
ExactMP: An EÆcient Parallel Exact Solver for

Phylogenetic Tree Reconstruction Using Maximum

Parsimony

David A. Bader � Vaddadi P. Chandu

College of Computing

Georgia Institute of Technology

Mi Yan

Linux Networks Inc.

February 26, 2006

Abstract

Constructing phylogenetic trees in the study of the evolutionary history of a group

organisms is an extremely challenging problem in computational biology. The problem

becomes intractable with growing number of organisms. In this paper, we design and

implement an eÆcient parallel solver (ExactMP) using a parsimony based approach for

solving this problem. We create a testbed consisting of eighteen datasets of varying size

(up to 27 taxa) and diÆculty level (easy to hard), containing real (Eukaryotes, Meta-

zoan, and rbcL) and randomly-generated synthetic genome sequences. We demonstrate

our ExactMP Solver against this testbed and achieve a parallel speedup of up to 7.26

with 8 processors using an 8-way symmetric multiprocessor. The main contributions of

this work are: (1) an eÆcient parallel solver ExactMP for the problem of phylogenetic

tree reconstruction using maximum parsimony, (2) a new upper bounding methodol-

ogy for this problem using heuristic and randomization techniques, and (3) a highly

optimized branch and bound algorithm for this problem.

1 Introduction

Knowledge of accurate evolutionary information among organisms is essential for classi�-

cation, taxonomy, and molecular epidemiological study of viruses. Evolutionary history is

�This work was supported in part by NSF Grants CAREER CCF-0611589, ACI-00-93039, NSF DBI-
0420513, ITR ACI-00-81404, DEB-99-10123, ITR EIA-01-21377, Biocomplexity DEB-01-20709, and ITR
EF/BIO 03-31654; and DARPA Contract NBCH30390004.

1

represented by a labeled acyclic graph known as a phylogenetic tree whose leaf nodes rep-

resent the known organisms and internal nodes represent hypothetical ancestral organisms.

Construction of such a tree requires a dataset containing a group of organisms (also known as

taxa), associated states representing the characteristic features of each organism in the group

(also known as characters or sites), and an optimality criterion to establish the relationship

among those organisms.

Methods to construct a phylogenetic tree can be classi�ed as heuristic (an approximate

solution) [28, 30, 11, 20, 29, 23], and exact (where all possible tree topologies are evaluated

according to some optimality criterion) methods. For both methods, Maximum Parsimony

(MP) and Maximum Likelihood (ML) are the two most popularly known optimality criteria.

For a given dataset, ML criteria assumes a stochastic model and selects a phylogenetic tree

that gives rise to the data with highest probability. MP criteria, on the other hand, selects

the phylogenetic tree with fewest number of evolutionary changes. In this paper, we will

focus on MP criteria.

1.1 Maximum Parsimony Criterion

In the Maximum parsimony (MP) criterion, an accurate phylogenetic tree is selected in three

steps: (a) all possible tree topologies are enumerated, (b) each tree topology is assigned a

score based on some parsimony strategy, and (c) from a set of all such scored trees, the tree

with lowest score is selected as the optimal solution.

Many parsimony strategies, such as Fitch [8], Farris [7], Swo�ord et al. [31], are proposed

in the literature for use with the MP method. In this paper, for simplicity we focus on Fitch's

2

strategy. However the techniques we use are applicable to all of these strategies.

X

R

R

HX XH

X

H
{A,E,M,D}

{P,I,U,D}

{A,E,M,D} {A,E,M,D}{P,I,U,D} {A,E,F,D}

{PA,IE,UM,D} {A,E,MF,D}

{A,E,M,D}

{PA,IE,UM,D} {A,E,MF,D} {PA,IE,UF,D} {A,E,M,D}

{A,E,UFM,D}{A,E,M,D}

{0,0,0,0}

{1,1,1,0} {1,1,1,0} {0,0,0,0}{0,0,1,0}{1,1,1,0}

{0,0,0,0}

0 0 0

−2 −2−1 −1−2−1

(i) (ii) (iii)

(c)(b)(a)

GG
{A,E,M,D}

{A,E,F,D} {A,E,M,D} {A,E,F,D}

{P,I,U,D} {A,E,M,D}

{A,E,F,D} {A,E,M,D}

RG
{P,I,U,D} {A,E,M,D}

{A,E,F,D}{A,E,M,D}{A,E,M,D}{P,I,U,D} {A,E,M,D} {A,E,M,D} {A,E,F,D} {P,I,U,D}

{0,0,1,0}

{Length=3+0+1=4}

{Length=1} {Length=0}

{0,0,1,0}

{Length=3+1+0=4}

{Length=3} {Length=3}{Length=3} {Length=1}

{Length=3+0+1=4}

G R X H G X R H G H R

Figure 1: MP analysis on dataset shown in Table 1.

Fitch's strategy is a two-pass method for scoring a particular topology of a phylogenetic

tree and is based on the assumption that each character (characteristic feature) evolves

independently. It takes as an input, a phylogenetic tree topology with m organisms and a

set of all possible characters. If a state set S of an organism be de�ned as the set containing

all its characteristic features, then Fitch's �rst pass can be described as follows: starting from

the leaf nodes and working its way up to an arbitrary root node in a given tree topology,

(a) assign a state set to each internal node in the tree, and (b) simultaneously compute the

3

score of the tree. Fitch's second pass optimizes the state sets computed in part (a). The

algorithm can be stated as follows:

1. To each leaf node, assign a state set containing all the characters of the corresponding

organism and set the score of the tree to 0.

2. For each internal node Sparent and its children Sleft child and Sright child, at each site

a. Sparent = Sleft child \ Sright child.

b. If Sparent = 0 , then

Sparent = Sleft child [Sright child and

increment the score of the tree by 1.

For each union operation the score of the phylogenetic tree increments by one; thereby

making it less parsimonious. Once the state sets of all internal nodes are computed, if an

optimal state assignment is desired, a second pass may be applied as described in [8]. In

phylogenetic tree reconstruction, we are primarily interested in the tree score and not in an

optimal state assignment of the internal nodes. Hence, we safely ignore running the second

pass on each candidate topology and apply it only once for the �nal optimal tree. Fig. 1.1

illustrates the MP analysis on a dataset containing four suborders of beetles [1] shown in

Table 1. The three possible tree topologies are shown in (a), (b), and (c). (i), (ii), and

(iii) show the Fitch's score of (a), (b), and (c), respectively. Node 0 represents the arbitrary

root node. Nodes G, R, X, and H represent Polyphaga, Archostemata, Myxophaga, and

Adephaga respectively. Nodes with negative numbers are the inferred ancestors. Alphabetic

characters represent the states in that site and numeral values represent the score at the

site. In this case, the tree score for all topologies is 4. Hence, this dataset has 3 optimal

4

solutions, each of score 4.

Cervical sclerites Propleuron Hind Coxae First Visible Abdominal Sternum

Polyphaga (G) Present (P) Internal (I) Usually movable (U) Undivided (D)

Archostemata (R) Absent (A) External (E) Movable (M) Undivided (D)

Myxophaga (X) Absent (A) External (E) Movable (M) Undivided (D)

Adephaga (H) Absent (A) External (E) Fused (F) Undivided (D)

Table 1: A dataset containing 4 suborders of beetle, each with four characteristic features.
Rows represent the organisms and columns represent their features.

2 Exact Methods

Methods to generate exact phylogenetic trees consist of Exhaustive and Branch & Bound

approaches. For Dn;m (n taxa and m characters or sites, which we refer to as Dn;m), the

exhaustive method searches for a tree with lowest score from all �3

i=n(2i � 5) trees. Since

�3

i=n(2i � 5) grows rapidly (doubly-factorial) with n, exhaustive search is intractable for

even datasets of modest size. For problems of this nature, a generalized approach is to use

Branch & Bound (B&B) [12]. B&B search is a general technique for solving combinatorial

optimization problems of high complexity where exhaustive search is intractable. A general

B&B algorithm can be viewed as an enumeration method for an optimization problem p :

Z(p) = minx�X F (x) where X represents the domain of the problem p, and x is a solution.

x is feasible i� x 2 X, F (x) is the cost of the solution, also called the objective cost. The

underlying idea of the B&B algorithm is successive decomposition of the original problem

into smaller disjoint subproblems until one or all optimal solutions are found.

A B&B search tree can be modeled as a rooted tree T with a cost function over its

leaves. The goal is to �nd the leaves with minimum cost in T . Nodes of T represent

subproblems and edges from nodes to their successors represent the decomposition of a

problem into subproblems. Input to the algorithm is the root of tree T . B&B search involves

5

four basic operations: Subproblem Selection, Tree Traversal, Subproblem Generation, and

Termination, each of which is governed by the following four rules: Selection rule, Branching

rule, Elimination rule, and Termination rule, respectively. Branching rule divides a feasible

solution set X into X1, X2, . . . , Xn, where x 2
n
i=1 Xi and Xi \ Xj = ; for all i 6= j. Let

pi denote the optimization subproblem corresponding to Xi, and Z(pi) be its optimal value,

then, Z(p) = min1�i�n Z(pi). Selection Rule chooses the most promising subproblem for

further branching, and Elimination Rule recognizes and eliminates subproblems that cannot

yield an optimal solution. Termination Rule determines whether a complete solution is

optimal or not. A subproblem Q can be eliminated if (a) Q has been solved or (b) there exists

another subproblem R which dominates Q, i.e., Z(R) � Z(Q). For any B&B algorithm,

branching and termination rules are problem speci�c, while selection and elimination rules

rely on search strategies and data structures.

2.1 Branch & Bound Approach for MP

This section presents our B&B approach to solve the problem of phylogenetic tree recon-

struction and describes our novel techniques to improve its performance. First we introduce

the terminology that we will be using in rest of the paper. For a dataset Dn;m, (a) any sub-

problem T
q
k is a partial tree with k taxa at qth level in the B&B search tree, for 3 � k < n,

and 1 � q � (n � 2), (b) a child tree is a tree with (k + 1) taxa that is generated from Tk

by adding a new taxa into any one of its branches, (c) a complete tree is a tree with all n

taxa in it, and (d) a lower bound for partial tree T q
k is the minimum score of the complete

tree, which is formed by adding all the remaining (n � q) taxa to T q
k . Our B&B approach

6

approach is as follows.

First, an upper bound U is speci�ed by constructing a sub-optimal tree through heuristic

algorithms, and Purdom et al.'s [24] lower bounding function is used to compute the lower

bound of partial trees. In Purdom's lower bounding method, for a given partial tree, a

di�erence set is computed for each site. A di�erence set is a set of characters with a cost

associated to it. The elements in a di�erence set of a partial tree include all the characteristic

features that do not occur in the partial tree but occur in a complete tree. The cost of a

di�erence set is simply its cardinality. A lower bound for such a partial tree is the sum

of the score of the partial tree and the cardinality of the di�erence set. Though there is

no guarantee that using this method will improve the performance of the B&B algorithm,

however, the number of partial trees that are decomposed is greatly reduced in many cases

[24].

Next, each partial tree in the enumeration of the set of all �3

i=n(2i�5) trees is considered

in the following manner. Beginning with an initial three-taxa partial tree T3, its �rst child

tree T 1

4
is evaluated. If the lower bound of T 1

4
exceeds the upper bound U , then T 1

4
and all

its child trees are eliminated from further consideration. If the lower bound does not exceed

U , then each of the �ve child trees of T 1

4
is evaluated. If a partial tree is eliminated from

further consideration, the search starts from another unconsidered partial tree in a depth-

�rst manner. This is continued throughout the entire B&B search tree. During this process,

when a complete tree is encountered at the last level of the B&B search tree, and its score

U 0 < U , then U is reduced to U 0.

Consider a dataset D5;4 with 5 taxa and 4 sites shown in Table 2 and the corresponding

7

B&B search tree in Fig. 2. Let the speci�ed upper bound for this dataset be U . An initial

tree A with three randomly chosen taxa 1, 2, and 3 from D5;4 is constructed. Let's call

this the �rst level. Next taxa 4 from D5;4 can be added to any of the three branches in A

resulting in three trees B, C, and D at the second level. If Purdom's lower bound of B is

greater than U , then B and all its child trees are eliminated. In such a case the next partial

tree C is evaluated. To evaluate C, next taxa 5 is added to each branch in C resulting in

�ve trees 1, 2, 3, 4, and 5 as shown in the �gure. Since 1, 2, 3, 4, and 5 are complete trees,

their score is compared with U for an improvement. For each of them, if their score U 0 < U ,

then U = U 0. However, if Purdom's lower bound of B is less than U , then the next taxa 5

is added to all the branches in B resulting in �ve child trees. In this way, for any arbitrary

dataset, the B&B search continues until all partial trees in the B&B search space are either

eliminated or evaluated.

S1 S2 S3 S4

1 A A C D

2 A B D D

3 A B E I

4 A B F I

5 A C G I

Table 2: D5;4 with 5 Taxa, and 4 Sites.

2.2 Determining Taxa Addition Order

In phylogenetic tree reconstruction, the order in which taxa are added to a partial tree

greatly in
uences the performance of the B&B algorithm. While the order has no impact on

correctness of the solution, it signi�cantly a�ects the running time. During our experiments,

we observed signi�cant change in the number of partial trees decomposed by altering the

8

5

1

2

4

3

1

2

3

1

2

1

4

33

4

2

(A)

(B)
(C) (D)

(1) (2) (3) (4) (5)

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

5

5

5

5

Figure 2: Phylogenetic Tree Construction for datasetD5;4 shown in Table 2. 3
rd level contains

15 trees of which only �ve trees are shown.

9

taxa addition order. Nei and Kumar [22] propose an eÆcient heuristic for selecting a good

addition order called max mini. In max mini, we start with an initial core tree Tp (where

subscript p denotes parent) with three taxa, and decide the addition order of the remaining

input sequences in the following way. Choose a taxa from the input dataset which is not

yet added to Tp. Add the selected taxa in all possible branches j in Tp and compute the

tree score Lj
i at each branch j. Note the branch j, where Lj

i is smallest (score L for ith taxa

at jth branch). For all remaining taxa k, k 6= i, compute Ll
k in Tp (without taxa i added).

If Ll
k > L

j
i , select k as next taxa to be added in branch l, else select i as next taxa to be

added in branch j. Add selected taxa at the corresponding branch in Tp and remove it from

the input dataset. Repeat until any taxa is remaining in the dataset. On an average, the

max mini technique reduced the execution times of the datasets in our test bed by a factor

of up to 400.

2.3 Computing initial upper bound

EÆciency of any B&B algorithm is dependent on the tightness of its bounds. Ibaraki [14]

discussed how the eÆciency of B&B depends on tight upper and lower bounds. In ExactMP

Solver, we employ a four-stage approach to compute an upper bound. Given a dataset and a

taxa addition order, the �rst stage involves computing upper bound using Eck & Dayho�'s

[6] greedy (EDG) algorithm. The EDG approach gives a tight upper bound in many cases.

Consider a partial tree Tk in Dn;m. While the EDG approach searches for the best branch j

for (k + 1)th taxa in Tk to generate Tk+1, we suggest searching for the best branch j for all

remaining taxa t, k < t � n and select the (taxa, branch) pair which gives lowest tree score.

10

We call it the Improved EDG (IEDG) approach. Our results show that in all our datasets

where EDG gives a loose upper bound, IEDG gives a tighter bound. This constitutes the

second stage of computing the upper bound in ExactMP Solver. In third stage, we apply

the Tree Bisection and Reconnection (TBR) [29] algorithm to the solutions of the IEDG

approach. Although there is no guarantee of improvement, TBR usually results in a tree

topology with lower tree score. In the fourth stage, we generate random sequences of taxa

addition order and apply the EDG and IEDG approaches followed by TBR of their results.

With this four-stage approach, we obtained tight upper bounds for all the datasets in our

testbed. In our experiments, we found that with the application of our four stage technique

to compute an initial upper bound for the datasets in our testbed, the running time reduced

by a factor of 2.4.

2.4 Improved Fitch Kernel

Identifying and alleviating hot spots in a code is essential for best performance. Analyzing

the phylogenetic reconstruction code, we found that over 85% of the time in our initial

implementation was spent computing Fitch operations. A straightforward implementation

of Fitch's operation for a single character requires at least one if-then-else branch. By

considering processor-cache behavior, a more eÆcient method can be developed. Using a

Lookup Table for Fitch's operation is one such method. Since Fitch's operation is frequently

referenced in phylogenetic reconstruction, for most of the time this table is likely to be

placed inside cache. Hence, a Fitch's operation can often be performed in one cache lookup.

However, it may be noted that if the size of table is of signi�cant size then this method will

11

not be suitable. In our experiments with a genome sequence consisting of four states, for �ve

billion Fitch operations over three di�erent architectures, on an average, the Lookup Table

scheme outperformed branching and Multicharacter Optimization [21, 26] schemes by a

factor of 17.4 and 10.3, respectively.

2.5 Removing Redundant Information

While there are typically many sites in a given dataset, not all contribute to the score of

a phylogenetic tree. By ignoring the sites that do not contribute to the score of a phylo-

genetic tree, we may reduce computation. Fitch [9] made a basic classi�cation of sequence

sites as parsimony-informative, or parsimony non-informative depending on, whether a site

contributes or not to the score of a phylogenetic tree. At a sequence site, if only one state

appears, it is a singleton site. This is parsimony non-informative as the state of this site will

never change for any tree topology. Such sites are ignored from parsimony analysis. However,

if a site is non-singleton (site containing more than one state), that does not guarantee it to

be parsimony informative. For a non-singleton site that contains at most one non-singleton

state is again a parsimony non-informative site, because in all the possible tree topologies,

the number of substitutions in its state remains the same. Hence, this can be ignored during

the analysis. However, a constant factor is added in the end to the parsimony tree score

that accounts for the constant increase in cost due to non-singleton states. The technique

of site reordering and removing redundant information, on an average, reduced the running

time by a factor of 4.1 on the datasets in our test bed.

For example, consider a dataset D5;4, with 5 taxa and 4 sites (see Table 2). Site S1

12

contains one state A throughout. For all tree topologies, there will be no state change of

this site and hence this is deemed to be a parsimony non-informative site. Site S2 contains

two singleton states A, C and one non-singleton state B. For all tree topologies, the number

of state changes from this site can be at most one (due to state B, other states are always

constant). Hence, site S2 is a parsimony non-informative site contributing a constant increase

in tree score. Site S3 with �ve singleton states is parsimony non-informative and hence tree

topology can be assigned any of the �ve states at random. Site S4 with two non-singleton

states is the sole parsimony informative site. While site S4 a�ects the phylogenetic tree,

sites S1, S2, S3 do not. Hence, all the sites that are not parsimony-informative can be safely

removed from MP analysis and adjusted later for the constant cost contributed by them.

A further improvement is to reorder the sites in a way that parsimony informative sites

with highest number of non-singleton states (most parsimonious sites) are moved to the �rst

contiguous locations. Since maximum change in tree score is due to the most parsimonious

sites, this helps in computing the cost of a partial tree more e�ectively.

3 Parallel Implementation of ExactMP

Performance of the B&B algorithm is highly dependent on di�erent factors, such as storage of

open subtrees, choice of data structures, communication protocols, and choice of granularity.

Bena�ichouche et al. [4] provide an overview of ways to organize a storage structure as

a priority queue. Usually, priority queues are represented by heaps where each parent has

higher priority than its children. Various algorithms exist for heap management, for example

Pairing Heap [10], skew-heap [32], D-heap [16], and Leftist heap [16]. Roucairol [27] showed

13

shared, and distributed data structures. Biswas and Browne [5] present the �rst concurrent

heap, latter improved by Rao and Kumar [25]. In Rao and Kumar's scheme, multiple

processors concurrently access a binary-heap by acquiring locks on the nodes of the heap.

Yan and Zhang [34] propose a Lock Bypassing algorithm that uses lock-on-demand and lock-

bypassing techniques to minimize locking granularity. Jones [15] propose partial locking for

skew heaps. [18] presents a good comparison of di�erent data management schemes for

concurrent PQs.

Several classic optimization problems, such as Vertex Cover, Graph Partitioning, and

Quadratic Assignment have been solved in parallel using the B&B technique. L�uling and

Monien [19] implemented a parallel B&B for the Vertex Cover problem and achieved a parallel

speedup of 237.32 using a ring topology on a 256 processor system. Laursen [17] presents

a parallel B&B for Quadratic Assignment, Graph Partitioning, and Weighted Vertex Cover

problems and demonstrates a processor utilization factor of up to 0.954 through specialized

communication protocols, such as Half-Surplus and On-Demand. However, the problem of

phylogenetic tree reconstruction using exact maximum parsimony has not been implemented

previously. Bader et al. in [3, 2] and Yan in [33] provide a framework of a parallel solver to

solve this problem.

We parallelize the phylogenetic reconstruction algorithm in three simple steps: (a) per-

form the initial computations: preprocessing the input dataset, and computing initial global

upper bound using heuristics as described in Section 2, (b) maintain a shared set (hereafter

denoted as �) of open subtrees, and (c) let each processor synchronously select a subset of

open subtrees from �, solve all the elements in the subset completely, and repeat step (c)

14

until the set � is not empty. During this process, if a processor �nds a tree whose score is

lower than the current global upper bound, then it synchronously updates the global upper

bound to the newly found value and continues. In the above three-step scheme, part (c)

becomes challenging because di�erent datasets of similar size behave very di�erently. Hence,

the performance of the B&B algorithm is dependent on the diÆculty level of a dataset. We

loosely categorize the datasets into hard, moderate, and easy, depending on the number of

subtrees that are decomposed while solving them. Typically, the number of subtrees decom-

posed in a hard dataset is larger by several orders than the number of subtrees decomposed

in an easy dataset. Due to this reason, the time taken to solve a subtree of a hard dataset

is also much higher than time taken to solve a subtree of similar size of an easy dataset.

Due to the di�erence in the number of subtrees decomposed, and the time taken to solve

a subtree, between hard and easy datasets, a load balancing technique that is optimally

tuned for a hard dataset may not work well for an easy dataset. This makes the design of a

parallel solver for this problem that simultaneously achieves a load balance and high parallel

speedup on all types of datasets is hard.

In ExactMP, in order to achieve a uniform load balance and good parallel speedup simul-

taneously, we designed and implemented two methods to parallelize this problem: List based

and Queue based. In the List based method, the B&B search tree is dynamically decomposed

to an appropriate level such that, on an average, each processor receives a desired number

of subtrees. All subtrees in that level are maintained in a list according to Best-�rst (most

promising subtree placed �rst) algorithm. For example, consider a dataset with n taxa to

be run on p processors such that each processor receives at least k subtrees. An appropriate

15

level up to which the search tree should be decomposed can be computed by recursively

dividing pk by (2i� 5) for all levels i ranging from 1 to n� 2. Once this is done, each pro-

cessor locks the list, selects a subtree, unlocks the list, and solves the selected subproblem

completely. This step is repeated until the list is empty. This method performs well on hard

datasets because, in general subtrees in the B&B search space of a hard dataset takes long

time to complete and hence, all processors �nish up around the same time. However, in an

easy dataset, this is not the case. Some subtrees may be solved very fast and some subtrees

may go on for long time leaving some processors in idle state.

In the Queue based method, the B&B search tree is decomposed up to a certain level and

all subtrees at that level are stored in a shared queue. A processor locks the queue, receives

k subtrees based on the Best-�rst algorithm, and unlocks it. During this process, before

unlocking the shared queue, each processor decomposes one or more subtrees from the set

it received, and enqueues some subtrees back. This step ensures a uniform load distribution

by guaranteeing that the shared queue holds some partial trees until the B&B search tree is

not completely traversed.

In both methods, if a better score is found then it is globally updated. In the �rst method,

the level to which the B&B search tree is decomposed becomes the tuning parameter, where

as in the second method, the cardinality k of the set of subtrees that a processor receives

from the shared queue becomes the tuning parameter. During our experiments, we found

that a range of 5 up to 8 for the tuning parameter in List based method gave good results,

and in the Queue based method, a value of 10 for the tuning parameter gave best results.

Although both methods provide load balance equally well, parallel speedup is higher in the

16

Queue based method. Hence, we chose the Queue based method for our ExactMP Solver.

4 Experimental Results

Our experiments use an 8-way Western Scienti�c FusionA8, featuring 2.4 GHz AMD Opteron

processors, each with 1 MB of cache memory, and 32 GB of shared memory. Our testbed

consists of 18 datasets containing DNA sequences of varying sizes (from 12 to 27 taxa). We

use three real datasets (a) Eukaryotes rDNA (27 taxa) (b) rbcl DNA (14 taxa), (c) Meta-

zoan DNA (20 taxa), and �fteen randomly generated, hard, moderate, and easy, synthetic

datasets.

Our experiments involved 8 processors for the above testbed. We achieved an average

parallel speedup (measured w.r.t the best sequential time) of up to 6.9 on 8 processors

using the List based method and 7.26 on 8 processors using the Queue based method. Fig. 3

shows the parallel speedup and load distribution of both methods for di�erent datasets up to

8 processors. Highest speedup is seen on hard datasets due to the availability of subproblems.

Load distribution is fairly uniform for all the datasets in both methods which is indicative of

an eÆcient usage of processors. Uniform load distribution and high parallel speedup on hard

datasets indicate that our parallelization techniques are highly eÆcient. However, uniform

load distribution and a low parallel speedup in easy and real datasets point out that the

sizes of the datasets are small enough to be solved on a parallel solver. This indicates that

the ExactMP Solver can handle much larger instances of real and easy datasets eÆciently.

Fig. 4 compares running times of ExactMP Solver and PAUP* for hard datasets. PAUP*

is the state-of-the-art sequential code for constructing phylogenetic tree from genome se-

17

quence data using maximum parsimony. We used BranchAndBound operation in PAUP*

with MulTree option turned on. This option allows the closest possible comparison between

PAUP* and ExactMP Solver by instructing PAUP* to traverse the entire B&B search space.

For all the datasets, ExactMP solver took less time than PAUP*.

Figure 3: Average Parallel Speedup and Load Distribution for List and Queue based methods
for easy, hard, moderate, and real datasets.

5 Conclusions and Future Work

We designed an eÆcient parallel solver for reconstructing exact phylogeny trees using max-

imum parsimony. Our new upper bounding methodology uses a combination of heuristic

18

Figure 4: Comparison of ExactMP Solver using 8 processors with PAUP* on hard datasets.

and randomization techniques. We introduce a method to optimize the Fitch kernel that

outperforms the well known multi-character optimization technique. Parallel speedups of up

to 7.26 on 8 processors and a uniform load distribution pattern show that our parallelization

techniques are eÆcient. The observation that the parallel speedup improves correspondingly

with the diÆculty level of a dataset indicates that ExactMP Solver is well suited for large

instances of hard datasets and very large instances of other datasets. ExactMP Solver may

also be used as a base method for the Disk Covering Method (DCM) [13] and to establish

the accuracy of heuristic algorithms.

Our future research e�orts in this area will be directed to making the ExactMP solver

more general. Our goals in the future are to add optimization for protein sequences, schemes

for missing character prediction, and incorporate Wagner, and Dollo parsimony strategies.

References

[1] Tree of Life: A distributed Internet project containing information about phylogeny and

19

biodiversity. Arizona State University. http://tolweb.org/tree/phylogeny.html.

[2] D.A. Bader, U. Roshan, and A. Stamatakis. Computational grand challenges in assem-
bling the tree of life: Problems and solutions. The IEEE and ACM Supercomputing
Conference 2005 (SC2005) Tutorial, Seattle, WA, November 13, 2005.

[3] D.A. Bader and M. Yan. High performance algorithms for phylogeny reconstruction
with maximum parsimony. In S. Aluru, editor, Handbook of Computational Molecular

Biology. Chapman & Hall, 2005.

[4] M. Bena�ichouche, V. Cung, S. Dowaji, B.L. Cun, T. Mautor, and C. Roucairol. Building
a parallel branch and bound library. In A. Ferreira and P. Pardalos, editors, Solving
Combinatorial Optimization Problem in Parallel: Methods and Techniques, pages 201{
231. Springer-Verlag, 1996.

[5] R. Biswas and J.C. Browne. Simultaneous update of priority structures. Proc. Int'l

Conf. on Parallel Processing, pages 124{131, August 1987.

[6] R.V. Eck and M.O. Dayho�. Atlas of Protein Sequence and Structure. National Biomed-
ical Research Foundation, Silver Spring, MD, 1966.

[7] J. Farris. Methods for computing wagner trees. Systematic Zoology, 34:21{24, 1970.

[8] W.M. Fitch. Toward de�ning the course of evolution: Minimal change for a speci�c tree
topology. Systematic Zoology, 20:406{416, 1971.

[9] W.M. Fitch. On the problem of discovering the most parsimonious tree. The American

Naturalist, 111(978):223{257, 1977.

[10] M. Fredman, R. Sedgewick, D. Sleator, and R. Tarjan. The pairing heap: A new form
of self-adjusting heap. Algorithmica, 1:111{129, 1986.

[11] P.A. Golobo�. NONA. ver. 2., 1995.

[12] M.D. Hendy and D. Penny. Branch and bound algorithms to determine minimal evolu-
tionary trees. Mathematical Biosciences, 59:277{290, 1982.

[13] D. Hudson, S. Nettles, L. Parida, T. Warnow, and S. Yooseph. The disk-covering
method for tree reconstruction. Proc. of Algorithms and Experiments (ALEX98), pages
62{75, February 1998.

[14] T. Ibaraki. Theoretical comparisons of search strategies in branch-and-bound algo-
rithms. Int'l Journal of Computer and Information Sciences, 5(4):315{344, 1976.

[15] D.W. Jones. An empirical comparison of priority queues and event-set implementations.
Communications of the ACM, 29:300{311, 1986.

[16] D.E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley Publishing Company, Reading, MA, 1973.

20

[17] P.S. Laursen. Experience with a synchronous parallel branch and bound algorithm.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 22:181{
194, 1995.

[18] B. LeCun and C. Roucairol. Concurrent data structures for tree search algorithms. In
A. Ferreira and J.D.P. Rolim, editors, Parallel Algorithms for Irregular Problems: State

of the Art, pages 135{156. Kluwer Academic Publishers, 1995.

[19] R. L�uling and B. Monien. Load balancing for distributed branch and bound algorithms.
In Proc. 6th Int'l Parallel Processing Symposium, pages 543{549, 1992.

[20] W.P. Maddison and D.R. Maddison. MacClade: Analysis of phylogeny and character

evolution. Sinauer Associates, Sunderland, MA, 1992.

[21] A. Moilanen. Simulated evolutionary optimization and local search: Introduction and
application to tree search. Cladistics, 17:512{525, 2001.

[22] M. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Oxford University Press,
Oxford, UK, 2000.

[23] K.C. Nixon. The parsimony ratchet, a new method for rapid parsimony analysis. Cladis-
tics, 15:407{414, 1999.

[24] P.W. Purdom, Jr., P.G. Bradford, K. Tamura, and S. Kumar. Single column discrep-
ancy and dynamic max-mini optimization for quickly �nding the most parsimonious
evolutionary trees. Bioinfomatics, 2(16):140{151, 2000.

[25] V.N. Rao and V. Kumar. Concurrent access of priority queues. IEEE Transactions on

Computers, C-37:1657{1665, 1988.

[26] F. Ronquist. Fast Fitch-parsimony algorithms for large data sets. Cladistics, 14(4):387{
400, 1998.

[27] C. Roucairol. On irregular data structures and asynchronous parallel branch and bound
algorithms. DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-

ence, 22:323{336, 1995.

[28] D.L. Swo�ord. Paup: Phylogenetic analysis using parsimony, version 3.1. program and
documentation, 1993.

[29] D.L. Swo�ord and D.P. Begle. PAUP: Phylogenetic analysis using parsimony. Sinauer
Associates, Sunderland, MA, 1993.

[30] D.L. Swo�ord and W.P. Maddison. Reconstructing ancestral character states using
wagner parsimony. Math. Biosci, pages 199{299, 1987.

[31] D.L. Swo�ord, G.J. Olsen, P.J. Waddell, and D.M. Hillis. Phylogenetic inference. In
D.M. Hillis, C. Moritz, and B.K. Mable, editors, Molecular Systematics, pages 407{514.
Sinauer, Sunderland, MA, 1996.

21

[32] R. Tarjan and D. Sleator. Self-adjusting binary search trees. Journal of the ACM,
32(3):652{686, 1985.

[33] Mi Yan. High Performance Algorithms for Phylogeny Reconstruction with Maximum

Parsimony. PhD thesis, University of New Mexico, Albuquerque, Department of Elec-
trical & Computer Engineering, May 2004.

[34] Y. Yan and X. Zhang. Lock bypassing: An eÆcient algorithm for concurrently accessing
priority heaps. ACM J. Experimental Algorithmics, 3(3), 1998. www.jea.acm.org/

1998/YanLock/.

22

