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SUMMARY

This thesis presents a new approach to constraining limit-cycle oscillations (LCOs) in

aeroelastic design optimization. LCOs are self-excited oscillations that can develop in non-

linear aeroelastic systems experiencing flutter, and they must be avoided during operation

to keep safety and performance. One approach to addressing this problem is to design the

system using an optimization process that includes an LCO constraint. Previous efforts

have proposed various LCO constraints for aeroelastic design optimization but have not

addressed realistic design applications. This gap persists because existing LCO constraints

are not oriented toward scalable gradient-based optimization algorithms. The proposed ap-

proach builds on a recent LCO constraint that bounds the recovery rate to equilibrium and

is suited to gradient-based optimization. The new contribution from this thesis consists of

introducing a new matrix pencil method for accurately evaluating the recovery rate within

the LCO constraint using output data from transient responses. The amplitude-varying

behavior of the recovery rate in the presence of dynamic nonlinearities is captured using a

sliding time window along the transient response for a chosen quantity of interest. This new

approach differs from the conventional matrix pencil method, which considers an entire

transient response at once under linearized assumptions. Sensitivity studies are conducted

to identify the optimal singular-value decomposition tolerance, sliding window size, stride

size, output data sampling step, and aggregation parameters for obtaining accurate results.

The new sliding-window matrix pencil method is then used to optimize a typical aeroelas-

tic section model with a subcritical LCO behavior, enforcing no flutter or LCOs at chosen

operation conditions. Optimization results are compared with previous work that used the

same LCO constraint formulation combined with an approximate, conservative method to

evaluate the recovery rate. The LCO constraint evaluated using the new sliding-window

matrix pencil method allows the optimizer to completely suppress subcritical LCOs within

the specified operating conditions while minimizing design changes, achieving a less con-

x



servative optimized solution. This work is a step toward constraining LCOs in large-scale

aeroelastic design optimization to enable higher-performance designs while avoiding un-

desirable dynamics, such as subcritical LCOs. Future work includes formulating adjoint

derivatives of the LCO constraint and demonstrating the methodology for aeroelastic mod-

els of increasing physical and computational complexity.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

New wing designs favor increasingly lightweight structures and higher aspect ratios for

enhanced aircraft fuel efficiency [1], requiring consideration of dynamic aeroelastic insta-

bilities such as flutter earlier in the design process [2]. If flutter is found during testing,

redesign steps are required to guarantee adequate flutter margins. This approach adds

production costs and time delays and can potentially compromise performance through

disadvantageous design tradeoffs. An alternative approach is to include an active flutter

suppression system, which uses control inputs to prevent flutter onset or suppress diverging

oscillations. This, however, can lead to major safety issues if the system fails, in addition to

degraded aircraft maneuverability and consequent problems if the system does not function

properly. With the potential for diverging oscillations to grow too fast for an active flutter

suppression system to act as well, passive flutter prevention early in the design phase itself

is critical. This problem has motivated research efforts to integrate flutter constraints into

aircraft design optimization to produce fuel-efficient wing designs that are free from flutter

[2].

To date, most flutter constraints for design optimization have been based on linear flut-

ter analyses providing the aeroelastic eigenvalues of the wing in its undeformed shape at

various flight conditions (e.g., Ref. [3]). In some cases, these analyses have included tran-

sonic effects relevant to commercial transport aircraft [4, 5, 6]. This approach provides

feasible, flutter-free designs only if the wing experiences small deflections in flight [7].

To overcome this limitation, recent efforts have formulated geometrically nonlinear flut-

ter constraints that consider the wing’s statically deformed shape at each flight condition
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when computing the aeroelastic eigenvalues [8, 9, 10, 11, 12, 13]. However, capturing the

impact of wing deflections in an eigenvalue-based flutter analysis process involves a local

linearization of the governing equations about the nonlinear equilibrium solution at each

flight condition, increasing the problem’s complexity and computational cost.

Flutter constraints only capture dynamic behaviors for small disturbances about equi-

librium states [2]. Nonlinear dynamics associated with large dynamic deflections, flow

separation, moving shock waves, or other unsteady nonlinear phenomena may cause self-

excited responses called limit-cycle oscillations (LCOs), which cannot be predicted by

eigenvalue analyses [14]. Therefore, capturing dynamic nonlinear effects across a wide

range of amplitudes is critical to properly characterize LCOs. These LCOs can manifest in

two manners: supercritical and subcritical. Supercritical LCOs are “benign”, as they only

arise at linearly unstable conditions and their amplitude grows gradually with a control pa-

rameter (e.g., a parameter related to the flight condition, such as flow speed or dynamic

pressure). These LCOs are avoidable by assessing the feasible flight envelope for a given

design through an eigenvalue-based flutter analysis. For the same reason, supercritical

LCOs are avoidable by adding a flutter constraint to a design optimization process.

Subcritical LCOs, instead, can develop even at linearly stable operating conditions if the

system experiences sufficiently large disturbances. These dynamics have been identified

through both experimental and numerical studies in aeroelastic systems [1]. For instance,

flexible high-aspect-ratio wings may show subcritical behaviors at relatively low speeds

due to the interplay between nonlinear effects related to the wing’s structural response and

the aerodynamic effects that come into play when the wing stalls (e.g., see Refs. [15, 16,

17]). Because subcritical LCOs can arise even at linearly stable conditions, they cannot

be prevented by eigenvalue-based flutter analyses and constraints. Furthermore, when the

system is optimized subject to a flutter constraint, the optimizer may produce a highly effi-

cient, flutter-safe design with an unfeasible subcritical behavior (Figure 1.1). To avoid this

issue, the optimization must include an LCO constraint [2]. This constraint is paramount
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Figure 1.1: System optimized with a flutter constraint but no LCO constraint (Ref. [18]).

for aeroelastic systems showing nonlinear dynamics, such as future wings and aircraft.

1.2 Literature Review

LCO constraint formulation and implementation methodologies are being investigated us-

ing a variety of approaches [2]. Most of these approaches characterize LCOs through

bifurcation diagrams, such as the one at the bottom of Figure 1.1. These diagrams are a

general tool used to visualize the steady-state LCO amplitude for a given quantity of inter-

est as a function of a certain control parameter. In the case of aeroelastic systems such as

wings, the quantity of interest may be the linear or angular displacement at a point of the

structure (e.g., wingtip vertical displacement) and the control parameter is typically a flight

condition parameter, such as flow speed or dynamic pressure. There are many methods to

obtain bifurcation diagrams, including [19] i) direct time-marching simulations [20, 21], ii)

time-cyclic schemes [22, 23, 24, 25], iii) time-shooting [26], iv) harmonic balance meth-
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ods [27, 28, 29, 30, 31], v) time-spectral methods [32], vi) nonlinear perturbation meth-

ods [33, 34, 35, 36], and vii) numerical continuation methods [37]. These methods may

also be combined to improve their accuracy and performance [38]. However, the problem

with these methods is that they are not sufficiently accurate and computationally efficient

for complex aeroelastic systems such as those of interest for realistic design applications.

Furthermore, several of these methods involve guesswork, intrusive solution processes, or

other related computational challenges. A non-intrusive approach for computing bifurca-

tion diagrams, known as bifurcation forecasting [39], involves using a limited number of

transient responses, as few as two, to evaluate the recovery rate to equilibrium before the

flutter onset for a range of amplitudes. This quantity is then extrapolated for each ampli-

tude to predict LCO solutions, characterized by a zero recovery rate. This approach extends

conventional output-based damping identification and extrapolation methods, which can-

not predict LCOs [40, 41, 42]. Despite its advantages, it requires accurate recovery rate

calculations based on output data from transient responses, posing challenges for large-

dimensional systems due to issues such as the presence of multiple frequency components

or numerical noise [43, 44].

Another problem in constraining LCOs based on bifurcation diagrams is that some

of the current LCO constraint formulations are unsuitable for gradient-based optimization

[18]. This optimization approach is necessary for cases where the design space is large-

dimensional, as it can accurately converge to an optimized solution consistently and effi-

ciently [2]. However, to ensure this is possible for the optimizer, several requirements on

the objective and constraint functions must be met. Both of these functions must be con-

tinuous, smooth, and differentiable in the design variables of choice. These requirements

make sure that there is no location within the design space for which a constraint or ob-

jective cannot be evaluated, or where a “sharp” response surface results in an inaccurate

derivative, allowing the optimizer to progress along a descent direction. Direct constraints

on bifurcation diagrams do not meet these requirements because aeroelastic systems can
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have multiple flutter mechanisms, potentially switching as the design variables change

[18]. As such, these constraints are undesirable for gradient-based optimization because

they are discontinuous if there is a switch in the critical flutter mechanism. Furthermore,

to minimize the computational burden of the optimization, adjoint derivatives are desirable

compared with derivatives from alternative methods such as finite differences, which are

less accurate and not scalable. The computational cost of adjoint derivatives is indepen-

dent of the number of design variables but only dependent on the number of objective and

constraint functions, favoring scalar constraints. However, most existing LCO constraints

do not come with adjoint derivatives or these derivatives are obtained under simplifying

assumptions such as the absence of shifts in the critical flutter mechanism [18].

Due to the above-mentioned limitations in current LCO constraints, prior optimization

research considering LCO behavior has been limited to structural or aerodynamic shape

optimization of simple models. Examples of structural models optimized considering their

LCO characteristics include typical aeroelastic sections or geometrically nonlinear beams

and plates [45, 46, 47, 16, 48]. Aerodynamic shape optimizations focus on shape optimiza-

tions of the airfoil or wing design within the transonic regime, due to their applications

to commercial flight as it exists today [49, 50, 5]. These types of optimizations have his-

torically used the bifurcation diagram, constraining the amplitude, slope, or LCO onset

for a single flutter mechanism. As previously mentioned, this approach poses significant

challenges for gradient-based optimization, especially in cases with multiple instability

mechanisms. These issues have so far prevented large-scale design optimization of realis-

tic aeroelastic systems considering LCO constraints.

To meet the requirements for gradient-based optimizers, including handling shifts in

the critical flutter mechanism, Ref. [18] developed an LCO constraint that bounds the re-

covery rate to equilibrium for chosen operating conditions, modes, and amplitudes. This

approach does not require or use the bifurcation diagram, bypassing the need to compute

it within the optimization process. Instead, it implicitly constrains LCOs by leveraging the
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condition of zero recovery rate satisfied by LCO solutions [39]. To overcome the problem

of a potentially non-smooth design space and avoid the need for mode-tracking algorithms,

the constraints on the recovery rates for different flight conditions, modes, and amplitudes

are aggregated using the Kreisselmeier-Steinhauser (KS) function [51, 52, 53]. This func-

tion provides a continuous, smooth, and differentiable LCO constraint that conservatively

estimates the most violated of the original recovery rate constraints and meets the require-

ments for gradient-based optimizers. The constraint also consists of a scalar metric, favor-

ing adjoint derivatives. Reference [18] demonstrated a successful optimization with this

methodology, eliminating subcritical LCOs from a typical aeroelastic section model within

a range of flight conditions.

1.3 Thesis Objective, Contributions, and Outline

The objective of this thesis is to advance the methodology of Ref. [18] by addressing a

key limitation. In the previous work, the LCO constraint was evaluated by approximat-

ing recovery rates using a projection-based approach [54]. This approach has only been

demonstrated on systems with smooth structural nonlinearities described by polynomial

functions [54] and was found to lose accuracy for larger LCO amplitudes, yielding con-

servative values of the LCO constraint [18]. This thesis introduces a new approach for

evaluating recovery rates in the LCO constraint, which can be applied to general nonlinear

behaviors and preserves accuracy at large LCO amplitudes while keeping numerical ro-

bustness. The recovery rates are evaluated using a new matrix pencil method that enhances

the method of Ref. [55] through a sliding time window within the transient response of

a chosen quantity of interest. This new sliding-window matrix pencil method captures

amplitude-varying effects associated with dynamic nonlinearities, which must be retained

to characterize LCO behaviors but are neglected in the conventional matrix pencil method

due to its linearized assumptions. Sensitivity analyses are conducted to identify the op-

timal sliding-window matrix pencil method parameters for accurate recovery rate results.
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The new developments are then demonstrated by revisiting the optimization problem of

Ref. [18] to investigate their impact on the optimized solution and the computational ef-

ficiency and numerical robustness of the optimization process. The work is anticipated to

pave the way for addressing larger-scale design optimization problems involving aeroelas-

tic models of increasing physical and computational complexity, pending the formulation

of adjoint derivatives. The developments presented in this thesis could also be applied to

design optimization of systems exhibiting LCOs encountered in other engineering domains.

The remainder of the thesis is organized as follows: chapter 2 recalls the formulation of

the LCO constraint adopted in this work and presents the new matrix pencil method based

on the proposed sliding-window approach; chapter 3 describes the basic typical section

aeroelastic model used for demonstration as well as the formulation for potential future

models considering more sophisticated aerodynamic theories; chapter 4 investigates the

ability of the proposed sliding-window matrix pencil method to capture recovery rates and

presents sensitivity analyses aimed at identifying optimal method parameters; chapter 5

discusses the optimization results for a two-variable demonstration problem and compares

them with prior results from Ref. [18]; chapter 6 references the next steps to be taken to

further develop this work. Two appendices describe the implementation of an optimization

framework that will serve as a starting point for future research on adjoint derivatives and

a three-variable optimization demonstration as an additional proof of concept.
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CHAPTER 2

CONSTRAINT FORMULATION

This section presents the constraint formulation used in this work. First, section 2.1 recalls

the formulation of a state-of-the-art flutter constraint based on eigenvalues. The constraint

formulation follows the derivation in Ref. [12] and is reported to provide the background

necessary to understand the LCO constraint. The LCO constraint is presented in section 2.2

based on the formulation introduced in Ref. [18]. Finally, section 2.3 introduces the pro-

posed approach to evaluating the LCO constraint based on recovery rates from the proposed

sliding-window matrix pencil method, which is the primary contribution of this thesis.

2.1 Flutter Constraint

A nonlinear system can generally be defined by the following equation:

ẏ = f(c,y(c,x),x) (2.1)

In this equation, c is a vector of control parameters of size Nc × 1, x is a vector of design

variables of size Nx×1, y is the Ny×1 vector of the state variables, f is a Ny×1 vector field

that provides the time rate of change of the state vector (termed state velocity). The control

parameters c parametrize the system’s boundary and flight conditions. Examples include

the load factor and Mach number. The combination of such parameters characterizes a

point within the flight envelope of the system of interest, such as a wing or aircraft.

Choosing Ns samples of the vector of control parameters, denoted by ci, for a fixed

design variable set x, each sample ci (i = 1, . . . , Ns) has an associated equilibrium solution

yei(x) = ye(ci,x) satisfying

f(ci,yei(x),x) = 0 (2.2)
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The dynamics can be linearized at small amplitudes about the equilibrium state yei(x),

resulting in a linearized equation defined by the local Ny × Ny Jacobian matrix of the

system Ai(x):

∆ẏ = Ai(x)∆y, Ai(x) =
∂f(c,y(c,x),x)

∂y


c=ci,y(c,x)=yei (x)

(2.3)

The quantity ∆y is defined as ∆y = y−yei and represents a perturbation of the state vector

y around the equilibrium state yei . The eigenvalues of Ai(x) are denoted by σik(x) =

gik(x)+jωik(x) (k = 1, . . . , Ny), where the real part gik(x) is the damping associated with

the kth mode at the ith equilibrium state, and the imaginary part ωik(x) is the corresponding

angular frequency, and j the imaginary unit.

Stable dynamics require that all eigenvalues have negative real parts. As a result, the

equilibrium state at control parameter ci is stable if the following constraints are satisfied:

g′ik(x) = gik(x)−Gi ≤ 0
∀ i = 1, . . . , Ns

∀ k = 1, . . . , Nm

(2.4)

The quantity Nm ≤ Ny is the number of constrained aeroelastic modes, which, by nature,

must be at or below the total number of states. This formulation includes a safety factor

Gi = G(ci), which is the value of a damping bounding curve at ci that can be used to

require residual damping while the flutter constraint is active for a more robust design [2].

Each damping constraint is a continuous, smooth, and differentiable function of x,

as required for gradient-based optimization [3]. However, the number of constraints in-

creases with the number of modes and flight conditions. Thus, the constraints are aggre-

gated through the KS function [51, 53, 52]:

KSflutter(x) = g′max(x) +
1

ρKSflutter

ln

{
Ns∑
i=1

Nm∑
k=1

exp {ρKSflutter [g
′
ik(x)− g′max(x)]}

}
≤ 0

(2.5)
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The KS aggregation facilitates the calculation of adjoint derivatives, whose computational

cost is only dependent on the number of outputs of interest (objective and constraint func-

tions). The above equation assumes a constant value of the aggregation parameter ρKSflutter

for all the modes and equilibrium states, although Poon and Martins [53] offer a framework

by which the aggregation parameter can be updated during the optimization. The scalar

constraint denoted by KSflutter(x) is a function of the most positive bounded damping con-

straint, denoted by g′max(x), and tends to its value as ρKSflutter tends to infinity. Essentially,

as the ρKSflutter parameter decreases, the design space is reduced in favor of a more con-

servative estimation of the most violated damping constraint. On the other hand, as the

KS parameter increases, the aggregated constraint more closely approximates the most vi-

olated constraint, opening up the feasible design space by reducing overestimation. If the

parameter is too high, the design space can become non-smooth, leading to issues with

gradient-based optimizers such as those considered in this work. As such, the KS parame-

ter must be balanced within a range specific to the problem to ensure appropriate accuracy

in capturing the true feasible design space while avoiding numerical issues for the opti-

mizer. This problem-specific range depends on the order of magnitude of the aggregated

quantities and the difference among their values.

2.2 Limit-Cycle Oscillation Constraint

If the system has a supercritical behavior, the above damping-based flutter constraint is

sufficient to prevent LCOs during operation. This is not true for subcritical LCOs, which

can also arise at linearly stable conditions. Additionally, flutter constraints cannot mitigate

LCO amplitudes, as they do not account for dynamic nonlinear effects. These issues can be

handled by the LCO constraint introduced in Ref. [18]. This constraint is mathematically

similar to the above flutter constraint, but it is formulated in terms of a fully nonlinear met-

ric called recovery rate, which accounts for amplitude-dependent effects that are otherwise

neglected in damping values.
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Figure 2.1: Recovery rate interpretation for a hypothetical system (Ref. [18]).

The concept of recovery rate can be illustrated for a one-dimensional nonlinear system

ṙ = f(c, r) (2.6)

The quantity r in the above equation is the response amplitude measured from equilibrium

and c is a control parameter. The recovery rate λ = λ(c, r) is the time slope of the response

amplitude logarithm [39]:

λ =
d

dt
ln r =

ṙ

r
(2.7)

This quantity depends on the amplitude r and the parameter c, and it describes the system’s

resilience in recovering to the original equilibrium state after a disturbance. Points (c̃, r̃)

on the bifurcation diagram satisfy

λ(c, r) = 0 (2.8)

This condition is verified when the system develops an LCO because it no longer recovers

to its original equilibrium state but shows a bounded self-sustained oscillation. As a result,

the recovery rate quantifies the distance of a dynamic state from its corresponding state on

the bifurcation diagram (Figure 2.1). The LCO constraint of Ref. [18] uses this property to

implicitly constrain LCO solutions without computing them directly. Mathematically, this
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is achieved by the following recovery rate constraints [18]:

λ′
ikl(x) = λikl(x)− Λil ≤ 0

∀ i = 1, . . . , Ns

∀ k = 1, . . . , Nm

∀ r = 1, . . . , Nr

(2.9)

The quantity λikl(x) is the recovery rate associated with the ith flight condition at the lth

amplitude along the kth mode, whereas Λil = Λ(ci, rl) is a recovery rate safety factor

similar to the safety factor used in the damping-based flutter constraint. The recovery rate

constraints are then aggregated to produce the following scalar LCO constraint [18]:

KSLCO(x) = λ′
max(x) +

1

ρKSLCO

ln

{
Ns∑
i=1

Nm∑
k=1

Nr∑
l=1

exp {ρKSLCO [λ
′
ikl(x)− λ′

max(x)]}

}
≤ 0

(2.10)

The above KS aggregation yields a conservative estimate of the most violated recovery-rate

constraint and tends to its true value as the aggregation parameter ρKSLCO (which is here the

same for all aggregated constraints) goes to infinity. As for the flutter constraint, the choice

of the aggregation parameter depends on the problem and requires a compromise between

a less conservative constraint estimation and potential numerical issues in the presence of

less smooth design spaces.

2.3 Sliding-Window Matrix Pencil Method for Recovery Rate Evaluation

Previously, the above LCO constraint has been evaluated using a projection-based approach

introduced in Ref. [54]. This approach uses the local state matrix of the system at a given

flight condition and its right eigenvectors to define a perturbed dynamic state along a partic-

ular mode and at a given phase. The resulting state velocity is then evaluated and projected

onto the left eigenvectors to approximate the recovery rate, and the process is repeated

across a set of amplitudes. This approach captures the amplitude trend of the recovery

rate qualitatively, capturing the type of bifurcation (subcritical or supercritical). As a re-
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sult, it allowed the LCO constraint to be successfully demonstrated by optimizing a typical

aeroelastic section model while suppressing subcritical LCOs over a range of flight condi-

tions [18]. However, the above-mentioned approach to evaluate the recovery rate has only

been tested on systems with smooth structural nonlinearities of polynomial nature and its

applicability to more general types of nonlinear behaviors has not yet been proved. The

approach was also found to introduce approximations in the recovery rates for larger LCO

amplitude, which may overestimate the LCO constraint and yield a conservative design

solution as the constraint does not reflect the true recovery rate of the system. To address

these limitations, this work introduces a new approach for evaluating the recovery rate us-

ing output data from transient responses. This approach can accurately capture the recovery

rate over a larger amplitude range and is completely output-based for easier generalization

to systems with various nonlinearities. The proposed approach is also anticipated to be

robust in the presence of multi-component transient responses and numerical noise typical

of large-dimensional models.

The approach consists of the following steps. The first step involves defining the flight

conditions to simulate the transient responses of the system. In this work, the transient

response at each flight condition is generated by perturbing the system from its local equi-

librium state with an initial condition given by the real component of the right eigenvector

of a mode of interest with an appropriate scaling factor. This approach is chosen to com-

pare with the previous work in Ref. [18], where the recovery rates were approximated by

evaluating the state velocity for perturbed dynamic states along various right eigenvectors.

However, the proposed approach could be applied to other initial perturbations. Next, the

system’s transient response is integrated in time according to the system’s governing equa-

tions. Next, the time history for a chosen quantity of interest (e.g., a state variable) is

interpolated to a user-specified uniform sampling step and sliced into time windows with

a specified window size and stride size between starting points. The signal within each

window is used to estimate the local dominant damping using the matrix pencil method
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of Ref. [55]. The matrix pencil method is conventionally applied to a whole time history

to obtain the dominant damping estimate under linearized assumptions, that is, by assum-

ing damping to be constant in amplitude. The new contribution of this work consists of

applying the conventional matrix pencil method within each time window to resolve ampli-

tude effects associated with dynamic nonlinearities, which are essential for characterizing

LCOs. The amplitude-varying behavior of the recovery rate is captured by sliding the time

window along the time history until the local dominant damping no longer varies, either

because the response amplitude around the original equilibrium state is sufficiently small

for the system to show a locally linear behavior or because an LCO has fully developed.

An example of this sliding-window approach is shown in Figure 2.2 for a pitch angle

time history. In the figure, the stride is the number of peaks between the starting points of

two consecutive windows whereas the window size is the number of peaks between the start

and end of an individual window. For simplicity, the window and stride size are assumed to

be constant for each time history. The sample window size encompasses several oscillation

periods across which the response amplitude varies. This can be used as a check to ensure

that the window size is appropriately large for the time history of interest. Too small of a

window size will not be sufficient for the method to accurately capture the local recovery

rate due to an insufficient number of peaks, whereas too large of a window size will not

resolve amplitude-dependent effects, missing information on the nonlinear dynamics of the

system relevant to characterizing LCOs.

As mentioned, the time history within each time window is processed through the ma-

trix pencil method of Ref. [55] to obtain the minimum damping estimate for that amplitude

range. This local dominant damping estimate is hypothesized to coincide with the opposite

of the recovery rate, as the recovery rate reduces to a conventional linearized damping for

small amplitudes. This hypothesis is confirmed by numerical studies presented later in this

thesis where the recovery rate estimated using the proposed method is compared with ref-

erence results based on an alternative method. The different sign of the recovery rate and
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Figure 2.2: Schematic of proposed sliding-window matrix pencil method.

local minimum damping is due to the convention used in the matrix pencil method, with

positive damping denoting a stable system. The recovery rate estimated for each time win-

dow is associated with an amplitude value equal to the mean value of the amplitude range

spanned by the time window. Repeating the process by sliding the time window with the

chosen stride along the time history allows one to obtain a set of recovery rates associated

with different mean amplitudes, characterizing dynamic nonlinear effects in the system.

The matrix pencil method accurately estimates the coefficients in a Prony series (a

series of damped sinusoids), which is suitable for describing the oscillatory responses of

aeroelastic systems. A generalized form of a Prony series is [55]

yn =
M∑
k=1

cke
skn + wn n = 1, . . . , Nt (2.11)

In this equation, yn denotes the nth output data sample for the quantity y, Nt is the total

number of samples for the time history, M is the number of retained sinusoids, and the

complex-valued amplitude and exponent of each sinusoid are given by ck and sk, respec-
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tively. The quantity wn is an unknown signal noise term. The complex exponent sk can be

rewritten as follows:

sk = (−αk + iωk)∆t (2.12)

In this formulation, the damping associated with the sinusoid is represented by αk, the

frequency by ωk, and the output data are sampled with time step ∆t. The matrix pencil

method requires that the time step be uniform. The objective of the method is to estimate

the complex amplitudes ck and exponents αk based on output data. As mentioned earlier,

a positive damping value αk corresponds to a converging oscillation due to the minus sign

in the real part of the complex exponent sk, whereas a negative damping value corresponds

to a diverging oscillation. This convention is opposite to the one used for describing the

flutter constraint, where damping is directly defined as the real part of the aeroelastic eigen-

value such that negative damping corresponds to a converging oscillation. Similarly, the

convention is opposite to the one defining the recovery rate, as a negative recovery rate

corresponds to the system recovering to the original equilibrium state (no LCOs).

A summary of the matrix pencil method’s workflow is provided below, and further

details can be found in Ref. [55]. The method first defines an iteration-dependent truncated

Hankel matrix, containing the output data samples:

Y =



y1 y2 ... yL yL+1

y2 y3 ... yL+1 yL+2

...
... . . . ...

yNt−L yNt−L+1 ... yNt−1 yNt


(2.13)

The matrix size depends on the matrix pencil parameter L = Nt/2 − 1. After performing

a singular value decomposition (SVD) on Y , singular values deemed to be purely noise

(below a specified normalized SVD tolerance) are discarded. For instance, a tolerance of

0.1 requires that a normalized singular value be 10% of the maximum eigenvalue or larger
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to be retained. Next, the right singular vectors associated with the M retained singular

values are stored in matrix V̂ whereas the remaining ones are discarded. From the filtered

right singular vectors, one forms matrices V̂1 and V̂2, which consist of the first and last L

rows, respectively. The matrices are used to build

H = V̂ T
2

[
V̂ T

1

]+
(2.14)

The superscript T indicates the transpose operation and + indicates the right pseudoinverse

operation. The eigenvalues of H approximate the complex exponents sk (k = 1, . . . ,M ),

from which one obtains

αk = −Re(sk)

∆t
(2.15)

Finally, the minimum damping is estimated using the KS aggregation function [51]:

αKS = αmin −
1

ρKS

ln

[
M∑
k=1

e−ρKS(αk−αmin)

]
≈ αmin (2.16)

The quantity αmin is the true minimum damping whereas αKS is the estimate based on the

aggregation parameters ρKS.

The matrix pencil method is advantageous over alternative output-based damping iden-

tification methods due to its accuracy for short and multi-component transient responses

and inherent ability to filter noise within the method itself, avoiding the need for approaches

based on alternative techniques such as frequency filtering [55, 42]. Furthermore, it solves

an eigenvalue problem instead of using root-finding methods to compute the complex ex-

ponents and therefore the damping values of interest, minimizing the computational cost

and making this method more computationally efficient than other damping identification

methods. As mentioned previously, the main limitation of the method consists of assuming

dynamically linear behavior, namely, of providing a single aggregated damping for a given

set of processed output data samples. As a result, when conventionally applied to a com-
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plete time history, the matrix pencil method neglects amplitude-varying effects that must

be captured to characterize LCOs. This limitation is overcome in this work using the pro-

posed sliding window approach. In the sliding-window approach, the matrix pencil method

is individually applied to a set of smaller time windows within the time histories, and the

quantity αKS is evaluated for each time window, resulting in a set of values corresponding

to different amplitudes as the time window slides along the time history. The recovery rate

for a given amplitude is assumed to coincide with the opposite of αKS evaluated from the

time window that spans a portion of the signal with that average amplitude. The process

then repeats to estimate a complete recovery rate curve. Note that the proposed sliding-

window approach can overshoot initial transients associated with cases where the system’s

response grows to a larger amplitude than the initial perturbation, resulting in a positive

recovery rate. Therefore, if the root mean square values of the recovery rates are below an

established normalized threshold of 0.001, the first three recovery rates are resampled with

a smaller sliding window to ensure the initial transient is well captured.

The performance of the proposed sliding-window matrix pencil method depends on

several parameters that must be appropriately set before evaluating an LCO constraint. The

key parameters are the SVD tolerance, the KS aggregation parameter, the sliding window

size, the stride size, and the output data sampling step. The SVD tolerance describes the

relative contribution of each sinusoidal component to the signal, which must be above the

set SVD threshold for that component to be retained. The SVD threshold acts as an in-built

noise filtering mechanism within the matrix pencil method, which is one of the characteris-

tic features of the method making it particularly appealing. The KS aggregation parameter

is used for the KS aggregation across the damping values for different retained sinusoidal

components in a given time window. This KS aggregation parameter corresponds to the

one used in the nested KS aggregation over the modes involved in the flutter and LCO con-

straints. As the aggregation parameter increases, the aggregate more closely approximates

the true aggregate damping value for that time window; as it decreases, the estimation is
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more conservative but smoother. The window size is defined by the number of peaks be-

tween the starting and ending peaks of the considered time interval of the time history.

This is paired with the stride size, also specified as a certain number of peaks between the

starting point of consecutive windows. Finally, the sampling step is the number of out-

put data points between the output data samples selected from the original time history,

whose initial sampling step is given by the integration time step (which may not be con-

stant along the time history). As the output data sampling step in the matrix pencil method

increases compared with the original integration time step, the time history processed us-

ing the method becomes more granular. This can be qualified by normalizing the sampling

step by the oscillation period at the end of the transient response, which captures the least

damped sinusoidal component typically associated with the bifurcating mode. Sensitivity

analyses to investigate optimal values of these parameters are discussed in chapter 4.
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CHAPTER 3

TYPICAL SECTION MODEL

The test case used to demonstrate the methodology consists of a basic typical aeroelastic

section model. This model is an abstraction for a flexible wing undergoing out-of-plane

bending and torsion and is a canonical test case for aeroelastic optimization subject to flut-

ter and LCO constraints [2]. The typical section model being considered is illustrated in

Figure 3.1. Points A, C, and E denote the aerodynamic center (assumed at the quarter-

chord point), the center of gravity, and the elastic center, respectively. The equations as-

sume zero body angle of attack and neglect gravity. The structural degrees of freedom are

the downward-positive vertical (plunge) displacement of the elastic center, denoted by h,

and the clockwise-positive pitch angle, denoted by α. This section first outlines the model

formulation used in the previous work that introduced the LCO constraint [18], which uses

a simplified potential flow aerodynamic model. This model is also used in the present stud-

ies for comparison purposes. Next, details are provided on how this formulation can be

coupled with aerodynamic models of increasing complexity in the future. One potential

candidate aerodynamic model is the theory of Peters et al. [56], which captures unsteady

effects while keeping linear analytical equations under the assumption of potential flow and

small-amplitude motions. Other models include two-dimensional unsteady Euler equations

to be later extended to unsteady Navier-Stokes equations, which can capture nonlinear ef-

fects. Additional utility to couple with a computational fluid dynamics solver providing

aerodynamic loads is under development.

3.1 Basic Quasi-Steady Potential Flow Formulation

In this basic formulation, the aerodynamics are modeled using quasi-steady, potential flow

thin airfoil theory by considering the circulatory effects due to the effective angle of attack
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Figure 3.1: Schematic of a typical section model (from Ref. [18]).

and the apparent mass and inertia terms, but no wake effects. This aerodynamic model

is chosen due to the availability of optimization results from previous work based on the

same LCO constraint but a different method to evaluate the recovery rate [18]. It must be

emphasized that a quasi-steady aerodynamic model will generally not capture the flutter

onset accurately, although it can qualitatively capture basic instability mechanisms. These

approximations are acceptable for an initial proof of concept because the scope of this

work is to demonstrate the methodology and not to obtain a realistic design. Additionally,

the “degenerate” quasi-steady steady aerodynamic model considered here, which includes

aerodynamic mass, damping, and stiffness effects but no wake effects, may often yield more

approximate flutter predictions than an even simpler quasi-steady aerodynamic model that,

for instance, only retains the effect of the plunge velocity in the effective angle of attack

but neglect other aerodynamic mass and damping effects. The reason for opting for such a

model is to prepare for future extensions to fully unsteady aerodynamics, also considering

that, as mentioned earlier, this work aims to demonstrate the proposed methodology and

not to obtain accurate quantitative predictions.

The equations of motion for the typical section read

mḧ+ Sαα̈ +Kh h = −L

Sαḧ+ Iαα̈ +Kα(α)α = M

(3.1)

Under the aforementioned assumptions, the lift L and pitching aerodynamic moment M
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per unit span about the point E are given by

L = πρb2
(
ḧ+ Uα̇− baα̈

)
+ 2πρbU

[
ḣ+ Uα + b

(
1

2
− a

)
α̇

]

M = −πρb3

[
ḧ

2
+ Uα̇ + b

(
1

8
− a

2

)
α̈

]
+ b

(
1

2
+ a

)
L

(3.2)

The quantity m is the typical section mass per unit length; Sα the static unbalance per unit

length; Iα the pitch moment of inertia about E per unit length; ρ the air density; U the flow

speed; b the half chord; e = b(1+a) the offset of the elastic center E from the aerodynamic

center A, taken positive downstream; and a the non-dimensional offset of E from the half-

chord point, also take positive downstream. The elastic reactions by the translational and

rotational springs are described by Kh, the spring constant per unit length associated with

the translational spring, and Kα(α), the spring coefficient per unit length associated with

the rotational spring, which is assumed to be a polynomial function of the pitch angle:

Kα(α) = K(1)
α +K(3)

α α2 +K(5)
α α4 (3.3)

The quantities K
(i)
α (i = 1, 3, 5) are the coefficients of the linear, cubic, and fifth-order

terms in the elastic reaction. Low-order polynomials are widely used to extend linear

aeroelastic models with smooth structural nonlinearities [19]. In realistic systems, these

nonlinearities arise from large displacements or nonlinear material behavior (or both), and

they are softening if restoring elastic effects weaken compared with the linear case or hard-

ening vice versa. Each nonlinear term in the expression for the rotational spring coefficient

can be softening or hardening based on its sign. If both nonlinear terms are positive (in-

cluding the case where one is zero), the model will exhibit supercritical LCOs associated

with hardening nonlinear effects; if one of the two terms is negative, the model will ex-

hibit subcritical LCOs associated with softening nonlinear effects. Typically, the case of

subcritical LCOs is achieved by setting K
(3)
α to a negative value and K

(5)
α to a positive one.
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The equations of motion can be normalized by introducing the quantities

m =
m

ρπb2
xα =

Sα

mb
Ω2 =

ω2
h

ω2
α

r2α =
Iα
mb2

h =
h

b
t = tωα ω =

ω

ωα

U =
U

bωα

(3.4)

The quantities ω2
h = Kh/m and ω2

α = K
(1)
α /Iα are the squared uncoupled structural fre-

quencies. The nonlinear terms are described by the quantities

κ(3)
α =

K
(3)
α

K
(1)
α

κ(5)
α =

K
(5)
α

K
(1)
α

(3.5)

Substituting Equation 3.2 to Equation 3.5 into the equation of motion and by dividing the

first equation by mbω2
α and the second equation by mb2ω2

α, the system is cast as

M

ḧ

α̈

+D
(
U
) ḣ

α̇

+K
(
U
) h

α

+

 0

r2α

(
κ
(3)
α α3 + κ

(5)
α α5

)
 = 02×1 (3.6)

The 2× 2 aeroelastic mass matrix M is given by

M = Ms +Ma Ms =

 1 xα

xα r2α

 Ma =
1

m

 1 −a

−a

(
1

8
+ a2

)
 (3.7)

Matrices Ms and Ma are the 2× 2 structural and aerodynamic mass matrices, respectively.

The 2× 2 aeroelastic damping matrix D consists only of an aerodynamic contribution

D
(
U
)
= Da

(
U
)
=

2U

m

 1 1− a

−
(
1

2
+ a

)
a

(
a− 1

2

)
 (3.8)

Structural damping has not been modeled because it only offsets the flutter point, achieving

the same result as setting a non-zero value of the safety window in the flutter constraint.

23



Finally, the 2× 2 aeroelastic stiffness matrix K is written as

K
(
U
)
= Ks +Ka

(
U
)

Ks =

Ω2 0

0 r2α

 Ka

(
U
)
=

2U
2

m

0 1

0 −
(
1

2
+ a

)


(3.9)

Matrices Ks and Ka are the 2× 2 structural and aerodynamic stiffness matrices.

The non-dimensional equations of motion can be rewritten as

ẏ = f
(
U,y

)
= A

(
U
)
y + fnl(y) (3.10)

The 4× 1 state vector is defined as follows:

y =
{
h, α, ḣ, α̇

}T

(3.11)

The corresponding state matrix describing the linear dynamics is given by

A
(
U
)
=

 02×2 I2×2

−M−1K
(
U
)

−M−1D
(
U
)
 (3.12)

The nonlinear terms are given in the 4× 1 vector

fnl(y) =

 02×1

fnl(α)

 (3.13)

with

fnl(α) = −M−1

 0

r2α

(
κ
(3)
α α3 + κ

(5)
α α5

)
 (3.14)
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3.2 Generalization to Other Aerodynamic Models

The structural and mass terms can be separated for the model implementation to be more

modular and easier to couple with different aerodynamic solvers. In the case of the typical

section, the equations of motion can be written as seen below:

Ms

ḧ

α̈

+Ds

ḣ

α̇

+Ks

h

α

 = R(U,y, ẏ) (3.15)

The term on the right-hand side is given by

R(U,y, ẏ) = −Ma

ḧ

α̈

−Da(U)

ḣ

α̇

−Ka(U)

h

α

−

 0

r2α

(
κ
(3)
α α3 + κ

(5)
α α5

)


(3.16)

In this generalized model, structural damping can be given by a damping matrix Ds. As

mentioned earlier, a structural damping contribution only shifts the aeroelastic damping

values of the system without changing the qualitative behavior. Hence, it does not impact

the system’s overall behavior and is not considered in this work.

Through some mathematical reformulation, the state velocity can be rewritten as:

ẏ = As y + fa(U,y, ẏ) + fs(y) (3.17)

In this form, As is the state matrix associated with the structural terms:

As =

 02×2 I2×2

−M−1
s Ks −M−1

s Ds

 (3.18)

The quantities fa(U,y, ẏ) and fs(y) are the vectors of the aerodynamic terms, which de-

pends on the specific aerodynamic model being employed, and of the nonlinear structural

terms. Note that, because aerodynamics generally involve mass-type effects, the vector of
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the aerodynamic terms may also depend on the state velocity through the accelerations, re-

quiring a staggered coupling approach or sub-iterations in the solution process. In the case

of the typical section model considered previously, the vector of the aerodynamic terms is

fa(U,y, ẏ) =

02×2 02×2

02×2 −M−1
s Ma

 ẏ +

 02×2 I2×2

−M−1
s Ka(U) −M−1

s Da(U)

y (3.19)

The vector of nonlinear structural terms is

fs(y) =

 02×1

fnl(α)

 (3.20)

with

fnl(α) = −Ms
−1

 0

r2α

(
κ
(3)
α α3 + κ

(5)
α α5

)
 (3.21)

With this form, a black-box aerodynamic model can supply the aerodynamic contribution

to the state velocity. This more general formulation is not used in this work, but it is derived

and reported for future implementation so that different types of aerodynamic models can

be coupled with the structural typical section equations and used to investigate the LCO

constraint considering, for instance, unsteady aerodynamic effects or aerodynamic nonlin-

earities.

3.3 Baseline Aeroelastic Behavior

The parameters used for the baseline model are listed in Table 3.1. The baseline typical

section has a non-dimensional flutter speed slightly above UF = 0.61 (Figure 3.2). Fig-

ure 3.3 shows the pitch angle bifurcation diagram obtained through direct time marching

(markers) and bifurcation forecasting (solid line), which was presented in Ref. [18]. The

bifurcation diagram from time marching is constructed by extracting the amplitude of fully
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developed LCOs at the end of transient responses for 25 non-dimensional speeds between

U = 0.57 → 0.65. The bifurcation diagram from bifurcation forecasting is obtained by

linearly fitting and extrapolating recovery rates computed from the envelope of two pre-

flutter transient responses at U = 0.58, 0.59. These bifurcation diagrams are not used

in the following optimizations but are shown to characterize the behavior of the typical

baseline section. Note that the recovery rates used to obtain the bifurcation diagram are

not computed using the new matrix pencil method introduced here, but by detecting the

envelope of the pre-flutter transient responses using a fitting technique followed by finite

differencing. Additional details are provided in Ref. [18]. All transient responses used to

obtain recovery rates are generated by applying an initial condition along the real part of

the right eigenvector associated with the mode that flutters with a suitable scaling factor

to remain within the validity of the present linear aerodynamic model. In the optimiza-

tion studies, the recovery rates are computed using the proposed sliding-window matrix

pencil method and the results are compared with the previous optimization studies in Ref.

[18]. In those results, an alternative projection-based method was used to approximate the

qualitative amplitude trend of the recovery rate without conducting transient simulations.

Additional details on the projection-based method are presented in Refs. [54, 18].

3.4 Model Significance and Limitations

Before moving to the results, it is important to summarize the significance and limitations

of the present demonstration model. In the context of aeroelastic optimization, the typical

section represents a basic test case upon which the framework outlined in this work can

be demonstrated before being applied to realistic design applications in future research.

Typical section models have been extensively used for demonstrating aeroelastic design

optimization methodologies, especially for dynamic constraints on flutter and LCOS [2].

The appeal of these models lies in their relatively low computational complexity combined

with the ability to qualitatively capture key dynamic aeroelastic phenomena. As previ-
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ously mentioned, the typical section model approximates a wing’s out-of-plane bending

and torsion, where the wing elasticity is represented by equivalent springs connected to

the shear (elastic) center. The nonlinear rotational spring representing the torsional elastic-

ity is modeled by a polynomial function leading to either stiffness hardening or softening

depending on the signs of its coefficients. With the assumed baseline parameters, the sys-

tem initially softens at lower pitch angles before hardening at larger pitch angles, which

gives subcritical LCOs. By construction, the model assumes quasi-steady aerodynamics,

implying that the aerodynamic forces and moments are only a function of the instanta-

neous body’s movement described by the pitch angle, plunge and pitch velocities, and the

corresponding accelerations. Fully unsteady aerodynamics is necessary to capture mem-

ory effects associated with wake shedding and other aerodynamic effects associated with

flow separation or moving shocks, among other phenomena, which impact the flutter and

LCO behaviors of realistic wings. However, quasi-steady aerodynamics are sufficient for

demonstrating the framework. Note that this typical section model does not exhibit flutter

mode switches. While the ultimate goal of the present formulation is to tackle cases with

mode switches, they are not considered in this thesis as they require a more sophisticated,

larger-dimensional aeroelastic model. The objective of this thesis is to introduce the new

matrix pencil method for evaluating the recovery rate, demonstrate its use in a basic opti-

mization problem, and compare the results with previous work on the same problem that

considered an approximate recovery rate evaluation method. The chosen demonstration

model is appropriate for this objective.

The optimization studies consider two design variables of interest: m and κ3
α, which

are the mass ratio and nondimensional cubic stiffness coefficient associated with the ro-

tational spring. Physically, the mass ratio can be interpreted as the mass per unit length

of the wing relative to the mass per unit length of the air contained in a circle having the

wing half chord as the radius, which is displaced by the wing during its motion. In the

context of design space exploration, changes to the mass ratio can be interpreted as either
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Table 3.1: Baseline typical section non-dimensional parameters.

Parameter Description Value

m Mass ratio 10.00
xα Non-dimensional static unbalance 0.20
rα Non-dimensional radius of gyration 0.30
a Non-dimensional offset of E from the half-chord point −0.30
Ω Frequency ratio 0.50

κ
(3)
α Non-dimensional cubic stiffness coefficient −4.00

κ
(5)
α Non-dimensional fifth-order stiffness coefficient 100.00

a variation in the aircraft mass distribution at a given altitude or a change in altitude for a

given aircraft (or a combination of both). Changes in the nondimensional cubic stiffness

coefficient can be interpreted as changes in the elastic behavior of the wing. In a realistic

wing model, the elastic behavior of the wing is not directly controlled by targeted design

variables but depends on various quantities such as thickness distribution, wingbox dimen-

sions, and material properties, some of which would also impact other quantities such as

the mass properties and natural frequencies. Hence, varying the nondimensional cubic stiff-

ness coefficient while keeping all other nondimensional parameters fixed is not a realistic

design modification. However, it is acceptable for this thesis’ research objective to test the

ability of the LCO constraint combined with the new matrix pencil method to modify the

system’s dynamics. Overall, the typical section model and aforementioned design variables

were chosen due to their simplicity and already proven ability to demonstrate the capability

of an optimizer to suppress LCOs with a relatively trivial computational cost [18].
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(b) Frequency and damping evolution

Figure 3.2: Flutter analysis of the baseline typical section (Ref. [18])
.
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Figure 3.3: Bifurcation diagram of the baseline typical section (Ref. [18]).

30



CHAPTER 4

EVALUATION OF SLIDING-WINDOW MATRIX PENCIL METHOD

The sliding-window matrix pencil method is verified with reference recovery rates obtained

by finite differencing the envelopes of transient responses obtained via peak fitting. The

comparison considers pitch time histories of the baseline model shown in Figure 4.1. Each

time history is obtained by generating a transient response applying an initial condition

along the real part of the pitch-dominated eigenvector at a given non-dimensional speed,

scaled by a factor of 0.25. This choice is based on the knowledge that the pitch-dominated

eigenvector is the bifurcating one for this system, but other initial conditions will be inves-

tigated in future work. The verification considers the non-dimensional speeds U = 0.5, 0.6

corresponding to a pre-flutter and an LCO case. The time marching uses a non-stiff differ-

ential equation solver with an initial non-dimensional integration time step ∆t = 0.01. The

resulting time histories are downsampled to a non-dimensional time step of 0.08 before ap-

plying the sliding-window matrix pencil method. For an initial demonstration, the method

considers an SVD tolerance of 0.1, a sliding window size of 6 peaks, and a stride of 3 peaks

(half of the window size). The stride size is chosen to ensure that every output data point is

considered in two matrix pencil computations aside from the first and last bounding points.

Finally, the verification results use an aggregation parameter of 104 to aggregate across the

modes within the matrix pencil method itself applied to a specific time window.

Figure 4.1 shows that the sliding-window matrix pencil method captures the recovery

rate trend and values. The top plot shows the typical non-monotonic amplitude variation of

recovery rates in the pre-flutter regime for a subcritical bifurcation. The plot on the bottom

captures the presence of LCOs as seen from the concentrated points around a zero recovery

rate value. The method also accurately estimates the amplitude range of the recovery rate.

This amplitude was computed for each time window by averaging the amplitude of the first
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(b) LCO case, U = 0.6

Figure 4.1: Verification of recovery rates from sliding-window matrix pencil method.

and last peaks. There are slight discrepancies at larger amplitudes, which are associated

with faster recoveries and thus a larger amplitude range within a given time window for

a fixed window size. However, the obtained amplitudes are sufficiently accurate for this

study, as the LCO constraint does not involve any mapping between the recovery rate values

and amplitudes at which those values are obtained. However, this mapping would be crucial

if the recovery rates were used to predict the bifurcation diagram, which is unnecessary for

the LCO constraint.

With the sliding-window matrix pencil method verified, the following subsections present

sensitivity studies aimed at identifying optimal sliding-window matrix pencil method pa-

rameters for the optimization results. The following parameters are investigated:
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• SVD tolerance;

• KS aggregation parameter across modes;

• Window size;

• Stride size;

• Output data sampling step;

• KS aggregation parameter across amplitudes and flight conditions.

4.1 Constraint Sensitivity to Singular Value Decomposition Tolerance

Table 4.1: LCO constraint sensitivity to SVD tolerance (window size = 6 peaks, stride =
1/2 window size, ∆t = 0.08).

U = 0.5, Reference = −8.483 × 10−3 U = 0.6, Reference = 5.665× 10−5

Tol. (-) Value (-) Error (%) Time (s) Value (-) Error (%) Time (s)

1.0 × 10−4 3.715 × 10−2 −537.97 0.05 2.336 × 10−3 4023.63 0.16
1.0 × 10−3 6.410 × 10−2 −855.60 0.05 2.185 × 10−3 3756.63 0.17
5.0 × 10−3 −8.245 × 10−3 −2.81 0.05 5.768 × 10−3 10080.73 0.16
1.0 × 10−2 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.16
5.0 × 10−2 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.17
1.0 × 10−1 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.17
2.5 × 10−1 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.18
5.0 × 10−1 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.16

As mentioned earlier, the recovery rates from the sliding-window matrix pencil method

depend on the SVD tolerance. This quantity indicates the relative contribution of a given

sinusoidal component compared with the dominant component associated with the highest

singular value. High SVD tolerance values remove additional modes from consideration,

potentially discarding key dynamics. Low SVD tolerance values may not filter noise out

and thereby give inaccurate results. To understand the impact of this parameter, the KS-

aggregated LCO constraint based on the sliding-window matrix pencil method is compared
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with a reference evaluation for different SVD tolerances. The reference evaluation is based

on the recovery rates obtained by applying finite differences to envelope functions associ-

ated with the peaks of the time histories at the two non-dimensional speeds above. Table 4.1

shows the results for each case, which are obtained with a KS aggregation parameter of 104

for each aggregation step. Past a certain SVD threshold, the LCO constraint no longer

changes, and its relative error compared with the reference value is below 0.0001. The

high relative errors for the LCO case are due to the extremely low absolute value of the

LCO constraint itself. This value is justified considering that the applied perturbation am-

plitude is higher than the LCO amplitude at the chosen non-dimensional speed, making

the transient response converge to the LCO from above. This causes the recovery rate to

initially be negative at larger amplitudes and then settle on a zero value once the system

develops LCOs. As a result, the KS-aggregated constraint value is practically zero because

it is dominated by the zero recovery rate associated with fully developed LCOs.

Note that the LCO constraint converges to a constant error compared with the reference

value as the SVD tolerance increases for the LCO case. As mentioned, the LCO con-

straint achieves a constant value as the SVD tolerance increases due to having few domi-

nant modes in the time histories. When the noise is filtered out, only the dominant modes

remain regardless of the SVD tolerance. This behavior may change for higher-dimensional

models with multiple active modes, and the SVD tolerance choice may need further inves-

tigation in those cases. The converged value of the LCO constraint retains a fixed error

compared to the reference due to slight differences in the recovery rates, as the reference

is based on recovery rates obtained by applying finite differences to an envelope function.

Regardless, the agreement between the recovery rates from the two approaches and the re-

sulting LCO constraints lends credibility to the sliding-window matrix pencil method. The

SVD tolerance for the remainder of the analyses in this study is set to 0.1 based on the

above sensitivity analyses, and this value is not indicated in the following tables.

The computational times listed are the times required for evaluating the results on a
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Table 4.2: LCO constraint sensitivity to KS aggregation parameter across modes (window
size = 6 peaks, stride = 1/2 window size, ∆t = 0.08).

U = 0.5, Reference = −8.483 × 10−3 U = 0.6, Reference = 5.665× 10−5

ρKS (-) Value (-) Error (%) Time (s) Value (-) Error (%) Time (s)

101 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.17
102 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.18
103 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.17
104 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.17
105 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.17
106 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.16

standard laptop. For reference, the sliding-window matrix pencil method is about five

times more computationally expensive than the envelope finite differencing method used to

obtain the reference results. However, identifying envelope functions is a challenging task

for large-dimensional models [42]. The proposed sliding-window matrix pencil method

has the advantage of not involving envelope functions or finite differences. For this reason

and despite its increased computational cost, the method is expected to be more suitable

for practical optimization.

4.2 Constraint Sensitivity to Aggregation Across Modes

This KS aggregation parameter controls how conservative the matrix pencil method is in

estimating the most positive recovery rate across the retained modes. At lower aggregation

parameters, the method yields a smoother constraint but is more conservative. At higher

aggregation parameters, the method more closely captures the most positive recovery rate

but may result in a less smooth constraint. Table 4.2 shows the results for the pre-flutter

case and the LCO case. There is no effect from the aggregation parameter across a range

between 10 and 106, with no error compared with the reference value of the constraint for

the pre-flutter case and a constant error for the LCO case (again, due to the very small con-

straint value). This behavior can be attributed to the large difference between the dominant

recovery rate for a given non-dimensional speed and the other values. The aggregation pa-
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Table 4.3: LCO constraint sensitivity to window size (stride = 1/2 window size, ∆t = 0.08).

U = 0.5, Reference = −8.483 × 10−3 U = 0.6, Reference = 5.665× 10−5

Peaks Value (-) Error (%) Time (s) Value (-) Error (%) Time (s)

2 −8.445 × 10−3 −0.46 0.08 2.416 × 10−5 −57.36 0.13
4 −8.464 × 10−3 −0.23 0.06 3.968 × 10−5 −29.97 0.13
6 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.17
10 −8.498 × 10−3 0.17 0.07 3.895 × 10−5 −31.26 0.28
14 −8.635 × 10−3 1.79 0.09 3.545 × 10−5 −37.43 0.43
16 −8.740 × 10−3 3.03 0.12 3.414 × 10−5 −39.74 0.52
20 −8.951 × 10−3 5.51 0.14 3.170 × 10−5 −44.05 0.67
30 −9.347 × 10−3 10.17 0.18 2.772 × 10−5 −51.07 1.11

rameter also does not have a significant impact on the computational cost associated with

the constraint evaluation for the pre-flutter case and only a slight one in the LCO case. A

value of 104 is used in the remaining studies, in line with prior work [55]. This, therefore,

informs the recovery rate constraint output when applying the matrix pencil method for a

specific window.

4.3 Constraint Sensitivity to Window Size

As mentioned in section 2.3, the time window used in the proposed matrix pencil method

must be sized appropriately to the transient responses to capture a sufficient number of

oscillation cycles and therefore the local amplitude decay. To make the window size in-

sensitive to the characteristic frequencies and decay rates of the problem, it is specified in

terms of a user-defined number of peaks. The number of peaks varies from 2 to 30, with

the stride size set to half the window size. This choice means that half of the signal in a

given window is repeated from the previous window.

Table 4.3 shows that within a range of window sizes from 4 to 10 peaks, the constraint

evaluation is relatively invariant and nearly equal to the reference. For a window size of

2 peaks or above 14 peaks, the error starts to markedly increase, with the results for a

30-peak window having a 10% error in the pre-flutter case and a 51% error in the LCO
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case compared with the reference. This can be attributed to the fact that too large of a

window size leads to all recovery rate computations producing the same value, as would

be the case if the system were dynamically linear. This is also the case when applying the

conventional matrix pencil method that considers an entire time history at once, failing to

capture dynamically nonlinear effects. On the other hand, too small of a window size may

not contain sufficient peaks to characterize the amplitude decay, resulting in an approximate

constraint evaluation.

The computational cost of the LCO constraint evaluation increases markedly with the

window size due to the need to compute the SVD of a larger Hankel matrix. Although the

implementation seeks to economize this evaluation, it remains the most computationally ex-

pensive step in the matrix pencil method, scaling directly with Hankel matrix size. Hence,

even if the constraint evaluation involves more instances of the matrix pencil method for

smaller window sizes to cover the entire time history, it is more computationally efficient.

In the present implementation, peaks below an amplitude of 0.25 degrees are not considered

because the recovery rate no longer changes with amplitude once the response oscillates in

a small enough amplitude range that the system exhibits a linear behavior. For this reason,

the constraint evaluation in the LCO case takes 2 − 6× longer than the one for the pre-

flutter case, as the oscillation amplitude recovers to zero in the pre-flutter regime, making

the constraint evaluation discard a portion of the time history. In the pre-flutter case, the

computational cost of a single evaluation doubles between a window size of 2 and 30 peaks.

This scaling factor is even larger in the LCO case due to the need to consider additional

peaks. The growth in computational cost with the Hankel matrix size is significant. For

this reason, a 6-peak window is chosen for the optimization as it is the smallest window

size that yields accurate results for both pre-flutter and LCO cases.
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Table 4.4: LCO constraint sensitivity to stride size (window size = 6 peaks, ∆t = 0.08).

U = 0.5, Reference = −8.483 × 10−3 U = 0.6, Reference = 5.665× 10−5

Peaks Value (-) Error (%) Time (s) Value (-) Error (%) Time (s)

2 −8.473 × 10−3 −0.12 0.08 3.984 × 10−5 −29.68 0.25
3 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.17
4 −8.492 × 10−3 0.10 0.04 4.129 × 10−5 −27.12 0.12
5 −8.502 × 10−3 0.22 0.03 3.887 × 10−5 −31.39 0.10
6 −8.475 × 10−3 −0.10 0.03 3.711 × 10−5 −34.50 0.08

4.4 Constraint Sensitivity to Stride Size

The number of peaks between the start of adjacent windows is also an important parameter.

Too large of a stride size can result in the method not accurately capturing a time interval

associated with lower recovery rates. As such, a study was conducted on the stride size

for a 6-peak window as selected from the prior study. As in the previous results, the SVD

tolerance is set to 0.1 and the KS-aggregation parameter is set to 104.

Table 4.4 indicates the relatively negligible effects of the stride size on the constraint

evaluation. All pre-flutter cases exhibited the same behavior even with no overlap between

windows at a stride size of 6 peaks. However, the most accurate result seen for the LCO

case was at a stride size of 3 peaks. This is also ideal as it allows for every point in the time

history to be considered in two subsequent recovery rate computations except the first half

of the first window and the last half of the last window. For this reason, a stride of 3 peaks

was chosen for the overall optimization. This choice also reduces the computational cost

of the constraint evaluation, which roughly halves as the stride size increases due to the

reduced overlap between different time windows, resulting in fewer instances of the matrix

pencil method over the time history.
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Table 4.5: LCO constraint sensitivity to output data sampling step (window size = 6 peaks,
stride = 1/2 window size).

U = 0.5, Reference = −8.483 × 10−3 U = 0.6, Reference = 5.665× 10−5

∆t Value (-) Error (%) Time (s) Value (-) Error (%) Time (s)

0.01 −8.475 × 10−3 −0.11 2.28 4.239 × 10−5 −25.18 13.31
0.04 −8.475 × 10−3 −0.10 0.13 4.238 × 10−5 −25.19 0.58
0.08 −8.475 × 10−3 −0.11 0.05 4.238 × 10−5 −25.19 0.17
0.10 −8.475 × 10−3 −0.10 0.04 4.229 × 10−5 −25.34 0.13
0.12 −8.475 × 10−3 −0.10 0.04 4.237 × 10−5 −25.20 0.11
0.20 −8.474 × 10−3 −0.11 0.03 4.057 × 10−5 −28.39 0.07
0.30 −8.473 × 10−3 −0.12 0.03 4.177 × 10−5 −26.27 0.05

4.5 Constraint Sensitivity to Output Data Sampling Step

All transient responses used to evaluate the LCO constraint are integrated using a non-

dimensional time step of 0.01, which proved small enough to ensure a smooth time history

that accurately represents the actual behavior of the system. However, this time step corre-

sponds to too high of an output data sampling rate for the matrix pencil method. The matrix

pencil method develops a Hankel matrix based on the output data and thus, the smaller the

time step, the less the difference between adjacent output data samples and therefore the

less descriptive of the system’s change in state it is for a given window size. Thus, to

test the limits of the downsampling possible, the LCO constraint evaluation is repeated for

varying output data sampling steps. Note that, for all cases, the time step used to integrate

the transient responses is still 0.01. The different output data sampling rates are achieved

by resampling the integrated transient responses with a lower rate for the same integration

time step. The results use a fixed window size of 6 peaks and a stride of 3 peaks, a combina-

tion that was previously shown to produce accurate results in the prior sections. The other

parameters are fixed to the previously identified values. The time step between consecutive

output data samples is varied from 0.01, the integration time step, to 0.3 to investigate the

optimal compromise between LCO constraint accuracy and computational efficiency.

Table 4.5 shows that past a sampling step of 0.12, the error in the matrix pencil method
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increases. This is explained considering that, for a larger sampling step, there is too large of

a gap between adjacent output data samples, making the data too granular for the method to

accurately perform the SVD and thereby properly estimate the recovery rate. In this exam-

ple, a single period of oscillation for the dominant sinusoid for this model is approximately

0.6. Time steps larger than 0.15, corresponding to four output data points between consec-

utive peaks, are too granular to accurately describe the dynamics. Looking at the effect of

the output data sampling step on the computational cost, it is apparent that increasing the

granularity of the data results in a computationally faster constraint evaluation. Between

an output data sampling step of 0.01 and 0.08, the computational cost reduces by a factor

of 50 for the pre-flutter case and by almost two orders of magnitude for the LCO case. As

such, to avoid an excessively granular signal while drastically improving the computational

efficiency of the constraint evaluation, a time step of 0.08 is chosen for the following opti-

mization. This output data sampling step corresponds to 45 data points within the chosen

6-peak window size and about 8 points between consecutive peaks. Having about 8–10

points between consecutive peaks can be reasonably assumed as a representative guideline

for other applications to accurately resolve a full oscillation cycle of the dominant sinusoid.

4.6 Constraint Sensitivity to Aggregation Across Amplitudes and Flight Conditions

The final sensitivity study considers a constraint evaluation for multiple non-dimensional

speeds, representative of those used in the subsequent optimization. The aggregation pa-

rameter ρKSLCO
used to aggregate the results across amplitudes and non-dimensional speeds

informs the final constraint value passed to the optimizer. The chosen non-dimensional

speed range of interest is U ∈ (0, 0.5] based on the optimization study of Ref. [18],

which is revisited in this work. This non-dimensional speed range is sampled with a non-

dimensional speed step of 0.02. The non-dimensional speeds are all in the pre-flutter regime

of the baseline model.

Table 4.6 shows a significant impact of the aggregation parameter. Low parameter val-
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Table 4.6: LCO constraint sensitivity to KS aggregation parameter across amplitudes and
non-dimensional speeds (window size = 6 peaks, stride = 1/2 window size, ∆t = 0.08).

Reference Present

ρKSLCO
Value Value Diff. (%) Time (s)

101 8.203 × 10−1 6.553 × 10−1 −20.11 16.38
102 7.591 × 10−2 5.980 × 10−2 −21.22 16.23
103 4.492 × 10−3 3.050 × 10−3 −32.10 16.42
104 −1.337 × 10−3 −1.473 × 10−3 10.12 16.50
105 −1.838 × 10−3 −1.869 × 10−3 1.67 16.52
106 −1.862 × 10−3 −1.890 × 10−3 1.47 16.53

ues give conservative results, leading to a constraint value significantly larger than zero.

As the parameter increases by several orders of magnitude, the constraint approaches the

reference value. Once again, there is a constant difference even at high aggregation param-

eters, which can be attributed to the differences in the methods used for the recovery rate

computation. There is no significant impact on the computational cost as the aggregation

parameter changes. For this reason, a large aggregation parameter of 105 was chosen to

ensure appropriate constraint values in the optimization. Again, for reference, this aggre-

gation parameter informs all aggregation done outside of the matrix pencil method itself

(across different windows for a single time history and across time histories at different

flight conditions). This value should not yield a design space that is excessively sharp

while still allowing an order of magnitude of buffer from where the results converged.

4.7 Application Guidelines

This section summarizes the main trends for the sensitivity studies, providing guidelines

for future applications of the proposed sliding-window matrix pencil method. The main

trends observed are as follows:

• SVD tolerance: the constraint evaluation at a fixed non-dimensional speed no longer

changes once the normalized SVD tolerance increases to a large enough value to

discard noise while retaining the dominant dynamics. A value of 0.1 appears suitable
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for this study, in line with prior work on the matrix pencil method;

• KS aggregation parameter across modes: the parameter does not affect the LCO

constraint evaluation at a fixed non-dimensional speed, likely due to the large dif-

ference between the most positive recovery rate at that flight condition and the other

recovery rates. A value of 104 is chosen for this study, in line with prior work on the

matrix pencil method;

• Window size: there is an optimal window size for obtaining accurate LCO constraint

evaluations at a fixed non-dimensional speed, with smaller window sizes failing to

capture the amplitude decay and larger window sizes averaging the recovery rates

in addition to requiring much higher computational cost. The optimal window size

chosen for this study includes 6 oscillation peaks;

• Stride size: the stride size does not affect the LCO constraint evaluation for pre-

flutter non-dimensional speeds, but using half the window size gives the best results

for LCO cases along with lower computational cost than smaller stride sizes;

• Output data sampling step: the output data sampling step trades off higher accuracy

for smaller values and higher computational efficiency for larger values. A value of

0.08 corresponding to approximately 8 data points per oscillation cycle is suitable

for this study;

• KS aggregation parameter across amplitudes and flight conditions: the param-

eter significantly affects the LCO constraint evaluation, which can be attributed to

the continuous variation of the aggregate recovery rate over the modes with the am-

plitudes and flight conditions. A value of 105 is chosen for this study, aligned with

Ref. [18] and leading to a converged constraint.
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CHAPTER 5

OPTIMIZATION DEMONSTRATION

This section presents optimization results demonstrating the LCO constraint based on the

new sliding-window matrix pencil method.

5.1 Optimization Statement

The optimization statement and parameters used for demonstration are shown in Table 5.1

and Table 5.2 and match prior work by Riso et al. [18]. The optimization problem varies the

mass ratio m and the non-dimensional cubic stiffness coefficient κ(3)
α subject to the flutter

constraint, the LCO constraint, and side constraints. The objective function is constructed

such that the primary focus of the optimizer is on driving the mass ratio down while it is

free to vary the cubic stiffness coefficient in either direction, as the function considers the

squared change relative to the original value. This composite function aims to mimic a

mass minimization problem while also adding a penalty for changing the bifurcation dia-

gram shape by varying the non-dimensional cubic stiffness coefficient, which is the primary

design variable affecting the LCO constraint. Additional discussions on the significance of

the optimization statement are given in Ref. [18]. This optimization statement should not

be interpreted as a practical optimization problem aiming to produce a realistic design, but

Table 5.1: Optimization statement.

Function/Variable Description

minimize W1x1 +W2∆x2
2 Objective function

with respect to x1 = m Mass ratio
x2 = κ

(3)
α Non-dimensional cubic stiffness coefficient

subject to KSflutter(x1) ≤ 0 KS aggregate of damping
KSLCO(x1, x2) ≤ 0 KS aggregate of recovery rates
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Table 5.2: Optimization problem parameters.

Variable/Parameter Description Range/Value

m Mass ratio range [5, 15]
κ
(3)
α Non-dimensional cubic stiffness coefficient range [−8, 0]

W1 Weight applied to m 1.0
W2 Weight applied to ∆κ

(3)
α 0.001

U Flutter and LCO constraint speed range (0, 0.5]
∆U Flutter and LCO constraint speed increment 0.02
ρKSflutter Flutter constraint aggregation parameter 1000
ρKSLCO LCO constraint aggregation parameter 100000

Table 5.3: Sliding-window matrix pencil method parameters.

Parameter Value

SVD tolerance 0.1
Window size (peaks) 6
Stride size (peaks) 3
Output data sampling step 0.08
KS aggregation parameter across modes 10000

simply as a demonstration problem allowing one to test the new developments.

Because the typical section model and optimization statement are the same as in the

prior work, the results obtained by the optimizations conducted for this work are directly

comparable to Ref. [18]. This choice is on purpose, as the goal is to highlight the impact

of using a different method to evaluate the recovery rates within the LCO constraint. The

LCO constraint evaluation based on the sliding-window matrix pencil method uses the

optimal parameters identified through the sensitivity studies in the previous section, shown

in Table 5.2 and Table 5.3. The optimization results are obtained by differentiating the

LCO constraint using finite differences, as done in Ref. [18]. This approach is sufficiently

accurate and computationally efficient for the small-scale optimization problem considered

for demonstration.

The optimizer uses the sequential quadratic programming (SQP) algorithm. This al-

gorithm was chosen due to its robust ability to find minimizers for highly nonlinear prob-
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Table 5.4: Optimizer parameters.

Parameter Value

Algorithm Sequential quadratic programming

Absolute optimality tolerance 10−9

Absolute step size tolerance 10−8

Absolute constraint tolerance 10−10

Constraint functions gradients Finite difference
Objective function gradient Analytical

Finite difference type Central
Finite difference relative step size 10−4

lems. Within this method, at each iteration, a quadratic subproblem is defined based on the

Hessian of the Lagrangian function updated with a quasi-Newton method. This quadratic

subproblem is used to determine a search direction along which a line search is performed.

The optimizer involves several parameters informing the convergence behavior, listed in

Table 5.4. The first is the optimality tolerance, which is the maximum of two functions.

The first function describes a metric of the magnitude of the Lagrangian function as de-

fined considering the objective function and inequality constraints. The second computes

the maximum product of any Lagrange multiplier with its corresponding constraint value.

As such, at a feasible point, this optimality measure should be almost identically zero. The

second tolerance value is the step size tolerance. This establishes a lower bound on the size

of the step that can be taken to move in the design space and allows for the optimizer to exit

its routine if the design variables no longer change. The step size is calculated as the norm

of the step taken in each direction along the aforementioned line search defined through the

SQP algorithm. The final tolerance is the constraint tolerance. This specifies how tightly

the constraints must be satisfied. In this study, the constraint value can be, at most, 10−10

greater than zero for the constraint to be satisfied.

All gradient-based optimizations require computing the gradient of the constraint and

objective functions with respect to the design variables. Due to its simple formulation, the

objective function can be differentiated analytically with respect to the two design vari-
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Table 5.5: Optimized results and comparison with previous work.

Optimized solution

LCO constraint method W1 x1 +W2∆x2
2 x1 = m x2 = κ

(3)
α Iterations

State velocity (Ref. [18]) 6.975 6.970 −1.621 10
Sliding-window matrix pencil 6.971 6.970 −2.853 21

ables. However, analytical derivatives are not readily available for the flutter and LCO

constraints. As such, derivatives of these constraints are computed using a finite-difference

scheme to inform the SQP subproblem definition at each iteration. Specifically, the con-

straints are differentiated using a central-difference scheme, which is second-order accu-

rate as opposed to a first-order accuracy for forward or backward differentiation. This does,

however, come at the cost of additional function evaluations for each design iteration and

variable added to the problem. It was deemed that for this two-variable demonstration, cen-

tral differencing would not significantly impact the computational cost of the small-scale

demonstration optimization problem, and thus is chosen for its higher accuracy. The rel-

ative step size of this finite-difference scheme is set to 10−4 based on sensitivity studies

conducted in prior work [18].

5.2 Optimization Results and Postoptimality Study

This section compares the optimization results obtained by evaluating the LCO constraint

using the current sliding-window matrix pencil method with the results obtained in previ-

ous work [18], based on the previous approximate recovery rate evaluation method [54].

As mentioned when introducing the sliding-window approach, the previous method uses

the local state matrix of the system at a given flight condition and its right eigenvectors to

define a perturbed dynamic state along a given mode and phase. The resulting state veloc-

ity is then evaluated and projected onto the left eigenvectors to approximate the recovery

rate, and the process is repeated for different operating conditions, modes, and amplitudes
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to evaluate the LCO constraint. This approach bypassed the need for transient simulations,

resulting in a computationally efficient constraint evaluation. However, it was found to

conservatively approximate the recovery rates for larger amplitudes, resulting in an im-

proper LCO constraint estimate. While the sliding-window matrix pencil method requires

transient simulations, it is expected to capture the true LCO constraint value more closely.

Additionally, due to the advantageous features of the matrix pencil method, this approach

is expected to more easily scale to more complex computational models with generic types

of nonlinear behaviors.

Table 5.5 compares the results from the two approaches. The optimizations converge

to the same x1 or m̄ value, and the optimized designs flutter at a non-dimensional speed

U = 0.508. This is expected because the objective function assigns a higher penalty to

shifting the flutter point (by decreasing the mass ratio) than to reshaping the bifurcation

diagram (by changing the cubic stiffness coefficient). Furthermore, the flutter constraint is

only influenced by m̄ and is independent of how the LCO constraint is evaluated. How-

ever, because the LCO constraint depends on both m̄ and κ
(3)
α , the optimized value of κ(3)

α

changes depending on the method used to evaluate the recovery rate. The reduced mass ra-

tio of the optimized solution compared to the baseline can be understood to be the primary

factor behind the reduced flutter point. The smaller magnitude of the κ
(3)
α value in magni-

tude indicates that the bistable range of the subcritical bifurcation diagram is reduced, as

observed by comparing the optimized bifurcation diagram in Figure 5.2 with the baseline

bifurcation diagram in Figure 3.3. The optimized value of this design variable is more

negative for the current results compared with the previous results, which can be attributed

to the previous recovery rate evaluation misrepresenting the true dynamic behavior of the

system in the LCO constraint due to the conservative estimation of the recovery rates.

To further understand the differences in the optimization results, the design spaces as-

sociated with the two recovery rate evaluation methods are investigated. This is done using

contour lines of the objective function, flutter constraint, and LCO constraint as functions
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of the two design variables (see Figure 5.1). For simplicity, the plots are based on the LCO

constraint evaluated at U = 0.5, which captures the most violated recovery rates. Note

that the objective function and the flutter constraint are independent of the method used to

evaluate the recovery rates. As a result, they are the same in the previous results of Ref.

[18] and in the current results. The bottom plots highlight the contour plots for the LCO

constraint evaluated with either method, with a vertical line indicating the optimized mass

ratio. The optimizer’s path towards the constrained solution is shown on the LCO con-

straint plot based on the sliding-window matrix pencil method. These optimizer’s paths are

also computed by limiting the LCO constraint evaluation to U = 0.5, consistent with the

contour lines, but the qualitative behavior is representative of the optimizations based on all

non-dimensional speeds. Note that the black circles and asterisks in the bottom right corner

of each LCO constraint plot represent the starting point and optimized point, respectively.

Figure 5.1 shows that while the optimizer does make several large steps away from the

true minimum, it is still able to converge to the optimal solution. The difference in opti-

mized results can be explained by looking at the contours of the objective function. The

optimizer attempts to drive the mass ratio down since the function value is only slightly

affected by the second design variable. There is, however, a limit indicated by the zero

contour line in the flutter constraint, which is independent of the second design variable

κ
(3)
α . This boundary is set at approximately the 6.970 value for m̄ in both optimized results,

as both optimizations satisfy the flutter constraint by reaching the minimum feasible value

of the first design variable. There are notable differences in the LCO constraint contour

plot for the two evaluation methods. The result of these differing LCO constraint functions

is that, at the optimal mass ratio, there is less curvature for the constraint function based on

the sliding-window matrix pencil method, leading to a lower optimized κ
(3)
α value. The ac-

tive constraint contour is seen to intersect the vertical line at approximately the optimized

κ
(3)
α value of −2.853 for the new constraint evaluation and approximately −1.905 in the

previous results, confirming the convergence to the true minimum of the design space. For
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(d) LCO constraint from state velocity method

Figure 5.1: Design space contour lines (black circle = baseline, black asterisk = optimized,
black lines = iterations).
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the new constraint evaluation, this value coincides with the one in Table 5.5 based on the

optimization considering all non-dimensional speeds. For the previous constraint evalua-

tion, limiting the constraint evaluation to U = 0.5 when plotting the design space gives a

slightly less conservative result, but the behavior remains qualitatively similar. The almost

vertical behavior of the zero contour line for the LCO constraint based on the sliding-

window matrix pencil method is due to the nature of the analysis. Within an approximate

range of values from −2 to −5 for κ(3)
α at around m = 6.970, the system’s transient re-

sponses that develop into an LCO converge to an LCO amplitude smaller than the applied

initial condition. This causes the aggregated LCO constraint to always achieve a value of

practically zero regardless of the value of κ(3)
α because the recovery rate is initially negative

at the beginning of the transient responses, hence the aggregate constraint is dominated by

the zero recovery rate associated with LCOs. This is not the case for largely negative κ
(3)
α

values at a constant m. For these points of the design space, the bistable range is large

enough that LCO amplitude grows past the initial condition, resulting in a positive con-

straint value. These behaviors are not observed in the contour plot based on the previous

evaluation method, which did not involve transient simulations.

Both optimizations produce the same mass ratio. However, the LCO constraint in the

prior work overestimated the change in κ
(3)
α required to satisfy the LCO constraint due to

the conservative nature of the method to estimate recovery rates. The present method to

evaluate the recovery rate provides a less conservative solution associated with a wider

feasible bistable range in the bifurcation diagram and a reduced change in the value of κ(3)
α

compared with the baseline design.

Figure 5.2 shows the bifurcation diagrams for the optimized design obtained without

the LCO and with the LCO constraint evaluated using the present sliding-window matrix

pencil method and the previous state velocity method. The black vertical line indicates the

non-dimensional speed below which flutter and LCOs are not allowed based on the spec-

ified constraints. The bifurcation diagrams are obtained using the bifurcation forecasting
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Figure 5.2: Optimized bifurcation diagrams.

method and verified with time-marching results. Note that the bifurcation diagrams are only

presented for a post-optimality study but not used in the optimizations with the LCO con-

straint, as the formulation only uses the recovery rates. The bifurcation diagram obtained

without using the LCO constraint in the optimization shows a bistable range that enters the

non-dimensional speed range below 0.5. The bifurcation diagram obtained using the LCO

constraint with the present method shows a slight subcritical behavior associated with a

bistable range that starts at about U = 0.5, as shown by the jump in the time-marching re-

sults within both plots. This is consistent with the LCO constraint requiring no LCOs above

that non-dimensional speed, as the fold point in the bifurcation diagram exactly touches the

vertical line, indicating the upper bound of the non-dimensional speed range where LCOs

are not allowed. The bifurcation diagram obtained using the LCO constraint based on the

previous method has a narrower bistable range starting at a non-dimensional speed past

U = 0.5, aligned with the conservative constraint evaluation.

The time required to compute the LCO constraint using the sliding-window matrix

pencil constraint was approximately twice the one to evaluate the LCO constraint based

on the state velocity method. This increased computational cost does come, however, with

higher accuracy in characterizing the variation of the recovery rates with amplitude and

therefore in capturing critical constraint values. The bifurcation diagrams in Figure 5.2

show that the state velocity method overshoots the minimum non-dimensional speed for
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LCOs to be acceptable by approximately 1% in comparison to the sliding-window matrix

pencil method, which perfectly matches the constraint. Overall, while the computational

cost would likely scale and become notably different as the model’s complexity increases,

the novel approach promises to yield less conservative designs. Additionally, the sliding-

window matrix pencil method is entirely based on time histories and therefore applicable

to any computational model suitable for time-marching integration with no change in the

methodology or implementation. This proof of concept demonstrates the ability of this

new method to capture recovery rates and its viability for use in optimization to prevent

undesirable LCOs in a desired range of operating conditions.
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CHAPTER 6

CONCLUDING REMARKS AND OUTLOOK

This chapter ends the thesis by summarizing the key contributions and providing recom-

mendations for future research.

6.1 Key Contributions

This thesis offered a new approach to constraining LCO in aeroelastic design optimiza-

tion. The proposed approach builds on a previously developed LCO constraint that bounds

the recovery rate to equilibrium at chosen flight conditions. In prior work, the recovery

rates necessary to evaluate the LCO constraint were approximated using a projection-based

method based on the system’s state velocity. This method was observed to lose accuracy at

larger amplitudes and has only been demonstrated on systems with polynomial nonlinear-

ities. Toward larger-scale aeroelastic design optimization problems, this thesis advanced

the prior work by proposing a new method to evaluate the recovery rates within the LCO

constraint. The new method preserves accuracy at large amplitudes and is expected to

better generalize to various types of nonlinear behaviors as well as to large-scale computa-

tional models of interest for practical design applications. The proposed method consists

of a new matrix pencil formulation that considers a sliding time window along the transient

response for a chosen quantity of interest. Using a sliding time window instead of consider-

ing the entire transient response overcomes the linearized assumptions of the conventional

matrix pencil method, which cannot capture amplitude-varying effects necessary to char-

acterize the recovery rate. Through a series of sensitivity analyses, the new sliding-window

matrix pencil method was proved to sufficiently and accurately estimate recovery rate val-

ues. Additionally, guidelines were identified for future applications of the new method

in either LCO prediction (not addressed in this work) or optimization. Finally, the LCO
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constraint based on the new sliding-window matrix pencil method with optimal parameters

was demonstrated by revisiting a previous optimization problem for a typical section with

an LCO constraint based on the same formulation but with approximate recovery rates.

The new method allowed the optimizer to prevent subcritical LCOs at chosen operating

conditions. Given the less conservative nature of the new recovery rate evaluation method

relative to the method used in previous work, the optimizer minimized the changes to the

design variables while satisfying all constraints, achieving a less conservative optimized

design solution.

To summarize, the key new contributions from this thesis are listed below:

• A new sliding-window matrix pencil method able to resolve amplitude-varying ef-

fects associated with dynamic nonlinearities that are neglected in the conventional

matrix pencil method, which uses linearized assumptions;

• A demonstration of the sliding-window matrix method for a typical section model,

including extensive sensitivity analyses to identify application guidelines;

• An LCO-constrained optimization of the typical section model subject to the LCO

constraint based on the sliding-window matrix pencil method, demonstrating its fea-

sibility for aeroelastic design optimization and advantages compared with a prior

work that used an approximate method to evaluate the LCO constraint.

These contributions can also be leveraged in the areas of LCO prediction or for optimization

of systems experiencing LCOs arising in other areas of engineering beyond aeroelasticity.

6.2 Recommendations for Future Research

While the results achieved in this thesis demonstrate the effectiveness of the proposed

sliding-window matrix pencil method for evaluating the LCO constraint, there are sev-

eral areas for future research. First, the methodology must be demonstrated for larger-scale

optimization problems involving more design variables. As an initial step to address this,
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the optimization framework used for the present results, implemented into MATLAB, has

been transferred to a Python-based framework based on OpenMDAO [57]. The framework

has already been developed with all necessary components defined and implemented. Ad-

ditionally, the framework has been verified by reproducing the results from the original

MATLAB implementation. The framework will facilitate defining more complex opti-

mization problems and, eventually, using more sophisticated models. This will require the

development of adjoint derivatives for the flutter constraint, available in the literature, and

for the LCO constraint based on the new sliding-window matrix pencil method, which must

be developed. Adjoint derivatives will enable scaling the methodology to large-scale aeroe-

lastic design optimizations of practical interest. By implementing adjoint derivatives, the

number of function evaluations currently necessary using finite-different derivatives will

be reduced, and the overall computational cost of the optimization minimized to allow this

to be as computationally efficient of a tool as possible. Finite-difference derivatives suf-

fer from numerical truncation errors, which may mislead the optimizer. These errors are

eliminated in the adjoint method, potentially allowing for faster convergence.

Additional efforts could focus on replacing the standard time-marching algorithm used

in this work with capabilities provided by the Dymos [58] framework built upon OpenM-

DAO. The collocation method typically used by Dymos for solving a trajectory problem,

such as that involved in generating a time history, assumes that both the state itself and

the first derivative are continuous. With small enough time steps, this can be assumed to

be true. The collocation method then uses the state and the state derivative information to

fit a polynomial to the state information at a set of particular values. This is unreasonable

for a highly oscillatory system such as the ones characteristic of aeroelastic time histories,

especially for long simulations. The polynomial would be unreasonably high-order, requir-

ing an unnecessarily large computational cost to fit appropriately. Dymos has preliminary

support for explicit shooting methods, where the state value at a given time step and the

resultant state velocity are used to develop the state at the subsequent time step. Further
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work on these methods is underway.

The longer-term goals of this effort are to demonstrate the methodology for aerody-

namic models of increasing physical and computational complexity while keeping the cur-

rent typical section structural model. Candidate aerodynamic models are the theory of

Peters et al. [56] and two-dimensional Euler equations or Navier-Stokes equations, where

the typical section model will be coupled with a computational fluid dynamics solver. An

additional improvement is to move from a two-dimensional problem to a three-dimensional

one, considering a finite wing, allowing for a more relevant and real-world use-case of the

optimization framework developed. This extension requires a more sophisticated struc-

tural model, which could initially be a root-clamped, nonlinear beam model. The ultimate

goal of the design optimization methodology investigated in this work is to optimize the

detailed internal structural sizing of the wing, considering a built-up finite element model,

along with its geometry and aerodynamic shape.
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APPENDIX A: OPENMDAO FRAMEWORK STRUCTURE AND

CONNECTIVITY

The original implementation of the optimization framework and demonstration problem

discussed in this thesis was in MATLAB. The basic functionality of this framework, specif-

ically the key components required for the optimization of the typical section presented in

chapter 3, have been converted to a Python-based implementation in OpenMDAO [57] as

part of this thesis. OpenMDAO is an open-source framework allowing for various opti-

mization problems to be developed with analytic derivatives. This framework will be key

for developing adjoint derivatives for future computational speedup. It therefore allows for

quick and robust design optimization on a problem with defined dynamics. This, in turn,

allows for developing high-fidelity optimization with modular components.

Figure 6.1: N2 diagram of the OpenMDAO implementation.
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Figure 6.1 shows the connectivity of the OpenMDAO implementation. The overall

structure can be described as a set of components. The first three components are defined

as independent variable components (IVCs). These variables are defined externally to the

model and thus are analogous to inputs to the design optimization problem. The three IVCs

used in this implementation are as follows:

1. SysParams contains the number of states in the problem of interest, the weights on

the objective function, and parameters describing the typical section model;

2. FlutterParams contains parameters specific to the computation of the flutter con-

straint, which include the flight condition range evaluated, the aggregation parameter,

and any necessary bounding curve information;

3. PostFlutterParams contains parameters specific to the LCO constraint, such as the

equilibrium state, the aggregation parameter, and the flight condition range over

which the LCO must be eliminated.

The variables present in these components are passed into the compute objective and

compute constraints modules. These modules are defined as explicit components in Open-

MDAO. These components allow for a user-defined computation to be performed and out-

puts to be passed on. The two explicit components are described as follows:

1. compute objective computes the objective function value based on the weights and

design variable values from the above IVCs, which is passed into the optimizer and

differentiated analytically;

2. compute constraints contains both the flutter and post-flutter constraint evaluations,

with the sliding-window matrix pencil implementation used for the LCO constraint.

The output constraint values are passed directly to the optimizer and their derivatives

are computed using central finite differencing with the same relative step size, 10−4,

as used in the original MATLAB implementation.
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Since each of these is a standalone component and an individual Python class, either

of the compute objective or compute constraints modules can be replaced quickly with the

modification of several lines of code defining the problem and variable connectivity. Thus,

for a more complex problem, once these individual components are established, they can

be easily swapped in for robust, modular analysis and optimization.

The gray squares in the upper-right corner of the N2 diagram indicate points of connec-

tivity. The example highlighted in Figure 6.1 shows the cubic stiffness coefficient, given

by κ3
α, connected from the SysParams component to the compute objective component.

The second gray square in this line indicates that this same value is connected to the com-

pute constraints component as well. Since the design variables of interest are κ3
α and m,

these are defined in a single location where they can be modified by the optimizer before

being passed to the objective and constraint evaluations.

The constraint definition in OpenMDAO allows for specifying an upper and lower

bound on the constraint value. However, if both an upper and lower constraint bound

are specified, the optimizer does not converge. Note that the constraint sign convention

used for MATLAB and OpenMDAO implementations is that a negative constraint value

indicates that the constraint is satisfied. Therefore, a positive constraint value indicates

that the constraint is violated. Thus, no lower bound was specified for the demonstration

problem, whereas the upper bound was specified as positive 10−6 such that a design with

an extremely small violation would still be accepted.

Additionally, the optimizer used in this case is the Sequential Least-Squares Quadratic

Programming (SLSQP) optimizer within the SciPy Optimize Driver. This optimizer is sim-

ilar to MATLAB’s SQP optimizer, which generates and solvers a quadratic subproblem at

each iteration. With all these components connected and the optimizer driver being run

with the same initial conditions as the MATLAB implementation, the optimized κ3
α and

m were −2.857 and 6.970 respectively. These values closely agree with the MATLAB

implementation, thereby verifying the OpenMDAO implementation on the same design
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problem. The slight discrepancies can be attributed to differences in the time-marching im-

plementations and optimizers between the two languages, contributing to slightly different

computed recovery rates and resulting LCO constraints, which affect the derivatives and

the final convergence to a slight extent.
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APPENDIX B: THREE-VARIABLE OPTIMIZATION DEMONSTRATION

To further demonstrate the methodology, this work also solved a three-variable optimiza-

tion problem. Of the variables of interest in this typical section model, those with contribu-

tions to the mass matrix are especially interesting because they affect both the flutter and

LCO constraints. The three variables that contribute in this manner are rα, xα, and a. Out

of these, the elastic axis offset, a, was chosen due to its relevance. Changes in this quantity

can be caused by modifying the airfoil shape or the wingbox geometry, sizing, or materials,

all of which are practical design modifications.

The optimization problem was formulated similarly to the two-variable case, with a

added as a design variable. The bounds for the optimizer were set to −0.31 and −0.29 for

the lower and upper bounds respectively, including the baseline value −0.3. The objective

function was modified by adding the contribution for the new variable as done for the

cubic stiffness coefficient. The added contribution is W3∆x2
3 with W3 = W2 = 0.001.

The remainder of the bounds, initial conditions, analysis methods, and analysis parameters

were left identical to the two-variable case.

The results in Table 6.1 show the difference between the two and three-variable opti-

mizations. The two entries for the three-variable case represent the results obtained with

the W3∆x2
3 component excluded and included in the objective function. Adding the elastic

axis offset as a design variable allowed the optimizer to decrease the objective function

Table 6.1: Optimized results for the two- and three-variable cases.

Optimized solution

Case Objective func. x1 = m x2 = κ
(3)
α x3 = a Iterations

Two-variable 6.971 6.970 −2.853 −0.30 18
Three-variable, No obj. 5.953 5.950 −2.344 −0.31 25
Three-variable, Obj. 5.953 5.950 −2.344 −0.31 25
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Figure 6.2: Optimized bifurcation diagram for the three-variable case.

value markedly by over 1. This represents an approximately 14.6% improvement in the

value for the two-variable case. Furthermore, the number of iterations taken was slightly

increased, indicating that the higher complexity of the optimization problem does not ad-

versely impact the optimization time in a significant way (although the number of iterations

does seem to scale with the problem’s complexity). The results are identical for the cases

where the change in elastic axis offset is and is not included in the objective function, which

may originate from the low assumed value of the corresponding weight.

At this design point, both the flutter and LCO constraints are exactly satisfied. The

design variables, although bounded by the established limits, could be manipulated by

the optimizer to remove any LCO behavior below a non-dimensional speed of 0.5. The

optimized bifurcation diagram is shown in Figure 6.2 for completeness.
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