2 T3 . . . Tn−1 T = Tn

Figure 3: gFRA cash flow time schedule

payments with respect to a nominal amount N which is not exchanged, and interest rates

{V r(Ti−1, Ti)}i∈Nn and K. The starting date of the contract is T0. At time t, t ≤ T0, rate K

Ti−1 Ti

V r(Ti−1, Ti) V rpi = Nϕ(Ti−1, Ti)V r(Ti−1, Ti)

Figure 4: gFRA’s ith cash flow

is known and constant throughout the life of the contract. On the other hand, for i ∈ Nn,

the rate V r(Ti−1, Ti) is known at time Ti−1. The dates t, {Ti}i∈N∗n−1
, {Ti}i∈Nn , T0 and T are

known as the settlement, the resets, the installments, the starting and the maturity dates,

respectively.

As discussed earlier, associated with each rate there is a day counting basis and cor-

responding time fractions ϕ(Ti−1, Ti) = ϕV r(Ti−1, Ti), i ∈ Nn (in the case of the variable

interest rate V r); and ϕK(T0, Tn) = ϕK(T0, T ) (in the case of the constant rate K) used

to determine the compounding of interests. If the variable rates in our contract follow the

17See for example [133], [55], [97] and [19], between many others.
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Treasury yield curve, the natural choice for the day counting basis associated with such

variable rates should be that used with the Treasury securities18.

Definition 2.1.15. Both FRA’s and gFRA’s are classified into Payer FRA’s and Payer

gFRA’s respectively or Receiver FRA’s and Receiver gFRA’s depending on the di-

rections of the cash flows. A Payer FRA (resp. Payer gFRA) is one in which a fixed rate

payment is given against the corresponding variable rate payment(s). Similarly, in a Re-

ceiver FRA (Receiver gFRA respectively) one fixed rate payment is received while a (n, in

the case of a Receiver gFRA) variable rate payment(s) is (are) given.

Clearly more generalizations are possible, for example one could consider the case in

which reset and installment dates do not coincide at all, one could also consider the inter-

mediary’s fees, and other transaction costs, or contingencies such as default risk, etc. but

those generalizations escape the scope of this work.

Later we will see that a gFRA could be seen as a portfolio of zeroes.

Assuming that the market contains enough zcb’s (that is zcb’s maturing at all reset

and settlement dates considered in the gFRA) and that the market is free of arbitrage,

we can price a gFRA as follows. First we will call ϕ the time fraction corresponding to

the standard day counting basis used with the zcb’s, which we assume is also the day

counting basis quoted with the variable rate V r19. Similarly, we will call ϕK the time

fraction corresponding to the day counting basis quoted with the fixed rate K. We will

assume also that there is a standardized procedure to choose the value of V r at the ith

reset date. For example, and also our implied assumption, this rate is made equal to the spot

rate at time Ti valid for the period ]Ti, Ti+1] —see Definition 2.1.6—, that is the interest

rate of a zcb starting at time Ti and maturing at time Ti+1. In order to simplify both

notation and computations, we will assume that all periods ]Ti, Ti+1], i ∈ N, are “short”

18Although someone could quote that rate with respect to a different day counting basis and perform

the conversion internally, such a “generalization” seems of doubtful importance and will contribute to make

formulas a lot more complex.
19As we mentioned before, one could assume those two day counting bases to be different, but such

generalization will only complicate notation.
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(that is periods of time shorter than a year). Our previous assumptions are equivalent to

B(Ti, Ti+1) (1 + ϕ(Ti, Ti+1)V r(Ti, Ti+1)) = 1.

A gFRA involves n+2 times (please see Figure 3): t, the settlement date; T0, T1, . . ., Tn−1,

the reset dates; and T1, T2, . . ., T = Tn, the n installment dates (note that Tn, the nth in-

stallment date is also the maturity T of the gFRA).

For each i ∈ Nn, at time Ti−1 a variable rate V r is quoted for the time interval ]Ti−1, Ti],

“fixing” the floating payment to be given at time Ti. It is clear that the variable rate payment

given by the first party at the end of the ith time interval will be:

V rpi = Nϕ(Ti−1, Ti)V r(Ti−1, Ti) = N

(
1

B(Ti−1, Ti)
− 1
)

(26)

At time T = Tn the second party will make its fixed rate payment to the first party

frp = NϕK(T0, Tn)K (27)

In terms of the prices of zcb’s, each payment can be “discounted” back to the settlement

date t to obtain the time t total amount of cash flows. Since a zcb of maturity Tn will pay

a unit of currency at time Tn, it is clear the time t “discounted” value of frp is

NϕK(T0, Tn)KB(t, Tn) (28)

Under our assumption that there are enough zcb’s in the market, and the assumption

of no arbitrage, it is not hard to see that

B(t, Ti) = B(t, Ti−1)B(Ti−1, Ti) (29)

Therefore, the time t value of a variable rate payment, made at time Ti, will be

N
(

1
B(Ti−1,Ti)

− 1
)

B(t, Ti) = N
(

1
B(Ti−1,Ti)

− 1
)

B(t, Ti−1)B(Ti−1, Ti)

= N (B(t, Ti−1)−B(t, Ti))
(30)

Thus, the sum of all time t variable rate payments, made at times Ti, i ∈ Nn, is

N

n∑
i=1

(B(t, Ti−1)−B(t, Ti)) = N (B(t, T0)−B(t, Tn)) (31)
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Adding the payments to the first party (receiving fixed rate payments and giving variable

rate payments), equations (28) to (31)20 we obtain:

NϕK(T0, Tn)KB(t, Tn)−N (B(t, T0)−B(t, Tn))

= N ((ϕK(T0, Tn)K + 1)B(t, Tn)−B(t, T0))
(32)

Therefore, the time t value of a gFRA (receiving fixed rate, paying variable rate) is

gFRA(t, T0, T1, . . ., Tn, ϕ, V r, ϕK,K,N) = N ((ϕK(T0, Tn)K + 1)B(t, Tn)−B(t, T0)) (33)

We can see that there is a value K = gFr, the generalized forward rate , that makes

this contract valueless at time t. Such a fixed rate is:

gFr(t, T0, Tn, ϕK) =
1

ϕK(T0, Tn)

{
B(t, T0)
B(t, Tn)

− 1
}

(34)

Notice that if n = 1 we are in the case of an FRA. Thus if t, S and T are the settlement,

the start, and the maturity dates; N is the nominal, K is the fixed rate, V r the variable

rate, and ϕ and ϕK are the corresponding day counting bases of the FRA, then

FRA(t, S, T, ϕ, V r, ϕK,K,N) = N ((ϕK(S, T )K + 1)B(t, T )−B(t, S)) (35)

is the time t value of an FRA , while

Fr(t, S, T, ϕK) =
1

ϕK(S, T )

{
B(t, S)
B(t, T )

− 1
}

, (36)

the forward rate quoted at time t for the period ]S, T ], is the fixed rate that renders the

FRA contract valueless at inception.

Even more interesting, we notice that the time t value of a gFRA does not depend at all

on the number of intermediate payments, but only on data associated with the settlement

date, the first reset date (the start date) and the maturity date. It is this last property

which will help us to easily price a more complex contract: a Swap.

2.1.5 Simplified version of Swaps

Instead of exchanging one fixed payment by a finite stream of floating rate payments,

one may be interested in exchanging two streams of payments. When both streams are

20Note that the cash flows are not given in the same direction, thus one must consider a change of sign.
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computed as interest rate payments based on the same nominal and two given interest

rates, the resulting contract is called a Swap. The next definition covers the particular case

in which one of the rates is fixed.

Definition 2.1.16. An Interest Rate Swap or simply a Swap is a contract in which

two parties agree to exchange two cash flows consisting of interest rate payments based

on the same nominal N, and two interest rates, K which is constant throughout the life

of the contract and known at settlement, and V r which is a variable rate, known only at

reset dates {Ti}i∈N∗m−1
and valid through the time period ]Tn−1, Tn], when reset at Tn−1,

for n ∈ Nm.

t T0 T1 T2 T3 T4 . . . Tm−1 T = Tm

Tα0 Tα1 Tα2
. . . Tαk−1 Tαk

Figure 5: Swap’s cash flow time schedule

In the case of a Payer interest rate swap or Payer Swap, k fixed rate payments

(k ≤ m) are given at times {Tαj}j∈Nk
⊂ {Ti}i∈Nm , while floating rate payments are received

at times {Ti}i∈Nm . In the case of Receiver interest rate swap (or simply a Receiver

Swap) floating rate payments are given while fixed rate payments are received. As in the

case of a gFRA, nominals are not exchanged.

As before we will call t the settlement date, T0 = Tα0 the start date, {Ti}i∈N∗m−1
and

{Tαn}n∈N∗k−1
the reset dates, {Ti}i∈Nm and {Tαn}n∈Nk

the installment dates, and T = Tm =

Tαk
the maturity date.

In our definition of a swap we have assumed that the installment and reset dates of the

fixed rate leg are (respectively) subsets of the installment and reset dates of the floating

rate leg, we have assumed also that one of the rates is fixed. Those are qualities that could

be relaxed giving rise to a more general version of a swap contract which escapes the scope

of this document.

We observe that payments are exchanged at different times {Ti}i∈Nm and {Tαn}n∈Nk
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(this last set a subset of the former), but that the first reset date and the last installment

date are the same for both cash streams.

Also we assume two different day counting bases ϕ and ϕK are used in the computation

of interest rate payments with respect to rates V r and K respectively. In our applications,

we will assume that the day counting basis used with rate V r is the same as that used with

the Treasurys; in fact we assume V r is the zcb’s rate.

Thus ϕ(Tn, Tn+1) is the time fraction between Tn and Tn+1 measured according to

the day counting basis corresponding to variable rate V r, and ϕK(Tαn , Tαn+1) is the time

fraction between Tαn and Tαn+1 measured according to the day counting basis corresponding

to fixed rate K.

In order to value this contract we need to account for all cash flows, considering their

time t (the date at which the contract is quoted) value in terms of zcb prices. To avoid some

notational complexity in the situation, we have assumed that all dates involved (maybe with

the sole exception of the settlement date t which is assumed to satisfy t ≤ T0 = Tα0) are

dates listed in the finite sequence {Ti}i∈Nm . Based on our discussion of the generalized

forward rate agreement, we notice that our swaps can be decomposed into k generalized

forward rate agreements with maturities Tα1 , Tα2 , Tα3 , . . . , Tαk
, settlement date t, floating

rate payments (maybe not the same number in each period) at dates

Tαi−1+1, Tαi−1+2, . . . , Tαi−1+ji−1, Tαi−1+ji = Tαi (37)

and reset dates

Tαi−1 , Tαi−1+1, Tαi−1+2, . . . , Tαi−1+ji−1 = Tαi−1 (38)

where we have defined ji = ∆αi = αi − αi−1.

t Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+ji−1 Tn+ji

. . .
Tαi−1 Tαi−1+1 Tαi−1+2 Tαi−1+3 Tαi−1+4 . . .

. . .
Tαi−1 Tαi

Figure 6: Swap’s nth gFRA cash flow time schedule

Thus, the Receiver swap’s price at time t (receiving fixed, paying variable) will be
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S(t, {Ti}i∈Nm , {Tαj}j∈Nk
, ϕ, V r, ϕK,K,N)

=
k∑

i=1

gFRA(t, {Tαi−1+j}j∈N∗ji
, ϕ, V r, ϕK,K,N)

= N

k∑
i=1

{(
ϕK(Tαi−1 , Tαi)K + 1

)
B(t, Tαi)−B(t, Tαi−1)

}
= N

{
B(t, Tαk

)−B(t, Tα0) +K
k∑

i=1

ϕK(Tαi−1 , Tαi)B(t, Tαi)

}
(39)

As in the case of gFRA’s and FRA’s, one can easily notice that there is a fixed rate

K = Sr that makes the contract valueless at time t. Such a rate is commonly called the

swap rate. Solving for K in (39), we obtain:

Sr(t, {Tαi}i∈Nk
, ϕK) =

B(t, Tα0)−B(t, Tαk
)∑k

i=1 ϕK(Tαi−1 , Tαi)B(t, Tαi)
(40)

Remark 2.1.2. It is important to observe that as gFRA’s reduce to FRA’s when the

number of floating rate payments collapse to one; Swaps will reduce to gFRA’s when the

number of fixed rate payments collapse to one, and furthermore, to FRA’s when both legs

of the Swap contain only one payment. In this sense all FRA’s and all gFRA’s are also

Swaps.

Figure 7 shows ‘bid’ and ‘ask’ US dollar swap rates as reported in Bloomberg’s page

SWDF on May 12 2003.

As we mentioned at the end of §2.1.3 not all (theoretically possible) maturities of a given

instrument are available in a real market. Even in a big market as the Swap market, only

a reduced number of maturities are available.

For example, in the case of US markets, up to 24 swap rates are quoted, corresponding

to 24 fixed maturities. Table 1 list the commonly available maturities in US markets.

This issue of availability is not only restricted to maturities, but as the reader may

expect, to all other features of the Swap. For example, common contracts are available

with annual (one payment per calendar year), semiannual (that is, two payments per year,

spaced every six months) or quarter–quarter (four payments per year, spaced three calendar

months) legs, being a common combination a semiannual/quarter–quarter. This issue also

imposes an additional restriction to the available maturities, for example if a Swap’s legs
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Figure 7: Swap rate curves as on May 12 2003. Shown are the swap rates (bid and ask
quotes) corresponding to the 24 different maturities available in the US market.

Table 1: Usual swap rate maturities available in the US Market

Available Maturities
Short Long

1 week 5 months 2 years 7 years 12 years
1 month 6 months 3 years 8 years 15 years
2 months 9 months 4 years 9 years 20 years
3 months 1 year 5 years 10 years 25 years
4 months 6 years 11 years 30 years

are semiannual and quarter–quarter, the shortest maturity that fits into such description is

of six months (which will correspond to a gFRA with two quarterly floating rate payments

and one fixed rate payment at maturity), with longer maturities being “multiples” of this

short maturity.

To compensate for this kind of situation several market uses and conventions have been

introduced. For example, in a family of semiannual/quarter–quarter Swaps, a nine (or seven

and eight) month maturity Swap will have three “quarterly” payments (in the case of seven

and eight months the last “quarter” is “short”) in one leg and one payment at the sixth

month and another at maturity in its other leg. With the intention to obtain a Swap (rate)
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curve, gFRA’s and FRA’s with maturities shorter than six months will also be included

according to accepted conventions. The contracts usually included are four short maturity

FRA’s and two short maturity gFRA’s. Namely, one week, one, two and three months

maturity FRA’s with same reference rates and same day counting conventions; and gFRA’s

with four and five months maturities, with payments at the third month and at maturity,

and with same reference rates and same day counting conventions.

This explain the very short maturities in Table 1.

Definition 2.1.17. A Swap (rate) curve is defined for a given family of Swap contracts

as the graph of the Swap rates (at a given settlement date t0) versus maturity. In practice,

rates corresponding to unquoted maturities are linearly interpolated using the two closest

maturities above and below.

An example of Swap curve is provided in Figure 7.

2.2 Bootstrapping of Yield information from Swaps data

How did we generate the plot in Figure 1? In this section we describe the bootstrapping

procedure used to obtain an Implied Yield Curve21 from Swap Rate data.

Interestingly, although the basic financial instruments are the zcb’s and Coupon Bonds,

it is the Swap market which exhibits higher activity, and volume. It is a fact that the Swap

market is more liquid than the Bond market22. This being the case, since swaps can be seen

as portfolios of zcb’s, when looking for data on the yield curve it makes sense to use Swap

21By Implied Yield Curve we mean “the” zcb interest rates that should be in effect to make the swap

rates computed through (40) to be those found (quoted) in the market.
22According to the ISDA (International Swap and Derivatives Association, Inc.), mid year market survey

—released on September 23rd, 2003—, the vanilla swap market has surpassed $120 trillion NPOV (no-

tational principal outstanding volume). Both, vanilla swaps and credit derivatives (credit default swaps,

baskets and portfolio transactions) have exhibited a growth of 25% in the first semester of 2003. NPOV for

equity derivatives (equity swaps, options and forwards) grew 14% to $2.78 trillion, while credit derivatives

experienced a growth of approximately 25% in the first six months of 2003; credit derivatives NOPV was

reported as $2.69 trillion. For more information visit the ISDA web site: http://www.isda.org.

The OCC (Office for the Comptroller of the Currency), on its “OCC Bank Derivatives Report, Second

quarter 2003” reports that the USA’s NPOV of all derivatives is on the order of $65.8 trillion, 96% of which
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data to obtain the perceived (by the “market”) yield curve. This indirect procedure is less

complex than that of the bootstrapping of the yield curve from Bond market data23 in the

sense that it does not require from the practitioner a set of subjective decisions regarding

the liquidity,24 longevity and impact of some bond issues; complex details associated with

series of bond prices pertaining to different emissions (that is, bonds that were created and

placed in the market at different dates); statistical analysis of the data, etc.

Instead, one may look for current quotes on the swap market for swaps with respect to

the underlying rate one wants to study, then using such data to obtain an “implied” rate.

Obviously this procedure is tied to market structure and practices.

In this section we will briefly describe the bootstrapping of yields and the formation of

the zcb price curve from swap data. We refer the reader to our Maple© worksheet, [78],

is accounted for by seven commercial banks, out of a total of 530 banks and trust companies, 99% of USA’s

NPOV is associated with the top 25 banks and tc’s (trust companies). The US Swap market’s NPOV is on

the order of $38 trillion (99% held by the top 25 banks and tc’s). For more information visit the web site of

the OCC at: http://www.occ.treas.gov; as of fall 2003, Quarterly Derivatives Fact Sheets are published

under http://www.occ.treas.gov/deriv/deriv.htm.

More surveys, reports and information on this topic can be found at the BIS (Bank for International

Settlements) web site: http://www.bis.org.

For comparison, according to the Bond Market Association (BMA), the total outstanding marketable US

Treasury debt is on the order of $3.38 trillion as of June 30th, 2003. Reports on the US Bond market can

be found at the BMA’s web site: http://www.bondmarkets.com/research.

US treasury bulletin is also accessible on the web at: http://www.fms.treas.gov/bulletin/index.html.

Please see [168], [172] for some details on the Swap market.
23For a good account on bootstrapping procedures used around the world, please see BIS’ Technical report

on zero coupon yield curves [1]. Fisher, Nychka and Zervos ([59]) developed the method of predilection in

the USA, Nelson and Siegel [136] describe the method still preferred in most countries. Both [59] and [136]

describe direct procedures to bootstrap the yield curve from bond data. See also [153] for an analysis of the

use of STRIP data.

Common to all these procedures is the detailed and careful examination of bond data and the rejection

of some data based on several criteria.
24For example, US Treasury department decided in October 2001 to suspend issuance of the 30 year

bond. This will create an increasing problem when bootstrapping on long term maturities until a moment

in which Treasury bond data will not be available for that particular maturity.
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for examples and detailed procedures (such a document can be obtained from the author).

In the US, it is market practice to quote, not the price of a swap contract, but its

corresponding swap rate (see (40) and Figure 7), with all other details on the swap contract

implied by market conventions. For example, in the case of “US Dollar swap” contracts

one finds swap rates quoted for a total of 24 non equally spaced maturities (see Table 1),

namely: one week, one month, then monthly until six months, nine months, one year and

annually until twelve years maturity, then fifteen years, and every five years afterward until

thirty years maturity ( in what follows we will use t0 to represent both the first reset and the

settlement date, t1 for a one week maturity and similarly t2 to t24 to represent maturities

from one month to thirty years; we will also use ϕ to represent a day counting convention

of actual/360 and ϕK to represent 30/360).

Table 2: Naming convention for available maturities

Available Maturities
Short Long

t1 ≡ 1 week t6 ≡ 5 months t10 ≡ 2 years t15 ≡ 7 years t20 ≡ 12 years
t2 ≡ 1 month t7 ≡ 6 months t11 ≡ 3 years t16 ≡ 8 years t21 ≡ 15 years
t3 ≡ 2 months t8 ≡ 9 months t12 ≡ 4 years t17 ≡ 9 years t22 ≡ 20 years
t4 ≡ 3 months t9 ≡ 1 year t13 ≡ 5 years t18 ≡ 10 years t23 ≡ 25 years
t5 ≡ 4 months t14 ≡ 6 years t19 ≡ 11 years t24 ≡ 30 years

Those contracts assume a Receiver Semiannual/Quarter–Quarter25 payment structure

on two rates, one (constant throughout the maturity of the contract) using a 30/360 day

counting convention and another (floating, that is reset every quarter) based on an ac-

tual/360 day counting convention. Rates quoted are those (constant rates) that render the

contract with zero initial value. As is clear from (40), such rates are tightly related to the

corresponding zcb prices as perceived at the settlement of the swap, their number and the

times between payments (these last two pieces of information are easily found based on the

nature of the contract and the uses of the contracts in the market).

25In this case, Semiannual/Quarter–Quarter refers to semiannual fixed rate payments against quarterly

floating rate payments.
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As mentioned before, for maturities less than a year, the structure of two semiannual

fixed rate payments against four quarterly floating rate payments can not be satisfied.

Thus the convention in the market is to assume that, in the case of maturities shorter

than a semester (six calendar months), one fixed rate payment is to be exchanged at ma-

turity against one “variable” rate payment (turning the swaps into simple forward rate

agreements). Both payments assume simple compounding; both use the same day counting

convention ( in the case of the US market, that of the underlying floating rate, which is

actual/360). This choice forces the quoted swap rate to match the underlying floating rate

(and changes the day counting basis at which such a rate is quoted for that segment of

maturities).

In the cases of maturities of six months to nine months, market practice changes a little.

For the six months case, one fixed rate payment at maturity is to be exchanged by two

quarterly floating rate payments. Still actual/360 day counting is assumed for both rates;

both assume simple compounding. Since only one fixed rate payment is exchanged such a

swap contract reduces to a generalized forward contract. Therefore it is not hard to show

(see (34)) that the implied zcb rate for a maturity of six months should match that of the

quoted swap rate. For maturities from seven to nine months a similar convention is used,

thus reducing such swaps to generalized forward rate agreements. Again it is not hard

to see that the implied zcb rate should match the quoted swap rate. From (34) and (36)

(assuming settlement and first reset date are the same) we have:

B(t0, T ) =
1

1 + ϕ(t0, T )Sr(t0, T )
T = t1, t2, . . ., t8 (41)

which describes the zcb prices for maturities up to nine months.

If we denote the Swap curve data as Sr(t0, t) and the floating rate as y(t0, t), we may

write:

y(t0, t) = Sr(t0, t) if t− t0 < 1year (42)

At maturities of one or more years, swaps ‘recover’ their quoted nature, so floating rate

payments every quarter are to be exchanged by fixed rate payments every semester. Fixed

rates are computed on a 30/360 day counting convention while the floating rate is to be the
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equivalent actual/360 zcb rate. According to this convention, floating rates not explicitly

known are to be linearly interpolated.

The advantage is that, at this stage, rates for zcb’s with maturities of three months, six

months and nine months are known. If one looks at formula (40), it is clear that the only

unknown is that of the price of the longest maturity zcb involved, B(t0, t9), the zcb of one

year maturity. Therefore one can solve for it from (40) using the implied lower maturity

rates and the market quoted swap rate (Table 2 shows the naming convention used here, in

particular t9 corresponds to one year maturity, and t7 to six months).

B(t0, t9) =
1− Sr(t0, t9)ϕK(t0, t7)B(t0, t7)

1 + Sr(t0, t9)ϕK(t7, t9)
(43)

To find the corresponding yield, we apply Definition 2.1.9, equation (18) and our previous

result to obtain:

y(t0, t9) =
1−B(t0, t9)

ϕ(t0, t9)B(t0, t9)
(44)

For all other maturities we are not in the same advantageous situation, since swap rates

are quoted for annual terms (two years to twelve years) and then every five years, several

swap rates will be missing when solving for zcb prices and yields. Thus, in accordance with

market practice, we will assume that intermediate yields are linearly interpolated, this will

let us solve for the final zcb price corresponding to every quoted swap rate.

Let Ti, i = 1, 2, . . ., 60 ∈ N60 represent the semiannual fixed rate payment dates in our

swaps, with T2 = t9 representing one calendar year26, T4 = t10, . . ., T60 = t24. Table 3

Table 3: Relation between semiannual dates and available maturities

semiannual dates vs Maturities
Short Long
T2 = t9 T4 = t10 T14 = t15 T24 = t20

T6 = t11 T16 = t16 T30 = t21
T8 = t12 T18 = t17 T40 = t22
T10 = t13 T20 = t18 T50 = t23
T12 = t14 T22 = t19 T60 = t24

shows the relation between semiannual dates {Ti}i∈N60 and available maturities {tj}j∈N24 .

26In practice dates must be corrected according to next business day convention and market observed
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Assuming all implied zcb prices are known up to maturity tj = Tm, j ≥ 9, we can use

(40) and Definition 2.1.10 to solve for the yield rate corresponding to the next maturity

tj+1 = Tk, k > m ≥ 2 as follows

y(t0, Tm+l) =
1

k −m
{y(t0, Tm)(k −m− l) + y(t0, Tk)l} l = 1, . . ., k −m− 1 (45a)

B(t0, Tm+l) =
1

(1 + y(t0, Tm+l))ϕ(t0,Tm+l)
l = 1, . . ., k −m (45b)

B(t0, Tk) + Sr(t0, Tk)Σk
i=m+1ϕ(Ti−1, Ti)B(t0, Ti)

= 1− Sr(t0, Tk)Σm
i=1ϕ(Ti−1, Ti)B(t0, Ti) (45c)

in the previous system of equations, the only unknown is y(t0, Tk). Notice that the so-

lution of those equations will not only give us the unknown yield, y(t0, Tk), but also the

corresponding zcb price, B(t0, Tk).

Following the procedure outlined in this section, Figure 1 and Figure 2 were obtained

from swap rate data (namely US Dollar swap Semiannual/Quarter–Quarter Actual/360

30/360)27 collected from Bloomberg© (pages SWDF and BCSW28). Table 4 shows the

data used and the implied yields and zcb prices obtained. Only those yields that are

not linearly interpolated (namely, yields corresponding to the annual maturities t9 to t24,

including all short maturities t1 to t8) are shown in our table. The remaining 43 yields and

zcb prices, corresponding to maturities we are forced to interpolate) can be reconstructed

by the reader using the first two expressions in (45). Implied yields have been rounded to

the same precision used by Bloomberg© in reporting swap rates.

holidays. The procedure followed is this, all sixty dates are initially marked at exactly six calendar month

intervals, then in case a particular Ti, i ∈ N60 falls in a holiday or a non business day, such Ti is corrected

according to the business and holiday convention in use. For example T3 may be a date a little after (in

case of next business day) or a little before (in case of prior business day) one and a half calendar years. See

§2.1.1 for more details.
27Additional information regarding this swap curve can be retrieved from Bloomberg©’s help system.
28Bloomberg© page BCSW was about to be decommissioned at the time we collected our data (May

12th 2003, 5:55:04pm EST) and in the process of being substituted by page SWPM. The advantage of the

new page (SWPM) is that, at a difference from the old BCSW, it offered limited download of data into an

Excel© spreadsheet. That extra feature could be used to extra automate the bootstrapping procedure here

outlined.
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Table 4: US Dollar Swap rate data as of 05/12/2003 and the corresponding yields and zcb
prices

Initial swap rate and bootstrapped yield
Maturity Swap rate (%) zcb yield zcb price

Bid ask (%)
t1 1.3188 1.3188 1.3188 0.99974
t2 1.3100 1.3100 1.3100 0.99887
t3 1.3000 1.3000 1.3000 0.99780
t4 1.2900 1.2900 1.2900 0.99671
t5 1.2700 1.2700 1.2700 0.99568
t6 1.2600 1.2600 1.2600 0.99467
t7 1.2500 1.2500 1.2500 0.99365
t8 1.2413 1.2413 1.2413 0.99057
t9 1.2600 1.2600 1.2432 0.98751
t10 1.6000 1.6330 1.5851 0.96849
t11 2.0600 2.0900 2.0527 0.93996
t12 2.4800 2.5100 2.4870 0.90511
t13 2.8450 2.8850 2.8703 0.86622
t14 3.1480 3.1700 3.1964 0.82565
t15 3.3960 3.4360 3.4685 0.78491
t16 3.6050 3.6450 3.7023 0.74433
t17 3.7750 3.8150 3.8946 0.70542
t18 3.9270 3.9680 4.0717 0.66699
t19 4.0680 4.1080 4.2405 0.62906
t20 4.1920 4.2320 4.3922 0.59254
t21 4.4890 4.5290 4.7726 0.49186
t22 4.7500 4.7860 5.1228 0.36280
t23 4.8400 4.8800 5.2203 0.27505
t24 4.8710 4.9110 5.2248 0.21214

Compared with other bootstrapping procedures, the process we outline in this section

is simpler, and provides data one can use to plot a yield curve much like the curves shown

in many sources.

At a difference with methods like Fisher–Nychka–Zervos [59], or Nelson–Siegel [136] we

do not have to deal with liquidity or seniority of bond issues, no extra study is required to

accept or reject data, etc.. Instead we rely in the ability of a much bigger market, that of

swaps, to produce no arbitrage data which we can use to infer the yield curve implied by

the Swaps market.

Still a big investment in programming must be payed. In addition to the procedures
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required to solve the systems of equations, calendar, day counting and time fraction proce-

dures must be implemented as well as different procedures to compute zcb prices, etc..

We programmed all required procedures in detail using Maple© . Maple© not only offers

an environment whose didactic capabilities are evident but it also possesses a very easy to

use interface and strong enough programming abilities. Another great advantage of Maple©

is that one can easily and smoothly combine text, numerical experiments and code to create

nice interactive documents. The resulting Maple© worksheet, [78] containing our interest

rate boostrapping and spot volatility stripping (see Chapter 4 for details) implementation

plus our comments and calendar and day counting procedures, etc. can be obtained from

the author.

Extra details about the outlined bootstrapping procedure as well as explanations about

market uses, etc. plus examples and source code can be found in the above mentioned

Maple© document ([78]) which can be obtained from the author.
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CHAPTER III

GAME OPTIONS

Abstract

We study Game Options in financial markets with non constant parameter.

Generalizations to the work by Yuri Kifer [101] are given which allow interest

rates to be random. Game Options lead to a variety of interesting topics of

study and applications, where techniques and ideas from different fields can be

used.

3.1 Introduction

Given a contract (an option, or a bond, for example) between two parties, an issuer and a

holder of the contract, several things could happen that might lead to risk for the holder.

The most catastrophic of these might be the bankruptcy of the issuer. Such a credit event

will force the issuer to default on the contract. Several other situations could also lead to

forms of financial distress for the issuer. Such distress will influence the holder’s perception

of the issuer’s ability to fulfill the conditions of the contract in the future. That distress

might also force the issuer to look for ways to reduce its exposure or ways to get out of the

contract, ‘canceling’ it or transferring the contract to a third party.1

But financial distress is not the only reason why the issuer may want to transfer or cancel

a contract. Consider bonds, for example. Both financial theory and ‘Market’ practice show

us that there are several situations, not necessarily associated with default or financial

distress, that may lead the issuer to desire to cancel the contract (in part or in full). For

example, a bond contract may include in its indenture2 a clause forbidding the issuer from

1Obviously any such solution will involve costs to the issuer, and will likely reduce its profits and/or

produce actual loss.
2Please see [17] section § 14.2 and [152] sections § 16.3 and § 20.2 for discussions on bond indentures

and in particular on protective covenants. See Richard Wilson’s chapter 14 in [55] for a good description of
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engaging in certain kinds of transactions or redistributions. Therefore, if the issuer desires

to undertake such prohibited actions, it will need to, somehow, cancel the contract3.

Thus it makes sense to study contracts in which cancellation from the issuer’s part is

allowed in addition to exercise or cancellation on the holder’s part4. In fact one can easily

conceive of a contract in which the issuer may want to cancel (paying a penalty) with the

sole intention of raising its profit, of producing a better hedge, etc. This is the case of a

game option5.

3.2 Game Options

In a paper published at the end of the year 2000 ([101]), Yuri Kifer formally introduced

Game Options6. Roughly speaking, Game Options are contracts between two parties (a

seller —issuer or writer—, and a buyer —holder or investor—), according to which the

seller can cancel the contract, and the buyer can exercise rights in the contract leading to

the end of the contract, at any time throughout the life of the contract. If the contract

reaches its maturity, the contract ends with certain predetermined actions taken. If the

writer cancels the contract, the writer will pay the buyer a sum greater than the payoff the

buyer could have obtained if the buyer had exercised at that time. Otherwise, if the buyer

decides to exercise, the buyer will receive a payoff corresponding to the time of exercise.

An example of such a game contract is the following. Consider an American Game Put

Option on a certain underlying security S (whose price at time t is represented by St), with

maturity7 T , and strike K. This contract gives the holder the right to exercise the put at

call features.
3[17] and [152] offer instructive examples in this respect.
4It is assumed that there is a payment of a suitable penalty if the issuer cancels the contract.
5An excellent example of such a contract is a LYON (liquid–yield–option–note), first offered by Merrill–

Lynch in 1985. Please see [17] section § 20.6 for a description.
6Note that at least a form of game option, the LYONs, have been traded since 1985. In 1986 McConnell

and Schwartz [120] developed a simple model for the pricing of LYONs under constant interest rates. No

more research has been done in this direction ever since.
7We shall assume that this maturity is lower than the possible maturity, if any, of the underlying.
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any time, ξ, through the life of the contract, in which case the holder’s payoff will be

(K − Sξ)+

where ξ is the time of exercise, and Sξ is the price of the underlying at the time of exercise.

This contract also gives the writer the right to cancel the contract at any time, κ, prior to,

or at the maturity of the contract, in which case the holder will be payed the current payoff

of the put, plus a certain penalty , pκ, which we assume is non–negative. Thus, the payoff

received by the holder in case of cancellation will be:

(K − Sκ)+ + pκ .

In a market in which the buyer of options takes on an amount of default risk, but some

form of overseer is assumed, one could visualize the case of a writer’s defaulting, forcing the

payment of the current obligations plus a certain ‘compensation’ (which could be positive

or negative).

3.3 Standard market model

In our work we first model a “Market”. Such a model should include some features of real

markets, but at the same time it should be as “simple as possible” allowing for analytical

tractability of important market “objects” like security prices, yet still complex enough

as to be of interest (mathematical, financial and/or economical). A good market model

should reflect important characteristics of real markets such as sources of systematic risks

and appreciation rates. It should also be a believable model, in which “securities” and the

“information” available to investors is somehow modeled.

The market model that we will introduce in this section, known as the Standard Market

Model8 (see Definition 3.3.13), will constitute the background for our theoretical work in

this chapter.

Under the Standard Market Model, security prices are driven by Brownian motions

(which constitute the sources of systematic risk), and many of the market parameters are

8Some authors refer to the standard market model, or to many of its particular forms, as (B, S)–model,

or (B, S)–market, etc. because the model includes a Bank account and one or more Securities or stocks.
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as well described in terms of suitable stochastic processes. The careful construction of the

model results in security prices that follow paths that posses known regularity properties

(like right continuity, etc.). This model can be seen as a “natural” extension to the renown

Black–Scholes and Merton model [15], [123], [124], [125]; and is of great importance in the

field of (modern) Mathematical Finance.

3.3.1 Securities and Prices

In a real market, stocks, bonds, derivatives and a big spectrum of other financial instruments

are traded according to certain rules. Some of them can be considered “basic” financial

instruments or “securities”, like stocks and bonds; others can be regarded as “derivatives”

in the sense that they (or their prices) are derived from basic financial instruments.

Although the number of different financial instruments traded in the different markets

around the world is big, even in the biggest markets9 we can see that a finite number of

securities are traded. Thus it makes sense to consider a market M in which a finite number

n of “basic” securities are traded. We will also assume that all market participants have

access to a bank or money market account, which we can consider an extra security in our

market model M. We will denote by {Si}i∈N∗n the n + 1 securities, and will give special

attention to B = S0 which we will use to represent the Bank account. As explained later in

this section, we will model the prices of securities in our market as real valued stochastic

processes.

We will assume that our market is free of frictions and liquidity problems. We will also

assume that transactions placed by market participants can not influence the market price

of the securities traded (that is, transactions do not involve big volumes, and/or the “noise”

or “shock” they may introduce into the market dissipates immediately). This assumption is

equivalent to assuming that participants have no problem satisfying orders, no matter how

big or how small (this last requirement is frequently referred as that securities are infinitely

divisible).

9We are not trying to be extremely precise here, a “big market” could be a market in which many

securities are traded, or a market with very big volumes, or in which many investors are trading, etc.
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We will also assume that there is a finite time horizon T > 0 to our market; that is, all

transactions are to be placed in the time interval [0, T ].

Notation 3.3.1. If A denotes a vector, array or matrix, we will use the notation A† to

denote the transpose of A. In case needed, as an alternate notation, we will also use A′

to denote A†. Whenever vector notation is needed, we will favor the representation of real

vectors as columns10. Still, due to typographical issues we may list vector elements as rows

of numbers. Also due to typographical issues we will favor the use of superscripts to denote

vector and matrix elements.

Notation 3.3.2. If a and b are two real n–dimensional vectors, we will write a · b = a†b =∑n
i=1 aibi to denote the “dot product” of a and b.

Notation 3.3.3. If a is a real n–dimensional vector, we will denote by diag(x) the n × n

real diagonal matrix whose diagonal elements are the coordinates of x. Thus, the element

in position (i, i) is diag(x)ii = xi.

We assume that uncertainty in the market is driven by d ≥ n independent sources of

systematic risk11 which we model by means of a d–dimensional Brownian Motion W =

{Wt}t∈[0,T ] =
{(

W 1
t ,W 2

t , . . . ,W d
t

)†}
t∈[0,T ]

, defined on a given complete filtered probability

space (Ω,U ,F ,P), where F = {Ft}t∈[0,T ] denotes the P—augmentation of the natural

10An exception to this rule will be the vector processes σi, i ∈ Nn, to be defined later in this section.
11According to traditional finance theory, the risk of a given security can always be decomposed into

systematic risk and unsystematic risk. We understand systematic risk, as that kind of risk that is intrinsic

to the market –systematic risk is also known as systemic risk– and can not be eliminated by diversification.

In principle, the expected return on an asset depends only on its systematic risk. On the other hand, unsys-

tematic risk (also known as specific, avoidable or diversifiable) can be eliminated “at no cost” throughout

diversification. Unsystematic risk is not intrinsic to the market and can be seen as due to the agent’s (corpo-

ration, company, etc.) strategies. In lieu of a simple criteria of selection, we can say that systematic risk is

that risk that influences a large number of assets, while unsystematic risk influences only a reduced number

of assets. The systematic risk in an asset is measured by the beta of that asset. Please see Bodie, Kane and

Marcus [17] for a discussion on systematic risk; Shuetrim [164] offers an interesting study about systematic

risk.
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filtration of W

FW =
{
FW

t

}
t∈[0,T ]

= {σ(Ws, 0 ≤ s ≤ t)}t∈[0,T ]

(for each t ∈ [0, T ], FW
t = σ(Ws, 0 ≤ s ≤ t) denotes the minimal sub σ—algebra of U

generated by the random variables Ws, 0 ≤ s ≤ t).

Since a d–dimensional Brownian Motion is a continuous Strong Markov process, the

augmentation of its natural filtration is a continuous filtration ([96] Corollary 2.7.8) which

satisfies the “usual conditions”12 ([96] Definition 1.2.25) with respect to the σ–algebra

FT ⊆ U . There will be no loss of generality if we assume that U = FT ; thus, in what

follows and unless otherwise stated we will assume U = FT .

On the other hand, the use of augmented σ–algebras provide us with several technical

advantages and preserves the definition of a d–dimensional Brownian Motion, that is ([96]

Theorem 2.7.9), W relative to F is still a d–dimensional Brownian Motion.

Consistent with the finance dogma that says that the return on an asset’s price is driven

by systematic risk, we will model the price P i = {P i
t}t∈[0,T ], i ∈ Nn, (of one share) of

security Si, by means of the linear stochastic differential equation13

dP i
t = P i

t (µ
i
t dt + σi

t · dWt) = P i
t

µi
t dt +

d∑
j=1

σij
t dW j

t

 (46)

with positive initial price P i
0; while the price B = {Bt}t∈[0,T ] of security14 B is modeled by

dBt = rtBt dt (47)

12 We say that a filtration F = {Ft}t∈[0,T ] of sub σ–algebras of the σ–algebra U satisfies the usual

conditions if it is a right–continuous filtration and F0 contains all P–null elements of U .
13We note that equation (46) is also consistent with the seminal work of Sharpe [157], according to

which stock prices should depend on their mean rate of return (characterized in (46) by parameter µi
t) and

their market correlation (which intuitively corresponds to the parameters σij in (46)). At least intuitively,

(46) indicates that the infinitesimal return dP i
t /P i

t follows a diffusion process with drift µi
t and dispersion

coefficients σij , j ∈ Nm.
14 Due to historic and pure technical convenience we have selected B and its price process B as “the”

numéraire of our market. Such selection is indeed arbitrary, and as explained in [68], and in [163] Chapter

9, any positive, non–dividend paying process (the price process of a zcb, for example) could be used instead.

More on this topic in Chapter 5.
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where we assume that the process B satisfies the initial condition B0 = 1.

We will write P = {Pt}t∈[0,T ] to represent the n–dimensional vector process with Pt =

(P 1
t , P 2

t , . . . , Pn
t )†, t ∈ [0, T ]. We will call P the price process and P i, i ∈ Nn, the coordinate

price process, or the price processes or (for a particular i ∈ Nn) the price process of security

Si.

The process r = {rt}t∈[0,T ] is called the interest rate process, and models the risk free

rate observed in our market. The processes µi = {µi
t}t∈[0,T ], and σi = {σi

t}t∈[0,T ] =

{(σi1
t , σi2

t , . . . , σid
t )†}t∈[0,T ], i ∈ Nn, are called the appreciation rates and volatility processes

respectively. The volatility process σij models the influence of the jth, j ∈ Nd, systematic

risk source on the price of security Si, i ∈ Nn. For convenience we will also denote by

µ = {µt}t∈[0,T ] = {(µ1
t , µ

2
t , . . . , µ

n
t )†}t∈[0,T ] the vector of appreciation rates, and by σ =

{σt}t∈[0,T ] = {(σij
t , i ∈ Nn, j ∈ Nd)}t∈[0,T ] the matrix of volatilities. Thus we may rewrite

(46) in vector notation as

dPt = diag(Pt)(µt dt + σt dWt)

P0 = (P 1
0 , P 2

0 , . . . , Pn
0 )

(48)

In order to consider dividends, we will assume that (at least some of) the securities Si,

i ∈ Nn pay dividends continually according to dividend rates δi = {δi
t}t∈[0,T ], i ∈ Nn; so that

dividends payed by security Si, i ∈ Nn in an interval dt amount to P i
t δ

i
t dt. Thus it makes

sense to consider an additional process associated to security Si, i ∈ Nn, Y i = {Y i
t}t∈[0,T ],

the yield process of security Si, which is defined by

dY i
t = P i

t (µ
i
t dt + δi

t dt + σi
t · dWt) , i ∈ Nn (49)

with initial condition Y i
0 = P i

0. Similarly, we will define Y = {Yt}t∈[0,T ] the vector yield

process as the n–dimensional process defined by Yt = (Y 1
t , Y 2

t , . . . , Y n
t )†, t ∈ [0, T ].

Consistent with notation previously introduced, we will denote by δ = {δt}t∈[0,T ] =

{(δ1
t , δ

2
t , . . . , δ

n
t )†}t∈[0,T ] the dividend rate process. Thus, a vector equivalent to (49) can be

given

dYt = diag(Pt)((µt + δt) dt + σt dWt) = dPt + diag(Pt)δt dt

Y0 = (P 1
0 , P 2

0 , . . . , Pn
0 )

(50)
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The interest rate process is also known as a parameter of the market M and collectively,

r, µ, δ and σ are also known as the coefficients of market M.

With the idea in mind of being able to integrate the stochastic differential equations15

(sde’s) (46), (47) and (49), as well as other sde’s involving the Market coefficients; pro-

cesses r, µ, δ and σ are assumed to be progressively measurable processes16 with respect to

filtration F , satisfying the integrability condition∫ T

0
(|rt|+ ‖µt‖2 + ‖δt‖2 +

n∑
i=1

‖σi
t‖2) dt < ∞ , Pa.s. (51)

where ‖x‖ denotes the Euclidean norm of vector x. Therefore, P , Y and B are continuous

semimartingales.

As we mentioned before, the market model we describe in this section is known as the

Standard Market Model (smm), please see Karatzas [95] for a simplified version of this

model. See also Shiryaev [160] chapter VII, and Karatzas and Shreve [97] (in particular

chapter 1, although the whole book is an in depth study of the smm), and Musiela and

Rutkowski [133] chapter 10 for in depth studies of other versions of this model. Additional

sources are mentioned in the bibliography section at the end of this document.

The bibliography section at the end of this work cites several sources that the reader

can use to, in case needed, get acquainted with many of the technical terms used here.

Still we will introduce some useful definitions and provide some of the most important

results (without proof) found in the literature regarding the model we present here. Stan-

dard reference for this section is found in Shiryaev’s Essentials of Stochastic Finance [160],

Karatzas’ Lectures on the Mathematics of Finance [95], Karatzas and Shreve’s Brownian

Motion and Stochastic Calculus [96] and Methods of Mathematical Finance [97], Musiela

and Rutkowski’s Martingale Methods in Financial Modeling [133], and Revuz and Yor’s

15See [96] §5.2.
16 Since every measurable and adapted process has a progressively measurable modification (see [96]

proposition 1.12) a little extra generalization can be obtained by means of replacing our hypotheses of

“progressively measurable” to “measurable and adapted” and then applying [96] proposition 1.12 to select

a progressively measurable modification of the processes when needed (two processes, X and Y , defined on

(Ω,U ,P) are modifications of each other if, ∀t ≥ 0, Xt = Yt P–a.s.).
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Continuous Martingales and Brownian Motion [151], among many others. Unless otherwise

stated, please refer to those sources for proofs to results mentioned in this section.

Definition 3.3.1. Let B([0, t]) denote the Borel σ–algebra in [0, t], t ∈]0,∞[. A real valued

process X = {Xt}t∈[0,∞[ is called progressively measurable with respect to filtration F

if, for every t ∈ [0,∞[, the associated map

φ : [0, t]× Ω → R

(s, ω) → φ(s, ω) = Xs(ω)
(52)

is B([0, t])⊗Ft–measurable.

(See also Definition 3.5.15).

Essentially, the conditions of progressive measurability and the integrability condition

(51) are in place to ensure that the price processes, the bank account process and the yield

processes are all Itô processes17, and the strong solutions to the sde’s that define them.

That is, we can explicitly write:

P i
t = P i

0 exp
{∫ t

0
µi

u −
1
2
σi

u · σi
u du +

∫ t

0
σi

u · dWu

}
Y i

t = P i
t +

∫ t

0
P i

uδi
u du

Bt = exp
{∫ t

0
ru du

} (53)

i ∈ Nn, t ∈ [0, T ].

Definition 3.3.2. A stochastic process X is adapted to filtration F if for every t, Xt is

an Ft–measurable random variable.

17See for example [160]. If a = {at}t∈[0,T ] (an n–dimensional process) and b = {bt}t∈[0,T ] (an n × d

matrix process) are two adapted stochastic processes defined on (Ω,U ,F ,P) such thatZ t

0

|ai
s| ds < ∞ P–a.sZ t

0

(bij
s )2 ds < ∞ P–a.s

(i ∈ Nn, j ∈ Nd) and X0 is a F0–measurable r.v., the process

Xt = X0 +

Z t

0

as ds +

Z t

0

bs dWs

is called an Itô process. In such a case one may also write dXt = at dt + bt dWt.
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Notation 3.3.4. If Y is a (real) random variable defined on a measurable space (Ω,U),

and G is a σ–algebra of sets of Ω, we will interpret Y ∈ G as “Y is a G–measurable random

variable”.

If X is a d–dimensional stochastic process, when we say X is adapted to filtration

F , we understand that each component process of X is adapted to filtration F ; in the

case of a right continuous with left limits (RCLL)18 d–dimensional stochastic process, each

component process is RCLL. Similarly, other concepts are naturally extended to vector

processes in component–wise fashion.

As shown elsewhere (see [96] §1.1, 1.13):

Proposition 3.3.1. Any adapted right or left continuous process with left (resp. right)

limits (RCLL or LCRL resp.) is progressively measurable.

Based on Proposition 3.3.1, instead of asking for progressively measurable processes, we

could simply ask for adapted RCLL processes19.

RCLL processes are also known as càdlàg processes; càdlàg is the acronym from the

French expression continu à droite, limité à gauche.

Notation 3.3.5. Let A be a random variable defined on (Ω,U) and let P be a probability

measure defined on (Ω,U). We will use the notation EP(A) to denote the expectation of A

with respect to the probability measure P, in case we need not make explicit reference to

the probability measure we will write E(A).

Definition 3.3.3. Let (Ω,U ,F ,P) be a filtered probability space and let T > 0 be the time

horizon (that is, the set of time parameters, t, is [0, T ]). We define L2 = L2
P = L2(Ω,FT ,P)

as the class of all square integrable progressively measurable processes defined on (Ω,FT ,P).

18A stochastic process X is called right continuous with left limits (RCLL) if ∀ω ∈ Ω lims↑t Xs(ω) = Xt(ω)

and lims↓t Xs(ω) exists for every t.
19As mentioned before; at the expense of additional technicalities (see Footnote 16) the hypothesis of

progressive measurability could be relaxed to measurable and adapted plus the selection of progressively

measurable modifications of the processes involved.
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That is, φ ∈ L2 if

E

(∫ T

0
φ2

u du

)
< ∞ , (54)

where E = EP denotes mathematical expectation with respect to probability P.

Also, we define L = LP = L(Ω,FT ,P), the class of P–a.s. integrable progressively mea-

surable processes defined on (Ω,FT ,P); thus a progressively measurable process φ defined

on (Ω,FT ,P) is in L if it satisfies

P
(∫ T

0
φ2

u du < ∞
)

= 1 . (55)

Similarly, if Y is a G–measurable random variable (G a suitable σ–algebra of sets of Ω),

we will write Y ∈ L2 = L2
P = L2(Ω,G,P) if

E(Y 2) < ∞ . (56)

L2(Ω,G,P) is the class of square P–integrable G–measurable random variables.

Finally, we define L = LP = L(Ω,G,P), the class of P–integrable G–measurable random

variables. Y ∈ L(Ω,G,P) if

E(|Y |) < ∞ (57)

Proposition 3.3.2. If Z is a standard one–dimensional Brownian motion defined on a

filtered probability space (Ω, U, F, P ) and φ ∈ L2
P then the Itô integral I = {It}t∈[0,T ]

It = I(φ)t =
∫ t

0
φu dZu , t ∈ [0, T ] (58)

is a square integrable continuous martingale on (Ω, U, F, P ).

The quadratic variation process of I(φ), denoted 〈I〉 = 〈I(φ)〉, is

〈I〉t =
∫ t

0
φ2

u du , ∀t ∈ [0, T ] (59)

and, the process

(I(φ)t)2 − 〈I(φ)〉t , t ∈ [0, T ] (60)

is a continuous martingale on (Ω, U, P, F ).

If φ ∈ LP then the Itô integral I(φ) is a continuous local martingale on (Ω, P, F ).
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(For a proof of this result please see [88] chapter 2, or [96] chapter 3, or [141] chapter 3

§3.2. As discussed before, see Footnote 16, the condition of progressive measurability can be

relaxed to “measurable and adapted”, defining equivalence classes by means of modification,

and then selecting a progressively measurable modification. If such changes are introduced,

the results of Proposition 3.3.2 will remain valid).

It is important to notice that, as well as in real markets, some of the securities traded

in our market M could be characterized as stocks while others could be used to represent

zcb’s20.

In some cases, we may order our securities into two groups, the first m < n being stocks,

and the last n − m being zcb’s. In case needed, we could use the more explicit notation

Si = P i, i ∈ Nm to represent the stock prices, while the notation {Bi(t, Ti)}t∈[0,T ], i ∈ Nn−m

will be preferred to denote the price of the ith zcb (with maturity Ti ≤ T ). In this way our

notation will be consistent with that used elsewhere in this document.

When referring to bonds, the notation used to represent appreciation rates and volatili-

ties will be slightly modified. When explicitly dealing with zcb’s we will use {ai(t, Ti)}t∈[0,T ]

and {bi(t, Ti)}t∈[0,T ] respectively. Since we can distinguish between zcb’s based on their ma-

turity, we may relax the notation a little and write B(t, Ti) instead Bi(t, Ti), a(t, Ti) instead

of ai(t, Ti), and b(t, Ti) instead of bi(t, Ti). In the case security Si represents a bond, we will

assume its principal to be one unit of currency. That is, if T ≤ T is the maturity of a zcb

(security Si, for instance); we assume the contract pays one unit of currency at time T .

Investors are usually interested in the prices of the securities traded. Proposition 3.3.2,

in combination with (51), (46) and our assumption that the coefficients of market M are

adapted progressively measurable processes, imply that we are modeling the prices of our

20Still, the market model we present here is mostly a “stock based” model. According to our description

only a finite number of zcb’s can be represented. Therefore, the market model here presented can not reflect

a typical and very important hypothesis of bond market models, namely the assumption of “bonds of all

maturities”. For a description of bond market models please see [160] chapter VII §5 and [133]. Considering

the use we will make of this model, the restriction to finitely many zcb’s will not be a problem. In particular,

with just a few zcb’s we can consider forward prices.
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securities as log normal continuous local martingales.

3.3.2 Portfolios and Wealth

Investors trading in real markets deal with unsystematic risk through diversification, that

is, a rational investor should acquire a balanced portfolio of securities21.

Definition 3.3.4. We model a portfolio strategy (the way in which the investor de-

cides to distribute his funds at any time) by means of a real 1 + n–dimensional progres-

sively measurable process Π =
{
(π0

t , πt)
}

t∈[0,T ]
=
{(

π0
t , (π

1
t , π

2
t , . . . , π

n
t )†
)}

t∈[0,T ]
, for con-

venience we will use the symbol π to represent the real n–dimensional portfolio process

π =
{
(π1

t , π
2
t , . . . , π

n
t )†
}

t∈[0,T ]
, and π0 = {π0

t}t∈[0,T ] to denote the position on the bank

account. Thus, we will also write Π = (π0, π) =
{
(π0

t , πt)
}

t∈[0,T ]
.

We interpret πi
t, i ∈ N∗

n as the number of shares of security Si held (if πi
t > 0) or short22

(if πi
t < 0) at time t, t ∈ [0, T ]. In the particular case of S0, we see π0

t as the amount of

money kept (if π0
t > 0) in the bank account or borrowed (if π0

t < 0) from the bank account

at time t. Process π is also known as a portfolio process or simply as a portfolio (please

see Definition 3.3.5 for additional conditions). The processes πi = {πi
t}t∈[0,T ], i ∈ N∗

n are

also known as portfolio coefficients. If a portfolio coefficient is null, at time t ∈ [0, T ], we

understand that at that time there is no active position in the corresponding security.

Notation 3.3.6. We will use the notation ~1n to represent the n–dimensional real vector

whose entries are all equal to 1. This notation will naturally extend to αn = α~1n, for α ∈ R.

Definition 3.3.5. We define a portfolio process as a real n–dimensional progressively

measurable process π =
{
(π1

t , π
2
t , . . . , π

n
t )
}

t∈[0,T ]
, such that

∫ T

0
|π†t diag(Pt)(µt − rt~1n + δt)| dt +

∫ T

0
‖π†t diag(Pt)σt‖2 dt < ∞ Pa.s. (61)

21In Costa Rica we say that “no es bueno cargar todos los huevos en la misma canasta” (it is not a good

idea to carry all your eggs in the same basket). An investor with a balanced portfolio of securities defends

himself from unsystematic risk by dividing his funds among securities related to different industries and or

different sectors —energy, technology, etc.—.
22See Footnote 26.
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In real life, investors will adopt portfolio strategies, depending on their particular needs

and motivations, with the intention to accumulate wealth; wealth that could be later used

to achieve some predetermined goal. In real life more complex situations are also possible

but will not be considered here. In particular we will not consider “income” (the infu-

sion of additional cash into the portfolio throughout the life of the portfolio strategy) and

“consumption” (the use of part of the wealth throughout the life of the portfolio strategy).

Definition 3.3.6. Assuming w0 is the initial wealth of our investor, we define the wealth

process W associated with portfolio strategy Π = (π0, π) as
W0 = w0

Wt = π0
t Bt + πt · Pt t ∈]0, T ],

(62)

where P = {Pt}t∈[0,T ] = {(P 1
t , P 2

t , . . . , Pn
t )†}t∈[0,T ] denotes the vector process of prices P i,

i ∈ Nn. In case we need to make explicit reference to the selected portfolio strategy, we

will write W = WΠ, if explicit reference to the initial wealth is also required we will write,

W = WΠ,w0 .

With πi
t being the number of shares of security Si, i ∈ Nn allocated in a portfolio at

time t, it is clear that πi
tP

i
t is the (dollar) amount invested in security Si at time t according

to the portfolio strategy Π.

Definition 3.3.7. We will define the active money process as the n–dimensional real

process πP = {πP t}t∈[0,T ] = {(πP 1
t , πP 2

t , . . . , πPn
t )}t∈[0,T ] with components

πP i
t = πi

tP
i
t i ∈ Nn, (63)

that is,

πPt = diag(Pt)πt. (64)

Using Definition 3.3.7, we can rewrite the conditions (61) in Definition 3.3.5 as∫ T

0
|πPt · (µt − rt~1n + δt)| dt +

∫ T

0
‖πP †

t σt‖2 dt < ∞ Pa.s. (65)

We have assumed that our market, M, has no frictions, liquidity problems, etc. Changes

in the wealth process should be caused not by the changes in the portfolio strategy (in other
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words, changes in the wealth process should not be caused by changes in the coefficient

processes πi), but by changes in the yield process and/or bank account. That is, the

portfolio strategy should be self–financing.

Definition 3.3.8. A portfolio strategy Π is called self–financing if the corresponding

wealth process WΠ satisfies

dWΠ
t = π0

t dBt +
n∑

i=1

πi
t dY i

t = π0
t dBt + πt · dYt. (66)

Definition 3.3.8 and in particular (66) reflect our last comment prior to Definition 3.3.8.

Intuitively, Definition 3.3.8 is equivalent to:

Bt dπ0
t +

n∑
i=1

Y i
t dπi

t = 0. (67)

If portfolio strategy Π is self–financing, we can combine (66) with (47), solve for π0
t Bt

from (62) and substitute into the resulting equation to eliminate the dependency on π0;

then, using (49) we can construct an sde for the wealth process WΠ in which π0 is not

explicitly mentioned

dWΠ
t = π0

t Btrt dt + πt · dYt

=
(
WΠ

t − πt · Pt

)
rt dt + π†t diag(Pt)((µt + δt) dt + σt dWt)

=
(
WΠ

t − π†t diag(Pt)~1n

)
rt dt + π†t diag(Pt)((µt + δt) dt + σt dWt)

= WΠ
t rt dt + πP †

t ((µt − rt~1n + δt) dt + σt dWt).

(68)

Clearly, our last computations show that under conditions (61) from Definition 3.3.5 we

can solve the sde (66) for a given initial wealth w0.

Note that Definition 3.3.5 makes no explicit mention of the portfolio coefficient π0. This

is because we can always use (62) to express π0 in terms of the bank account process,

the wealth process and the corresponding portfolio process. If portfolio strategy Π is self–

financing, our previous computations show that we can find an sde for the wealth process

that makes no explicit use of the portfolio coefficient π0.

In what follows, unless otherwise stated, we will assume that we are dealing with self–

financing portfolio strategies whose respective portfolio processes satisfy Definition 3.3.5,

and in particular the integrability condition (61).
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Definition 3.3.9. If X is an adapted process (with respect to our underlying filtered

probability space (Ω,U ,F ,P)), we define23 X∗ = {X∗
t}t∈[0,T ] = {Xt/Bt}t∈[0,T ]. X∗ is

called the discounted process corresponding to X.,

We refer to the process {1/Bt}t∈[0,T ] as the discount factor of market M. 24

23 As it was mentioned before (see Footnote 14), we use the price process of the Bank account to discount

prices. The reason this is both historical and of simple convenience, B is a “degenerate” diffusion, with

no dispersion term; from the theoretical and practical point of view, to discount “general” —unspecified—

processes with B is easier in the sense that we have not to worry about changes to the dispersion terms

of the processes being discounted; on the other hand, it is natural to compare the returns on different

assets with the return on a “benchmark” asset, and the common choice in that regard is the bank account

(money in a bank account is “just sitting over there”), so historically one discounts with the bank account

to obtain the price, in units of bank account price, of the assest being discounted. Both Financial wisdom

and Mathematical theory allow for different processes to be used in constructing a discount factor, one

could use any, strictly, positive process (a zcb for example) to discount prices. In such a case the chosen

discounting process is called “the” market model numéraire or simple “the” numéraire or a numéraire (that

is, the numerator in the quotient used to define a discount). In specific situations, the use of one numéraire

could be more advantageous than to use another (see Chapter 5 §5.3). For example, one may not want to

introduce an additional asset/stochastic process into the description of the problem (to find problems that

do not require of a bank account in their description is perfectly plausible, for example the trading of a

basic security by another), or it may be that the proper selection of a numéraire with a given dispersion

term can facilitate somehow a particular situation. Thus, in practice, the numéraire to be used should be

suitably chosen so that the discounted processes turn out to be easy to manage (in accordance to some

kind of criteria) or to facilitate the description and study of one’s particular problem (for example, one may

want to introduce not one but possibly several diferent numéraires in the study of problems involving more

that one currency). See [68] for a discussion on changes of numéraire/measure and Finance, [160] Chapter

VII§1.b and/or [163] Chapter 9 also offer detailed descriptions and results regarding changes of numéraire;

[73] Chapter III §2 offer an study on changes of measure and diffusions; see also Chapter 5 for a particular

example.
24 Naturally, this assumes we are interested in discounting back to time t = 0. If on the contrary one

wants to discount to another time, say time s ≤ t (fixed), we will discount to time t = 0 and then let the

money accrue to time s, that is, we will have to divide by Bt and multiply by Bs. As a result, if X is

an adapted process (with respect to our underlying filtered probability space (Ω,U ,F ,P)), BsX
∗
t = Bs

Bt
Xt

corresponds to a discount to time s ≤ t.
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Let’s go back to the sde satisfied by a self–financing portfolio’s wealth process

dWt = Wtrt dt + πP †
t ((µt − rt~1n + δt) dt + σt dWt),

multiplying both sides by the discount factor and rearranging we obtain

dWt

Bt
−W∗

t rt dt = (πP ∗
t )†((µt − rt~1n + δt) dt + σt dWt), (69)

which by Itô’s formula25 implies

dW∗
t = (πP ∗

t )†((µt − rt~1n + δt) dt + σt dWt). (70)

Since a self–financing portfolio process has to satisfy the integrability conditions (61) we

know that the sde (70) satisfied by the corresponding discounted wealth process can be

integrated, and that W∗ is a local martingale. On the other hand, (70) in conjunction with

(61) implies that the discounted wealth process is an Itô process.

In fact, integrability conditions (51) and (61) are in place to ensure that security prices

and discounted wealth processes are Itô processes. See [96] Chapter 3 and [151] Chapter 7

§2.

Based on our computations leading to (70), we can write explicitly

W∗
t
Π,w0 = w0 +

∫ t

0
(πP ∗

u ) · (µu − ru~1n + δu) dt +
∫ t

0
(πP ∗

u )†σu dWu, (71)

and,

WΠ,w0
t = Bt

(
w0 +

∫ t

0
(πP ∗

u ) · (µu − ru~1n + δu) dt +
∫ t

0
(πP ∗

u )†σu dWu

)
, (72)

for some initial wealth w0. Notice that the process W∗Π,w0 − w0 can be regarded as the

discounted gain due to portfolio strategy Π.

25From (47) we know the bank account process is non–null. From (66) we know that the cross variation of

the bank process and the wealth process satisfies 〈B,W〉 = 0. On the other hand, the function g : R×(R\0) →

R defined as g(x, y) = x/y is of class C2(R × (R \ 0)). Thus conditions for Itô’s rule are satisfied. See [96]

§3.3 .
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Definition 3.3.10. The process ρ defined as

ρ = {µt − ~1nrt + δt}t∈[0,T ] (73)

is called the risk premium of market M.

3.3.3 Absence of Arbitrage and Standard Markets

As described, portfolio strategies may rely on short selling26 (that is, portfolio coefficients

πi, i ∈ N∗
n can take negative values). The problem is that we are assuming a market with no

liquidity problems and no frictions, and lending and borrowing relies on the same interest

rate. Unless we impose some restrictions to how deep in debt an investor can go, we face

the possibility of doubling strategies27. To protect against doubling strategies we need to

impose some kind of restriction to allowed portfolios.

Definition 3.3.11. A portfolio process π, and by extension a portfolio strategy Π = (π0, π),

is called tame if the corresponding discounted wealth process, W∗Π, is P a.s. bounded from

below by some real constant. That is, π is tame if there exist α ∈ R such that

P(W∗
t
Π ≥ α , ∀t ∈ [0, T ]) = 1 (74)

26Short selling refers to a valid trading strategy according to which an investor may sell a security he

does not own —it means he will have to borrow it from someone, to whom he will have to pay back by

returning the borrowed security plus some possible fees in a future time—. A short seller tries to profit from

a declining market assuming he will be able to buy the security —at a future date— paying a price lower

than the price at which he sold short. In this regard to go short or to sell short is the opposite to go long.

To assume a short position means to go short in a security. Most investors tend to go long, that is they

tend to assume long positions in their portfolios by buying a security in the hopes it will increase its value

with time. Notice that to assume a short position in a security is not the same as to close a position. When

an investor closes a position he is either selling shares of security he owns or is buying shares of a security

he is short on. In the later case, when an investor buys the same number of shares of a security he is short

on it is said that the investor is covering his position.
27An example (a very famous one) of a doubling strategy (in a discrete time setting) is discussed by

Harrison and Kreps [77]; a “sure win” at roulette “is possible” if one bets on red and keeps doubling the bet

until red comes out (provided one can borrow unlimited amounts of money, and assuming that there is no

limit on that roulette). An investor applying a doubling strategy relies on his ability to borrow arbitrarily

large amounts of money to attain arbitrarily large gains with a null initial investment.
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If only tame portfolios are allowed, investors can not try to attain arbitrarily large

amounts of wealth by means of falling deep in debt until luck strikes, see [43].

Doubling strategies are an example of arbitrage opportunities . In general an arbitrage

opportunity is the possibility to make a positive profit, with probability one, starting with

a null initial investment.

Definition 3.3.12. We define an arbitrage opportunity as a tame portfolio strategy Π

with null initial wealth that satisfies

P(WΠ
T ≥ 0) = 1 , P(WΠ

T > 0) > 0 . (75)

A market model is arbitrage–free if no tame portfolios are arbitrage opportunities.

Although tame portfolios only protect against a particular case of arbitrage opportu-

nity28, in what follows (unless the contrary is stated) we will restrict ourselves to the use

of tame portfolios.

To rule out arbitrage opportunities more conditions are needed.

Theorem 3.3.3. If market M is arbitrage–free, then there exists a progressively measurable

process, θ : [0, T ] × Ω → Rd, called a market price of risk (or “relative risk”) process,

such that

µt − rt~1n + δt = σtθt , 0 ≤ t ≤ T Pa.s. (76)

Conversely, if such a process θ exists and satisfies, in addition to the above requirements,

P
(∫ T

0
‖θt‖2 dt < ∞

)
= 1 (77)

and

EP

(
exp

{
−
∫ T

0
θ†t dWt −

1
2

∫ T

0
‖θt‖2 dt

})
= 1 (78)

then M is arbitrage–free.

28Hur [87] discusses yet another arbitrage opportunity, namely “survival strategy”, not ruled out by

imposing lower bounds to the wealth process. Survival strategies are “buy and hold” strategies that allow

an investor to double (with probability one) his wealth in finite time.
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The interested reader can find the proof to this result in Karatzas and Shreve’s [97],

Chapter 1 §2.

Let’s define the process Z as

Zt = Zt(θ) =
{
−
∫ t

0
θ†t dWt

}
t∈[0,T ]

(79)

It is easy to see that

〈Z − 1
2
〈Z〉〉t = 〈Z〉t =

∫ t

0
θ†sθs ds (80)

defining the process E(Z) as

E(Z) =
{

exp
(

Zt −
1
2
〈Z〉t

)}
t∈[0,T ]

(81)

and applying Itô’s rule to E(Z) we see that

dEt(Z) = Et(Z)d{Zt −
1
2
〈Z〉t}+

1
2
d〈Z − 1

2
〈Z〉〉t = Et(Z)dZt = −Et(Z)θ†t dWt (82)

which shows that the process E(Z) is a local martingale and satisfies the sde dEt(Z) =

Et(Z) dZt, E0(Z) = 1 Pa.s. Process E(Z) is known as the Doléans exponential of process Z.

By Novikov’s condition ([151] Chapter 8 §1, Proposition 1.15 or [96] §3.5.D) process

E(Z) is a martingale and conditions (77) and (78) are satisfied if the market price of risk

process, θ, satisfies

EP

(
exp

{
1
2

∫ s

0
‖θt‖2 dt

})
< ∞ s ∈ [0, T ] (83)

Definition 3.3.13. A market model M for which there exists a progressively measurable

process (w.r.t filtration F) θ that satisfies the conditions of Theorem 3.3.3 and such that

the Doléans exponential given by (79), (81) is a martingale is called a Standard Market

Model.

If marketM is a standard market model, E(Z(θ)) is a martingale, with E(E0(Z(θ))) = 1.

In such a case, martingale E(Z(θ)) defines a probability measure PE equivalent to probability

P. At every set A ∈ FT , PE(A) is defined as follows29

PE(A) = EP(ET (Z(θ))1A) (84)

29Indeed, not one, but a whole family of equivalent measures is defined by the martingale E(Z(θ)). ∀t ∈

[0, T ], PEt (A) = EP(Et(Z(θ))1A) A ∈ Ft. Then, if A ∈ Ft, t ∈ [0, T ], we have PEt (A) = EP(Et(Z(θ))1A) =

EP(E(ET (Z(θ))|Ft)1A) = EP(E(ET (Z(θ)) 1A |Ft)) = EP(Et(Z(θ))1A) = PET (A) = PE(A).
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where 1A represents the indicator function of set A ⊂ Ω defined as

1A(ω) =


1; if ω ∈ A

0; if ω /∈ A

(85)

The amazingly good thing about all this is that now we can apply Girsanov’s theo-

rem (see [151] Chapter 8 §1, or [96] §3.5.A). That is, the process W E =
{
W E

t

}
t∈[0,T ]

={(
W E

t
1
,W E

t
2
, . . . ,W E

t
d
)†}

t∈[0,T ]

defined by

W E =
{
W E

t

}
t∈[0,T ]

=
{

Wt +
∫ t

0
θs ds

}
t∈[0,T ]

(86)

is adapted to filtration F , and it is also a Brownian Motion. The integral in (86) is defined

component by component, in other words,

W E
t

i
= W i

t +
∫ t

0
θi
s ds (87)

i ∈ Nd, t ∈ [0, T ].

Under martingale measure PE the dynamics of security prices, wealth processes, and

the corresponding discounted processes change favorably. From (86) we obtain:

dW E
t = dWt + θt dt (88)

multiplying by the volatility matrix σ

σt dW E
t = σt dWt + σtθt dt = σt dWt + ρt dt (89)

combining the last result with (70) we obtain:

dW∗
t = (πP ∗

t )†((µt−rt~1n+δt) dt+σt dWt) = (πP ∗
t )†(ρt dt+σt dWt) = (πP ∗

t )†σt dW E
t (90)

which gives proof to the first part of the following:

Proposition 3.3.4. Under a standard market model M, the discounted wealth process

associated to a self–financing portfolio strategy Π, is a local martingale with respect to the

martingale measure PE and satisfies the sde

dW∗
t = (πP ∗

t )†σt dW E
t (91)
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where σ is the market’s volatility matrix and πP ∗
t is the corresponding discounted active

money process. If portfolio strategy Π is tame, then the discounted wealth process W∗ is a

supermartingale and satisfies

EE

(
W∗
T

Π,w0

)
≤ w0 (92)

where w0 is the initial investment.

If Π is tame, the second part of the proof follows from Fatou’s lemma for conditional

expectations.

Remark 3.3.1. If the discounted wealth process has constant expectations (with respect

to PE), then it is a martingale (see [96] §1.5.19).

Definition 3.3.14. A self–financing portfolio (strategy) Π, is called a martingale generat-

ing portfolio (strategy) if the corresponding discounted gains process W∗Π,x − x (here

x is the initial investment) is a martingale under the equivalent martingale measure PE .

The following propositions also follow from the existence of a market price of risk process

θ.

Proposition 3.3.5. Under martingale measure PE , the wealth process associated to a self–

financing portfolio strategy Π, satisfies the following sde

dWΠ = WΠrt dt + πP †σt dW E
t (93)

where σ is the market’s volatility matrix, r is the market’s risk free rate and πP is the

corresponding active money process.

Proposition 3.3.5 follows directly from (66), Definition 3.3.10 and (86).

Proposition 3.3.6. Under the martingale measure PE , the security price processes, and

the discounted security price processes follow the dynamics:

dP i
t = P i

t

(
(rt − δi

t) dt + σi
t · dW E

t

)
, i ∈ Nn

dP ∗i
t = P ∗i

t

(
−δi

t dt + σi
t · dW E

t

)
, i ∈ Nn

(94)
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where r and σ are coefficients of the market M. In the particular in which there are no

dividends, assuming that σ satisfies Novikov’s condition, this shows that the discounted

price processes are also martingales under the martingale measure. In general if σ satisfies

Novikov’s condition, (94) implies that

dP ∗i
t + P ∗i

t δi
t dt = P ∗i

t

(
σi

t · dW E
t

)
, i ∈ Nn (95)

thus showing that the processes
{

P ∗i
t exp

(∫ t
0 δi

u du
)}

t∈[0,T ]
, i ∈ Nn are martingales.

Proposition 3.3.6 follows from (46), Definition 3.3.10, (86) and Itô’s rule, from which

(94) is obtained, showing that both, the logarithm of P i and the logarithm of P ∗i, i ∈ Nn

are local martingales (that is, P i and P ∗i, i ∈ Nn are exponential local martingales), so

P i and P ∗i are supermartingales. If Novikov’s condition holds (see [96] §3.5.D) for the

volatility matrix process σ, then P ∗i is also a martingale.

Under a standard market model we can write:

W∗
t
Π,w0 = w0 +

∫ t

0
(πP ∗

u )†σu dW E
u

WΠ,w0
t = Bt

(
w0 +

∫ t

0
(πP ∗

u )†σu dW E
u

)
P ∗i

t = P i
0 exp

{∫ t

0
−δi

u −
1
2
σi

u · σi
u du +

∫ t

0
σi

u · dW E
u

}
P i

t = P i
0 exp

{∫ t

0
ru − δi

u −
1
2
σi

u · σi
u du +

∫ t

0
σi

u · dW E
u

}
(96)

3.3.4 Financeable Goals and Market Completeness

Many are the reasons why an investor may decide to start investing, to create a portfolio of

securities and to develop a portfolio strategy. One such reason (and a very important one

indeed) is to satisfy some kind of future financial requirement. An investor may desire to,

throughout a portfolio strategy, achieve or amass a sum of money by time T .

For example, an investor may want to, by the time he reaches retirement age, amass a

sizable amount of money that he could use to finance his needs after his retirement more or

less in the same way he has been able to do before retirement age. In this case, the goal of

the investor is to have enough money to finance his way of living for an unknown number

of years after retirement.
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Or, after an initial investment of w0, an investor may want to have exactly $A by time

T . That is, his goal is to have a final wealth of $A.

It may be that our investor is already (or is about to be) embarked in other financial

venues which he has to hedge against. Those other venues may require from him the future

payment (at time T ) of a sum that is not completely known at time t = t0 ≥ 0.

In general, we may think of a final financial goal as a random variable G which is FT

measurable. But, is such a goal attainable? Under which conditions it is possible to find a

portfolio strategy such that its corresponding wealth process W satisfies such a goal (that

is, WT = G)? What should be the initial investment w0?

Let’s assume we are working on a Standard Market model. Assume also that G is a

FT measurable random variable and that w0 is a real number and Π is a tame portfolio

strategy, such that WΠ,w0

T = G. From Proposition 3.3.4 we know

G = WΠ,w0

T = BT

(
w0 +

∫ T

0
(πP ∗

u )†σu dW E
u

)
(97)

in other words

G/BT = W∗
T

Π,w0 = w0 +
∫ T

0
(πP ∗

u )†σu dW E
u (98)

but Π is tame, by Definition 3.3.11 this means that the discounted wealth process W∗Π,w0

is bounded below P–a.s. (or which is the same PE–a.s.). Therefore, if such a tame portfolio

strategy exists, it will be required that the random variable G/BT be PE–a.s. bounded

below.

On the other hand, if such a portfolio strategy exists, one could expect (at least in-

tuitively) that both G/BT and W∗
T

Π,w0 should have the same mathematical expectation.

Therefore

EE(G/BT ) = EE

(
W∗
T

Π,w0

)
= EE

(
w0 +

∫ T

0
(πP ∗

u )†σu dW E
u

)
≤ w0 (99)

(the last inequality coming from Proposition 3.3.4 and the assumption that Π is tame) this

means that if there exists a tame portfolio strategy Π such that WΠ,w0

T = G, the initial

investment w0 has to be bigger than or equal to the expectation of G/BT . If instead, one

assumes that Π is martingale generating, similar conclusions are obtained.

We collect our intuitive requirements in the following definition.
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Definition 3.3.15. Given that market M is a standard market, and G is a FT –measurable

random variable such that

PE (G/BT ≥ α) = 1

w0 := EE (G/BT ) < ∞
(100)

for some real constant α. We will say that G is a financeable goal if there exits a tame

portfolio strategy Π such that

G/BT = W∗
T

Π,w0 PE–a.s. (101)

On the other hand, if all FT – measurable random variables that satisfy (100) are fi-

nanceable goals, we will say that market M is complete. Naturally a standard market

that is not complete is called incomplete.

The following two well known results, see [95] and [97], offer a characterization of a

complete market.

Proposition 3.3.7. � An smm M is complete if and only if for every FT –measurable,

r.v. G such that

EE (|G|/BT ) < ∞ (102)

and w0 := EE (G/BT ), there exists a martingale generating portfolio strategy Π such

that G/BT = W∗
T

Π,w0 PE–a.s.

� If x < w0, there can not be a tame portfolio strategy Πx such that its corresponding

wealth process satisfies WΠx,x
T ≥ G PE–a.s..

� If x > w0, there can not be a tame portfolio strategy Πx such that its corresponding

wealth process satisfies WΠx,x
T = G PE–a.s. and is a martingale.

Theorem 3.3.8. An smm M is complete if and only if n = d (that is, the number of

securities minus the bank account is equal to the number of sources of systematic risk) and

the volatility (matrix) process is nonsingular λ⊗ P–a.s. (λ being the Lebesgue measure on

[0, T ]).
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Notice that Theorem 3.3.8 implies that in the case of a complete market there is a

unique market price of risk process θ. If M is complete, the volatility matrix process σ is

nonsingular λ⊗ P–a.s., thus, if we multiply (76) by the inverse of σ we will have

θt = σ−1
t (µt − rt~1n + δt) , 0 ≤ t ≤ T Pa.s.. (103)

3.4 Valuation of Game Options in a non-Constant Coeffi-
cient Market

Consider two parties, a buyer (investor) and a seller (or writer) involved in a contract. The

buyer pays to the seller and buys the contract that the seller sells.

In the case the contract traded is an European option the buyer is “inert”, his actions

(after the contract is traded) are reduced to waiting until maturity to see the final outcome

of his investment, while the writer’s actions are directed to finding a hedging strategy. The

writer is less inert than the buyer in the sense that he/she must hedge his/her position, yet

both must wait until maturity.

In the case of an American option the buyer is actively searching for the best instant

to exercise his/her option while the seller hedges his/her position. Both participants in

an American option contract adopt adversary (opposing) roles, but, since it is only the

buyer who can select an exercise strategy, both participants have an equal perception of the

contract and the value of it. The buyer will attempt to maximize his/her gains by selecting

an “optimal” exercise strategy and the seller is aware of that fact. To find the value/price

at time t of an American option one needs to solve an optimal stopping problem30.

If we call O = {Ot}t∈[0,T ] the discounted payoff process of an American option, the

problem of pricing such an option “reduces” to find

sup
t∈S0,T

E(Ot), (104)

the “optimal discounted expected payoff”, where S0,T is the set of all stopping times with

values in [0, T ] (see Notation 3.4.1 below) and the expectation (see Notation 3.3.5), E, is

30Please see [52] for a detailed study of the problem of optimal stopping. [97] offers a brief study in its

appendix.
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computed with respect to a suitable equivalent martingale measure31.

In the case of a Game option (see Definition 3.4.2) these adversary roles are enhanced

by the right of the writer to stop the contract at any time (paying a suitable penalization).

To find the value/price at time t of a Game option we must solve a double optimal

stopping problem. The value of a Game option is the value achieved by exercising and

canceling the option optimally. Solving the double optimal stopping problem one finds

optimal exercise strategies (in the form of stopping times) and the corresponding payoff

under such strategies (much like in the case of an American option).

Obviously, in the case of a Game option the problem at hand is much more complex since

both participants, buyer and seller, can “act” by selecting an exercise and a cancellation

time, respectively. But that is not the only problem. Buyer and seller are adversaries. One

is looking for a strategy that will maximize his/her gains (the buyer in this case) while

the other (the seller) is looking for a strategy to minimize his/her loses. This also creates

opposing views regarding the contract and its value.

Let {R∗(s, t)}s,t∈[0,T ] (see Definition 3.4.1, Definition 3.4.2 and Notation 3.4.3 below)

represent the discounted payoff of a Game option.

The buyer knows that the seller of the Game option will try to find a strategy to minimize

his/her loses, still the buyer’s goal is to maximize his/her gains. Thus the buyer perceives

an optimal expected discounted payoff of the form

V = sup
t∈S0,T

inf
s∈S0,T

E(R∗(s, t)). (105)

Similarly, the seller knows the buyer’s intentions, he/she knows that the buyer will

attempt to find a strategy (a stopping time) to maximize his/her gains, still, while hedging

his/her position, the seller must attempt to find an opposing strategy that will allow him/her

to reduce his/her loses. Thus, the seller perceives an optimal expected discounted payoff of

the form

V = inf
s∈S0,T

sup
t∈S0,T

E(R∗(s, t)). (106)

31For further details about the pricing of American options we refer the reader to [134], [97] and [95].
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At a difference from the case of the American option (or even more, from the case of

the European option) where both parties perceive the same expected value, in the case of

the Game option we find two.

Thus, in order to show that a value for the Game option exists we need not only to find

optimal strategies for both parties but also, we need to show that both expected discounted

values are the same:

V = V .

A game theoretical argument based in the well–known results by Lepeltier and Maingue-

neau, [109], regarding the value of a zero–sum Dynkin game will show that V = V ; then an

arbitrage argument will show that the common value

V = V = V ,

is indeed the option’s price.

Such a value, we will see, is attained at a saddle point (κ∗, ξ∗), where κ∗ and ξ∗ are two

special stopping times; κ∗ is called an optimal cancellation time and ξ∗ is called an optimal

execution time. (κ∗, ξ∗) is a saddle point for the associated Dynkin game.

In fact, based in the results by Lepeltier and Maingueneau, [109], we have not only a

saddle point but also ε–optimal strategies (see next sections for explanations) (κε, ξε) such

that (κε, ξε) −−−→
ε→0

(κ∗, ξ∗).

3.4.1 Game contingent claims

In order to clearly define the object of our study, we will introduce some additional defini-

tions.

We will set ourselves in the general framework of Section §3.3, that is, of a complete

smm M under (Ω,U ,F ,P), a complete filtered probability space, where F denotes the P–

augmentation of the natural filtration FW of a d–dimensional Brownian Motion W . Please

see Section §3.3 for details.

Notation 3.4.1. We denote by ST = S0,T the set of stopping times with respect to the

filtration {Ft}t∈[0,T ] with values in [0, T ]. Similarly, for t, u ∈ [0, T ], t ≤ u, we will denote
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by St,u the set of stopping times with respect to the filtration F = {Ft}t∈[0,T ] and with

values in [t, u] ⊂ [0, T ]. In general, if s and t are two stopping times with values in [0, T ],

we define Ss,t as the set Ss,t = {w ∈ ST : s ≤ w ≤ t}.

Recall that F is a continuous filtration, therefore, optional times of F are also stopping

times of filtration F ([96] Proposition 1.2.3).

Definition 3.4.1. Let X = {Xt}t∈[0,T ] and Y = {Yt}t∈[0,T ] be two stochastic processes

defined on (Ω,U ,P) adapted to filtration F . For any pair (s, t) ∈ [0, T ] × [0, T ] we will

define

R(s, t) = Xs 1s<t +Yt1t≤s =


Xs s < t,

Yt t ≤ s,

(107)

and R = {R(s, t)}(s,t)∈[0,T ]×[0,T ]. In case explicit reference to the processes X and Y is

required, we will write RX,Y instead of R and RX,Y (s, t) instead of R(s, t).

In agreement with our discussion in Section §3.2 we will define a game contingent claim

as follows:

Definition 3.4.2. A game contingent claim (gcc) of maturity T , is a contract between

two parties, a writer and a holder, consisting of two F–adapted RCLL32 payoff processes

X and Y of class (D)33 such that 0 ≤ Yt ≤ Xt ∀t ∈ [0, T ] and

EE

(
sup

0≤t≤T
X∗

t

)
< ∞, (108)

and two stopping times κ ∈ ST , called the cancellation time (selected by the writer),

and ξ ∈ ST , called the exercise time (selected by the holder). At time t = 0, the holder

(also known as the buyer, who assumes the long position in the contract) will pay to

32As we have commented before, a very desirable property is that of progressive measurability; in fact

we could have required both X and Y to be progressively measurable, but with the coming proof in mind,

we decided to ask for it in an indirect way. Since X and Y are F–adapted and RCLL we know they are

also progressively measurable. See [96]. Another approach could have been to require the two processes to

be measurable and adapted, see Footnote 16, which will ensure the existence of progressively measurable

modifications. See [96].
33See Footnote 56.
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the writer (also known as the seller, who assumes the short position in the contract) a

non random amount γ entitling him to receive from the writer, at time κ ∧ ξ = min(κ, ξ),

a payoff equal to

R(κ, ξ) = Xκ 1κ<ξ +Yξ 1ξ≤κ . (109)

On the other hand, at time t = 0 the writer receives from the holder the amount γ and

agrees to pay to the holder, at time κ∧ξ, the amount R(κ, ξ) given in (109)34. Both parties

agree that after time κ ∧ ξ, and the payment of payoff R(κ, ξ), their contract is dissolved

and their mutual obligations will cease. Just for convenience, we will call κ ∧ ξ the end of

the game or the end of the contract. Process X will be called the cancellation payoff

process while Y will be called the exercise payoff.

The main goal of this chapter is, given stochastic processes X and Y as in Definition

3.4.2, to characterize the non random amount γ (the initial price of the game option), see

Definition 3.4.11 and Theorem 3.4.26.

In what follows we will provide a way to price this game contingent claim and to find

optimal strategies for the game underlying it. We will show also that there is a proper way

to construct approximate hedges against this claim. See sections §3.4.2 and §3.4.3.

As it is apparent from Definition 3.4.2, this contract allows the writer to cancel the

contract at any time throughout the life of the contract (by means of selecting the stopping

time κ). At the same time, it allows the holder (by means of selecting the stopping time ξ)

to exercise his option at any time throughout the life of the contract. From (109) we see

that in case both parties decide to act at the same time (that is, in the event they chose

cancellation and exercise times with same value), the payoff that the writer pays to the

holder is R(ξ, ξ) = Yξ. Clearly, the decision to wait until maturity (by any of the parties)

is represented by making κ and/or ξ identically equal to T .

34A more general setting could include more than just two process. For example we could consider

consumption and the continuous payment of a fee from the holder to the writer in order to keep “playing”.

Also, another process could be used to determine the payoff in case both seller and buyer choose to act at

the same time. Yet another generalization is to relax the condition Yt ≤ Xt, etc. These are generalizations

that we could study in the future.
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Since Definition 3.4.2 requires processes X and Y to satisfy 0 ≤ Y ≤ X, we see that

the payoff process R (as defined in Definition 3.4.1) is bounded below. In case neither the

writer nor the seller decide to act prior to maturity, the payoff received by the buyer is

R(T , T ) = YT . Due to (108), to our assumption that market M is complete, and the fact

that R is bounded below, it is clear that R(T , T ) = YT is a financeable goal (see Definition

3.3.15). Therefore, there exist a martingale generating portfolio Π̃, with initial investment

w̃0 = EE(Y∗
T ) such that

Y∗
T = W∗

T
Π̃,w̃0 = w̃0 +

∫ T

0
(π̃P

∗
u)†σu dW E

u . (110)

At any other time t ∈]0, T ] we will have

W∗
t
Π̃,w̃0 = π̃0

t + π̃P t = w̃0 +
∫ t

0
(π̃P

∗
u)†σu dW E

u , (111)

from which π̃0 can be obtained. Not only that; since the discounted gains process is a

martingale, we can obtain the discounted wealth process by conditional expectation

EE(Y∗
T |Ft) = EE

(
w̃0 +

∫ T

0
(π̃P

∗
u)†σu dW E

u

∣∣∣∣Ft

)
= w̃0 +

∫ t

0
(π̃P

∗
u)†σu dW E

u = W∗
t
Π̃,w̃0 .

(112)

Obviously the pricing of a gcc is a lot more complex than this. In general Seller and

Buyer are not restricted to choose cancellation and exercise times both equal to maturity.

Indeed, assuming both Seller and Buyer are rational players, they will be choosing the

game strategies (that is, cancellation and execution times) that are more favorable to them.

The objective of the Seller is to find the strategy (time of cancellation) that will reduce the

future payment he/she has to do to the buyer, on the other hand the objective of the Buyer

is to maximize the payment he/she will receive. Knowing this, the Seller wants to find a

portfolio strategy that will allow him to hedge against all the involved unknowns and still

will let him end up with a non negative wealth after paying R(κ, ξ) to the Buyer at the end

of the contract. He/She also wants to find, if possible, the optimal time to stop (cancel) the

contract. That is, (given the buyer strategy ξ) a stopping time κ that will reduce as much

as possible the payment R(κ, ξ). On the other hand, the buyer will like to find the optimal

stopping (execution time) strategy ξ that will maximize (given the seller’s strategy κ) the

payment R(κ, ξ) that the seller will make to him at the end of the contract
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We can visualize the situation of Buyer and Seller with the aid of a continuous time

game.

We disgress to give results on Dynkin games. This involves material from here through

Theorem 3.4.1. Then we apply this material to the gcc context after Theorem 3.4.1 and

until the end of this section.

Assume two payers, Player A and Player B, engage in the following zero–sum35 contin-

uous time game. They observe the realization of two payoffs, RCLL processes of class (D)

, X̃ = {X̃t}t≥0 and Ỹ = {Ỹt}t≥0,

0 ≤ Ỹt ≤ X̃t, (113)

E

(
sup
t≥0

X̃t

)
< ∞, (114)

defined on a complete filtered probability space (Ω,U ,G,P), adapted to filtration G =

{Gt}t≥0 (which is assumed to satisfy the “usual conditions”36). Player A chooses the stop-

ping time ξ while Player B chooses stopping time κ. We assume there is no pre–play or

play time communication between the players, and that they both arrive at their choices

with no direct coercion from the other (no communication between the players is equivalent

to them choosing their times/strategies simultaneously). Then, Player B pays to Player A

the amount

J(κ, ξ) = E
(
X̃κ 1κ<ξ +Ỹξ1ξ≤κ

)
= E

(
ReX,eY(κ, ξ)

)
. (115)

The stopping times ξ and κ are called the game strategies of Player A and Player B

respectively (in the Game Theoretical jargon, when a game strategy is a stopping time it is

also called a pure strategy). In general, the set S of all stopping times relative to filtration

G is also called the set of pure strategies of the game. Since the only way in which the

players can influence the value of the payoff they will pay/receive is through these chosen

strategies, the strategies ξ and κ are also known as game controls. The quantity J defined

in (115) is also known as the expected gain of the game, and as the expected payoff, etc.

35 A game is said to be zero sum if a gain for one side entails a corresponding loss for the other side.

That is, in a zero sum game the total gain to all players participating in the game adds to zero.
36See Footnote 12.
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It is clear that the objectives of Player A and Player B are adverse to one another.

Intuitively, Player B (whom Player A assumes is a rational player) will try to minimize

its payment to Player A. Assuming that Player A (whom Player B assumes is a rational

player) will try, at the same time, to maximize such a payment, Player B will realize that

his/her payment to Player A should be no larger than

V = inf
s∈S

sup
t∈S

J(s, t), (116)

(where the infimum and supremum are to be taken with respect to the collection of all

stopping times relative to filtration G). Similarly, Player A, assuming that Player B is also

a rational player, will see that the least he/she can expect to receive is

V = sup
t∈S

inf
s∈S

J(s, t) (117)

(intuitively, Player A knows Player B —if he/she is a rational player— will attempt to

minimize his/her loses, in such a case the best Player B could do is to somehow attain the

infimun of J(s, ·) —s being his/her perception of what Player A strategy could be—. Under

such assumptions, Player A should attempt to maximize his/her gains. If Player B does

not minimize, he/she will end up giving more to Player A. Thus Player A knows that V as

defined in (117) is the least he/she can get).

Clearly, V ≤ V . V and V are called the lower value and upper value, respectively. The

game has a value when V = V .

The game here described falls into the category of continuous time zero sum37 games

known as Dynkin Games. Such games are generalizations of the discrete time games of

stopping introduced by Dynkin in 1969. Dynkin’s original idea consisted in a variation of

the optimal stopping problem. Later, such games were studied and generalized by several

authors. Lepeltier and Maingueneau [109] studied a game very similar to the game we are

considering here and showed, under very mild conditions, that such a game has a value

in pure strategies (that is, the player’s strategies are stopping times with respect to the

filtration underlying the probability space on which the game is defined).

37See Footnote 35.
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Formally, Lepeltier and Maingueneau consider the following continuous time Dynkin

game:

Definition 3.4.3. We denote by (Ω,U ,G,P, I, J,X, Y ) a two person continuous time

Dynkin game, that is, a zero–sum game such that:

� (Ω,U ,G,P) is a filtered probability space and G = {Gt}t≥0 satisfies the usual conditions

and G0 is a trivial σ–algebra.

� I, the set of strategies of the players, is the set of all stopping times of filtration G.

� The criterion, expected payoff or expected gain (and sometimes, simply, payoff) of

the game is of the form38:

J(κ, ξ) = E
(
RX,Y (κ, ξ)

)
, (118)

where X and Y are bounded optional right continuous processes whose value at infinity

is zero, that is X∞ = Y∞ = 0 and such that Yt ≤ Xt, ∀t ∈ [0,∞[.

In this game, Player A chooses a G–stopping time ξ and attempts to maximize his/her

gain. Assuming an adversary role, Player B chooses a G–stopping time κ and attempts to

minimize his/her payment to Player A.

Remark 3.4.1. Lepeltier and Maingueneau’s assumptions, [109], on processes X and Y

are stronger than required by the general theory of optimal stopping (see [56], [52], [138],

[158] and [97] for example); still, as Laraki and Solan argue, see [108], their results remain

valid for RCLL class (D) processes, and in particular for our case of bounded below, RCLL,

class (D) processes. The idea is based on results from Dellacherie and Meyer [35] regarding

uniformly integrable processes, please see [108].

38Here we are abusing of the notation introduced in Definition 3.4.1 in the sense that we are allowing the

arguments of RX,Y (·, ·) to be stopping times, and not only that, but also such stopping times are allowed

to take in values in [0,∞[. Our use of this notation is still consistent in the sense that

RX,Y (s, t) = Xs 1s<t +Yt1t≤s

for all s ∈ I and t ∈ I.
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By Theorem 65 of [35] Chapter IV, under the usual conditions X, and Y can be taken

RCLL instead of optional (see also [126] Chapter 1 §5).

Thus, when applying Lepeltier and Maingueneau’s results we will assume our processes

X and Y are bounded below (non–negative actually), RCLL and of the class (D).

As usual, saddle points, upper value, lower value and a value are defined.

Definition 3.4.4. (s̄, t̄) ∈ I × I is called a saddle point of the Dynkin game of Definition

3.4.3 if, ∀(s, t) ∈ I × I we have:

J(s̄, t) ≤ J(s̄, t̄) ≤ J(s, t̄). (119)

Definition 3.4.5. We define the upper, V, and lower, V, values of the Dynkin game of

Definition 3.4.3 as usual:

V = sup
t∈I

inf
s∈I

J(s, t),

V = inf
s∈I

sup
t∈I

J(s, t).
(120)

Then, the Dynkin game of Definition 3.4.3 has a value V if:

V = V, (121)

in such a case the value of the game, V, is equal to the common value of V and V, that is:

V = V = V. (122)

Based on Definition 3.4.5 and Definition 3.4.4 it is not hard to show that if a saddle

point exists then the game has a value.

Lepeltier and Maingueneau [109] show that the game of Definition 3.4.3 has a value,

they also show that a saddle point exists and that there exists ε–optimal strategies for the

game.

Definition 3.4.6. Let ε > 0, assume V is the value of the Dynkin game of Definition 3.4.3.

ξε ∈ I is called an ε–optimal strategy for Player A if:

J(s, ξε) + ε ≥ V ∀s ∈ I. (123)
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Similarly, κε ∈ I is called an ε–optimal strategy for Player B if:

J(κε, t)− ε ≤ V ∀t ∈ I. (124)

In the spirit of Lepeltier and Maingueneau [109]:

Definition 3.4.7. ∀u ∈ I, we define the conditional upper value, after time u, of the

Dynkin game of Definition 3.4.3 as

Vu = essinf
s∈I
s≥u

esssup
t∈I
t≥u

E
(
RX,Y (s, t)

∣∣Gu

)
. (125)

Similarly, we define the conditional lower value, after time u, as

Vu = esssup
t∈I
t≥u

essinf
s∈I
s≥u

E
(
RX,Y (s, t)

∣∣Gu

)
. (126)

Using the condition on the value at infinity39 of the processes X and Y , that is that

X∞ = Y∞ = 0, Lepeltier and Maingueneau show, see [109] Lemma 5, that ∀u ∈ I,

Vu = essinf
s∈I
s≥u

esssup
t∈I
t≥u

E (Xs 1s≤t +Yt1t<s| Gu) = essinf
s∈I
s≥u

esssup
t∈I
t≥u

E
(
R̃X,Y (s, t)

∣∣∣Gu

)
, (127)

and

Vu = esssup
t∈I
t≥u

essinf
s∈I
s≥u

E (Xs 1s≤t +Yt1t<s| Gu) = esssup
t∈I
t≥u

essinf
s∈I
s≥u

E
(
R̃X,Y (s, t)

∣∣∣Gu

)
. (128)

As we implicitly identify in the previous two equations we define the alternate payoff function

R̃X,Y , or simply R̃ as

R̃X,Y (s, t) = Xs 1s≤t +Yt1t<s, (129)

s, t ∈ [0,∞[, which we can extend to stopping times s, t ∈ I

R̃X,Y (s, t) = Xs 1s≤t +Yt1t<s, (130)

This means that the value of the Dynkin game of Definition 3.4.3 is blind to a change

in the inequality found in the definition of RX,Y , and consequently in the definition of J

39This condition could be changed by X∞ = Y∞ = A, A a finite U–r.v. and the results of Lepeltier and

Maingueneau [109] will be preserved.
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(provided that X∞ = Y∞ = 0)40. Said in another way, [109] Lemma 5 means that the value

of the Dynkin game of Definition 3.4.3 is blind to a change from R to R̃ in Definition 3.4.3,

equation (118).

Apart from the little extra flexibility in the definition of the game, [109] Lemma 5 offers

the authors some technical advantages they will use later to show the existence of the game.

[109] Lemma 5 also offers hints into more general results regarding this kind of game; for

example the Dynkin game of Definition 3.4.3 belongs to the class of two person continuous

time zero–sum games whose expected payoff is of the form:

E(as 1s<t +bt 1t<s +ct1s=t), (131)

[109] Lemma 5 implies that if a∞ = b∞, choosing c ≡ a or c ≡ b does not change the value

of the game (if it exists)41.

Corollary 12 of [109] show that the Dynkin game of Definition 3.4.3 has a value, V,

V = sup
t∈I

inf
s∈I

J(s, t) = V = inf
s∈I

sup
t∈I

J(s, t) = V, (132)

and more generally, that the conditional upper and lower values are equal for any stopping

time u of the filtration G; that is:

Vu = essinf
s∈I
s≥u

esssup
t∈I
t≥u

E
(
RX,Y (s, t)

∣∣Gu

)
= essinf

s∈I
s≥u

esssup
t∈I
t≥u

E
(
R̃X,Y (s, t)

∣∣∣Gu

)
= Vu = esssup

t∈I
t≥u

essinf
s∈I
s≥u

E
(
R̃X,Y (s, t)

∣∣∣Gu

)
= esssup

t∈I
t≥u

essinf
s∈I
s≥u

E
(
RX,Y (s, t)

∣∣Gu

)
= Vu. (133)

40As we mentioned before, it is not hard to show that under the slightly more general assumption of

X∞ = Y∞ = A, with A a finite random variable, the results of Lepeltier and Maingueneau [109] are

preserved.
41In a recent paper, Laraki and Solan (see [108] Theorem 3 and Proposition 6) show that two person

continuous time zero–sum games whose payoff is given by (131), (where a, b and c are G adapted uniformly

bounded stochastic processes, a and b right continuous such that a ≤ b, c progressively measurable) have a

value in randomized stopping times and that such a value is independent of the process c. They also show

that if a ≤ c ≤ b, the value in randomized times is the same as the value in stopping times.
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Definition 3.4.8. Define, for every stopping time t ∈ I and any ε > 0

κε
t = inf{t ≥ t : Vt ≥ Xt − ε},

ξε
t = inf{t ≥ t : Vt ≤ Yt + ε}.

(134)

By hypotheses, X and Y are right continuous. [109] Theorem 9 shows that V and V

are right continuous42. Thus, both Vt −Xt and Vt − Yt are right continuous and κε
t and

ξε
t define stopping times43 ∀ε ≥ 0 and ∀t ∈ I. In particular κ0

t and ξ0
t are stopping times.

Not only that but

κ0+

t = lim
ε→0+

κε
t ,

and

ξ0+

t = lim
ε→0+

ξε
t .

(135)

are both stopping times44.

With the help of the above defined stopping times and a well known result from El

Karoui [52] (see Theorem 10 in [109]) Lepeltier and Maingueneau, see Theorem 11, [109],

show that

Xt ≥ Vt ≥ Vt ≥ Yt ∀t ∈ I, (136)

and that

E(Vκε
t∧s′ |Gt) ≤ Vt ≤ Vt ≤ E(Vξε

t∧s|Gt), (137)

∀t ∈ I and all s, s′ ∈ I such that s ≥ t and s′ ≥ t.

As a Corollary of Theorem 11 and with the aid of a result by Stettner [167] (Lemma 2 in

Lepeltier and Maingueneau’s [109]), Lepeltier and Maingueneau show that the conditional

upper and lower values are equal, that is that Vt = Vt, ∀t ∈ I and that the stopping times

κε
t and ξε

t defined in Definition 3.4.8 are ε–optimal strategies since

42Or, more precisely, that such processes have right continuous modifications, modifications that could

also be selected to be rcll (see [151] Chapter II section 2 or [96] section 1.3 Theorem 3.13).
43See [96] section 1.2, specifically Definition 2.1, Proposition 2.3, Exercise 2.5 and Proposition 2.6, or

[151] Proposition 4.6 or [177] Proposition 3.5, etc.
44See [177] Theorem 3.19.
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E
(
Xκε

t
1κε

t <s′ +Ys′1s′≤κε
t

∣∣Gt

)
− ε

≤ E
(
Vκε

t∧s′

∣∣∣Gt

)
≤ Vt ≤ Vt ≤ E

(
Vξε

t∧s

∣∣Gt

)
≤ E

(
Xs 1s<ξε

t
+Yξε

t
1ξε

t≤s

∣∣Gt

)
+ ε, (138)

∀t ∈ I and all s, s′ ∈ I such that s ≥ t and s′ ≥ t.

Finally, Theorem 13 in [109] establishes the right continuity of the value process {Vt}t≥0,

which aggregates the collection {Vt}t∈I , while Theorem 15 in [109] shows that under the

assumption that X and Y are right continuous and −X and Y are left upper semicontinuous

(l.u.s.c. or simply lusc) then

ξ0
t ∧ κ0

t = lim
ε→0+

ξε
t ∧ lim

ε→0+
κε

t = ξ0+

t ∧ κ0+

t , (139)

and the pair (ξ0
t , κ0

t ) is a saddle point. That is, ∀t, s, s′ ∈ I, s ∧ s′ ≥ t

E
(
RX,Y (s, ξ0

t )
∣∣Gt

)
≥ Vt = E

(
RX,Y (κ0

t , ξ
0
t )
∣∣Gt

)
≥ E

(
RX,Y (κ0

t , s
′)
∣∣Gt

)
, (140)

and in particular, the initial value of the game, V0, satisfies:

J(s, ξ0
0) = E

(
RX,Y

(
s, ξ0

0

))
≥ V0 = E

(
RX,Y

(
κ0

0, ξ
0
0

))
= J(κ0

0, ξ
0
0)

≥ E
(
RX,Y (κ0

0, s
′)
)

= J(κ0
0, s

′) (141)

s, s′ ∈ I.

We can summarize Lepeltier and Maingueneau’s results in the following Theorem:

Theorem 3.4.1. The Dynkin game, (Ω,U ,G,P, I, J,X, Y ), of Definition 3.4.3 has a value

in pure strategies, V = V0, where {Vt}t≥0 is the right continuous process that satisfies:

Vu = essinf
s∈I
s≥u

esssup
t∈I
t≥u

E
(
RX,Y (s, t)

∣∣Gu

)
= esssup

t∈I
t≥u

essinf
s∈I
s≥u

E
(
RX,Y (s, t)

∣∣Gu

)
P–a.e. (142)

∀t ∈ I and ∀ε ≥ 0 both players have pure ε–optimal strategies, κε
t and ξε

t , given by:

κε
t = inf{u ≥ t : Vu ≥ Xu − ε},

ξε
t = inf{u ≥ t : Vu ≤ Yu + ε}.

(143)
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that satisfy

E
(
RX,Y (κε

t , u)
∣∣Gt

)
− ε ≤ Vt ≤ E

(
RX,Y (s, ξε

t )
∣∣Gt

)
+ ε (144)

∀t ∈ I and all s, u ∈ I such that s ≥ t and u ≥ t. If in addition the processes −X and Y

are l.u.s.c. then the game attains a saddle point. Defining

κ̃t = lim
ε→0

κε
t and ξ̃t = lim

ε→0
ξε
t , (145)

for t ∈ I then

κ̃t ∧ ξ̃t = κ0
t ∧ ξ0

t , (146)

and

E
(
RX,Y (κ̃t, u)

∣∣Gt

)
≤ Vt ≤ E

(
RX,Y (s, ξ̃t)

∣∣∣Gt

)
(147)

∀t ∈ I and all s, u ∈ I such that s ≥ t and u ≥ t. Furthermore

Vt = E
(
RX,Y (κ0

t , ξ
0
t )
∣∣Gt

)
(148)

∀t ∈ I.

The above version of Lepeltier and Maingueneau’s theorem encompasses the results of

[109] Corollary 12, and Theorem 13 to Theorem 15.

For several years, Lepeltier and Maingueneau’s paper has provided the most general

conditions for the existence of a value of the game. Recently, Laraki and Solan [108] found

several extensions to Lepeltier and Maingueneau’s work. In particular, they argue that

the condition of uniform boundedness of the processes X̃ and Ỹ can be safely changed

by the condition of RCLL and class (D); they (see [108]) also show that the condition

X̃∞ = Ỹ∞ = 0 can be relaxed by means of adding to the game payoff a term of the form

χ1ξ=κ=∞ where χ is a U–measurable and integrable function [108] section 4.2. They also

show that under this different condition at infinity, [108] Proposition 11, if the payoff of the

game is altered to be

X̃κ 1κ≤ξ +Ỹξ1ξ<κ (149)

the resulting game still has a value in pure strategies with ε–optimal strategies, and that

such strategies do not depend on that small change on the payoff function.
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After such a long digression we must recall what was our motivation to get into it and

what is our goal. Lepeltier and Maingueneau’s paper, [109], with the extensions by Laraki

and Solan, [108], represent the “state of the art” in the study of the particular form of Dynkin

game that we have been discussing along the last few pages. Lepeltier and Maingueneau’s

results, with the extensions by Laraki and Solan, show that a value for such games exists

under very general conditions. We will apply such results to a slight variation of the game,

to a game with finite horizon, to justify the existence of a value for the corresponding gcc,

then we will only need to show that a gcc is financeable and that a hedge exists.

In the next few pages we will see what happens when a finite horizon Dynkin game is

considered, then in the next section, §3.4.2, we will study the hedging of a gcc. Our work

will culminate in section §3.4.3.

Define now

X̃t =


X∗

t if t ∈ [0, T ]

eT −tX∗
T if t > T

Ỹt =


Y∗

t if t ∈ [0, T ]

eT −tY∗
T if t > T

Gt =


Ft if t ∈ [0, T ]

FT if t > T

P = PE

(150)

where X, Y and F are as in Definition 3.4.2. It is clear that the processes defined in (150)

are RCLL of class (D) and that G is a right–continuous filtration that satisfies the “usual

conditions”. Also clear from our definition is that limt→∞ X̃t = 0 = limt→∞ Ỹt PE–a.s. So

we can safely define X̃∞ = 0 = Ỹ∞ and naturally extend the filtration {Gt}t≥0 to ∞.

Thus, the resulting game satisfies all conditions of Lepeltier and Maingueneau with the

extension of Laraki and Solan.

Notation 3.4.2. We will extend Notation 3.4.1 using S to represent the set of all stopping

times with respect to the (extended) filtration G. Similarly, if t ≥ 0 we will write St,∞ to
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denote the subset of S that contains all stopping times whose values are bigger or equal to

t (notice that the value ∞ is allowed). Finally, if s ∈ ST ,∞, then the stopping time s must

be an FT –measurable r.v..

Definition 3.4.9 (Auxiliary Game). The Dynkin game described above (see formulas

(113), (114), (115), (116), (117), (150)) will be represented as (Ω,U ,G,PE ,S, J, X̃, Ỹ) and

will be called the auxiliary game.

Corollary 3.4.2. The auxiliary game (Ω,U ,G,PE ,S, J, X̃, Ỹ) satisfy the conditions of Def-

inition 3.4.3, that is, it is an Dynkin game, and, by Theorem 3.4.1 it has a value in pure

strategies V = V0, where {Vt}t≥0 is the right continuous process that satisfies:

Vt = essinf
s∈S
s≥t

esssup
t∈S
t≥t

EE

(
ReX,eY(s, t)

∣∣∣Gt

)
= esssup

t∈S
t≥t

essinf
s∈S
s≥t

EE

(
ReX,eY(s, t)

∣∣∣Gt

)
PE–a.e.

(151)

∀t ∈ S and ∀ε ≥ 0 both players have pure ε–optimal strategies, κε
t and ξε

t , given by:

κε
t = inf

{
u ≥ t : Vu ≥ X̃u − ε

}
,

ξε
t = inf

{
u ≥ t : Vu ≤ Ỹu + ε

}
.

(152)

that satisfy

EE

(
ReX,eY(κε

t , u)
∣∣∣Gt

)
− ε ≤ Vt ≤ EE

(
ReX,eY(s, ξε

t )
∣∣∣Gt

)
+ ε (153)

∀t ∈ S and all s, u ∈ S such that s ≥ t and u ≥ t. If in addition the processes −X̃ and Ỹ

are l.u.s.c. then the game attains a saddle point. Defining

κ̃t = lim
ε→0

κε
t and ξ̃t = lim

ε→0
ξε
t , (154)

for t ∈ S then

κ̃t ∧ ξ̃t = κ0
t ∧ ξ0

t , (155)

and

EE

(
ReX,eY(κ̃t, u)

∣∣∣Gt

)
≤ Vt ≤ EE

(
ReX,eY(s, ξ̃t)

∣∣∣Gt

)
(156)

∀t ∈ S and all s, u ∈ S such that s ≥ t and u ≥ t. Furthermore

Vt = EE

(
ReX,eY(κ0

t , ξ
0
t )
∣∣∣Gt

)
(157)

∀t ∈ S.
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Now recall from (150) that X̃t = eT −tX∗
T and Ỹt = eT −tY∗

T ∀t ≥ T . That is, the values

of X̃t and Ỹt diminish to zero, PE–a.s., as t →∞. In this case it is clear that to wait past

time T to stop the game is suboptimal for Player A. Similarly, for Player B there is no

advantage in considering strategies whose values surpass T .

The previous corollary speaks of a game with infinite horizon. In order to use those

results in our study of game contingent claims we must be able to apply the results of

Corollary 3.4.2 to a game with finite horizon. The following results will help us in that

direction.

Assertion 3.4.3. ∀u ∈ ST ,∞, Vu = Ỹu. That is, after time T the value of the auxiliary

game of definition Definition 3.4.9 is equal to the value of process Ỹ.

Proof. Recall the definition of processes X̃ and Ỹ in equation (150). Let u ∈ ST ,∞ be fixed.

We observe that, ∀s, t ∈ S such that s ≥ u and t ≥ u we have:

ReX,eY(s, t) = X̃s 1s<t +Ỹt1t≤s = eT −s∧t(X∗
T 1s<t +Y∗

T 1t≤s) ≥ eT −s∧tY∗
T = Ỹs∧t, (158)

with equality whenever s = t.

Since s, t ∈ S we know s∧ t ∈ S, and since s ≥ u and t ≥ u we clearly have s∧ t ≥ u ≥ T

PE–a.s.. By definition of a stopping time we know {s ∧ t ≤ t} ∈ Gt. By definition of Gt for

t ≥ T we know, {s ∧ t ≤ t} ∈ Gt = GT = FT , ∀t ≥ T , thus s ∧ t and consequently eT −s∧t is

an FT measurable r.v.. Since Y∗
T is FT measurable we see:

Ỹs∧t = EE

(
Ỹs∧t

∣∣∣Gu

)
≤ EE

(
ReX,eY(s, t)

∣∣∣Gu

)
(159)

Fix t ∈ S such that t ≥ u and consider the families of random variables:{
Ỹs∧t

}
s∈S; s≥u

and
{

EE

(
ReX,eY(s, t)

∣∣∣Gu

)}
s∈S; s≥u

(160)

Notice that, ∀s ∈ S such that s ≥ u

Ỹs∧t = Ỹs 1s<t +Ỹt1t≤s ≥ Ỹt 1s<t +Ỹt1t≤s = Ỹt. (161)

It is clear that

Ỹt ≤ essinf
s∈S; s≥u

Ỹs∧t ≤ essinf
s∈S; s≥u

EE

(
ReX,eY(s, t)

∣∣∣Gu

)
, (162)
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so,

Ỹu = esssup
t∈S;t≥u

Ỹt ≤ esssup
t∈S
t≥u

essinf
s∈S
s≥u

EE

(
ReX,eY(s, t)

∣∣∣Gu

)
= Vu. (163)

But, we are assuming t ∈ S is such that t ≥ u, this means that Ỹt is an element of both

families, thus

Ỹt ≥ essinf
s∈S; s≥u

Ỹs∧t and Ỹt ≥ essinf
s∈S; s≥u

EE

(
ReX,eY(s, t)

∣∣∣Gu

)
. (164)

Therefore

Ỹt = essinf
s∈S; s≥u

EE

(
ReX,eY(s, t)

∣∣∣Gu

)
; (165)

which implies that

Ỹu = esssup
t∈S
t≥u

essinf
s∈S
s≥u

EE

(
ReX,eY(s, t)

∣∣∣Gu

)
= Vu, (166)

since Ỹt ≤ Ỹu ∀t ∈ S is such that t ≥ u.

The previous Assertion is of much importance since it characterizes the value of the

game after time T . This Assertion will be used in Proposition 3.4.5 to characterize the

ε–optimal strategies of Player A. In the case of Player B, given ε ≥ 0 and t ∈ S0,T , its

ε–optimal strategies are not so simple. In fact, depending on the details on the processes X̃

and Ỹ it is possible to have κε
t ∈]T ,∞[ with non null probability. A detailed analysis could

provide with more properties of such strategies, but we do not need to go further. Our

interest in the Auxiliary game is totally subsidiary, instead we can easily show that under

favorable circumstances we can cut off the high values of κε
t and retain its main properties

under such conditions.

Let ε ≥ 0 and let t ∈ S0,T be given. Let also u ∈ S0,T be such that u ≥ t. On the event

{κε
t > T }, we use the definition of the payoff function R to see that:

ReX,eY(κε
t , u) = X̃κε

t
1κε

t <u +Ỹu1u≤κε
t

= Ỹu

= X̃κε
t∧T 1κε

t∧T <u +Ỹu1u≤κε
t∧T = ReX,eY(κε

t ∧ T , u). (167)

By Corollary 3.4.2, (153), ∀ε ≥ 0, ∀t ∈ S and ∀u ∈ S such that u ≥ t, κε
t satisfies,

EE

(
ReX,eY(κε

t , u)
∣∣∣Gt

)
− ε ≤ Vt; (168)
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in particular, ∀u ∈ S0,T we have

EE

(
ReX,eY(κε

t ∧ T , u)
∣∣∣Gt

)
− ε = EE

(
ReX,eY(κε

t , u)
∣∣∣Gt

)
− ε ≤ Vt, (169)

where we have used (167) to justify the equality in (169) in the event {κε
t > T } (in the

event {κε
t ≤ T } we have equality anyways). This proves the following proposition.

Proposition 3.4.4. ∀ε ≥ 0 and ∀t ∈ S with values in [0, T ], if Player A is restricted to

use strategies u ∈ S0,T whose values lie in [0, T ] then the stopping times κε
t ∧ T are also

ε–optimal strategies corresponding to Player B.

The next proposition, which is an immediate consequence of Assertion 3.4.3, shows that

some of the ε–optimal strategies of Player A take values in [0, T ].

Proposition 3.4.5. ∀ε ≥ 0 and ∀t ∈ S with values in [0, T ] the ε–optimal strategies of the

auxiliary game of Definition 3.4.9 corresponding to Player A, ξε
t , take values in [0, T ].

Proof. Let ε ≥ 0 and let t ∈ S such that t ∈ [0, T ]. Assume that P{ξε
t > T } > 0. By

definition of the infimum, on {ξε
t > T }, Vu > Ỹu + ε, ∀u such that T ≤ u < ξε

t . On the

other hand, Assertion 3.4.3 tell us that Vu = Ỹu. Thus we face a contradiction.

The meaning of our discussion here is that for Player A, involved in our auxiliary game

(Ω,U ,G,PE ,S, J, X̃, Ỹ), it is in his/her best interest to stop the game at or before time T .

Stopping the game after time T will almost surely reduce his/her gain. If t ≤ T , it is in

Player A’s best interest to reduce the set from which he/she will select strategies from St,∞

to St,T .

And what happens to Player B? By Lepeltier and Maingueneau we know that, ∀ε ≥ 0,

κε
t (see (153)) is a pure ε–strategy. But, even if t ∈ [0, T ], it is not so clear that κε

t is

bounded. What Proposition 3.4.4 is telling us is that if κε
t > T , Player B will accomplish

the same by stopping at time T as what she/he will do by stopping at time κε
t . That is, if

t ∈ [0, T ], κε
t ∧ T ∈ St,T is also a pure ε–strategy for Player B. For Player B there is no

advantage in considering strategies whose values surpass T .

Using the previous two results (Assertion 3.4.3, Proposition 3.4.4 and Proposition 3.4.5),

Definition 3.4.9 and Corollary 3.4.2 we can write:
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Corollary 3.4.6. In the case of the auxiliary game (Ω,U ,G,PE ,S, J, X̃, Ỹ), ∀t ∈ [0, T ]: i)

pure ε–strategies, κε
t and ξε

t , can be chosen within the collection St,T of stopping times with

values in [t, T ].

κε
t = inf

u≥t
{Vu ≥ X∗

u − ε} ∧ T

ξε
t = inf

u≥t
{Vu ≤ Y∗

u + ε}
(170)

ii) The value of the auxiliary game satisfies:

Vt = esssup
t∈St,T

essinf
s∈St,T

EE (X∗
s 1s<t +Y∗

t 1t≤s| Ft) = essinf
s∈St,T

esssup
t∈St,T

EE (X∗
s 1s<t +Y∗

t 1t≤s| Ft)

(171)

and

EE

(
X∗

κε
t
1κε

t<t +Y∗
t 1t≤κε

t

∣∣∣Ft

)
− ε ≤ Vt ≤ EE

(
X∗

s 1s<ξε
t
+Y∗

ξε
t
1ξε

t≤s

∣∣∣Ft

)
+ ε (172)

∀s, t ∈ St,T . iii) If additionally the processes −X∗ and Y∗ are upper semicontinuous from

the left

κ̃t = lim
ε→0

κε
t

ξ̃t = lim
ε→0

ξε
t

κ̃t ∧ ξ̃t = κ0
t ∧ ξ0

t

(173)

EE
(
X∗eκt

1eκt<t +Y∗
t 1t≤eκt

∣∣Ft

)
≤ Vt ≤ EE

(
X∗

s 1s<eξt
+Y∗eξt

1eξt≤s

∣∣∣Ft

)
(174)

∀s, t ∈ St,T . And

Vt = EE

(
X∗

κ0
t
1κ0

t <ξ0
t

+Y∗
ξ0
t
1ξ0

t≤κ0
t

∣∣∣Ft

)
(175)

3.4.2 Hedging against a Game contingent claim

In order to price the gcc contract, we establish a way to hedge our position in one of such

contracts by means of a replicating portfolio. To do so, we will follow a game theoretic

approach based on the idea of generalized backward induction.

Definition 3.4.10. A hedge against a gcc will consist of a martingale generating, self–

financing portfolio strategy Π with initial investment (initial wealth) w0 and a stopping
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time s ∈ ST so that, with probability one, the corresponding wealth process WΠ,w0 at time

s ∧ t is larger than the claim’s payoff at that time, for each t ≥ 0, that is,

WΠ,w0
s∧t ≥ R(s, t) a.e.–PE (176)

To represent that hedge we will use the notation (Π, w0, s).

Definition 3.4.11. The fair price V of a gcc is defined by

V = inf{w : w = WΠ,w0
0 for some hedge (Π, w0, s) against the gcc } (177)

One of the first technical difficulties we face pricing a gcc is due to the form of the payoff

process. The following result will provide us with some of the properties of this process.

Assertion 3.4.7. The following statements are true:

1. For any pair of times (s, t) ∈ [0, T ]× [0, T ], R(s, t) is Fs∧t–measurable.

2. The payoff process R is RCLL and adapted in its first index.

3. The payoff process R is adapted but not necessarily RCLL in its second index.

Proof. The first statement is clear from the definition of R, Definition 3.4.1, equation (107).

Since X and Y are RCLL and adapted processes, we know Xs is Fs–measurable, for all

s ∈ [0, T ]; similarly, Yt is Ft–measurable, for all t ∈ [0, T ]. Hence, if t ≤ s, R(s, t) = Yt

which is Ft–measurable, and in such a case t = s ∧ t; the other case is similar. The second

statement should also be clear from definition Definition 3.4.1, and statement 1) in this

assertion. Since ∀(s, t) ∈ [0, T ] × [0, T ], R(s, t) is Fs∧t–measurable, it is also clear that

R(s, t) is also Ft–measurable, since s ∧ t ≤ t ∀(s, t) ∈ [0, T ] × [0, T ] to show that R is

RCLL in its first index will require only the simple computation of some limits.

The whole proof that R is RCLL in its first index goes in three steps, depending on i)

s0 < t, ii) s0 > t or iii) s0 = t. Let t ∈]0, T [ be fixed. Let s0 ∈]0, T [

� Assume s0 < t.

lim
s→s+

0

R(s, t) = lim
s→s+0

s<t

Xs = Xs0 = R(s0, t)
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and

lim
s→s−0

R(s, t) = lim
s→s−0

Xs exists and is finite.

� Assume now that s0 > t.

lim
s→s+

0

R(s, t) = lim
s→s+

0

Yt = Yt = R(s0, t)

and

lim
s→s−0

R(s, t) = lim
s→s−0

s>t

R(s, t) = Yt < ∞

� Finally, assume s0 = t.

lim
s→s+

0

R(s, t) = lim
s→s+

0

Yt = Yt = R(s0, t)

and

lim
s→s−0

R(s, t) = lim
s→s−0

Xs exists and is finite.

Note that if t ∈ [0, T ] the result is still valid. If t = 0, R(s, 0) = Yt ∀s ∈ [0, T ] which is

clearly RCLL, if t = T , R(s, T ) = Xs for s < T while R(T , T ) = YT ; since X is RCLL, we

see that R is RCLL for s < T and t = T . At s = T , t = T , we could only take left limits,

and since X is RCLL we see that R also has finite left limits at s = T , t = T .

Therefore, in its first index R is right continuous with finite left hand side limits.

For the last statement, assuming that s ∈]0, T [ and t0 = s we can see that

lim
t→t−0

R(s, t) = lim
t→t−0

Yt exists and is finite;

however,

lim
t→t+0

R(s, t) = lim
t→t+0

Xs = Xs and R(s, t0) = Yt0 = Ys

and so, R is not necessarily RCLL in its second index. That R is adapted in its second

index is clear from the first statement in this assertion45.

Proposition 3.4.8. For any stopping time s ∈ ST and any time t ∈ [0, T ], R(s, t) is

Fs∧t–measurable.

45Note that although R is not RCLL in its second index ∀t, it is RCLL ∀t 6= s. In the case of t = s what

fails is the right continuity, but the limits are still finite.
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Proof. Let s ∈ ST be a stopping time. From Assertion 3.4.7 we know that R is an adapted

RCLL process in its first component, so, for any given time t ∈ [0, T ] the process

{R(s, t)}s∈[0,T ]

is progressively measurable46. Moreover, by [96] proposition 2.18 the variable R(s, t) is

Fs–measurable. Similarly, we assumed X to be an RCLL and adapted process, therefore, X

is also progressively measurable, and Xs is Fs–measurable. On the other hand,

R(s, t) = Xs 1s<t +Yt1s≥t

Since every stopping time is optional47 we know that the events {ω ∈ Ω: s(ω) < t} and its

complement {ω ∈ Ω: s(ω) ≥ t} are elements of Ft, which in turn shows that the functions

1s<t and 1s≥t are Ft–measurable. Since Y is an adapted process, it is also clear that Yt is

Ft–measurable. Therefore, Yt1s≥t is Ft–measurable, and remains only to show that Xs1s<t

is also Ft–measurable.

In accordance with the definition of Fs, since Xs is Fs–measurable we know that ∀t ∈

[0, T ] and all α ∈ R the event48 {ω ∈ Ω: (Xs)(ω) ≤ α} ∩ {ω ∈ Ω: s(ω) < t} ∈ Ft which

implies that the event {ω ∈ Ω: (Xs1s<t)(ω) ≤ α} ∈ Ft. So Xs1s<t is Ft–measurable, thus

R(s, t) is also Ft–measurable. Therefore R(s, t) is Fs ∩ Ft = Fs∧t–measurable49.

Claim 3.4.9. ∀(s, t) ∈ [0, T ]× [0, T ], X∗
s 1s<t +Y∗

t1t≤s = (Xs 1s<t +Yt1t≤s)/Bs∧t.

Thus, it makes sense to extend our notation for discounted processes to include the

payoff process R.

Notation 3.4.3. In the following we will write R∗(s, t) = R(s, t)/Bs∧t.

Proposition 3.4.10. For any stopping time s ∈ ST and any time t ∈ [0, T ], R∗(s, t) =

R(s, t)/Bs∧t is Fs∧t–measurable.

46See [96], proposition 1.13, if X is an RCLL and adapted process, then it is also progressively measurable.
47See [96], proposition 2.3.
48The original definition is {ω ∈ Ω: (Xs)(ω) ≤ α} ∩ {ω ∈ Ω: s(ω) ≤ t} ∈ Ft but we can safely change ≤

into < because {s(ω) < t} =
S

n∈N
{ω ∈ Ω: s(ω) ≤ t− 1/n}

49This follows from the fact that η ≡ t is a stopping time ∀t ∈ [0, T ] and that Fs ∩ Ft = Fs∧t ∀s, t

stopping times with respect to the filtration {Ft}t∈[0,T ] (see Lemma 2.16 in [96]).
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Proof. Based on Proposition 3.4.8 given a stopping time s ∈ ST and a time t ∈ [0, T ], it is

enough to see that Bs∧t is Fs∧t–measurable, this follows from [96] proposition 2.18 and our

definition50 of B = {Bt}t∈[0,T ] on page 44.

Let s ∈ ST , from Proposition 3.4.8 we know that Is = {R(s, t)}t∈[0,T ] is {Fs∧t}t∈[0,T ]

adapted, and s being a stopping time relative to filtration F we can see that Is is also F

adapted since Fs∧t ⊆ Ft, ∀t ∈ [0, T ]. But, due to Assertion 3.4.7, it is not so clear if the

process Is is also progressively measurable.

Assertion 3.4.11. Let s ∈ ST , the processes X = {1s<t}t∈[0,T ] and Y = {1t≤s}t∈[0,T ] are

progressively measurable.

Proof. Since, ∀t ∈ [0, T ] Yt = 1−Xt, it is enough to show that X is progressively measurable.

On the other hand, since s is a stopping time relative to filtration F , for every t ∈ [0, T ],

the event {s < t} is in Ft. Therefore, if α ∈ R we have

{Xt < α} =



∅ if α ≤ 0

Ω if α > 1

{s ≥ t} if α ∈]0, 1]

which implies that {Xt < α} ∈ Ft, ∀α ∈ R, and consequently that X is F–adapted.

Let ω ∈ Ω be fixed, and let t ∈]0, T ]

� If ω ∈ {s ≥ t}. Let s < t, s ∈ [0, T ]; obviously ω ∈ {s ≥ t} implies ω /∈ {s < s}, thus

Xs(ω) = 0 (∀s ∈ [0, T ] such that s < t). Hence

lim
s→t−

Xs(ω) = 0 = Xt(ω)

� If ω ∈ {s < t}. ∃ r ∈ R+ such that ω ∈ {s < t− r}. Thus, ∀s ∈ [t− r, t[ ω ∈ {s < s},

from which

lim
s→t−

Xs(ω) = 1 = Xt(ω)

50From our definition of the process B, we know B is adapted to the filtration F = {Ft}t∈[0,T ] (see

Lemma 3.8 in [26] or Chapter 1 in [96]). On the other hand, since r = {rt}t∈[0,T ] is assumed to be a

progressively measurable process with respect to the filtration F we know that its time integral also defines

a progressively measurable process with respect to the same filtration.
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If t = 0, X0(ω) = 0 since s takes values in [0, T ]. In any case, X·(ω) has right limits.

Therefore, X is LCRL and adapted, which implies (see Proposition 3.3.1) X is progres-

sively measurable.

Proposition 3.4.12. For any stopping time s ∈ ST the process Is = {R(s, t)}t∈[0,T ] is

progressively measurable with respect to filtration F .

Proof. Let s ∈ ST , Assertion 3.4.11 shows that the processes {1s<t}t∈[0,T ] and {1t≤s}t∈[0,T ]

are progressively measurable. By hypotheses, X and Y are RCLL and adapted, and conse-

quently (by Proposition 3.3.1) progressively measurable.

Let t ∈ [0, T ],

Xs1s<t =


Xs on {s < t}

0 on {s ≥ t}
=


Xs∧t on {s < t}

0 on {s ≥ t}
= Xs∧t1s<t

by [96] Proposition 2.18, the stopped process {Xs∧t}t∈[0,T ] is progressively measurable rel-

ative to filtration F .

Since, ∀t ∈ [0, T ], the sum and product of B([0, t]) ⊗ Ft–measurable functions is also

B([0, t])⊗Ft–measurable, we see that Is is progressively measurable.

Assertion 3.4.13. Let t ∈ [0, T ], ∀A ∈ Ft and ∀u , v ∈ St,T t = u 1A +v1Ac ∈ St,T .

Proof. Let t ∈ [0, T ] and A ∈ Ft, from u ∈ [t, T ] and v ∈ [t, T ], PE–a.s we obtain t ≤ t ≤ T ,

PE–a.s. . On the other hand, given s ∈ [0, T ] we know that {u ≤ s} ∈ Fs and {v ≤ s} ∈ Fs;

∀u , v ∈ St,T . Then, if s ≥ t, {t ≤ s} = {u1A+v1Ac ≤ s} = ({u ≤ s} ∩A)∪({v ≤ s} ∩Ac) ∈

Fs. The conclusion follows naturally.

Proposition 3.4.14. Given a stopping time s ∈ ST , for any time t ∈ [0, T ], let U s
t be

defined as U s
t = esssup

t∈St,T

EE(R∗(s, t)|Ft). Then the resulting stochastic process {U s
t }t∈[0,T ] is

a supermartingale.

Proof. If R were an RCLL (or LCRL) process in its second index, this result will follow

straight from Lemma 2 of [162] section §6, but due to Assertion 3.4.7 we will have to take

an alternate path here.
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First we will show that the essential supremum exists, and that the family of conditional

expectations is closed under pairwise maximization then we will use that property to show

that the resulting stochastic process is a supermartingale.

By hypotheses X ≥ Y ≥ 0 =⇒ R(s, t) ≥ 0 ∀s, t ∈ [0, T ], we also know that the bank

account process B is nonnegative, thus

R∗(s, t) ≥ 0 PE–a. s. ∀s, t ∈ [0, T ] (178)

and, given t ∈ [0, T ]

EE(R∗(s, t)|Ft) ≥ 0 PE–a. s. ∀s, t ∈ ST . (179)

Now, fix t ∈ [0, T ] and s ∈ ST , and consider the family of nonnegative random variables

{EE(R∗(s, t)|Ft)}t∈St,T (180)

by [97] Appendix A, Theorem A.3 we know that the essential supremum of that family

exits51, so we can define

U s
t = esssup

t∈St,T

EE(R∗(s, t)|Ft) (181)

Thanks to Assertion 3.4.13 we can show that the family (180) is closed under pairwise

maximization.

Let u, v ∈ St,T , and define

A = {EE(R∗(s, u)|Ft) ≥ EE(R∗(s, v)|Ft)} (182)

clearly A ∈ Ft and a = u 1A +v 1Ac ∈ St,T and

EE(R∗(s, a)|Ft) = EE(R∗(s, u)|Ft) 1A +EE(R∗(s, v)|Ft)1Ac

= EE(R∗(s, u)|Ft) ∨ EE(R∗(s, v)|Ft)

∈ {EE(R∗(s, t)|Ft)}t∈St,T

(183)

51We recognize that Karatzas and Shreve’s ([97]) conditions are restrictive since the essential supremum

of a family of r.v.’s exists under more general conditions (see [52], [138]), but in our case their result is

enough.
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Therefore, Theorem A.3 from [97] Appendix A, implies that there exists a sequence of

stopping times {tn}n∈N ⊆ St,T such that the sequence

{EE(R∗(s, tn)|Ft)}n∈N (184)

is non–decreasing and

lim
n→∞

EE(R∗(s, tn)|Ft) = esssup
t∈St,T

EE(R∗(s, t)|Ft) = U s
t PE–a.s. (185)

Let s ∈ [0, T ] such that 0 ≤ s < t ≤ T , by the monotone convergence theorem for

conditional expectations and the tower property of conditional expectations we have

EE(U s
t |Fs) = EE( lim

n→∞
EE(R∗(s, tn)|Ft)|Fs)

= lim
n→∞

EE(EE(R∗(s, tn)|Ft)|Fs)

= lim
n→∞

EE(R∗(s, tn)|Fs) ≤ U s
s

(186)

(where the last inequality follows from the definition of the essential supremum of a family

of random variables, and because {tn}n∈N ⊆ St,T ⊆ Ss,T , for 0 ≤ s ≤ t ≤ T ).

Hence {U s
t }t∈[0,T ] is a supermartingale ∀s ∈ St,T .

Notice that Assertion 3.4.13 can be easily extended in the following way:

Assertion 3.4.15. Let w ∈ ST , ∀A ∈ Fw and ∀u , v ∈ Sw,T t = u 1A +v1Ac ∈ Sw,T .

In fact, if w ∈ ST and A ∈ Fw then {u1A+v1Ac ≤ s} = ({u ≤ s} ∩A)∪({v ≤ s} ∩Ac) ∈

Fs as before.

With the help of Assertion 3.4.15 it is easy to modify the first part of the proof of Propo-

sition 3.4.14 to show that, ∀w ∈ ST , the family {EE(R∗(s, t)|Fw)}t∈Sw,T , of nonnegative

random variables, is closed under pairwise maximization allowing us not only to define,

∀w ∈ ST , U s
w = esssup

t∈Sw,T

EE(R∗(s, t)|Fw), but also to claim the existence of a sequence of

stopping times {tn}n∈N ⊆ Sw,T such that the sequence

{EE(R∗(s, tn)|Fw)}n∈N (187)

is non–decreasing and

lim
n→∞

EE(R∗(s, tn)|Fw) = esssup
t∈Sw,T

EE(R∗(s, t)|Fw) = U s
w PE–a.s. (188)
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In fact, since every deterministic time is a stopping time, we see that U s
t ∈ {U s

w}w∈ST ,

∀t ∈ [0, T ].

Proposition 3.4.16. Given stopping times s ∈ ST and w ∈ ST , the family of random

variables

{EE(R∗(s, t)|Fw)}t∈Sw,T (189)

admits an essential supremum, which we denote as

U s
w = esssup

t∈Sw,T

EE(R∗(s, t)|Fw) (190)

The resulting family of random variables {U s
w}w∈ST contains the supermartingale of Propo-

sition 3.4.14.

Assertion 3.4.17. ∀ 0 ≤ s < t ≤ T

EE(U s
t |Fs) = esssup

w∈St,T

EE(R∗(s,w)|Fs) (191)

Proof. Let s, t ∈ [0, T ], 0 ≤ s < t ≤ T and s ∈ ST be fixed. From Proposition 3.4.14’s proof

we know there exists a sequence of stopping times {tn}n∈N ⊆ St,T such that the sequence

{EE(R∗(s, tn)|Ft)}n∈N (192)

is non–decreasing and

EE(U s
t |Fs) = lim

n→∞
EE(R∗(s, tn)|Fs) ≤ esssup

w∈St,T

EE(R∗(s,w)|Fs) PE–a.s. (193)

(we know that the family {EE(R∗(s,w)|Fs)}w∈St,T is non–negative, hence, by [97] Appendix

A, Theorem A.3, that family possesses an essential supremum).

On the other hand, ∀w ∈ St,T , U s
t ≥ EE(R∗(s,w)|Ft). Taking conditional expectations

with respect to Fs we have:

EE(U s
t |Fs) ≥ EE(EE(R∗(s,w)|Ft)|Fs) = EE(R∗(s,w)|Fs) ∀w ∈ St,T (194)

this implies, by definition of the essential supremum that

EE(U s
t |Fs) ≥ esssup

w∈St,T

EE(R∗(s,w)|Fs) (195)
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=⇒

EE(U s
t |Fs) = esssup

w∈St,T

EE(R∗(s,w)|Fs) (196)

Claim 3.4.18. For every stopping time s ∈ ST and every strictly decreasing sequence52

{tn}n∈N ⊆ [0, T ] decreasing to t ∈ [0, T ]

⋂
n∈N

{s < tn} = {s ≤ t} and
⋂
n∈N

{s ≥ tn} = {s > t} (197)

thus

lim
w→t+

1s<w = 1s≤t and lim
w→t+

1s≥w = 1s>t PE–a.s.. (198)

Similarly, if {tn}n∈N ⊆ ST is a stricly decreasing sequence of stopping times decreasing to

t ∈ ST we have:

lim
n→∞

1s<tn = 1s≤t and lim
n→∞

1s≥tn = 1s>t PE–a.s.. (199)

Proposition 3.4.19. Given a stopping time s ∈ ST , for t ∈ [0, T ]

EE(U s
t ) = sup

t∈St,T

EE(R∗(s, t)) (200)

And this function of t is right–continuous. Thus, the process {U s
t }t∈[0,T ] has a right–

continuous modification {Ũ s
t }t∈[0,T ], which can be chosen so that {Ũ s

t }t∈[0,T ] is RCLL,

adapted to filtration F , and a supermartingale.

Proof. The conclusion, that {Ũ s
t }t∈[0,T ] exists and can be chosen RCLL, follows immediately

from [114] Chapter 3 Theorem 3.1 (or similarly from [96] Chapter 1 Section 3.A Theorem

3.13), once the right continuity of EE(U s
t ) is proven. (200) follows from Proposition 3.4.14

and Assertion 3.4.17.

52Notice that the results are still valid if the sequence is monotonically decreasing and t /∈ {tn}n∈N. The

problem arises when the value t is allowed in the sequence, since in that case the event {s < t} (resp. {s ≥ t})

will be included in the intersection
T

n∈N{s < tn} (resp.
T

n∈N{s ≥ tn}). To avoid this kind of inconvenience

we will assume that the limit of our decreasing sequence is not included in the sequence.
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The proof of EE(U s
t )’s right–continuity goes similar to [162] Section 2. which contains

Shiryaev et al. version of the pricing of an American Option (a now classical optimal

stopping problem).

Let s ∈ ST be fixed and let t ∈ [0, T ]. Since F satisfies the usual conditions we know

that F0 contains only sets of measure 0 or 1. Thus, for every random variable X defined

on (Ω,U ,P), EE(X|F0) = EE(X).

From Proposition 3.4.14 we have:

U s
0 = esssup

t∈S0,T

EE(R∗(s, t)|F0) = sup
t∈ST

EE(R∗(s, t)) (201)

By Assertion 3.4.17, taking s = 0 in (191) we obtain:

EE(U s
t ) = sup

w∈St,T

EE(R∗(s,w)) (202)

hence

sup
w∈ST

EE(R∗(s,w)) = U s
0 ≥ EE(U s

t ) = sup
w∈St,T

EE(R∗(s,w)) (203)

Now, let f : [0, T ] → R be the function defined by f(t) = EE(U s
t ). From Proposition

3.4.14 we know that the process, ∀s ∈ ST , {U s
t }t∈[0,T ] is a supermartingale, therefore,

∀s ∈ [0, T ], such that 0 ≤ s < t ≤ T we have

EE(U s
s ) ≥ EE(EE(U s

t |Fs)) = EE(U s
t ) (204)

thus f(s) ≥ f(t) ∀ 0 ≤ s < t ≤ T .

For every decreasing sequence {tn}n∈N ⊆ [0, T ] decreasing to t we will have f(t) ≥ f(tn),

∀n ∈ N and f(t) ≥ limn→∞ f(tn) thus

f(t) ≥ lim
s→t+

f(s) (205)

Now we need to show that the other inequality (f(t) ≤ lims→t+ f(s)) is valid.

Thanks to Claim 3.4.18 and to our hypotheses on X and Y we see that, ∀{tn}n∈N ⊆ [0, T ]
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strictly decreasing to t

lim
n→∞

R∗(s, tn) = lim
n→∞

(Xs 1s<tn +Ytn1tn≤s)/Bs∧tn

= (Xs 1s≤t +Yt1t<s)/Bs∧t

= (Xs 1s<t +Xs 1s=t +Yt1t<s)/Bs∧t

≥ (Xs 1s<t +Yt 1s=t +Yt1t<s)/Bs∧t

= (Xs 1s<t +Yt1t≤s)/Bs∧t = R∗(s, t) PE–a.s.

(206)

hence, although we know (Assertion 3.4.7) that {R∗(s, t)}t∈[0,T ] is not necessarily RCLL,

its right limits at t are bounded below by R∗(s, t):

lim
w→t+

R∗(s, w) ≥ R∗(s, t) PE–a.s. (207)

Now, let ε > 0, by definition of supremum there exists w ∈ St,T such that

f(t) ≤ EE(R∗(s,w)) + ε (208)

and thanks to (207) we can select w so that PE(w > t) = 1. Again, let {tn}n∈N ⊆ [0, T ] be

a decreasing sequence decreasing to t; ∀n ∈ N define

wn =


w if w ≥ tn

T if w < tn

(209)

it is clear that wn ∈ Stn,T ⊆ St,T , ∀n ∈ N. It also clear that limn→∞ wn = w, PE–a.s.

Now, consider |EE(R∗(s,w))− EE(R∗(s,wn))|

|EE(R∗(s,w))− EE(R∗(s,wn))|

= |EE(R∗(s,w))− EE(R∗(s,w) 1w≥tn +R∗(s, T )1w<tn)|

= |EE({R∗(s,w)−R∗(s, T )}1w<tn)|

≤ EE({R∗(s,w) +R∗(s, T )}1w<tn) → 0 as n →∞

(210)

which implies that

f(t) ≤ lim
n→∞

EE(R∗(s,wn)) + ε ≤ lim
n→∞

f(tn) + ε (211)
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which is valid ∀ε > 0 and for every decreasing sequence {tn}n∈N ⊆ [0, T ] decreasing to t,

thus f(t) ≤ limn→∞ f(tn) or in other words

f(t) ≤ lim
s→t+

f(s) (212)

Therefore

f(t) = lim
s→t+

f(s) (213)

which shows that the function defined as f(t) = EE(U s
t ) is right–continuous.

Hence, by [114] Chapter 3, Theorem 3.1, there exists a right–continuous modification

to the process {U s
t }t∈[0,T ] and that right–continuous modification can be chosen so as to be

an RCLL supermartingale with respect to filtration F .

As part of the proof of Proposition 3.4.19 we have shown (see (206) and (207)) that the

right limits of process R∗(s, ·) = {R∗(s, t)}t∈[0,T ], s ∈ ST , at time t are bounded below by

R∗(s, t). This is an intresting property of the payoff process that we can extend to stopping

times. The resulting property is somewhat akin to regularity53 and states that although

the process R∗(s, ·) = {R∗(s, t)}t∈[0,T ], s ∈ ST , is not necessarily RCLL, its right limits at

t are bounded below by R∗(s, t) and that this property is preserved when the “common”

time t is exchanged by a stopping time.

Assertion 3.4.20. Let {sn}n∈N ⊂ ST be a decreasing sequence of stopping times, decreas-

ing to t ∈ ST . Let s ∈ ST . Then, limn→∞R∗(s, sn) ≥ R∗(s, t).

53 A process X = {Xt}t≥0 defined on a probability space (Ω,U ,G,P) is called regular if ∀α > 0 and

every increasing sequence {tn}n∈N of stopping times bounded by α and converging to t (a stopping time also

bounded by α) we have limn→∞ E(Xtn) = E(Xt). See [52], see also [177]. The requirement of boundedness

on the sequence of stopping times could be dropped, while the limit is still assumed to be bounded. If the

process being considered is uniformly bounded, the condition of boundedness on the stopping times could be

dropped altogether. A process with this property is also called lower regular or left continuous in expectation

or l.c.e for short. In a similar way we can define an upper regular process (also known as a process right

continuous in expectation or r.c.e. for short); X = {Xt}t≥0 is an r.c.e. process if for every uniformly

bounded decreasing sequence {tn}n∈N of stopping times converging to t (a bounded stopping time) we have

limn→∞ E(Xtn) = E(Xt).
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Proof. By [151] Chapter I, Proposition 4.11, every stopping time is the decreasing limit of a

sequence of stopping times each of them taking only finitely many values. For every n ∈ N

and k ∈ Nn2n−1 define At
n,k = {ω ∈ Ω : t(ω) ∈ [k−1

2n , k
2n [} and At

n,n2n = {ω ∈ Ω : t(ω) ≥ n}

and define the sequence {tn}n∈N as follows54:
tn = T if t ≥ n

tn = k
2n if k−1

2n ≤ t < k
2n

(214)

that is

tn =
n2n∑
k=0

k

2n
1At

n,k
+T 1At

n,n2n
(215)

Then ∀n ∈ N, tn ≥ tn+1 and tn −−−→
n→∞

t. By definition, ∀n ∈ N and k ∈ Nn2n , tn is constant

on At
n,k. Since Y is an rcll process we know that

lim
n→∞

Ytn(ω) = lim
n→∞

Ytn(ω)(ω) = Yt(ω)(ω) = Yt(ω)

Similarly, Bs∧tn −−−→n→∞
Bs∧t, thus, by Claim 3.4.18

lim
n→∞

R∗(s, tn) = lim
n→∞

(Xs 1s<tn +Ytn1tn≤s) /Bs∧tn

= (Xs 1s≤t +Yt1t<s) /Bs∧t

= (Xs 1s<t +Xs 1s=t +Yt 1 t < s) /Bs∧t

≥ (Xs 1s<t +Yt1t≤s) /Bs∧t = R∗(s, t)

(216)

which proves our assertion.

In view of Proposition 3.4.19, in what follows we will assume that {Ũ s
t }t∈[0,T ] is an RCLL

supermartingale that satisfies

Ũ s
t = U s

t PE–a.s. . (217)

It seems that this supermartingale is a suitable candidate to apply the Doob–Meyer de-

composition theorem, but one detail is still missing, the next propositions take care of that

detail.

54Recall that t ∈ ST is bounded, otherwise one should define tn = ∞ if t ≥ n. This point is of no major

significance if the stopping time is bounded since after a finite number of elements, the sequence {sn}n∈N

will be bounded even if tn = ∞ whenever t ≥ n.
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First, we will borrow a result from [96], see Appendix D, Corollary D.4 and Theorem

D.7.

Proposition 3.4.21. For every s ∈ ST and w ∈ ST Ũ s
w = U s

w PE–a.s. .

Based on the previous result, in what follows we will make no difference between Ũ s
w

and U s
w.

Proposition 3.4.22. Let s ∈ ST , the family of random variables {U s
w}w∈ST is uniformly

integrable55 with respect to PE .

Proof. We already know that the process {U s
t }t∈[0,T ] is nonnegative, from which we can

see that the family of random variables {U s
w}w∈ST is also nonnegative. By hypotheses (see

Definition 3.4.2)R∗(s,w) ≤ sup0≤t≤T X∗
t , ∀s,w ∈ ST , PE–a.s. therefore EE(R∗(s,w)|Fu) ≤

EE
(
sup0≤l≤T X∗

l

∣∣Fu

)
, for every u ∈ ST . Thus

U s
u ≤ EE

(
sup

0≤l≤T
X∗

l

∣∣∣∣∣Fu

)
(218)

Since {U s
t }t∈[0,T ] is a supermartingale, by (203) and the definition of essential supremum,

EE(U s
t ) = EE(U s

t |F0) ≤ U s
0 = sup

t∈ST

EE(R∗(s, t)) ≤ EE

(
sup

0≤l≤T
X∗

l

)
< ∞ (219)

55 A family of random variables {ξa; a ∈ A} defined on a probability space (Ω,U ,P) is called uniformly

integrable with respect to probability measure P if

lim
x→∞

sup
a∈A

Z
{|ξa|>x}

|ξa| dP = 0

The previous condition can be substituted by the following conditions

sup
a∈A

E|ξa| < ∞

and

lim
P(A)→0

A∈U

sup
a∈A

Z
A

|ξa| dP = 0

Or, equivalently, if

E|ξa| is bounded in a ∈ A

and, for every ε > 0, there exists δε > 0 such that, for every A ∈ U :

P(A) < δε =⇒
Z

A

|ξa| dP < ε for every a ∈ A

See [114] Chapter 1 and [25] Chapter 4, §5.
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Similarly, by the Optional Sampling Theorem ([96] Chapter 1 Section 3C), ∀w ∈ ST

EE(U s
w) = EE(U s

w|F0) ≤ U s
0 ≤ EE

(
sup

0≤l≤T
X∗

l

)
< ∞ (220)

This last inequality implies that ∀ε > 0, there exists δ > 0 such that

A ∈ U and PE(A) < δ =⇒
∫

A
sup

0≤t≤T
X∗

t dPE < ε (221)

Let α > (1/δ)EE
(
sup0≤l≤T X∗

l

)
and w ∈ ST , by Chebyshev’s inequality

PE(U s
w > α) ≤ EE(U s

w)
α

≤
EE(sup0≤t≤T X∗

t )
α

< δ (222)

and∫
{Us

w>α}
U s

w dPE ≤
∫
{Us

w>α}
EE

(
sup

0≤t≤T
X∗

t

∣∣∣∣∣Fw

)
dPE =

∫
{Us

w>α}
sup

0≤t≤T
X∗

t dPE < ε (223)

Hence we can conclude

lim
x→∞

sup
w∈ST

∫
{|Us

w|>x}
|U s

w| dPE = 0 (224)

that is, ∀s ∈ ST {U s
w}w∈ST is uniformly integrable.

So, for every s ∈ ST , we have constructed the Snell envelope, {Ũ s
t }t∈[0,T ], of process

{R∗(s, t)}t∈[0,T ]; that is, the smallest right continuous with left hand side limits (RCLL)

supermartingale that dominates {R∗(s, t)}t∈[0,T ]. Proposition 3.4.22 shows that {Ũ s
t }t∈[0,T ]

is of Dirichlet class56 (or, of class (D))57. Thus, by the Doob–Meyer decomposition Theorem

(see [96] Chapter 1 section 4) there exists (unique) processes Ms and As such that

� Ms is a uniformly integrable, right–continuous martingale adapted to F ,

� As is an increasing, integrable, natural process adapted to F , such that58 As
0 = 0,

56 Let X = {Xt,Gt; t ∈ [0,∞[} be a right–continuous process and S the set of all stopping times s with

respect to filtration G = {Gt}t≥0 that satisfy P(s < ∞) = 1. X is said to be of class (D) or of Dirichlet class

if the family {Xs}s∈S is uniformly integrable.
57According to Dellacherie, the name class (D) was coined by Doob, but there seems to be not clear

consensus regarding the meaning of “(D)”.
58Under additional conditions it could be possible to show that As is “flat” away from the set {(t, ω) ∈

[0, T ] × Ω : As
t (ω) = R∗(s, t)(ω)} = A and that As

θ∗ = 0 where θ∗ is the debut of A, that is, where

θ∗ = inf
t≥0

{(t, ·) ∈ A} (as usual θ∗ = ∞ if (t, ω) /∈ A ∀t). In particular, such a thing is not difficult to show if

Us is regular (see Footnote 53) and R∗(s, ·) is continuous, which is the case of American game options see

Chapter 5.
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and

Ũ s
t = Ms

t − As
t t ∈ [0, T ] (225)

Furthermore, by the Martingale Representation Theorem ([160], Chapter III section

3.c; [96], Chapter 3 section 4; [114], Chapter 5 section 2; [151], Chapter V) there exists a

progressively measurable vector n–dimensional process γ = {γt}t∈[0,T ] such that∫ T

0
‖γt‖2 dt < ∞ PE–a.s.

Ms
t = Ms

0 +
∫ t

0
γu · dW E

u

(226)

Since we have assumed that market M is standard and complete, by Theorem 3.3.8 the

volatility process σ must be nonsingular (λ⊗ P–a.s.) so we can define π so that

π̃P ∗
t

†
σt = γt (227)

where π̃P ∗i

t = π̃t
iP ∗i

t , i ∈ Nn (by the definition of the active money process Definition

3.3.7 π̃P ∗
t = π̃t

† diag(P ∗
t )). Thus we can find the n–dimensional process π̃ entry by entry.

Therefore we can rewrite (226) as

Ms
t = Ms

0 +
∫ t

0
π̃P ∗

u

†
σu dW E

u (228)

As well, we can define

π̃t
0 = Ms

t − π̃P ∗
t · ~1n (229)

Thus we have constructed a portfolio strategy Πs = (π̃0, π̃) which is both self–financing

and martingale generating.

That Πs is martingale generating portfolio strategy is obvious from our construction (see

Definition 3.3.4, Definition 3.3.5 and Definition 3.3.14). To see that Πs is self–financing,

first we notice that (49) and (50) in combination with (94) imply that, under the equivalent

martingale measure PE ,

dYt = diag(Pt)
(
~1nrt dt + σt dW E

t

)
(230)

Now, define WΠs,Ms
0

t = BtM
s
t , t ∈ [0, T ]. WΠs,Ms

0 is the wealth process associated with
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Πs. Then

dWΠs

t = Ms
t dBt + Btπ̃P ∗

t

†
σt dW E

t =
(
π̃0

t + π̃P ∗
t · ~1n

)
dBt + π̃Pt

†
σt dW E

t

= π̃0
t dBt + π̃Pt

†~1nrt dt + π̃Pt
†
σt dW E

t = π̃0
t dBt + π̃Pt

† (~1nrt dt + σt dW E
t

)
= π̃0

t dBt + π̃†t diag(Pt)
(
~1nrt dt + σt dW E

t

)
= π̃0

t dBt + π̃t · dYt

(231)

On the other hand, by Proposition 3.4.21

WΠs

s∧t = Bs∧tM
s
s∧t = Bs∧t(Ũ s

s∧t + As
s∧t)

≥ Bs∧tŨ
s
s∧t = Bs∧t esssup

t∈Ss∧t,T

EE(R∗(s, t)|Fs∧t)

≥ Bs∧tEE(R∗(s, t)|Ft) = Bs∧tR∗(s, t)

= R(s, t)

(232)

which shows that (Πs,Ms
0, s) is a hedge against the gcc as in Definition 3.4.10.

The previous discussion provides a proof for the following result:

Proposition 3.4.23. For every stopping time s ∈ ST there exists a hedge against the gcc

as in Definition 3.4.10.

The importance of this result is evident, once the seller selects a cancellation time s,

he/she can always find a portfolio strategy to cover his/her position at time s∧ t, t ∈ [0, T ].

But, what happens if the buyer selects stopping time t ∈ ST as his/her exercise strategy?

The following proposition tell us that any given hedge should be good enough as to

cover the position of the seller no matter what exercise strategy is followed by the buyer.

Proposition 3.4.24. Given a hedge (Π, w0, s), and a stopping time t ∈ ST , the corre-

sponding discounted wealth process, W∗Π,w0, satisfies

w0 = EE

(
W∗

s∧t
Π,w0

)
≥ EE(R∗(s, t)) (233)

Proof. Let (Π, w0, s) be a hedge against the gcc of Definition 3.4.2, by Definition 3.4.10

we know that the corresponding wealth process associated to that hedge satisfies WΠ,w0
s∧t ≥

R(s, t) ≥ Yt for every t ∈ [0, T ]. Since Π is a self–financing martingale generating portfolio
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strategy we know that W∗Π,w0 is a martingale. Let t ∈ ST , by the Optional Sampling

Theorem ([96] Chapter 1 section 3C) we have:

w0 = W∗
0
Π,w0 = EE

(
W∗

0
Π,w0

)
= EE

(
W∗

s∧t
Π,w0

)
(234)

Let {tn}n∈N be a decreasing sequence taking finitely many values (see proof of Assertion

3.4.20) decreasing to t. Then, by Assertion 3.4.20 we have59

WΠ,w0
s∧t = lim

n→∞
WΠ,w0

s∧tn ≥ lim
n→∞

R(s, tn) ≥ R(s, t), (235)

from where we see that

W∗
s∧t

Π,w0 ≥ R∗(s, t) (236)

and

w0 = W∗
0
Π,w0 = EE

(
W∗

0
Π,w0

)
= EE

(
W∗

s∧t
Π,w0

)
≥ EE(R∗(s, t)) (237)

3.4.3 The pricing of Game contingent claims

Recall that the fair price, V, Definition 3.4.11 of a gcc is defined as

V = inf{w : w = WΠ,w0
0 for some hedge (Π, w0, s) against the gcc } (177)

Proposition 3.4.25. The fair price V satisfies:

V ≥ inf
s∈ST

sup
t∈ST

EE (R∗(s, t)) (238)

Proof. By Proposition 3.4.24 given a hedge (Π, w0, s) and a stopping time t ∈ ST

w0 = W∗
0
Π,w0 = EE

(
W∗

0
Π,w0

)
= EE

(
W∗

s∧t
Π,w0

)
≥ EE(R∗(s, t)) (239)

thus

w0 = W∗
0
Π,w0 = EE

(
W∗

0
Π,w0

)
≥ sup

t∈ST

EE(R∗(s, t)) (240)

then, by Definition 3.4.11

V ≥ inf
s∈ST

sup
t∈ST

EE (R∗(s, t)) (241)

59If t already takes finitely many values, we do not require the step below since in such a case it could be

possible to write t =
PN

n=1 an1{t=an}, where N ∈ N, and {an}n∈NN is a finite set.
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We are now in position to prove that Kifer’s result [101] remains valid under the smm

M.

Theorem 3.4.26. The fair price V of the gcc of Definition 3.4.2, as stated in Definition

3.4.11, equals V0 = V∗0 where V∗ = {V∗t }t∈[0,T ] is the right continuous process such that

PE–a.s.

V∗t = essinf
s∈St,T

esssup
t∈St,T

EE(R∗(s, t)|Ft) = esssup
s∈St,T

essinf
t∈St,T

EE(R∗(s, t)|Ft) (242)

Moreover, for each t ∈ [0, T ] and ε > 0 the stopping times

κε
t = inf{u ≥ t : X∗

u ≤ V∗u + ε} ∧ T (243a)

and

ξε
t = inf{u ≥ t : Y∗

u ≥ V∗u − ε} (243b)

belong to St,T and satisfy

EE(R∗(κε
t , t)|Ft)− ε ≤ V∗t ≤ EE(R∗(s, ξε

t )|Ft) + ε (244)

for any s, t ∈ St,T . Furthermore, for each ε > 0 there exists a self–financing, martingale

generating portfolio strategy Πκε
0 = (π0,κε

0 , πκε
0) such that the pair κε

0 and Πκε
0 defines a hedge

against the gcc of Definition 3.4.2 (as stated in Definition 3.4.10) with initial investment

w0 = WΠε

0 ≤ V∗0 + ε.

If, in addition, the processes Y and −X are upper semicontinuous from the left, i.e. that

they may have only positive jumps at points of discontinuity. Then, the stopping times

κ̃t = lim
ε→0+

κε
t (245a)

and

ξ̃t = lim
ε→0+

ξε
t (245b)

satisfy, PE–a.s.,

EE(R∗(κ̃t, t)|Ft) ≤ V∗t ≤ EE(R∗(s, ξ̃t)|Ft) (246)
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for any s, t ∈ St,T . Moreover, κ̃t ∧ ξ̃t = κ0
t ∧ ξ0

t , where κ0
t and ξ0

t are defined by (243) with

ε = 0, and so, PE–a.s.,

V∗t = EE(R∗(κ0
t , ξ

0
t )|Ft) (247)

Furthermore, there exists a self–financing, martingale generating, portfolio strategy Πfκ0

such that the pair κ̃0 and Πfκ0 defines a hedge against the gcc of Definition 3.4.2 with initial

investment V∗0 = WΠfκ0

0 and such a strategy is unique (PE–a.s.) up to time κ0
t ∧ ξ0

t .

Given t ∈ [0, T ] and ε > 0, the stopping times κε
t and ξε

t represent the ε–strategies

of Seller and Buyer, respectively. The family of stopping times κ̃t offers the Seller, via

Proposition 3.4.23, a perfect hedge against the gcc, a hedge whose initial investment is

equal to the fair value V of the gcc. As in our discussion at the beginning of this section,

the variable R∗(κ0
t , ξ

0
t ) is financeable, players able to find the stopping times κ0

t and ξ0
t

will be able to find the initial investment (and the corresponding self–financing martingale

generating portfolio strategy) that will allow him/her to cover his position up to time κ0
t ∧ξ0

t

when the gcc should be canceled or exercised. Process V∗ can be regarded as the discounted

price process, V∗t = Vt/Bt.

Proof of Theorem 3.4.26. Recall from §3.4.1 the definition of the auxiliary game (Definition

3.4.9) (Ω,U ,G,PE ,S, J, X̃, Ỹ). By Corollary 3.4.6 we know that the auxiliary game satisfies

(170) to (175) which correspond to (242) to (247).

Proposition 3.4.23 shows that for every stopping time s ∈ ST there is a hedge against

the gcc, in particular if s = κε
0, ε > 0, there exists Πκε

0 = (π0,κε
0 , πκε

0), a self–financing

martingale generating portfolio, and, by Proposition 3.4.14, (203), and Assertion 3.4.17 (if

s = t = 0 we obtain the first part of (191) from Assertion 3.4.17)

w
κε
0

0 = M
κε
0

0 = U
κε
0

0 = sup
t∈ST

EE(R∗(κε
0, t)) (248)

(Ms as in the proof of Proposition 3.4.23), such that (Πκε
0 , w

κε
0

0 , κε
0) is a hedge against the

gcc.

Similarly, Proposition 3.4.23 shows that the stopping time κ̃0 defines a self–financing

martingale generating portfolio strategy Πfκ0 = (π0,fκ0 , πfκ0) with initial investment w
fκ0
0 =

supt∈ST EE(R∗(κ̃0, t)) such that (Πfκ0 , w
fκ0
0 , κ̃0) is a hedge against the gcc.
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By (172) and Definition 3.4.11

V ≤ w
κε
0

0 = sup
t∈ST

EE(R∗(κε
0, t)) ≤ V∗0 + ε (249)

(V∗ the value of the auxiliary game), from where we obtain V ≤ V∗0 . On the other hand,

Proposition 3.4.25 implies that

V∗0 = inf
s∈ST

sup
t∈ST

EE (R∗(s, t)) ≤ V ≤ V∗0 (250)

Therefore V = V∗0 , that is, the initial value of the contract equals the initial value of the

auxiliary game.

Note that (174) and Definition 3.4.11 implies that

V ≤ w
fκ0
0 = sup

t∈ST

EE(R∗(κ̃0, t)) ≤ V∗0 = V (251)

that is, the hedge (Πfκ0 , w
fκ0
0 , κ̃0) is a perfect hedge, in the sense that its initial investment

is equal to the fair value of the gcc.

Our work in this chapter offers a very general model under which the pricing of some

Game contingent claims is possible, showing that the price exists under very general as-

sumptions.

Still, there is much to do. The work shown here constitutes a good starting point for

further development. In particular in the light of the results shown here the study of more

complex Game contingent claims involving a cumulative income process is not too difficult.

That is, the study of gcc’s whose payoff process is of the form

R(s, t) = Xs 1s<t +Yt 1t≤s +
∫

]0,s∧t[

dCu

Bu
(252)

or maybe

R(s, t) = Xs 1s<t +Zs 1s=t +Yt 1t<s +
∫

]0,s∧t[

dCu

Bu
(253)

where C is the cumulative income process and R is assumed bounded below could be

included into the framework we have presented here.

The following are possible extensions to our work:
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� Our approach to hedging is “seller centered”, in fact one may argue that our notion

of hedge is very similar to the notion of “upper hedge”. Can we define “lower hedges”

for the buyer? What is their relationship with the price? Naturally, in the case of a

complete market, the price found by means of upper hedging is the same as the one

we could find by means of lower hedging. This problem turns more interesting in the

case of incomplete markets and general Game contingent claims of the form (253).

� In our study we have assumed that Y ≤ X. Can we work without that condition?

Intuitively (and assuming a payoff function of the form (107)), the contract will make

sense if Y0 ≤ X0 and if inf
t
{Yt ≥ Xt} > 0. What other conditions are required?

� In Chapter 5 we suggest an example of Game option and offer a numerical method

for its approximate valuation. It is clear that there is much to be done in this regard.

What kinds of Game options may be of practical intrerest? Which numerical methods

can be applied to the valuation of such examples? In some situations this can give

rise to new problems in the form of variational inequatilies and viscosity problems.

� In Chapter 5 we show that the time t value of a gcc is always lower than the time t value

of the corresponding American contingent claim (acc) defined by the execution payoff

Y. If we denote by Vgcc and Vacc the price processes of a gcc and its corresponding

acc (resp.), Proposition 5.1.2 shows that Vacc
t −Vgcc

t ≥ 0 a.e.. Proposition 5.1.1 shows

that the value of a gcc increases as its cancellation payoff increases; still, a detailed

study of the “Game–American” premium, Vacc − Vgcc is needed.
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CHAPTER IV

CALIBRATION OF THE HULL–WHITE MODEL

Throughout the years several interest rate models have been proposed in an attempt to

simulate the observed behavior of interest rates, to better hedge one’s position in the future,

to properly price long–term, mid–term or short–term contracts that are sensitive to interest

rates, etc. Models proposed are as simple as “assume rates are constant for a given period

of time” or as complex as multi–factor stochastic models. Obviously, different arguments

have been given in favor or against all of such models, but still due to several different

reasons some of them have gained acceptance amongst practitioners. One such model is the

one–factor Hull–White model1.

The Hull–White model has gone through an evolution of sorts resulting in a model that

is more general now than it was when it was first proposed by John Hull and Alan White

in 19902.

The Hull–White model belongs to a class of interest rate models called affine models3(see

[133], [144]). It features mean reversion and normal interest rates. The Hull–White model

extends the Ho–Lee model [80]; in fact, at the moment of its inception, the Hull-White

model was general enough as to include as sub–cases most of the models previously defined.

At least in some of its least general forms, the Hull–White model is analytically tractable,

leading to discount bond prices and options–on–bond prices that can be valued analytically.

Other contracts can be reduced to portfolios on zero coupon bonds (zcb’s), and thus be an-

alytically valued as well. The Hull–White model can be fitted to an initial term structure of

interest rates; and although interest rates under this model are still normal, the probability

1There are three major approaches to the modeling of interest rates which are: spot rate modeling,

forward rate modeling and the so called market models. The Hull White model of interest rates belongs to

the first approach.
2See [83].
3Please see Footnote 11.
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of them becoming negative is smaller than in previous models4.

4.1 The Hull–White model

According to the Hull–White model, short–term interest rates rt are modeled as5

drt = (a(t)− brt) dt + c dWt, (254)

where b and c are positive constants, a(t) is a deterministic function of t and W is a standard

Brownian motion.

A more general version of the Hull–White model assumes the other two parameters b

and c are not constant, but positive deterministic functions of time.

drt = (α(t)− β(t)rt) dt + γ(t) dWt. (255)

Although some characteristics of the model are apparent from the stochastic differential

equation (sde) (255), from the practical point of view, the model can not be used directly

from (255). To properly use an interest rate model, one needs to deeply familiarize oneself

with all its details, and practical applications of a model will require calibration.

When talking about calibration, one is not referring to a single entity but to a collection

of techniques tightly related to the model one wants to work with. Thus, different models

may require different calibration methods, and in most cases different calibration procedures

can be followed to calibrate a given model. Calibration is highly subjective and demands a

deep understanding of the details of the particular model one is working with. It also requires

a good knowledge of the financial instruments found in the market, as it also depends on

the the quality and quantity of data one can recover. The calibration procedure we present

here is not unique in the sense that it is not the only approach one may follow6. On the

4Although this can be seen as a problem, one may also remember that these models are designed to

model real interest rates and not nominal or “quoted” rates. Real interest rates should reflect the effects of

inflation and other economic processes that could make the real interest rates negative. Thus, what could

be seen by some as a problem could also be seen by others as a feature.
5There exist several versions of this model, some of them introduced by Hull and White in their papers,

some introduced by other authors. We will use [83]
6See for example [142] for a calibration procedure based in a linear programming approach. [144], [19]

offer sketches of a possible calibration approach similar to the one shown here.
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contrary, the procedure shown here is the result of our studies, and contains subjective

judgments influenced by the literature studied.

In order to get started, we will invest some time in the study of equation (255).

First, to ensure the existence of strong solutions of equation (255) we need to impose

additional conditions on functions α, β, and γ and the initial value r0.

We assume that the Brownian motion W is defined on a p.s. (Ω,U ,P) and denote by

FW =
{
FW

t

}
t∈[0,T ]

the natural filtration of W . Let η be a finite a.e. r.v. independent7 of

the σ–algebra
∨
FW = σ(FW

t ; 0 ≤ t ≤ T ). Then denote by {Ft}t∈[0,T ] the augmentation

of the filtration
{(

σ(η)
∨
FW

t

)}
t∈[0,T ]

.

Since functions α, β, and γ are assumed to be deterministic, by [141], section 5.2,

Theorem 5.2.1. asking them to be measurable and bounded will automatically satisfy all

other conditions necessary for the existence of unique strong solutions with initial condition

r0 = η. For more details regarding the existence of strong solutions of general diffusion type

equations please see [114], chapter 4, Theorem 4.6 and its Corollary. A similar result can

be found elsewhere, for example [141], section 5.2 and [96], chapter 5 section 2.

Thus, assuming that α, β, and γ are measurable positive bounded functions of time,

and provided that the random variable η has finite second moment, equation (255) has a

unique (up to modification) continuous solution r = {rt}t∈[0,T ] with initial value r0 = η

adapted to the filtration F , generated by η and the Brownian Motion W , and such that

E

[∫ T

0
|rt|2 dt

]
< ∞. (256)

Even in this more general version of the Hull–White model, the associated stochastic

differential equation, (255), is not hard to solve and its solution can be obtained through

the standard method of integrating factors.

Denote

η(t) = exp
(∫ t

0
β(u) du

)
. (257)

7Instead of this very technical setting, we could simply assume that our Brownian motion is adapted

to a filtration, {Ft}t∈[0,T ], finer than the augmentation of its natural filtration and that η is a finite a.e.

F0–measurable random variable.
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It is straightforward that

d(η(t)rt) = dη(t)rt + η(t) drt = η(t){β(t)rt dt + (α(t)− β(t)rt) dt + γ(t) dWt}

= η(t){α(t) dt + γ(t) dWt}. (258)

The last sde can be integrated directly, yielding:

rt = (1/η(t))
{

r0 +
∫ t

0
η(u)α(u) du +

∫ t

0
η(u)γ(u) dWu

}
, (259)

or, similarly, assuming s ≤ t

rt = (1/η(t))
{

η(s)rs +
∫ t

s
η(u)α(u) du +

∫ t

s
η(u)γ(u) dWu

}
s ≤ t. (260)

Clearly, (259) can be seen as a sub–case of (260), but both formulas can be useful.

A process of the form (259) is Gaussian (see [96], Chapter 5; also [151] or [88]) and

interest rate models of the form (255) are known as Gaussian models8. Using (259), we

may obtain the unconditional expectation of rt as:

mt = E(rt) = (1/η(t))
{

r0 +
∫ t

0
η(u)α(u) du

}
(261)

and in case s ≤ t

E(rt | Fs) = (1/η(t))
{

η(s)rs +
∫ t

s
η(u)α(u) du

}
s ≤ t (262)

We can obtain as well the variance (conditional and unconditional) of process r from

(259) and (260)

V t = Var(rt) =
1

η2(t)

∫ t

0
η2(u)γ2(u) du (263)

8 An interest rate model belongs to the class of Gaussian models if it can be expressed in the form

drt = (a(t) + b(t)rt)dt + c(t) dWt

where a, b, and c are deterministic functions of t. This means that the generalized Hull–White model, (255)

is the archetypical Gaussian model, it also means that the work we are doing here regarding the calibration

of the Hull White model is valid for all Gaussian models. Gaussian models are a sub class of the class

of affine models. As we will show later, under Gaussian models, bond prices are log–normally distributed

which in our case agrees with our market setting in Chapter 3. We will use “Hull–White” and “Gaussian”

interchangeably.
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and

Var(rt | Fs) =
1

η2(t)

∫ t

s
η2(u)γ2(u) du s ≤ t , (264)

and covariance function

Cov(rt, rs) =
1

η(t)η(s)

∫ t∧s

0
η2(u)γ2(u) du. (265)

As usual, we define B as the bank account (price) process (or money market process)

(47):

Bt = exp
{∫ t

0
ru du

}
(266)

Under usual market hypothesis9, and assuming risk–neutral expectations hypothesis10,

the time t prices of (risk free) zero coupon bonds of maturity T are:

B(t, T ) = E

(
exp

{
−
∫ T

t
ru du

}∣∣∣∣Ft

)
t ∈ [0, T ]. (267)

Thus, it also makes sense to devote some time to the analysis of the process defined as

νt =
∫ t

0
ru du

= r0

∫ t

0
(1/η(u)) du +

∫ t

0
(1/η(u))

∫ u

0
η(v)α(v) dv du

+
∫ t

0
(1/η(u))

∫ u

0
η(v)γ(v) dWv du.

(268)

Process ν={νt}t∈[0,T ] is also Gaussian, and so νt is normal, for all t ∈]0, T ], with mean:

E

(∫ t

0
ru du

)
=
∫ t

0
(1/η(u))

{
r0 +

∫ u

0
η(v)α(v) dv

}
du ; (269)

from (261) we may write

Eνt = E

(∫ t

0
ru du

)
=
∫ t

0
mu du. (270)

9As in §3.3 we assume that our market is free of frictions and liquidity problems, that transactions placed

by market participants can not influence the market price of the securities traded. Our assumption of no

frictions include the assumption that securities (prices) are divisible, that is that a market participant could

trade any fraction of a security. See §3.3 for more details. See also [133] Chapter 12.
10That is, we assume that the formula (267) is valid under probability measure P, or in other words P

here is the equivalent martingale measure of Chapter 3.
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Similarly, using (260) and (262) we can compute the conditional expectation of νt as:

E(νt − νs|Fs) =
∫ t

s
(1/η(u))

{
η(s)rs +

∫ u

s
η(v)α(v) dv

}
du

=
∫ t

s
E(ru|Fs) du s ≤ t.

(271)

To compute the covariance function, we first observe that

νt − E(νt) =
∫ t

0

1
η(u)

∫ u

0
η(v)γ(v) dWv du =

∫ t

0
η(v)γ(v)

∫ t

v

1
η(u)

du dWv. (272)

Thus:

Cov(νt, νs) = E

({∫ t∧s

0
η(v)γ(v)

∫ t∧s

v

1
η(u)

du dWv

}
×

×
{∫ t∨s

0
η(v)γ(v)

∫ t∨s

v

1
η(u)

du dWv

})
= E

({∫ t∧s

0
η(v)γ(v)

∫ t∧s

v

1
η(u)

du dWv

}2

+

+
{∫ t∧s

0
η(v)γ(v)

∫ t∧s

v

1
η(u)

du dWv

}
×

×
{∫ t∧s

0
η(v)γ(v)

∫ t∨s

t∧s

1
η(u)

du dWv

+
∫ t∨s

t∧s
η(v)γ(v)

∫ t∨s

v

1
η(u)

du dWv

})

(273)

Cov(νt, νs) =
∫ t∧s

0
η2(v)γ2(v)

(∫ t∧s

v

1
η(u)

du

)2

dv

+
[∫ t∨s

t∧s

1
η(u)

du

] ∫ t∧s

0
η2(v)γ2(v)

∫ t∧s

v

1
η(u)

du dv.

(274)

The unconditional variance will be

Var(νt) =
∫ t

0
η2(v)γ2(v)

(∫ t

v

1
η(u)

du

)2

dv. (275)

We can also compute the conditional variance of νt − νs; from (260), (262) and (269),

Var(νt − νs|Fs) = Var
(∫ t

s
ru du

∣∣∣∣Fs

)
s ≤ t

= E

({∫ t

s

1
η(u)

∫ u

s
η(v)γ(v) dWv du

}2
∣∣∣∣∣Fs

)

= E

({∫ t

s
η(v)γ(v)

∫ t

v

1
η(u)

du dWv

}2
∣∣∣∣∣Fs

)

=
∫ t

s
η2(v)γ2(v)

{∫ t

v

1
η(u)

du

}2

dv s ≤ t.

(276)

112



Thus we have described completely the dynamics of process ν = {νt}t∈[0,T ] as a Gaussian

process, each νt normal, with mean and variance given by (269), (271), and covariances and

variances as in (274), (275), (276).

Our study of the process ν = {νt}t∈[0,T ] allows us to obtain a more explicit result than

(267) in the pricing of a zero coupon bond (zcb). In fact we notice that (267) transforms

into the following:

B(t, T ) = E

(
exp

{
−
∫ T

t
ru du

}∣∣∣∣Ft

)
t ∈ [0, T ]

= E (exp (−νT + νt| Ft) = E (exp {i[i(νT − νt)]}|Ft)

= Ch(νT−νt)|Ft
(i) t ∈ [0, T ]

(277)

where Ch denotes the conditional characteristic function of νT − νt, conditional to Ft,

t ∈ [0, T ]; and

B(t, T ) = Ch(νT−νt)|Ft
(i) t ∈ [0, T ]

= exp (−E(νT − νt|Ft) + (1/2) Var(νT − νt|Ft))

= exp
(
−
∫ T

t
(1/η(u))

{
η(t)rt +

∫ u

t
η(v)α(v) dv

}
du

+(1/2)
∫ T

t
η2(v)γ2(v)

{∫ T

v

1
η(u)

du

}2

dv

)
t ∈ [0, T ].

(278)

For t = 0, we obtain

B(0, T ) = exp
(
−
∫ T

0
(1/η(u))

{
r0 +

∫ u

0
η(v)α(v) dv

}
du

+(1/2)
∫ T

0
η2(v)γ2(v)

{∫ T

v

1
η(u)

du

}2

dv

)

= exp

(
−
∫ T

0
mu du + (1/2)

∫ T

0
η2(v)γ2(v)

{∫ T

v

1
η(u)

du

}2

dv

)
. (279)

It is clear from (278) (and in the particular case of t = 0, from (279)) that the price

B(t, T ) of a zcb is the exponential of a linear expression of rt; that is, that the Hull–White

model is an affine model11. Or in symbols, we have that

B(t, T ) = exp(−rtS (t, T )− I (t, T )) t ∈ [0, T ] (280)

11 In accordance to [42] an interest rate model is called affine if the yield to maturity

Y(t, T ) =
1

T − t
E

„ Z T

t

ru du

˛̨̨̨
Ft

«
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where the slope S (t, T ) is given by:

S (t, T ) = η(t)
∫ T

t

1
η(u)

du t ∈ [0, T ] (281)

and the intercept I (t, T ) is given by:

I (t, T ) =
∫ T

t

1
η(u)

∫ u

t
η(v)α(v) dv du

− (1/2)
∫ T

t
η2(v)γ2(v)

{∫ T

v

1
η(u)

du

}2

dv t ∈ [0, T ]

(282)

We notice that we can write I (t, T ) in terms of S (t, T ), but first we need to play a little

with the integrals; for example,∫ T

t

1
η(u)

∫ u

t
η(v)α(v) dv du =

∫ T

t
η(v)α(v)

∫ T

v

1
η(u)

du dv (283)

Thus, we may write (282) as:

I (t, T ) =
∫ T

t
η(v)α(v)

∫ T

v

1
η(u)

du dv

− (1/2)
∫ T

t
η2(v)γ2(v)

{∫ T

v

1
η(u)

du

}2

dv

=
∫ T

t
α(v)S (v, T )− (1/2)γ2(v)S2(v, T ) dv t ∈ [0, T ]

(284)

Hence, we have been able to completely describe the time t price of a zcb of maturity

T under the Hull–White model as:

B(t, T ) = exp(−(rtS (t, T ) + I (t, T ))) t ∈ [0, T ] (285)

S (t, T ) = η(t)
∫ T

t

1
η(u)

du t ∈ [0, T ] (286)

I (t, T ) =
∫ T

t
α(v)S (v, T )− (1/2)γ2(v)S2(v, T ) dv t ∈ [0, T ] (287)

of zcb’s under such a model can be written as an affine function of the short–term rate rt. That is, if there

exists continuously differentiable deterministic functions f(t, T ) and g(t, T ) such that

B(t, T ) = exp(f(t, T ) + g(t, T )rt).
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Alternatively, taking derivatives of the expressions above, we can obtain differential,

instead of integral, representations for the slope and intercept functions:

∂S
∂t

∣∣∣∣
(t,T )

= β(t)S (t, T )− 1 S (T, T ) = 0 (288)

∂I
∂t

∣∣∣∣
(t,T )

= −α(t)S (t, T ) + (1/2)γ2(t)S2(t, T ) I (T, T ) = 0 (289)

We can also test our results applying Itô’s formula directly to (285) (this will lead to

the corresponding bond pricing pde12). From (285) and (255) we obtain by Itô’s formula:

dB(t, T ) =
(
−rt

∂S
∂t

− ∂I
∂t

)
B(t, T ) dt− S (t, T )B(t, T ) drt

+
1
2
γ2(t)S2(t, T )B(t, T ) dt

= B(t, T )
{(

−rt
∂S
∂t

− ∂I
∂t

− S (t, T )(α(t)− β(t)rt)

+
1
2
γ2(t)S2(t, T )

)
dt− γ(t)S (t, T ) dWt

}
(290)

As expected {B(t, T )}t∈[0,T ] is a log–normal process with return drift:

−rt
∂S
∂t

− ∂I
∂t

− S (t, T )(α(t)− β(t)rt) +
1
2
γ2(t)S2(t, T ) (291)

and volatility

−γ(t)S (t, T ) (292)

Since we are assuming the risk neutral expectations hypothesis and a single factor in-

terest rate model of the form

drt = µt dt + σt dWt (293)

we can apply [133] Proposition 12.2.1; which implies that there must be a process b =

{b(t, T )}t∈[0,T ] such that

dB(t, T ) = B(t, T )(rt dt + b(t, T ) dWt) (294)

it is clear, from (290) that such process is the bond volatility we found above, thus

b(t, T ) = −γ(t)S (t, T ) (295)

12We use the acronym pde to refer to Partial Differential Equations, we may also use PDE to refer to

them.
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that is, the zcb’s volatility, which according to (255) and (281) is a deterministic process.

But this is not all we obtain from [133] Proposition 12.2.1, we also have that the drift (291)

should reduce to rt, that is:

−rt
∂S
∂t

− ∂I
∂t

− S (t, T )(α(t)− β(t)rt) +
1
2
γ2(t)S2(t, T ) = rt (296)

which implies
∂S
∂t

= β(t)S (t, T )− 1 (297)

∂I
∂t

= (1/2)γ2(t)S2(t, T )− α(t)S (t, T ) (298)

both equations above agree with (288) and (289). Thus, we can write (290) as

dB(t, T ) = B(t, T )(rt dt− γ(t)S (t, T ) dWt) (299)

Applying again [133] Proposition 12.2.1 we can write the time t price of a zcb of maturity

T in terms of the bank account process (47), the time 0 price of a zcb of maturity T and

the bond volatility (295):

B(t, T ) = B(0, T )Bt exp
{
−
∫ t

0
γ(u)S (u, T ) dWu −

1
2

∫ t

0
γ2(u)S2(u, T ) du

}
(300)

4.1.1 A few more formulas

One might think that after learning so much about the Hull–White model and the pricing

of a zcb of that model, to calibrate the model to fit to initial (market) data should be simple

and immediate. But the truth is that although we have a very detailed solution, to calibrate

to initial data still requires some juggling with the formulas.

But first we should consider what kind of initial data is available, how that data will be

obtained, and a few other points.

In fact, the act of finding initial data may be a problem by itself. Here we list some

possible sources:

Dr. J. Huston McCulloch, Professor of Economics and Finance at The Ohio State

University maintains the web site called “The US Real Term Structure of Interest Rates

with Implicit Inflation Premium” in which series of “clean” US term structure data (yield
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curve, forward rate, and zcb prices) including inflation effect (that will be “real” term

structure data and not nominal term structure data13) can be found at the web site:

http://economics.sbs.ohio-state.edu/jhm/ts/ts.html

this data has been already ‘preprocessed’ from other sources via bootstrapping, inflation

analysis, etc.

The Internet web site of the Bank of England is a very good source of financial infor-

mation regarding the United Kingdom. Historical yield curve data for the English market

can be found at the web site:

http://www.bankofengland.co.uk/statistics/yieldcurve/main.htm

Some US Treasurys data can be found at the US Federal Reserve web site

http://www.federalreserve.gov/releases/

and at the US Treasury web site

http://www.publicdebt.treas.gov/of/ofaicqry.htm

Data can also be obtained (for a price) from different private sources such as Telerate©,

Bloomberg©, The WSJ©, CME©, etc.

Data can also be obtained indirectly from other markets that closely react to changes

in the yield curve (for example the swaps market). Such data is also available (for a price)

13Nominal interest rates are those rates advertised by the borrowers (lenders), such rates inform you of

the interest that the borrower will pay (lender will charge) for the money the lender (borrower) is giving

(receiving). A real interest rate reflects the effects of inflation and other factors that may alter the acquisitive

value of the interest received. For example (assuming that inflation is the only important source of loss in

acquisitive value), an investment of $100.00 at a nominal rate of 6% per annum (to simplify the reasoning,

we will assume all rates in this example are simple compounded) for a maturity of one year will pay $6.00.

But those $6.00 will be received a year from today, and due to inflation those —future— $6.00 will not be

as strong as they could be today. Assuming an inflation of 0.5% per annum, $6.00 a year from today will

be worth

$5.47 ' $100×
„

1 + 0.06

1 + 0.005
− 1

«
$5.47 dollars today. That is, the real interest rate payed was not 6% as advertised but only 5.47%. Real

interest rates diminish as inflation rates increase, in our previous example an inflation of 6% per annum will

completely offset the nominal rate. For a basic introduction to the notion of nominal and real interest rates

please see [17] Chapter 5 and [152] Chapter 7.
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from different vendors, like Bloomberg©.

Nominal term structure data (and corresponding forward rates and zcb prices) can be

bootstrapped from market Treasurys prices. Following this approach all available data is

collected and analyzed; prices corresponding to very “young” bonds as well as very “old”,

low liquidity bonds must be taken out to later apply one of the available bootstrapping

procedures, see for example [59]14, and [136], which according to [1] are two of the most

used methods in the world. The bootstrapping procedure can be improved and simplified

if STRIPS data is considered.

The problem with this approach is its extreme subjectivity, but as we have learned from

our studies, subjectivity is something we can not escape when a calibration is needed. In

fact, the whole process is more of an art than a science, and to obtain good results the

practitioner must develop practice skills and a deep understanding of the market and the

model.

In an attempt to cope with the complications found in the usual bootstrapping proce-

dures, simpler methods have been suggested. For example according to Sack, [153], term

structure information recovered from STRIP prices is very reliable. Since STRIPS are

already zcb’s (when compared with the other procedures), to extract term structure infor-

mation from STRIPS is easier.

In our case, initial term structure information will be bootstrapped, using a different

procedure, from other liquid instruments that reflect the market perception of the yield

curve and its volatility.

In the previous pages we have provided an in–depth study of the model that led us to

the bond pricing formulas (285), (281), (287), (295), (291), (299), etc. The labor that is at

hand now is to use all those formulas to solve for the different model parameters, and to

rewrite some of them to a more usable form. The general idea is to be able to fit a given

initial term structure to the model, thus we must find ways to represent future values in

terms of time zero values.

14A slightly earlier version [58] can be downloaded from Mark Fisher’s web site
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Before we begin, we make a few additional preliminary remarks. Most of the problem

here comes from the fact that we are working with the model (255). Assuming one or more

parameters are constant will greatly simplify the task ahead (please see §4.2). The reader

should quickly notice that most of our formulas, and this includes the ones we are about to

write, will simplify a lot if one uses the original version of the Hull–White’s model (254).

But this not only applies to the formulas, it also applies to the calibration process, as we

will see later (please see §4.5).

Recall that, as we mentioned before, our goal is to fit a given initial term structure to

the model of (255). In order to do that we need to find formulas allowing us to represent the

parameters of the model (or known functions of those parameters) in terms of “time zero”

values. That is, in terms of the data available to us at the beginning. We may assume that

we will have access to a given initial yield curve (obtained as outlined in Chapter 2 §2.2).

It is clear that such a little initial information is not enough to determine all parameters

in (255), thus we need to assume as well that some information regarding the “initial”

volatility15 of bond prices is given and that such information is available in the form of

continuously differentiable functions of time. Later in this chapter (see §4.3) we will return

to this topic and explain how to obtain that last piece of information.

Nothing more will be assumed in the construction of the following formulas. We start

with (281), the slope function in our bond price formula,

S (t, T ) = η(t)
∫ T

t

1
η(u)

du t ∈ [0, T ] (281)

since η(0) = 1 we see that

S (0, T ) = η(0)
∫ T

0

1
η(u)

du =
∫ T

0

1
η(u)

du (301)

Therefore ∫ T

t

1
η(u)

du = S (0, T )− S (0, t). (302)

15As we will see in this section, the parameters S (0, t) and γ(t) can not be recovered from the initial yield

curve, but according to (295) under the Hull–White model zcb volatility depends on those two unknowns.

Thus, at least theoretically, one could recover S (0, t) and γ(t) from initial bond volatility data if such

information is abundant.
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On the other hand,
d

dt
S (0, t) =

d

dt

∫ t

0

1
η(u)

du =
1

η(t)
(303)

Thus

S (t, T ) =
S (0, T )− S (0, t)

d

dt
S (0, t)

(304)

hence, if S (0, t) is known, we have a way to compute S (t, T ) at any time t and for any

maturity T .

Similarly, consider now (287), the intercept function in our bond pricing formula,

I (t, T ) =
∫ T

t
α(v)S (v, T )− (1/2)γ2(v)S2(v, T ) dv t ∈ [0, T ]. (287)

Differentiating with respect to t, we found that

∂I
∂t

∣∣∣∣
(t,T )

= −α(t)S (t, T ) + (1/2)γ2(t)S2(t, T ) I (T, T ) = 0. (289)

Taking derivatives with respect to T , we obtain

∂2I
∂T ∂t

= {γ2(t)S (t, T )− α(t)}∂S
∂T

. (305)

We can get rid of the dependency on α if we multiply by S, since we can solve for αS from

(289). Thus

S (t, T )
∂2I
∂T ∂t

=
{

1
2
γ2(t)S2(t, T ) +

∂I
∂t

}
∂S
∂T

(306)

Since we can obtain S (t, T ) from S (0, t), knowing γ we can solve for I from PDE (306)

we just found. Of course, one of the problems of such an approach is clearly apparent from

the fact that differentiation is not a numerically stable procedure, thus one may want to

avoid paths leading to higher order differentiations.

From (287), we have

I (t, T ) =
∫ T

t
α(v)S (v, T )− (1/2)γ2(v)S2(v, T ) dv

=
∫ T

0
α(v)S (v, T )− (1/2)γ2(v)S2(v, T ) dv

−
∫ t

0
α(v)S (v, T )− (1/2)γ2(v)S2(v, T ) dv

= I (0, T )−
∫ t

0
α(v)S (v, T )− (1/2)γ2(v)S2(v, T ) dv.

(307)
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In order to rewrite the second integral in terms of data known at time zero, we replace the

S (v, T ) terms in this integral. From S (t, T )’s definition, (281), we see that

S (v, T ) = S (v, t) + S (v, T )− S (v, t)

= S (v, t) + η(v)
∫ T

t

1
η(u)

du

= S (v, t) +
η(v)
η(t)

S (t, T ).

(308)

Thus,

α(v)S (v, T )− (1/2)γ2(v)S2(v, T ) = α(v)S (v, t)− (1/2)γ2(v)S2(v, t)

+
η(v)
η(t)

S (t, T )
(
α(v)− γ2(v)S (v, t)

)
− (1/2)γ2(v)

η2(v)
η2(t)

S2(t, T ).

(309)

This will let us write I (t, T ) as:

I (t, T ) = I (0, T )− I (0, t) +
1
2

1
η2(t)

S2(t, T )
∫ t

0
γ2(v)η2(v) dv

− S (t, T )
η(t)

∫ t

0
α(v)η(v)− γ2(v)η(v)S (v, t) dv

(310)

If g is a function of two variables, well defined in its diagonal, integrable with respect

to the first and partially differentiable with respect to the second, then we know that F

defined as

F (t) =
∫ t

0
g(v, t) dv (311)

satisfies
dF

dt
= g(t, t) +

∫ t

0

∂

∂t
g(v, t) dv. (312)

From (281) we notice that
∂

∂T
S (t, T ) =

η(t)
η(T )

. (313)

Combining the previous observations with (312), (281), and (303), we find that

I (t, T ) = I (0, T )− I (0, t)− S (t, T )
d

dt
I (0, t)

+
1
2
S2(t, T )

∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv.

(314)
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Thus, assuming I (0, t), t ∈ [0, T ] is known, as well as γ(t) and S (0, t), t ∈ [0, T ]; all terms

in (314) are known from initial data16. This approach is superior to the PDE, (306), we

found earlier in the sense that only first order differentiations are required.

The problem then reduces to finding I (0, t), S (0, t) and γ(t), t ∈ [0, T ], from initial

data; that is, because we know S (t, T ), we obtain β(t) from (288) using (304)

∂

∂t
S (t, T ) =

∂

∂t

S (0, T )− S (0, t)
d

dt
S (0, t)


=

{
d
dt (S (0, T )− S (0, t)) d

dt S (0, t)− (S (0, T )− S (0, t)) d2

dt2
S (0, t)

}
(

d
dt S (0, t)

)2
= −1− S (t, T )

d2

dt2
S (0, t)

d
dt S (0, t)

= β(t)S (t, T )− 1

(315)

which implies that

β(t) = −
d2

dt2
S (0, t)

d
dt S (0, t)

. (316)

Similarly, we can also find α(t) from (288), (289) and (314). From (313) it is clear that

∂

∂t
S (v, t)

∣∣∣∣
v=t

= 1 (317)

and
∂2

∂t2
S (v, t) = −β(t)

∂

∂t
S (v, t) (318)

thus

∂

∂t
I (t, T ) =

∂

∂t

(
I (0, T )− I (0, t)− S (t, T )

d

dt
I (0, t)

+
1
2
S2(t, T )

∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv

)

= − d

dt
I (0, t)− ∂

∂t
S (t, T )

d

dt
I (0, t)− S (t, T )

d2

dt2
I (0, t)

+ S (t, T )
∂

∂t
S (t, T )

∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv

16As it is implied by (280) (see also (325) and (326)); if one knows the initial term structure, that is,

the initial yield curve, one of S (0, t) or I (0, t), t ∈ [0, T ] is known. γ should be recovered from the term

structure of volatilities known at time t = 0.
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+
1
2
S2(t, T )

[
γ2(t)

{
∂

∂t
S (v, t)

}2 ∣∣∣∣
v=t

+ 2
∫ t

0
γ2(v)

∂

∂t
S (v, t)

∂2

∂t2
S (v, t) dv

]
(319)

= −{1 + β(t)S (t, T )− 1} d

dt
I (0, t)− S (t, T )

d2

dt2
I (0, t)

+ S (t, T ){β(t)S (t, T )− 1}
∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv

+
1
2
γ2(t)S2(t, T ) + S2(t, T )

∫ t

0
γ2(v)[−β(t)]

{
∂

∂t
S (v, t)

}2

dv

= −β(t)S (t, T )
d

dt
I (0, t)− S (t, T )

d2

dt2
I (0, t) +

1
2
γ2(t)S2(t, T )

− S (t, T )
∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv

combining the last computation with (289) we obtain

α(t)S (t, T ) = − ∂

∂t
I (t, T ) + (1/2)γ2(t)S2(t, T )

= β(t)S (t, T )
d

dt
I (0, t) + S (t, T )

d2

dt2
I (0, t)− 1

2
γ2(t)S2(t, T )

+ S (t, T )
∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv

+ (1/2)γ2(t)S2(t, T )

= S (t, T )

[
β(t)

d

dt
I (0, t) +

d2

dt2
I (0, t) +

∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv.

]
(320)

Hence

α(t) = β(t)
d

dt
I (0, t) +

d2

dt2
I (0, t) +

∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv

= −
d2

dt2
S (0, t)

d
dt S (0, t)

d

dt
I (0, t) +

d2

dt2
I (0, t) +

∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv.

(321)

So, assuming we know S (0, t), I (0, t) and γ(t), t ∈ [0, T ], then (321), (316), (304), and

(314), will let us completely determine α(t), β(t), S (t, T ), and I (t, T ), t ∈ [0, T ]. If, on

the other hand, we know S (0, t), I (0, t) and α(t), t ∈ [0, T ], we can use (321) to determine

γ(t) in the following way. From (313) and (321) we have:

1
η2(t)

∫ t

0
γ2(v)η2(v) dv = α(t) +

d2

dt2
S (0, t)

d
dt S (0, t)

d

dt
I (0, t)− d2

dt2
I (0, t) , (322)
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thus

γ2(t) =
1

η2(t)
d

dt

{
η2(t)

[
α(t) +

d2

dt2
S (0, t)

d
dt S (0, t)

d

dt
I (0, t)− d2

dt2
I (0, t)

]}

=
1

η2(t)
d

dt

{
η2(t)

[
α(t)− β(t)

d

dt
I (0, t)− d2

dt2
I (0, t)

]}
;

(323)

hence, we can write

γ2(t) = 2β(t)
{

α(t)− β(t)
d

dt
I (0, t)− d2

dt2
I (0, t)

}
+

d

dt

{
α(t)− β(t)

d

dt
I (0, t)− d2

dt2
I (0, t)

} (324)

((316) can be used to obtain β(t) from S (0, t)).

We collect all our findings in Table 15.

Now we need to find a simple way to recover S (0, t), I (0, t) and γ(t), (or S (0, t), I (0, t)

and α(t)17) t ∈ [0, T ], from initial data.

From (280) we have

B(0, t) = exp(−r0S (0, t)− I (0, t)) (325)

which implies that

I (0, t) = −r0S (0, t)− ln[B(0, t)] (326)

this means that we can obtain I (0, t), t ∈ [0, T ] from (326)18 if we know S (0, t), and the

initial term structure19.

As we saw in Chapter 2, §2.2, the initial term structure can be recovered from Swaps

market data. In fact, the procedure outlined in Chapter 2, §2.2 gives us also the initial zcb

price curve.

17We have studied the calibration problem under the implicit assumption that γ(t), as well as S (0, t) and

I (0, t), could be determined from additional data. This assumption of course is not the only one available

to us. One could otherwise assume that α(t), and S (0, t) and I (0, t), could be determined from additional

data, and use (324) to determine γ(t).
18Here we are not using anything else but the fact that the Hull–White model is affine. Thus this is a

valid calibration step for any affine method.
19From the initial term structure, the initial zcb price curve can be derived.
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Assuming that B(0, t) is smooth enough we can combine (321) with (314) and (316) to

obtain an expression for α(·) that does not explicitly contains I (0, t).

α(t) = β(t)
{
−r0

d

dt
S (0, t)− d

dt
{ln[B(0, t)]}

}
− r0

d2

dt2
S (0, t)− d2

dt2
{ln[B(0, t)]}+

∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv

=
d2

dt2
S (0, t)

d
dt S (0, t)

d

dt
{ln[B(0, t)]} − d2

dt2
{ln[B(0, t)]}+

∫ t

0
γ2(v)

{
∂

∂t
S (v, t)

}2

dv

= −β(t)
d

dt
{ln[B(0, t)]} − d2

dt2
{ln[B(0, t)]}+

∫ t

0
γ2(v)

{
η(v)
η(t)

}2

dv

(327)

The previous expressions may come in handy if we have the means to obtain β(t) and

γ(t) by alternate methods that do not involve the knowledge of α(t); or to find α(t) directly

from the initial zcb price curve and γ(t) and S (0, t), which we may have found by alternate

methods.

Therefore, our problem has been reduced to finding a way to obtain S (0, t), and γ(t)

from market data. One look at (295) will give us the hint we need. Since γ(t) and S (t, T )

both show up in the expression for bond volatility, it does make sense to look for a market

contract (or contracts) that depends on bond volatility, collect such data and use it to find

our two unknowns.

Notice that this problem (the need of more data to figure out S (0, t) and γ(t)) arises

due to the fact that the general Hull–White model, (255), over–specifies the short rate by

introducing three deterministic parameters; while based on (326) one may argue that only

one unknown functional parameter (α(·), for example) should be enough for that effect.

This feature of the Hull–White model can be seen as an advantage (it lets you put more

information into your model), and also as a problem since in practical applications volatility

data has to be carefully selected together with “realistic” (and that is very subjective) forms

of volatility functions and/or volatility surfaces.

On the other hand, market data associated with the initial term structure and/or the

initial term structure of volatilities could be not rich enough (for example, one of our implicit

assumptions is that the initial yield curve is differentiable, or equivalently, that the zcb price

curve is differentiable, but in practice one only has a finite number of points on that curve; a
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similar problem is faced when volatility data is needed). In the general case of a calibration

to market data, one is usually forced to introduce additional assumptions regarding the

structure of volatilities, and/or the analytical form of γ and S.

In order to acquire bond volatility data, one requires a bond volatility dependent con-

tract. The natural choice of a bond volatility dependent contract is a bond option, for

example a call on a bond.

At least from the theoretical standpoint, the pricing of an European Call on a zcb

under Gaussian models is well known, but European Calls on zcb’s are not common in the

market. Thus one must look for different contracts. Such contracts could be, for example,

Caps and/or Swaptions.

Caps can be seen as portfolios of European Calls on zcb’s, in this case called caplets.

The valuation of Caps is still a topic of research, but in the case of markets under Gaussian

Models pricing formulas are known. This topic is very well presented by Musiela and

Rutkowski, [133] Chapter 16 and Bielecki and Rutkowski, [12] Chapter 15. Swaptions, on

the other hand, are options on swaps. These are also very well presented by Musiela and

Rutkowski, [133] Chapter 16 and Bielecki and Rutkowski, [12] Chapter 15.

Due to our particular needs and in order to avoid unnecessary and additional compli-

cations, we will restrict our calibration efforts to the use of Caps data. In the next section

we will give a brief introduction to Caps and Floors and their valuation; but first we will

study in detail a few particular cases of the Hull–White model.

Although we have found many useful formulas in this chapter, more manipulations may

be needed once particular analytical forms of α(t), β(t) and γ(t) are selected. On the other

hand, if the particular model selected is simple enough (please see the first example in the

next subsection), the calibration may be accomplished using just a few of the formulas

presented here.

4.2 A few calibration examples

Before we continue with our study, we will see how is all this related to a few concrete

examples, all of those sub–cases of (255).
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4.2.1 All parameters constant

If all parameters α, β, and γ in (255) are constant, the Hull-White model (255) reduces to

the Vasicek model20 according to which interest rates are modeled by means of a, shifted,

Ornstein–Ulenbeck process. Let α(t) ≡ a1, β(t) ≡ a2 and γ(t) ≡ a3, we can rewrite (255)

as

drt = (a1 − a2rt) dt + a3 dWt , (328)

where a1, a2 and a3 are unknown constants that we must determine using initial data.

Clearly, since all parameters are now constant all our formulas will simplify noticeably.

In particular, all important quantities ((261), (263), (281) and (282), for example) can be

solved for explicitly in terms of the model’s parameters. Without much ado, carrying over

all the required substitutions and simplifications we obtain:

η(t) = exp
(∫ t

0
β(u) du

)
= exp(a2t). (329)

rt = (1/η(t))
{

r0 +
∫ t

0
η(u)α(u) du +

∫ t

0
η(u)γ(u) dWu

}
= exp(−a2t)

{
r0 +

a1

a2
(exp(a2t)− 1) + a3

∫ t

0
exp(a2u) dWu

}
= e−a2t

{
ea2srs +

a1

a2

(
ea2t − ea2s

)
+ a3

∫ t

s
ea2u dWu

}
s ≤ t.

(330)

mt = E(rt) = (1/η(t))
{

r0 +
∫ t

0
η(u)α(u) du

}
= e−a2t

{
r0 +

a1

a2

(
ea2t − 1

)}
.

(331)

We can see from (331) and (332) that the long term mean of the interest rate process is

a1/a2.

E(rt | Fs) = (1/η(t))
{

η(s)rs +
∫ t

s
η(u)α(u) du

}
s ≤ t

= e−a2t

{
ea2srs +

a1

a2

(
ea2t − ea2s

)}
s ≤ t.

(332)

20The Vasicek Model of interest rates was introduced by Oldrich Vasicek, [174] in 1977. The Vasicek

Model was the first interest rate model to exhibit mean reversion. Traditionally, the Vasicek model is

represented by an sde of the form

drt = a(b− rt) dt , +c dWt

where a is the speed of mean reversion, b is the long term mean and c is the volatility of the model.
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V t = Var(rt) =
1

η2(t)

∫ t

0
η2(u)γ2(u) du

=
a2

3

2a2

(
1− e−2a2t

)
.

(333)

Similarly, we see from (333) that the interest rate process will exhibit a long term variance

equal to a2
3/(2a2).

Var(rt | Fs) =
1

η2(t)

∫ t

s
η2(u)γ2(u) du s ≤ t

=
a2

3

2a2

(
1− e−2a2(t−s)

)
.

(334)

S (t, T ) = η(t)
∫ T

t

1
η(u)

du t ∈ [0, T ]

=
1
a2

(
1− e−a2(T−t)

)
.

(335)

I (t, T ) =
∫ T

t

1
η(u)

∫ u

t
η(v)α(v) dv du

− (1/2)
∫ T

t
η2(v)γ2(v)

{∫ T

v

1
η(u)

du

}2

dv t ∈ [0, T ]

=
3a2

3 − 4a1a2

4a3
2

+
a2

3 − 2a1a2

2a2
2

(t− T )

+
a1a2 − a2

3

a3
2

ea2(t−T ) +
a2

3

4a3
2

e2a2(t−T ) t ∈ [0, T ].

(336)

Since both (335) and (336) can be solved explicitly in terms of the model’s parameters,

we do not need to worry about how to find functions of the model’s parameters depending

only on initial data. Instead we can use (335) and (336) in combination with (326) to obtain

a1, a2, a3 and r0 from initial (yield curve) data. From (335) and (336) we have

S (0, t) =
1
a2

(
1− e−a2t

)
t ∈ [0, T ] , (337)

and

I (0, t) =
3a2

3 − 4a1a2

4a3
2

− a2
3 − 2a1a2

2a2
2

t +
a1a2 − a2

3

a3
2

e−a2t +
a2

3

4a3
2

e−2a2t t ∈ [0, T ] , (338)

which we can now combine with (326) to write:

− ln[B(0, t)] = I (0, t) + r0S (0, t)

=
r0

a2
+

3a2
3

4a3
2

− a1

a2
2

+
(

a1

a2
− a2

3

2a2
2

)
t

+
(
− r0

a2
+

a1

a2
2

− a2
3

a3
2

)
e−a2t +

a2
3

4a3
2

e−2a2t t ∈ [0, T ].

(339)
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As we can easily see, (339) relates all parameters in Vasicek’s Model, namely a1, a2, a3

and r0, to initial data (in this particular case represented by − ln[B(0, t)]).

In Chapter 2 we explained how to obtain a yield curve and a zcb’s initial price curve

from swap rate data (please see §2.2). The procedure presented in Chapter 2 returns 24

zcb prices for 24 different maturities (as well as 24 corresponding rates), see Table 4. That

data can be used to approximate values for a1, a2, a3 and r0 by means of a least squares

regression.

Apart from the apparent complexity and size of expression (339), one of the obvious

problems in finding a1, a2, a3 and r0 comes from the fact that (339) is not linear in those

parameters. Several procedures have been developed to deal with this kind of problem (see

[110], [119], [34], [38], [13], [135], and [146]; more sources are mentioned in the bibliography),

amongst them we find the Newton–Gauss methods.

The Taylor–Newton–Gauss least squares method is a numeric iterative method used to

fit non linear expressions to data. The method uses a truncated Taylor series (truncated

after the first order) to “linearize” the equation to be fitted (in our case equation (339)).

Assuming that a fairly good initial approximation to the parameters is known, the method

iterates to find a good approximation to the parameters.

We used Taylor–Newton–Gauss least squares to find the parameters a1, a2, a3 and

r0 that better (within a given tolerance) fitted (339) to the May 12th 2003 implied yield

curve we obtained from swaps market data in Chapter 2. Figure 8 shows the resulting

yield curve computed using Vasicek’s model with the parameters we found applying the

Taylor–Newton–Gauss least squares method21 to (339) and the data on Table 4.

21A reasonably good guess (namely a1 ∼ 0.1, a2 ∼ 0.1, a3 ∼ 0.1 and r0 ∼ 0.01) was found by trial and

error; then we ran 7 and 100 iterations (no significant improvement was obtained by increasing the number

of iterations). We also tried the Levenberg–Marquardt ([110] and [119]) method which did not provide

significant improvements in our approximations. Full descriptions of these methods can be found in the

bibliography, in particular the reader may consider [13], and Björck’s section in [27].
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Leastsquares fit to Vasicek’s Model of the Implied yield curve as of May 12th, 2003
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Figure 8: This plot shows the yield curve data (“+”’s in the plot) extracted from Swap
rate data as on May 12 2003 as well as a curve obtained as the least squares fit of equation
(339) (which in turn is obtained from the Vasicek’s Model and contains all parameters
of the Vasicek model) to the data from Table 4. The numerical least squares method
used to obtained the parameters of the Vasicek Model is known as the Taylor–Newton–
Gauss method. The Taylor–Newton–Gauss method uses truncated Taylor series and Newton
differentiation to construct an approximate solution to a least squares problem that is
nonlinear in its parameters. As we mentioned before, May 12 2003 data was used (see
Table 4). May 12 2003 was used as the reference date, and time is counted from that date
on (thus t = 1 corresponds to Wed. May 12 2004, etc.).

As a result of our computations, after only 7 iterations, we found the parameters:

a1 ' 0.01112394960 , a2 ' 0.05400807283 ,

a3 ' 0.03269603106 , r0 ' 0.007695335648 ,

(340)

rounded to six significant figures, the sum of square residuals is 0.0000693540, the curve

fitting variance is 0.00000299181, and the correlation is 0.999992, the root mean square

error22 (rms) is 0.00170060 and the rms percentage average response is 0.550607. As Figure

22If we denote by ynew
i the ith approximate value (found after the evaluation of the fitted equation, say

f(t;~a) —where ~a is an n–dimensional vector of parameters— on the ith time ti) and denote by yi the original

ith value (from data), then we can define δi = ynew
i − yi, the ith residual. We can define the following useful

terms that can be used to judge how good the fit is:

� Sum of square residuals:

NX
i=1

δ2
i . With least squares one wants to find the vector of parameters ~a

that minimizes m(~a) =

NX
i=1

(f(ti;~a)− yi)
2; thus, for a good fit one expects to get a very small sum of

square residuals.
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9 shows, zcb prices obtained from the Vasicek model are very close to our data, still we can

see in Figure 8 that the fitting of Table 4 to equation (339) is far from perfect. The fitted

curve gets close to the mid and long maturity rates, but fails to follow the form of Figure

1 at short maturities.

We must remember that this procedure attempts to obtain a calibration to the initial

yield curve; that is, no volatility information is explicitly used. Still, this calibration will

imply a bond volatility in accordance with (337) and (295).

In our first numeric experiment we did nothing to ensure positive approximations to the

coefficients. To ensure non negative values of r0, a1, etc. we changed r0 in (339) by b2
4, a1

by b2
1, a2 by b2

2 and a3 by b2
3 to obtain

− ln[B(0, t)] = I (0, t) + b2
4S (0, t)

=
b2
4

b2
2

+
3b4

3

4b6
2

− b2
1

b4
2

+
(

b2
1

b2
2

− b4
3

2b4
2

)
t

+
(
−b2

4

b2
2

+
b2
1

b4
2

− b4
3

b6
2

)
e−b22t +

b4
3

4b6
2

e−2b22t t ∈ [0, T ].

(341)

Then we tried again to fit the initial data from Table 4 to the Vasicek model, this time

� Root mean square (rms) error:

vuut 1

N

NX
i=1

δ2
i . This number is closely related to the sum of square

residuals and measures the average vertical distance between the data and the corresponding values

on the fitted curve. Again, we will like to have this small for a good fit.

� Curve fitting variance:
1

N − 1

NX
i=1

(δi− δ̄)2, where δ̄ represents the mean of the residuals δ̄ =
1

N

NX
i=1

δi.

� rms percentage average response: 100∗rms/ynew. If all involved numbers are small (smaller than one

as is our case), their differences will also be small. Therefore the value of the sum of square residuals

or the rms may be deceiving, thus we will like to measure such errors relative to the sizes of the y’s.

Again, in a good fit we will like to have a small rms percentage average response.

� Correlation:
Cov(y, ynew)p

Var(y)Var(ynew)
, where Var(y) =

1

N − 1

NX
i=1

(yi − ȳ)2 and Cov(y, ynew) =

1

N − 1

NX
i=1

(yi − ȳ)(ynew
i − ynew).

131



Leastsquares fit to Vasicek’s Model of the Implied ZCB curve as of May 12th, 2003
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Figure 9: This plot shows the implied ZCB curve data extracted from Swap rate data as
on May 12 2003 as well as the ZCB curve obtained as the least squares fit of the Vasicek’s
Model to that data. A quick comparison with Figure 9 shows that although the fit to the
yield curve is not that perfect, ZCB prices from Vasicek’s model are very close to those
obtained from the implied yield curve.

Bond volatility curves for maturities of 30, 25, 15, 10 and 2 years obtained from Vasicek’s Model using Implied yield curve data as of May 12th, 2003
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Figure 10: This plot shows some bond volatility curves (for maturities of 30, 25, 15, 10
and 2 years), see (295) and (335), obtained from our least squares fit of Vasicek’s model to
the implied yield curve data extracted from Swap rate data as on May 12 2003, Table 4.
It is apparent that although our approximation to the yield curve is reasonably good, the
resulting volatility curves may not be realistic. Clearly a more complex model is required
if one wants to obtain not only a good fit to the initial yield curve but also a good approxi-
mation to bond volatilities. Notice that we are plotting the negative of the volatility curve
(from (295) and (335) we see that bond volatility should be negative since the affine bond
slope function and the Hull–White volatility parameter are positive). Compare with Figure
44 which depicts implied bond volatility curves obtained after a perfect fit of a Hull–White
model to initial spot volatility using the methods presented in §4.5.
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using equation (341); again, after 7 iterations23 we obtained:

a1 ' 0.01112394997 , a2 ' 0.05400807604 ,

a3 ' 0.03269603203 , r0 ' 0.00769533529 ,

(342)

rounded to six significant figures, the correlation is 0.999992, sum of square residuals is

0.0000694865, the rms is 0.00170046, the rms percent average response is 0.550539 and the

curve fitting variance is 0.00000299181. By themselves those numbers do not say too much,

but a quick comparison with the corresponding measurements for the previous fit shows us

that we did not obtained an improved model, in average, results obtained in this second

numerical experiment differ from those displayed in (340) after the seventh significant figure.

This second approach ensures non–negative values for r0, a1, a2 and a3 but, due to the very

small difference between the results shown in (340) and (342) the resulting curves are almost

indistinguishable. We collect the results of our numerical experiment in Figure 11, Figure

12, and Figure 13.

Leastsquares fit to Vasicek’s Model of the Implied yield curve as of May 12th, 2003
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Figure 11: Compared with Figure 8 we see that forcing r0, a1, a2 and a3 to be positive
offers no particular advantage. In our previous numerical experiment the yield curve (see
Figure 8) was always positive and followed (in a non so loose a way) the shape of Table 4
data. This plot shows a curve with the same characteristics.

23As before, a reasonably good guess (namely b1 ∼ 0.1, b2 ∼ 0.2, b3 ∼ 0.15 and ∼ b4 ∼ 0.1) was found by

trial and error; then we ran 7, 50 and 100, etc. iterations and compared our results. After 8 iterations there

was no significant improvement in our approximations.
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We must call the reader’s attention to the fact that the model considered in this example

(see (328)) contains only a few parameters. Even if we obtain a “close” fit, some features

of the data may not be recoverable (see for example Figure 8 and Figure 11, pay special

attention to short maturities), even more; there may be yield curve shapes that can not be

approximated in any satisfactory manner. This comment will remain valid for most of the

examples shown in this chapter.

Also of importance is the following observation, the calibration consider here uses no

information regarding volatility data. This means that volatility related results implied by

the calibrated model could not be realistic at all. One should be cautious when making

inferences regarding contracts that may be tied to interest rate volatility or equivalently

to Bond volatility. Figures Figure 10 and Figure 13 show bond volatility implied by our

calibration of (328) to the data in Table 4.

Leastsquares fit to Vasicek’s Model of the Implied ZCB curve as of May 12th, 2003
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Figure 12: This plot shows the implied zcb curve obtained after fitting the Vasicek Model
to data from Table 4, to ensure a non negative parameters (341) was used instead of (339).
As in Figure 11 we observe that forcing the parameters to be positive offers no noticeable
advantage. The error in the fit is of roughly the same order as in the previous numerical
experiment (see (342) and comments afterward).
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Bond volatility curves for maturities of 30, 25, 15, 10 and 2 years obtained from Vasicek’s Model using Implied yield curve data as of May 12th, 2003
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Figure 13: Bond volatility curves (for maturities of 2, 10, 15, 20, 25, and 30 years)
obtained from our fit to the Vasicek model using (341) are shown in this figure. The reader
can compare with Figure 10. Notice that we are plotting the negative of the volatility curve
(from (295) and (335) we see that bond volatility should be negative since the affine bond
slope function and the Hull–White volatility parameter are positive).

4.2.2 Constant β and γ

When α is a function of time and β and γ are constant one obtains what we call the classic

Hull–White model. Let α = α(t), β(t) = a2 and γ(t) = a3, we can rewrite (255) as

drt = (α(t)− a2rt) dt + a3 dWt , (343)

(343) is also known as the extended Vasicek model.

(343) offers more generality than (328) since the parameter α(t) will let us fit exactly

the initially observed yield curve. Still, some of our results in this case are like those found

in the previous example. In particular, we obtain the same expressions for η(t), V t and

S (t, T ) and consequently the same expression for bond volatility.

η(t) = exp
(∫ t

0
β(u) du

)
= exp(a2t). (344)

rt = (1/η(t))
{

r0 +
∫ t

0
η(u)α(u) du +

∫ t

0
η(u)γ(u) dWu

}
= exp(−a2t)

{
r0 +

∫ t

0
exp(a2u)α(u) du + a3

∫ t

0
exp(a2u) dWu

}
= e−a2t

{
ea2srs +

∫ t

s
ea2uα(u) du + a3

∫ t

s
ea2u dWu

}
s ≤ t.

(345)
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mt = E(rt) = (1/η(t))
{

r0 +
∫ t

0
η(u)α(u) du

}
= e−a2t

{
r0 +

∫ t

0
ea2uα(u) du

}
.

(346)

E(rt | Fs) = (1/η(t))
{

η(s)rs +
∫ t

s
η(u)α(u) du

}
s ≤ t

= e−a2t

{
ea2srs +

∫ t

s
ea2uα(u) du

}
s ≤ t.

(347)

V t = Var(rt) =
1

η2(t)

∫ t

0
η2(u)γ2(u) du

=
a2

3

2a2

(
1− e−2a2t

)
.

(348)

Var(rt | Fs) =
1

η2(t)

∫ t

s
η2(u)γ2(u) du s ≤ t

=
a2

3

2a2

(
1− e−2a2(t−s)

)
.

(349)

S (t, T ) = η(t)
∫ T

t

1
η(u)

du t ∈ [0, T ]

=
1
a2

(
1− e−a2(T−t)

)
.

(350)

Leastsquares fit to the Classic Hull-White Model of the Implied ZCB curve as of May 12th, 2003
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Figure 14: This plot shows the implied ZCB curve data extracted from Swap rate data
as on May 12 2003 as well as the ZCB curve obtained as the least squares fit of the Classic
Hull–White Model, (343), to that data assuming a mean reversion parameter of polynomial
form (quadratic in this example).

As in the previous example, S can be solved explicitly in terms of a2. Thus, we may

express I using (350) and (314) which describes I in terms of I (0, t) and S. Or, we may
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use (287) instead and rely in our ability to express α in terms of initial data.

I (t, T ) =
∫ T

t
α(v)S (v, T )− (1/2)γ2(v)S2(v, T ) dv t ∈ [0, T ]

=
1
a2

∫ T

t
α(v) {1− exp(−a2(T − v))} dv

+
3a2

3

4a3
2

− a2
3

2a2
2

(T − t)− a2
3

a3
2

e−a2(T−t) +
a2

3

4a3
2

e−2a2(T−t)

t ∈ [0, T ].

(351)

Clearly, we still need to find the parameters of the model: r0, α(t), a2 and a3.

Assuming a2 and a3 are known and that the initial data (in this case BMarket(0, t)) is

smooth enough, we can use (327) to express α(t) in terms of initial data, thus fitting exactly

the model to initial data (the initial zcb price curve):

α(t) = −β(t)
d

dt
{ln[B(0, t)]} − d2

dt2
{ln[B(0, t)]}+

∫ t

0
γ2(v)

{
η(v)
η(t)

}2

dv

= −a2
d

dt
{ln[B(0, t)]} − d2

dt2
{ln[B(0, t)]}+

a2
3

2a2
{1− exp(−2a2t)} .

(352)

To actually fit the model to initial data, one could use Table 4 to obtain a cubic or fifth

order spline interpolating curve24, we may call that curve BMarket(0, t), then we will use

BMarket(0, t) instead of the theoretical curve B(0, t) in (352). This procedure assumes that

we can find the values of r0, a2 and a3 by other means.

Thus, the only problem remaining is to determine the values of r0, a2 and a3. If addi-

tional initial data is available (bond volatility data or Caps volatility data, for example),

we could use the results of the next section to build a least squares regression from which

those parameters will be obtained. Then α(t) will be completely determined by (352), thus

solving the calibration problem.

24Market practice is to linearly interpolate the data, but such practice introduces problems with respect

to the required second order differentiability of the zcb price curve. A fifth order spline curve will reproduce

closely some important features –concavity in particular– of the theoretical yield curve at long maturities,

but it will require much more computing power than a cubic spline interpolation, a fifth order spline will also

require many more internal parameters to be updated every time the model is calibrated. Our numerical

experiments show that at short to mid maturities both cubic and fifth order splines give similar results. In

both cases an analytical form of (352) can be constructed.
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On the other hand, the values of r0, a2 and a3 could be determined by other means.

For example we may know that r0 = 0.0125, a2 = 0.8 and a3 = 0.013 (according to our

previous calibration of the Vasicek model, those values seem to be reasonable choices to be

used in this example). Then, by (352) we will obtain a perfect fit to the initial yield curve.

Figure 15 shows a plot of α(t) found using the data of Table 4 and the values r0 = 0.0125,

a2 = 0.8 and a3 = 0.013.

Mean reversion parameter corresponding to anextended Vasicek model ’perfectly’ fitted to a given initial yield
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Figure 15: We present here the plot of mean reversion parameter function found using
(352), the data in Table 4 and the values r0 = 0.0125, a2 = 0.8 and a3 = 0.013. Using
initial data, a smooth enough ZCB price curve was constructed (we used quintic splines),
then such a curve was used in combination with (352). This function will allow us to obtain
a perfect fit to initial data using the model (343).

If one is offered the choice, to deduce the values of r0, a2 and a3 from volatility related

data should be preferred, otherwise, as we commented at the end of the preceding example,

extreme caution should be used if one wants to use the calibrated model to infer about

contracts that may be related to interest rate volatility.

If no more initial data is available, or if for some reason to assign values to r0, a2 and a3

is not viable (either by using an alternate method or by any other criteria), we will require

to play a little more with formulas in order to achive a calibration to initial yield data.

A way out of this is to assume a particular analytical form for α(t), for example that

α(t) is a polynomial of a known degree, α(t) = p0 + p1t + p2t
2 + · · · + pN tN . Of course

we can still use (326) to write an expression for I (0, t) in terms of initial data. Combining
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Mean reversion parameter corresponding to anextended Vasicek model ’perfectly’ fitted to a given initial yield
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Figure 16: This plots shows a detail of Figure 15 for maturities shorter than three years..

(351), (350) and (326) we obtain:

I (0, t) =
1
a2

∫ t

0
α(v) {1− exp(−a2(t− v))} dv

+
3a2

3

4a3
2

− a2
3

2a2
2

t− a2
3

a3
2

e−a2t +
a2

3

4a3
2

e−2a2t

=
r0

a2

{
1− e−a2t

}
− ln[B(0, t)] t ∈ [0, T ].

(353)

Then we may plug the analytical form we have selected for α(t), α(t) = p0 + p1t + p2t
2 +

· · · + pN tN for example, into the integral of (353), and formally solve that integral. As in

our previous example, the resulting formula (353) + α(t) = p0 + p1t + p2t
2 + · · · + pN tN

involves all the parameters of our model and can be used to obtain, by least squares, a

collection of values for such parameters.

For example, if we adopt the analytical form

α(t) = p0 + p1t + p2t
2 , (354)

the integral in (353) will be

− p0

a2
+

p1

a2
2

− 2
p2

a3
2

+
(

p0 −
p1

a2
+ 2

p2

a2
2

)
t +
(

1
2
p1 −

p2

a2

)
t2 +

1
3
p2t

3

+
(

p0

a2
− p1

a2
2

+ 2
p2

a3
2

)
exp(−a2t); (355)
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Leastsquares fit to the Classic Hull-White Model of the Implied yield curve as of May 12th, 2003
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Figure 17: This plot shows the implied yield curve data extracted from Swap rate data as
on May 12 2003 as well as the yield curve obtained as the least squares fit of the Classic Hull–
White Model, (343), to that data assuming a mean reversion parameter of polynomial form
(quadratic in this example). To obtain the model parameters we applied the Levenberg–
Marquardt method to (356) and the data from Table 4.

plugging the last result into (353) we will obtain

−p0

a2
2

+
p1

a3
2

− 2
p2

a4
2

+
3a2

3

4a3
2

+
r0

a2
+
(

p0

a2
− p1

a2
2

+ 2
p2

a3
2

− a2
3

2a2
2

)
t +
(

p1

2a2
− p2

a2
2

)
t2

+
p2

3a2
t3 +

(
p0

a2
2

− p1

a3
2

+ 2
p2

a4
2

− a2
3

a3
2

− r0

a2

)
e−a2t +

a2
3

4a3
2

e−2a2t = − ln[B(0, t)]

t ∈ [0, T ] ,

(356)

which we can use in combination with Table 4 to obtain, by means of a nonlinear least

squares regression, the implied values of the parameters p0, p1, p2, r0, a2 and a3.

Figure 17 and Figure 14 show our results in the calibration of (343), using the Levenberg–

Marquardt method, under the assumption that the mean reversion parameter α(t) is of the

form (354). The resulting parameters found, with a standard deviation of residuals of

0.0020231342 and an R2 of 1.00, are:

a2 ∼ 0.179084373 , a3 ∼ 3.999277× 10−12 ,

r0 ∼ 0.006507327 , p0 ∼ 0.0129721181 ,

p1 ∼ −0.0000752610236 , p2 ∼ −0.00000408742152 ,

(357)

(as before, we did tried a numerical experiment with a modified model function —to force

a positive r0—, see Figure 14 and Figure 17).
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Notice that the resulting bond volatility formula corresponding to this example is of the

same form as that we obtained in the previous example, and although the values of the

parameters involved are different we expect curves very similar to those shown in Figure 13

and Figure 10. As we have mentioned before, one should be cautious if a model calibrated

(only) to initial yield data is to be used to make assumptions about contracts that may not

only be related to the interest rate but also to interest rate volatility not considered into

the calibration process.

4.2.3 Constant α and β

We consider now the case of α and β constant and equal to a1 and a2 respectively while

γ = γ(t). Under these assumptions we can rewrite (255) as follows:

drt = (a1 − a2rt)dt + γ(t) dWt. (358)

This version of the Hull–White model differs from our previous two examples in the fact

that it allows for a more complex theoretical bond volatility. We can use this quality to

model an initial term structure of volatilities, for example volatilities extracted from “flat”

Cap volatilities (please see §4.3).

As before, we offer some of the properties of this model. As expected some of the

formulas remain the same, in particular, the expressions for η and S.

η(t) = exp
(∫ t

0
β(u) du

)
= exp(a2t). (359)

rt = (1/η(t))
{

r0 +
∫ t

0
η(u)α(u) du +

∫ t

0
η(u)γ(u) dWu

}
= exp(−a2t)

{
r0 +

a1

a2
(exp(a2t)− 1) +

∫ t

0
exp(a2u)γ(u) dWu

}
= e−a2t

{
ea2srs +

a1

a2

(
ea2t − ea2s

)
+
∫ t

s
ea2uγ(u) dWu

}
s ≤ t.

(360)

mt = E(rt) = (1/η(t))
{

r0 +
∫ t

0
η(u)α(u) du

}
= e−a2t

{
r0 +

a1

a2

(
ea2t − 1

)}
=

a1

a2
+
(

r0 −
a1

a2

)
e−a2t.

(361)

As in the case of Vasicek’s model (Hull White’s model with all parameters constant as in

our first example, see (331)), (361) means that the long term mean of the rate is given by
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Leastsquares fit to the Classic Hull-White Model of the Implied yield curve as of May 12th, 2003
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Figure 18: This plot shows the implied yield curve data extracted from Swap rate data as
on May 12 2003 as well as the yield curve obtained as the least squares fit of the Hull–White
Model (358) to that data assuming constant mean reversion and speed of mean reversion
parameters and a volatility parameter of polynomial form (quadratic in this example). We
applied the Levenberg–Marquardt method of nonlinear least squares to equation (369) which
contains all the parameters of the model.

the ratio a1
a2

. A similar observation applies to (362) below, and to (332) above.

E(rt | Fs) = (1/η(t))
{

η(s)rs +
∫ t

s
η(u)α(u) du

}
s ≤ t

= e−a2t

{
ea2srs +

a1

a2

(
ea2t − ea2s

)}
=

a1

a2
+
(

rs −
a1

a2

)
e−a2(t−s) s ≤ t.

(362)

Our three examples have had in common the fact that they share the same expression for

S (·, ·), please compare (363) with (335) and (350)

S (t, T ) = η(t)
∫ T

t

1
η(u)

du t ∈ [0, T ]

=
1
a2

(
1− e−a2(T−t)

)
.

(363)

In this case, since we do not know the form of γ(u) we can not explicitly evaluate the

following expressions,

V t = Var(rt) =
1

η2(t)

∫ t

0
η2(u)γ2(u) du

= e−2a2t

∫ t

0
e2a2uγ2(u) du.

(364)
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Var(rt | Fs) =
1

η2(t)

∫ t

s
η2(u)γ2(u) du s ≤ t

= e−2a2t

∫ t

s
e2a2uγ2(u) du.

(365)

I (t, T ) =
∫ T

t

1
η(u)

∫ u

t
η(v)α(v) dv du

− (1/2)
∫ T

t
η2(v)γ2(v)

{∫ T

v

1
η(u)

du

}2

dv t ∈ [0, T ]

=
a1

a2

{
(T − t) +

1
a2

[exp (−a2(T − t))− 1]
}

− 1
2a2

2

∫ T

t

{
1 + e−2a2(T−v) − 2e−a2(T−v)

}
γ2(v) dv t ∈ [0, T ].

(366)

Instead, we can write:

I (0, t) =
a1

a2

{
t +

1
a2

[exp (−a2t)− 1]
}

− 1
2a2

2

∫ t

0

{
1− e−a2(t−v)

}2
γ2(v) dv t ∈ [0, T ] ,

(367)

and

S (0, t) =
1
a2

(
1− e−a2t

)
. (368)

Leastsquares fit to the Hull-White Model (with non constant volatility) of the Implied ZCB curve as of May 12th, 2003
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Figure 19: Implied zcb curve data extracted from Swap rate data as on May 12 2003 as
well as the zcb curve obtained from our least squares fit of the Hull–White Model (358) to
Table 4 data assuming constant mean reversion and speed of mean reversion parameters
and a volatility parameter of polynomial form (quadratic in this example).

This version of Hull–White’s model is usually used in the calibration to interest rate

volatility data. Such use should be obvious from the structure of the model. Since both γ
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and a2 appear in the bond volatility formula (see (295) and (363)), model (358) is (out of

the three examples considered up to now) the one that allows for a richer family of bond

volatilities. This feature is exploited usually in the form of a calibration to initial spot

volatility data (in fact, as we will see later, one can achieve a “perfect fit” to initial spot

volatility following a very simple scheme).

Still, one could use model (358) to fit an initial term structure of interest rates.

Notice that such application of the model is highly unusual and that the resulting

volatility structure we may obtain from this example will be, most likely, unrealistic; and

that that will be the case even if the fit to initial yield is “perfect”. Please see Figure 20

where we show some bond volatility curves obtained as a result to the calibration of model

(358) to the data from Table 4 under the assumption of a polynomial γ.

As it has happened before, even after combining (367) and (368) with (326) we can not,

directly, find implied values for a2, a1 and γ. If instead, one looks at (324) an expression

for γ will be found that could be used to perfectly fit the model to an initial yield curve.

In our case (324), plus (326), reduces to:

γ2(t) = 2a1a2 + 2a2
2

d

dt
(lnB(0, t)) + 3a2

d2

dt2
(lnB(0, t)) +

d3

dt3
(lnB(0, t)) (369)

which requires the log of the initial zcb curve to be at least three times differentiable (also

a1 and a2 should be selected in such a way as to ensure the non–negativity of the right hand

side of (369)).

On the other hand, (367), (368) and (326) could still be used to calibrate the model if

we assume some explicit form for γ. For example

γ(t) = p0 + p1t + · · ·+ pkt
k (370a)

or

γ(t) = f(t; p0, . . . , pk) (370b)

where p0, p1, . . . , pk, are k coefficients (k a finite natural number selected by us using our

“best knowledge”) to be determined and f is a known function of t and the coefficients

p0, p1, . . . , pk. In such a case we could attempt a nonlinear least squares regression as we
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have done in our previous examples, from where a1, a2 and γ will be approximated using

our initial data, namely data like that displayed in Table 4.

For example, if we assume that γ can be represented by a second degree polynomial of

the form (370), we can combine (367) and (368) with (326) and (370) to obtain:

1
10

p2
2

a2
2

t5 +
1

4a2
2

(
p1p2 − 3

p2
2

a2

)
t4 +

1
a2

2

(
1
3

[
1
2
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1 + p0p2

]
− 3

2
p1p2
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+

7
2

p2
2

a2
2

)
t3

+
1

2a2
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(
p0p1 −

3
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1
2
p2
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]
+

21
2

p1p2

a2
2

− 45
2
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2

a3
2

)
t2

+
1
a2

(
a1 +

1
2

p0
2
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− 3

2
p0p1
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2

+
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2a3
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1

2
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2

+
93
4
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− 1
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(
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a1
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− p0

2

a2
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a4
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1
2
p2
1 + p0p2
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+ 12

p1p2

a5
2

− 24
p2

2

a6
2

)
e−a2t

− 1
4a3

2

(
p2
0 −

p0p1

a2
+

1
a2

2

[
1
2
p2
1 + p0p2

]
− 3

2
p1p2

a3
2

+
3
2

p2
2

a4
2

)
e−2 a2t

+
r0

a2
− a1

a2
2

− 3
4

p2
0

a3
2

+
7
4

p0p1

a4
2

− 15
4a5

2

[
1
2
p2
1 + p0p2

]
+

93
8

p1p2

a6
2

− 189
8

p2
2

a7
2

= − lnB(0, t)

(371)

which, although more complex than (341) and (356), could still be used in a least squares

regression.

As in the previous example, we used the Levenberg–Marquardt method to obtain ap-

proximations to the parameters of (358) under the hypothesis of a quadratic, (370), γ

function. With a standard deviation of residuals of 0.00161780368 we found

a1 ∼ 0.01502679329, a2 ∼ 0.3066419325,

r0 ∼ 0.005652634312, p0 ∼ −0.02827933947,

p1 ∼ −0.005063641306, p2 ∼ 0.0002591939827.

(372)

please see Figure 18 and Figure 19 for depictions of our findings.

Another possibility is to make use of the results of the next section, which will allow us

to introduce a second set of initial data. That new data will come from Caps and will convey

information regarding bond volatility at initial time. With the help of (295), data related

to initial bond volatility can be used to determine (or more properly, to approximate) γ

and S.
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Bond volatility curves corresponding to the least squares fit to data  of the Hull White model with quadratic volatility parameter
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Figure 20: Bond volatility curves for maturities of 2, 5, 10, 15, 20, 25, and 30 years are
shown (as before, we are plotting the negative of the bond volatility function). These curves
are obtained from the least squares fit of the Hull–White model with non constant volatility
parameter, (358), under the assumption of a quadratic γ function. As it may be expected,
the curves we obtain do not need to be realistic since only initial yield curve information has
been used to obtain them. Compare with Figure 44 which depicts implied bond volatility
curves obtained after a perfect fit of a Hull–White model to initial spot volatility using the
methods presented in §4.5.

4.3 Caps

As we saw in the subsection of examples (see §4.2, and in particular the second example), it

is always possible to calibrate (255) once some assumptions, regarding the model parameters

α, β and γ, are made. In fact, if the right kind of assumptions are made, it will be possible

to replicate the initial yield curve using (255) or a reduced version of it like (343). The

problem with that approach is that the resulting bond volatility curves are not necessarily

realistic representations of the bond volatility observed.

In case a “good” fit to volatility data is also needed it is necessary to introduce some

additional steps to the calibration process.

In this section we will be discussing a possible approach in that regard. This idea uses

(295) and its relation with both, market practice in the pricing of Cap [Floor] contracts and

the theoretical valuation of such contracts. Our presentation of this topic is not complete

and many extensions are possible (the first extension that comes to mind is to also introduce

Swaptions data, for example). As we mentioned earlier, additional information regarding

the contracts discussed in this section may be found in the books by Musiela and Rutkowski,
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Martingale Methods in Financial Modeling, [133] and Bielecki and Rutkowski, Credit Risk:

Modeling, valuation and hedging [12]. On the other hand, books like Hull’s Options, Futures,

& Other Derivatives, [82], provide also a view to market practice.

Throughout this section we will be using notation and terms defined in Chapter 2. In

particular: N is used to represent a nominal, principal or notional amount, ϕ(t, s) is the time

fraction between dates t and s (with respect to known conventions), B(t, T ) is the time t

price of a zcb of maturity T , Bt is the value of the bank account (money market account) and

Ti, i ∈ Nn are used to represent n (reset or payment) dates, such that 0 ≤ t ≤ T1 ≤ · · · ≤ Tn.

In what follows we assume (unless otherwise specified) that Cap [Floor] contracts are

settled at a settlement time (date) t, t ≥ 0. To be consistent, cash flows will be explicitly

discounted to time t.

4.3.1 Theoretical price of Caps

Definition 4.3.1. An interest rate Cap [Floor] is a contract between two parties in which

the seller agrees (for a price) to pay the holder a cash amount (based on a nominal) if a

given interest rate exceeds [falls below] a previously agreed value at some future reset dates.

t T0 T1 T2 T3 . . . Tn−1 T = Tn

Figure 21: Cap time schedule

Payments, if they are positive, will be given at some previously agreed payment dates. If

we call N the nominal, K the strike, V r the floating rate, ϕ the day counting convention, t

the settlement date, and Ti, i ∈ N∗
n the reset (i ∈ N∗

n−1), and installment (payment) dates

(i ∈ Nn), we can write the payment at date Ti as:

Nϕ(Ti−1, Ti)(V r(Ti−1, Ti)−K)+ (373)

in the case of a cap, or as:

Nϕ(Ti−1, Ti)(K − V r(Ti−1, Ti))+ (374)
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in the case of a Floor. Note that those payments can be discounted back to time t by

multiplying25 by Bt/BTi .

Definition 4.3.2. An interest rate Cap (Floor) consisting of single reset and payment dates

is called a caplet (floorlet). In such a case is clear that the discounted value (to time t) of

a caplet will be

N
Bt

BTp

ϕ(Tr, Tp)(V r(Tr, Tp)−K)+ (375)

while in the case of a floorlet we will have

N
Bt

BTp

ϕ(Tr, Tp)(K − V r(Tr, Tp))+ (376)

where t is the settlement, Tr the reset, and Tp > Tr is the payment date, N is the nominal,

t Tr Tp

Settlement V r(Tr, Tp) is reset Delayed payment is payed

Figure 22: Caplet time schedule and payment

K the strike and ϕ the day counting convention applicable to variable rate V r (reset at time

Tr and valid throughout the time interval [Tr, Tp].

Note 4.3.1. Notice that if T0 = t the value of V r(T0, T1) will be known at settlement,

thus the first payment will not be stochastic. For this reason, t < T0 is a usual Market

requirement in the definition of a Cap [Floor] contract. Otherwise, if t = T0, a Cap should

not include the deterministic payment.

Similarly, in the definition of a Caplet, the case t < Tr is the interesting one.

It is clear that a Cap [Floor] can be seen as a portfolio of caplets [floorlets], each of

which is a call [put] on the variable rate V r.

Following similar arguments to those used in our discussion on general forward agree-

ments in Chapter 2, we see that if rate V r represents the yield of an arbitrage free bond

25Dividing by BTi will discount the payoffs to time zero, to obtain the corresponding values at time t we

must let the time zero values accrue until time t, thus multiplying the time zero discounted payoffs by Bt.
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family, V r(Tr, Tp) can be seen as a forward rate corresponding to such family26. Therefore,

a caplet [floorlet] can be seen as a call on the forward rate V r reset at time Tr ≤ Tp with

expiration time Tr and payment delayed to time Tp. Similarly, a caplet [floorlet] could be

seen as an European put [call] on a zcb27 which intuitively match with our comments at

the end of subsection §4.1.1.

Since the nominal N appears in our formulas as a multiplicative factor, in order to

simplify the analysis we may, and will, assume that the nominal is equal to 1, that is

N = 1. Expressions corresponding to other values of the nominal can easily be recovered

by multiplying Cap and Caplet [Floor and Floorlet] prices by the appropriate amount.

In [133], Chapter 16, Musiela and Rutkowski show that under a Gaussian model28, the

price of a caplet is given by:

Lemma 4.3.2. For any 0 < Tr ≤ Tp ≤ T , the arbitrage price at time t ∈ [0, Tr[ of a caplet

26On one hand, (36) can be used to see that

V r(Tr, Tp) =
1

ϕ(Tr, Tp)
(1 + ϕ(Tr, Tp)V r(Tr, Tp)− 1) =

1

ϕ(Tr, Tp)

„
1

B(Tr, Tp)
− 1

«
= Fr(Tr, Tr, Tp)

which is the forward rate valid on period [Tr, Tp] as seen at time Tr. On the other hand, assuming no transac-

tion costs and the perfect divisibility of bonds, arbitrage arguments imply that B(t, Tp) = B(t, Tr)B(Tr, Tp),

for t ≤ Tr ≤ Tp, which implies that V r(Tr, Tp) = Fr(t, Tr, Tp).
27From Definition 4.3.2 we have

N
Bt

BTp

ϕ(Tr, Tp)(V r(Tr, Tp)−K)+ = N
Bt

BTp

(ϕ(Tr, Tp)V r(Tr, Tp)− ϕ(Tr, Tp)K)+

= N
Bt

BTp

„
1

B(Tr, Tp)
− (1 + ϕ(Tr, Tp)K)

«+

= N
Bt

BTp

1 + ϕ(Tr, Tp)K
B(Tr, Tp)

„
1

1 + ϕ(Tr, Tp)K −B(Tr, Tp)

«+

= N
Bt

BTp

1

κB(Tr, Tp)
(κ−B(Tr, Tp))+

which apart from multiplicative factors, is the payoff of a put option with strike κ = (1 + ϕ(Tr, Tp)K)−1

(which we can see as the price of a time Tr zcb with maturity Tp and yield K) and expiry Tr on a time Tr

zcb with maturity Tp. Here we have assumed that the ϕ–time fraction is short so that simple compounding

can be used. The case of a floorlet is similar.

28As we mentioned before, the generalized Hull–White model (255) is the archetypical Gaussian model,

thus we use “Hull–White” and “Gaussian” interchangeably. See Footnote 8.
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with expiry date Tr, settlement date t, payment (delayed to) date Tp, and strike level K on

a floating rate V r is given by the formula

Cpl(t, Tr, Tp, ϕ, V r,K,v)

= B(t, Tr)Φ(e(t, Tr, Tp))− (1 +Kϕ(Tr, Tp))B(t, Tp)Φ(e(t, Tr, Tp)− v(t, Tr, Tp)) (377)

where

e(t, Tr, Tp) =
1

v(t, Tr, Tp)
ln
(

B(t, Tr)
(1 +Kϕ(Tr, Tp))B(t, Tp)

)
+

1
2
v(t, Tr, Tp), (378)

and

v2 = v2(t, Tr, Tp) =
∫ Tr

t
|b(u, Tr)− b(u, Tp)|2 du. (379)

Φ is the cumulative normal distribution, b(t, T ) is the bond volatility and B(t, Tr) and

B(t, Tp) are the time t prices of zcbs of maturities Tr and Tp whose yield is given by rate

V r.

In the previous lemma, b(t, T ) is the bond volatility at time t of a zcb of maturity T as

mentioned in §4.1, (294) and in [133] Proposition 12.2.1. Since we are assuming N = 1, we

can regard Cpl as the caplet price per unit of nominal.

In our particular case, we know that under the Hull–White model, bond volatility is

given by (295), that is:

b(t, T ) = −γ(t)S (t, T ),

therefore we can rewrite (379) as:

v2(t, Tr, Tp) =
∫ Tr

t
γ2(u)|S (u, Tr)− S (u, Tp)|2 du, (380)

which can be used in the calibration process to recover γ and S. In practice, this will still

require some kind of compromise in the form of assumptions regarding the analytical form

of γ.

In light of Lemma 4.3.2 and Definition 4.3.1 it is not difficult to prove the following

proposition (see Musiela and Rutkowski, [133], Proposition 16.2.1):
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Proposition 4.3.3. The price at time t < T0 of an interest rate Cap with strike K, on an

underlying floating rate V r, settled in arrears at times {Tj}j∈N∗n, equals

Cap(t, {Ti}i∈N∗n , ϕ, V r,K, {vi}i∈Nn)

=
n∑

j=1

B(t, Tj−1)Φ(ej(t))− (1 +Kϕ(Tj−1, Tj)B(t, Tj)Φ(ej(t)− vj(t)), (381)

where

ej(t) = e(t, Tj−1, Tj) =
1

vj(t)
ln
(

B(t, Tj−1)
(1 +Kϕ(Tj−1, Tj))B(t, Tj)

)
+

1
2
vj(t), (382)

and

v2
j (t) = v2(t, Tj−1, Tj) =

∫ Tj−1

t
|b(u, Tj−1)− b(u, Tj)|2 du. (383)

{B(t, Ti)}i∈N∗n are the time t prices of zcb’s of maturities {Ti}i∈N∗n whose yield is given by

rate V r, and b(·, ·) is the bond volatility.

As before, since we are assuming N = 1, we can regard Cap as the Cap price per unit

of nominal.

Observe that in the case interest rate V r dynamics are as in the Hull–White model of

interest rates, (255), (383) acquires a more familiar look:

v2
j (t) = v2(t, Tj−1, Tj) =

∫ Tj−1

t
γ2(u)|S (u, Tj−1)− S (u, Tj)|2 du. (384)

where S is given by (281) and γ is the volatility parameter of the Hull–White model (255).

4.3.2 Market price of Caps

Caps, as well as Floors, Swaps, FRA’s, Swaptions, etc., are over the counter (OTC) deriva-

tives used by many companies to hedge against their interest rate risk exposures. Ever

since the introduction of interest rate options, the total notional outstanding on such con-

tracts has been steadily increasing. According to the International Swaps and Derivatives

Association (ISDA), by the second half of 1997 the total outstanding notional on interest

rates options was estimated to be of $4920.10 billion dollars29 (the ISDA does not provide

29Figures taken from ISDA’s Surveys & Market Statistics: Historical data, ISDA Market Survey results,

1987–present (http://www.isda.org/statistics/stat_nav.html).
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surveys on interest rate options after 1997; instead total market size, including interest rate

swaps, cross–currency swaps and interest rate options are provided for years after 1997; in

the second half of 1997, total market size was estimated to be of $29035.00 billion dollars,

by the end of 2003 that figure had grown to $142306.92 billion). According to the Bank for

International Settlements (BIS), by the end of 2003 the outstanding notional of interest rate

options (this includes Caps, Floors, Swaptions, collars, etc.) had grown to $20012 billion

dollars30. When we talk about the cap/Floor markets, or in general, about the interest rate

options markets we refer to the many companies that enter into the over the counter trans-

action of interest rate options. For example, the US market includes several Commercial

Banks (CB’s) and Trust Companies (TC’s) as JPMorgan Chase, Bank of America, State

Street Bank & Trust Co, and Northern Trust Co, to name just a few31.

Market practice regarding the pricing of Cap and Floor contracts differs from the theo-

retical description we presented above. In particular, market prices for Caps and Floors are

computed using Black’s model [14], and those prices are not directly quoted; instead “flat

volatilities” (we will describe this concept later) for at the money (ATM) Caps and Floors

are quoted.

Caplets are (market) priced32 under the assumption of log–normal drift–less interest

rates with piecewise constant volatility, that is V r, the underlying of the Cap/Caplet (Floor

or Floorlet) contract, is assumed to follow lognormal dynamics and the percent variation

of such rate dV r/V r has zero drift and piecewise constant volatility, for every maturity33.

30Figures taken from BIS’s Regular OTC Derivatives Market Statistics: The Global OTC Deriva-

tives Market at end-December 2003 (http://www.bis.org/publ/otc_hy0405.htm). Additional informa-

tion regarding US market size can be found in the web site of the Comptroller of the Currency (http:

//www.occ.treas.gov/deriv/deriv.htm).
31Additional information in this regard can be found at the web site of the Comptroller of the Currency

(http://www.occ.treas.gov/deriv/deriv.htm). The interested reader can search the above mentioned

web site for the Quarterly Derivatives Fact Sheets.
32See [116], [19] and [82].
33In a sense the idea is extremely simple, according to market practice, each underlying forward rate

V r(t, Tr, Tp) is modeled separatedly as a lognormal driftless process, each of them totally correlated to the

previous and next rate. If there are n reset dates, then there are n forward rate processes, each of them
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The floating rate V r is always assumed to follow a pre–specified yield curve (a LIBOR rate

for example) or family of zcb prices. In consistency with such assumptions regarding the

dynamics of the underlying interest rate V r, another assumption used in the market pricing

of caplets is that bond volatility of the associated bond family behaves in a particular and

simple way; if b(t, T ) is the time t bond volatility (under Black’s model) for a zcb of maturity

T then

|b(t, Tr)− b(t, Tp)| = σr,p, (385)

where σr,p is assumed to be constant on the time interval [Tr, Tp], but possibly different on

another time interval. All these assumptions are made to be able to apply Black’s model34,

but they do not necessarily agree with the theoretical treatment of bonds, interest rates

and interest rate options under different interest rate models. For example, in our case

we assume that interest rates follow the dynamics expressed by (255), which will give rise

to Gaussian rates and not to log–normal ones. Off course, if we are going to conciliate

both views, the market use of log–normal (forward) rates with the theoretical assumption

of (short) rates following a model like (255) (or for that matter of any other form) then we

will need to impose some restrictions or assumptions with regards to the form of b(·, ·).

As we mentioned above, seen as portfolios of European options on a log–normal under-

lying, Caps are then priced using Black’s model (roughly speaking, applying Black–Scholes’

formula to the “log–normal” forward rate V r obtained from a chosen family of zcb’s).

Definition 4.3.3. Let N be the nominal, Tr be the reset date and Tp the payment date,

associated to its own stochastic dynamics of the form dV r(t, Ti, Ti+1) = σi,i−1V r(t, Ti, Ti+1)dW i
t .

34Although Black’s model, see [14], was developed to price options on a futures commodity contract, due

to its simplicity and affinity to the Black–Scholes pricing model, it has been applied to a wide variety of

derivatives preserving the “spirit” of the model’s assumptions, that is that the underlying (a forward rate,

a bond, etc) follows lognormal dynamics, its percent variation is drift-less and has constant or piecewise

constant volatility. The result of those assumptions is a pricing formula similar to the Black–Scholes formula,

but with zero “risk free” rate. In a sense, to use Black’s model in the pricing of a derivative corresponds to

the assumption that the underlying “exists” in the form of an observable asset in a Black–Scholes “market”

with zero risk free rate.
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both relative to time of settlement t, t < Tr < Tp, which the market usually takes as equal

to zero. Let ϕ be the day counting convention to be used, K be the strike, V r(Tr, Tp) the

floating rate, and σr,p be the caplet volatility. According to [19], [82] and [116]35, the market

price of a caplet with those parameters is given by:

CplM (t, Tr, Tp, ϕ,N, V r(Tr, Tp),K, σr,p)

= NB(t, Tp)ϕ(Tr, Tp){V r(Tr, Tp)Φ(e(t, Tr, Tp,K, V r(Tr, Tp), σr,p))

−KΦ(e(t, Tr, Tp,K, V r(Tr, Tp), σr,p)− σr,p

√
Tr − t)}

e(t, Tr, Tp,K, V r(Tr, Tp), σr,p) =
1

σr,p

√
Tr − t

ln
(

V r(Tr, Tp)
K

)
+

1
2
σr,p

√
Tr − t. (386)

Writing V r(Tr, Tp) in terms of bond family36 B(s, t), s ≤ t ≤ T , which is assumed to

follow the day counting convention ϕ37, we can rewrite (386) as follows:

CplM (t, Tr, Tp, ϕ,N, B(t, Tr), B(t, Tp),K, σr,p)

= N{(B(t, Tr)−B(t, Tp))Φ(e(t, Tr, Tp, ϕ,K, B(t, Tr), B(t, Tp), σr,p))

−Kϕ(Tr, Tp)B(t, Tp)Φ(e(t, Tr, Tp, ϕ,K, B(t, Tr), B(t, Tp), σr,p)− σr,p

√
Tr − t)}

e(t, Tr, Tp, ϕ,K, B(t, Tr), B(t, Tp), σr,p)

=
1

σr,p

√
Tr − t

ln
(

B(t, Tr)−B(t, Tp)
Kϕ(Tr, Tp)B(t, Tp)

)
+

1
2
σr,p

√
Tr − t, (387)

(387) will come handy when dealing with market data.

As we said before, a caplet is nothing but a Cap on three times, t, the settlement (t = 0

in the case of data recovered from the market), Tr, the reset, and Tp, the payment date.

Caps on more times are then priced as portfolios of caplets. In the case of the American

market, it is usual practice to place the first reset date three months after settlement and

the first payment date three months afterward. Future resets are made to coincide with

the payment date of the preceding caplet, while future dates are chosen three months after

35This also agrees with Bloomberg’s© documentation.
36As we argued before, V r is seen as the forward rate implied by the bond family, thus we can write

V r(Tr, Tp) in terms of zcb’s B(0, Tr) and B(0, Tp) and the time fraction ϕ(Tr, Tp) by means of (36). That

is 1 + V r(Tr, Tp)ϕ(Tr, Tp) = B(Tr, Tp)−1.
37It is not difficult to relax this requirement, but we will not need such generalization.
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their corresponding reset. As a result of this practice, there is no caplet assigned to the first

quarter in a Cap38. In other cases, and in particular in other countries, the time distance

between resets (and between payment dates) may be different. If all caplet periods are of

the same length, that length is called the tenor of the Cap. In Europe Caps with a tenor

of six months are common, while in the US market the preferred tenor is three months.

Table 5 shows a relation between commonly available maturities in USA and the number

of caplets per cap in case of the two most frequently used tenors, 6 and 3 months.

Table 5: This table shows the usual maturities of Caps [Floors] quoted in the US Market.
Also shown in this table are the number of Caplets [Floorlets] per Cap [Floor] in the two
most used tenors.

Available Maturities
3 month tenor 6 month tenor

Cap Mat. # of Caplets Cap Mat. # of Caplets
1 year 3 caplets 1 year 1 caplet
2 years 7 caplets 2 years 3 caplets
3 years 11 caplets 3 years 5 caplets
4 years 15 caplets 4 years 7 caplets
5 years 19 caplets 5 years 9 caplets
7 years 27 caplets 7 years 13 caplets
10 years 39 caplets 10 years 19 caplets

For example, it is clear that a one year maturity Cap consists of three caplets with resets

at the 3, 6, and 9 month times; and a two year Cap should include seven caplets with resets

at the 3, 6, 9, 12, 15, 18, and 21 month times.

Definition 4.3.4. For T0, T1, . . . , Tn−1 the reset dates, and T1, T2, . . . , Tn the payment

dates, the time t < T0 market price of a Cap on a floating rate V r that follows the yield

curve of a bond family B(s, u)s≤u≤T , with a notional N, day counting convention ϕ, strike

K and caplet volatilities σi−1,i = σTi−1,Ti
, i ∈ Nn is given by:

38Since the rate V r is reset at the beginning of each quarterly period, the “first” caplet of a Cap, that

is the caplet that will correspond to the first period of the Cap, will be completely determined at the first

reset date (that is at settlement or a short time afterward). That is, the first caplet is deterministic and not

stochastic, as all the remaining caplets. Thus, market practice is to “drop” the deterministic caplet.
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CapM (t, {Ti}i∈N∗n , ϕ, {B(t, Ti)}i∈N∗n ,K, {σi−1,i}i∈Nn)

=
n∑

i=1

CplM (t, Ti−1, Ti, ϕ,N, B(t, Ti−1), B(t, Ti),K, σi−1,i). (388)

But Cap prices are not directly quoted in the market, instead an indirect approach is

followed. The Market quotes “flat” cap volatilities for at the money Caps priced at time

t = 0 = T0 (remember, in this case the we drop the first Caplet since that one is deterministic

—otherwise, no–arbitrage will require that the parties involved in the cap exchange the first

cash flow, which is equivalent to drop the first Caplet—); a flat volatility is the number σ̃n

that solves the equation

CapM (0, {Ti}i∈N∗n , ϕ, {B(0, Ti)}i∈N∗n , {σ̃n}i∈Nn)

= CapM (0, {Ti}i∈N∗n , ϕ, {B(0, Ti)}i∈N∗n , {σi−1,i}i∈Nn). (389)

Obviously, this practice ‘destroys’ the ‘fine’ structure of caplet volatilities (at least it

hides them from the “public”).

Caplet volatilities are also known as spot volatilities.

In order to recover spot volatilities from flat volatilities one must follow market conven-

tions. This is done in the next subsection.

4.4 Stripping spot volatilities

The process according to which spot volatilities are extracted/recovered from flat volatility

quotes is commonly known as stripping caplet volatility or as stripping spot volatility.

Definition 4.4.1. A Cap [Floor] with reset and payment times {Ti}i∈N∗n and settlement

date t is said to be at the money (ATM) if and only if its strike KATM is equal to the

corresponding swap rate39 (see §2.1.5, and in particular see (40)):

KATM = Sr(t, {Ti}i∈N∗n , ϕ) =
B(t, T0)−B(t, Tn)∑n
i=1 ϕ(Ti−1, Ti)B(t, Ti)

. (2.40)

Similarly, a Cap is out of the money (OTM) if its strike K > KATM. If, on the other hand

its strike K < KATM we say that the Cap is in the money (ITM).

39That is, with the same underlying family of zcb’s and the same payment schedule.
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In the American market, flat Cap volatilities are quoted for ATM Caps of maturities of

1, 2, 3, 4, 5, 7, and 10 years. See Table 6 for a sample of such kind of data.

Table 6: Flat Cap volatility as reported on Bloomberg© on May 12th 2003. This table
shows the bids at 3:56pm of that day.

Flat Volatilities
Maturity Volatility (%)

1 year 44.200
2 years 48.300
3 years 44.300
4 years 41.600
5 years 37.100
7 years 31.700
10 years 25.700
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Figure 23: This plot shows “flat” volatility data for US Dollar Caps/Floors quoted for
May 12th 2003 (see Table 6). The plot shows line (first order), cubic and cubic b–spline
interpolations for that data. In the US markets flat volatilities are quoted for Caps/Floors
of maturities 1, 2, 3, 4, 5, 7, and 10 years.

Market practice is to (linearly) interpolate40 cap volatilities (‘flat’ Cap volatilities) and

40Intuitively, one can see that market practice, to linearly interpolate, may not be optimal and even

worse, that depending on the situation may not even be appropriate (for example, recall the bootstrapping

procedure explained in Chapter 2, if swap rates are linearly interpolated, the corresponding forward rates
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to use the interpolated volatilities to reconstruct, from (389), the market price of a Cap on

a maturity different from those quoted.

US Dollar Cap Volatility curve for May 12, 2003(actual data in blue, cubic spline apprx in blackquartic apprx in red)
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Figure 24: This plot compares the linear, cubic and quartic interpolation of “flat” volatility
data for US Dollar Caps/Floors quoted for May 12th 2003 (see Table 6) using splines of
appropriate orders. The plot shows the original data (crosses), line (first order), cubic and
quartic interpolations for that data.

It is not clear what the procedure should be for maturities shorter than the shorter

maturity quoted. For example, if information regarding Caps of short maturities is available,

for example a quote on an ATM Cap of maturity of 3 months, then one could interpolate

Flat volatilities to obtain the prices of ATM Caps of six and nine months maturity.

Otherwise, if no information is available one could opt to assume all Caplets of the Cap

of shortest maturity have the same Spot volatility (equal to the Flat volatility), or, one

could extrapolate Flat volatilities for shorter maturities.

Thus, in the case of a three month tenor (the case of the six month tenor is a lot easier),

assuming all three initial caplets are of the same volatility41, or extrapolating Flat volatilities

may not be stable, the implied yield and the swap curve will not be differentiable, etc.). Instead, to use a

form of higher order interpolation makes more sense. With respect to this, I have found some references in

the literature, as well as in bulletin boards, regarding the “new trend” of using higher order interpolation

—cubic splines to be more specific— instead of linear interpolation. Using cubic splines one can expect to

obtain smoothed curves. We experimented with this idea, and show the results here.
41Unless, of course, one has the ability to find quotes on such caplets. For example, in the case of

European swap rates, or LIBOR, one may use Eurodollar options (which are effectively caplets [floorlets]
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for Caps of maturities of six (and nine months in the case of three month tenor), one can

compute the market prices of (appropriate) Caps differing on a caplet. Then subtracting

successive prices, one may find the market prices of such Caplets. Finally, using (387), we

find the implied caplet volatility.

Let’s denote by {Ti}i∈N∗39 the quarter dates42 starting 3 months after settlement.

For example, to strip the fourth Caplet volatility from Table 6, one first (linearly)

interpolate the flat Cap volatility corresponding to a Cap with maturity of 1 year and a

quarter (remember, we either assume the first three spot volatilities to be equal to the first

flat volatility or extrapolate Flat volatilities for ATM Caps of maturities of six and nine

months):

σ̃1.25 = σ̃T4
= xσ̃T7

+ (1− x)σ̃T3

∣∣∣∣
x=0.25

= 0.25× 48.300 + 0.75× 44.200 = 45.225 (390)

Then, one uses Definition 4.3.4, Definition 4.3.3, the data from Table 4 and Table 6 and

Definition 4.4.1 to determine the value of the ATM Caps with maturities of one year and one

year and a quarter (actually, in the computation of the price of the Cap of one year maturity,

the strike of the Cap of one year and a quarter must be used, thus the one year maturity

Cap could be in or out depending on the swap rate curve). To reduce notation, let’s call

such Cap prices CapM (T4), and CapMio(T3). Similarly, we can denote by CplM (T3, T4) the

price of the fourth Caplet in the Cap with maturity of one year and a quarter, CapM (T4).

Thus

CapM (T4)−CapMio(T3) = CplM (T3, T4) (391)

will give us the implied price of the fourth Caplet.

and very short –less than a year– caps [floors]).
42In practice one uses usual business day conventions and actual/actual day counting as explained in

Chapter 2 (numerical results shown in the following tables are consistent with this practice, that is usual

business day conventions and actual/actual and actual/360 day counting was used to obtain such results). To

simplify the notation in what remains of this exposition we will assume all years and months have the same

length, that all days are business days and that dates start at settlement day (this is somehow equivalent

to 30/360 day counting and no business day convention with the calendar starting at settlement). This way

T0 = 0.25, T3 = 1.00, etc.
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Next, we use Definition 4.3.3, Definition 4.4.1 and the value found in (391) to write an

equation for σ3,4 (the Caplet volatility for the period [T3, T4]) in terms of the Caplet price

found in (391). That expression is of the form of (386) (or (387)) and the only unknown is

σ3,4. This equation is solved numerically.

The process to strip all remaining spot volatilities is the same. Table 9 shows the values

of spot volatilities stripped from Table 6, Figure 27 and Figure 28 show ATM Caplet prices

and Spot volatilities, respectively, found the procedure described here. To construct Table 9

we opted to extrapolate Flat volatilities for ATM Caps of maturities of six and nine months.

In order to do that, we constructed a linear spline function using Table 6.

Using that function, a new table containing thirty nine Flat volatilities was obtained (see

Table 7) —we denote such Flat volatilities as {σ̃Ti
}i∈N39—, and from that table the prices

per unit of nominal of ATM Caps of all those maturities were computed using Definition

4.4.1, Definition 4.3.4, and Definition 4.3.3, see Figure 25 and Table 8. Let’s denote such

prices as CapM (Ti), i ∈ N39.

ATM-Cap price curve using linear interpolation/extrapolation (in red)
              and cubic interpolation/extrapolation (in blue) of Flat volatilities
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Figure 25: This plot compares ATM Cap prices obtained from linear and cubic interpola-
tion/extrapolation of “flat” volatility data for US Dollar Caps/Floors quoted for May 12th
2003 (see Table 6) using splines of appropriate orders. The resulting curves differ in less
than 0.6% at their maximal separation, please see Figure 26 for a depiction of the differences
of the prices using the two indicated methods.

Clearly, the first of all those Caps (the Cap of six months maturity) contains only

one Caplet, and its corresponding Flat volatility should also be equal to the first Spot
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Table 7: Interpolated (extrapolated in the case of short maturities) Flat Cap volatility,
see Table 6. Interpolation (extrapolation) was done using linear and cubic splines (results
have been rounded to the precision of the initial data). actual/actual time to maturity in
years, using next business day convention, is also shown.

Interpolated and extrapolated Flat Volatilities
Maturity TtM (act/act) Linear I/E (%) Cubic I/E (%)

3m 93/365 41.149 40.380
6m 37/73 42.179 41.314
9m 50851/66795 43.218 42.695
12m 66911/66795 44.200 44.200
15m 28022/22265 45.249 45.803
18m 201347/133590 46.265 47.136
21m 641/365 47.282 48.039
24m 732/365 48.300 48.300
27m 823/365 47.300 47.792
30m 914/365 46.300 46.744
33m 1006/365 45.289 45.460
36m 1096/365 44.300 44.300
39m 1187/365 43.625 43.457
42m 1279/365 42.943 42.841
45m 1371/365 42.260 42.275
48m 4 41.600 41.600
51m 1552/365 40.468 40.638
54m 1644/365 39.335 39.481
57m 317666/66795 38.205 38.253
60m 334091/66795 37.100 37.100
63m 350881/66795 36.421 36.065
66m 122557/22265 35.741 35.175
69m 2103/365 35.046 34.394
72m 6 34.402 33.765
75m 2282/365 33.721 33.179
78m 2376/365 33.025 32.640
81m 2467/365 32.352 32.156
84m 7 31.700 31.700
87m 2649/365 31.185 31.210
90m 548/73 30.686 30.729
93m 2831/365 30.188 30.242
96m 2922/365 29.689 29.751
99m 3013/365 29.190 29.254
102m 3104/365 28.692 28.754
105m 584846/66795 28.188 28.245
108m 601271/66795 27.697 27.746
111m 618061/66795 27.194 27.233
114m 211617/22265 26.691 26.718
117m 3561/365 26.188 26.201
120m 10 25.700 25.700
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Percent differences between prices computed using linear and cubicinterpolation/extrapolation (in blue) of Flat volatilities
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Figure 26: This plot depicts the percentage difference of ATM Cap prices obtained
from linear and cubic interpolation/extrapolation of “flat” volatility data for US Dollar
Caps/Floors quoted for May 12th 2003 (see Table 6) using splines of appropriate orders.
The differences of the prices have been “normalized” using the highest ATM Cap Price. As
it is apparent from this plot, the resulting curves differ in less than 0.6% at their maximal
separation, please see Figure 25 for a depiction of the prices constructed using the two
indicated methods.

volatility43, that is CapM (T1) = CplM (T0, T1) and σ0,1 = σ̃T1
.

Next, we follow an iterative process. Knowing all Spot volatilities for time periods

between T1 and Ti−1, we use Definition 4.4.1, Definition 4.3.4, and Definition 4.3.3 and the

ATM Strike of an ATM Cap of maturity Ti to obtain CapMio(Ti−1). Thus we find the price

of the Caplet of reset Ti−1 and payment date Ti as:

CapM (Ti)−CapMio(Ti−1) = CplM (Ti−1, Ti) (392)

With the help of Definition 4.3.3 and (386), σi−1,i can be found using a numeric solver.

The process stops with σ38,39.

Table 9 collects the results of our computations.

We also performed a Stripping of Spot volatilities using the same data, using cubic

interpolation (extrapolation in the case of short maturities) of “flat” volatility instead of

43Even if information regarding Caplets of maturities prior or equal to one year is known by other means,

the stripping process will be similar to the description given here. If Spot volatilities for time periods prior

to six months are needed, one can also take extrapolated Flat volatilities instead, or market information

obtained elsewhere, etc..
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Table 8: Price for ATM Caps on US Dollars. Prices (rounded to five significant figures)
were computed using interpolated (extrapolated for short maturities) bids of Flat Cap
volatility, as shown in Table 7. actual/actual time to maturity in years, using next business
day convention, is also shown.

Cap Prices per unit of nominal
Maturity TtM (act/act) Linear I/E Cubic I/E

3m 93/365
6m 37/73 0.00025963 0.00025433
9m 50851/66795 0.00064297 0.00063524
12m 66911/66795 0.0011254 0.0011254
15m 28022/22265 0.0019859 0.0020072
18m 201347/133590 0.0030513 0.0030983
21m 641/365 0.0043889 0.0044438
24m 732/365 0.0060615 0.0060615
27m 823/365 0.0078968 0.0079551
30m 914/365 0.010033 0.010098
33m 1006/365 0.012450 0.012480
36m 1096/365 0.014994 0.014994
39m 1187/365 0.017753 0.017710
42m 1279/365 0.020648 0.020618
45m 1371/365 0.023643 0.023648
48m 4 0.026630 0.026630
51m 1552/365 0.029597 0.029675
54m 1644/365 0.032582 0.032657
57m 317666/66795 0.035556 0.035584
60m 334091/66795 0.038432 0.038432
63m 350881/66795 0.041626 0.041374
66m 122557/22265 0.044799 0.044359
69m 2103/365 0.048002 0.047446
72m 6 0.050919 0.050330
75m 2282/365 0.053939 0.053396
78m 2376/365 0.056951 0.056535
81m 2467/365 0.059796 0.059568
84m 7 0.062478 0.062478
87m 2649/365 0.065506 0.065539
90m 548/73 0.068377 0.068437
93m 2831/365 0.071173 0.071256
96m 2922/365 0.073881 0.073979
99m 3013/365 0.076488 0.076596
102m 3104/365 0.079001 0.079111
105m 584846/66795 0.081454 0.081560
108m 601271/66795 0.083781 0.083877
111m 618061/66795 0.086093 0.086172
114m 211617/22265 0.088339 0.088396
117m 3561/365 0.090521 0.090551
120m 10 0.092571 0.092571
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Caplet price curve (linearly interpolated Flat Volatilities)
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Figure 27: This plot depicts the ATM Caplet prices found using the procedure described
in this section. We used linear interpolation (extrapolation for short maturities) of “flat”
volatility data for US Dollar Caps/Floors quoted for May 12th 2003 (see Table 6). Compare
with or results using cubic interpolation of “flat” volatilities, Figure 29.
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Figure 28: This “curve” was obtained following the Stripping procedure explained in
this section using a linear interpolation (extrapolation in case of short maturities) of “flat”
volatilities for US Dollar Caps/Floors quoted for May 12th 2003 (see Table 6). Since the
“flat” volatility curve exhibits a hump, it is expected that spot volatilities will increase for
a while before starting to go down with time to maturity. Compare with or results using
cubic interpolation of “flat” volatilities, Figure 30.
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Table 9: Spot (Caplet) volatility stripped from Caps data quoted on US Dollars Caps as
reported on Bloomberg© on May 12th 2003. This table uses the bids at 3:56pm of that
day. To be able to find spot volatilities for the first three Caplets we used a linear spline to
extrapolate the Flat volatilities of Caps with six and nine months maturity —this way we
need not to look for additional data, in practice this is not recommended—). The notation
nnnm, nnn a multiple of 3 between 1 and 120, refers to the month nnn after settlement.
Volatility is reported as percent volatility, that is spot volatility by 100, and is rounded to
five significant figures.

Spot Volatilities (%)
Term Volatility Term Volatility Term Volatility
Year 1 Year 5 Year 9

48m–51m 31.226 96m–99m 19.675
3m–6m 42.179 51m–54m 29.429 99m–102m 18.694
6m–9m 43.951 54m–57m 27.606 102m–105m 17.715
9m–12m 45.634 57m–60m 25.771 105m–108m 16.740
Year 2 Year 6 Year 10

12m–15m 47.150 60m–63m 29.962 108m–111m 15.718
15m–18m 48.454 63m–66m 28.745 111m–114m 14.660
18m–21m 49.820 66m–69m 27.492 114m–117m 13.537
21m–24m 51.225 69m–72m 26.280 117m–120m 12.374
Year 3 Year 7

24m–27m 42.217 72m–75m 25.064
27m–30m 41.192 75m–78m 23.799
30m–33m 40.112 78m–81m 22.542
33m–36m 38.924 81m–84m 21.313
Year 4 Year 8

36m–39m 40.071 84m–87m 23.553
39m–42m 39.048 87m–90m 22.585
42m–45m 37.979 90m–93m 21.622
45m–48m 36.909 93m–96m 20.652

linear interpolation. The results of such computations are displayed in Figure 29, Figure 30,

and Table 10. As the reader may quickly notice, using cubic interpolation/extrapolation of

“flat” volatilities results in smoother Caplet Prices (Figure 29) and Spot volatility (Figure

30) curves.

4.5 A few calibration examples, continued

We will continue with our calibration examples, considering the calibration to spot volatil-

ities. Then, in the last sub–subsection we will explain briefly how to put it all together

analyzing a very simple example.
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Caplet price curve (Flat Volatilities interpolated with a cubic spline)
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Figure 29: This plot depicts ATM Caplet prices found using the procedure described
in this section. To obtain this curve we used cubic interpolation (extrapolation for short
maturities) —see Table 7— of “flat” volatility data for bids on US Dollar Caps/Floors
quoted on May 12th 2003 (see Table 6). Compare with or results using linear interpolation
of “flat” volatilities, Figure 27.

Spot volatility (from cubic interpolated Flat volatility)--the red curve is a cubic spline of the data--
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Figure 30: This “curve” was obtained following the Stripping procedure explained in
this section using cubic interpolation (extrapolation in case of short maturities) of “flat”
volatilities for US Dollar Caps/Floors quoted for May 12th 2003 (see Table 6). Comparing
with the results obtained when a linear interpolation of “flat” volatilities was used (Figure
28) we observe that although the general behavior of the spot curve is maintained the
resulting curve is smoother.
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Table 10: Spot (Caplet) volatility stripped from Caps data quoted on US Dollars Caps
as reported on Bloomberg© on May 12th 2003. This table uses the bids at 3:56pm of that
day. We used a cubic spline to extrapolate the Flat volatilities of Caps with six and nine
months maturity so that Spot volatility of the first three Caplets could be found —this way
we need not to look for additional data, in practice this is not recommended—). As before,
the notation nnnm, nnn a multiple of 3 between 1 and 120, refers to the month nnn after
settlement. Volatility is reported as percent volatility, that is spot volatility by 100, and is
rounded to five significant figures.

Spot Volatilities (%)
Term Volatility Term Volatility Term Volatility
Year 1 Year 5 Year 9

48m–51m 33.072 96m–99m 19.766
3m–6m 41.314 51m–54m 29.338 99m–102m 18.692
6m–9m 43.668 54m–57m 26.567 102m–105m 17.622
9m–12m 46.399 57m–60m 25.211 105m–108m 16.558
Year 2 Year 6 Year 10

12m–15m 48.701 60m–63m 25.247 108m–111m 15.450
15m–18m 49.941 63m–66m 25.586 111m–114m 14.309
18m–21m 50.021 66m–69m 25.863 114m–117m 13.104
21m–24m 48.369 69m–72m 26.064 117m–120m 11.859
Year 3 Year 7

24m–27m 44.897 72m–75m 26.124
27m–30m 41.341 75m–78m 26.003
30m–33m 38.775 78m–81m 25.640
33m–36m 37.977 81m–84m 24.987
Year 4 Year 8

36m–39m 38.959 84m–87m 24.008
39m–42m 39.590 87m–90m 22.952
42m–45m 39.019 90m–93m 21.899
45m–48m 36.863 93m–96m 20.836

Throughout this subsection we will use the same notation used earlier in §4.2.

4.5.1 All parameters are constant. . . with a twist

As we saw in §4.2, when all parameters are constant, the Hull–White model (255) reduces

to the Vasicek model (328). Vasicek’s model is indeed the simplest case of the Hull–White

model and in that case all formulas required in the calibration process reduce to their

simplest forms.

In order to calibrate (328) to spot volatility we can use (380). Combining (380) with
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(335) (plus the assumption that all parameters are constant) we obtain:

v2(t, Tr, Tp) =
∫ Tr

t
γ2(u)|S (u, Tr)− S (u, Tp)|2 du

=
a2

3

a2
2

∫ Tr

t

(
e−a2(Tr−u) − e−a2(Tp−u)

)2
du

=
a2

3

2a3
2

{
1− e−a2(Tp−Tr)

}2 {
1− e−2a2(Tr−t)

}
, (393)

where we have assumed that t ≤ Tr ≤ Tp.

We can combine our last result, (393), with (377) and (378) to obtain a pricing formula

at time t = 0, see Lemma 4.3.2

From (393) we have

v(t, Tr, Tp) =
a3

a2
√

2a2

√
1− e−2a2(Tr−t)

{
1− e−a2(Tp−Tr)

}
. (394)

Adopting the practice of pricing Caps [Floors] and Caplets [Floorlets] at time t = 0, (394)

reduces to

v(0, Tr, Tp) =
a3

a2
√

2a2

√
1− e−2a2Tr

{
1− e−a2(Tp−Tr)

}
. (395)

From Lemma 4.3.2 we know that for any 0 < Tr ≤ Tp ≤ T , the arbitrage price at time

t = 0 of a caplet with expiry date Tr, settlement date t = 0, payment (delayed to) date Tp,

and strike level K on a floating rate V r is given by the formula

Cpl(0, Tr, Tp, ϕ, V r,K,v)

= B(0, Tr)Φ(e(0, Tr, Tp))− (1 +Kϕ(Tr, Tp))B(0, Tp)Φ(e(0, Tr, Tp)− v(0, Tr, Tp)) (396)

where

e(0, Tr, Tp) =
1

v(0, Tr, Tp)
ln
(

B(0, Tr)
(1 +Kϕ(Tr, Tp))B(0, Tp)

)
+

1
2
v(0, Tr, Tp), (397)

and v = v(0, Tr, Tp) is given by (395). As before, Φ is the cumulative normal distribution,

and B(0, Tr) and B(0, Tp) are the time t = 0 prices of zcbs of maturities Tr and Tp whose

yield is given by rate V r.

With the exception of v(0, Tr, Tp), all other parameters involved in (396) and (397) are

known from initial data (the strike level K being taken as the corresponding ATM Swap

rate KATM of Definition 4.4.1).
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On the other hand, we notice that (395) contains not all the parameters of models (328)

or (343), but it does contain all parameters in those models that determine the volatility

structure of bond options priced under such models. Thus, (395) plus (396) and (397) in

combination with Definition 4.3.3 offers us an equation suitable for calibration to volatilities

(we will use t = 0 in either (386) or (387), see (398) and (399) below).

That is, assuming a nominal of one dollar, N = 1

Cpl(0, Tr, Tp, ϕ, V r(Tr, Tp),KATM ,v) = CplM (0, Tr, Tp, ϕ, V r(Tr, Tp),KATM , σr,p) (398)

which, by definition of V r, can also be expressed in terms of time zero prices of zcb’s as:

Cpl(0, Tr, Tp, ϕ,B(0, Tr), B(0, Tp),KATM ,v)

= CplM (0, Tr, Tp, ϕ,B(0, Tr), B(0, Tp),KATM , σr,p) (399)

No matter which version we choose, (398) or (399), the right–hand–side is known to us as

a sub–product of the stripping process (see Table 11).

Some of the problems we face are, amongst others, the following. i) Expression (395)

contains only two parameters while we may have up to 39 pairs of dates and ATM Caplet

prices (or which is the same 39 pairs of dates and spot volatilities, see Table 9 and/or

Table 11). In most cases, a least squares fit to data will not be able to produce “good”

volatility curves. ii) Market practice assumes piecewise constant volatilities and a model

with constant coefficients will not be able to reproduce such a behavior mainly because

the accepted market practice models each forward rate independently. iii) Even if a more

complex version of the Hull–White model is used (which may let us perfectly fit the model

to Caplet data) there is no way to know if we will be able to preserve the shape of the

volatility curve, reproduce humps, etc. (some of these issues could be addressed assuming

a more complex calibration process, and in particular including into the calibration process

some form of volatility surface information, for example, Swaptions data).

Notice that if one is interested only in a model capable of reproducing spot volatility for

a given maturity, that is, capable of reproducing a particular Caplet’s price, a model like

(328) could be enough, and only one solution of (398) or (399) will be required.
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Table 11: We show here the implied ATM Market prices of Caplets of all available matu-
rities. Prices, rounded to five significant figures, computed using both methods of interpo-
lation (linear and cubic) of Flat volatilities are shown.

ATM Caplet Prices per unit of Nominal
Period TtM (act/act) Linear I/E Cubic I/E
0m–3m 93/365
3m–6m 37/73 0.00025963 0.00025433
6m–9m 50851/66795 0.00037397 0.00037152
9m–12m 66911/66795 0.00053049 0.00053828
12m–15m 28022/22265 0.0011516 0.0011723
15m–18m 201347/133590 0.0013978 0.0014208
18m–21m 641/365 0.0017432 0.0017468
21m–24m 732/365 0.0021775 0.0021189
24m–27m 823/365 0.0024614 0.0025218
27m–30m 914/365 0.0028944 0.0028981
30m–33m 1006/365 0.0032955 0.0032586
33m–36m 1096/365 0.0034848 0.0034566
36m–39m 1187/365 0.0037547 0.0037170
39m–42m 1279/365 0.0039338 0.0039542
42m–45m 1371/365 0.0040659 0.0041081
45m–48m 4 0.0040590 0.0040571
48m–51m 1552/365 0.0041107 0.0041922
51m–54m 1644/365 0.0041694 0.0041653
54m–57m 317666/66795 0.0041944 0.0041461
57m–60m 334091/66795 0.0040954 0.0040691
60m–63m 350881/66795 0.0044595 0.0042106
63m–66m 122557/22265 0.0044383 0.0042635
66m–69m 2103/365 0.0044897 0.0043936
69m–72m 6 0.0041010 0.0040888
72m–75m 2282/365 0.0042592 0.0043248
75m–78m 2376/365 0.0042675 0.0044109
78m–81m 2467/365 0.0040531 0.0042529
81m–84m 7 0.0038490 0.0040820
84m–87m 2649/365 0.0042715 0.0043036
87m–90m 548/73 0.0040648 0.0040902
90m–93m 2831/365 0.0039718 0.0039912
93m–96m 2922/365 0.0038560 0.0038690
96m–99m 3013/365 0.0037241 0.0037306
99m–102m 3104/365 0.0036035 0.0036033
102m–105m 584846/66795 0.0035414 0.0035347
105m–108m 601271/66795 0.0033875 0.0033747
108m–111m 618061/66795 0.0034021 0.0033832
111m–114m 211617/22265 0.0033490 0.0033249
114m–117m 3561/365 0.0032997 0.0032713
117m–120m 10 0.0031511 0.0031205

170



Another possibility is to proceed in accordance to market practice. Although Vasicek’s

model (328) is not lognormal (or one in which forward rates are lognormal) it is still evident

that given one number σr,p and a time interval [Tr, Tp], one can always find numbers a2 and

a3 such that (399) is satisfied. Finding such numbers one could calibrate a model of the

form of (328) to each Caplet volatility, but, as in the case of market practice and Black’s

model, n models are required.

If we are to price one single instrument for a given maturity, the procedure we mentioned

here will put spot volatility information regarding the maturity of our instrument into the

interest rate model.

That is, at the time interval [Tr, Tp], Tr < Tp, Tr = 6m, 9m, etc., Tr, Tp, and σr,p are

known. One could fix r0 = 0, a1 = 0, and one of a2 or a3,44 for example45 a2 = 10 and use

the remaining parameter to satisfy (399), or in case possible a piecewise constant function

that will help to fit the data from Table 6 to the resulting model

drt = −a2rt dt + a3 dWt (400)

This will be the “twist” we mentioned in the title of this sub–subsection.

Using the results of the Stripping process described in the previous section, we used

(396) to find, for each time period [Tr, Tp], the numbers vEV (0, Tr, Tp) that, when plugged

back into (396), will reproduce the implied Market prices of Caplets listed in Table 11,

Table 12 lists the results of our computations. The “goodness” of the numbers in Table 12

can be easily tested using (398) or (399) to solve for new implied Spot volatilities, these

numbers and those listed in Table 9 and/or in Table 10 (depending on which prices were

used) should match (rounding errors considered). Figure 31 show that the accuracy of our

44Or one could use any other values determined by other means, etc..
45Notice that the procedures here outlined still leave at least one parameter “free”, a best choice of

such parameter can be determined by comparison of the Market prices of other instruments (for example

captions, or swaptions, etc.) with the prices of such instruments implied by the model. I selected a2 = 10

to exaggerate the features of some curves, features that will be difficult to discern if smaller values of a2 are

used. This selection of a2 = 10 may not be optimal. Again, our choice was done solely to exaggerate the

features of the curves in Figure 37 with no concern about the goodness of the model.

171



Table 12: We show here the implied ATM Hull–White Caplet volatilities, rounded to
five significant figures, for all available maturities. Prices computed using both methods of
interpolation (linear and cubic) of Flat volatilities were used.

Percent vEV (0, Tr, Tp)
Period TtM (act/act) Linear I/E Cubic I/E
0m–3m 93/365
3m–6m 37/73 0.065294 0.063960
6m–9m 50851/66795 0.096866 0.096248
9m–12m 66911/66795 0.11976 0.12174
12m–15m 28022/22265 0.17827 0.18402
15m–18m 201347/133590 0.21585 0.22231
18m–21m 641/365 0.26420 0.26523
21m–24m 732/365 0.32078 0.30352
24m–27m 823/365 0.31286 0.33208
27m–30m 914/365 0.35398 0.35523
30m–33m 1006/365 0.39709 0.38428
33m–36m 1096/365 0.42149 0.41158
36m–39m 1187/365 0.48064 0.46781
39m–42m 1279/365 0.51537 0.52224
42m–45m 1371/365 0.54253 0.55674
45m–48m 4 0.54890 0.54824
48m–51m 1552/365 0.51669 0.54617
51m–54m 1644/365 0.52010 0.51854
54m–57m 317666/66795 0.51845 0.49945
57m–60m 334091/66795 0.50055 0.48994
60m–63m 350881/66795 0.62166 0.52665
63m–66m 122557/22265 0.62521 0.55857
66m–69m 2103/365 0.63850 0.60184
69m–72m 6 0.58861 0.58395
72m–75m 2282/365 0.61574 0.64093
75m–78m 2376/365 0.61969 0.67518
78m–81m 2467/365 0.58895 0.66723
81m–84m 7 0.55697 0.64990
84m–87m 2649/365 0.67591 0.68853
87m–90m 548/73 0.64739 0.65759
90m–93m 2831/365 0.63732 0.64525
93m–96m 2922/365 0.62443 0.62985
96m–99m 3013/365 0.60900 0.61174
99m–102m 3104/365 0.59222 0.59216
102m–105m 584846/66795 0.58098 0.57799
105m–108m 601271/66795 0.55050 0.54465
108m–111m 618061/66795 0.54175 0.53271
111m–114m 211617/22265 0.51841 0.50620
114m–117m 3561/365 0.49117 0.47567
117m–120m 10 0.44564 0.42732
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Table 13: Hull–White volatility parameters implied from Market data for all available
maturities. Volatility parameters were computed using both methods of interpolation (linear
and cubic) of Flat volatilities assuming a2 = 10, the resulting values were rounded to five
significant figures.

Volatility parameters γ = a3

Period Linear I/E Cubic I/E
0m–3m
3m–6m 0.031851 0.031201
6m–9m 0.047011 0.046712
9m–12m 0.058876 0.059849
12m–15m 0.086346 0.089131
15m–18m 0.10529 0.10844
18m–21m 0.12884 0.12935
21m–24m 0.15638 0.14797
24m–27m 0.15252 0.16189
27m–30m 0.17257 0.17318
30m–33m 0.19311 0.18689
33m–36m 0.20600 0.20115
36m–39m 0.23432 0.22806
39m–42m 0.25064 0.25398
42m–45m 0.26384 0.27075
45m–48m 0.26896 0.26863
48m–51m 0.25128 0.26561
51m–54m 0.25293 0.25218
54m–57m 0.25221 0.24297
57m–60m 0.24479 0.23960
60m–63m 0.30251 0.25627
63m–66m 0.30424 0.27181
66m–69m 0.30917 0.29142
69m–72m 0.28998 0.28768
72m–75m 0.29945 0.31170
75m–78m 0.29997 0.32683
78m–81m 0.28712 0.32528
81m–84m 0.27364 0.31930
84m–87m 0.32718 0.33329
87m–90m 0.31560 0.32058
90m–93m 0.31070 0.31456
93m–96m 0.30441 0.30706
96m–99m 0.29689 0.29823
99m–102m 0.28871 0.28868
102m–105m 0.28263 0.28117
105m–108m 0.26921 0.26635
108m–111m 0.26363 0.25922
111m–114m 0.25227 0.24633
114m–117m 0.23894 0.23140
117m–120m 0.21836 0.20938
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solutions is higher than the precision of the input data.

Differences between Spot Volatility (implied from Market Data) andSpot Volatility implied from Hull--White Caplet volatility
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Figure 31: Using the results in Table 11 and Table 12 (that is, implied Hull–White caplet
volatilities) we found the Black volatilities implied by such data and compared back with
the original data (Table 9 and Table 10). This plot shows the percentage difference between
the stripped spot volatlity and the Black spot volatility implied by the results in Table 12
(linear case), the differences are well below the precision of the original market data (see
Table 6).
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Figure 32: Hull–White volatility parameters obtained from linear approximation of Cap
“flat” Volatility data, see Table 13.

Later, we used (395), assuming a2 = 10, to find the volatility parameter a2 for each

maturity. See Figure 32, Figure 33 and Table 13.

No matter the path chosen, one may safely assume that the mean reversion coefficient
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Hull--White volatility parameter implied from Market (Black) Caplet prices
(Market Caplet prices obtained using cubic interpolation of Flat Volatility)
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Figure 33: Hull–White volatility parameters obtained from cubic approximation of Cap
“flat” Volatility data, see Table 13.

and the initial value of the rate, a1 and r0, are null.

Thus, we have assumed that the coefficients of (400) are constants and possibly different

for each maturity, which allows us to obtain the results displayed in Table 12 and Table

13. This kind of assumption may not be satisfactory since implicitly we are assuming a

different model of the form of (400) for every maturity shown in Table 8.

Piecewise constant volatility parameters corresponding to an
extended Vasicek model ’perfectly’ fitted to a given initial flat volatility curve (linear case)
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Figure 34: It is also market practice to fit spot volatility to a model of interest rates using
a piecewise constant volatility parameter. Here we show the result of the solution of the
system of equations (404) and (405) using Hull–White volatility from the second column of
Table 12. The corresponding 39 volatility parameters are displayed on Table 14.
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Another possibility is to use a model in which not all parameters are constant. For

example, assuming α(t) ≡ a1 constant, and β and γ functions of time, one may assign

particular functional forms to β(t) and γ(t) and use a least squares procedure to better fit

such functions to the data.

Following that line of reasoning, a simple approach to consider could be to calibrate a

model similar to (328), assuming piecewise constant coefficients a2 and/or a3. To fix ideas,

assume, as before, that a1 and r0, are null and that a2 = 10. Assume also that

γ(t) = k0 1[0,T1[ (t) +
i=38∑
i=1

ki 1[Ti−1,Ti[ (t) (401)

where ki, i ∈ N∗
38, are 39 constants to be determined, and as usual the Ti, i ∈ N∗

39 are used

to represent all the reset and maturity dates we have at our disposal (see the first column

of Table 8, for a list of such resets). 1A is the indicating function of set A. Thus, we want

to calibrate the model

drt = a2rt dt + γ(t) dWt, (402)

to initial spot volatility data such as that contained in Table 9 or in Table 10, which we

have constructed in the previous section as a result of the stripping process applied to flat

volatility data contained in Table 6 (see previous section for a description of that process).

Piecewise constant volatility parameters corresponding to an
extended Vasicek model ’perfectly’ fitted to a given initial flat volatility curve (cubic case)
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Figure 35: Here we show the result of the solution of the system of equations (404) and
(405) using Hull–White volatility from the third column of Table 12. The corresponding 39
volatility parameters are displayed on Table 14.
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Plugging (401) and (335) into , we obtain (for t = 0):

v2(0, Ti, Ti+1) =
∫ Ti

0
γ2(u)|S (u, Ti)− S (u, Ti+1)|2 du

=
k2

0

a2
2

∫ T0

0

(
e−a2(Ti−u) − e−a2(Ti+1−u)

)2
du +

i∑
j=1

k2
j

a2
2

∫ Tj

Tj−1

(
e−a2(Ti−u) − e−a2(Ti+1−u)

)2
du

=
1

2a3
2

(
e−a2Ti − e−a2Ti+1

)2k2
0

(
e2a2T0 − 1

)
+

i∑
j=1

k2
j

(
e2a2Tj − e2a2Tj−1

) , (403)

adopting the usual convention that a sum adds to zero when its lower limit is a unit larger

than its upper limit, the above expression should be valid for i ∈ N∗
38. Notice also that the

only unknowns in (403) are the 39 parameters that determine γ(t) according to (401) (for

each i ∈ N∗
38, the values 100× v(0, Ti, Ti+1) are listed in Table 12).

Equation (403) defines a system of 39 equations that we can solve explicitly

k2
0 =

2a3
2v

2(0, T0, T1)

(e−a2T0 − e−a2T1)2
(404)

k2
i =

1
e2a2Ti − e2a2Ti−1

 2a3
2v

2(0, Ti, Ti+1)

(e−a2Ti − e−a2Ti+1)2

−k2
0

(
e2a2T0 − 1

)
−

i−1∑
j=1

k2
j

(
e2a2Tj − e2a2Tj−1

) , i ∈ N38. (405)

Table 14 contains the values of the ki, i ∈ N∗
38 obtained from Table 12 and (404) and

(405). Figure 34, and, Figure 35, show plots corresponding to those results.

4.5.2 A case of shifted rates

A very simple way to put it all together is to consider a case of shifted rates. Note that this

“trick” can be applied not only to Hull–White models but to any interest rate model.

Consider for example the following model

rt = Ψ(t) +Rt

dRt = −a2Rt dt + a3 dWt R0 = 0
(406)

where Ψ(t) is a deterministic differentiable function of t to be determined and both a2 and

a3 are known to be non–zero constants. The reader will quickly notice that this model is
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Table 14: Piecewise constant volatility coefficients, rounded to five significant figures, were
obtained from data shown in Table 12 and the solution of the system of equations given by
(404) and (405). See Figure 34 and Figure 35 for plots of the corresponding deterministic
piecewise volatility parameter functions.

Piecewise Volatility Coefficients
Period Linear I/E Cubic I/E
0m–3m 0.031851 0.031201
3m–6m 0.047094 0.046795
6m–9m 0.058942 0.059921
9m–12m 0.086536 0.089332
12m–15m 0.10539 0.10855
15m–18m 0.12899 0.12948
18m–21m 0.15656 0.14809
21m–24m 0.15249 0.16198
24m–27m 0.17270 0.17325
27m–30m 0.19325 0.18698
30m–33m 0.20608 0.20124
33m–36m 0.23451 0.22824
36m–39m 0.25074 0.25414
39m–42m 0.26393 0.27086
42m–45m 0.26899 0.26862
45m–48m 0.25114 0.26559
48m–51m 0.25295 0.25209
51m–54m 0.25220 0.24290
54m–57m 0.24474 0.23958
57m–60m 0.30289 0.25639
60m–63m 0.30425 0.27191
63m–66m 0.30920 0.29154
66m–69m 0.28986 0.28766
69m–72m 0.29953 0.31190
72m–75m 0.29997 0.32693
75m–78m 0.28704 0.32527
78m–81m 0.27354 0.31925
81m–84m 0.32758 0.33341
84m–87m 0.31554 0.32050
87m–90m 0.31066 0.31452
90m–93m 0.30437 0.30700
93m–96m 0.29684 0.29817
96m–99m 0.28865 0.28862
99m–102m 0.28258 0.28112
102m–105m 0.26912 0.26625
105m–108m 0.26358 0.25917
108m–111m 0.25219 0.24624
111m–114m 0.23885 0.23130
114m–117m 0.21822 0.20923
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nothing more than a sub–case of (255). Since we are assuming that Ψ(t) is differentiable,

by (406) we have drt = dΨ(t)+dRt = dΨ(t)−a2Rt dt+a3 dWt = dΨ(t)−a2(rt−Ψ(t)) dt+

a3 dWt =
(

dΨ(t)
dt

+ a2Ψ(t)− a2rt

)
dt + a3 dWt = (α(t)− a2rt) dt + a3 dWt.

Let BR(·, ·) denote the prices of zcb’s under “rate” R. Similarly, let BM (·, ·) denote the

market prices of zcb’s and B(·, ·) denote the prices of zcb’s under rate r. Let T ∈ [0, T ] by

(267) we have

B(0, T ) = E

(
exp

{
−
∫ T

0
ru du

}∣∣∣∣Ft

)
= exp

(∫ T

0
Ψ(u) du

)
BR(0, T ) (407)

If model (406) is to fit the initial yield curve then B(0, T ) = BM (0, T ) when T = ti, i ∈ N24,

is one of the known maturities46 from Table 4. Thus for each maturity ti, i ∈ N24∫ ti

0
Ψ(u) du = ln

(
BR(0, ti)
BM (0, ti)

)
(408)

Clearly, we can interpolate the right hand side of (408) using splines, from where an

explicit form for Ψ(t) can be obtained.

In this way, we perfectly fit (406) to the initial yield curve while the other parameters,

a2 and a3 can be used to introduce initial volatility structure into the model.

In most situations, the explicit knowledge of function Ψ(t) is not required. In such a

case we know that rate r also satisfies

drt = (α(t)− a2rt) dt + a3 dWt, (409)

where

α(t) =
dΨ(t)

dt
+ a2Ψ(t). (410)

Thus, we can use the results of the previous subsection plus equation (352) to obtain

a perfect fit to the initial yield that also contain information regarding initial volatility

structure. Figure 36 and Figure 37 display curves obtained following this approach.

Similarly, we could use a model like:

rt = Ψ(t) +Rt

dRt = −a2Rt dt + γ(t) dWt R0 = 0
(411)

46More properly, when T denotes the corresponding time fraction to the maturity ti as described in

Chapter 2.
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Mean parameter corresponding to different volatility parameters
in an extended Vasicek model ’perfectly’ fitted to a given initial yield
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Figure 36: Several Hull–White mean parameter functions corresponding to perfect fits to
initial yield data from Table 4 are displayed. Initial volatility information in the form of
data displayed in Table 13 was used to construct these curves.

Mean parameter corresponding to different volatility parameters
in an extended Vasicek model ’perfectly’ fitted to a given initial yield
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Figure 37: We show a zoom into Figure 36. Several Hull–White mean parameter functions
corresponding to perfect fits to initial yield data from Table 4 are displayed. Initial volatility
information in the form of data displayed in Table 13 was used to construct these curves
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where a2 is known to be constant and γ(t) is a deterministic, integrable, function of t. Such

a function γ(t) could be used to fit to several Caplet volatilities.

Here we retake the findings of the previous sub–section where piecewise constant func-

tions were constructed to perfectly fit model (411) with a2 = 10 to initial spot volatility. At

the same time the idea of shifted rates could be used to find a perfect fit to the initial yield

curve. Figure 34 and Figure 35 show the piecewise constant volatility parameters, see also

Figure 38, Figure 39, Figure 40, and Figure 41, for depictions of the corresponding mean

parameter functions that will perfectly fit the shifted rate to initial yield data.

Mean parameter corresponding to a shifted extended Vasicek model
’perfectly’ fitted to given initial flat volatility and initial yield curves
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Figure 38: Hull–White mean parameter function corresponding to a perfect fit of the
model (411) to initial yield (see Table 4) and a perfect fit to initial spot volatility (obtained
from linearly interpolated flat volatility, see Table 9 and Table 7).

Even though we have used two different approaches to reconstruct caplet prices, and

consequently spot volatility, the numerical differences between the two resulting mean pa-

rameter functions are small. To help see those differences we are including Figure 42 which

shows a plot of the difference between the the mean parameter functions plotted in Figure

38 and Figure 40.

As expected, model (411) not only allows for the perfect fitting to initial yield and spot

volatility but also will produce richer bond volatility curves. Figure 43 and Figure 44 show

plots of bond volatility curves implied by model (411), compare with Figure 20, Figure 10,

and Figure 13 that show samples of bond volatility curves corresponding to Vasicek’s model
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Mean parameter corresponding to a shifted extended Vasicek model
’perfectly’ fitted to given initial flat volatility and initial yield curves
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Figure 39: Detail of Figure 38 for short maturities.

Mean parameter corresponding to a shifted extended Vasicek model
’perfectly’ fitted to given initial flat volatility and initial yield curves
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Figure 40: Hull–White mean parameter function corresponding to a perfect fit of the
model (411) to initial yield (see Table 4) and a perfect fit to initial spot volatility (obtained
from cubically interpolated flat volatility, see Table 9 and Table 7).

(328) and Hull–White model with constant mean and speed of mean reversion paremeters

and time dependent volatility parameter (we showed in a previous section how to calibrate

such a model to initial yield data).

4.6 Final remarks

In this chapter we have presented a calibration procedure to calibrate the Hull–White model

of interest rates, (255), to market data. Both, calibration to an initial yield curve and
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Mean parameter corresponding to a shifted extended Vasicek model
’perfectly’ fitted to given initial flat volatility and initial yield curves
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Figure 41: Detail of Figure 40 for short maturities.

Difference between the two different Mean Reversion parameters
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Figure 42: Numerical differences between Figure 38 and Figure 40

calibration to an initial term structure of volatilities has been considered. We have given

also several examples showing how to proceed in different situations (different sub–cases of

(255) and or initial information to be used in the calibration process). We have also given

a short explanation showing what to do if one needs to integrate both kinds of data (initial

yield and initial term structure of volatilities) into the calibration.

Our motivation in this chapter has been to explicitly present a calibration process,

following accepted market conventions, that we could later use in the numerical valuation

of some Game Options. Scattered through the literature we have found several times the
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Bond volatility curve based on a piecewise constant
Hull--White volatility coefficient
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Figure 43: Bond volatility curves (see (295), (335) and (401)) when Hull–White model is
fitted to initial spot volatility data. We show curves corresponding to a maturity of ten years
(observe that such curves should be negative when both Hull–White volatility parameter
and the corresponding affine slope functions are positive). Compare with Figure 20, Figure
10, and Figure 13 which show implied bond volatility curves obtained in previous examples.
Curves were obtained using linear and cubic interpolation of flat volatility.

Bond volatility curves of different maturities
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Figure 44: Bond volatility curves (see (295), (335) and (401)) when Hull–White model is
fitted to initial spot volatility data. We show curves corresponding to different maturiturities
between one and ten years. Compare with Figure 20, Figure 10, and Figure 13 which show
implied bond volatility curves obtained in previous examples. Curves were obtained using
cubic interpolation of flat volatility.
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Table 15: Formulas used in the calibration of the Hull White model

Parameter Formula # Comments

α(t)
−

d2

dt2 S (0, t)
d
dt S (0, t)

d

dt
I (0, t) +

d2

dt2
I (0, t)

+
∫ t

0

γ2(v)
{

∂

∂t
S (v, t)

}2

dv

(321)

This formula depends only
on initial data, we can use
it to determine α if S (0, t),
I (0, t) and γ are known.

β(t) −
d2

dt2
S (0, t)

d

dt
S (0, t)

(316)

This formula depends only
on initial data, we can use
it to determine β if S (0, t) is
known.

γ(t)

γ2(t) = 2β(t)
{

α(t)− β(t)
d

dt
I (0, t)

− d2

dt2
I (0, t)

}
+

d

dt

{
α(t)− β(t)

d

dt
I (0, t)

− d2

dt2
I (0, t)

}
(324)

Combined with (316) and
(326), this formula depends
only on initial data, S (0, t),
and α (which could be found
by some other means, please
see our examples).

I (0, t) −r0S (0, t)− ln[B(0, t)] (326)

This formula depends only
on initial data, we can use
it to determine I (0, t) t ∈
[0, T ] if S (0, t) and the
initial term structure are
known.

S (t, T )
S (0, T )− S (0, t)

d

dt
S (0, t)

(304)

This formula depends only
on initial data, we can use it
to determine S (t, T ) t, T ∈
[0, T ] t ≤ T if S (0, t) is
known.

mention of some “widely accepted market” practices with regards to the calibration of

several interest rate models, but not one single explicit calibration is shown. The present

chapter should fill in that void.

Although the models we consider here are all subcases of the Hull–White model (255),

it is clear that our ideas can be also applied to other interest rate models as well.

As we mentioned before, the calibration procedure presented here is not the only one

available, nor it is the most general. Our calibration procedure responds both to the model
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Table 16: Some additional formulas used in the calibration of the Hull White model

Parameter Formula # Comments

b(t, T ) −γ(t)S (t, T ) (295)

This formula depends only
on S (t, T ) and γ which in
turn depend only on initial
data, we can use it to de-
termine b(t, T ) t, T ∈ [0, T ]
t ≤ T .

I (t, T )
I (0, T )−I (0, t)−S (t, T ) d

dt I (0, t)+
1
2S2(t, T )

∫ t

0
γ2(v)

{
∂
∂t S (v, t)

}2
dv

(314)

This formula depends only
on initial data, we can use it
to determine I (t, T ) t, T ∈
[0, T ] t ≤ T if S (0, t), I (0, t)
and γ are known.

mt = E(rt) (1/η(t))
{

r0 +
∫ t
0 η(u)α(u) du

}
(261)

Useful to determine parame-
ters only if reliable historical
data is available, otherwise
may be used as a benchmark

V t = Var(rt) 1
η2(t)

∫ t
0 η2(u)γ2(u) du (263) ibidem.

Cov(rt, rs) 1
η(t)η(s)

∫ t∧s
0 η2(u)γ2(u) du (265) ibidem.

selected and to the kind of data available.

Several improvements are possible, for example one may consider the introduction of

volatility data coming from Swaptions and or Captions data. Intuitively this will improve

the model’s ability to respond to volatility. Still much care has to be taken in this regard,

in particular if the reader has in mind the commercial application of the ideas contained

in this chapter and the possible extension we mention here. When calibrating to an initial

term structure of volatilities one must ask if the data at hand is relevant to the instruments

one wants to price using the calibrated interest rate model. One must also consider what

happens with the implied volatilities at future times (typical questions one may ask are:

are humps present in the initial volatility curve?, do we obtained “echoes” of those humps

into the volatility structure implied by the model?, are those somehow preserved through

time?, are other features of the data preserved and or explained by the curves implied by

the model? etc., etc.). Recalibration might be required if implied future volatilities are not

realistic, but somehow a “good model” is one you do not have to recalibrate frequently.
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Following what is, according to several authors47, considered as market practice we

have used linear interpolation to interpolate flat volatilities as well as to interpolate Swap

rates, etc. (see also Chapter 2). Intuition indicates that such a practice could not be

optimal, and that the choice of linear interpolants (for comparison we have also used cubic

interpolants to obtain “parallel” results) could have been inspired by an attempt to reach

ease of computation, and some form of simplicity mimicking the form in which Black’s model

is applied to the pricing of Caps and Swaptions and maybe not by serious mathematical

considerations. For example in the previous section, following market conventions, we have

constructed “staircase”–like volatility parameters. The construction of piecewise constant

functions is a widely accepted market practice48, but the resulting parameter, being a

piecewise constant function is not continuous, much less differentiable.

A more careful calibration process will compare results obtained in the “replication”

of prices of some “benchmark” instruments to determine the best interpolation procedure

depending on the actual form of the yield curve and initial term structure of volatilities

one is dealing with. As the reader can see, at the end of the previous section at least one

parameter was being given arbitrary values, the use of “benchmark” instruments will help

to find proper, non–arbitrary values for such free parameters.

There is no standard interest rate model. Some of the general ideas given in this chapter

could be used to calibrate other interest rate models. We selected the Hull–White model

because of its analytical properties (which we can exploit in the pricing of some Game

Options), its historical importance, and the fact that it is still used by practitioners around

the world. Yet, many more models exist and are being developed. In a “real world”

application of interest rate models, one should consider not one but a collection of models,

each of them calibrated to the given data and compared to “benchmark” instrument prices

in order to select the most appropriate model for the problem/data you have.

47Please refer to the bibliography provided at the end of this document, for example [116], [82], etc..
48See for example [144] and [19] who mention a similar idea in the calibration of the lognormal market

model.
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CHAPTER V

EXAMPLES. PRICING OF GAME OPTIONS

Abstract

We present a particular example of a Game Option and suggest its numerical

pricing using partial differential equations and approximations based in finite

difference methods.

5.1 Background Results

The previous three chapters of this work were devoted to the development of some tools

and results required in this chapter.

Our goal here is to show an example of the numerical approximation of the value of a

particular Game option in a market with non–constant interest rates.

The second chapter (see Chapter 2) contains some preliminaries plus (see Chapter 2 §2.2)

our rendition of a Bootstrapping method that allows us to obtain yield curve information

from a given swap curve. In practice, data obtained through the method of Chapter 2 §2.2

can be used to calibrate an interest rate model.

The first part of Chapter 4 contains a detailed study of a particular interest rate model,

the Hull–White interest rate model. In the second part of that chapter we show a Stripping

method that can be used to obtain spot volatility data from flat volatility obtained from

Caps/Floors quotes. We also show detailed examples of calibration (of the Hull–White

model, although many of those ideas can be used in the calibration of other interest rate

models as well) in which data coming from our Bootstrapping and Stripping methods is

used.

In this chapter we retake some of those ideas and suggest a numerical approximation to

the price of a particular example of Game option.

But, before we start the numeric approximations, we need to, briefly, review our results
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from Chapter 3 and observe how they apply to our particular example. We also need to

recall some usefull results from the general theory of diffusions and Markov processes.

Without much ado we proceed now into our short review of the results from Chapter 3.

Recall the general setting of Chapter 3 where we assumed we are given a filterd prob-

ability space (Ω,U ,G,P), where F is the P–augmentation of the natural filtration of a

d–dimensional Brownian Motion W . We assumed G = FT . We also assumed that asset

prices follow strictly positive processes which we model by means of linear stochastic dif-

ferential equations (more explicitly as exponential diffusions), and that an smm (standard

market model) is defined under such filtered probability space.

In Chapter 3 we showed that a game contingent claim (gcc) with RCLL left upper

semicontinuous payoff processes −X and Y, 0 ≤ Y ≤ X, satisfying condition (108), not only

has a value,

V∗t = essinf
s∈St,T

esssup
t∈St,T

EE(R∗(s, t)|Ft) = esssup
t∈St,T

essinf
s∈St,T

EE(R∗(s, t)|Ft), (412)

Theorem 3.4.26 (242), but that ∀t ∈ [0, T ] (∃κt ∈ St,T ) ∧ (∃ξt ∈ St,T ) (please see Chapter

3 for notation and definitions1), optimal stopping times for the seller and the buyer such

that

V∗t = EE(R∗(κt, ξt)|Ft), (413)

and

EE(R∗(κt, t)|Ft) ≤ V∗t ≤ EE(R∗(s, ξt)|Ft), (414)

PE–a.s., for any s, t ∈ St,T . That is, if the seller chooses any other strategy, s ∈ St,T , he/she

may end up paying more to the buyer than if he/she chooses κt; on the other hand, if the

buyer uses a different strategy, t ∈ St,T , he/she may end up receiving a smaller payment.

To both seller and buyer it is optimal to use their corresponding optimal stopping time (κt

and ξt, respectively) since the failure of the adversary to follow their corresponding optimal

strategy may result in a better situation (for the party following the optimal strategy).

1Since eκt ∧ eξt = κ0
t ∧ ξ0

t , we will use κt to represent both κ0
t and eκt, ∀t ∈ [0, T ]. Similarly, ∀t ∈ [0, T ] we

will use ξt to represent both ξ0
t and eξt. See Chapter 3 for details.
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If both seller and buyer act optimally, based in the information available to them at

time t ∈ [0, T ], the contract should be canceled/executed at time κt ∧ ξt.

We also showed that there exists a portfolio strategy, Πκ0 , such that it defines a hedge

against the gcc and that V∗0 = V0 = WΠκ0

0 and that such portfolio strategy is (PE–a.s.)

unique up to the end of the contract, κt ∧ ξt.

Another property of a gcc with maturity T and payoff processes Y and X is that ∀t ∈

[0, T ]

Y∗
t ≤ V∗t ≤ X∗

t , (415)

in fact, this property is valid also for all stopping times t ∈ S0,T , that is

Y∗
t ≤ V∗t ≤ X∗

t . (416)

By definition of ξt we know that

Y∗
s < V∗s , ∀s < ξt, (417)

similarly, by definition of κt we have

V∗s < X∗
s, ∀s < κt. (418)

(otherwise, the definition of these stopping times will be contradicted). Thus, we see that,

∀s ∈ [0, T ]

Y∗
s < V∗s or Y∗

s = V∗s ,

V∗s < X∗
s or V∗s = X∗

s.

(419)

This means that there are three well defined “regions” in [0, T ] × Ω, i) a continuation

region Co = {(t, ω) | Y∗
t (ω) < V∗t (ω) < X∗

t (ω)} ⊂ [0, T ] × Ω, where neither exer-

cise nor cancellation are optimal; ii) a cancellation region Ka = {(t, ω) | V∗t (ω) ≥

X∗
t (ω)}

⋃
{T } × Ω ⊂ [0, T ] × Ω, where the gcc should be canceled, and iii) an exercise

region Ex = {(t, ω) | V∗t (ω) ≤ Y∗
t (ω)} ⊂ R+ × Ω, where the gcc should be exercised.

Observe that the stopping times κ0 and ξ0 are the first hitting times corresponding to the

cancellation and exercise regions, respectively.

What happens if X is large?
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Let
{
X(n)

}
n∈N be an increasing sequence of RCLL stochastic processes such that, for

all t ∈ [0, T ] X
(n)
t ≥ Xt and such that −X(n) is left upper semicintinuous, and satisfies

condition (108), ∀n ∈ N. Define now R(n) = RX(n),Y, see Definition 3.4.1. Then, given

n ∈ N, ∀s, t ∈ S R(n)(s, t) = R(s, t)+(X(n)
s −Xs)1s<t, and R(n) ≥ R ∀n ∈ N. Let n ∈ N and

m ∈ N, n ≤ m, then, ∀s, t ∈ S we have R(n)(s, t) = R(s, t) + (X(n)
s − Xs)1s<t ≤ R(m)(s, t).

That is, {R(n)}n∈N is an increasing sequence of families of random variables indexed by

stopping times in S.

Fixing n ∈ N and m ∈ N, n ≤ m, and t ∈ [0, T ],

esssup
t∈St,T

EE(R∗(s, t)|Ft) ≤ esssup
t∈St,T

EE(R(n)∗(s, t)|Ft)

≤ esssup
t∈St,T

EE(R(m)∗(s, t)|Ft),

thus,

V∗t = essinf
s∈St,T

esssup
t∈St,T

EE(R∗(s, t)|Ft) ≤ essinf
s∈St,T

esssup
t∈St,T

EE(R(n)∗(s, t)|Ft) = Vt
(n)∗

≤ essinf
s∈St,T

esssup
t∈St,T

EE(R(m)∗(s, t)|Ft) = Vt
(m)∗,

(420)

that is, the time t price of a gcc increases as X increases. Similarly, we obtain the following

result

Proposition 5.1.1. Let Y, X, Z, be three RCLL processes (defined on and adapted to the

filtered probability space underlying our market model of Chapter 3). Assume Y ≤ X ≤ Z.

Assume also that X and Z satisfy condition (108). The time t, t ∈ [0, T ], price of the gcc

defined by Y and X is lower or equal than the time t price of the gcc defined by Y and Z.

In the limit, when n →∞, X(n) →∞, and the (discounted) gcc payoff degenerates into

R(∞)∗(s, t) =


∞ s < t,

Y∗
t t ≤ s.

(421)

From the point of view of a game of stopping, as the cancelation payoff increases, to cancel

the gcc becomes ever more expensive for the seller. In the limit, it will be totally unthinkable
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to cancel the gcc, in fact, in the limit, the seller is “not allowed” to cancel the gcc. But this

is the case of an American contingent claim2 (acc).

We observe also that, fixing t ∈ St,T , R(∞)∗(t, t) = Y∗
t , therefore

esssup
t∈St,T

EE(Y∗
t |Ft) ≥ esssup

t∈St,T

essinf
s∈St,T

EE(R(∞)∗(s, t)|Ft) = Vt
(∞)∗ (422)

Proposition 5.1.2. Let Y, X, be two RCLL processes (defined on and adapted to the filtered

probability space underlying our market model of Chapter 3) such that X satisfy condition

(108). Assume Y ≤ X. The time t, t ∈ [0, T ], price of the gcc defined by Y and X is lower

or equal than the time t price of the acc defined by Y.

Observe that Proposition 5.1.1 and Proposition 5.1.2 remain valid if R takes the form

of (253).

5.2 The Markovian Case

Recall from Chapter 3 equations (46) and/or (48), that we model our asset prices Pt using

diffusion processes. In the case the coefficients µ and σ (see Chapter 3 for definitions) are

deterministic functions of time t we know the solutions of (48) are Markovian (see [163]

Chapter 6 for example).

We have learnt some properties of the price of a gcc. We know that the time t, t ∈ [0, T ],

V∗t , price of a gcc is given by Theorem 3.4.26, and in particular by (242), that under proper

conditions there is a saddle point and that the price is always bounded by the payoff

processes defining the gcc (see (415) and (419)). We also know that the bigger the value of

the cancelation process is at time t, t ∈ [0, T ], the bigger the time t price of the gcc; and

that the price of the corresponding acc (with payoff process equal to the exercise payoff

of the gcc) is always bigger than the gcc price. In this regard, Proposition 5.1.2 offers a

natural upper bound on the value of a gcc.

We will study now a few additional properties we can derive from the form of the payoff

processes.

2See [94] for a description of american contingent claims and their pricing, see also [97], [95], etc..
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As before, we will use the notation introduced in Chapter 3. Assume that there exists

real, bounded from below, and measurable functions Φ and Ψ defined on R+×Rn such that

Φ(t, ~x) ≤ Ψ(t, ~x) for all (t, ~x) ∈ R+ × Rn and such that Xt = Ψ(t, Pt) and Yt = Φ(t, Pt),

then we can rewrite the gcc payoff, (107), as:

R(s, t) = RΨ,Φ(s, t) = Ψ(s, Ps) 1s<t +Φ(t, Pt) 1t≤s . (423)

Recall that diag(~x) denotes a diagonal n × n matrix whose diagonal entries are the n

components of ~x ∈ Rn, that is diag(~x)ii = xi. We define the diffusion matrix of our market

model as

a(t, ~x) = diag(~x)σt(diag(~x)σt)† = diag(~x)σtσ
†
t diag(~x) (424)

we will assume that a satisfies the ellipticity condition

‖a(t, ~x)‖ = ~x†σtσ
†
t~x ≥ l‖~x‖2 for some l > 0, ∀(t, ~x)R+× ∈ Rn (425)

Condition (425), which is a bounded–from–below condition, is imposed (see [63], [96],

[88]) to ensure that not all higher order coefficients in the differential generator (see [141],

[96]) of diffusion Pt vanish3.

In a very simplified way, we can introduce the differential generator of a diffusion as

follows.

Theorem 5.2.1. Let µ : R+ ×Rn → Rn and σ : R+ ×Rn → Rn×d be measurable functions

satisfying:

‖µ(t, ~x)‖+ ‖σ(t, ~x)‖ ≤ C(1 + ‖~x‖); ~x ∈ Rn, t ∈ [0, T ], (426)

for some constant C > 0, and

‖µ(t, ~x)− µ(t, ~y)‖+ ‖σ(t, ~x)− σ(t, ~y)‖ ≤ D‖~x− ~y‖ (427)

for some constant D > 0. Let (Ω,U ,P), be a probability space, let W = {Wt}0≤x<∞, be a

d–dimensional Brownian Motion and FW the filtration generated by W . Let Ξ be an Rn

3To say the truth, the situation is a little more complex than this. If nothing else is done first, there

will be a singularity at the origin. This problem can be removed after a change of variables of the form

xi = Kie
yi in which case the ellipticity condition we are giving (425) will work.
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valued random vector independent of the d–dimensional Brownian Motion W and such that

E‖Ξ‖2 < ∞ (428)

Then, there exists a continuous adapted process X = {Xt}t∈[0,T ] which is a strong solution

to

dXt = µ(t, Xt) dt + σ(t, Xt) dWt, X0 = Ξ. (429)

Moreover, this process is square integrable. There exists a constant L > 0 (that depends

only on C, D, and T ) such that

E‖Xt‖2 ≤ L(1 + E‖Ξ‖2)eLt, t ∈ [0, T ]. (430)

As usual if A is an n× d matrix, we write A = (aij), and define ‖A‖ =
∑n

i=1

∑d
j=1 aij .

See [63], Chapter 5 or [141] Chapter 5 and Chapter 7 for details, similarly [96] Chapter 5

provides with the details.

Global condition (427) in Theorem 5.2.1 can be relaxed. If instead of (427) we adopt

‖µ(t, ~x)− µ(t, ~y)‖+ ‖σ(t, ~x)− σ(t, ~y)‖ ≤ Dr‖~x− ~y‖, (431)

r > 0, ‖~x‖ ≤ r, ‖~y‖ ≤ r, t ∈ [0, T ] and Dr > 0 a constant depending only on T and r; the

Theorem 5.2.1 remains valid.

Let Xs,~x be the solution of (429) for t ≥ s under the “initial condition” Xs = ~x P–a.e.,

that is:

dXt = µ(t, Xt) dt + σ(t, Xt) dWt, Xs = ~x, t ≥ s. (432)

Under the conditions of Theorem 5.2.1, with (431) instead of (427), the solutions of

(432) are Markovian (see [63], see also [73] Chapter III or [163]) with transition function

p(s, ~x, t, A) = P(Xs,~x
t ∈ A), T ≥ t ≥ s ≥ 0, (433)

A a borel set in Rn and satisfy the strong Markov property. Also, such solutions satisfy

E(supt≤s |X
s,~x
t −Xu,~y

t |2) ≤ K(‖~x−~y‖2 + |s−u|), if ‖~x‖ ≤ r and ‖~x‖ ≤ r, s ≤ u ≤ T , where

K is a constant that depends on T and r. If µ and σ are piecewise continuous, Xu,~x is a

diffusion.
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Usually, µ(t, Xt) is called the drift and σ(t, Xt) is called the dispersion matrix. In general

a(t, Xt) = σ(t, Xt)σ(t, Xt)† is called the diffusion matrix of diffusion (429) (or (432)), for

convenience we may write σi(t, Xt) to represent the i–th row of matrix σ(t, Xt), and µj(t, Xt)

to represent the j–th component of vector µ(t, Xt).

Let u : R+ × Rn → R be a function of class C1,2 defined on a subset of R+ × Rn.

According to Itô’s formula, the process {u(t, Xs,~x
t )}t∈[s,T ]⊆[0,T ], ~x ∈ Rn satisfies

du(t, Xs,~x
t ) =

(
∂u

∂t
+

n∑
i=1

µi
∂u

∂xi

+
1
2

n∑
i=1

n∑
k=1

aik
∂2u

∂x2
i ∂x2

k

)∣∣∣∣
(t,Xs,~x

t )

dt

+

(
n∑

i=1

σi
∂u

∂xi

)∣∣∣∣
(t,Xs,~x

t )

dWt

(434)

the “dt” coefficient in (434) is called the differential generator of diffusion (429) and (432)

applied to function u. It is customary to denote by A the infinitesimal generator of diffusion

(429) and (432):

A u =
1
2

n∑
i=1

n∑
k=1

aik
∂2u

∂xi∂xk

+
n∑

i=1

µi
∂u

∂xi

; (435)

in case we need to make explicit reference to diffusion X, (429), we will use AX instead

of A . To simplify our notation we may “drop” the symbols s, ~x from our notation of the

solution of (432). It seems that there is not a standard notation to use in the case of the

differential generator, in case needed we will use the symbol L , thus

L u =
∂u

∂t
+ A u, (436)

to represent the differential generator of X applied to the C1,2 function u; as before, LX

will be preferred over L when explicit mention of the underlying diffusion is needed.

We can rewrite (434), using (435), in integral form as follows:

u(t, Xt)− u(0, X0)−
∫ t

0

(
∂u

∂s
+ A u

) ∣∣∣∣
(s,Xs)

ds =
∫ t

0

(
n∑

i=1

σi
∂u

∂xi

)∣∣∣∣
(s,Xs)

dWs (437)

thus, the left hand side of (437) is a continuous local martingale4. If u is of class C1,2

has bounded first derivatives and σ is t–bounded (that is, if ‖σ(s, ~y)‖ ≤ Kt, 0 ≤ s ≤ t,

4Please see [96], chapter 5 for details. In particular Theorem 2.9 and Proposition 4.2. There are more

sources in the bibliography, in particular, the reader may consider [88], [141] and [114] amongst many others.
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t ∈ [0, T ], Kt a constant depending only on t) then the left hand side of (437) is a continuous

square integrable martingale. The boundedness condition on σ may be changed by the local

condition of σ being bounded on compact sets.

Recall from Chapter 3 §3.3.1 and our presentation of the standard market model (smm)

that we denote by S a stock price process and by B(·, T ) the price process of a zcb of maturity

T . According to the smm of Chapter 3, S and B(·, T ) satisfy

dSt = St(ςt dt + %t · dWt), (438)

with initial price S0
5, and

dB(t, T ) = B(t, T )(a(t, T ) dt + b(t, T ) · dWt), (439)

with initial price B(0, T ), maturity T ∈ [0, T ], T > 0, and final value B(T, T ) = 1. Consider

now the process defined by Z = (S, B(·, T )), with initial value (S0, B(0, T )). It is clear that

Z’s dynamics are given by (438) and (439) (notice that {%t}t∈[0,T ], {b(t, T )}t∈[0,T ] and

{Wt}t∈[0,T ] are d–dimensional processes). If u : R+ ×R2 → R is a function of class C1,2 we

can write:

AZu(t, St, B(t, T )) =
{

Stςt
∂u

∂x
+ B(t, T )a(t, T )

∂u

∂y

+
1
2

{
‖%t‖2S2

t

∂2u

∂x2
+ ‖b(t, T )‖2(B(t, T ))2

∂2u

∂y2
+ 2%t · b(t, T )StB(t, T )

∂2u

∂x∂y

}} ∣∣∣∣
(t,Zt)

(440)

or, in terms of t and (x, y) ∈ R2

AZu = xςt
∂u

∂x
+ ya(t, T )

∂u

∂y

+
1
2

{
‖%t‖2x2 ∂2u

∂x2
+ ‖b(t, T )‖2y2 ∂2u

∂y2
+ 2%t · b(t, T )xy

∂2u

∂x∂y

}
(441)

5To simplify the analysis we will assume that stock S pays no dividends; otherwise, depending on

situation, we should be using its yield process Y which satisfies

dYt = St(ςt dt + δt dt + %t · dWt) Y0 = S0

where δ represents the dividend rate process. Obviously, to change this assumption is not too difficult,

roughly speaking we should only have to change ς by ς + δ in the right places thereafter.
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Similarly, we can write Itô’s formula, (434) for process {u(t, Zt)}t∈[0,T ], Zt = (St, B(t, T ))

t ∈ [0, T ], as:

du(t, St, B(t, T )) =
{

∂u

∂t
(t, St, B(t, T )) + AZu(t, St, B(t, T ))

}
dt

+
(

%t
∂u

∂x
(t, St, B(t, T )) + b(t, T )

∂u

∂y
(t, St, B(t, T ))

)
· dWt (442)

5.3 Forward price, forward measure and a simple example
of change of Numéraire

A particularly interesting case of last example is obtained when u(x, y) = x/y (y 6= 0). In

such a case (442) reduces to:

d

(
St

B(t, T )

)
=
(

St

B(t, T )

)
{(ςt − at + b(t, T ) · b(t, T )− %t · b(t, T )) dt + (%t − b(t, T )) · dWt}.

(443)

Definition 5.3.1 (Forward price). Process {St/B(t, T )}t∈[0,T ] is known as the forward

price6 of stock S with respect to the zcb price process B(·, T ) and is denoted as FS(·, T );

that is

FS(t, T ) =
St

B(t, T )
t ∈ [0, T ]. (444)

In terms of (444) we can write (443) as

dFS(t, T ) = FS(t, T ){(ςt− at + b(t, T ) · b(t, T )− %t · b(t, T )) dt + (%t− b(t, T )) · dWt}, (445)

where FS(0, T ) = S0/B(0, T ), the process {%t − b(t, T )}t∈[0,T ] will be called forward price

volatility or simply forward volatility. Our computations show that the forward price is

also an Itô process, a diffusion with drift process {FS(t, T )(ςt − at + b(t, T ) · b(t, T ) − %t ·

b(t, T ))}t∈[0,T ] and dispersion process {FS(t, T )(%t − b(t, T ))}t∈[0,T ].

According to Definition 3.3.13, §3.3.3, Chapter 3 there exists a process7 θ such that

6Please see [133], Chapter 13 for a detailed description of forward price processes and their correspond-

ing measures. Alternatively, [163] Chapter 5 and Chapter 9 provides also with a detailed description of,

respectively, forward price processes and their corresponding associated measures.
7From Chapter 3 we know that σ is an n× d–dimensional (matrix) process (this is to accommodate our

d sources of risk, that is a d dimensional standard Brownian motion W , and n different basic securities (S
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ρt = µt − ~1nrt + δt = σtθt, t ∈ [0, T ]. Or, using the notation of this section, such that:

%t · θt = ςt − rt, (446)

and,

b(t, T ) · θt = a(t, T )− rt. (447)

Such a process (called market price of risk, see Chapter 3 Theorem 3.3.3) is used to define

the martingale measure PE under which our discounted asset prices (see Definition 3.3.9

and §3.3.3) are driftless8 diffusions with respect to the “new” Brownian motion W E defined

as dW E
t = θt dt + dWt.

Under the risk neutral measure, (84), PE , the discounted prices of S and B(·, T ) satisfy

the sde’s:

dS∗t = S∗t %t · dW E
t (448a)

d(B(t, T ))∗ = (B(t, T ))∗b(t, T ) · dW E
t (448b)

with initial values S0 and B(0, T ). Notice also that the forward price process FS(·, T )

satisfies

FS(t, T ) =
St

B(t, T )
=

S∗t
(B(t, T ))∗

t ∈ [0, T ]. (449)

Thus, in terms of the risk neutral measure PE we can re-write (445) as follows:

dFS(t, T ) = FS(t, T ){(‖b(t, T )‖2 − %t · b(t, T )) dt + (%t − b(t, T )) · dW E
t }

= FS(t, T ){(%t − b(t, T )) · (−b(t, T )) dt + (%t − b(t, T )) · dW E
t }

= FS(t, T )(%t − b(t, T )) · {−b(t, T ) dt + dW E
t },

FS(0, T ) =
S0

B(0, T )
.

(450)

and B(·, T ) are the price processes of two of them), then the risk premium ρ is an n–dimensional process and

the market price of risk process θ is a d–dimensional process. In general, this last process will exist if the

volatility matrix process, σ, has a left inverse P–a.e.. Similarly, processes % and b(·, T ) are d–dimensional.
8Recall we are assuming that S pays no dividends, otherwise the first equation in (448) should be changed

for

dS∗t = S∗t (−δ dt + %t · dW E
t )

which is not driftless.
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In order to avoid a singularity in (450) we may want to assume that the forward volatility

process is not of null length, that is, that ‖%t− b(t, T )‖ 6= 0, this assumption can be phrased

in a form consistent with the ellipticity condition (425), that is we assume:

‖%t − b(t, T )‖ > l, for some l > 0,∀t ∈ R+. (451)

According to Girsanov’s theorem9 if∫ s

0
‖b(t, T ))‖2dt < ∞ PE a.e.; s ∈ [0, T ], (452)

it is possible to find a change of measure under which the forward price will satisfy a drift-

less sde. Notice that this last requirement is already part of our general assumptions (see

Chapter 3 (51)). Thus, by Girsanov’s theorem

dWF
t = −b(t, T ) dt + dW E

t (453)

defines a d–dimensional standard Brownian motion. Assuming process b(·, T ) satisfies also

Novikov’s condition

EE

(
exp

{
1
2

∫ s

0
‖b(t, T )‖2dt

})
< ∞ s ∈ [0, T ] (454)

we know that the Doléans exponential of −b(·, T ),

E(−b(·, T )) =
{

exp
(∫ t

0
b(s, T ) · dW E

s −
1
2

∫ t

0
‖b(s, T )‖2ds

)}
t∈[0,T ]

, (455)

is not only a continuous local martingale satisfying

dEt(−b(·, T )) = Et(−b(·, T ))b(t, T ) · dW E
t , E(−b(·, T ))0 = 1, (456)

but it is also a martingale such that EE(Et(−b(·, T ))) = 1; t ∈ [0, T ].

In this case a “new” equivalent martingale measure exists, defined by

PF (A) = EE [1AET (−b(·, T ))]; A ∈ FT (457)

(notice that there is no problem with this definition and that the martingale property

ensures that PF (A) = EE [1AEt(−b(·, T ))]; A ∈ Ft, t ∈ [0, T ])

9 See [96] Chapter 3 section §3.5.A, and in particular Theorem 3.5.1 . See also Novikov’s condition, [96]

Chapter 3 section §3.5.D. Compare to our discussion in Chapter 3 after Theorem 3.3.3.
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Measure PF is an equivalent martingale measure (see Chapter 3),

dPF

dPE
= ET (−b(·, T )). (458)

Definition 5.3.2 (Forward measure). The equivalent martingale measure defined at

(457), PF , is called the maturity T , T ∈ [0, T ], Forward measure. In case explicit reference

to the maturity of the underlying zcb is required we will write PF
T instead of PF .

Last time we constructed an equivalent martingale measure, see Chapter 3 §3.3.3, we

did not pay much attention to the Doléans exponential. Compare (448) and (456). It is not

hard to see that the Doléans exponential of −b(·, T ) is equal to the discounted price process

(B(·, T ))∗ divided by the initial price of the zcb B(0, T ), that is:

Et(−b(·, T )) =
(B(t, T ))∗

B(0, T )
=

(B(t, T ))∗

(B(0, T ))∗
. (459)

This is very convenient. If X is an FT measurable r.v. we can write:

EF (X) =
1

(B(0, T ))∗
EE(X(B(T, T ))∗) (460a)

and,

EF (X|Fs) =
1

(B(s, T ))∗
EE(X(B(t, T ))∗|Fs) (460b)

if X is Ft measurable, 0 ≤ s ≤ t ≤ T (assuming the integrals in (460) exist).

Also, under measure PF , (450) reduces to

dFS(t, T ) = FS(t, T )(%t − b(t, T )) · dWF
t , FS(0, T ) =

S0

B(0, T )
. (461)

Notice that even if we allow % and b(·, T ) to be stochastic processes, but restrict them so

that the forward volatility is deterministic then the forward price process will be a diffusion

Markov process. If diffusion FS(·, T ) is started at a different time w ≥ 0 with initial value

FS(w, T ) = x we can write

dFS(t, T ) = FS(t, T )(%t − b(t, T )) · dWF
t , t ≥ w; FS(w, T ) = x. (462)

and Fw,x
S (·, T ) to denote its solution. We may default to the notation FS(·, T ) if no explicit

mention of w or x is necessary. Similarly, we may opt for the more explicit notation F x
S (·, T )

if we want to emphasize that the initial value at time zero is x.
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Equations (460) motivate the following observation. Let X = {Xt}t∈[0,T ] be an F–

adapted stochastic process; its forward price at time s, 0 ≤ t ≤ s ≤ T , for a maturity T will

be:

FX(s, T ) =
Xs

B(s, T )
(463)

similarly, we may define

X∗
s =

Xs

Bs
(464)

by (460) we can write:

B(t, T )EF (FX(s, T )|Ft) = BtEE(X∗
s |Ft), (465)

0 ≤ t ≤ s ≤ T , T ∈ [0, T ]; assuming that both, the forward price and discounted process

defined above are PF –integrable and PE–integrable, respectively. Observe that (465) is still

valid if time s is changed by a stopping time s ∈ ST .

Equation (465) shows the equivalence between discounting using the Bank account and

discounting with respect to a zcb of maturity T . As we commented before, see Footnote 14

and Footnote 23, we could use any positive, non dividend paying asset to discount. In case

we use another non dividend paying asset to discount, changes of measure of the type we

have described in this example will be available, as well as equivalence relationships as that

given by (465).

If we call Yt the random variable in (465) we can use (465), Definition 5.3.1 and Definition

3.3.9 to write:

Y ∗
t = EE(X∗

s |Ft), (466a)

FY (t, T ) = EF (FX(s, T )|Ft), (466b)

0 ≤ t ≤ s ≤ T , T ∈ [0, T ], any of the related equations above can be used to compute Yt.

Our computations leading to (461) and (465) show that the forward price of an asset with

respect to a given zcb of maturity T is a martingale with respect to the forward measure

PF , and that discounting with respect to the Bank account is equivalent to discounting

with respect to a zcb price process. Clearly such results could be easily generalized to

“discounting” with respect to a positive martingale. The strength of (466) lies in the
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fact that under favorable conditions we can, conveniently, change the frame of reference in

our pricing formulas. If formulas under the forward measure are simpler we can use that

framework to price a contract and then come back to the risk neutral probability measure

using (465) and Definition 5.3.1.

5.4 The Markovian Case continued

We retake now the example we were working with in §5.2.

What are the infinitesimal and differential generators of diffusion FS(·, T )?

Let u : R+×R → R, (t, z) → u(t, z) be a C1,2 function, by Itô’s formula (434), we have:

du(t, FS(t, T )) =
{

∂u

∂t
(t, FS(t, T )) +

1
2
(FS(t, T ))2‖%t − b(t, T )‖2 ∂2u

∂z2
(t, FS(t, T ))

}
dt

+ FS(t, T )
(

∂u

∂z
(t, FS(t, T ))

)
(%t − b(t, T )) · dWF

t , (467)

from where we obtain

AFS(·,T )u =
1
2
z2‖%t − b(t, T )‖2 ∂2u

∂z2
, (468)

and,

LFS(·,T )u =
∂u

∂t
+ AFS(·,T )u =

∂u

∂t
+

1
2
z2‖%t − b(t, T )‖2 ∂2u

∂z2
, (469)

compare with (542) and (543).

For example, equation (469) can be used to obtain the price of an European Call/Put

on a Forward price. Consider an European option whose final payoff at time M < T is

given by:

B(M,T )(FS(M,T )−K)+, (470)

K a nonnegative constant. Acording to European contingent claim pricing theory (basically

according to arbitrage free pricing, see [95] Chapter 1 sections §2 and §3, [133] Chapter 5,

[96], etc.), the time t price of such an European contract will be:

Vt = BtEE

(
B(M,T )

BM
(FS(M,T )−K)+|Ft

)
(471)

Assume that %t − b(t, T ) is deterministic and that

‖%t − b(t, T )‖ ≤ L, ∀t ∈ [0,M ] (472)
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where L > 0 is a constant. Recall that we are assuming the conditions of Theorem 5.2.1

plus the ellipticity condition of (425) (or equivalently (451)).

From our computations above we know that discounting with respect to the Bank ac-

count is equivalent to discount with respect to the price process of a zcb of maturity T

(equivalence given by (465) and (466)). Thus we can write:

Vt = BtEE

(
B(M,T )

BM
(FS(M,T )−K)+|Ft

)
= B(t, T )EF

(
B(M,T )(FS(M,T )−K)+

1
B(M,T )

|Ft

)
= B(t, T )EF

(
(FS(M,T )−K)+|Ft

)
= B(t, T )u(t, FS(t, T )) (473)

where u is a solution to the equation

LFS(·,T )u = ∂u
∂t + 1

2z2‖%t − b(t, T )‖2 ∂2u
∂z2 = 0, t ∈ [0,M [, z ≥ 0

u(M, z) = (z −K)+, z > 0

u(t, 0) = 0, t ∈ [0,M ]

(474)

(see [141] Chapter 12 or equivalently, [45] Chapter 5 and [46] Chapter 13, the ellipticity

condition we imposed ensures that u is a C1,2 function and that it satisfies the pde above). In

view of (466), u(t, FS(t, T )) is not the time t price of the option, but the time t forward price

of the option. The time t price of the option can be found after multiplying u(t, FS(t, T ))

by the time t price of the T maturity zcb.

The power of this procedure is that we have effectively hidden the random rate inside

the forward price diffusion simplifying noticeably the pricing equations.

Equation (474) can be solved explicitly.

The conditions we have imposed on %t−b(t, T ) (namely, the uniform ellipticity condition

(451), the upper ellipticity or upper boundedness condition (472), plus the assumption that
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the forward volatility is deterministic) will ensure that the initial value problem

∂v
∂τ (τ, x) = 1

2c(τ)
(

∂2v
∂x2 (τ, x)− ∂v

∂x (τ, x)
)

, r ∈ [0,M ], x ∈ R

v(0, x) = α(x), x ∈ R

lim
x→−∞

v(τ, x) = 0, r ∈ [0,M ]

c(τ) = ‖%M−τ − b(M − τ, T )‖2

(475)

has a solution whenever α : R → R is a Borel–measurable function satisfying the integra-

bility condition ∫ ∞

−∞
|α(x)|e−ax2

dx < ∞ (476)

for some a > 0.

The pde in (475) is obtained from (474) after the changes of variables τ = M − t,

z = Kex and u(z, τ) = Kv(τ, x).

In our case, the initial (τ = 0) condition is u(0, z) = max{z − K, 0}, which transforms

into v(0, x) = (ex − 1)+ = α(x), which clearly satisfies (476).

Under the assumption that (451), (472) and (476) are satisfied we can obtain explicit

solutions for (475) as follows. Define

φ(τ) =
∫ τ

0
c(u) du, (477)

and

Υ(τ, x, y) =
1√

2πφ(τ)
exp

(
−(2(x− y)− φ(τ))2

8φ(τ)

)
, (478)

under the convention that Υ(τ, x, y) reduces to the Dirac delta function concentrated at

x− y, δ(x− y), when τ = 0 (that is, when φ = 0).

It is not hard to show that Υ satisfies the pde in (475).

Define now

v(τ, x) =
∫ ∞

−∞
α(y)Υ(τ, x, y) dy (479)

then, v is well defined for (τ, x) ∈ [0, 1/2a[×R, has derivatives of all orders and satisfies

(475).

Notice that turning back our changes of variables from (τ, x) to (t, z) we will obtain

the solution to the corresponding final value problem. In the particular case of v(0, x) =
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(ex − 1)+ = α(x), namely, when the final value is given by max{z − K, 0}, the solution to

that final value problem will provide us with the arbitrage price for the European contract

we are discussing here.

In fact, in the case of v(0, x) = (ex − 1)+ = α(x), (479) can be integrated explicitly.

In (z, t) variables the explicit solution of (474) is

u(t, z) = zΦ(d(t, z,M, T,K))−KΦ(d(t, z,M, T,K)− φ(t, M, T )), (480)

where

φ(t, M, T ) =
∫ M

t
‖%t − b(t, T )‖2 du, (481)

and

d(t, z,M, T,K) =
1

φ(t, M, T )
ln
( z

K

)
+

1
2
φ(t, M, T ), (482)

as usual, Φ is used to represent the Standard Normal distribution. Thus, the time t arbitrage

price of an European call on the forward price of stock S, settling at time M is given by:

B(t, T ) u

(
t,

St

B(t, T )

)
t ∈ [0,M ]. (483)

Initial forward price for the European contract and final payoff

0

2

4

6

8

Eu
(0

,z
)

20 30 40 50
Initial forward price

Figure 45: This plot shows the initial forward price of an European Call on a forward
price computed using (480). In this particular example we assumed a Vasicek model with
interest rate volatility of 0.20 and interest rate speed of mean reversion of 0.10. The other
parameters used were, stock volatility 0.25, forward strike 50.0, and zcb maturity 1.00.
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5.5 American Game Call

Based in our prior description of what a Game Option is, see Chapter 3, we see that a very

natural extension to the concept of American Call/Put is the concept of an American Game

Call/Put. An American Game Call is a contract between two parties in which one, the Seller,

agrees to sell to the other party, the Buyer, a given asset at or before a particular time,

known as the Maturity of the contract, for a pre–specified price, the Strike. The Buyer

in this kind of contract can exercise10 his/her option at any time at or before Maturity,

while the Seller (also known as the Writer, or Issuer) preserves the right to cancel/stop the

contract at any time prior to Maturity, provided he/she will pay to the Buyer (also known

as the Holder or Investor) a fine (also known as a penalization) plus the current value of

the option. That is, in case of cancelation, the Buyer will receive the amount he/she should

have received if he/she had decided to exercise at time of cancelation plus a positive amount

in compensation for his/her possible losses due to the non continuation of the contract. In

case the option reaches maturity without being exercised or cancelled, the Buyer is awarded

the intrinsic value of the option at maturity time, that is, he/she is given the same payoff

as if she/he had decided to exercise at maturity.

As we can see, an American Game Call (agc) is a particular case of Game Option (see

Chapter 3, §3.2 and Chapter 3, §3.4) in which the processes X and Y that define the payoff

RX,Y of the option are of the form Xt = (St −Kt)+ + pt and Yt = (St −Kt)+ where St

represents the time t price of a given asset, and Kt represents the time t Strike price of the

option (which could be a random process), and pt ≥ 0 is the time t penalization that the

Writer should pay (in addition to the current payoff of the option) to the Buyer in case of

cancelation. Naturally, pt = Xt −Yt could also be a random process. If M is the maturity

of the contract, the payoff at maturity is YM = (SM −KM )+.

In this chapter we propose the numerical pricing of a further extension of the idea of

an American Call, this will be an American Game Call where the contract is not written

on the spot price of a given asset, but on its forward price. Alternatively, the contract

10That is, can opt to acquire the underlying asset, at strike price.
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we proposed here can be seen as a Game American Call whose time t value is adjusted

to reflect the time t price of a given zero coupon bond, so that the option’s payoff can be

expressed in units of zcb price. This way, both strike and penalization —although simple—

are stochastic processes and not mere constants or deterministic functions. Considering the

pricing of an American Game Call on a forward price we will be studying a contract that is

not only immersed in a market where interest rates are stochastic, but that also, in a very

natural way, is explicitly sensitive to the interest rate underlying our market.

All theoretical assumptions and notation are those used throughout this paper and in

particular like those in Chapter 3 §3.3 and those presented earlier in this chapter. Please

refer to Chapter 3 §3.3, and to sections §5.1 to §5.4 for details and definitions.

In particular, we will assume that we are dealing with a standard market M with a

finite time horizon T < ∞, in which uncertainty is driven by a d–dimensional Brownian

Motion W defined on a complete, filtered probability space (Ω,U ,F ,P), where F denotes

the P–augmentation of the natural filtration of W and where U = FT , that is, the filtration

F of sub–σ–algebras of U satisfies the usual conditions11. We assume that asset prices

follow strictly positive processes which we model as lognormal processes, see Chapter 3 (46)

and (438) and (439) below. On the other hand, we will assume that the risk free rate r is

modeled by means of a Hull–White interest rate model12, see Chapter 4, (255). We will

assume an initial term structure to be given, to which the interest rate model is fitted.

11In Sub–section §3.3.1, Chapter 3, we went into the theoretical details of the definition of a standard

market. See §3.3.1 and in particular Footnote 12.
12As it can be inferred from our discussion below, our setting does not depend on our selection of a

Hull–White model of interest rates; on the contrary, this setting will be valid as long as the interest rate

model implies bond dynamics in accordance with (439) and the volatility of the forward price %t − a(t, T )

is a deterministic process. The first condition is satisfied by any interest rate model where the dynamics of

the interest rate are modeled by an Itô process.
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5.6 The pricing of an American Game Call on a Forward
price

Let’s adopt once again the settings of sections §5.2 to §5.4. As before, we consider a stock

whose price process is given by equation (438) and a zero coupon bond of maturity T ≤ T

whose price process follows the dynamics of (439). As before, we will assume that the

conditions of Theorem 5.2.1 hold plus the ellipticity, (451), and boundedness of the forward

volatility, (472).

Consider an American Game Call of maturity M , M ≤ T ≤ T whose payoff processes

are given by the formulas

Yt = Φ̃(St, B(t, T )) = (St −KB(t, T ))+

= B(t, T )(FS(t, T )−K)+ = B(t, T )Φ(FS(t, T )), t ∈ [0,M ],
(484)

and

Xt = Ψ̃(St, B(t, T )) = (St −KB(t, T ))+ + pB(t, T )

= B(t, T )
(
(FS(t, T )−K)+ + p

)
= B(t, T )Ψ(FS(t, T )), t ∈ [0,M [,

(485)

where p and K are nonnegative constants and Ψ̃ and Φ̃ (resp. Ψ and Φ) are two continuous,

convex, functions from R+2 (resp. R+) into R defined by

Φ̃(x, y) = (x− yK)+ Ψ̃(x, y) = Φ̃(x, y) + yp, (x, y) ∈ [0,∞[×]0,∞[

Φ(z) = (z −K)+ Ψ(z) = Φ(z) + p z ∈ [0,∞[
. (486)

Thus, Φ̃(x, y) = yΦ(x/y) and Ψ̃(x, y) = yΨ(x/y), ∀(x, y) ∈ [0,∞[×]0,∞[. In consis-

tency to our prior descriptions, at time of maturity, the payoff of the option will be

given by YM = Φ̃(SM , B(M,T )) = (SM − KB(M,T ))+ = B(M,T )(FS(M,T ) − K)+ =

B(M,T )Φ(FS(M,T )).

K will be called the forward strike price or forward strike of the option, p the forward

penalization premium or simply the forward penalization. Similarly, KB(t, T ) will be the

time t strike price of the option while pt = pB(t, T ) will be the time t penalization.

Since Φ is continuous and nonnegative, p is nonnegative and FS(·, T ), S, and B(·, T )

are diffusions (satisfying (461), (438) and (439), resp.) we know that −X and Y are rcll
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processes (in fact they are continuous processes, not only rcll and left upper semicontinuous)

satisfying the conditions of Chapter 3 while FS(·, T ), S, and B(·, T ) satisfy the additional

conditions imposed in this chapter. Clearly, the processes just defined satisfy Xt ≥ Yt and

(415), that is:

Y∗
t = Φ̃(St, B(t, T ))/Bt = Φ(St/B(t, T ))B(t, T )/Bt

= Φ(FS(t, T ))B(t, T )/Bt ≤ V∗t ≤ Ψ̃(St, B(t, T ))/Bt

= Ψ(St/B(t, T ))B(t, T ))/Bt = Ψ(FS(t, T ))B(t, T ))/Bt = X∗
t ; (487)

which we can rewrite as

FY(t, T ) = Φ(FS(t, T )) ≤ FV(t, T ) =
Vt

B(t, T )
≤ Ψ(FS(t, T )) = FX(t, T ); (488)

as usual “∗” is used to denote discounting with respect to the bank account B (see Definition

3.3.9), while V stands for the price process of the game contingent claim, in this case the

price process of our game American call on the forward price of stock S with respect to

the zcb B(·, T ). Equations (415) to (419) can be rewritten to reflect our current setting, in

particular we may write:

Φ(FS(t, T )) ≤ FV(t, T ) ≤ Ψ(FS(t, T )),

FV(s, T ) < Ψ(FS(s, T )), ∀s < κt,

Φ(FS(s, T )) < FV(s, T ), ∀s < ξt,

Φ(FS(t, T )) <
Vt

B(t, T )
= FV(t, T ) or Φ(FS(t, T )) =

Vt

B(t, T )
= FV(t, T ),

FV(t, T ) =
Vt

B(t, T )
< Ψ(FS(t, T )) or FV(t, T ) =

Vt

B(t, T )
= Ψ(FS(t, T )),

(489)

for all t ∈ [0,M ]. Where κt and ξt are the cancellation and exercise times (see Chapter 3,

in particular Theorem 3.4.26, (243))

ξt = inf{s ≥ t : Y∗
s ≥ V∗s },

κt = inf{s ≥ t : X∗
s ≤ V∗s } ∧M.

(490)

As commented before, κt and ξt can be seen as the first hitting times, after time t, corre-

sponding to the cancellation and exercise regions, while the end of the contract (after time
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t) κt ∧ ξt is the first exit time, after time t, from the continuation region (see comment

right after (419)). The reader may recall that we showed such stopping times are finite, see

Proposition 3.4.4 and Proposition 3.4.5.

Also, we may rewrite (423), the gcc payoff function RΨ,Φ, as follows:

ReΨ,eΦ(s, t) = B(s ∧ t, T )
([

(Ss/B(s, T )−K)+ + p
]
1s<t +(St/B(t, T )−K)+1t≤s

)
= B(s ∧ t, T ) (Ψ (FS(s, T )) 1s<t +Φ (FS(t, T )) 1t≤s)

= B(s ∧ t, T )RΨ,Φ(s, t),

(491)

where

RΨ,Φ(s, t) = Ψ (FS(s, T )) 1s<t +Φ (FS(t, T )) 1t≤s

= Φ(FS(s, T )) 1s<t +p 1s<t +Φ (FS(t, T )) 1t≤s

= Φ(FS(s ∧ t, T )) + p1s<t

(492)

In the end, RΨ,Φ(s, t) is a measurable function of FS(·, T ), s and t.

Based on Definition 5.3.2, and in the same spirit of Notation 3.4.3, we can regard

RΨ,Φ(s, t) as the forward price of ReΨ,eΦ(s, t)

FReΨ,eΦ(s ∧ t, T ) = RΨ,Φ(s, t) =
ReΨ,eΦ(s, t)
B(s ∧ t, T )

(493)

According to Theorem 3.4.26 the discounted price process of a game contingent claim

satisfies:

V∗t = essinf
s∈St,T

esssup
t∈St,T

EE

(
ReΨ,eΦ(s, t)

Bs∧t

∣∣∣∣∣Ft

)
= esssup

t∈St,T

essinf
s∈St,T

EE

(
ReΨ,eΦ(s, t)

Bs∧t

∣∣∣∣∣Ft

)
; (242)

we are now in position to adapt that result to our particular setting.

In view of (465), (484), (485), (491), and (491) we have the following proposition.

Proposition 5.6.1. The price process, V, of a Game American Call of maturity M ≤

T ≤ T on the forward price of a Stock S with respect to zcb B(·, T ) defined by the payoff

processes (484) and (485) satisfies:

FV(t, T ) = essinf
s∈St,M

esssup
t∈St,M

EF (RΨ,Φ(s, t)|Ft) = esssup
s∈St,M

essinf
t∈St,M

EF (RΨ,Φ(s, t)|Ft). (494)
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Proof. This proposition follows immediately from the definitions of esssup, essinf and (465),

(484), (485), (491), and (492). By (465) we have

EE

(
ReΨ,eΦ(s, t)

Bs ∧ t

∣∣∣∣∣Ft

)
=

B(t, T )
Bt

EF

(
RΨ,Φ(s, t)

∣∣Ft

)
. (495)

Therefore

V∗t = essinf
s∈St,T

esssup
t∈St,T

EE

(
R[Ψ̃, Φ̃](s, t)

Bs∧t

∣∣∣∣∣Ft

)

= essinf
s∈St,T

esssup
t∈St,T

{
EF

(
RΨ,Φ(s, t)

∣∣Ft

) B(t, T )
Bt

}
=

B(t, T )
Bt

essinf
s∈St,T

esssup
t∈St,T

EF

(
RΨ,Φ(s, t)

∣∣Ft

)
=
Vt

Bt
=

B(t, T )
Bt

FV(t, T ),

(496)

(the other equality is obtained similarly).

Observe that the change of numéraire technique presented in section §5.3 allows us to

translate our results from Chapter 3 (which were developed under the risk neutral mea-

sure) to equivalent results stated under the forward measure (induced by the zcb B(·, T )

of maturity T ). Intuitively, we could rework the whole Chapter 3 changing the discounting

with respect to the bank account to a different form of discounting using a given nondiv-

ident paying positive asset. In doing so, we will be able to obtain a Theorem as Theorem

3.4.26 stating also the existence of ε–optimal strategies and although such strategies may

be different from those found in Theorem 3.4.26 they should lead to the same saddle points

since

ξt = inf{s ≥ t : Y∗
s ≥ V∗s } = inf{s ≥ t : Ys ≥ Vs}; (497)

and, in the particular case of the current example

ξt = inf{s ≥ t : Ys ≥ Vs} = inf{s ≥ t : FY(s, T ) ≥ FV(s, T )}, (498)

and similarly in the case of the cancellation payoff.

According to Theorem 3.4.26, for every t there exists κt and ξt ∈ St,M , κt and ξt defined

in (490), such that

V∗t = EE

(
ReΨ,eΦ(κt, ξt)

Bκt∧ξt

∣∣∣∣∣Ft

)
, (499)
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our previous computations show the following proposition.

Proposition 5.6.2. For every t ∈ [0,M ], the stopping times ξt and κt of Theorem 3.4.26

satisfy

ξt = inf{s ≥ t : FY(s, T ) ≥ FV(s, T )},

κt = inf{s ≥ t : FX(s, T ) ≤ FV(s, T )} ∧M,

(500)

and

FV(t, T ) = EF

(
RΨ,Φ(κt, ξt)

∣∣Ft

)
. (501)

That is, we can obtain the price of our Game American Call under the forward measure

as well. As in the case of the European call option we studied before, we can write

FV(t, T ) = u(t, FS(t, T )) (502)

Explicitly, we can rewrite (500) as

ξt = inf{s ≥ t : Φ(x) ≥ u(s, x); x = FS(s, T )},

κt = inf{s ≥ t : Ψ(x) ≤ u(s, x); x = FS(s, T )} ∧M,

(503)

which are both finite. ξt is the first hitting time (after time t) to the exercise region

Ex = {(t, ω) : Φ(x) ≥ u(t, x); x = FS(t, T )(ω)}, (504)

κt is the first hitting time (after time t) to the cancellation region

Ka = {(t, ω) : Ψ(x) ≤ u(t, x); x = FS(t, T )(ω)}, (505)

and κt ∧ ξt is the first exit time (after time t) from

Co = {(t, ω) : Φ(x) < u(t, x) < Ψ(x); x = FS(t, T )(ω)}, (506)

the continuation region.

Notice that those regions define also three regions in R+2, namely

Êx = {(t, x) : Φ(x) ≥ u(t, x)}, (507a)

K̂a = {(t, x) : Ψ(x) ≤ u(t, x)}, (507b)
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and

Ĉo = {(t, x) : Φ(x) < u(t, x) < Ψ(x)}, (507c)

∀(t, ω) ∈ R×Ω, (t, FS(t, T )(ω)) falls into one, and only one of such sets. In fact we know that

if (t, ω) ∈ Ex or if (t, ω) ∈ Ka only equality is possible (see (489)), similarly, if (t, FS(t, T ) ∈

Êx or if (t, FS(t, T ) ∈ K̂a then Φ(FS(t, T )) = u(t, FS(t, T )) or Ψ(FS(t, T )) = u(t, FS(t, T ));

we can express this as follows:

(u(t, FS(t, T ))− Φ(FS(t, T ))) (Ψ(FS(t, T ))− u(t, FS(t, T ))) = 0 on Ka
⋃

Ex (508)

or equivalently

(u(t, x)− Φ(x)) (Ψ(x)− u(t, x)) = 0 on K̂a
⋃

Êx (509)

We expect u to satisfy an equation of the form

∂u

∂τ
− g(τ, z, T )

∂2u

∂z2
= 0 (510)

on the continuation region, so, at any time at least one of the following terms should be

zero

∂u

∂τ
− g(τ, z, T )

∂2u

∂z2
or u(τ, z)−max{z −K, 0} or p + max{z −K, 0} − u(τ, z) (511)

thus, we can express all three conditions in the form of a triple product:

(
∂u

∂τ
− g(τ, z, T )

∂2u

∂z2

)(
u(τ, z)− (z −K)+

)(
p + (z −K)+ − u(τ, z)

)
= 0

p + (z −K)+ ≥ u(z, τ) ≥ (z −K)+

u(τ, 0) = 0 , u(0, z) = (z −K)+

(512)

where 0 ≤ z, 0 ≤ τ ≤ M and g(τ, z, M) = 1
2z2|%M−τ − b(M − τ, T )|2.

We can obtain the pde that u satisfies in another way, namely by means of the con-

struction of a hedge.

In what follows we will use some ideas from Musiela and Rutkowski, [133] chapter 15,

and from Chapter 3. As mentioned in the previous section, will assume that we are dealing
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with a standard market M in which uncertainty is driven by a d–dimensional Brownian

Motion W , and in which at least two securities, a stock S and a bond B(·, T ), are traded13.

As we mentioned before, we are interested in the pricing of an American game call

written on the forward price FS(t, T ) = St/B(t, T ) of stock S, with strike K, maturity

M ≤ T ≤ T < ∞ and penalty pB(t, T ), where K and p are (known) constants. At maturity

(that is, if the option has not been canceled or exercised prior to that date) the option’s

payoff is given by

VM = B(M,T )Φ(FS(M,T )) = B(M,T )(FS(M,T )−K)+

= Φ̃(SM , B(M,T )) = (SM −KB(M,T ))+ = YM . (513)

In case of early exercise or early cancelation, if ξ is the time at which the buyer decides

to execute, and κ is the time at which the seller decided to cancel, then the payoff at the

end of the game will be

Vξ∧κ = ReΦ,eΨ(κ, ξ)

=
(
B(κ, T )(FS(κ, T )−K)+ + pB(κ, T )

)
1κ<ξ

+ B(ξ, T )(FS(ξ, T )−K)+1ξ≤κ

= B(κ ∧ ξ, T )
((

(FS(κ, T )−K)+ + p
)
1κ<ξ +(FS(ξ, T )−K)+1ξ≤κ

)
= B(κ ∧ ξ, T )RΦ,Ψ(κ, ξ)

(514)

at any other time t, it is clear that the price Vt of our contract satisfies

Ψ̃(St, B(t, T )) = B(t, T )(FS(t, T )−K)+ + pB(t, T )

≥ Vt ≥ B(t, T )(FS(t, T )−K)+ = Φ̃(St, B(t, T )). (515)

Although this feature of a game option was already discussed before (see Chapter 3),

from (515) we notice that as p increases, the issuer will be less likely to cancel the contract

prior to maturity. In the limit, as p goes to infinity, condition (515) resembles the corre-

sponding condition on an American Call. It is also clear that the value of an American Call

13For the sake of simplicity, the reader may assume W represents a two dimensional brownian motion,

and that % and b (see below) are two dimensional as well.
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in same terms should be higher than the value of the American Game Call, see Proposition

5.1.2. In fact, being less likely to the issuer to cancel as p increases, and also being that the

holder will receive a higher pay if p increases, we can expect the value of the American game

call to increase as p increases (naturally, the value of the American Game Call is always

capped by the value of the American call, see Proposition 5.1.2).

With the idea of representing the price of an American game call in terms of the price of

the underlying, the bond price and the time, it is assumed that the price of our American

game call Vt admits a representation of the form

Vt = v(t, St, B(t, T )), (516)

where

v : [0,M ]× R+ × [0, 1] −→ R

(t, x, y) 7−→ v = v(t, x, y),
(517)

is an unknown function that satisfies

v(M,x, y) = y(x/y −K)+, ∀(x, y) ∈ R+×]0, 1], (518)

the condition at maturity, and

y(x/y −K)+ ≤ v(t, x, y) ≤ y
(
(x/y −K)+ + p

)
, ∀(t, x, y) ∈ [0,M [×R+×]0, 1]. (519)

This function will be not only the solution to our problem, but also the one we will

have to approximate with some numerical procedure. This function, we expect, will be the

solution of a partial differential equation of order, at least, two. Then it makes sense to ask

for this function to be of class C1,2,2 on the open ]0,∞[×]0, 1[×]0,M [14. Of course, we will

need these requirements only while the option is alive. More explicitly, we will construct a

diffusion equation (one very similar to the Heat equation) whose solution u is related to v

by the expression v(t, x, y) = yu(t, x/y).

14Also, we will need to apply Ito’s to it, thus we need v to be of class C2 in its first two variables and

of class C in its third variable, our assumption of ellipticity takes care of this, see [141] Chapter 12, or [45]

Chapter 5.
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Following a similar derivation process as that followed by Musiela and Rutkowski in

[133] Section §15.3, we want to construct a replicating portfolio in terms of the price of

the underlying stock and the price of the zcb being used to compute the forward price.

Assuming continuous trading, the attainability of our American game call and the perfect

divisibility of assets15, let π = (π1, π2) denote a self–financing portfolio strategy based on

those two assets. Thus, we define the wealth process W as:

Wt = π1
t St + π2

t B(t, T ), (520)

where π1
t and π2

t are the time t ≤ M amounts of the two assets in our portfolio. We

assume that there is no consumption, or any other form of market friction. We assume

that funds are thus transfered from one account to the other every time our position in one

of the assets changes. Based on our assumption of π being a self–financing portfolio, and

combining (438) and16 (439) we obtain

dWt = π1
t dSt + π2

t dB(t, T )

=
(
π1

t µtSt + π2
t a(t, T )B(t, T )

)
dt +

(
π1

t %tSt + π2
t b(t, T )B(t, T )

)
· dWt.

(521)

Since we are using this portfolio strategy to replicate an American Game Call option,

we assume that the payoff of our option is equal to the wealth process for the portfolio (in

Chapter 3 we learnt we can hedge against a gcc, so we know that a portfolio as the one we

propose exist)

Vt = v(t, St, B(t, T )) = Wt = π1
t St + π2

t B(t, T ) t ∈ [0,M ], (522)

therefore

π2
t =

(
v(t, St, B(t, T ))− π1

t St

)
/B(t, T ), (523)

this will let us rewrite (521) as (we will write v as a short hand for v(St, B(t, T ), t))

15All these assumptions are consistent with our general model and are expressed here for emphasis.

Chapter 3 shows that this option if attainable. Continuous trading and the perfect divisibility of assets are

both underlying assumptions of the market model in place, see Chapter 3. Notice that notation and terms

used here are the same of very similar to those used in Chapter 3.
16The case of a dividend paying stock could be studied later as part of future developments.
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dWt = dVt

=
(
π1

t (µt − a(t, T ))St + a(t, T )v)
)
dt +

(
π1

t (%t − b(t, T ))St + b(t, T )v
)
· dWt. (524)

Assuming that the option has not been executed/canceled at time t, t ∈ [0,M [ (if the

option is executed/cancelled we already know what function v should be, see (514)) and

remembering (438) and (439) while applying Ito’s lemma at (522) we obtain:

dVt =
{

∂v

∂t
+ µtSt

∂v

∂x
+ a(t, T )B(t, T )

∂v

∂y
+ %t · b(t, T )StB(t, T )

∂2v

∂x∂y

+
1
2

(
‖%t‖2S2

t

∂2v

∂x2
+ ‖b(t, T )‖2B(t, T )2

∂2v

∂y2

)}
dt

+
(

%tSt
∂v

∂x
+ b(t, T )B(t, T )

∂v

∂y

)
· dWt, (525)

then, comparing the last equation with (524) we find that

{
∂v

∂t
+ µtSt

∂v

∂x
+ a(t, T )B(t, T )

∂v

∂y
+ %t · b(t, T )StB(t, T )

∂2v

∂x∂y

+
1
2

(
‖%t‖2S2

t

∂2v

∂x2
+ ‖b(t, T )‖2B(t, T )2

∂2v

∂y2

)}
dt,

=
(
π1

t (µt − a(t, T ))St + a(t, T )v
)
dt(

%tSt
∂v

∂x
+ b(t, T )B(t, T )

∂v

∂y

)
· dWt =

(
π1

t (%t − b(t, T ))St + b(t, T )v
)
· dWt,

(526)

the second of such equations is equivalent to the following stochastic integral∫ t

0

(
%uSu

(
π1

u −
∂v

∂x

)
+ b(u, T )

(
v − π1

uSu −B(u, T )
∂v

∂y

))
· dWu = 0, (527)

which should be valid for t ∈ [0,M ] and until the option is executed or canceled. The first

term in (527) will be identically zero if we assume that

π1
t =

∂v

∂x

∣∣∣∣
(t,St,B(t,T ))

. (528)

Similarly, the second term in integral (527) will be identically zero if we assume that

v(t, St, B(t, T )) = St
∂v

∂x

∣∣∣∣
(t,St,B(t,T ))

+ B(t, T )
∂v

∂y

∣∣∣∣
(t,St,B(t,T ))

. (529)

Notice that these two assumptions (namely (528) and (529) and (522)) also imply that

π2
t =

∂v

∂y

∣∣∣∣
(t,St,B(t,T ))

. (530)
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The last requirements translate directly into requirements for our unknown function v,

in particular we will need

v(t, x, y) = x
∂v

∂x
+ y

∂v

∂y
, (531)

on ]0,M [×]0,∞[×]0, 1[. Interestingly, (531) also gives us a hint on the form of the unknown

function v. In particular, if

u : [0,M ]× R+ −→ R

(t, z) 7−→ u(t, z),
(532)

is a function of class C1,2 (more on this function later), let f(x, y, t) = yu(t, x/y). For y > 0

we will have 
∂f

∂x
(t, x, y) =

∂u

∂z
(t, x/y),

∂f

∂y
(t, x, y) = u(t, x/y)− x

y

∂u

∂z
(t, x/y),

(533)

which shows f satisfies (531). On the other hand

∂

∂y
(v(t, αy, y)/y) = − 1

y2

(
v(t, αy, y)− αy

∂v

∂x
(t, αy, y)− y

∂v

∂y
(t, αy, y)

)
= 0, (534)

which clearly implies that function f̃(t, α, y) = v(t, αy, y)/y does not depend on y. There-

fore, we see that function v is of the form v(t, x, y) = yu(t, x/y), where u is an unknown

real function of class C1,2 on [0,M ]× R+. Similarly, we note that

Vt = B(t, T )u
(

t,
St

B(t, T )

)
= B(t, T )u(t, FS(t, T )). (535)

Notice as well that (484), (485) and (515) imply, as expected, that

Φ(FS(t, T )) ≤ u(t, FS(t, T )) ≤ Ψ(FS(t, T )), (536)

which should be valid not only while the option has not been exercised or canceled but, see

(514), at exercise and cancellation.

Returning to (526), when we apply assumptions (528) and (529) to the drift part of

(524) we obtain

π1
t (µt − a(t, T ))St + a(t, T )v =

∂v

∂x
(µt − a(t, T ))St + a(t, T )

(
St

∂v

∂x
+ B(t, T )

∂v

∂y

)
= µtSt

∂v

∂x
+ a(t, T )B(t, T )

∂v

∂y
.

(537)
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From this the first equation in (526) will reduce to{
∂v

∂t
+ %t · b(t, T )StB(t, T )

∂2v

∂x∂y
+

1
2

(
‖%t‖2S2

t

∂2v

∂x2
+ ‖b(t, T )‖2B(t, T )2

∂2v

∂y2

)}
dt = 0.

(538)

Thus, the corresponding integral should be zero for all t ∈ [0,M ]. In terms of our unknown

function v we may write

∂v

∂t
+ %t · b(t, T )xy

∂2v

∂x∂y
+

1
2

(
‖%t‖2x2 ∂2v

∂x2
+ ‖b(t, T )‖2y2 ∂2v

∂y2

)
= 0. (539)

Differentiating (531) with respect to x and y we obtain two additional second order

partial differential equations satisfied by v
x

∂2v

∂x2
+ y

∂2v

∂x∂y
= 0,

x
∂2v

∂x∂y
+ y

∂2v

∂y2
= 0,

(540)

hence, 
xy

∂2v

∂x∂y
= −x2 ∂2v

∂x2
,

y2 ∂2v

∂y2
= x2 ∂2v

∂x2
.

(541)

Plugging the last two relations into (539) we obtain

∂v

∂t
+

1
2
‖%t − b(t, T )‖2x2 ∂2v

∂x2
= 0, (542)

which does not explicitly depend on y. Plugging v(x, y, t) = yu(x/y, t) and z = x/y into

(542) we obtain a second order partial differential equation for u,

∂u

∂t
+

1
2
‖%t − b(t, T )‖2z2 ∂2u

∂z2
= 0, (543)

which should be satisfied by function u while the option is not canceled or exercised, that is,

which should be valid in the continuouation region Ĉo. As before, we arrive at the equation(
∂u

∂t
+

1
2
‖%t − b(t, T )‖2z2 ∂2u

∂z2

)
(u(t, x)− Φ(x)) (Ψ(x)− u(t, x)) = 0 on Ĉo

⋃
K̂a

⋃
Êx.

(544)

Notice that equation (543) could also be written as

LFS(·,T )u =
∂u

∂t
+ AFS(·,T )u = 0 where AFS(·,T ) =

1
2
z2‖%t − b(t, T )‖2 ∂2

∂z2
, (545)
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since 1
2z2|%t − b(t, T )|2 ≥ 0 we know that AFS(·,T ) is an elliptic operator, thus LFS(·,T ) is

parabolic and the pde in (543) is of the parabolic type. This is not the first time we find

those operators.

As we commented before, we observe that we could get rid of the z2 in the definition

of LFS(·,T ) by means of an exponential change of variables like z = Kex, such a change will

move to −∞ the degeneracy of the operator L due to the term z2. Still, the transformed

operator17 will have the term 1
2‖%t − b(t, T )‖2 as a factor. In order to avoid a degeneracy

in time, we will require to add an additional condition on |%t − b(t, T )|2 to ensure it is

bounded away from zero. In fact, assuming that our stock is not correlated to the zcb, their

volatility parameters will occupy different components of the Brownian motion process W ,

this clearly reduces the possibility of ‖%t − b(t, T )‖2 being null to the event where both

processes %t and b(t, T ) vanish simultaneously. If additionally %t is assumed constant —a

“Black–Scholes” stock— then ‖%t− b(t, T )‖2 is bounded away from zero. So we will assume

‖%t − b(t, T )‖2 ≥ l > 0 (l a constant). Looking again into the simple case where % is

constant, if b(t, T ) is obtained from an interest rate model like Hull–White (see Chapter 4)

we know the coefficient ‖%t − b(t, T )‖2 is also bounded above —this additional condition is

also consistent with data obtained from market observations, where both %t and b(t, T ) are

bounded—. Thus it is natural to assume that there exist another constant L > 0 such that

L ≥ ‖%t − b(t, T )‖2.

As we have mentioned before, we will assume that ‖%t − b(t, T )‖2 is a deterministic,

integrable, function of t and that there exists constants ∞ > L > 0 and l > 0 such that

L > ‖%t − b(t, T )‖2 > l, t ∈]0,M [. (546)

Rewriting all other conditions ((513), (514), (515), (518)) in terms of the unknown

17After the change z = Kex, the resulting operator will be

L =
1

2
‖%t − b(t, T )‖2

„
∂2

∂z2
− ∂

∂z

«
.
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function u we obtain the following pde

(
∂u

∂t
+

1
2
‖%t − b(t, T )‖2z2 ∂2u

∂z2

)
×

× (u(t, z)− Φ(z)) (Ψ(z)− u(t, z)) = 0 0 < t < M, 0 < z

Ψ(z) ≥ u(t, z) ≥ Φ(z) 0 < t < M, 0 ≤ z

u(M, z) = Φ(z) 0 ≤ z

u(t, 0) = 0 0 ≤ t ≤ M

(547)

Naturally, the contract is terminated once the issuer cancels or the holder exercises.

Traditionally, pde problems like (547) are expressed in the form of initial value problems

and whenever possible the pde is “reduced” via changes of variables. To our advantage,

pde (543) has only two terms; this will work in our advantage later on.

In order to turn (547) into an initial value problem, we will make a time change of the

form:

τ = M − t. (548)

Thus, in the τz–space equation (543) we will transform into:

∂u

∂τ
(τ, z)− g(τ, z, M)

∂2u

∂z2
(τ, z) = 0, where g(τ, z, M) =

1
2
z2|%M−τ − b(M − τ, T )|2. (549)

Carrying the last change into (547) we obtain:

(
∂u

∂τ
− g(τ, z, M)

∂2u

∂z2

)
×

× (u(τ, z)− Φ(z)) (Ψ(z)− u(τ, z)) = 0 0 < τ < M, 0 < z

g(τ, z, M) = 1
2z2‖%M−τ − b(M − τ, T )‖2

Ψ(z) ≥ u(t, z) ≥ Φ(z) 0 < t < M, 0 ≤ z

u(0, z) = Φ(z) 0 ≤ z

u(τ, 0) = 0 0 ≤ τ ≤ M

(550)

Finally, if the cancelation payoff is not considered in the solution of (547) (or which is

equivalent, if p is made equal to infinity) we will obtain the arbitrage price of the corre-

sponding American version of the contract.
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5.7 Finite difference discretization of the partial differen-
tial equation for an American game call on a forward
price

Here we will consider a finite difference approximation to (512), and so we will “solve” the

problem of finding an approximate solution to equation (512) in a certain region of the

zτ–plane in which a regular mesh (equally spaced grid) will be defined.

Intrinsic to all numerical computations is the restriction to work on finite regions of

space, in which discrete approximations are computed. Such a restriction enters in direct

conflict with our particular problem since our equation is given in an unbounded domain.

To cope with this difficulty we need to introduce smart changes in the side conditions of our

problem. For example, if we are going to look for a solution in the rectangle [τmin, τmax]×

[zmin = 0, zmax] we will like zmax to be “big enough”, that is zmax > K, and big enough as

to ensure that u(τ, zmax) ∼ zmax −K.

On the other hand, since we are interested in obtaining the initial price of the option it

is clear that τmax = M , on the other hand, τmin = 0 corresponds to maturity time.

Let δz and δτ (both assumed positive) be the step sizes in directions z and τ respectively.

We will call Nτ the number of time subdivisions and Nz the number of spatial subdivisions.

That way we will have

zi = iδz, i ∈ N∗
Nz

,

τj = jδτ, j ∈ N∗
Nτ

.

z0 = 0, zNz = zmax, τ0 = 0, τNτ = M (551)

Similarly, if u : R2 → R is a function of two variables, we will use the following notation

um
n = un,m = u(τm, zn)

um
n(i) = un(i),m =

∂iu

∂zi

∣∣∣∣
(τm,zn)

um(j)

n = un,m(j) =
∂ju

∂τ j

∣∣∣∣
(τm,zn)

um(j)

n(i) = un(i),m(j) =
∂(i+j)u

∂zi∂τ j

∣∣∣∣
(τm,zn)

(552)

222



........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......





...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................



.......................

..............................................

.......................

........

.....
........
.....

........

.....
........
.....

......

......

......

..

......

......

......

..

......

......

......

..

......

......

......

..

......

......

......

..

......

......

......

..

......

......

......

..

......

......

......

..

......

......

......

..

......

......

......

..

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

........................................................

........................................................

•
um−1

n−2

•um
n−2

•um+1
n−2

•um+2
n−2

•
um−1

n−1

•um
n−1

•um+1
n−1

•um+2
n−1

•
um−1

n

•um
n

•
um+1

n

•
um+2

n

•
um−1

n+1

•um
n+1

•u
m+1
n+1

•u
m+2
n+1

•
um−1

n+2

•um
n+2

•u
m+1
n+2

•u
m+2
n+2

τm−1

τm

τm+1

τm+2

zn−2 zn−1 zn zn+1 zn+2

δτ

δτ

δz

δz

Figure 46: Regular mesh.

Also, we will define α, the mesh constant18 as

α =
δτ

(δz)2
(553)

We will approximate u with u, solution to a finite elements problem, where u(τ, z) '

u(τ, z), and (τ, z) is a point in the mesh. In principle, we are to deal with a parabolic

equation which is resemblant to the Heat equation. The problem in our case is that the

coefficient of the second order (spatial) derivative is not a constant, but a function of time

and the spatial variable. Thus, numerical procedures averaging over different schemes to

compute the derivatives (Crank–Nicholson for example) may not have the expected effect.

Instead, we will consider a fully implicit method, where

∂u

∂τ
' um+1

n − um
n

δτ

∂2u

∂z2
'

um+1
n+1 − 2um+1

n + um+1
n−1

(δz)2

(554)

thus (549) will correspond to the problem

um+1
n − um

n

δτ
= g(τm+1, zn,M)

um+1
n+1 − 2um+1

n + um+1
n−1

(δz)2

18This definition makes sense once we consider equation (543) in which first order terms in time are

coupled with second order spatial terms. Since δτ is assumed positive, it is clear that α is also a real positive

constant (once δτ and δz have been selected).
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which is equivalent to

−αg(τm+1, zn,M)um+1
n+1 +(1+2αg(τm+1, zn,M))um+1

n −αg(τm+1, zn,M)um+1
n−1 = um

n (555)

it is easy to see that (555) is of orders o(δτ) and o((δz)2) and that the method is stable.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

..................................................................................................................................................................................................................................................................................................................................................

.......................

.......................

........

.....
........
.....

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

..

......

......

......

..

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

..............................................................................................................................................................................................................................................................................

.................................... ....................................

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

........................................................

•um+1
n−1

•um
n

•
um+1

n •u
m+1
n+1

τm

δτ

τm+1

zn−1

δz

zn zn+1

Figure 47: Four points involved in the Implicit method.

Proposition 5.7.1. The method (555) is stable for any selection of the mesh constant.

Proof. We apply von Neumann’s stability analysis. Assume εm
n = ξmeiknδx. Then εm+1

n =

ξεm
n and εm

n±1 = e±ikδxεm
n . Thus, from (555) we obtain

εm+1
n − εm

n = αg(τm+1, xn,M)(εm+1
n+1 − 2εm+1

n + εm+1
n−1 )

=⇒ (ξ − 1)εm
n = ξαg(τm+1, xn,M)(eikδx − 2 + e−ikδx)εm

n

=⇒ ξ − 1 = ξαg(τm+1, xn,M)(eikδx/2 − e−ikδx/2)2

=⇒ ξ − 1 = −4ξαg(τm+1, xn,M) sin2

(
k
δx

2

)
=⇒ ξ =

1
1 + 4αg(τm+1, xn,M) sin2

(
k δx

2

)

(556)

since α ≥ 0 and g(τm+1, xn,M) ≥ 0, ∀m, ∀n, we know 1 + 4αg(τm+1, xn,M) sin2
(
k δx

2

)
≥ 1

∀α, ∀m, ∀n, ∀δx. Therefore |ξ| ≤ 1 and our method is stable for any choice of the mesh

constant.

As we mentioned before, we will solve our numerical problem in a subregion, [0,M ] ×

[0, zmax] of the τz space, where a mesh of dimensions Nτ and Nz and mesh constant α is
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defined19.

5.8 Numerical Solutions

Equation (555) is equivalent to several tridiagonal, diagonally dominant linear systems that

can be solved iteratively by means of a variant to the well known PSOR (projected successive

over–relaxation) method.

Explicitly (512) can be discretized as follows:

Am+1~um+1 = ~bm ; ~um+1 > ~c ; ~um+1 6 ~c + p~1

(Am+1~um+1 − ~bm) � (~um+1 − ~c) � (~c + p~1− ~um+1) = ~0

~u0 = ~c

um
n = cn 0 ≤ m ≤ Nτ ; n ∈ {0, Nz}

(557)

Where, ~um+1 = (um+1
n )0<n<Nz , ~bm = (bm

n )0<n<Nz = ~um, ~c = (cn)0<n<Nz = (zn −K)+,

and Am = tridiag(−αg(τm, xn,M), 1 + 2αg(τm, xn,M),−αg(τm, xn,M); 0 < n < Nz). The

Am are Nτ diagonally dominant tri–diagonal (Nz−1)×(Nz−1) symmetric matrices. ~a > ~b

is defined as an ≥ bn ∀n ∈ I and ~a�~b�~c = (an× bn× cn)n∈I for ~a = (an)n∈I , ~b = (bn)n∈I ,

~c = (cn)n∈I , I some index set. As before ~1 represents a vector of ones of the appropriate

dimensionality. ~0 = 0~1 represents a vector of zeroes of the appropriate dimensionality.

~um contains our approximations to the time τm price of the American Game Call de-

scribed in §5.6.

As mentioned before, we implement (557) using a variant of the PSOR method. If um+1
n,k

is used to represent the kth iteration in our computation of um+1
n , and vm+1

n,k is used for

19That is, the intervals [0, M ] and [0, zmax] are subdivided into subintervals of lengths δz = zmax
Nz

and

δτ = M
Nτ

respectively.
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temporary storage, m ∈ NNτ−1:

vm+1
1,k =

1
1 + 2αgm+1

1

{
bm
1 + αgm+1

1 um+1
2,k−1

}
vm+1
n,k =

1
1 + 2αgm+1

n

{
bm
n + αgm+1

n (um+1
n+1,k−1 + um+1

n−1,k)
}

; 1 < n < Nz − 1

vm+1
Nz−1,k =

1
1 + 2αgm+1

Nz−1

{
bm
Nz−1 + αgm+1

Nz−1u
m+1
Nz−2,k

}

um+1
n,k = um+1

n,k−1 + θ{vm+1
n,k − um+1

n,k−1};
−1 ≤ n ≤ Nz − 1

θ ∈ [0, 2]

to account for the double obstacle in our computations, our rendition of the PSOR method

must compare, at every step of the iterative process20, the approximation to um+1
n with

cn + p and cn:

temp := bi + α ∗ gn ∗ (um
i−1 + um

i+1)/(1 + 2 ∗ α ∗ gn)

temp := min(ci + p, um
i + θ ∗ (temp− um

i ))

temp := max(ci, temp)

(558)

In our computations we assumed that %t was a non null constant21, %t = %, that the

stock price process is uncorrelated to the zcb’s price process and that the interest rate

followed a Hull–White model as in Chapter 4. That way bond volatility, b(t, T ) is given by

(295). As we saw in Chapter 4, for a Vasicek or extended Vasicek model, b(t, T ) is given by

expressions (295) and (350), that is by an expression of the form

b(t, T ) = −γ(t)
a2

(
1− e−a2(T−t)

)
. (559)

thus, we will have

g(τ, z, M) =
1
2
z2

(
%2 +

(
γ(M − τ)

a2

(
1− e−a2(T−M+τ)

))2
)

(560)

and in particular

c(τ) = ‖~%M−τ −~b(M − τ, T )‖2 = %2 +
(

γ(M − τ)
a2

(
1− e−a2(T−M+τ)

))2

(561)

20These steps rely in our assumption that both writer and holder are rational players.
21In this section we will abuse a little our notation and take both %t and b(t, T ) not as vector processes

but also as the corresponding non null components of such processes.
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is a deterministic, integrable function of τ that satisfies our assumptions of boundedness,

(546). Recall the meaning of the different parameters that appear in equation (561); % is the

stock volatility which we assume is given, a2 is the speed of mean reversion, and γ(·) is the

volatility parameter of the Hull–White model we use. M is the option’s maturity and T the

zcb maturity (which we also assume given). As commented in Chapter 4, and depending

on the variant of the Hull–White model one chooses to use in the valuation, parameters a2

and γ(·) can be obtained through a calibration process. For example, if a Vasicek model

is used, γ(·) will be also a number and both, a2 and γ(·) = a3 can be obtained after a

calibration process as that shown in section §4.2, subsection §4.2.1, see for example (340).

If instead a model of shifted rates as those discussed in §4.5 is used, γ(·) will represent a

piecewise constant as that shown in Figure 34.

We conducted several numerical experiments using made up parameter values and values

taken from our calibrations in Chapter 4. The following figures exemplify our results.

Figure 48 shows time t = 0 u curves for different penalty parameters, as expected, see

Proposition 5.1.1, u increases as p increases. In our computations, p was given the values

of 6.00, 4.00, 2.00, 1.50, 1.00, 0.90, 0.80, 0.75, 0.50, 0.25, 0.10, K = 50, M = 1, T = 2,

γ(t) = 0.2, a2 = 0.1, % = 0.25, zmax = 120, Nz = 250, and Nτ = 80.

Figure 49 shows a zoom of one of such curves, p = 2, we also show the cancelation payoff

for that penalization parameter and the execution payoff.

Next, we considered different zcb maturities T = 1.00, 2.00, 3.00, 4.00, 5.00, 7.00, 10.0

and computed the corresponding initial curves for two different penalization parameters

p = 6 and p = 4, preserving all other parameters unchanged. Our results are shown in

Figure 50.

Using the same parameters, we also computed the initial values of prices per unit of

zcb price for the corresponding European and American versions of the contracts, which

we compare against our previous computations in Figure 51 and Figure 52. Recall from

Proposition 5.1.2 that the price of the corresponding American version of the contract is

always larger than the price of the Game contract.

Similar numerical experiments were perfomed using volatility parameters extracted from
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Values of u(0,z) vs Initial forward price for different Penalties
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Figure 48: This plot shows u(z, 0) for different values of p, all other parameters were
left unchanged. As reference, the cancelation payoff for a penalization parameter p = 6.00
and the execution payoff are also shown. In this plot, the upper curve (just beneath the
cancelation payoff) corresponds to a penalization parameter of 6.00, for a given initial
forward price z, the corresponding value of u(z, 0) decreases as p decreases.

Values of u(0,z) vs Initial forward price

0

2

4

6

8

u(
0,
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Initial forward price

Figure 49: This plot shows u(z, 0) for p = 2, all other parameters were left unchanged.
The cancelation payoff and the execution payoff are also shown.
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Values of u(0,z) vs Initial forward price for different ZCB Maturitiesand two different Penalties
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Initial forward price

Figure 50: u(z, 0) was computed for p = 6 and p = 4, and different zcb maturities. All
other parameters were left unchanged. The cancelation payoff (for p = 6) and the execution
payoff are also shown. The “upper” set of curves corresponds to options with a penalization
p of 6, the “lower” set of curves corresponds to p = 4. Within each set of curves we see
that the initial forward price of the option increases as the maturity of the underlying zcb
increases (the red curves correspond to a zcb of 1 year maturity, the black curves to a zcb
of 10.0 years maturity, all options are of maturity 1 year)

Comparison of Game American Call u(0,z) for several Penalty valuesand Au(0,z) and Eu(0,z) vs Initial forward price(all options of 1 year maturity)
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Figure 51: Comparison between the initial prices per unit of zcb value of American,
American Game and European Calls on a Forward price. Initial American Game prices
(per unit of zcb value) are shown for several penalization parameters. As expected, the
initial price of the corresponding American Call contract (upper curve) dominates over the
initial prices of all other contracts (European Call contract included, this is the black curve
that seems to cross through several of the Game American curves).
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Comparison of Game American Call u(0,z) for several Penalty valuesand Au(0,z) and Eu(0,z) vs Initial forward price(all options of 1 year maturity)
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Figure 52: A detail of the same results presented in Figure 51 is shown here.

our sample calibrations (see Chapter 4).

Figure 53 shows the initial forward prices of Game American Calls for different penalties

(all options of maturity 1, on a 2 year forward) under the Vasicek model of interest rates

(see §4.2.1), in this case we use interest rate parameters from (342), namely speed of mean

reversion a2 ∼ 0.054008, and interest rate volatility a3 ∼ 0.032696. All other parameters

involved in our computations are as before: p was given the values of 6.00, 4.00, 2.00, 1.50,

1.00, 0.90, 0.80, 0.75, 0.50, 0.25, 0.10, K = 50, M = 1, T = 2, % = 0.25, zmax = 120,

Nz = 250, and Nτ = 80.

Figure 54 shows similar computations assuming an extended Vasicek model of interest

rates (see §4.2.2 where we considered the case of an extended Vasicek model with polynomial

mean reversion parameter, (357) lists the approximate values of the model parameters

found by a least squares regression). From (357), we have a2 ∼ 0.17908, and (interest rate

volatility) a3 ∼ 3.9993e−12. As before, p was given the values of 6.00, 4.00, 2.00, 1.50, 1.00,

0.90, 0.80, 0.75, 0.50, 0.25, 0.10, K = 50, M = 1, T = 2, % = 0.25, zmax = 120, Nz = 250,

and Nτ = 80.

For our last numerical experiment, see Figure 58, Figure 59, and Figure 60, we used

the results of our calibration to initial spot volatilities using a shifted rate model with

piecewise constant volatility parameter (see Chapter 4, §4.5). Figure 35 shows a graph of
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Initial forward price of Game American Calls for different penaltiesn(under the Vasicek model of interest rates)
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Figure 53: Initial American Game prices per unit of zcb value for different maturities
were computed under the assumption of a Vasicek model of interest rates using parameters
found in our calibrations (see Chapter 4, §4.2.1 and in particular (342)), initial American
Call and initial European Call prices per unit of zcb are also shown. As before, the initial
forward price of the American Call dominates over the other initial forward prices, also we
observe that initial forward price of the American Game Calls increases as the penalization
increases.

Initial, normalized, price of Game American Calls for different penalties,(under the extended Vasicek Model)
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Figure 54: Initial American Game prices per unit of zcb value for different maturities
were computed under the assumption of an extended Vasicek model of interest rates using
parameters found in our calibrations (see Chapter 4, §4.2.2 and in particular (357)), initial
American Call and initial European Call prices per unit of zcb are also shown. As before,
the initial forward price of the American Call dominates over the other initial forward
prices, also we observe that initial forward price of the American Game Calls increases as
the penalization increases.
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such a piecewise constant interest rate volatility parameter (corresponding to the initial data

shown in Table 6 and under the assumption that the speed of mean reversion parameter is

a2 = 10). As before, we used p = 6.00, 4.00, 2.00, 1.50, 1.00, 0.90, 0.80, 0.75, 0.50, 0.25,

0.10, K = 50, M = 1, T = 2, % = 0.25, zmax = 120, Nz = 250, and Nτ = 80. Figure 55

shows the corresponding forward volatility curve for a zcb of maturity 10 years.

Forward volatility based on a piecewise constant
Hull--White volatility coefficient (beta=10)

0.25

0.2505

0.251

0.2515

0.252
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rw
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d 
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ty

2 4 6 8 10
Time --in years--

Figure 55: Piecewise constant Forward volatility curve. We assume a stock with a constant
volatility of % = 0.25 uncorrelated to a zcb of maturity 10.0 under a model of interest rates
as shown in §4.5 which we calibrated to initial volatility data, Table 6.

Figure 56 show a plot of the diffusion coefficient for a zcb of maturity 10.0 under the

shifted rate model of §4.5 that we calibrated to initial flat volatility data, the profile of such

diffusion coefficient, as can be seen in Figure 57, is determined by the forward volatility

(compare with Figure 55).

Figure 58, Figure 59, and Figure 60 show plots of the results of our last numerical

experiment.
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pde coefficient function based on a piecewise constant
Hull--White volatility coefficient for z in [9.75,10.00]

0 2 4 6 8 10Time --in years-- 9.8 9.85 9.9 9.95 10

Stock forward value

3
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3.15

Difussion coefficient

Figure 56: Diffusion coefficient under a model of shifted rates. We assumed that stock and
zcb are uncorrelated, and that the corresponding stock volatility is constant and equal to
% = 0.25. The surface shown here correspond to a zcb of maturity 10.0 years. As mentioned
before we also assumed that interest rates follow a Hull–White model like (411).

Difussion coefficient (for z=1) based on a piecewise constant
Hull--White volatility coefficient (beta=10)
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Figure 57: Profile of the diffusion coefficient under a model of shifted rates.
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Values of u(0,z) vs Initial forward price for different ZCB Maturities(using a Hull-White model calibrated to initial spot volatilities)
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Figure 58: We computed u(z, 0) for p = 6 and different zcb maturities under the assump-
tion of a shifted rates model, as that shown in §4.5, calibrated to initial flat volatility. As a
result we obtained a piecewise constant Forward volatility curve (see Figure 55) that deter-
mined the diffusion parameter of our pde. We assume a stock with a constant volatility of
% = 0.25 uncorrelated to our zcbs. All other parameters were left unchanged. As before, we
see that the initial forward price of the option increases as the maturity of the underlying
zcb increases (the red curves correspond to a zcb of 1 year maturity, the black curves to a
zcb of 10.0 years maturity, all options are of maturity 1 year)

Values of u(0,z) vs Initial forward price for different ZCB Maturities(using a Hull-White model calibrated to initial spot volatilities)

3

4

5

6

7

u(
0,

z)

48 49 50 51 52 53
Initial forward price

Figure 59: Initial forward price of Game American calls under a Hull–White model cal-
ibrated to initial flat volatiity using a piecewise constant volatility parameter, detail of
Figure 58
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Values of u(0,z) vs Initial forward price for different ZCB Maturitiesand two different Penalties
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Figure 60: Initial forward price of Game American calls under a Hull–White model cal-
ibrated to initial flat volatiity using a piecewise constant volatility parameter, detail of
Figure 58
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[13] Björck, Å., Numerical methods for least squares problems. Philadelphia: Society for
Industrial and Applied Mathematics, first ed., 1996.

[14] Black, F., “The pricing of commodity contracts,” Journal of Financial Economics,
vol. 3, pp. 167–179, January–March 1976.

236



[15] Black, F. and Scholes, M., “The pricing of options and corporate liabilities,”
Journal of Political Economy, vol. 81, pp. 637–654, Jul.–Aug. 1973.

[16] Blumenthal, R. M. and Getoor, R. K., Markov Processes and Potential Theory.
No. 29 in Pure and Applied Mathematics, A Series of Monographs and Textbooks,
New York: Academic Press, first ed., 1968.

[17] Bodie, Z., Kane, A., and Marcus, A. J., Investments. Irwin/McGraw–Hill series
in finance, insurance, and real state, Boston: Irwin/McGraw–Hill, fourth ed., 1999.

[18] Brennan, M. J. and Schwartz, E. S., “Convertible bonds: Valuation and opti-
mal strategies for call and conversion,” Journal of Finance, vol. 32, pp. 1699–1715,
December 1977.

[19] Brigo, D. and Mercurio, F., Interest Rate Models, Theory and Practice. Springer
Finance, Berlin: Springer–Verlag, first ed., 2001.

[20] Campbell, J. Y., Lo, A. W., and MacKinlay, A. C., The Econometrics of Fi-
nancial Markets. Princeton: Princeton University Press, second corrected printing,
first ed., 1997.

[21] Carr, P. and Yang, G., “Simulating american bond options in an hjm framework.”
February 1998.

[22] Chen, H.-C., Friedman, J. W., and Thisse, J.-F. c., “Boundedly rational
nash equilibrium: A probabilistic choice approach,” Games and Economic Behavior,
vol. 18, pp. 32–54, 1997.

[23] Chen, L., Interest Rate Dynamics, Derivatives Pricing, and Risk Management.
No. 435 in Lecture Notes in Economics and Mathematical Systems, Berlin: Springer–
Verlag, first ed., 1996.

[24] Chiarella, C. and Kwon, O. K., “Forward rate dependent markovian transforma-
tions of the heath–jarrow–morton term structure model,” Finance and Stochastics,
vol. 5, pp. 237–257, 2001.

[25] Chung, K. L., A Course in Probability Theory. No. 21 in Probability and Math-
ematical Statistics. A Series of Monographs and Textbooks, San Diego: Academic
Press, second ed., 1974.

[26] Chung, K. L. and Williams, R. J., Introduction to Stochastic Integration. No. 4
in Progress in Probability and Statistics, Boston: Birkhäuser Boston, Inc., first ed.,
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nieŕıa Industrial y de Sistemas, Pontificia Universidad Católica de Chile, ? 2000?
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[113] Lindström, P. and Wedin, P.-Å., “Gauss–newton based algorithms for constrained
nonlinear least squares problems.” Working Paper. Institute for Information Process-
ing, University of Ume̊a, S–901 87 Ume̊a, Sweden, 1999.

[114] Liptser, R. S. and Shiryaev, A. N., Statistics of Random Processes, I General
Theory. No. 5 in Applications of Mathematics, Stochastic Modelling and Applied
Probability, Berlin: Springer–Verlag, second (revised and expanded) ed., 2000.

[115] Liptser, R. S. and Shiryaev, A. N., Statistics of Random Processes, II Appli-
cations. No. 6 in Applications of Mathematics, Stochastic Modelling and Applied
Probability, Berlin: Springer–Verlag, second (revised and expanded) ed., 2000.

[116] Longstaff, F. A., Santa-Clara, P., and Schwartz, E. S., “The relative valua-
tion of caps and swaptions: Theory and empirical evidence.” Forthcomming, Journal
of Finance. This paper is posted at the eScholarship Repository, University of Cali-
fornia, September 2000.

[117] Longstaff, F. A. and Schwartz, E. S., “Valuing american options by simulation:
A simple least–squares approach,” The Review of Financial Studies, vol. 14, pp. 113–
147, Spring 2001.

[118] Maghsoodi, Y., “Solution of the extended cir term structure and bond option val-
uation,” Mathematical Finance, vol. 6, pp. 89–109, January 1996.

[119] Marquardt, D. W., “An algorithm for least–squares estimation of non–linear pa-
rameters,” Journal of the Society for Industrial and Applied Mathematics, vol. 11,
no. 2, pp. 431–441, 1963.

243



[120] McConnell, J. J. and Schwartz, E. S., “Lyon taming,” The Journal of Finance,
vol. 41, pp. 561–576, July 1986.

[121] McCulloch, “Measuring the term structure of interest rates,” Journal of Business,
vol. 44, pp. 19–31, January 1971.

[122] Mel’nikov, A. V., Financial Markets. Stochastic Analysis and the Pricing of Deriva-
tive Securities, vol. 184 of Translations of Mathematical Monographs. Providence:
American Mathematical Society, first english ed., 1999.

[123] Merton, R. C., “Optimum consumption and portfolio rules in a continuous–time
model,” Journal of Economic Theory, vol. 3, pp. 373–413, 1971.

[124] Merton, R. C., “Optimum consumption and portfolio rules in a continuous–time
model, erratum,” Journal of Economic Theory, vol. 6, pp. 213–214, 1973.

[125] Merton, R. C., “Theory of rational option pricing,” The Bell Journal of Economics
and Management Science, vol. 4, pp. 141–183, Spring 1973.

[126] Métivier, M., Semimartingales: a Course on Stochastic Processes. No. 2 in De
Gruyter studies in mathematics, Berlin: Walter de Gruyter, 1982.

[127] Meyer, G. H., “The numerical valuation of options with underlying jumps,” Acta
Mathematica Universitatis Comenianae, vol. LXVII, no. 1, pp. 69–82, 1998.

[128] Mikosch, T., Elementary Stochastic Calculus with Finance in View. Singapore:
World Scientific Publishing Co., Pte. Ltd., first ed., 1998.

[129] Millar, P. W., “Martingale integrals,” Transactions of the American Mathematical
Society, vol. 133, pp. 145–166, August 1968.

[130] Miltersen, K. R., “An arbitrage theory of the term structure of interest rates,” The
Annals of Applied Probability, vol. 4, no. 4, pp. 953–967, 1994.

[131] Morimoto, H., “Dynkin games and martingale methods,” Stochastics, vol. 13,
pp. 213–228, 1984.

[132] Musiela, M. and Rutkowski, M., “Continuous–time term structure models: For-
ward measure approach,” Finance and Stochastics, vol. 1, pp. 261–291, 1997.

[133] Musiela, M. and Rutkowski, M., Martingale Methods in Financial Modelling.
No. 36 in Applications of Mathematics, Berlin: Springer–Verlag, corrected second
printing, 1st ed., 1998.

[134] Myneni, R., “The pricing of the american option,” The Annals of Applied Probability,
vol. 2, pp. 1–23, February 1992.

[135] Nazareth, J. L., The Newton–Cauchy Framework. A Unified Approach to Uncon-
strained Nonlinear Minimization. No. 760 in Lecture Notes in Computer Science,
Berlin: Springer–Verlag, first ed., 1994.

[136] Nelson, C. R. and Siegel, A. F., “Parsimonious modeling of yield curves,” Journal
of Business, vol. 60, pp. 473–489, October 1987.

244



[137] Nematnejad, A., “An introduction to the use of the bloomberg system in swaps
analysis,” Journal of Bond Trading & Management, vol. 1, no. 2, pp. 180–189, 2002.

[138] Neveu, J., Discrete–Parameter Martingales. No. 10 in North–Holland Mathematical
Library, Amsterdam: North–Holland Publishing company, first english ed., 1975.

[139] Neyman, A. and Sorin, S., eds., Stochastic Games and Applications, vol. 570 of
NATO Science Series, Series C: Mathematical and Physical Sciences. Norwell, MA:
Kluwer Academic Publishers, first ed., 2003.

[140] Novikov, A. A., “On stopping times for a wiener process,” Theory of Probability
and its Applications, vol. 16, no. 3, pp. 449–456, 1971.

[141] Øksendal, B., Stochastic Differential Equations, An Introduction with Applications.
Universitext, Berlin: Springer–Verlag, corrected second printing, fifth ed., 2000.

[142] Ong, M. K., “Volatility and calibration in interest rate models.” This appeared as
Chapter 8 of the book, Volatility in the Capital Markets, edited by I. Nelken.
Published by: West Glenlake (Chicago, IL) 1997., 1996.

[143] Osborne, M. R., Finite algorithms in optimization and data analysis. Wiley Inter-
science, New York: John Wiley and Sons, Inc., first ed., 1985.

[144] Pelsser, A., Efficient Methods for Valuating Interest Rate Derivatives. Springer
Finance, Berlin: Springer–Verlag, first ed., 2000.

[145] Petrosjan, L. A. and Zenkevich, N. A., Game Theory. Series on Optimization,
Singapore: World Scientific, first ed., 1996.

[146] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.,
Numerical Recipes in C. The Art of Scientific Computing. Cambridge: Cambridge
University Press, fifth reprinting, second ed., 2002.

[147] Prokhorov, Y. and Shiryaev, A., eds., Probability Theory III. No. 45 in Ency-
clopaedia of Mathematical Sciences, Berlin: Springer–Verlag, first ed., 1998.

[148] Protter, M. H. and Weinberger, H. F., Maximum Principles in Differential
Equations. Prentice–Hall Partial Differential Equations Series, Englewood Cliffs, New
Jersey: Prentice–Hall, Inc., first ed., 1967.

[149] Ramakrishnan, W. D. S., “The expected value of an everywhere stopped martin-
gale,” Annals of Probability, vol. 14, pp. 1075–1079, July 1986.

[150] Reisman, H., “Black and scholes pricing and markets with transaction costs: An
example,” Finance and Stochastics, vol. 5, pp. 549–555, 2001.

[151] Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion. No. 293 in
Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies
in Mathematics, Berlin: Springer–Verlag, corrected second printing of the third ed.,
2001.

[152] Ross, S. A., Westerfield, R. W., and Jaffe, J., Corporate Fi-
nance. Irwin/McGraw–Hill series in finance, insurance, and real state, Boston:
Irwin/McGraw–Hill, fifth ed., 1999.

245



[153] Sack, B., “Using treasury strips to measure the yield curve.” Internal Paper, Federal
Reserve Board of Governors, Division of Monetary Affairs, Washington, D.C. 20551,
October 2000.

[154] Schiesser, W. E., The Numerical Method of Lines. Integration of Partial Differential
Equations. San Diego: Academic Press, Inc., first ed., 1991.
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