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Abstract—We introduce the notion of manipulability to X C%AX1
leader-follower networks as a tool to analyze how effective @/ @\;(2
inputs injected at a leader node are in terms of their impact x
on the movements of the follower nodes, as a function of C\
the interaction topologies and agent configurations. Classic X5 o\ $ fxf, 2
manipulability is an index used in robotics for analyzing the \ % R %

X3 X3

singularity and efficiency of configurations of robot-arm manip-
ulators. To define similar notions for leader-follower networks, (a) More effective (b) Less effective

we use a rigid-link approximation of the follower dynamics and

under this assumption, we prove that the instantaneous follower Fig. 1. Effectiveness in terms of the ratio of generated velocity norms of
velocities can be uniquely determined by that of the leader’s, the followers’ to the leader's, = 1 case). The filled circlegs, is the
which allows us to define a meaningful manipulability index of ~leader.

the leader-follower networks.

[. INTRODUCTION particular configurations and controls of robot-arm manip-

Consider a system consisting of multiple mobile unitsélators [7], [8], [9]. And, while the original manipulability
connected together through an information-exchange ndfdices are based on taking the Jacobian of the kinematic
work, where the agents use the information-exchange ndglation between the input angular velocities of the joints and
work for their coordinations. If the movement of a selecthe generated velocities of the end-effectors, leader-follower
agent is viewed as the inputs to the system, one can ask@work “links” are not rigid in the same way. As such, we
number of questions pertaining to the inputs effect on th@'e required to approximate the interaction dynamics in order
rest of the system, including: (1) What is the set of state® be able to define manipulability in terms of the relation
reachable under this control input?, (2) How “effective” isbetween the leader’s and followers’ instantaneous velocities.
the control input in terms of the network’s response?, and The contributions in this paper are twofold. First, we
(3) How we can design or adaptively improve the networiehow how the dynamics of leader-follower networks can be
topology to render it amenable to “effective” control inputs®PProximated as rigid-link networks if the followers move

Networked systems where control signals are injectef@St enough to maintain given desired distances. Then, we
at particular input nodes are referred to as leader-followdptroduce the definition of manipulability of leader-follower
networks, and a large body of work has emerged Concemi,q%tworks as the index of how the effort of leader agents
how to control such networks. Examples include optimagffectively affects to the follower velocities (Fig 1).
control [1], containment control [2], [3], and formation con-
trol [4]. And, question (1) above is intimately linked to the
controllability properties of such leader-follower networks, We consider a network that consists 8fagents divided
which has been investigated, for example, in [5], [6]. In thidnto two groups: leaders and followers. L&} and Ny be
paper we ignore this question and focus instead on the secdhg number of leader and follower agents, respectively. Let
question, i.e., the question of how “effective” the controli(t) € R (i =1,..., Ny, Ny+1,..., N) be the state of agent
input is. This is not a controllability question but rather iti at time¢, where we, without loss of generality, have as-
connects instantaneous inputs to instantaneous response§igned the last indices to the leaders. Theﬂ, the overall State,

In fact, to address the notion of input “effectiveness", WéNthh we also refer to as the Configuration, of the network
borrow the notion ofmanipulability indices, and transfer is given by z(t) = [27 (t),..,a ()" = [2F(t),z{ ()],
it to leader-follower networks as a tool to analyze thevherezy(t) = [z{(t),...,z% (t)]7 € RN% and z,(t) =
instantaneous effectiveness of the leader input to the né:t—%fﬂ(t),...,xﬁ(t)}T € R](’fd are follower and leader
work under given configurations and network topologiesstates, respectively.

In robotics, the manipulability indices have been proposed We consider the situation where the interaction dynamics
as means for analyzing the singularity and efficiency oéire defined through pairwise interactions. We say that when
o _ follower agentsi and j; are connected then they share
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Using a graph representation, the agents are described umsed by Bicchi, et al. in robot arms [8], [9]. In other words,
nodesV = {vy,...,ux} and the connections between agentshis ratio is given by
become edgeg C V x V. Then, the overall network is

.T .
described by grapl§ = (V,E). In this paper, we assume R(x,E, i) = M7 (6)
networks whose underlying graphs are undirected (the inter- Ty Quite
connections are symmetric), static, and connected. whereQ; = Q? >~ 0 andQ, = QT = 0 are positive definite

weight matrices.
Once we successfully define this kind of indices under
To formulate the follower dynamics, we use a generah given configuration and topology, it becomes possible
energy-based definition (e.g., [1]), rather than tying théo estimate the most effective inputs to the network by
results to any specific set of interaction dynamics. In othanaximizing (6) withz,:
words, we introduce the following edge-tension energy

A. Edge-Tension Energy

Tomax(z,E) = arg max R(z,E, &), @)
). 0) = L3S ) @ Ruws(e.E) = max Rla . ). @
= Another possible application,’albeit beyond the scope of this
where paper, ie to fin_d an effective, adap_tiye topolo_gy process when
£ (i) = {g{%‘("ri DY 0ot 8 o) Mnie e manipulabity s an el cear notin, i

needs to be connected to the agent dynamics in the previous
wheree;; : RT U {0} — R is a strictly increasing twice section in a meaningful way, which presents some difficulty.

differentiable function such that;;(d;;) = 0 (d;; > 0), The reason is that sincey = %ff is a function ofz; and
i.e., the edge-tension energy is zero when the desired distangebut noti,, we need to introduce an integral action to see
between agent andj is realized. the influence ofi,. But, the input velocityi, can change on

An example fore;; is (see [1] and the references thereinthe time interval of the integration. Thus, it is impossible to
calculate an instantaneous measure given by (6). Two choices
eij([|zi — x5l]) = [z — 24| — diy. (3)  present themselves. The first is to change the agent dynamics.
But, we do not want to follow that route since edge-tension
functions (and weighted consensus equations) are used quite
Given the velocity of the leaders,(t), we assume that frequently. As such, to define a notion that is practically
each of the followers tries to maintain (locally) the desiredelevant, we choose to go with the second option instead,
distances between connected agent pairs by minimizimgamely to introduce an approximate notion of manipulability
the related parts of the edge-tension energy (1) throughimstead, i.e., to assume that the followers move fast enough

B. Agent Dynamics

gradient descent direction: to always maintain the desired distances.
. O&;i(zi(t), x;(t T IV. RIGID-LINK APPROXIMATION
Bi(t)=— Y il 6( )A (1) (i=1,...,Ny) (4 o
JEN) T A. Approximation

Definition 4.1: The rigid-link approximation of the dy-
namics in a given leader-follower network is the ideal
situation when all the given desired distand@s; } (., ., ce
%EjeN(i) (%577 + %‘iﬂ) the dynamics of overall followers are perfectly maintained by the followers (i.8; — z;|| =

whereN (i) = {j € {1, ..., N}| (vi,v;) € E} is the neighbor
set of agenti. Using the facts that;; = &;; and % =

in the network can be described by dij Y(vi,vj) € E).
- Note that this approximation is valid if the scale of edge-
iy (t) = _OE(xy,x) _ (5) tension energy¥(t) is large enough compared to that of the
‘ Oxy leader velocities:,(¢). Note also that, in real situationS(t)

eds to be greater than zero in order for the followers
0 move, while this approximation implie§(t) = 0 Vt.
Therefore, the situation of Definition 4.1 is never realized
perfectly in actual dynamics as long as leaders are moving.
Nevertheless, this approximation gives us a good estimation
of actual network responses to injected leader inputs unless
leaders move much faster than followers. We will show in
To introduce the effectiveness of the input to the networksimulation that the approximation is reasonable.
we define the manipulability of a leader-follower network Now, to analyze the approximated dynamics, we first
based on the ratio between the norm of follower velocitiegmtroduce the method of using the rigidity matrix [10], [11].
and the norm of leader velocities similar to the definitiorif the connections in agent pairs associated with the edges

Therefore, using this dynamics, the followers try to decreasrlee
(locally) the overall energy (1) sincg = —:rf + 5M

—NFE NP + S e
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can be viewed as rigid links, the distances between connected Proof: Using the fact thate= VAVt _ I, =
agents do not change in time. Assume that the trajectorigs;° | %V(—A)va =V(e ™™ - 1)VT with VTV = I,
of z;(t) are smooth and differentiable, then

d LHS = lim / {(V(em A=) L)+ Vidr
%Hxlilﬂ]‘F:O V('Uz',vj)GE, §70 Jo s
. —A(s—T1
and therefore = VSILIgO e AT gr
0
. . _ ,—A18 = Ars
(25 — )T (@ — i) =0 W(v;,v;) € E. 9 — V lim diag( |1 L2
s—00 )\1 >\r

Here, (9) can be written in the following matrix form
= RHS. |
C(z) {%’f] = [C4(2)|Ce()] [xf} -0, (10) Corollary 4.1: Given a linear systent(s) = Az(s) + Bu
Le Ze with z(0) = 0 and constant input. € R™, where A €
, R™*™ andB € R"*™ are time-invariant matrices that can be
where C(z) € RMXNd Cy(z) € RM*Nid Cy(z) € _ p P .
RMxNed " and M is the number of edges (i.el — |E). decomposed int?l = —G* G and B = G* H, respectively,

The matrix C' is known as the rigidity matrix, which is whereG € RM*", 1 6 R, andMTe N(={1.2..}),

a function of the current configuration and also of the N€ State converges lml“j?o o(s) = G Hu.

network topologyE in the underlying grapl. Specifically, _Proof: Let G = UZVM be the singular value decom-
considering that’ consists ofM x N blocks of 1 x d row ~ POsition ofG;, wherel € R'"*" andV” € R"*" are column-
vectors, its(k, i) and (k, jx) blocks are eithefz;, —z;, )7 OEE?QO”E" matrices (i.e¥"V = I, and U"U - RIS
and —(z;, — x;,)", respectively, or—(z;, — a;,)" and R™*" is a diagonal matrix, and = rank(A) < min{n, M }.
(z;, — ;,)T, respectively, where, and j, are the agents Then, the zero-state response of the system converges to

connected by edgk. s
Assume that the leaders move in a feasible manner sgiggo z(s) = }iglo e**~"dr Bu
that the approximation in Definition 4.1 stays valid. (We will ‘ o
discuss this point in Section V.) From the constraint equation = ( lim / eVZQVT(ST)dTV> YUTHu
(10) and the property af'; that will be shown in (17) or (26), oo Jo
the possible set af ; associated with:, can be obtained as = (VE)XUTHu= (VE~'UT)Hu.

the following general solution: . )
Note that all the diagonal elementsihare non-zero (strictly

By = —C}Cg&bg + [null(Cy)]p, (11) positive); hencey—! exists andGt = VE~-1U7T. [
Lemma 4.2:The second-order partial derivatives of the
where CT is the Moore-Penrose pseudo inverse @f, edge_tension energy (1) with respectm and Ty have
[nU”(Cfﬂ/ is a matrix whose columns span ridll;), and the following form if all the connected agents satisfy their
p € RMW(Cr) is arbitrary. This means that there may exisgesired distances (i.elz; — || = di; ¥(vi,v;) € E)
infinite possibilities ofi; (i.e., rotational freedom and/or
formation flexibility) once an input, is given. 0?E B
In this indeterminate case, the definition of the manipula- aix? o
bility (6) cannot be determined uniquely, and it seems that we
need to modify the definition of manipulability, for example,where% € RNrdxNyd % € RNsdxNed  gnd
by using the “worst-case approach” [9] that assumes the least K o
object velocity (follower velocity, in our case). However, Dy =WCy, Dy=WC,. (14)
when we approximate the follower dynamics (5) based
on Definition 4.1, it can be proven that; is uniquely W € RM*M is a diagonal matrix whose elements are
determined by givert,. This is the key for introducing the

T 828 T

notion of manipulability (6) in leader-follower networks. In Wer = € (Dinii) (k=1,.., M), (15)
the following paragraphs, we prepare some facts and then i ji
show howi is determined uniquely. ) s des(e). - .

Lemma 4.1:Let A € R"*" be a negative semidefinite Where e;;(z) = —7= i, and j, are the two agents

matrix, which can be decomposed into= —VAVT <0, Cconnected by edge.
where thei-th column vector of” € R"*" is an eigenvector ~ Recall that we assumed,; € (0,00) and thate;;(2)

corresponding to eigenvalug; > 0 (i = 1,..,r), r = IS a strictly increasing twice differentiable function for all
rankA), A = diag([A, ..., A,]), and VTV = I,. Then, the (vi;v;) € E. Therefore, in (15)[W] € (0,00) exists for
following equation is satisfied: all k € {1, ..., M}.
s Proof: Let (v;,v;) € E. The first-order and second-
<1im / GA(ST)dT> V=VAL (12) order derivatives of;;(z;, z;) in (2) with respect taz; in
5720 Jg a general configuration of; andx; (i.e., without assuming



5I4(t)

T Since we assume that the desired

||z, — z;|| = di;) become the followings. Ze(t) = limgi—o

€, (x5, ;) distances are perfectly maintained by the followers, we
”a 2T = i (|| — x| (@ — 24) 7T, introduce another time axis and track the configuration of
€Xr; ~ A ~ .
P& (i) P& (ni ) followers,xf(t, 5) S xp(t)+0T(t, ), to see its convergence
SRl (:_ YA ) in s — oo, where the leader configuratiof,(t,s) =
Ou; Ozidx; x¢(t) +0z,(t) is constant on the axis af We can think ofs

_ w2 — 2;))

describing the time evolution when the system is executin
e @ e = ) gl ) ; , :
1 J

% the actual, as opposed to the approximate, dynamics. Then,

where the equality in the bracket follows from the fact tha\’f’e consider theg%gx'maﬂon In Definition 4.1 88(t) =

0L . i A d%ei(2) limsy—0 lims 0o =57, We also assume thats(¢,0) =
% s a f fo; — a; lete! () & L) o« VN the
5, 1S & function ofz; —z;; and, letej; (2) dz% 7 z¢(t) and all the desired distances are satisfied at0.
» €ij(2)ei;(2) Since the dynamics of the followers is given by (5), the
wij(2) = > ’ system equation ofi ¢ (, s) becomes
/ N dw; . {627‘(2)2 —l—eij(z)e%(z)}z —eij(z)egj(z) d d OE(Ts(t, s), To(t s))T
wi;(2) = dz 52 : —0Zf(t,s) = —Tg(t,s) =— AR RIA
. X ds ’ ds ’ Oz ¢
" llei = 23l] = dig. then 08y (1) + 63 (1) walt) + G (1) T
Ox; O?E(xy(t), e(t O?E(xy(t), o(t
) _ £(@);we(t)) o _07E (s (1), e(t))
02E;j _ D*E;; _ e;;(dij) T Ox> 0% (t, 5) Oz 40y 0we(t),
oz —  dwidx; d;i (i — ;) (@ —x5)" f
’ n Y . where we assumed thalr,(t) and §7(t,s) are small
Hence, we ge§-£ = CTW2Cy and% = CfW?C,. enough to use the first-order approximation. We also
! B used HLflnD) — g Note that ZEEL020) and
Example 4.1:1f the edge-tension energy is given by (3), 92z, (t),2(1)) . 7
¢(2) = 1 and (Wi, = (diyy )" (k= 1,..., M), = gh s are constant on the time axis of

In the following, we assume single-leader networks (i.e. Using Lemma 4.2, we can rewrite the above system

N, = 1), and assume that the leader can move arbitraril;‘?.quatlon as
In cases of N, > 1, we need to restrict the freedom of d

@ o _ T - T
the leaders. While we now focus on single-leader cases, weis 024(t,5) = —(Dy Dy)oT(t, 5) — (D Dy)owy(t). (19)

will later extend the result being derived here to multi-leadegeacall that the initial condition i§3 ;(t,0) = 0. Therefore

cases in Section V. : : using corollary 4.1, we know that (19) converges and its
Lemma 4.3:If N, = 1, thenC;C, = D} D,. convergence point is given by
Proof: Since all diagonal elements iv are non-zero, R
Cy and D;(= WCy) have the same row space. Therefore, 6as(t) £ lim 83¢(t,s) = —DfDeday(t).  (20)

their projection matrices onto the row space are identical: . ,
Here, dxf(t) gives the displacement of the followers

C}Cf = D}Df. (16) caused by the displacemetfit,(t). Thus, dividing (20) by

Now, since we assume thaf, = 1, the matrice<’y and Dy 0t and takingdt — 0, we obtain

have the following properties, respectively: ip(t) = 7D}Dgl'»£(t). (21)
T T . . .
Cyl1a- ~ 14] =—Cy, Dy[la- "-Id} =—D¢. (17) Finally, if N, =1, (21) and Lemma 4.3 yield (18). m
Nymatrices Nymatrices B. Manipulability with Rigid-Link Approximations
Using (17) with (16), we geCJTcCe = —C}Of [La---1g)" = As a corollary to Theorem 4.1, the manipulability (6) of a
—D}Df[,[d eIt = D}De. B leader-follower network under the rigid-link approximation

Theorem 4.1:f N, = 1 (i.e., single-leader cases) theOf the follower dynamics is given by the Rayleigh quotient

L N . T T T .
rigid-link approximation of dynamics (5) is given by R(z. B, itg) = xy jIT Qf.J.’E[’ 22)
Tp(t) = —O}C[ig(t). (18) iy Qe
Note that (18) does not depend on a specific choice efhere J(z,E) = —C}Cg. Hence, similar to the ma-
functione;; in (2). nipulability indices in robot-arm manipulators, the maxi-

Proof: We here see the details of the approximatioomum/minimum values of the manipulability index can be
described in Definition 4.1. The most part of this proofobtained by the eigenvalue analysis. That i§,.. is the
can also be applied to the cases &df) > 1. Consider maximum eigenvaluej,., of the generalized eigenvalue
that the velocity of leaders gives a small displacemenproblem.J?QJv = AQv, and i max i Obtained from its
dz4(t), of their configuration from time to ¢ + 6¢t. Here, corresponding eigenvectOyax, as s max = MVmax (¢ #



0). Similarly, the minimum value and its corresponding x ™\ — o o X\
inputs can be obtained from the minimum eigenvalug,,, > . X X X . v
and its corresponding eigenvector, respectively.

Now, we introduce a tool to depict effective input direc- @ (b) ©

tions (axes) in case of); o« In,q. Let us first consider _

. R . 2T Fig. 2. 2-leader 1-follower networks. (a) and (b) are the same leader-
a robot-arm manipulability index defined By, wheref  foliower networks with different configurations; (a) and (c) are different
and r are the states of joint angles and the end-effectolgader-follower networks (same configuration with different assignments).
respectively. Given a kinematic relation = f(), thus
7= %6, the manipulability ellipsoid can be defined as ) _ _

T . . . -

T.T(afﬁ )i — 1, which depicts the range of end-effectorTo generalize Theorem 4.1 for multiple-leader cases, we first

90 90 . - : extend (17).
velocities under input® with norm ||0|| < 1. In contrast, (47

since what we are interested in is the effective direction (axis) -8mma 5.1:Given a rigidity matrixC' = [C|C'],
of inputs, we define a similar ellipsoid not in the space of CiKp=—CiK;, DsKj=—DiK, (26)
follower velocities but in the space of leader velocities:

is always satisfied by arbitrary choices®8f and X, where

i (JTQsJ)ig = const, (23)  null(C) is spanned by the column vectors [t 7 |K/]”.
which we refer to as thieader-side manipulability ellipsoid Proof: This is directly obtained from the fact that =
Here, the longest axis of the ellipsoid corresponds to thé'r|Cel andWC = [Dy|D,] have the same null space; thus,
eigenvector that gives the maximum eigenvalue/6t);J.  [Cr|Cd[KFIKT]T = [Ds|DAIKF|KT]T = 0. =

V. MULTIPLE LEADERS Theorem 5.1:If the velocities of leaders are given by a

feasible leader motion, then (18) is true evenvif > 1.

Proof: From (25), a feasible leader motion can also be
en as a redundant form, = K,q; there exists a set of
{q|K.q = K,G}, corresponding to giveq. Let us pick
eq. Using Lemma 5.1 with (16) and (21), we get

In case that multiple leaders exist (i.8V, > 1), it is
obvious that the leaders cannot take arbitrary velocities onGist
another under the rigid-link approximation of Definition 4.1.
For instance, when two leaders take opposite directio
for a while, then it becomes impossible to maintain some P i i
of the desired distances since those desired distances have %(t) = —DpDeiy(t) = =Dy DiKeq = Dy Dy Kq

finite constant lengths. We here show a method to take — C}Cfoq = —C}CzKeq: fC}Cg;te(t), m
multiple leaders into account by preserving the assumption ) .
of Definition 4.1. Note that (8) needs to be solvéavith respect taj instead

To extend the discussion in the previous section, we expldif ¢ 10 Obtain R, in case of ranki<;) < Ned.

the notion ofmotion feasibilityof multi-agent networks [12]. VI. EXAMPLES

Let us consider the following matrices: In order to verify the approximation of dynamics, we first

Ky| o null(C)] (24) compare original dynamics (5) with rigid-link approximated
Ke| ’ dynamics (18) usingl = 2 (i.e., the state of each agent
whereK; ¢ RNsdxne | ¢, € RNexne . — nullity(C), and corresponds to its two dimensional position in thé glane).

Inull(C)] is a matrix whose columns span ril). Then, the Then, we show how the defined manipulability can be used

. . ttc)) analyze the effectiveness of leader inputs. In the following
set of a feasible motion of the agents can be represented \) . . .
examplesd;; = 1 is used for all the desired distances. For

{if} _ {Kf] ¢ (25) simplicity, we usedQ; = In,q and Q; = Iy,q for the
&y ’ weight matrices in (6).
whereq(t) € R is an arbitrary (time-varying) vector. A. Rigid-Link Approximation

Definition 5.1: Given an agent configuration and their
topology E in the underlying grapt¢ = (V,E), a feasible
leader motionis an instantaneous velocity given by =

Fig. 3 shows an example of agent motion generated by
(5) and (18), where a single-leader network with = 7
= ~  rank(Ke) . (Ny = 6 and N, = 1) was used. Uniformly-accelerated
Kyg, whereg € R ¢) is arbitrary and the columns df, motion d(t) — t[cos(r/4),sin(r/4)]T was used for the

span the column space &, defmed n (24). If ranki) ... leader input. For the follower dynamics (5), the edge-tension
N.d, the leaders can take arbitrary instantaneous velocities . .

: . . energy (3) multiplied by 200 was used, which ensures the
which we refer to as aarbitrary motion

) : : : connected agents almost satisfy the desired distances.
Example 5.1:In the configurations of two-leader single- L . )
- We see that the follower motion is almost identical be-
follower networks shown in Fig. 2, raqk,) of (a), (b), and tween the original and approximated dynamics. When we
(c) are 4, 3, and 3, respectively, whekg = 2 andd = 2. 9 PP y )

. . ._used the edge-tension energy with smaller scale, the distances
Therefore, only the leaders in (a) can take arbitrary motio o )
. ) : etween connected agents vary more. This is prominent when
under the given configuration.

Once a feasible leader motion is given, we show that tht(re1e leader takes large velocity (e.g., the last part of the

result in the previous section, i.e. (18), is true eveN f> 1. ‘Eigenvalue problentK7 J7QJK,)d = MK} Q¢K,)q can be used.



Original (t =1.0) Approximated (t = 1.0)
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o

o
o

74 0 1 2 3 4 5 7*1 0 1 2 3 4 5

Fig. 3. Comparison of agent motion between original dynamics Eq. (5)
(left) and rigid-link approximated dynamics Eqg. (18) (right). The filled circle
in each figure is the leader agent.

(t=0.0
T
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(a) Agent motion and leader-side manipulability ellipsoids

15

Sqrt. eigen values
N
/

(b) Temporal change of the square root of eigenvalues

Fig. 4. Temporal change of the manipulability: (a) leader-side manipula-
bility ellipsoids and (b) the maximum and minimum manipulability indices

example). However, the rough characteristics of the agen
motion are still preserved in many cases even if the distances
between connected agents vary.
B. Manipulability 2
Fig. 4 shows an example of the temporal change of
: . ! . (3]
the manipulability index during a single leader moves with
i(t) = [1,0]7, whereN = 3 (N; = 2 and N, = 1)
and |[E| = 2. From the leader-side manipulability ellipsoids (41
depicted in Fig. 4 (a), we see that the effective direction was
the horizontal direction in the first and the last parts of thel5]
motion. Fig. 4 (b) shows the maximum and minimum square-
root eigenvalues of ' .J. From these figures, we see that the g]
vertical direction was once the most effective arourd 1.3,

when the three agents were lined in the vertical direction. [7]

VII. CONCLUSIONS (8]

In this paper, we defined the notion of manipulability in
leader-follower networks by using rigid-link approximation 9]
of network dynamics, where every connected agent pairs
keep their desired distances. This enables us to find the
relation between instantaneous velocities of leaders aftf!
followers, which is crucial to define the approximate masi1)

nipulability indices in leader-follower networks.
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