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SUMMARY 

 

 Lignin polymers provide natural rigidity to plant cell walls by forming complex 

molecular networks with polysaccharides such as cellulose and hemicellulose. This 

evolved strategy equips plants with recalcitrance to biological and chemical degradation. 

While naturally beneficial, recalcitrance complicates the use of inedible plant materials as 

feedstocks for biofuel production. Genetically modifying lignin biosynthesis is an 

effective way to generate varieties of bioenergy crops with reduced recalcitrance, but 

certain lignin-modified plants display undesirable phenotypes and/or unexplained effects 

on lignin composition, suggesting that the process and regulation of lignin biosynthesis is 

not fully understood. Given the intrinsic complexities of metabolic pathways in plants 

and the technical hurdles in understanding them purely with experimental methods, the 

objective of this dissertation is to develop novel computational tools combining static, 

constraint-based, and dynamic, kinetics-based modeling approaches for a systematic 

analysis of lignin biosynthesis in wild-type and genetically engineered plants. Pathway 

models are constructed and analyzed, yielding insights that are difficult to obtain with 

traditional molecular and biochemical approaches and allowing the formulation of new, 

testable hypotheses with respect to pathway regulation. These model-based insights, once 

they are verified experimentally, will form a solid foundation for the rational design of 

genetic modification strategies towards the generation of lignin-modified crops with 

reduced recalcitrance. More generically, the methods developed in this dissertation are 

likely to have wide applicability in similar studies of complex, ill-characterized pathways 

where regulation occurring at the metabolic level is not entirely known. 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

 Petroleum and its derivatives have been the dominant energy source for more than 

150 years, leading to high oil prices, an increased dependence on imported oil, and 

numerous environmental consequences. To reduce our reliance on petroleum, we need 

renewable alternatives that not only act as viable substitutes for crude oil and coal but 

also, if possible, carry lower environmental cost. Although natural sources such as the 

sun and wind have been tapped to generate low-carbon electricity, the reality is that their 

output is not sufficient and that sustainable transportation requires liquid fuels. Outside 

fossil-based products, the only currently available alternative for powering the world’s 

millions of motor vehicles appears to be biomass that is converted into liquid biofuels. 

 First-generation biofuels, which are fermented and refined from sugar-rich crops 

like corn, sugarcane and soybeans, have unfavorably contributed to higher food prices, 

deforestation, and many other undesirable consequences [2]. Second-generation biofuels, 

by contrast, are derived from inedible or woody parts of plants, including wheat straw, 

corn stover and wood shavings that are natural by-products of agricultural and forestry 

operations. Each year, more than 40 million tons of such materials are produced [3], most 

of which is simply discarded, because proper uses have not been found. Turning these 

sustainable, yet minimally utilized, feedstocks into biofuels thus presents a great 

opportunity for meeting future energy demands, especially for transportation, while 

minimizing competition with food production. 

 As promising as this approach is, the extraction of energy from the various woody 

feedstocks remains a challenging task. One important barrier that prevents biofuels from 
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living up to their potential is the natural rigidity of plant cell walls. In woody parts of 

plants, the cell walls are mainly composed of two polysaccharides, cellulose and 

hemicellulose, and the phenolic polymer lignin. These polymers have evolved to form a 

complex network that resists biological and chemical degradation and carries out many 

physiological functions. For biofuel production, however, this natural robustness or 

“recalcitrance,” which can be largely attributed to the cross-linking of lignin with 

polysaccharides, makes it very difficult to retrieve glucose or xylose molecules that can 

be subsequently fermented into ethanol or longer-chain alcohols like butanol. 

 In order to retrieve easily fermentable sugars, the current strategy involves a 

costly, thermo-chemical pretreatment that breaks up lignin and makes polysaccharides 

more accessible to specialized enzymes with hydrolytic activity. This process is harsh 

and energy-intensive, and it has many undesirable side effects, such as the accumulation 

of chemicals that are known to have an inhibitory effect on the subsequent hydrolysis and 

fermentation steps [4]. Many different solutions have been proposed to address this and 

other related issues [5], but the existing technologies are still in a very early stage of 

development and thus will not be available on a large scale anytime soon.  

  An alternative approach that has the potential of lowering the processing cost of 

biofuels is crop engineering, which entails genetic modifications that render the targeted 

biomass more easily fermentable. For bioenergy crops such as poplar and switchgrass, it 

has been found that the sugar yields following acid pretreatment are affected by a natural 

variation in lignin content and monomer composition [6,7]. Moreover, Fu and colleagues 

[8] showed that certain lignin-modified switchgrass plants produce equivalent ethanol 

yields as control plants but require a less severe pretreatment. These observations suggest 

that lignin biosynthesis may be targeted for generating engineered crops with reduced 

recalcitrance. While conceptually appealing and straightforward, such an approach will 

require rational design strategies toward such varieties, which in turn presuppose a 

thorough, multi-level understanding of lignin biosynthesis. However, even after decades 
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of research, many fundamental aspects of this important pathway, such as its topology 

[9,10] and regulation [11,12,13], are still unclear. 

 To enhance our understanding of the process and control of lignin biosynthesis, 

the objective of my dissertation research is to develop novel computational tools for a 

systematic analysis of lignin biosynthesis in wild-type and genetically engineered plants. 

Pathway models will be constructed and analyzed, yielding insights that are difficult to 

obtain with traditional molecular and biochemical approaches and allowing the 

formulation of new, testable hypotheses with respect to pathway regulation. Once 

validated with experimental means, these model-based insights will form a solid 

foundation for the rational design of genetic modification strategies towards the 

generation of lignin-modified crops with reduced recalcitrance. 

 

1.2 Lignin Biosynthesis 

 In most woody plants, lignin polymers are mainly derived from three 

hydroxycinnamyl alcohol monomers, namely p-coumaryl, coniferyl and sinapyl alcohols. 

Once synthesized inside the cytoplasm, these monolignols are transported into the cell 

wall and produce p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units, respectively, 

that are incorporated into the lignin polymer (Figure 1.1). The lignin content and 

composition of monomers vary among taxa, cell types and even individual cell wall 

layers. In potential bioenergy crops like poplar (dicot) and switchgrass (monocot), lignin 

consists principally of G and S units, while H units are present in low to negligible 

quantities. However, the natural composition of lignin is susceptible to genetic 

manipulation, as is evident in some transgenic plants where H units are present at 

significant levels compared to G and S units [14]. 
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Figure 1.1: The phenolic polymer lignin is mainly derived from three 

hydroxycinnamyl alcohols. Figure is adapted from [15]. 

 

 Most metabolic genes involved in monolignol biosynthesis have been identified 

with complete sequence information in model organisms, such as Arabidopsis thaliana 

[16] and the black cottonwood Populus trichocarpa [17]. Knowledge obtained from these 

genomes has been used for homology searches in species where sequencing efforts are 

ongoing. In most plant species, monolignols are synthesized de novo from the amino acid 

phenylalanine. Phenylalanine ammonia-lyase (PAL) catalyzes the first reaction in which 

phenylalanine is converted into cinnamic acid; the rest of the pathway involves 

successive hydroxylation and methylation of the aromatic ring, followed by a conversion 

of the side-chain carboxyl to an alcohol group. Because ring hydroxylation/methylation 

can occur at different levels of side chain oxidation, early studies often described 
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monolignol biosynthesis as a metabolic grid [9]; this view, however, was later modified 

to reflect substrate preferences of multiple hydroxylases and methyltransferases, and the 

currently accepted pathway is more or less linear with only a few branch points [18]; 

genus-specific details about this pathway will be discussed in Chapters 2, 3 and 5. 

  In addition to a constantly revised topology, it is important to understand the 

regulatory mechanisms governing monolignol biosynthesis. This regulation occurs in 

different forms. First, substrate competition may arise because many enzymes in the 

pathway are multifunctional (i.e., they are active towards multiple substrates). Second, 

some pathway enzymes have multiple isoforms with distinct kinetics and substrate 

preferences [19,20,21,22], and these isoforms may be differentially expressed during 

development or upon environmental cues [20,21,22,23], suggesting that the pathway 

topology is subject to further revision if context-specific information is available. Third, 

specific enzymes may assemble into complexes such that the pathway flux can be more 

flexibly controlled [12,24]. Given the complexity and multitude of regulatory features 

that characterize monolignol biosynthesis, it is not surprising that genetic perturbations of 

monolignol biosynthetic genes sometimes yield counterintuitive results that cannot be 

explained simply by the stoichiometric connectivity of the pathway [25]. 

 

1.3 Significance of Research 

 In order to develop a mechanistic understanding of monolignol biosynthesis in 

bioenergy crops, it seems advantageous to resort to computational modeling, which has 

become a standard tool for analyzing metabolic pathways. However, partly because of the 

inherent complexities described above and of technical hurdles, for example in measuring 

the low intracellular levels of pathway intermediates [26], no modeling effort targeting 

this specific pathway has been reported in the literature. In this regard, the mathematical 

model developed in Specific Aim 1 (see Section 1.6.1) is the first model built. It provides 
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“proof of concept” that modeling can yield genuine benefits as compared to experimental 

methods. Building upon this modeling effort, the model analysis in Specific Aims 2 and 

3 (see Sections 1.6.2 and 1.6.3) offers insights that are difficult to obtain with traditional 

molecular and biochemical approaches and allows the formulation of new, testable 

hypotheses with respect to the metabolic regulation of lignin biosynthesis. 

 

1.4 Mathematical Modeling of Metabolic Systems 

 The process of constructing mathematical models, as one might imagine, is 

challenging and typically involves multiple related phases that still await the 

establishment of standard operating procedures. Among the various challenges of 

mathematical modeling, the task of parameter estimation is arguably the most complex. 

This task is required in most modeling efforts, as it converts a purely symbolic 

representation of the biological system into a numerical model that permits a variety of in 

silico experiments. Once a model is fully parameterized and deemed reliable and 

appropriate for the target system, one can use it to make predictions, generate testable 

hypotheses, guide the design of new experiments, or propose manipulation strategies that 

allow the yield of desired product(s) to be maximized. To a large extent, these potential 

merits were the drivers that triggered the creation of many parameter estimation methods 

over the past years (reviewed in [27]), but the consensus among practitioners remains to 

be that no single method can be declared the best in terms of efficiency, robustness and 

reliability.  

 In most cases of parameter estimation, the absence of a clear winner is 

understandable because the development of new methods is usually tailored to meet the 

specific requirements of a given modeling framework as well as the availability and types 

of experimental data. As a pertinent example, ordinary differential equations (ODE) have 

been widely used to describe systems of interconnected metabolic processes. The 



 7 

parameterization of such models is typically accomplished in a “bottom-up” approach 

where individual processes are fitted one at a time, using kinetic parameters of 

corresponding enzymes. However, the increasing availability of metabolic time series 

data suggests an entirely different approach in which features of individual processes can 

be inferred from a comprehensive monitoring of the whole system. Because these 

“global” data are collected within the same organism and obtained under the same 

experimental condition, they are more likely to offer an accurate description of what 

actually happens in vivo than the “local” data obtained from traditional experiments. Still, 

many challenges remain to be addressed (see [27] for a detailed discussion) before the 

challenge of this inverse or “top-down” approach can be considered solved. 

 

1.5 Modeling Frameworks 

 The choice of a modeling framework is often made on an ad hoc basis, depending 

on the degree of realism a modeler intends to pursue as well as on the type of 

experimental data against which the parameterized model can be validated. Ideally, a 

model should be nonlinear and dependent on space and time, with the ability to consider 

both stochastic and discrete effects. Two possible shortcomings of such a realistic model, 

if ever feasible, are that simulations would be computationally prohibitive and that high-

quality data—maybe at the level of a single cell or single molecule—would be required 

for model fitting. Although high-throughput methods based on microfluidics, flow 

cytometry, nuclear magnetic resonance, and mass spectrometry are currently available to 

obtain such data [28], the number of molecules that can be quantified reliably and 

simultaneously is still limited [29]. Therefore, it is often desirable to use approximations 

and/or abstractions that reduce model complexity (and thereby lessen the need for 

detailed data), but the assumptions on which such simplifications are based must be 

checked on a case-by-case basis. 
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 The modeling frameworks that have been widely used in the context of metabolic 

systems analysis consist mainly of the following two classes: (i) static, constraint-based 

models; and (ii) dynamic, kinetics-based models. Both classes of models, despite their 

individual differences, are based on ODEs. The generic format for such a representation 

can be written as 

.
d

dt
 

X
N v  

In this representation, 1 2[    ]T

nX X XX  is an n-dimensional column vector, with each 

component Xi denoting the time-dependent concentration of a metabolite, or pool of 

metabolites; 1 2[    ]T

lv v vv  is an l-dimensional column vector, with each component vi 

denoting the flux through the i
th

 reaction; and N is an n-by-l stoichiometric matrix, with 

each entry Nij being a positive integer, if the j
th

 reaction produces Xi, a negative integer, if 

the j
th

 reaction consumes Xi, or zero, if Xi and the j
th

 reaction are unrelated. It should be 

noted that each flux vi depends not only on the metabolic state of the system as 

characterized by ,  1,..., ,iX i n  but also on a variety of non-metabolic factors such as 

transcriptional and translational regulators, temperature, or pH. The challenge is thus to 

identify the functional form of each flux and to find the numerical values for its 

parameters. In the following sections I will briefly review some particularly relevant 

implementations from both classes and also discuss how one can take an integrated 

approach to build a better model. 

 

1.5.1 Static, Constraint-Based Modeling 

 The first class of models focuses on the stoichiometry of a metabolic system. A 

distinct feature of all models within this class is that they follow a quasi-steady-state 

assumption: As a metabolic system typically operates on a timescale of seconds, it is 

assumed to reach equilibrium relatively fast compared to most cellular processes and thus 

(1.1) 
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to reside in a steady state where, for each metabolite pool, the fluxes governing its 

synthesis and degradation are equal and constant. Under this assumption, the left-hand 

side of Eq. (1.1) becomes zero, thereby turning the system of differential equations into 

to a system of linear equations. This linear system is often underdetermined because there 

are typically fewer equations (metabolites) than unknowns (fluxes). To overcome this 

issue, methods such as extreme pathways (EP; [30]) and elementary modes (EM; [31]) 

may be applicable if the task is to find a finite set of flux vectors that characterize all 

permissible steady-state flux distributions. 

 Alternatively, flux balance analysis (FBA; [32,33]) is an optimization-based 

approach that aims to identify a specific flux distribution that satisfies the steady state and 

optimizes a certain a priori objective. Although recent studies have shown that no single 

objective is suited for all conditions [34,35], it is assumed in most microbial studies that 

fast-growing microbes tend to maximize their growth rate or biomass production. Given 

such an assumption, along with various thermodynamic and physicochemical constraints 

[36], one can formulate the optimization task as a linear program, which is easily solved 

even for large, genome-scale systems. Examples of constraint-based models can now be 

found for more than 35 different organisms, including microbes [37,38], higher 

organisms such as humans [39,40] and plants [41,42]. 

 

1.5.2 Dynamic, Kinetics-Based Modeling 

 A significant feature—but also the major weakness—of the FBA approach is that 

it does not use or generate any information about individual metabolites or enzymes. This 

may pose a problem, for example, if pathway intermediates are known to affect the 

activity of certain enzymes in the pathway. Furthermore, FBA focuses exclusively on a 

given steady state. To address these issues, dynamic, kinetics-based models that center on 
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metabolite concentrations, protein concentrations, or levels of gene expression are often a 

better fit.  

 Traditionally, the formulation of dynamic models of metabolic pathways starts 

with selecting a functional representation for each reaction that best describes its kinetics 

in vitro. Given the explicit representations of individual reactions, the next step is to 

integrate them into a system of ODEs where each equation describes the temporal 

changes in one metabolite as the difference between the sums of rates of its synthesis and 

degradation. Having determined the initial concentrations, one can solve the ODE to 

obtain the metabolic concentrations at different time points, which are not necessarily at 

steady state, and compute fluxes and other results if needed. Although the 

characterization of dynamic models requires many kinetic details, they eventually offer 

the ability to predict all metabolite concentrations and fluxes under non-steady state 

conditions. Furthermore, they permit predictions of the consequences of manipulations 

that take network regulation into account. 

Biochemical Systems Theory 

 In this dissertation, dynamic models within the framework of Biochemical 

Systems Theory (BST; [43,44]) will be used. BST models have many important 

advantages, which have been discussed extensively in hundreds of articles since their first 

inception in the late 1960s. Some distinguished examples with dozens of variables 

include a red blood cell model with ~100 variables [45], and models of citric acid [46], 

purine [47], sphingolipid [48,49,50], and dopamine [51] metabolism. BST has also been 

applied in studies of plant phenomena such as biomass partitioning in growing trees 

[52,53] and the so-called 3/2 rule of self-thinning in planted forests [54]. 

 There are two major modeling formats within BST, which are Generalized Mass 

Action (GMA) models and S-system models. The common feature of both formats is a 

representation of all involved processes as products of power-law functions. 
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Mathematically, each power-law term can be considered as the result of linearizing a 

nonlinear process via Taylor expansion around an operating point in logarithmic 

coordinates. In the S-system format, the derivative of each time-dependent variable is 

given as the difference between one set of influxes and one set of effluxes, and each set is 

collectively written as one product of power-law functions. By this definition, the generic 

S-system format reads 

, ,

1 1

,  1,..., .i j i j

n m n m
g h

i i j i j

j j

X X X i n 
 

 

     

Here, the first n variables are dependent variables, which are controlled by the system as 

well as by the remaining m variables (also called independent variables) that do not 

change over time. The non-negative multipliers  and i i   are rate constants, which 

specify the turnover rate of the collective production and degradation, respectively, and 

the real-valued exponents , , and i j i jg h  are kinetic orders, which reflect the strengths of 

the effects that the corresponding variables jX  have on a given process. For example, a 

kinetic order ,i jg  is positive, if jX  has an activating or augmenting effect on iV 
 ; 

negative, if jX  has an inhibitory effect on iV 
; or zero, if jX  does not have any effect 

on iV 
. 

 In the GMA format, instead of aggregating all influxes or effluxes into one term 

each, every reaction affecting a metabolite is approximated individually with one power-

law term such that 

,

1 1

,  1,..., .j k

n ml
f

i ij j k

j k

X N X i n


 

 
   

 
   

Here, ijN  refer to the entries of the stoichiometric matrix N, while j  are non-negative 

rate constants and ,j kf  are real-valued kinetic orders as in the S-system format. It should 

be noted that the only difference between these two formats occurs at branch points in a 

(1.2) 

(1.3) 
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pathway system, where more than one flux is involved in the production and/or 

degradation process. In other words, a linear pathway with no branch points will have 

only one mathematical formulation regardless of which format is used. 

 A key question to be considered is thus how to choose between these two formats. 

On one hand, it is beneficial to use the S-system format because it allows the steady-state 

equations to be solved very efficiently in a linear fashion. This advantageous property 

could have a substantial impact on the simulation time if all the available data are taken 

from different steady states. Furthermore, sensitivity analyses and optimization tasks are 

much simpler than in other nonlinear models. On the other hand, the GMA format is 

more intuitive in terms of interpretability since each flux corresponds to a unique power-

law term. This exact pairing is also convenient if the task is to compile kinetic parameters 

for individual enzymes into an integrated model. As I will show in Chapter 5, the two 

formats may actually be used interchangeably in the same work, depending on the 

specific requirements of the subtasks. 

 

1.5.3 Bridging the Gap between Two Modeling Frameworks 

 Interestingly, very little effort has been devoted to integrating these two modeling 

strategies. Covert and colleagues [55] recently proposed an integrated FBA (iFBA) 

framework and demonstrated its utility by combining a large-scale regulated FBA (rFBA) 

model of Escherichia coli metabolism [56,57] with a small ODE model of E. coli 

carbohydrate uptake [58]. The authors suggested that the integrated model offers several 

advantages over the original rFBA model, one of them being the feedback regulation by 

metabolites, which is explicitly considered by the iFBA model and critical in shaping 

cellular responses, for instance, in the studied example of diauxic growth,. However, it 

should be noted that the iFBA framework is intrinsically not much different from any 
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other constraint-based model in that a FBA-type linear programming problem is solved 

repeatedly to simulate the dynamics. 

 The iFBA framework offers a good example of how constraint-based models can 

improve their prediction by imposing constraints derived from kinetics-based models. By 

the same token, a sensible approach will be to first determine the fluxes at a nominal 

steady state using constraint-based models and then infer the kinetic parameters based on 

concentration measurements and functional descriptions of individual fluxes. The 

proposed approach would have a dual benefit: not only are the flux estimates more 

accurate, but one also gains information on metabolite concentrations. Notably, such 

integration is greatly facilitated by using models within the framework of BST because 

mechanistic assumptions regarding the enzymatic processes can be minimized. 

Applications of this approach are described in detail in Chapters 2 and 5. 

 

1.6 Dissertation Overview 

 The overall objective of this dissertation (see Section 1.1) is achieved by tackling 

three specific aims as listed below (see Table 1.1 for an overview of corresponding 

chapters and appendices): 

 

1.6.1 Specific Aim 1: Develop a Dynamic Model of Lignin Biosynthesis in Populus 

Xylem  

 A dynamic model of lignin biosynthesis in Populus xylem is presented in Chapter 

2. Populus is the genus of choice in this proof-of-concept study not only because the 

kinetic properties of many enzymes within lignin biosynthesis have been characterized in 

poplar or aspen, but also because the available data from a number of transgenic poplar 

and aspen varieties can be used to test the validity of the inferred model. As will be 
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shown in Chapter 2, the model development involves the following steps: (i) determine 

the topology and regulation of lignin biosynthetic pathway using literature information; 

(ii) develop and employ a two-step modeling approach that combines the strengths of 

FBA and BST; and (iii) optimize and validate the model against the experimental data in 

several transgenic Populus varieties where specific enzymes are genetically perturbed. 

With the resulting model, I will also demonstrate its applicability in metabolic 

engineering through an in silico case study. 

 

1.6.2 Specific Aim 2: Analyze Monolignol Biosynthesis in Various Transgenic 

Alfalfa (Medicago sativa L.) Plants and Different Stem Segments 

 The dynamic model of monolignol biosynthesis developed in Aim 1, although 

seemingly consistent with all the published results in Populus, does not account for two 

functionally distinct isoforms of cinnamoyl CoA reductase (CCR) that were identified 

and characterized in a key position of the same pathway in Medicago [59]. This finding, 

along with the kinetic properties of another enzyme [60], suggests a revision of the 

pathway topology in alfalfa. Therefore, the goal of this Aim is to evaluate an ensemble of 

wild-type and lignin-modified alfalfa plants [25] against a revised pathway topology, and 

the following tasks are achieved in Chapter 3: (i) develop a novel modeling approach that 

permits an interrogation of monolignol biosynthesis in eight stem segments, called 

internodes, of both wild-type and various transgenic plants; (ii) elucidate or explain 

mechanisms of metabolic regulation; and (iii) validate postulated regulatory mechanisms 

by means of post hoc experiments. 

 Pertaining to the goal of this Aim, a computational approach is developed and 

presented in Chapter 4 that seeks to address the following questions: Why do we observe 

a specific developmental pattern of fluxes but not a priori equally valid alternatives? In 

what sense might the observed pattern be superior? Answers to these questions will not 
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only complement the results in this aim, which relate to the mechanism of regulation that 

emerge between plant lines rather than between internodes, but also constitute a major 

step towards understanding how a hierarchy of transcription factors coordinates the 

biosynthesis of different monolignols during secondary cell wall thickening. 

 

1.6.3 Specific Aim 3: Functional Analysis of Metabolic Channeling and Regulation 

in Monolignol Biosynthesis 

 Results from Aim 2 suggest that specific enzymes may co-localize and assemble 

into independent channels leading to G and S monolignols. The specific hypothesis in 

this Aim is therefore that these channels may have different modes of operation. These 

modes correspond to different network configurations and may exhibit different patterns 

of “crosstalk.” Therefore, the objective of this Aim is to refine the channeling postulate 

by analyzing every possible network design, each defined as a specific combination of a 

topological configuration and a crosstalk pattern. To accomplish this aim, the following 

tasks are achieved in Chapter 5: (i) construct a library of dynamic models that encompass 

all possible designs; specifically, I will use a simplified network that only involves the 

steps pertinent to the channeling mechanism within the monolignol biosynthetic pathway; 

(ii) identify and analyze the designs with model instantiations whose predictions are 

consistent with experimental data; (iii) design experiments to validate the hypothesis 

derived from model predictions. 
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Table 1.1: Dissertation overview 

Chapter Content Related Appendices 

2
i
 

Mathematical Modeling of Monolignol 

Biosynthesis in Populus Xylem APPENDIX A 

3
ii
 

Integrative Analysis of Transgenic Alfalfa 

(Medicago sativa L.) Suggests New Metabolic 

Control Mechanisms for Monolignol Biosynthesis 
APPENDIX B 

4
iii

 
Analysis of Operating Principles with S-system 

Models  

5
iv

 

Functional Analysis of Metabolic Channeling and 

Regulation in Lignin Biosynthesis: A 

Computational Approach 
APPENDIX C 

6 Conclusions and Future Work  

i. Adapted from: Lee, Y. and Voit, E.O. (2010) Mathematical Modeling of Monolignol Biosynthesis in 

Populus Xylem. Math. Biosci. 228: 78-89. 

ii. Adapted from: Lee, Y., Chen, F., Gallego-Giraldo, L., Dixon, R.A. and Voit, E.O. (2011) Integrative 

Analysis of Transgenic Alfalfa (Medicago sativa L.) Suggests New Metabolic Control Mechanisms for 

Monolignol Biosynthesis. PLoS Comput. Biol. 7(5): e1002047. 

iii. Adapted from: Lee, Y.*, Chen, P.-W.* and Voit, E.O. (2011) Analysis of Operating Principles with S-

system Models. Math. Biosci. 231: 49-60. [*Equal contribution] 

iv. Adapted from: Lee, Y., Escamilla-Treviño, L., Dixon, R.A. and Voit, E.O. (submitted) Functional 

Analysis of Metabolic Channeling and Regulation in Lignin Biosynthesis: A Computational Approach. 
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CHAPTER 2 

MATHEMATICAL MODELING OF MONOLIGNOL 

BIOSYNTHESIS IN POPULUS XYLEM
1
 

2.1 Introduction 

 Extensive and sustained biochemical and physiological research efforts and, 

especially, numerous insights from investigations of relevant plant genomes, have shed 

light on the specific roles of most genes involved in the monolignol biosynthetic 

pathway, which generates the building blocks of lignin. Such genome-based information 

is very valuable but by itself insufficient for explaining or predicting how the monolignol 

biosynthetic pathway would respond to untested changes in enzyme activities or gene 

expression, because at least some of the pathway regulation occurs at the metabolic level 

in a rather complex fashion. 

 Recently, metabolite (and specifically phenolic) profiling has been used in various 

transgenic studies to monitor the in vivo concentrations of intermediate phenylpropanoid 

species in the pathway [61,62]. These studies have generated pertinent information that 

elucidates the lignin monomer biosynthesis from a different perspective and augments the 

genomic information from earlier studies in a beneficial fashion. Nevertheless, the 

application of metabolite profiling, for instance, in the characterization of metabolic 

phenotypes caused by genetic modification [26], is often limited because the levels of 

some lignin precursors are low and thus difficult to measure. 

 Concurrent with the advances in genomic and metabolomic analysis, 

mathematical and computational techniques from the field of systems biology have 

                                                 

 

 
1
 Adapted from: Lee, Y. and Voit, E.O. (2010) Mathematical Modeling of Monolignol Biosynthesis in 

Populus Xylem. Math. Biosci. 228: 78-89. 
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emerged as effective tools to help explain the regulation of complex metabolic networks. 

Examples from yeast demonstrate that sufficient genome annotation, when augmented 

with biochemical and physiological information, permits the mathematical reconstruction 

of essentially the entire metabolic network with reasonable fidelity [63,64]. This 

reconstructed metabolic network can serve as a solid platform from which one may first 

infer and investigate the metabolic flux distribution and subsequently derive quantitative 

relationships between genotype, gene expression and phenotype for the pathway of 

interest. 

 Two classes of methods are available to achieve these objectives; they have been 

reviewed in Chapter 1 and need no further discussion here. Normally, only one of the two 

classes is used to model a metabolic network, depending on the questions being asked 

and information available. Given the limited number of concentration measurements in 

the monolignol biosynthetic pathway, stoichiometric or flux balance analysis appears to 

be the model of choice. However, understanding the regulatory mechanisms that are not 

explicitly taken into account by FBA models constitutes an important step toward 

applying metabolic engineering techniques to improve biofuel production and seems 

mandatory before genetic alterations are introduced in natural pathways. Thus, in the 

spirit of a recent study [65], which proposes a discussion of integrating divergent 

modeling approaches, we use here a combination of FBA and BST models for analyzing 

the monolignol biosynthetic pathway at the systems level. This novel combination 

strategy allows us to harness the regulatory aspects of a kinetic model based on the 

metabolic flux distribution obtained from a flux balance model.  

 Key features of the new strategy are outlined in the following. First, we begin 

with a minimal amount of experimental information and construct a stoichiometric flux 

balance model. In the second step, we augment this model using additional biological 

information, along with various parameter optimization techniques, and morph the static 

linear model into a dynamic nonlinear model. The ultimate goal of this two-step approach 
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is the establishment of a reliable model that can be used to identify target genes and 

devise effective strategies for generating modified crops with reduced amounts of lignin. 

So far, we have not reached the goal of absolute numerical reliability because the 

currently existing information is still rather scarce. Nonetheless, the resulting model 

structure appears to be qualitatively adequate and has the capacity to serve as the basis 

for systematically identifying critical system components (enzymes) whose alterations 

could improve the yield of fermentable sugars by means of genetic engineering. 

 

2.2 Materials and Methods 

2.2.1 Metabolic Mapping 

 Our main biological target is the xylem in Populus, because a rapidly increasing 

number of transgenic poplar and aspen varieties within this genus has significantly 

contributed to our understanding of the enzymes driving the monolignol biosynthetic 

pathway [14]. Focusing on the metabolic processes occurring in the cytoplasm, we start 

with the biosynthetic pathway leading to the building blocks of lignin (Figure 2.1; also 

see Section A.1.1 for a detailed discussion of how the pathway structure was determined). 

The pathway generates four alcohols, three of which—p-coumaryl, coniferyl, and sinapyl 

alcohols—are called monolignols. Once synthesized, the monolignols are transported 

from the cytoplasm to the cell wall, where they are oxidized and polymerized to form 

lignin. When incorporated into the lignin polymer, these monolignols produce, 

respectively, p-hydroxyphenol (H), guaiacyl (G), and syringyl (S) phenylpropanoid units, 

which are shown at the periphery of the pathway diagram in Figure 2.1. The relative 

amounts of monolignols, which are affected by a variety of factors [66], determine many 

of the features of the resulting lignin, such as its structure, toughness and chemical 

recalcitrance. In dicotyledonous angiosperms, including Populus, lignin consists 
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primarily of G and S monomers, whereas the amount of H is negligible. The ratios of 

lignin monomers and the total lignin content have been closely monitored in transgenic 

Populus variants because of their important role in lignin extractability, forage 

digestibility [67] and, most importantly, sugar release by enzymatic hydrolysis [25]. 

 In addition to the topology of the network of all enzymatic reactions, it is 

necessary to account for regulatory mechanisms that are known, alleged, or hypothesized 

for the monolignol biosynthetic pathway. Correspondingly, we augmented the pathway 

model with regulatory features found in the literature, paying special emphasis to 

Populus (Figure 2.1; Table 2.1). It should be mentioned that several of the enzymes in the 

monolignol biosynthetic pathway have multiple isoforms with slightly different kinetics 

and substrate preferences, and the genes coding for these isoforms are differentially 

expressed during development and under different environmental cues and stresses [14]. 

At this point, this degree of complexity could not be taken into account, due to missing 

quantitative measurements of the different isozymes in Populus xylem, and we focused 

instead on their collective activity in catalyzing each reaction step. At the same time, if 

one isoform is known to have a dominant effect over other isoforms, such as Pt4CL1 in 

aspen xylem [68], the corresponding kinetic constants are assumed to be representative 

(cf. Table A.2). 
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Figure 2.1: Generic metabolic map of the monolignol biosynthetic pathway in 

Populus. Metabolites in bold are represented by dependent variables Xi, 1,...,12i  , while 

enzymes are shown in italics. Solid black arrows represent material flow, whereas dashed 

red arrows represent regulatory signals, with negative signs indicating inhibition. 

Transport processes of monolignols into the cell wall are shown as open arrows. 
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Table 2.1: Documented regulatory signals within the monolignol biosynthetic 

pathway in Populus 

Enzymes Substrate Regulator 
Kinetics 

(µM) 
Reference 

PAL Phenylalanine Cinnamic acid N/A
c
 [69] 

4CL 

p-coumaric acid 

Caffeic acid
a
 

KI = 4.37 

[68] 
Ferulic acid KI = 4.17 

CCR Feruloyl-CoA Caffeoyl-CoA
a
 KI = 15.3 [70] 

COMT 

Caffeic acid 
5-hydroxyconiferyl 

aldehyde
a
 

KI = 2.1 

[71] 
5-hydroxyferulic 

acid 
KI = 0.26 

CAld5H Ferulic acid Coniferyl aldehyde
b
 KI = 0.59

d
 [71,72] 

a
Competitive inhibitor. 

b
Non-competitive inhibitor. 

c
No direct evidence has yet been found in Populus for 

this otherwise well-known feedback regulation at the entrance of the pathway.  
d
Although this regulation 

has been experimentally demonstrated in aspen, no quantitative details are known, and the kinetic 

parameter presented here was measured in the lignifying tissues of sweetgum. 

 

 Since the regulatory signals affect several locations within the pathway, their 

overall effects are difficult to predict and may even be the cause for counterintuitive 

observations in transgenic plants. For instance, Fang et al. [25] recently found lignin 

monomer compositions that cannot be explained solely by the pathway topology in 

transgenic alfalfa lines with reduced activities of either cinnamate 4-hydroxylase (C4H) 

or caffeoyl-CoA O-methyltransferase (CCoAOMT).  

 In conclusion, the complexity and multitude of regulatory features that 

characterize the monolignol biosynthetic pathway render intuitive assessments 

problematic and highlight the need for mathematical models capable of explaining the 

functionality of the pathway system. 
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2.2.2 Experimental Data 

 The data supporting our modeling effort come in different forms. First, we 

collected kinetic information and metabolite concentrations from the literature (Tables 

A.1 and A.2). Secondly, we found pertinent information in five studies of transgenic 

poplars or aspens, each of which investigated the responses of the pathway to modified 

protein levels. The investigated proteins were COMT, cinnamyl alcohol dehydrogenase 

(CAD) [73], 4-coumarate:CoA ligase (4CL), coniferyl aldehyde 5-hydroxylase (CAld5H) 

[74], and CCoAOMT [75] (Table 2.2). Among these transgenic experiments, three 

reported an explicit change in the relative proportion of S to G monomers (the so-called 

S/G ratio), as determined by thioacidolysis. Because lignin content [25] and the S/G ratio 

[6] are related to the degree of recalcitrance, we will use this ratio as a target indicator of 

the system’s response to genetic manipulations. 

 Several cautionary notes are in order when we interpret the S/G ratio. First, one 

should bear in mind that only the fraction of monomers connected by -O-4 linkages, 

which accounts for only 20-40% of the lignin by weight, can be extracted by 

thioacidolysis. Second, many of the intervening events, for example, during the transport 

process or dehydrogenative polymerization, may also contribute to the differences in the 

observed S/G ratios, but mechanistic details are currently unclear [76]. Third, the 

composition of lignin monomers is significantly different between two major cell types of 

xylem tissue, with vessel elements enriched in G monomers and fibers in S monomers 

[77]. Lastly, genes coding for enzymes like CCoAOMT are expressed in developing 

vessels but not in fibers, suggesting that different routes to monolignol biosynthesis 

might be favored in different types of cells
2
 [23]. 

                                                 

 

 
2
 Ideally, a comprehensive analysis of the lignin monomer synthesis in xylem should consist of at least two 

distinct models, representing the two cell types. The numerical results for any physiological feature of 
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Table 2.2: Pertinent details of transgenic experiments in Populus 

Enzyme 
Enzyme activity  

(in relation to wild-type) 

Lignin composition 

(S/G; in relation to wild-type) 
Species 

COMT
a
 32% 25% Poplar 

CAD
a
 15% 100% Poplar 

4CL
b
 10% 100% Aspen 

CAld5H
b
 280% 250% Aspen 

CCoAOMT
c
 10%

d
 111% Poplar 

The relative proportion of S to G monomers (S/G) was measured by thioacidolysis, which releases the 

monomers by selectively cleaving the -O-4 bonds. 
a
[73]. 

b
[74]. 

c
[75]. 

d
This particular quantity refers to 10% of wild-type protein amounts. 

 

2.2.3 Mathematical Models 

 We pursued a two-step approach, using complementary methodologies from flux 

balance and dynamic-kinetic analysis. An overview of the strategy is shown in Figure 

2.2. First, we converted the pathway (Figure 2.1) into a stoichiometric model and used 

flux balance analysis (FBA) to study phenotypes under different types of constraints [36]. 

As described in Chapter 1, the central concept of FBA is a balanced flux distribution at 

steady state, along with numerous physico-chemical constraints and an optimization 

objective like maximal growth. Fast population growth is a reasonable objective for 

microbial populations, but it is not pertinent here and must be supplanted with different 

constraints. 

 Two types of constraints were used here. First, the capacity of each flux vi must 

lie within its physiological range i i iv   , where we allow i = 0, and where i  may 

                                                                                                                                     

 

 
interest, such as the S/G ratio, could then be approximated by combining the two estimates in proportion to 

their percentage of volume in xylem. While our model could easily be adapted to the two scenarios, 

currently available data do not allow us to account for such details, and our results therefore reflect 

averages. 



 25 

be defined as the maximum rate (i.e., Vmax as in a conventional rate law like the 

Michaelis-Menten function). Here, all fluxes are assumed to be unbounded (i.e., βi is 

defined as +), except for the three steps catalyzed by COMT, which are the only 

reactions for which kinetic constants (KM and Vmax) have been characterized for Populus 

protein. While the bounds narrow the range of admissible solutions, they are not stringent 

enough to identify the optimal solution. 

 The second constraint is based on the assumption that lignified tissue like xylem 

has evolved to maximize lignin production in a species- and cell type-specific ratio of 

monolignols. This assumption is at least partially supported by the observation in poplar 

xylem that two of the three phenolic glucosides—the storage or detoxification products of 

hydroxycinnamic acids along the metabolic route to the synthesis of sinapic acid—are 

barely detectable [75]. This finding suggests that the physiological objective of this 

pathway is to produce its other end products, namely monolignols. However, this piece of 

evidence must be handled with caution because the same phenolic glucosides, along with 

other phenolic compounds like flavonoid and chlorogenic acid, can be abundant in leaves 

or developing stem tissues [78]. If available, measurements such as the relative amounts 

of phenolic compounds derived from the pathway are essential for defining the 

physiological objective within a different context. 
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Figure 2.2: Overview of the two-step modeling approach. 

The two-step modeling approach is illustrated here generically by a system with two 

dependent variables (x2 and x3) and one independent variable (x1). At steady state, the 

four fluxes within the system are balanced at both intermediate nodes, resulting in two 

linear equations with four unknown variables (fluxes). With additional physico-chemical 

constraints, flux balance analysis (FBA) yields a steady-state flux distribution that 

satisfies all imposed conditions while optimizing an objective function. Alternately, the 

same system can be translated into a nonlinear Generalized Mass Action (GMA) model 

that is characterized by two types of parameters: kinetic orders and rate constants. 

Collectively, all data, including the steady-state flux distribution, metabolite 

concentrations, and enzyme kinetic data, are used to estimate the parameters of the 

ensemble of dynamic models. 
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 The mathematical representation of the physiological objective of monolignol 

maximization leads to an objective function of the form 
j

j

v


 , where  is the set of 

fluxes representing the production of the three pertinent monolignols, namely, p-

coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. These three fluxes are further 

constrained by equality constraints such that the corresponding lignin monomer 

composition reflects the thioacidolysis yields from poplar stem ([79]: Table 3). 

Mathematically, this modeling approach results in a specific formulation that can be 

solved with methods of linear programming for which a large number of computational 

routines exist. In the end, this FBA approach reveals an optimal flux distribution at steady 

state, and the only inputs needed are the pathway stoichiometry, enzyme capacity 

measurements, and a lignin monomer composition that corresponds to experimental 

finding. 

 Various regulatory signals have been identified within the monolignol 

biosynthetic pathway (Table 2.1). The mechanisms introduce nonlinearities in the system 

for which steady-state models like FBA are not sufficient. In the second step of our two-

step approach, we therefore use Generalized Mass Action (GMA) models within the 

framework of Biochemical Systems Theory (BST) (see Chapter 1 for detail) to account 

for the documented regulation of the pathway at the metabolic level. The characteristic 

feature of BST models is the representation of metabolic fluxes as products of power 

functions; if an enzyme-catalyzed reaction had been quantified before as a Michaelis-

Menten, Hill, or other similar rate law, it is mathematically easy to convert it into a 

power-law function [44] (see also Section A.1.2). 
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2.2.4 Parameter Estimation 

 The GMA model for the monolignol biosynthetic pathway consists of 12 

dependent variables ( 1 12,...,X X  in Figure 2.1), representing the intermediate metabolites 

involved in the production of monolignols, and one independent variable, representing 

the concentration of the initial substrate phenylalanine. As indicated earlier, two types of 

parameters need to be estimated: kinetic orders ,i jf  and rate constants k . Here, 27 

kinetic orders and rate constants are unknown. In general, estimation tasks with such a 

large number of parameters are computationally intensive and time-consuming. Using the 

GMA formulation, however, confers two advantages. First, it is relatively easy to derive 

parameter values of GMA models, especially for kinetic orders, if information regarding 

the kinetic features of enzymes and metabolite concentrations is available (cf. Section 

A.1.2). Second, the steady-state flux distribution estimated per FBA helps us circumvent 

the problem of determining rate constants in the absence of specific flux measurements.  

 As an example, consider a Michaelis-Menten process max( ) ( )MV X V X K X   

where the maximum rate maxV  is unknown. Given a steady-state substrate concentration 

S  and the FBA-predicted steady-state flux FBAV , the rate constant   for the 

corresponding power-law term can be represented as: 

f

FBAV S  , 

where 

M

M

K
f

K S



 

is the kinetic order with respect to the substrate. Similar derivations can be applied to 

conventional rate laws describing competitive or non-competitive inhibition. Details of 

these types of estimations have been discussed extensively in the literature [27,44] and 

will not be repeated here. 

(2.1) 

(2.2) 
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 Once the model is parameterized (that is, all parameters are assigned values), the 

first priority is to ensure that no parameter affects the pathway unreasonably strongly. 

Using sensitivity analysis, we confirmed that the system is indeed robust at the steady 

state we obtain with FBA (data not shown), indicating that only minor fluctuations in 

metabolite concentrations and fluxes result from slight changes in parameter values. 

While a favorable outcome, this robustness is no guarantee that the model is correct. In 

fact, many parameter values derived from the available data might not be reliable because 

roughly half of the intermediate metabolites, including the CoA esters, have rather low 

concentrations in vivo and are thus difficult to measure with precision (Wout Boerjan, 

personal communication). Computationally, we can explore this uncertainty by 

systematically changing all parameter values thousands of times and studying how the 

system responds to such changes. For validation purposes, the observed changes in the 

S/G ratio from transgenic experiments in poplar or aspen (Table 2.2) can serve as a 

quality criterion. To make optimal use of the transgenic experiments for our parameter 

estimation task, we developed a novel approach consisting of two steps, namely, (1) 

identification of a subset of significant parameters, and (2) optimization of their values. 

The steps are summarized in Figure 2.3A and discussed in the following. 

 First, we need an objective criterion to answer the fundamental question of what 

constitutes a significant parameter. For any transgenic experiment in our particular 

context, a parameter is deemed significant if a modest change in its value considerably 

affects the S/G ratio. To approximate this degree of influence by statistical measures such 

as Pearson’s correlation coefficient or mutual information, we generated a large 

population of GMA models with different parameter settings, where each parameter 

(kinetic order) was uniformly sampled from a physiologically realistic range. Given the 

FBA-derived steady-state flux distribution and the randomly generated values for all 

kinetic orders, we adjusted each rate constant so that the power-law representation of a 

flux matched the FBA-derived steady-state value. Typically, the resulting values of 
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kinetic orders are within the range of 0 and 1, if they are associated with substrates, 

enzymes, and activators, whereas inhibitors are often associated with kinetic orders 

within the range of -1 and 0 (see [44]: Chapter 5). The range of 0 and 1 is also consistent 

with enzyme-catalyzed reactions following a Michaelis-Menten rate law (Figure 2.6A). 

 With a much reduced number of significant parameters, we gain two important 

benefits: 1) a reduction—although not total elimination—of the risk of over-fitting; and 

2) improved convergence in subsequent parameter optimization tasks, because smaller 

numbers of parameters are obviously easier to estimate than large numbers. As 

mentioned earlier, physiological data of the monolignol biosynthetic pathway are 

available as one-time measurements of the S/G ratio in a number of transgenic 

experiments. Consequently, our second step—parameter optimization—consists of 

finding values for those significant parameters that minimize the sum of squared errors 

(SSE) between the measured and the predicted S/G ratios of all transgenic experiments. 

 Moreover, we characterize an ensemble of GMA models such that all members 

have comparable training errors in terms of SSE. This notion of finding not just a single 

best model, but an entire class of competent fits, is inspired by the argument that inter-

individual differences among organisms are reflected in slightly or even moderately 

different parameter profiles [80]. The search for classes of solutions has also been 

supported in other scientific domains as diverse as simulations of climate change [81] and 

models of gene regulatory networks [82] and cell signaling pathways [83]. 
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Figure 2.3: Steps of parameter estimation. 

(A)  Steps of the parameter estimation process using the system in Figure 2.2: (1) 

constrain each parameter (kinetic order) to a physiologically realistic range and simulate 

the transgenic experiments in the training set with thousands of randomly sampled 

parameter profiles; (2) compute a statistical measure (Pearson’s correlation coefficient or 

mutual information) between each parameter and the S/G ratio for all transgenic 

experiments (A-D) and select statistically significant parameters; (3) values for 

significant parameters are further optimized to minimize the SSE, and to find an 

ensemble of models with comparably low SSE. (B) The numerical value next to each 

reaction represents the magnitude (on a base-10 logarithmic scale) of its steady-state flux, 

normalized by the input of the pathway, which consists of the reaction converting a 

constant supply of phenylalanine (Phe) into cinnamic acid (CinnA). (C) The intensity of 

each box reflects the mutual information (MI) between one parameter and the S/G ratio 

of one transgenic experiment. Kinetic orders with a statistically significant mutual 

information score (but not always leading to a large value, such as the kinetic order ‘c’) 

are listed on the left of their respective rows. Pathway reactions associated with these 

significant kinetic orders are represented by heavier arrows. 
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2.2.5 Pathway Optimization 

 Our model of monolignol biosynthesis has the great advantage that it integrates 

diverse pieces of information from varying experimental conditions. It can be used to 

address questions like which enzymes should be modified—whether by modulating their 

expression levels or by improving their turnover activities through directed evolution 

[84]—to achieve a higher yield of a desired product. Within the context of biofuel 

production, genetically engineered crops should of course release significant amounts of 

fermentable sugars that can be converted into ethanol or other biofuel chemicals. In a 

study on Populus, Davison and co-workers [6] indicated that both lignin content and the 

S/G ratio have significant effects on the yield of xylose, and that a small decrease in S/G 

ratio alone results in a statistically significant increase in xylose yield. Using our 

ensemble of GMA models as a framework, we therefore focus on identifying enzymes 

whose expression levels might allow reductions in the S/G ratio. 

 GMA models are generally advantageous for modeling the monolignol 

biosynthetic pathway, but are not trivially optimized with respect to yield because their 

steady states cannot be computed analytically. This limitation may be overcome with an 

indirect optimization method (IOM) that permits optimization in an iterative, much 

simplified manner [85]. Specifically, IOM allows us to transform the nonlinear problem 

of minimizing the S/G ratio (or the ratio of fluxes producing coniferyl and sinapyl 

alcohols), into an iterated linear optimization problem that can be solved with various 

standard methods, including linear programming. Pertinent details about this approach 

can be found in Section A.1.6. 
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2.3 Results 

 The FBA analysis resulted in an optimal flux distribution within the metabolic 

pathway system (Figure 2.3B) that led to the maximal production of three monolignols in 

the correct composition. Interestingly, this optimal solution shows that several reactions 

with relatively high steady-state fluxes dominate the activity of the pathway, whereas 

other reactions are seemingly inactive. If we connect the dominant fluxes whose steady-

state values are within one order of magnitude of the phenylalanine consumption, the 

resulting route is almost identical to the currently alleged structure of the monolignol 

biosynthetic pathway in angiosperms [71]. Thus, the purely computational result from the 

FBA analysis reinforces the point that metabolic pathways are seldom fully connected 

and indeed use sparse connectivity to bring about specific function. This phenomenon has 

been widely discussed for microbial metabolic networks [86,87], but our results seem to 

indicate that the same may be true in plant secondary metabolism as well. 

 Next, we used the optimal steady-state flux distribution from FBA to construct a 

dynamic GMA model of the pathway. Converting the metabolic map (Figure 2.1) into a 

symbolic model in GMA format does not take much effort; in fact, this can be done 

automatically with customized software [88]. The much more difficult step, however, is 

the numerical identification of parameter values, which is outlined in Figure 2.3A and 

discussed in detail below. 

 First, by adapting a grid search method used by Alves and collaborators [89], we 

uniformly sampled every parameter (kinetic order) from a predetermined range of values 

and generated thousands of GMA models with the same FBA-derived steady-state flux 

distribution. For each instantiation, we checked local stability (Section A.1.4) and 

discarded unstable parameter profiles. Next, we computed the mutual information 

(Section A.1.5) of each parameter and the output feature of interest, namely the S/G ratio, 

to evaluate the relative significance of individual parameters (Figure 2.3C). Not 
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surprisingly, most parameters are not statistically significant, indicating that only a few 

parameters have an appreciable influence on the S/G ratio in each transgenic experiment. 

 Notably, two parameters representing the direct influence of coniferyl aldehyde 

on its own consumption, ,CAD ConifALDf  and 5 ,CAld H ConifALDf , are statistically significant in all 

five transgenic experiments. Although the identification of significant parameters in our 

strategy is more or less “biologically blind,” this result can easily be interpreted in terms 

of the logic of the pathway topology: as shown by FBA and also by thioacidolysis yield, 

the flux leading to the synthesis of 5-hydroxyconiferyl alcohol is negligible, which means 

that the formation of 5-hydroxyconiferyl aldehyde or coniferyl alcohol from coniferyl 

aldehyde is arguably the principal branch point where the S/G ratio is determined. 

 In the second half of the parameter estimation process, we generated an ensemble 

of GMA models that reproduced a training set of experimental results, using a simulated 

annealing (SA) algorithm (Section A.1.7) to find optimal values for the significant 

parameters. For the five transgenic experiments used as training data (Table 2.2), the S/G 

ratios predicted by the ensemble of models are highly consistent with the experimental 

measurements (Figure 2.4). The relative errors in two experiments, where either COMT 

or CCoAOMT is down-regulated, are slightly greater than the corresponding 

experimental errors (~3%). Considering that only a handful of transgenic experiments are 

available for training the models, this level of variance is better than one might have 

expected. 
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Figure 2.4: Simulation results of five transgenic experiments used as training data. 

Each vertical bar represents either the experimentally observed S/G ratio (EXPT) or the 

mean of 20 predictions from the ensemble of GMA models fitted by a simulated 

annealing (SA) algorithm. The transgenic experiments are numbered as in Figure 2.3C, 

with the dashed line featuring the assumed wild-type value (1.8) and the error bar 

indicating the 95% confidence interval for the mean. 

 

 To assess the reliability of the computed ensemble of models, we used the 

ensemble to simulate two transgenic experiments not used for training. Specifically, one 

of the experiments studied a multi-gene co-transformation where the 4CL enzyme 

activity was reduced by 80% and the CAld5H enzyme activity increased by 2.1-fold [74]. 

As shown in Figure 2.5, the predicted S/G ratio follows the same upward trend and even 

falls within ~20% of the observed value. In the second transgenic experiment, the CCR 

transcript levels were severely decreased to < 5% of the wild-type levels [61]. Again, the 

observed S/G ratio was predicted accurately by the ensemble of models. 
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Figure 2.5: Simulation results of two transgenic experiments not used for model 

training. 

As in Figure 2.4, each vertical bar represents either the experimentally observed S/G ratio 

(EXPT), or the mean of 20 predictions from the ensemble of GMA models fitted by SA. 

Also, the dashed line features the assumed wide-type value (1.8), and the error bar 

indicates the 95% confidence interval for the mean. For the CCR down-regulation 

experiment, the confidence interval is so small (~10
-5

) that it is nearly invisible. 

 

 Beyond its good agreement with the experimental results, the ensemble of GMA 

models permits further mechanistic insights. For instance, most of the significant 

parameters with positive values (which are thus associated with substrates or activators) 

have optimal values between 0.4 and 0.7, a typical range for kinetic orders estimated 

from Michaelis-Menten reactions operating close to the KM (Figure 2.6; see also [44]: 

Chapter 5). By contrast, both 
  
f
COMT ,5OHConifALD

 and 
  
f

CAD,SALD
 take on very small values 

within the ensemble of models, which according to the theory behind GMA models 

suggests that both the O-methylation of 5-hydroxyconiferyl aldehyde and the reduction of 

sinapyl aldehyde to sinapyl alcohol operate at an essentially constant rate that is almost 
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independent of fluctuations in their substrate concentrations. Although there has not yet 

been direct evidence for this predicted operation close to saturation, one notices that the 

nominal concentration of sinapyl aldehyde in wild-type poplar is much greater than the 

reported Michaelis constant of its CAD-catalyzed reduction to alcohol (see Tables A.1 

and A.2 for specific values), which is directly consistent with our model deduction. 

 Interestingly, the distributions of optimal parameter values reveal a linear 

relationship between 
  
f

CAD,ConifALD
 and 

  
f
CAld5H ,ConifALD

 (Figure 2.7). As discussed in more 

detail in Section A.1.3, this co-linearity implies that the ratio between the corresponding 

fluxes remains unchanged over time and is thus equal to the steady-state value obtained 

from FBA. More importantly, a constant ratio between these two fluxes suggests that the 

S/G ratio might be insulated from any genetic modulation prior to the reactions involving 

coniferyl aldehyde, provided that the synthesis of 5-hydroxyconiferyl alcohol is 

negligible. In fact, this is exactly what happens in transgenic experiments where 4CL 

(Figure 2.4) or CCR (Figure 2.5) is down-regulated. Even if the situation is not as 

expected in the CCoAOMT down-regulation experiment (Figure 2.4), the observed S/G 

ratio is raised only by ~11% despite a 90% decrease in the CCoAOMT protein level. 
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Figure 2.6: Illustration of kinetic orders derived from a Michaelis-Menten function 

and distributions of values for seven significant parameters within the ensemble of 

GMA models. 
(A) The kinetic order (red number) in each power-law representation of a Michaelis-

Menten function is within the range of 0 and 1, with the specific value depending on the 

assumed in vivo concentration of X. If the reaction operates at a point where the 

concentration of X is much greater than KM, the corresponding power-law representation 

has a kinetic order close to zero, implying that the reaction rate is almost saturated and 

therefore unaffected by the concentration of X. (B) As in Figure 2.4, the height of a 

vertical bar is proportional to the mean value of a significant parameter within the 

ensemble of models fitted by SA, with the error bar representing the 95% confidence 

interval for the mean. See Figure 2.3C for the identity of each parameter. 
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Figure 2.7: Plot of 5 ,CAld H ConifALDf  against ,CAD ConifALDf . 

Each point represents the pair ( ,CAD ConifALDf , 5 ,CAld H ConifALDf ) found in one GMA model 

within the ensemble obtained through simulated annealing. 

 

 With an ensemble of models that seems to be qualitatively adequate, we can now 

apply the IOM approach to minimize the S/G ratio of the monolignol biosynthetic 

pathway toward a higher yield of xylose. Normally, IOM can be implemented in many 

different ways. The most common scenario is that all enzymes (genes) involved in the 

pathway are accessible to manipulations, which unfortunately is not feasible with current 

biotechnological techniques in plants [90]. Instead, we mimic the current state of the art 

(Fang Chen, personal communication) by allowing only one, two, or three enzyme 

activities to be altered between 5% and 5 times the basal levels. Furthermore, we enforce 

physiological constraints that are necessary for plant viability and that are discussed in 

Section A.1.6. 

 The optimization results (Table 2.3) indicate that by altering the activity levels of 

three enzymes in prescribed amounts, the S/G ratio predicted by the ensemble of models 
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can be reduced from about 1.8 to about 1.11—a significant decrease that far exceeds the 

natural variation observed in poplar [6]. Moreover, by modulating just one enzyme 

(CAld5H), we can already achieve ~60% of the maximal reduction that is obtained when 

three enzymes are manipulated. In other words, the S/G ratio is predicted to decrease 

from 1.8 to about 1.39 if one down-regulates the enzyme activity of CAld5H by one 

quarter. Overall, the optimized solutions require only a moderate degree of modulation of 

the selected enzymes (from approximately 70% to 4.3 times the wild-type activity levels), 

which are well within the range of modern recombinant DNA techniques. 

 

2.4 Discussion and Conclusions 

 The application of mathematical modeling to studies of the monolignol 

biosynthetic pathway, or of plant secondary metabolism in general, has not yet attracted 

much attention, especially when compared with central metabolism in microorganisms. 

One reason is that the in vivo concentrations of secondary metabolites are often low and 

difficult to measure, which makes quantitative modeling difficult. 

 

Table 2.3: Minimization of the S/G ratio using the IOM approach
a  

No. of enzymes Modified enzymes
a
 

IOM solution
c
 

(S/G) 

1 CAld5H (0.76) 1.3886 

2 COMT (0.96)  CAld5H (0.71) 1.29 

3 C4H (4.31)  CAD (1.67) CAld5H (1.34) 1.1133 

a
Baseline S/G ratio is 1.8.

 

b
Numbers in parentheses represent the optimized ratio of change in enzyme activities related to the wild-

type levels. 
c
Average values of the ensemble of model 
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 In this work, we used diverse types of data to pursue a two-step model analysis of 

the monolignol pathway, using both Flux Balance Analysis (FBA) and Biochemical 

Systems Theory (BST). These two approaches had so far not been combined in the 

construction of a dynamic model. Thus, we first constructed an initial, coarse FBA model 

and used it in a second phase as a constraint for developing fully parameterized nonlinear 

BST models. The result of this dual procedure was an ensemble of models that yield 

interesting qualitative insights into the topological and regulatory properties of 

monolignol biosynthesis. These models also lead to simulation results and predictions 

that are quantitatively consistent with experimental measurements that were either used 

for model training or validation. This concordance is quite striking, because the data and 

information supporting the models are rather scarce and involve a number of 

assumptions. Two reasons seem to be responsible for the good performance of the model 

in predicting the outcomes of validation experiments. The first is the proven robustness of 

BST models, which is manifest in low model sensitivity with respect to most parameters, 

as long as the connectivity and regulatory structure of a system is adequately captured by 

the model equations. The second reason is our strategic, severe model reduction, which 

effectively eliminated many parameters which we had proven to be relatively 

inconsequential.  

 Because we used all available metabolite concentrations and S/G ratios in 

transgenic experiments, either to estimate unknown parameters or to validate our models, 

it is presently not feasible to try improving the model further with purely computational 

means. To construct a “crisper” mathematical model in the future, specific data of the 

following types will be very helpful. At the metabolic level, intracellular metabolite 

concentrations, in vitro assays of individual enzymes, and perhaps intracellular flux 

measurements from dynamic labeling experiments [91] are in dire need. As demonstrated 

in our parameter estimation approach, these data should ideally be accompanied by 
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measurements of lignin monomers from transgenic plants with various genetic 

modulations of monolignol biosynthesis. 

 Another source of relevant information will come from gene expression data and 

specifically from microarray analyses, which have already revealed distinct 

transcriptional regulation patterns in genes encoding lignin biosynthetic enzymes at 

different developmental stages [92]. At present, the growth periods in different transgenic 

experiments span from several months to years, but it is implicitly assumed that enzyme 

activities are more or less constant. Future experiments and models should account for 

(slowly) changing levels of enzyme activities over the course of xylem formation during 

primary and secondary growth. Furthermore, since most reactions within the pathway are 

catalyzed by several isozymes, changes in gene expression should be confirmed with 

measurements of changes in enzyme activities. As a first approximation, the number of 

mRNA copies for each corresponding gene may be an indication of enzyme activity, but 

direct measurements would eliminate uncertainties associated with different splice 

variants and posttranslational modifications. Experiments and models should also focus 

on the dynamics of transcription factors, such as MYB and LIM, that have been found to 

coordinate the regulation of the expression of genes encoding lignin biosynthetic 

enzymes [93,94]. 

  The proposed ensemble of models is clearly preliminary. Nevertheless, the 

models appear to be robust to modest variations in parameter values, are qualitatively 

consistent with five training experiments, and are even capable of semi-quantitatively 

reproducing the results of two validation experiments that had not been used for model 

construction. These initial successes are grounds for cautious optimism that the model 

might serve as a basis from which future developments may be launched.  

 As an illustration, we demonstrated one of its potential applications in genetic 

engineering, namely the optimization of the pathway toward a reduced S/G ratio and a 

higher yield of xylose. The results of this optimization seem to be reasonable in a sense 
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that all proposed changes in enzyme activities are modest and therefore implementable. 

The estimated improvements in the optimized system are actually very conservative 

compared with the 75% decrease in the S/G ratio observed in the COMT down-regulation 

experiment (Table 2.2). The reason for this discrepancy is that we imposed much more 

stringent bounds on metabolites than what is observed in the COMT down-regulation 

experiment. While wider bounds are clearly implementable in optimizations with the 

computational model and would result in much stronger reductions in the S/G ratio, large 

metabolite variations in vivo might lead to toxicity or reduced viability. Two explanations 

are possible for the observed 75% decrease in the S/G ratio. First, evidence indicates that 

metabolites that might be expected to accumulate in the cytoplasm are instead being 

transported to the cell wall and incorporated into lignin by so far unknown mechanisms 

[14], thereby precluding toxicity. Second, the observed variation in the S/G ratio may 

result from a change in the subcellular structure of pathway enzymes—or alleged 

“metabolic channeling” [24]—that is currently outside the scope of our GMA models. 

Taken together, the observed physiological response seems to suggest that our 

optimization settings might be overly cautious and that the S/G ratio could be reduced 

further than predicted.   

 As new data are being generated in the emerging field of plant systems biology, 

the next goal will be to integrate a wider variety of “omics” data from different 

organizational levels into the construction of multi-scale models that will be capable of 

predicting the physiological consequences of hypothetical transgenic experiments. 

Models of this capability will be particularly helpful as the corresponding experiments in 

actual trees are slow and laborious. The need to test model predictions, as well as 

proposed genetic engineering strategies, will not abate. However, once a model is 

sufficiently reliable, it may be able to screen out experiments that are unlikely to lead to 

improved outcomes. 
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CHAPTER 3 

INTEGRATIVE ANALYSIS OF TRANSGENIC ALFALFA 

(MEDICAGO SATIVA L.) SUGGESTS NEW METABOLIC 

CONTROL MECHANISMS FOR MONOLIGNOL BIOSYNTHESIS
3
 

 

3.1 Introduction  

 Although the generic sequences of metabolic reactions within the monolignol 

pathway have been identified, it is becoming increasingly clear that critical details of the 

pathway structure and its regulation are not entirely understood. As a case in point, Chen 

et al. [25] recently introduced systematic, transgenic alterations in alfalfa (Medicago 

sativa L.) plants by independently modifying the activities of seven key enzymes of 

monolignol biosynthesis. While many of the results were easily explained, down-

regulation of caffeoyl coenzyme A 3-O-methyltransferase (CCoAOMT) had little effect 

on S lignin, an observation that is conceptually inconsistent with the commonly accepted 

pathway structure (Figure 3.1; black colored arrows). A recent study identified two 

isoforms of cinnamoyl CoA reductase (CCR), MtCCR1 and MtCCR2, in Medicago 

truncatula [59]. Furthermore, an earlier finding had suggested that caffeyl aldehyde is 

one of the preferred substrates for caffeic acid 3-O-methyltransferase (COMT) in alfalfa 

[60]. Taken together, these findings could imply an alternative route for S lignin 

synthesis (Figure 3.1; red colored arrows) upon CCoAOMT down-regulation [9,60]. 

                                                 

 

 
3
 Adapted from: Lee, Y., Chen, F., Gallego-Giraldo, L., Dixon, R.A. and Voit, E.O. (2011) Integrative 

Analysis of Transgenic Alfalfa (Medicago sativa L.) Suggests New Metabolic Control Mechanisms for 

Monolignol Biosynthesis. PLoS Comput. Biol. 7(5): e1002047. 
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However, they cannot explain why only G lignin is decreased because feruloyl-CoA is a 

common precursor of both G and S lignin.      

 In dicotyledonous plants like alfalfa, the stem consists of many segments, called 

internodes. During maturation, all internodes grow asynchronously and thus 

independently represent different developmental stages. This phenomenon suggests a 

customized modeling approach: Instead of studying the pathway within a single 

developmental context, it seems advantageous to launch a systematic investigation that 

simultaneously encompasses dozens of internodes from seven wild-type or transgenic 

plants. This comprehensive approach circumvents the potential problem that regulatory 

mechanisms might escape discovery during an analysis based on singular phenotypic 

datasets, such as lignin content and monomer composition, if only one internode or one 

transgenic line is studied at a time. This potential failure to detect regulatory signals is 

exacerbated in the lignin system by the fact that several enzymes in the pathway catalyze 

multiple steps, which makes intuitive analyses difficult. 

 With a comprehensive analysis of several datasets as the target, we propose here a 

novel modeling approach that integrates the data in a semi-dynamic fashion. First, flux 

balance analysis (FBA) ([33]; Section 1.4.2) is applied independently in each individual 

internode of the wild-type plant. In contrast to microbial systems, where maximization of 

the growth rate is usually assumed to be the species’ overall objective, we use the 

monolignol production as the objective function for FBA. Second, for every internode of 

a lignin-modified line, we use the method of minimization of metabolic adjustment 

(MOMA) [95] to characterize the altered flux distribution in relation to the corresponding 

FBA solution for the same wild-type internode. Specifically, the relative proportions of 

the fluxes leading to three lignin monomers are constrained at experimentally-observed 

values to improve the prediction. Finally, we perform a Monte Carlo-like simulation of 

randomly parameterized kinetic models in cases where the results arising from the static 

models may have alternative, kinetics-based explanations. 
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Figure 3.1: Successive amendments of the metabolic pathways and transport 

processes leading to four hydroxycinnamyl alcohols in Medicago.  
The commonly accepted pathway of monolignol biosynthesis, which produces p-

hydroxyphenyl (H), guaiacyl (G), 5-hydroxyconiferyl (5H), and syringyl (S) lignin 

monomers, is presented in black, with solid arrows representing metabolic conversions 

and open arrows collectively representing all events during the transport of monolignol 

precursors into the cell wall. Important revisions suggested by the recent identification of 

two CCR isoforms—CCR1 and CCR2—are colored in red and discussed in the text. 

Arrows colored in blue represent additional reactions and transport processes that are 

probably negligible in wild-type plants but found to become significant in some 

transgenic strains. 
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 This combined modeling approach represents, to the best of our knowledge, the 

first computational study of lignin biosynthesis in angiosperm stem tissues and, more 

generally, of secondary plant metabolism in angiosperms. As we will discuss later, the 

model analysis resulted in six postulates concerning the metabolic control of monolignol 

biosynthesis that had not been considered at all or at least not in detail. These postulates 

address the reversibility of some enzymatic reactions, shed light on the hypothesis of 

independent pathways for the synthesis of G and S monolignols, and suggest a novel 

feedforward regulatory mechanism exerted by a cinnamic acid-derived compound. Of 

note is the fact that evidence in support of this last postulate has subsequently been 

obtained in laboratory experiments. By critically evaluating the transgenic data against a 

revised pathway structure in alfalfa, we hope these postulates will not only serve as 

guidelines for directing future experiments, but also provide mechanistic insights that will 

aid the design of combined genetic modification strategies toward the generation of 

bioenergy crops with reduced recalcitrance. 

 

3.2 Results 

3.2.1 FBA-Guided Elucidation of Three Principal Branch Points 

 Accounting for recent experimental observations, we adopted a revised pathway 

structure of monolignol biosynthesis in alfalfa stems that includes the CCR2-catalyzed 

reduction of caffeoyl-CoA to caffeyl aldehyde and the subsequent synthesis of coniferyl 

aldehyde by COMT (Figure 3.1: black and red colored reactions), as explained earlier. 

The pathway of monolignol biosynthesis contains a fairly small number of branch points, 

and it is known that flux partitioning at these branch points determines the ultimate 

transport fluxes v6, v15 and v19 and thus the relative amounts of lignin monomers (cf. 

[96]). The FBA-derived steady-state flux analysis for wild-type plants supports this 
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argument. It suggests that variation in lignin composition from young to mature 

internodes is accomplished by modulating the flux partitioning at three principal branch 

points: p-coumaroyl CoA, coniferyl aldehyde, and coniferyl alcohol. As a paradigm 

illustration, the proportion of H lignin declines from 7% of the total monomer yields in 

the first two internodes to 1% in the eighth internode. This decline is singularly achieved 

through a monotonic decrease in v4 (Figure 3.2A). A parallel increase in the ratio of S to 

G lignin—commonly termed the S/G ratio—from 0.09 in the first two internodes to 0.64 

in the eighth internode requires a combined effort of flux adjustments at coniferyl 

aldehyde and coniferyl alcohol (Figure 3.2B). Since F5H controls the first committed 

steps (i.e., v16 and v20) towards the synthesis of S lignin, one would expect to see its 

expression being up-regulated in mature versus young internodes, which has recently 

been validated by microarray analysis (Table 4 of [97]). 

  



 

49 

 

Figure 3.2: Flux partitioning at principal branch points in different internodes.  
(A) Developmental patterns of flux partitioning at p-coumaroyl CoA branch point in 

wild-type plants, given as percentage of v3. (B) Comparison of flux partitioning at 

coniferyl aldehyde (v16/v14) and coniferyl alcohol (v20/v15) branch points with the ratio of 

S to G lignin (S/G) in individual internodes of wild-type plants. 
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3.2.2 Minor Extension of the Pathway Structure 

 For a systemic analysis of the pathway we used the results of a gene modification 

study in alfalfa where genes encoding for PAL, C4H, HCT, C3H, CCoAOMT, F5H, and 

COMT were independently down-regulated. With the exception of F5H-modified lines, 

which did not permit measurements of the targeted enzyme activity, we applied MOMA 

to each strain and each internode and predicted the new steady-state flux distribution (see 

Section 3.4).  

 A very interesting result is the fact that no feasible solution exists for four of the 

six transgenic plants, if the revised metabolic map is correct (Figure 3.1; black and red 

colored arrows). For example, if C4H activity is down-regulated to 45% of its wild-type 

level, it is analytically impossible to derive a set of fluxes that satisfies the mass balance 

at cinnamic acid as well as the observed lignin composition, if the supply of 

phenylalanine is constant.  To remedy this situation, it seems to be necessary to add to the 

pathway structure three “overflow” fluxes counteracting the potential accumulation of the 

intermediate metabolites cinnamic acid, p-coumaryl aldehyde, and 5-hydroxyconiferyl 

alcohol (blue arrows v22, v23, v24 in Figure 3.1). This proposed amendment is at least 

partially supported by observations. First, salicylic acid (SA), an essential signaling 

molecule for systemic acquired resistance against pathogen attack, can be formed from 

cinnamic acid [98,99,100], although it may also originate from the shikimate pathway via 

isochorismate [101]. Second, the biosynthesis of all flavonoids begins with the 

condensation of p-coumaroyl CoA and three molecules of malonyl CoA by the enzyme 

chalcone synthase [102]. And third, incorporation of 5-hydroxyconiferyl alcohol into 

lignin polymer is found in COMT-deficient alfalfa [103]. Thus, we included these 

additional effluxes, and the expanded system (Figure 3.1; v1 to v24) permitted feasible 

solutions in all cases tested. 
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 In wild-type plants, the FBA-derived steady-state values of the three added fluxes 

are minimized to prevent lignin precursors from being channeled into peripheral 

pathways producing SA or flavonoids. In the transgenic plants, these auxiliary fluxes are 

no longer restricted to small values and thus can be raised to substantial levels to 

facilitate the re-distribution of fluxes. However, the assumption that the peripheral fluxes 

are minimized in wild-type plants must be handled with caution: although the 

phenylpropanoid pathway in cells undergoing secondary wall thickening may evolve 

towards maximizing the synthesis of lignin precursors, this is apparently not the case 

when biosynthesis of flavonoid-derived products, which may function as floral pigments 

or as anti-microbial agents, becomes the plant’s top priority. 

 

3.2.3 Trends in Flux Patterns 

 The MOMA analysis revealed flux distributions for all transgenic lines and their 

individual internodes. Figure 3.3 shows the developmental evolution of flux patterns in 

CCoAOMT-deficient plants. Of note is that all computed fluxes exhibit strong and 

essentially monotonic trends: for each transgenic line, the flux partitioning at important 

branch points follows clear trends throughout the internodes rather than jumping in value 

from one internode to the next. This result is surprising and encouraging, because 

MOMA simply assumes that the fluxes undergo a minimal re-distribution when the 

pathway system is perturbed. Because these perturbations occur independently for each 

internode, there is no mathematical guarantee that individual fluxes would follow any 

smooth trend from internode to internode. In other words, the collective results, while 

fitting into the context of a gradual change in lignification pattern during stem 

development, are by no means “automatic,” because no external constraints or conditions 

were imposed or enforced on the transition from one internode to the next. The computed 

trends are summarized in Table 3.1. 
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Figure 3.3: Developmental evolution of the steady-state flux distribution in 

CCoAOMT-deficient plants versus the wild-type plants.  
The reaction crossed out in red is dysfunctional in this particular transgenic strain. Two 

rows of colored boxes are placed either above horizontally plotted fluxes, or to the left of 

vertically plotted fluxes. The first row represents wild-type plants, whereas the second 

row refers to transgenic line (here a CCoAOMT-deficient plant). Each row contains 

seven colored boxes, which represent the seven stem internodes (with internodes 1 and 2 

merged). In FBA and MOMA, all fluxes are normalized to the initial step in the pathway, 

namely the conversion of phenylalanine to cinnamic acid. Therefore, the color of each 

box shows the normalized steady-state value of the corresponding flux in one specific 

internode: low values are dark blue, intermediate values are white, and high values are 

dark red. Because all the reactions along a linear pathway have the same flux values at 

steady state, only the first one is shown. 
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Table 3.1: Developmental trends in flux partitioning between successive internodes. 
The developmental evolution of fluxes diverging at the intermediate metabolite listed in 

the first column, when normalized by the total flux entering the branch point, can be 

described as monotonically increasing (↑↑), increasing with minor variations (↑), 

essentially unchanged (─), decreasing with minor variations (↓), or monotonically 

decreasing (↓↓). 

  Transgenic Strain 

Branch 

Point 
Flux PAL↓ C4H↓ HCT↓ C3H↓ CCoAOMT↓ COMT↓ 

Cinnamic 

acid 

v2 ─ ─ ↑ ↑↑ ↓↓ ↑↑ 

v22 ─ ─ ↓ ↓↓ ↑↑ ↓↓ 

p-coumaroyl 

CoA 

v4 ↓↓ ↓↓ ↑ ↑↑ ↓↓ ─ 

v7 ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ 

v23 ─ ─ ↓ ↓↓ ↑↑ ↓↓ 

Caffeoyl 

CoA 

v10 ─ ─ ─ ─ ─ ─ 

v11 ─ ─ ─ ─ ─ ─ 

Coniferyl 

aldehyde 

v14 ↓↓ ↓↓ ─ ─ ↓↓ ─ 

v16 ↑↑ ↑↑ ─ ─ ↑↑ ─ 

Coniferyl 

alcohol 

v15 ↓↓ ↓ ↓↓ ↓↓ ↓↓ ↑ 

v20 ↑↑ ↑ ↑↑ ↑↑ ↑↑ ↓ 

5-hydroxy-

coniferyl 

alcohol 

v21 ─ ─ ↓↓ ─ ─ ─ 

v24 ─ ─ ↑↑ ─ ─ ─ 

  

The following paragraphs are structured as follows. First, we re-evaluate the gene knock-

down data in a systematic way across different stages of growth and formulate four 

postulates that actually do not require a full model analysis, but emerge from the “logic” 

of the pathway. Second, we discuss two postulates regarding novel mechanisms of 

metabolic regulation that result from our comprehensive model analysis. Third, we 

present new experimental results that directly support one of the model-based postulates. 
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3.2.4 Availability of Phenylalanine Drives Lignin Production 

 The total lignin production is driven by the availability of phenylalanine rather 

than by enzymatic limitations. This conclusion results from the observation that the 

down-regulation of PAL has much less effect on total lignin content and/or lignin 

composition in young internodes with small amounts of lignin than in mature internodes 

with high lignin production (Table B.3; [25]). Expressed differently, PAL is not acting at 

capacity when the demand for lignin is relatively low, as is the case in young internodes. 

This conclusion is also supported by the observation that lignin production is not 

enhanced proportionately when PAL enzyme is over-expressed in transgenic plants 

[104]. 

 

3.2.5 HCT Is Reversible 

 In transgenic plants where C3H is down-regulated, the proportion of H lignin 

among total monomer yields is significantly increased over control plants, especially in 

mature internodes (Figure 3.4A). This finding is at first puzzling, because it is unlikely 

that the cell can detect changes in C3H activity and adapt accordingly by exerting 

appropriate flux control at an earlier branch point (i.e., p-coumaroyl CoA) within the 

network. Arguably the simplest explanation is that HCT (possibly along with other plant 

acyltransferases) is reversible [105]. If so, the following scenario is possible: as p-

coumaroyl shikimate accumulates due to a reduced C3H activity, HCT converts it back to 

p-coumaroyl CoA in the presence of free CoA, thereby allowing the cell to escalate the 

production of H lignin beyond the wild-type level. The catalytic efficiency of HCT acting 

on p-coumaroyl shikimate as substrate remains to be experimentally determined, along 

with the possible competition for CoA between two shikimate esters (i.e., p-coumaroyl 

shikimate and caffeoyl shikimate). 
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Figure 3.4: Developmental patterns of the proportion of H lignin in control and 

transgenic alfalfa plants. 

(A) The proportion of H lignin in total monomer yields (H+G+S) is substantially or 

slightly increased in transgenic plants with reduced activities of C3H or CCoAOMT, 

respectively. (B) Down-regulation of COMT or F5H has essentially no effect on the 

proportion of H lignin in total monomer yields: the amounts of H lignin are very small 

and the trends do not differ significantly from wild type. 
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3.2.6 Is C3H Mildly Reversible? 

 The hypothesis of HCT being reversible prompts us to investigate whether C3H, 

which controls the material flow between two HCT-catalyzed steps, also permits catalysis 

in both directions. A slightly increased proportion of H lignin in CCoAOMT-deficient 

plants (Figure 3.4A) seems to suggest that C3H is mildly reversible and that part of the 

accumulated caffeoyl CoA is therefore converted back to p-coumaroyl CoA and 

subsequently channeled towards H lignin, a scenario which seems unlikely based on the 

known catalysis by cytochrome P450 enzymes. However, the amounts of H lignin 

determined by thioacidolysis appear to be unaffected by the low CCoAOMT activity 

despite a noticeable decrease in total lignin content (Table B.3; [25]). One plausible 

explanation is that thioacidolysis yields are highly correlated with the in vivo abundance 

of S lignin [14], which might suggest that plants may in effect produce more H lignin 

than was measured against the down-regulation of CCoAOMT. 

 

3.2.7 Two CCR-Catalyzed Reactions Are Essentially Irreversible 

 If both HCT and C3H are reversible, the two CCR-catalyzed reactions—v10 and 

v13—can be regarded as the “committed” steps (i.e., they are essentially irreversible), 

because manipulation of any downstream enzyme, such as COMT and F5H, has no 

substantial effect on H lignin (Figure 3.4B). Interestingly, the postulate seems to echo the 

conclusion from a previous enzyme assay [106]: CCR purified from poplar stems was 

able to catalyze the conversion of coniferyl aldehyde into feruloyl CoA in the presence of 

other co-factors but preferentially reduced CoA-esters, as judged by the calculated 

equilibrium constants. 
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3.2.8 The Pathway Contains Crossing Channels towards G and S Lignin 

 In addition to a modest increase in H lignin, down-regulation of CCoAOMT leads 

to a noticeable increase in the S/G ratio of all internodes except for internodes 1 and 2 

(Figure 3.5A). This finding is puzzling because coniferyl aldehyde is a common 

precursor to both S and G lignin and one would therefore expect a similar effect on both. 

The analogous situation arises in COMT-deficient plants, where the S/G ratio is reduced 

(Figure 3.5A). This case, however, is not quite as clear-cut because COMT also shows 

activities towards downstream intermediates like 5-hydroxyconiferyl aldehyde and 5-

hydroxyconiferyl alcohol. Thus, in this case of COMT deficiency, the S/G ratio might not 

be a good indicator of the flux partitioning at coniferyl aldehyde towards G and S lignin. 

 As an explanation for the altered S/G ratios in cases of CCoAOMT or COMT 

down-regulation, we postulate that the enzymes controlling v12 and v16 (and maybe even 

v10 and v17) are organized into a functional complex (each) through which the 

intermediates are channeled without much leakage. Similarly, we postulate that v13 and 

v14 form a corresponding complex without much leakage. This dual postulate for crossing 

channels is supported indirectly by literature information and by findings from our flux 

analysis, as outlined below. 

 First, an analysis of mature stems (internodes 6-9) collected from CCoAOMT 

down-regulated transgenic lines indicated that the levels of G lignin were greatly 

reduced, whereas those of S lignin were nearly unaffected (cf. CCOMT antisense line 

ACC305 in Table 1 of [107]). Similarly, down-regulation of CCR1, which actively 

catalyzes the subsequent reduction of feruloyl-CoA to coniferyl aldehyde, also resulted in 

an increased S/G ratio in mature internodes of alfalfa stems [108], again with G lignin 

being more strongly reduced than S lignin. Although the existence of the CCR2-COMT 

pathway helps sustain the lignin content in either CCoAOMT or CCR1 down-regulated 

lines, the findings do not explain why S lignin is synthesized at the expense of G lignin 
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upon genetic modifications of the CCoAOMT-CCR1 pathway. Nevertheless, the findings 

are entirely consistent with the postulate of crossing channels. 

  

 

Figure 3.5: Developmental patterns of the S/G ratio in control and transgenic plants. 
(A) In comparison with control plants, the S/G ratio is increased in CCoAOMT-deficient 

plants but drastically decreased in COMT-deficient plants. (B) Similarly intriguing, the 

S/G ratio is increased in PAL-deficient plants but decreased in C4H-deficient plants. 
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 Second, one of the constituent enzymes, F5H, is localized to the external surface 

of the endoplasmic reticulum [109], so that the proposed channel may exist in the form of 

an enzyme complex anchored in the endomembrane. Indeed, a labeling experiment in 

microsomes extracted from lignifying alfalfa stems suggested such a co-localization of 

COMT and F5H [110]. It showed that caffeyl aldehyde, when incubated with [methyl-

14
C]-labeled S-adenosyl L-methionine (a co-substrate necessary for COMT-mediated O-

methylation) and NADPH (the reducing agent for F5H), is converted to coniferyl 

aldehyde, 5-hydroxyconiferyl aldehyde, and a small amount of sinapyl aldehyde.  

 Finally, our flux distribution analysis reveals a strong correlation between the 

computed flux values of v13 and v14 for all but the CCoAOMT-deficient plants (Pearson 

correlation coefficient ρ = 0.9952; p-value < 0.001) (Figure 3.6). This correlation 

suggests that there is normally almost no exchange of products between v12 and v13, and 

that most of the coniferyl aldehydes produced through the CCR2-COMT shunt are 

directly utilized by F5H without having the opportunity of diversion into G lignin 

biosynthesis. A notable exception seems to be the situation where CCoAOMT is 

significantly down-regulated. In this case, caffeoyl CoA tends to accumulate at least in 

the short term, thus providing the CCR2-COMT pathway and the associated metabolic 

channel with an abundance of substrate. The predicted flux distribution (Figure 3.3) and 

the observed lignin composition (Table B.3) indicate that CCoAOMT-deficient plants 

produce a considerable amount of G lignin, although the levels of S lignin are 

comparable to those in the controls, which implies that only some of the extra caffeoyl 

CoA can be converted efficiently into S lignin through the proposed channel. Overall, the 

proposed functional channels seem to be consistent with results of the flux analysis as 

well as with earlier discussions in the literature [9,60]. The correlation between v12 and 

v16 is less pronounced, which is presumably due to the fact that F5H and COMT catalyze 

parallel pathways, with the latter (v20 and v21) buffering changes in earlier precursors. 
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Figure 3.6: Plot of v14 versus v13 in transgenic alfalfa plants.  

Expression of PAL, C4H, HCT, C3H, CCoAOMT, or COMT was independently down-

regulated. Symbols within each ellipse represent different internodes. With the exception 

of CCoAOMT, the two fluxes are very strongly and linearly correlated. 

 

 An alternative explanation for an increased S/G ratio upon modifications of the 

CCoAOMT-CCR1 pathway could be that the kinetic features of the enzymes that 

catalyze coniferyl aldehyde and coniferyl alcohol are fine-tuned such that they could 

permit the adjustment of fluxes leading to G and S lignin and thus change the S/G ratio. 

For instance, given that down-regulation of CCoAOMT or CCR1 may alter the 

intracellular level of coniferyl aldehyde, the relative values of v14 and v16 at steady state 

could depend on whether the respective enzyme works within the linear or saturation 

region of its kinetic profile. 

 To investigate this alternate hypothesis, we designed and analyzed a kinetic 

Michaelis-Menten model that contains the two alternative pathways from caffeoyl CoA 

to coniferyl aldehyde as well as the two principal branch points where the fluxes leading 

to G and S lignin diverge (see Section B.3). The model was simulated 10,000 times with 

randomly sampled kinetic parameter values, as described in Sections 3.4.2 and  B.3, and 
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we recorded the percentage of admissible parameter sets that yielded a significantly 

increased S/G ratio in response to a 80% reduced CCoAOMT or CCR1 activity.  

 We first examined the case where CCoAOMT is down-regulated. Only ~5% of all 

admissible systems (see Section B.3 for definition) yielded a significantly increased S/G 

ratio, whereas nearly half of all systems resulted in an S/G ratio that differed by less than 

5%. The few cases of significant increases in the S/G ratio did not reveal particular 

patterns, which may not be too surprising because the system involves 16 kinetic 

parameters that affect each other in a nonlinear fashion. Intriguingly, for the scenario of 

CCR1 down-regulation, none of the admissible systems showed a significant increase in 

S/G ratio; in fact, all changes in S/G ratios were less than 0.5%. Replacing the Michaelis-

Menten kinetics with cooperative Hill kinetics allowed more flexibility. Still, only ~3% 

of all admissible systems exhibited an increase in S/G ratio upon CCR1 down-regulation. 

Taken together, it seems that, theoretically, some precisely tuned sets of kinetic 

parameters could lead to the observed effects on the S/G ratio. However, these sets are 

extremely rare and do not seem to be robust enough to render the kinetics-based 

hypothesis viable. 

 

3.2.9 Feedforward Regulation by a Compound Derived from Cinnamic Acid 

 One of the most paradoxical findings among the collective results from the 

transgenic plants is the opposite effect on lignin composition (and specifically the S/G 

ratio) when either PAL or C4H is down-regulated. It seems that these alterations should 

not differentially affect monolignol biosynthesis, because both occur before the first 

branch point, but they do. Closer inspection of the data from different internodes reveals 

that the S/G ratio is consistently increased in PAL-deficient plants but decreased in C4H-

deficient plants (Figure 3.5B). While experiments with tobacco have suggested that the 

differential co-localization of PAL isoforms and C4H might be the underlying cause of 



 62 

such observations [11], there is as yet no direct evidence for this intracellular association 

in alfalfa or other related legume species. 

 In accordance with the proposition of separate metabolic channels for G and S 

lignin, we postulate that the different effects of PAL or C4H down-regulation on the S/G 

ratio are due to feedforward regulation. Specifically, we suggest that this regulation is 

mediated by a downstream product of the cinnamic acid degradation pathway, which is 

represented collectively as v22 in Figure 3.1. Notice that this feedforward regulation had 

not been recognized by the scientific community and was postulated by the model 

analysis purely with computational means.  

 Consistent with the observation of all transgenic experiments, an appropriate 

control strategy by this unknown compound “X” is summarized in Figure 3.7 and 

discussed below. In the case of PAL-deficiency, where the biosynthesis of cinnamic acid 

from phenylalanine declines, a diminished pool of X could directly or indirectly reduce 

the expression of CCoAOMT/CCR1/CAD and/or activate the expression of 

CCR2/COMT/F5H, thereby altering the channeling towards G and S lignin and 

increasing the S/G ratio. Intriguingly, this proposed inhibition of CCoAOMT expression 

following PAL down-regulation is supported by a strong correlation of the proportion of 

G and S lignin in total monomer yields in internodes 4-8 of the PAL- and CCoAOMT-

deficient plants (Figure 3.8).  

 In the case of C4H deficiency, however, the production of X through v22 is likely 

to increase because the consumption of cinnamic acid through a competing branch v2 is 

not as effective as in wild-type plants. Thus, an accumulation of X could in turn activate 

the expression of CCoAOMT/CCR1/CAD and/or reduce the expression of 

CCR2/COMT/F5H, leading to a smaller S/G ratio. 
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Figure 3.7: Conjectured effects of PAL (A) or C4H (B) down-regulation on the postulated channels.  
The postulated G lignin- and S lignin-specific channels are colored in blue and red, respectively, with their widths representing the 

relative capacity in the designated transgenic plants. The size of the circle with the unknown compound X correlates symbolically with 

its intracellular pool size. The blocked purple line indicates repression, whereas the purple arrow indicates activation. 
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Figure 3.8: Plot of the proportion of S versus the proportion of G in total monomer 

yields.   

The colored circles represent internodes 4-8 of stems collected from transgenic plants 

where PAL or CCoAOMT is down-regulated. Numbers in the symbols refer to the 

specific internodes. 

 

3.2.10 Salicylic Acid Is a Signaling Molecule for Monolignol Biosynthesis  

 Salicylic acid (SA) is a notable endogenous signaling molecule that is known to 

be derived from cinnamic acid [111].  Down-regulation of one pathway enzyme other 

than C4H (e.g. HCT [112]) had recently been shown to lead to elevated levels of SA. To 

investigate whether SA is the postulated signaling compound X, we measured its 

intracellular levels in many independent transgenic alfalfa lines in which different 

monolignol biosynthesis genes had been down-regulated. Indeed, the results show that 

the intracellular levels of SA are highly proportional to the extent of lignin reduction 

(Figure 3.9). Based on our postulated feedforward regulation, this effect can be explained 

through the participation of SA in the inhibition of the metabolic channel committed to S 

lignin biosynthesis, thus reducing the total lignin content. 
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Figure 3.9: Relationship between lignin content and salicylic acid accumulation in 

different alfalfa antisense lignin down-regulated lines.  
Red: 4CL, Black: C3H, Green: HCT, White: CCoAOMT, Violet: CCR, Pink: CAD, 

Gray: COMT and Blue: Wild-type. 

 

3.3 Discussion 

 Functional genomics is a premier tool for identifying metabolic pathways in 

sequenced model species and for pinpointing genes involved in them [113]. However, it 

is known that many enzymes coexist in multiple isoforms with unique expression patterns 

and substrate specificities. A pertinent example seems to be the recent discovery of two 

CCR isoforms with distinct catalytic properties towards major CoA-esters in Medicago 

[59]. Steady-state flux analysis of an extended pathway system that accounts for the 

isoforms reveals that the alternative path is dispensable in wild-type plants, but that it 

may rise to significant levels in specific transgenic lines. Indeed, CCoAOMT-deficient 

plants support a much higher lignin production than lines where HCT or C3H is down-

regulated (Table B.3; [25]). The intricate differences in pathway operation among 

otherwise very similar transgenic lines point to the need of investigating flux patterns not 

only in different plants, but also in different strains, lines and even different internodes 

and tissues. The results shown here furthermore demonstrate that subtle variances among 
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tissues and lines are difficult to discern with intuition alone, but that computational 

analyses can serve as objective and rigorous tools for explaining such differences. 

 Specifically, the new integrative modeling approach proposed here combines 

static flux-based models and a Monte Carlo simulation of randomly parameterized kinetic 

models. This approach has the advantage that it allows the collective analysis of many 

experimental results and sheds light on pathway features that are particularly important 

for functionality under normal and altered conditions. The analysis here revealed a 

quantitative trend of flux patterns during development, which in turn allowed the 

identification of principal branch-point metabolites at which internode-specific flux 

partitioning patterns control the observed mode of lignification. While it is relatively easy 

to single out principal metabolites in linear or slightly branched pathways, the system 

studied here is confounded by the plant’s employment of the same enzymes, such as CCR 

and CAD, in different key positions. Due to this multiple use, manipulating the flux 

partitioning pattern towards a desired mode of lignification may incur undesired “side 

effects.” 

 The computational analysis indicates that a single flux analysis just for wild-type 

plants is insufficient for understanding pathway functionality because even a seemingly 

simple pathway like monolignol biosynthesis requires relatively minor, yet important, 

extensions to account for the overflow of some intermediate metabolites that only occurs 

in transgenic plants. At the same time, the analysis also demonstrates that the 

simultaneous analysis of several independent datasets, in this case transgenic lines and 

sequential internodes, can lead to insights that otherwise would have been difficult to 

obtain. Here, it led to several postulates that are specific enough for experimental 

validation or refutation.  

 Some model-free postulates refer to the need for reversibility or committedness of 

key reactions, which might not be too surprising. Two further postulates are more 

intriguing. They refer to the functional channeling within the pathway and its mechanistic 
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control. Based on the observation of an increased S/G ratio in CCoAOMT or CCR1 

down-regulated lines, the computational results suggest an S lignin-specific channel 

capable of converting caffeyl aldehyde directly into 5-hydroxyconiferyl aldehyde or 

sinapyl aldehyde. Different experiments in the literature suggested the co-localization of 

COMT and F5H in lignifying alfalfa stems [110] and the localization of F5H to the 

external surface of the endoplasmic reticulum [109]. These and our findings would imply 

the likely location for a functional S-channel complex to be associated with the 

endomembrane. 

 While the proposed membrane-bound channel for synthesizing S lignin could 

constitute an important control mechanism, it may only have comparatively limited 

capacity because even in CCoAOMT down-regulated lines G lignin is generated in a 

higher proportion of total monomer yields than S lignin (Table B.3; [25]). One likely 

cause is that different O-methyltransferases (OMTs) are involved in converting caffeyl 

aldehyde to coniferyl aldehyde. These OMTs may have distinct sub-cellular localization 

(to cytoplasm or endomembrane) and therefore a different affinity to F5H. Thus, it could 

be that the cytosolic OMT in the transgenic lines with reduced CCoAOMT expression is 

up-regulated and helps consume extra caffeyl aldehyde outside the proposed channel. A 

corresponding labeling experiment in alfalfa [110] confirmed that only a small proportion 

of total cellular COMT activity against caffeyl aldehyde is associated with the 

microsomal membrane, and that adding excess recombinant COMT has little effect on 

the metabolism of caffeyl aldehyde by microsomes. 

 To examine whether the observed increase in the S/G ratio upon modifications of 

the CCoAOMT-CCR1 pathway could be explained alternatively by a kinetically-

controlled mechanism, we generated 10,000 ODE model instantiations for a reduced 

pathway system (Section B.3) and simulated both down-regulation schemes. Among all 

sampled parameter sets, only a minute percentage of systems had the ability to increase 

their S/G ratio significantly in either case. Although the results neither reject the 
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possibility of a kinetically-controlled S/G ratio nor directly corroborate our channeling 

postulate, they do suggest that purely kinetic control might be unlikely, because it would 

require rather precise implementations of specific parameters in different tissues, which 

seems to compromise the robustness of the system. As shown in a structural study of 

alfalfa COMT [114], mutations of some key residues lining the active site result in 

significantly different substrate binding and/or turnover rate. Moreover, it is likely that 

the kinetic properties of other enzymes may also exhibit a similar, if not more severe, 

susceptibility to genetic perturbations (e.g., [115,116]). Since the variation in the S/G 

ratio is typically small (s.d.≈0.03 in two control lines; [25]), the proposed functional 

channeling mechanisms seem to offer a more robust option to help maintain a 

physiologically proper S/G ratio. 

 The observed decrease in the S/G ratio of COMT down-regulated lines alone is 

not sufficient to prove the existence of a G lignin-specific channel, because a reduced 

COMT activity affects all fluxes that are specific for the synthesis of S lignin, thus 

leading to a smaller S/G ratio. Nevertheless, the strong correlation between v13 and v14 

that emerged from our computations for most transgenic experiments lends further 

credence to such an inference. This correlation not only supports the operation of a G 

lignin-specific channel, but also hints at the possibility of CCR1 and CAD (and maybe 

CCoAOMT) being complexed or co-localized on internal membranes.  

 One option for testing this postulate would be to down-regulate CCR2 and record 

if the strain exhibits a greater decrease in S lignin than in G lignin, giving a smaller S/G 

ratio. Surprisingly, knocking out CCR2 in M. truncatula, a species closely related to 

alfalfa, leads to an increased S/G ratio, whereas M. truncatula CCR1 knock-out mutants 

show a reduction in the S/G ratio [59]. However, in spite of their close taxonomic 

relatedness, the operation and control of monolignol biosynthesis might be quite different 

in tetraploid alfalfa (M. sativa L.) and diploid M. truncatula. For instance, the S/G ratio in 

wild-type alfalfa stems (0.62; internodes 1-8) is approximately twice as large as that in 
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wild-type M. truncatula stems (0.29; internodes 1-7). Consequently, further experimental 

work is required to validate or reject the postulate that a G lignin-specific channel is 

operational in alfalfa. 

 If the postulates of specific channels towards the synthesis of G and S lignin are 

valid, one may further surmise that the opposite effects of PAL or C4H down-regulation 

on lignin composition are the results of differential gene or enzyme expression, which 

could be mediated by a cinnamic acid derivative. However, the model could not identify 

this molecule, leading us to call it Compound X. Supporting this hypothesis, the 

transgenic experiments used here have shown that down-regulation of CCoAOMT, which 

we postulate to be involved in the G lignin-specific channel, yields similar proportions of 

G and S lignin among total monomers as does the down-regulation of PAL, which is 

postulated to inhibit and/or activate the functioning of the G lignin- and S lignin-specific 

channels, respectively (Figure 3.8).  

 Salicylic acid (SA), a phenolic phytohormone derived from phenylalanine, was 

proposed as a potential candidate for this unknown Compound X. Intriguingly, post-hoc 

experiments showed that the intracellular levels of SA are indeed highly proportional to 

the extent of lignin reduction in transgenics where different pathway genes are down-

regulated (Figure 3.9). This result fits directly into the context of our feedforward control 

postulate. At the same time, it makes us wonder why putting a block on monolignol 

biosynthesis could affect the homeostasis of SA, especially if the blockage is located 

away from the pathway entrance. Based on previous findings that SA can be derived both 

from cinnamic acid and from isochorismate via the shikimate pathway [111], and that 

HCT uses shikimate as a preferred cofactor (Figure 3.10), we propose the following 

scenario: when the flux going through the pathway is decreased due to some genetic 

manipulation, fewer shikimate molecules will be trapped in shikimate esters (p-

coumaroyl shikimate and caffeoyl shikimate) and thus become available to make SA. In 

other words, the shikimate recycling facilitated by HCT enables the shikimate pool to 
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work as a sensor of the flux into lignin. Future in-depth studies, whether they are 

experimental or computational, are required to justify this hypothesis. It is noteworthy, 

however, that the reason why plants shuttle monolignol pathway intermediates between 

Coenzyme A and shikimate esters has yet to be explained.    

 In conclusion, our analysis shows that a combined modeling effort can uniquely 

and effectively complement experimental studies of the type used here. In contrast to 

analyzing one dataset at a time, it allowed us to integrate all results from a comprehensive 

experimental investigation of various transgenic lines and internodes. This integration, in 

turn, revealed dynamic, developmental patterns and their dependence on key enzymes. 

Together, the analyses uncovered elusive control mechanisms of monolignol biosynthesis 

and led to testable hypotheses regarding various pathway aspects that should be clarified 

before one attempts to generate and optimize viable, productive “designer” crops with 

minimal recalcitrance. 

 

 

Figure 3.10: Alternative routes of salicylic acid biosynthesis and shikimate recycling. 

Steps likely to involve more than one enzyme and intermediate are shown with dashed 

arrows. In addition, pathways such as the tyrosine and flavonoid branches are not shown 

for the sake of clarity. 
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3.4 Materials and Methods 

3.4.1 Experimental Data
4
 

 In a previous study [25], lignin content and composition were analyzed in 

transgenic alfalfa plants in which seven enzymes were independently down-regulated (cf. 

Figure 3.1). These enzymes were: L-phenylalanine ammonia-lyase (PAL), cinnamate 4-

hydroxylase (C4H), hydroxycinnamoyl CoA:quinate/shikimate hydroxycinnamoyl 

transferase (HCT), coumarate 3-hydroxylase (C3H), caffeoyl coenzyme A 3-O-

methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H), and caffeic acid 3-O-

methyltransferase (COMT). Each transgenic plant was cultivated to early flowering stage, 

and the mature stem consisting of eight internodes was harvested and divided into 

individual segments; all internodes were numbered according to their maturity, with 

internodes 1-2 representing the pooling of the two uppermost stem segments. The lignin 

content and monomer composition for each internode were determined for each 

transgenic line via established protocols [25]; the results are summarized in Table B.3. 

The activities of all targeted enzymes were also measured and summarized elsewhere, 

with the exception of F5H, which showed no activity towards any documented substrates 

when assayed in crude alfalfa extracts in vitro (Table 2c of [25]). Thus, the F5H-deficient 

line is excluded from the following analysis. 

Salicylic Acid Determination 

 Salicylic acid levels in stems from the same plant lines (excepting PAL down-

regulated plants) as well as from CAD down-regulated lines [108] were determined using 

the biosensor Acinetobacter sp. ADPWH_lux as described previously [117,118]. Samples 

                                                 

 

 
4
The experiments reported in this Chapter were conducted by our collaborators at the Noble Foundation.  
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consisted of detached stems consisting of six internodes. SA was extracted by grinding 

stems (100 mg fresh weight) in fresh LB liquid medium (2.5 ml LB per 1 g of stem) by 

vortexing for 30 sec and sonicating for 5 min on ice, after which the homogenates were 

centrifuged at 12,000 g for 15 min. The supernatants were used for SA measurement and 

an equivalent volume of LB medium was used to make a SA standard curve (SA final 

concentrations of 0, 0.05, 0.25, 0.5, 1.6, 8.3, 20, 40, 83, 166 and 200 µM). An overnight 

culture of Acinetobacter sp. ADPWH_lux was diluted in LB (1:20) and grown at 37°C 

for ~2 hrs to an OD600 of 0.4. Sixty µl of LB medium, 50 µl of salicylate biosensor 

culture and 20 µl of each crude extract were mixed in a 96-well cell culture plate. The 

plate was incubated at 37°C for 1 h without shaking and bioluminescence and OD600 of 

negative controls (LB alone or water) were read using a Glomax Multi detection system 

(Promega Corporation, Sunnyvale, CA). SA standard and negative controls were read in 

parallel with the experimental samples and every sample was replicated five times. 

Relative bioluminescence was obtained by subtracting bioluminescence OD600 of 

negative controls, and SA concentration was estimate according to the SA standard curve. 

Lignin Content  

 Lignin content was determined by the thioacidolysis method as described 

previously [112]. 

 

3.4.2 Modeling Approach 

FBA and MOMA 

 As described in Chapter 1, static flux balance models build on the assumption that 

a metabolic pathway system is in a quasi-steady state where, for any metabolite pool, 

fluxes governing its synthesis and degradation are equal. Mathematically, such a mass 

balance constraint can be represented as 
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Nv 0 , 

where N is the stoichiometric matrix of the pathway system and v is a vector of fluxes. 

Other commonly used constraints are upper and lower bounds on individual fluxes,  

,i i il v u   

that define the possibility of reversibility and the maximal reaction rate, respectively. 

Here, we assume that all the metabolic reactions and transport processes are irreversible 

and therefore set 0il   for all i. The only exceptions are the three overflow fluxes ( 22 24v  ; 

defined in Section 3.2.2), for which we arbitrarily choose 0.01 as the lower bound to 

prevent their values from becoming too small in the subsequent optimization step. The 

maximal reaction rates used for defining the upper bounds are currently unavailable 

because most enzymes within the pathway have not been characterized in Medicago, 

according to the enzyme databases like BRENDA [119]. Therefore, we normalized all 

fluxes to the value of 1v  as a means of standardization. This normalization, which is 

achieved by introducing an extra constraint 1 1v  , works to ensure that all fluxes are less 

than or equal to one. 

 Specific to this work, the measured, relative amounts of lignin monomers can be 

reformulated as “proportionality constraints” on the three fluxes 6 15 19,   and v v v  that 

represent the transport of monolignols into the cell wall (Figure 3.1). As an illustration, if 

the first two stem internodes consist of 7.1% H lignin, 85.5% G lignin, and 7.4% S lignin, 

we can define the following equality constraints: 

15 6

19 6

7.1 85.5 0

7.1 7.4 0

v v

v v

 

 
. 

For a specific internode of wild-type alfalfa plants, all constraints taken together define 

the feasible space of all permissible flux distribution, which is denoted by wtU . In FBA, 

the optimal solution is identified within wtU  by solving a linear programming problem 

where an appropriate objective function f is maximized or minimized. In the case of 

(3.1) 

(3.2) 

(3.3) 



 74 

lignin biosynthesis, we assume that the lignified stem tissues of wild-type alfalfa plants 

have evolved to maximize the production of lignin monomers, which translates into the 

following objective function 

6 15 19( ) .f v v v  v  

The optimal flux distribution in wild-type alfalfa plants, resulting from this 

maximization, is denoted as wt
v . 

 The issue of multiple solutions giving the same optimal value of the objective 

function has been widely discussed [30,120,121]. In contrast to genome-scale models, we 

have the opportunity here to enumerate all equivalent flux distributions for a moderately-

sized metabolic pathway system like monolignol biosynthesis, for instance, using Gauss-

Jordan elimination. This advantage in turn enables us to identify a unique, 

physiologically relevant flux distribution for wild-type plants (see Section B.2 for further 

details). 

 For lignin-modified lines, where a particular enzyme is genetically down-

regulated, we use the method of minimization of metabolic adjustment (MOMA) [95] to 

predict their altered flux distributions. In its original application to gene knockout studies 

in bacteria, MOMA posited that a mutant strain tries to function as similarly to the wild 

type as possible within the limitations imposed by the mutation. In mathematical terms, 

the effect of a gene knockdown on the metabolic pathway system is mimicked by 

imposing an extra inequality constraint wt

j j jv v   on reaction j: If wt

jv  is the wild-type 

flux, then the activity of the mutated enzyme catalyzing this reaction is down-regulated to 

at most  100 %j  of the wild-type activity. The feasible space consisting of all flux 

distributions in mutants is thus defined by these inequality constraints along with all 

balance constraints and upper and lower bounds for the same wild-type internode, as 

discussed above. The notable difference for the mutant is that the specific values of the 

lignin monomer composition can now be significantly different (cf. Table B.3). Within 

(3.4) 
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this reduced feasible space, which is denoted by jU , the MOMA solution j
v  is the point 

that is closest to the reference point wt
v  in terms of the Euclidean distance 

arg min
j

j wt

U
 

v
v v v . 

Monte Carlo Analysis of Kinetic Parameters  

 A major surprise emerging from the experiments with lignin-modified alfalfa 

lines was the differential effect of CCoAOMT down-regulation on G and S lignin 

production. It is conceivable that these results could be due to the kinetic features of the 

participating enzymes. To analyze this possibility, we designed a kinetic model of the 

involved reactions and tested this model with a large-scale simulation. The details of this 

model can be found in Section B.3 and the Monte Carlo techniques per se are 

straightforward. Importantly, this Monte Carlo-type simulation allowed us to examine 

thousands of combinations of kinetic parameters without limiting ourselves to a few 

particular cases of manually tuned, ill-characterized parameter values. 

  

(3.5) 
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CHAPTER 4 

ANALYSIS OF OPERATING PRINCIPLES WITH S-SYSTEM 

MODELS
5
 

 

 The results presented in Chapter 3 have greatly improved our knowledge of the 

regulation of monolignol biosynthesis. Nonetheless, they also provoke new questions 

regarding the organization of the pathway and its regulation that have not been answered; 

neither specifically, nor in generality. For example, why do we observe a specific 

developmental pattern of fluxes but not other alternative patterns that could seem equally 

valid? And by which criteria, if any, are the observed patterns chosen? To establish the 

theoretical foundation on which these types of operating principles can be deciphered, 

two distinct, yet complementary methods will be developed in this Chapter. While we are 

specifically interested in metabolically channeled system as we encountered them in 

monolignol biosynthesis, and which will be revisited in Chapter 5, the theoretical and 

computational characterization of alternative strategies within a space of admissible 

solutions, which is developed here, is much more general and, indeed, applicable to a 

wide range of biological systems. In particular, we will address the very common 

scenario where a biological system must shift its operation from a normal steady state to 

a new target steady state, in response to physiological or environmental demands. This 

situation is quite common and will be investigated with artificial pathways and illustrated 

with an analysis of the heat stress response in yeast, which is rather well characterized 

                                                 

 

 
5
 Adapted from: Lee, Y.*, Chen, P.-W.* and Voit, E.O. (2011) Analysis of Operating Principles with S-

system Models. Math. Biosci. 231: 49-60. [*Equal contribution] 
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experimentally. Chapter 5 will use similar techniques to assess the reprogramming of 

lignin biosynthesis during plant development. 

 

4.1 Introduction 

 Biological design principles refer to structural or regulatory features of biological 

systems that are observed more often than expected. They are thought to have survived 

evolution, thereby making them apparently superior to hypothesized alternative structures 

that a priori might seem equally reasonable and valid [43,122]. The typical question in 

the investigation of design principles is: What is the advantage of a particular structural 

or regulatory feature over an otherwise equivalent design that lacks this feature?   

 Design principles are identified and investigated through comparisons with 

reference cases. In static network analysis, a candidate structure is declared a motif 

[87,123,124,125] if it is found significantly more often than in random graphs, as they 

were originally proposed over fifty years ago by Erdös and Rényi [126]. Within 

Biochemical Systems Theory (BST; [43,44,127,128]), which was discussed in Chapter 1 

of this dissertation, the role of a design feature is analyzed by comparing two systems that 

have exactly the same structure except for the feature or interest. The approach of choice 

for such an analysis has been the Method of Controlled Mathematical Comparisons 

(MCMC) [122,129]. A key component of this method is the establishment of objective 

criteria of functional effectiveness [129,130]. These criteria, which are formulated before 

the comparison of two system structures is performed and interpreted, serve as a metric 

according to which either the system of interest or some alternative is deemed superior. 

Typical criteria are stability, robustness, a short response time to stimuli, adequate 

responsiveness to external demands, and maybe a transient response profile that does not 

deviate too far from the nominal profile. 
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 MCMC originally focused on algebraic analyses, but was subsequently 

augmented with computational and statistical methods [1,43,130,131,132]. Dynamic 

biological systems that were successfully analyzed with respect to design principles 

include pathway topologies [43,130,131,133], immune cascades [130], gene regulatory 

circuits [134,135,136], signaling systems [137], and riboswitches [138]. 

 While design principles have become a fashionable topic of investigation in 

recent years, their dynamic counterparts, operating principles, have received only a small 

fraction of the attention. Operating principles address questions regarding the dynamics 

of a response as we observe or hypothesize it, in comparison to a priori equally valid 

alternatives [139,140,141]. Like in the case of design principles, operating principles may 

be investigated in natural systems, where the goal is to discover an objective explanation 

for the suitability or optimality of an observed set of procedures, or in synthetic, 

engineered systems, where the goal is the optimization of a procedure with respect to 

some target objective.  

 An example for an investigation of natural operating principles is the following 

question: If a system is forced by the environment to move to a new steady state, and if 

this state may be achieved either by drastically changing a few control variables or by 

slightly changing many control variables, which strategy is preferable? Alvarez and 

colleagues [142] analyzed this question heuristically for changes in yeast metabolism 

during the diauxic shift and determined that many genes in the living yeast cell were 

changed by a modest degree. A different aspect of natural operating principles was 

investigated in the response of yeast cells exposed to heat stress [1,143,144,145,146]. In 

this case, the lead questions were: Which genes are actually up-regulated in expression 

and by how much? What are the metabolic consequences of this up-regulation? Could 

there be alternative up-regulation scenarios that might perform better? Can we find 

objective criteria explaining the emergence or natural selection of the strategy that is 

actually observed in yeast? Yet another example concerned the question of how bacteria 
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using a PTS system for energy production can restart glycolysis after starvation, when 

one would expect the initial phosphate donor, phosphoenolpyruvate, to be depleted 

[147,148]. 

 Questions regarding the operation of synthetic systems are of the following types. 

Which sets of process manipulations or alterations will cause the system to reach a target 

objective? What is the advantage of utilizing or altering a particular sequence of 

processes instead of an alternative sequence? Is one set “better” than another? Is one of 

them optimal with respect to objective criteria? As a specific example of this situation, 

the task was posed to optimize the product yield of a feedback-regulated pathway with 

two successive branches by selecting and altering a small, fixed number of genes or 

enzymes. The results, which were not easy to predict without a quantitative analysis, 

demonstrated that the locations and magnitudes of optimal manipulations depended not 

so much on the topological structure of the pathway as on the locations of its regulatory 

signals [139].  

 One might ask whether operating principles are truly different from design 

principles, because the possible space of dynamic responses is clearly constrained, if not 

determined, by the physical and regulatory structure of a system. While design and 

operation are coupled to some degree, their distinction is both reasonable and necessary, 

because a cell or organism could theoretically respond to the same demand in different 

ways, even within exactly the same structural confines, as the diauxic shift study [142] 

demonstrates. Furthermore, cells can be exposed to drastically different demands, which 

require appropriate responses within exactly the same structural design. A good example 

is the blue-green alga Synechocystis, which generates energy either autotrophically per 

photosynthesis, heterotrophically per consumption of carbohydrates, or through a mixture 

of the two. It has been shown that the distribution of flux rates within its metabolic 

pathway system, and thus the operation of the system, shifts dramatically between these 

three modes [149]. In a different example, it was shown that plant cells use the same 
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metabolic pathway system, but with distinctly different, dynamically changing flux 

distributions, to produce woody materials during their development or in different 

transgenic strains [150,151]. 

 As in the case of design principles, it is impossible to study operating principles in 

exhaustive generality. The analysis described here therefore focuses exclusively on one 

pertinent special case, namely, where a biological system must shift from its normal 

steady state to a new steady state, a response that is typical in the face of persistent 

changes in a cell’s environment. While the two steady states will be at the center of the 

present analysis, features of transients will also be discussed. In first approximation it 

may even be possible to consider slow-changing, longer-term trends as a series of 

different “almost-steady-states” [152].  

 Most analyses of design principles in the past had the benefit of clear reference 

systems that were topologically very similar to the system of interest. For instance, a 

system with feedback was compared to a system without this particular feedback signal. 

In the case of operating principles, it is not always a priori clear what the alternatives are. 

For instance, we cannot simply compare up-regulation of one process against unaltered 

operation, because the two would lead to different transients and presumably to different 

steady states. Instead, the approach toward a new steady state will almost always require 

alterations in larger sets of independent variables. Thus, the first important step in the 

analysis of operating principles is an exhaustive exploration of the admissible set of 

operating strategies. Once this set is characterized, the true discovery of operating 

principles consists of the selection of the one strategy that is superior to all others under 

the chosen criteria of functional effectiveness and optimality. 
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4.2 Methods and Theoretical Results 

 Canonical models, and in particular S-systems within BST [43,127], are 

especially well suited for analyzing operating principles. As in the case of design 

principles, the primary reasons are twofold. First, these systems have a fixed structure, 

where each component has a well-defined meaning and where system features are 

mapped onto parameters in a one-to-one fashion [43,44]. Secondly, S-systems permit a 

linear representation of their steady states within the language of linear algebra, upon a 

logarithmic transformation of all variables [153]. 

 The generic situation to be addressed here concerns a biological system, 

represented by S-system equations (Eq. (1.2)), that needs to respond to a changed 

environmental demand by assuming a new steady state. It is not difficult to imagine that 

this task usually has many solutions and that distinctly different settings of independent 

variables may lead to the same steady state with respect to the dependent variables. This 

multiplicity of possibilities is due to the fact that most systems contain many more 

processes than variables. Because these processes are usually under the control of 

independent variables, different choices of independent variables correspond to distinct 

solution strategies.  

 The non-trivial steady state of an S-system model can be formulated in matrix 

notation as [154] 

 ,D D I IA y A y b     

where yD denotes the vector of the logarithms of the dependent variables at steady state, 

yI is the corresponding vector of independent variables, the elements of the matrices AD 

and AI are aij = gij – hij  for all i and j, separated into dependent and independent variables, 

and bi = log(i/i) for i = 1, …, n.    

(4.1) 



 82 

 In a typical analysis, all parameter values are known and one computes the non-

trivial steady state, which may then be used for other diagnostics like stability, sensitivity, 

and gain analysis [43,44,153]. This steady state can be expressed explicitly as 

 yD = S · b + L · yI, 

where S = 
1

D


A  and L = 

1

D I

A A  are the so-called sensitivity and logarithmic gain 

matrices, respectively [154].   

 For our purposes here, we must turn the task around. We assume that the system 

has to switch from some initial steady state to a target steady state Dy  that is mandated by 

new environmental demands. We furthermore suppose that we know the numerical 

values of the dependent variables at this target steady state. The question thus becomes 

how the independent variables should be changed to achieve this state (cf. [152,155]). 

Again using stress as an example, we might observe an altered metabolic steady state and 

ask which enzymes would have to be altered in activity to reach the stress state. 

 For ease of representation, we rewrite Eq. (4.2) as 

 
1 1

D I I D D

   A A y y A b .
 

Since 
1

D


A b  is constant and AD and b are known, we define 

 
1

D D D

  y y A b ,
 

which yields the simplified representation 

 I D
Ly y .

 

For the special case where m = n and L has full rank, we can invert the system of 

equations and express each independent variable as a unique linear function of the new 

variables that constitute D
y ; namely we obtain  

 
1

I D

 y L y . 

Expressed in words, we can demand numerical values for the dependent variables of a 

particular target steady state, and Eq. (4.6) determines how the independent variables 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 



 83 

have to be set for the system to reach this state. If the new state is stable, and if the 

system starts within its basin of attraction, one may actually reach this state by starting 

the system at the original steady state and resetting the independent variables according 

to Eq. (4.6). Of course, we do not know how much time the dynamic system will require 

to come sufficiently close to the target.  

 For cases where m < n, the matrix L is “tall,” which reflects an over-determined 

system that generally permits no solution. Nevertheless, for practical purposes we can 

compute a least-squares solution, which minimizes the deviation from the target state and 

is given as the regression equation 

 _I LS D

 y L y , 

where L  is the pseudo-inverse of L [156]. 

 In the most pertinent case, the number of independent variables is larger than the 

number of dependent variables (m > n). This relationship is not always true in actual 

systems, but it usually holds, because most systems contain more processes than pools 

and each process normally involves at least one independent variable. The matrix 

equation (4.5) now can no longer be inverted directly, and if the rank of L is r, the 

solution consists of an m – r dimensional space. Even though an inversion is not directly 

possible, the solution space may be characterized with methods of linear algebra, where 

the starting point is the pseudo-inverse. Specifically, the solution space, which consists of 

every admissible yI, can be spanned through the following steps. First, find a particular 

solution yI_PS. Then use yI_PS 
and the span of the null space of L to describe the entire 

solution space as  

 _I PS D

 y L y ,  

 _I I PS  y y B λ . 

(4.7) 

(4.8) 

(4.9) 
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Here,  is any given real-valued (m–n)-dimensional vector, rank(L) = n, and B  is a 

matrix in which each column is a basis vector. Together, these column vectors constitute 

a basis of the null space of L. 

 

4.3 Illustration Examples 

 It is useful to demonstrate the theoretical results with simple didactic examples. 

The first representative case is a cascaded system (Figure 4.1), where the numbers of 

precursors and state variables are the same (n = m = 4) and the system has a unique 

solution. The cascade could describe the expression of a formerly inactive gene X5, which 

becomes activated (X1) and is subsequently transcribed; X6 could model nucleotides that 

are assembled into mRNA (X2); X7 could represent amino acids, which are assembled into 

an enzyme (X3), which subsequently catalyzes the conversion of a metabolic substrate X8 

into a product X4. The final product could directly or indirectly repress the expression of 

the gene. The generic S-system representation of the model is 

 

444843
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222621
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337233
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hgg
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









. 

Without loss of generality in this and the later illustration examples, all rate constants i 

and i are arbitrarily set to 1 and the independent variables are initially defined as 1.2. By 

this definition we know that D D
 y y  because b = 0. The values of the kinetic order 

parameters in this and other systems are given in Table 4.1. 

 

 

(4.10) 
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Figure 4.1: A cascaded system with as many dependent (circles) as independent 

(squares) variables. 

The cascade could represent, from top to bottom, gene expression, transcription into 

mRNA, translation into protein, and a metabolic process catalyzed by enzyme X3. 

 

Table 4.1: Numerical values of kinetic parameters for all illustration examples* 

Cascade 1 

Figure 4.1 

Linear 

Pathway 

Figure 4.2 

Cascade 2 

Figure 4.4 

Branched Pathway 

Figure 4.7 

14g  -0.8 15g  0.5 14g  -0.8 1  1.755 1  1 

15g  0.25 21g  0.2 15g  0.24 2  1 2  2 

21g  0.4 24g  -0.25 21g  0.4 3  1 3  2 

26g  0.3 32g  0.8 26g  0.3 4  1 4  1 

32g  0.5 36g  0.35 32g  0.5 13g  0.05 11h  1 

37g  0.3 43g  0.4 37g  0.3 15g  0.75 16h  1 

43g  0.1 47g  0.1 43g  0.4 1,11g  0.125 22h  0.5 

48g  0.2 11h  0.2 11h  0.2 21g  1 27h  0.5 

11h  0.2 14h  -0.25 22h  1 26g  1 29h  0.5 

22h  1 22h  0.8 33h  0.8 32g  0.5 33h  0.2 

33h  0.4 26h  0.35 44h  0.9 39g  1 
3,10h

 
0.25 

44h  0.2 33h  0.4   42g  0.5 
3,11h

 
0.25 

  37h  0.1   47g  1 44h  0.5 

  44h  0.2     48h  1 

  48h
 0.25       

* The rate constants for the linear and the two cascaded pathways were set equal to 1. 

X1

X2

X3

X4

X5

X6

X7

X8
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 The second example is a simple linear pathway with feedback and an exogenous 

demand for product (Figure 4.2). This example was chosen in contrast to the cascaded 

system, because it involves several precursor-product relationships, which constrain the 

parameters of the corresponding effluxes and influxes. While one may initially wonder 

what the effects of these constraints may be, we will see that these constraints have no 

real bearing on the characterization of a set of independent variables that moves the 

system to the target steady state. The enzymes for the conversions of X2 into X3 and X4 

are explicitly modeled, as are the input to the pathway and the demand for X4, such that  n 

= m = 4. The generic S-system model is 

 

48443733

37332622

26221411

141115

8447334

7336223

6224112

411511

hhhh

hhhh

hhhh

hhg

XXXXX

XXXXX

XXXXX

XXXX

























 

Again, all rate constants i and i are arbitrarily set to 1 and the independent variables to 

1.2. The values of the kinetic orders are given in Table 4.1. 

 

 

 

Figure 4.2: Linear pathway with feedback and an exogenous demand for product.  

The task of moving the system to a new steady state has a unique solution. 

 

 For our illustration, we start both systems arbitrarily at (1, 1, 1, 1) and let them 

reach their nominal steady states. While at the steady state, the environmental demand 

changes at time t = 60 or t = 150, respectively, and we assume that all variables in the 

cascade and the linear pathway must move to a new target value of 2. Because n = m = 4, 

X3 X4
X1 X2

X7

X8

X5

X6

(4.11) 
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the solutions are in both cases unique. They are given as XI = [16.0  4.0  0.7937  1.4142]
T
 

and XI = [0.933  0.1857  0.0442  0.5]
T
, respectively. Numerical simulation demonstrates 

that the systems indeed respond by moving to the desired target states (Figure 4.3). The 

vectors XI in the inverse solutions do not convey anything about the transients. 

 The third and fourth introductory examples are cascaded and linear pathways with 

fewer independent than dependent variables (Figure 4.4). S-systems models were 

constructed according to well-documented guidelines, and the values of the kinetic orders 

for the cascaded system were defined as presented in Table 4.1. The target values were 

defined as 3. It could seem that these scenarios are rather unrealistic, but they do occur in 

cases like the ones shown here as well as in cases of strongly connected pathways where 

not all genes or enzymes are accessible to manipulations. If it is infeasible or impossible 

to alter some of the independent variables, m is in effect decreased and may become 

lower than n.  
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Figure 4.3: Resetting the independent variables according to the computed unique 

solutions moves the cascaded (left) and linear (right) pathway systems to the desired 

target (2, 2, 2, 2).  

During the initial phase (shaded light grey), the systems move from their arbitrary initial 

values (1, 1, 1, 1) to their nominal steady states. At time t = 60 or t = 150, respectively, 

the environment changes, requiring all variables to reach the target value 2. 

 

   

 

 

 

Figure 4.4: Over-determined cascaded and linear pathway systems with n = 4, m = 

3.  

In the example of a linear pathway, the reaction between X1 and X2 may not be accessible 

to alterations. 

X1

X2

X3 X4

X5

X6

X7

X3 X4
X1 X2

X7

X5

X6



 

89 

 This “unsolvable” situation may be addressed in different ways. First, instead of 

searching for an exact solution, one may solve the corresponding regression problem (see 

Eq. (4.7)) and find a set of independent variables that moves the system to a steady state 

that is as close as possible to the target state (Figure 4.5). In the numerical example here, 

the solution vector is XI = [17.7905  9  5.4885]
T
, and we see that X3 and X4 are not quite 

on target. 

 As a variation on this theme, closeness to the target state may be defined 

differently for each dependent variable, through the use of appropriate weights. This 

strategy allows for the option that some “important” dependent variables can be selected 

to come as closely as possible to their target values, while others are possibly not. Finally, 

one may ignore some of the dependent variables, whose specific values are not 

considered as important as those of other variables, and restrict the optimization to a 

subset of important dependent variables, thereby in effect reducing n. Examples for less 

important variables might be intermediates in linear pathways. 

 

 

Figure 4.5: Least squares solution for the over-determined cascaded system in 

Figure 4.4. 
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 To be specific, suppose it is most important that variable X4 of the cascaded 

pathway attain the target value, while other variables are of secondary importance. The 

original task can be written as 

 

D Iy Ly    where  
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To enforce that X4 moves to the target, presumably at the cost of other variables, we 

separate the equation for X4 in Eq. (4.12) from the rest, which yields  
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Using the notation
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  

L  and 4 41 42 43[L L L ]L , the particular 

solution of yI based on this separated equation is now given as 

 _ 4I I PS  y y B λ , 

where 

 

 

_ 4 4I PS yy L , 

4B  is a 32 matrix where each column is a basis vector of the null space of 4L , and λ  is 

any real-valued 2-dimensional vector. Having enforced that the fourth variable will reach 

the target value, we still have options for the remaining independent variables. Namely, 

the equation 

 

 1 2 3 123

123 _ 4( )

T

I

I PS

y y y 

  

L y

L y B λ
 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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allows us to define criteria such as a least-squares error for the remaining variables, 

which correspond to different choices for λ . For instance, we can use the pseudo-inverse 

to define 

 
  123 4 1 2 3 123 _( )

T

I PSy y y   λ L B L y ,
 

which yields the solution as 

 
  _ 4 123 4 1 2 3 123 _( )

T

I I PS I PSy y y     y y B L B L y . 

The result of this operation is shown in Figure 4.6. In comparison with Figure 4.5, X4 

now reaches the target value 3 exactly, while the remaining variables approach the value 

3 only approximately. In particular, the improvement in X4 is “paid for” with an inferior 

performance of X3. The solution vector of independent variables in this case is XI = 

[97.2759  9.0  116.8222]
T
. If X3 is most important in the same system, the solution vector 

is XI = [12.7188  9.0  3.0]
T
 and X4 overshoots the target (plot not shown). 

 

 

Figure 4.6: Solution for the over-determined cascaded system in Figure 4.4, where 

X4 is forced to reach the target state 3. 

 

(4.17) 

(4.18) 
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Figure. 4.7: Branched pathway with a substrate cycle.  

The system contains four dependent variables (circles) and seven independent variables, 

which model the system input (X5) and catalyzing enzymes (X6, …, X11). The system is 

representative of the most prevalent situation where n < m. 

 

 The most pertinent case is n < m. A representative example is the pathway shown 

in Figure 4.7, which has four dependent and seven independent variables. The S-system 

was constructed according to usual guidelines (see Table 4.1 for parameter values), and 

as before, we set all independent variables arbitrarily set to 1.2 and solved the system 

from (1, 1, 1, 1) to its normal steady state. Subsequently, we assumed that the 

environmental demand changed by requiring all target values for the dependent variables 

to assume the value of 2.  

 Because n < m, the solution consists of a space that can be expressed by a 

particular solution plus a linear span of a basis of the null space of 
1

D I

 L A A . The 

particular solution is computed as 

 D Iy Ly  

 _I PS D

y L y   

and any feasible solution can be characterized by the particular solution plus an arbitrary 

vector in the null space of L: 

            _I I PS  y B λ y , 
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(4.19) 

(4.20) 

(4.21) 
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where λ  may be any 3-dimensional real-valued vector and B is a matrix in which each 

column is a basis vector of the null space of L.  

 Choosing any Iy  inside this solution space is guaranteed to lead the system to the 

target steady state. Two examples of admissible solutions in Cartesian space are XI = 

[1.9363  1.4646  0.7293  0.7293  1.4705  0.7755  0.8658]
T
 and XI = [4.3355  2.8505  

2.1973  2.1973  1.8490  1.1861  1.4149]
T
. The former of these solutions is the least-

squares solution, while the latter is the least-squares solution plus the first basis vector of 

the null space. These and other solutions within the admissible space move the system to 

the target steady state of (2, 2, 2, 2) as expected, but the transient behaviors of these 

systems are different, and it is not a priori clear how to manipulate them.  

 Interestingly, it is possible to alter any solution to some degree in a targeted 

fashion by controlling the basis vectors of the three-dimensional null space of L. In the 

given numerical case, the basis vectors are 

 B1 = [0.403  0.333  0.5514  0.5514  0.1145  0.2124  0.2456]
T
, 

 B2 = [0.0226  0.0091  -0.1991  -0.1991  0.2173  0.9322  -0.063]
T
,  

 B3 = [-0.1285  0.0201  -0.1776  -0.1776  0.2178  -0.0607  0.9321]
T
. 

These basis vectors can be computed directly in Matlab with the Null command, which 

applies singular value decomposition to obtain an orthogonal basis set. Different effects 

are observed when any of these basis vectors is altered. For instance, increasing B1 by a 

positive factor causes all responses to speed up (Figure 4.8), while increasing B2 or B3 

causes X1, X2 and X3 to accelerate but X4 to slow down (data not shown). Thus, the 

transient behavior can be controlled to some degree through the basis vectors. However, 

the effects of such manipulations are difficult to predict, and it is more straightforward to 

use direct optimization methods as we will discuss them next.  

(4.22) 
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Figure 4.8: Manipulation of the basis vectors permits modest changes in transient 

speed.   

Here, increasing B1 causes all transients to accelerate (arrow). Solid lines: no 

acceleration; dashed lines: acceleration by increasing B1 twofold; dotted lines: 

acceleration by increasing B1 fourfold. 

 

4.4 Optimal Operating Strategies 

 The computation of the pseudo-inverse in the steady-state equations of the S-

system, along with the characterization of the null space, results in the space of all 

possible solutions. Within this space, any computed resetting of the independent variables 

leads to a desired steady state in terms of the dependent variables. While it is 

mathematically and practically satisfying to have a concise representation of this solution 

space, one will wonder whether some admissible solutions within this space are “better” 

than others. Clearly, the answer requires optimization, which, interestingly, does not need 

an explicit characterization of the solution space per se. The optimization does require an 

objective function, which is to be selected according to the chosen criteria of functional 

effectiveness. 

 Operating principles have not yet been analyzed often enough to permit a listing 

of “typical” criteria of functional effectiveness, and judging by the exploration of design 
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principles, one might expect them to change from one application to another. Among 

likely, generic criteria one will often establish similar metrics as for design principles, 

which often include local stability, modest gains and sensitivities, and tolerance of the 

steady state to perturbations. Also as in the case of design principles, one might prefer 

fast response times and bounded transients. Another typical criterion in superior designs 

is a minimal accumulation of intermediates. Here, this criterion is automatically satisfied 

when a complete target profile of steady-state values is mandated, but if no target values 

for intermediates are specified, it may indeed serve as a criterion. 

 In addition to these criteria gleaned from design principle analysis, operating 

strategies are distinguishable in other respects. In the work presented here, we focus 

primarily on two aspects that appear to be particularly pertinent: the collective deviation 

of independent variables from their nominal levels, and the number of independent 

variables that are to be changed. These criteria are important to a cell, because they are 

directly related to the effort that has to be expended in terms of gene expression and the 

dynamics of RNAs and proteins [157], and to the degree of possible side effects from 

such changes. Secondarily, we will look into the profiles of transients between steady 

states. One could presumably study a variety of additional criteria, such as a favorable 

dynamic sensitivity profile [158,159]. 

 To formalize the deviation from normal operation, we introduce a vector d  that 

represents the change in the vector of independent variables such that the system reaches 

the target steady state Dy , which is assumed to be known. With these definitions, we can 

formulate the target state as  

 
1 1 ( )D D D I I

   y A b A A y d , 

and this expression can be rearranged as a linear constraint on d . Namely, we can write 

 
1 1( )D I D I I D

   A A d A b A y y . 

Now let 

(4.23) 

(4.24) 
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 1 if the catalytic step coded by is induced to reach the steady state

.
0 otherwise

i

i

d
z


 


 

If all zi are set to 1, the optimization task allows every independent variable to change as 

long as the linear constraints are satisfied, but the identification of specific solutions still 

depends on the dimension and rank of 
1

D I


A A  as well as the chosen criteria of functional 

effectiveness. 

 One of the most commonly used criteria for finding a particular solution is the 

total squared error E, which in this case can be written as 

 
2

1 1( )D I I D D IE     A b A y y A A d , 

where 
2
is the 2-norm.  The solution d̂  with the lowest E corresponds to an optimal 

operating strategy where the first criterion, i.e., the collective deviation in independent 

variables from their nominal values, is minimized.  

 The second criterion requires finding a minimum set of independent variables 

whose alteration is necessary for reaching the target steady state. This task is equivalent 

to solving the following Mixed Integer Linear Programming (MILP) problem: 
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1 1
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The CPLEX solver in AMPL can be used to solve this type of MILP. 

 Similar to optimization tasks in the field of biotechnology, where the typical 

objective is the maximization of a metabolite pool or flux, it is here also possible to 

account for constraints on concentrations and fluxes [85,160,161,162,163] as well as 

more complex limitations such as metabolic burden [128] or the feasibility of parameter 

(4.25) 

(4.26) 

(4.27) 
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regions that correspond to admissible physiological states [144]. In particular, the 

metabolic burden, which is associated with the total mass of all proteins (cf. discussion in 

[128]), can be an important issue of cellular protein economy because it was shown for 

the case of recombinant bacteria that the growth rate decreased monotonically with 

increasing numbers of introduced plasmid copies (e.g., [164,165,166]).  

 Moreover, one should expect that it is easier to up- or down-regulate some genes 

or enzyme activities than others. In fact, it might not be practically feasible to change 

some enzyme activities at all. If so, the corresponding independent variables in the model 

are off limits in the selection of any viable operating strategies. Other processes might be 

accessible to manipulations but limited in the degree of alteration. We will discuss some 

of these concepts in Section 4.5. 

 

4.5 Case Study 

As a specific case study, we consider the response of yeast cells to heat stress. 

The first indications of such a response are observable within minutes of the initiation of 

heat stress: transcription factors are mobilized and translocated [167], and numerous 

genes respond with strong changes in expression [168,169,170]. At the proteomic level, 

heat shock proteins emerge in high numbers [171,172,173]. At the metabolic level, a 

significantly altered profile of sphingolipids guides the expression of some key genes 

[174], and, most important for the following illustration, the protective disaccharide 

trehalose is produced in huge amounts [157,175]. 

 Several modeling studies have investigated the dynamics of trehalose upon heat 

shock in recent years [1,144,145,146,157,176,177], which allows us to keep the 

discussion of background information to a minimum. In a nutshell, material is siphoned 

off glycolysis at the level of glucose 6-phosphate and channeled toward the production of 

glucose 1-phosphate, UDPG, glycogen, trehalose 6-phospate and trehalose, with 

trehalose accumulating in large quantities. The enzyme trehalase splits trehalose into two 
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glucose molecules and thereby completes the trehalose cycle (see Figure 4.9). Because 

the present study is focused on methodological advances rather than new biological 

insights, we take the S-system model of the trehalose cycle in [1] at face value and 

analyze alternative operating strategies. 

 The S-system equations describing the system were taken directly from [1]. They 

are 
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 Of primary interest here is the response of yeast to heat stress, which affects most 

of the reactions steps in the pathway. According to literature studies (cited in [1]), the 

alterations among the dependent and independent variables under heat stress are 

distinctly different, with some variables and steps changing substantially and others not 

as much or not at all  (Tables 4.2 and 4.3). 

(4.28) 
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Figure 4.9: Diagram of the trehalose cycle (solid blue arrows) in yeast.  

Solid brown arrows represent other pertinent reactions. The main glycolytic flux is 

presented with heavy arrows. Red dotted arrows with associated minus signs indicate 

inhibition, while green dotted arrows associated with plus signs indicate activation. 

Abbreviations: Glcext: external glucose; Glc: internal glucose (X1); G6P: glucose 6-

phosphate (X2); G1P: glucose 1-phosphate (X3); UDGP: uridine diphosphate glucose (X4); 

glycogen (X5); T6P: trehalose 6-phosphate (X6); Tre: trehalose (X7); PPP: pentose 

phosphate pathway. X8, …, X19 represent independent variables (see Table 4.4). 

 

Table 4.2: Dependent variables of the S-system model (Eq. (4.28)) of the trehalose 

cycle. Steady-state values under optimal temperature conditions were collected from the 

literature [1]; heat-stress values (scaled by optimal steady-state values) computed with 

the S-system model upon changes in independent variables as shown in Table 4.4. 

Glcext

Glc

G6P G1P UDPG 

T6P 

Tre

PPP 

Medium

Cytosol

Glycolysis 

Glycogen

X9

X12

X10

X13 X14

X8

X11

X15

X16

X17

X18
X19

Metabolite 
Variable 

Name 

Steady-State 

Concentration [mM] 

under Optimal 

Temperature 

Conditions 

(from the Literature) 

Computed Fold Change in 

Steady-State 

Concentration 

during Heat Stress 

(Scaled by Normal Steady 

State) 

Glucose X1 0.03 1.46 

G6P X2 1 5.54 

G1P X3 0.1 3.99 

UDGP X4 0.7 2.69 

Glycogen X5 1 55.8 

T6P X6 0.02 4.28 

Trehalose  X7 0.05 103 
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In this case, n = 7 and m = 12, which indicates quite a bit of flexibility among 

different solutions. Application of the pseudo-inverse method reveals the space of all 

admissible solutions; an example of a possible solution is XI = [5.4169 5.2877 0.9723 

2.3770 2.3004 3.0197 2.8855 2.8574 2.1650 2.9739 4.4620 1.4873]
T
. XI is computed 

using the pseudo-inverse of L and the original basis of the null space of L, which was 

obtained through singular value decomposition in MATLAB, and  = [1 1 1 1 1]
 T

.  As to 

be expected, this vector of independent variables moves the system to the target steady 

state. However, the solution is much slower than the observed solution (Figure 4.10).  

 

 

Figure 4.10: A possible solution within the space characterized by the pseudo-

inverse method (dashed), in comparison with the nominal solution discussed in [1].  

While both solutions eventually reach the same steady state, the transient of the solution 

computed here is comparatively slow (see text for details). 

 

 The solution space obtained with the pseudo-inverse method is 5-dimensional, 

and a basis is 

B1 = [0.1635  0.1582  0.2144  -0.1562  0.0986  -0.1328  -0.1543  0.9026   

0.1099  -0.0034  -0.0034  -0.0034]
T
 

B2 = [-0.2260  -0.2188  -0.3985  0.2716  0.3480  0.3708  0.4330  0.2639   

0.3907  -0.0017  -0.0017  -0.0017]
T
 

B3 = [-0.2260  -0.2087  -0.1967  -0.7547  0.0363  0.0466  0.0021  0.0002   
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0.0016  0.3128  0.3128  0.3128]
T
 

B4 = [0.3576  0.3568  0.4235  0.1207  0.1771  0.2723  0.2627  -0.1569   

0.1578  0.3301  0.3301  0.3301]
T
 

B5 = [-0.1451  -0.1291  -0.2276  0.5556  -0.1360  -0.2193  -0.3147   

0.1558  -0.1971  0.3527  0.3527 0.3527]
T
 

 As in the illustrative example of a branched pathway, it is to some degree possible 

to affect the transient speed by manipulating the basis vectors. Tuning B1 or B2 causes the 

glycogen concentration to speed up but has almost no effect on trehalose or the other 

variables. Increasing B3 accelerates trehalose and no other variables, increasing B4 speeds 

up both trehalose and glycogen, while increasing B5 speeds up trehalose but slows down 

glycogen production (Figure 4.11). 

 

 

Figure 4.11: The solutions obtained with the pseudo-inverse method can be 

manipulated by modifying the basis vectors.  

In the left panel, basis vector B3 was multiplied with factors 1, …, 5 (in direction of the 

arrow); this action did not affect the glycogen profile. In the right panel, basis vector B5 

was multiplied with factors 1, …, 5, in direction of the arrows. All solutions eventually 

reach the same target steady state. 
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 In contrast to exploring the entire solution space, the direct optimization method 

allows us to select criteria of functional effectiveness a priori and to optimize the solution 

toward these criteria under the constraint that the target steady state is reached. As the 

first example, suppose the overriding criterion is to alter the independent variables as 

little as possible in magnitude. Least-squares optimization toward this criterion yields a 

solution that not only reaches the target steady state but also exhibits only modest 

variations in enzyme activities (Table 4.3; column 4). 

 As a second example, we mandate to keep the number of altered independent 

variables to a minimum. MILP optimization reveals that this minimum number is 7, and 

the steady state is reached upon quite strong alterations in this minimum set (Table 4.3; 

column 5). 

 Both results are interesting. First, the constrained least-squares solution turns out 

to be very similar to the nominal solution, which indicates a similar strategy as in the case 

of the diauxic shift (see introduction and [142]). Second, the minimum-set solution shows 

drastically different values than the nominal solution and identifies glycogen 

phosphorylase as the most dispensable reaction step. In an entirely different study [157], 

this same step was also identified as only modestly relevant for the trehalose response. 

The question of which strategy is superior depends on the criteria of functional 

effectiveness. One might say that the least-squares solution should be the preferred means 

of operation because all variables remain as close to their normal operating points as 

possible and the strategy produces glycogen faster. Yet, if the cost of gene expression and 

the production of transcription factors and mRNAs is a major concern, then the 

minimum-set solution might be superior because its sum of independent variables is 

smaller. In short, the superiority is context-dependent rather than universal. 
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Table 4.3: Different implementations of computed heat stress responses, which all lead to exactly the same 

target steady state. 

Catalytic or 

Transport Step 

Variable 

Name 
Nominal* 

Least 

Squares 

Minimum 

Set 

Least Squares 

(X8, X10, 

5V , 

and 

7V  fixed) 

Minimum Set 

(X8, X10, 

5V , 

and 

7V  fixed) 

Glucose transport X8 8 2.0096 4.6155 8 (fixed) 8 (fixed) 

Hexokinase/Glucokinase X9 8 1.9440 4.4334 8 8 

Phosphofructokinase X10 1 0.3577 1 1 (fixed) 1 (fixed) 

G6P dehydrogenase X11 6 0.8745 1 6.2371 1.6377 

Phosphoglucomutase X12 16 0.8435 1.1046 15.5916 38.0406 

UDPG 

pyrophosphorylase 
X13 16 1.1110 1.5932 14.9673 149.5541 

Glycogen synthase X14 16 1.0616 1.4620 14.8016 217.1534 

Glycogen phosphorylase X15 50 1.0512 1 56.1937 1 

Glycogen use X16 16 0.7965 1 15.5396 42.5464 

α, α-T6P synthase X17 12 1.0942 2 12 12 

α, α-T6P phosphatase X18 18 1.6413 3 18 18 

Trehalase X19 6 0.5471 1 6 6 
*Heat-induced fold-increase in activity used in the model (Eq. (4.28)) 
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Figure 4.12: All solutions eventually reach the exact same steady state and the 

transients have similar shapes, but the timing is quite different.  

While glycogen and trehalose in the nominal solution come close to their steady state 

values within about 5 time minutes (left panel), reaching the same levels takes ten or 

more times as long in the least-squares (right panel; solid lines) and minimum-set (right 

panel; dotted lines) solutions (note different time scales). Other variables respond on a 

time scale that is more similar to the nominal solution (not shown). 

 

 Table 4.3 seems to indicate that much “cheaper” solutions than the nominal 

solution can be found, which raises the question of why the nominal solution employs 

alterations in independent variables that are so much more dramatic than the least squares 

or minimum set solutions. At least one answer can be found in the response time: 

although all solutions reach exactly the same steady state, the nominal solution is more 

than ten times faster than the least squares and minimum-set solutions (Figure 4.12; note 

different time scales). 

 The issue of drastically different transient speeds begs the question of whether 

and how the least-squares and minimum-set solutions could be accelerated. The most 

direct way of accomplishing acceleration arises if every flux contains its own 

independent variable. For instance, if every flux is governed by an enzyme which enters 

the flux with a kinetic order of 1, then multiplication by the same factor  > 1 will speed 

up the dynamics of the entire system by. This advance does not come for free though, 

because the cost of the solution with respect to the chosen criterion increases and the 

result may no longer be optimal. For instance, the metabolic burden, which roughly 

corresponds to the sum of independent variables, increases -fold. An increased 
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metabolic burden can be a disadvantage because it puts additional stress on the cell due to 

higher levels of transcription and translation [164]. If minimal metabolic burden is indeed 

a pertinent criterion of functional effectiveness, the totality of changes in independent 

variables should be kept as small as possible. 

 If the independent variables have different kinetic orders or appear in several 

equations, a systemic speed-up may still be possible. Specifically, one has to solve the 

equations 
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for all i = 1, …, n. In the trehalose case, these conditions result in a set of 14 linear 

equations with 12 unknowns (in log coordinates), which has no algebraic solution. 

Nevertheless, one can obtain a solution in a least-squares sense, which indeed leads to an 

acceleration of the transients and approximately reaches the target steady state. The 

required changes in independent variables are presented in Table 4.4, where LS = 11.19 

and MS = 6.29 are the acceleration factors for the least-squares and the minimum-set 

solutions, respectively. These factors are computed based on the settling time τ, which 

here is the amount of time needed for trehalose to reach and stay within 95% of its 

nominal heat stress value. While the resulting trehalose profiles are essentially the same 

as in the nominal scenario, the glycogen trends are still slower (Figure 4.13). 

Interestingly, the steps directly associated with the dynamics of trehalose are very similar 

to the nominal solution, and the glycogen phosphorylase step is again much lower (Table 

4.4). 

 Distinctly different solutions to speeding up the transients could possibly be 

reached in two ways. First, the cell could initiate a fast transient toward a steady state 

with more extreme values than needed, and in a second phase relax these values toward 

(4.30) 
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the true target state. This strategy is expected to incur overshoots before the true target 

steady state is reached [152]. Second, it is possible to compute settings in independent 

variables that reach states that are not steady states. These computations require methods 

of nonlinear control theory, which were demonstrated for S-systems elsewhere [178]. 

 

4.6 Discussion 

 Deciphering how nature solves problems has been the dream of scientists for a 

long time. Consequently, enormous effort has been devoted to shining light on operating 

procedures in nature, dissecting systems, and identifying and characterizing processes 

that cells employ to solve specific problems. Given the seemingly unlimited variability 

and complexity of tasks that need to be addressed, a comprehensive understanding of 

operating procedures, let alone operating strategies or even operating principles, will not 

be gained in the foreseeable future. Nonetheless, the overwhelming magnitude of the 

challenge does not suggest that we give up, but that even small advances might be 

beneficial on our long journey. 

 

Table 4.4: Accelerated least squares and minimum set solutions for the trehalose 

cycle 

Catalytic or Transport Step Nominal 
Least Squares 

(accelerated) 

Minimum Set 

(accelerated) 

Glucose transport 8 22.4731 28.8238 

Hexokinase/Glucokinase 8 21.7616 27.7065 

Phosphofructokinase 1 5.2507 7.9468 

G6P dehydrogenase 6 1.2416 1 

Phosphoglucomutase 16 9.4252 6.8941 

UDPG pyrophosphorylase 16 12.4311 9.9536 

Glycogen synthase 16 11.8831 9.1365 

Glycogen phosphorylase 50 11.7559 6.2449 

Glycogen use 16 8.9158 6.2494 

α, α-T6P synthase 12 12.2458 12.4968 

α, α-T6P phosphatase 18 18.3691 18.7455 

Trehalase 6 6.1230 6.2485 
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 Thanks to high-throughput techniques of molecular biology, the availability of 

large datasets has grown immensely and will continue to increase. Along with this 

increase will be a more and more pressing need to find means of interpretation and of 

comparing similar, yet structurally different solution strategies. Similar to the 

investigation of design principles, the study of operating principles is expected to lead to 

the discovery of motifs, which will provide explanations of naturally evolved systems as 

well as guidance regarding the design of new systems within the field of synthetic 

biology. 

 We have shown in this Chapter that a small sub-class of cellular tasks can be 

addressed quite efficiently with mathematical and computational tools. Namely, we 

propose methods for investigating the situation where a biological system is forced to 

move to a new steady state, which we assume to be known. For example, in the heat 

stress scenario discussed here, the cell must accumulate sufficient amounts of trehalose 

and possibly glycogen, while internal glucose and trehalose 6-phosphate need to be 

carefully controlled, because they cause adverse effects in high concentrations 

[175,179,180]. Thus, some pools in a pathway need to be altered substantially, while 

others must remain more or less at their nominal level. We show here that such tasks can 

be formulated rigorously in the language of linear algebra and constrained optimization. 

 The analysis yields two main results. First, it defines the entire solution space of 

the problem, and second, it allows a direct system optimization toward given criteria of 

functional effectiveness. The elegance of these solutions is primarily due to the special 

structure of S-system models, whose steady states are characterized by systems of linear 

equations. With the exception of Lotka-Volterra [181,182,183] and lin-log models 

[184,185], whose steady states are also governed by linear equations, it seems very 

difficult to obtain similarly general results with ad hoc models, such as pathway systems 

that are represented with Michaelis-Menten rate laws and their generalizations.  



 108 

 Interestingly, Generalized Mass Action (GMA) representations within BST 

([44,186]; Eq. (1.3)), as well as other model structures, may permit numerical solutions 

under favorable conditions, although these solutions are not as general as in the case of S-

systems. Namely, consider the important special case where each flux representation 

contains at most one independent variable, which enters the flux in a linear fashion, as it 

is typical for most enzymes. If all parameter values and the target steady state are known, 

all terms in the steady-state equations either become linear functions of one independent 

variable, or they do not contain an independent variable at all. Furthermore, outside the 

independent variables, all other components of each term combine to a single numerical 

value, so that the entire system of steady-state equations is linear in the independent 

variables. As in the cases shown here, this system may have a unique solution or be over- 

or underdetermined, and it can be analyzed in each case with methods of linear algebra 

and optimization. The condition of linearity with respect to independent variables can 

actually be further relaxed, for instance, to the requirement that the same independent 

variable, if it appears in different terms, always has the same kinetic order. 

 The tasks and solutions proposed here are reminiscent of optimization problems 

that have been analyzed in the field for two decades [85,128,144,160,161,163]. However, 

the two lines of investigation represent different aspects of targeted alterations in 

pathways. In the typical optimization tasks in biotechnology or metabolic engineering, a 

metabolite pool or flux is to be maximized, while other features of the steady state profile 

are rather irrelevant as long as they remain within general physiological constraints. As a 

consequence, the task typically has a clearly defined, single optimal solution, although in 

some cases alternative optima with the same value of the objective function occur, and it 

is furthermore possible to investigate multi-objective optimization tasks [128,187]. In the 

analysis here, the primary requirement is that the system must reach a specified steady-

state profile. This task often admits an entire solution space, within which the system 

must operate. Within this space, questions of superiority of one solution over another 



 109 

with respect to selected criteria can be explored. Functional effectiveness is not usually 

considered in biotechnological optimization, but in the case analyzed here provides the 

metric for comparing alternative strategies and declaring one solution superior to another.  

 An unresolved issue is the definition of criteria for functional effectiveness, which 

are not necessarily known a priori. Is it advantageous to up-regulate just a few genes 

substantially, or is it better to up-regulate many genes by a small amount? We do not yet 

have answers to such questions, but we have taken a first step by asking these questions 

and by suggesting that it might be advisable to observe how nature solves tasks in order 

for us to develop ideas for what types of operating strategies might be candidates for 

optimality. Moreover, the work presented here suggests tools for comparing different 

solutions with objectivity and for declaring superiority of different alternatives once 

criteria are established. 
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CHAPTER 5 

FUNCTIONAL ANALYSIS OF METABOLIC CHANNELING AND 

REGULATION IN LIGNIN BIOSYNTHESIS: A COMPUTATIONAL 

APPROACH
6
 

 

 Chapter 4 presented two methods for characterizing alternative strategies 

employed by biological systems to shift operation from a normal steady state to a new 

target steady state. Such transitions are quite common and include not only stress 

responses or other adaptations to external perturbations, but also normal, physiological 

processes, such as the reprogramming of lignin biosynthesis during plant development. A 

direct application of the methods developed in Chapter 4 to the case of lignin 

biosynthesis, however, is complicated due to the fact that the design and operation of the 

G- and S-channels are not yet sufficiently characterized. Nonetheless, similar in concept 

to Chapter 4, the goal here is to gain deeper insights into the functional role of metabolic 

channeling and its associated regulation. Thus, this Chapter will focus on exploring the 

design space (see below) and comparing alternative operating solutions that seem a priori 

equally valid. The methods are somewhat different in approach and implementation from 

those in Chapter 4, but the philosophy of comparatively assessing design and operating 

principles is the same. 

 

 

                                                 

 

 
6
 Adapted from: Lee, Y., Escamilla-Treviño, L., Dixon, R.A. and Voit, E.O. (submitted) Functional 

Analysis of Metabolic Channeling and Regulation in Lignin Biosynthesis: A Computational Approach. 
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5.1 Introduction 

 The metabolic scaffold for the biosynthesis of the three building blocks of lignin 

was originally seen as a grid-like structure [9], but this initial structure has been revised 

and refined and is now understood as an essentially linear pathway with only a few 

branch points (Figure 5.1). Although this generic pathway structure is now widely 

accepted, it has become clear that different lineages of vascular plants have evolved 

variants that engage distinct biosynthetic strategies. An interesting example is the model 

legume Medicago truncatula, where the characterization of two distinct cinnamoyl CoA 

reductases, CCR1 and CCR2, has suggested parallel routes from caffeoyl CoA to 

coniferyl aldehyde (Figure 5.1) [59]. A more unusual case is the lycophyte Selaginella 

moellendorffi. Functional analyses of two enzymes recently discovered in this species, 

SmF5H and SmCOMT, support the notion that S. moellendorffi may have adopted a non-

canonical pathway to synthesize coniferyl and sinapyl alcohol, which differs from that in 

angiosperms (Figure 5.1) [188,189,190].  

 Given such variations, it would appear reasonable to consider genus- or species-

specific similarities and differences. However, such data are seldom available, and even 

if a customized pathway structure can be established, its regulation often remains 

obscure. This shortcoming tends to become evident with new, precise data. For instance, 

experiments using genetically modified M. truncatula lines with reduced CCR1 activity 

exhibited an unexplainable decrease in the ratio of S to G lignin over wild type [59]. Such 

discrepancies between expectation and observation suggest that the currently accepted 

pathway diagrams may require further revisions that include regulatory mechanisms 

affecting the physiological outcome when the pathway is perturbed. 

 The focus of this Chapter is an assessment of such a regulatory system associated 

with lignin biosynthesis in Medicago. This genus includes model species like M. 

truncatula, as well as alfalfa (Medicago sativa L.), an important forage legume. 

Medicago is particularly suited for these studies, because comparatively extensive 
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information is available. For instance, as described in Chapter 3, a detailed dataset was 

established that characterized different lines in which seven lignin biosynthetic enzymes 

were independently down-regulated, and the resulting lignin content and monomer 

composition were determined in several stem segments [25]. In a recent study, we 

demonstrated that these types of data contain substantial, although hidden, information. 

In particular, we used these data to show that certain enzymes may co-localize and/or 

assemble into two independent channels for the synthesis of G and S lignin, and that 

salicylic acid acts as a potential regulatory molecule for the lignin biosynthetic pathway 

(Chapter 3 and [150]). 

 Although these earlier results provided significant insights into the mechanisms of 

regulation in this pathway, several critical questions, especially regarding the biological 

function as well as the operating mode of the channels, remain unanswered: For instance, 

are these channels always active in vivo? Are they sufficient to explain all available data 

in Medicago? Is there crosstalk between them, and if so, how is it organized? Exploring 

all pertinent scenarios associated with such questions would be experimentally intractable 

because they are simply too numerous. 



 

113 

 

Figure 5.1: Generic pathway diagram of lignin biosynthesis with species-specific 

extensions.  
The widely accepted generic pathway consists of black arrows. It leads to the 

biosynthesis of three hydroxycinnamyl alcohol monomers that in turn give rise to p-

hydroxyphenyl (H), guaiacyl (G), and syringyl (S) subunits of lignin. Listed next to each 

reaction arrow are the catalyzing enzymes, which are highlighted in bold if considered 

major. The lycophyte Selaginella moellendorffi contains two bi-functional enzymes, 

SmF5H and SmCOMT, which are shown in blue. Co-expression of these two enzymes 

would permit S. moellendorffi to synthesize coniferyl and sinapyl alcohol directly from p-

coumaryl aldehyde and p-coumaryl alcohol. By contrast, Medicago truncatula has two 

functionally distinct isoforms of CCR, which are shown in red. The green arrow 

connecting caffeyl aldehyde to coniferyl aldehyde denotes the only non-canonical 

reaction that is likely to be functional in both S. moellendorffi and M. truncatula. 
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 Instead, we present here a novel computational approach to investigate 

exhaustively all regulatory schemes involving the key reactions associated with G and S 

channels in the lignin biosynthetic pathway (Figure 5.2). The specific hypothesis is that 

the formerly postulated and validated channels may have two different modes of 

operation. Either they are permanent in a sense that the component enzymes are 

persistently assembled into a complex; such a complex could be realized through 

membrane co-localization, thereby ensuring that the corresponding alcohol is always 

synthesized. As an alternative, the channels could be facultative, thereby displaying a 

functionality that depends on the sub-cellular localization of the component enzymes and 

the metabolic milieu. This hypothesis, in turn, leads to 19 possible topological 

configurations (Figure 5.3A). For each of these topologies, we consider an additional 

level of regulation, involving individual or combined regulatory mechanisms that may 

serve as a means of “crosstalk” between the two channels (Figure 5.3B). The emphasis of 

this approach is on mechanisms at the metabolic level, but one must not forget that the 

transcriptional network governing the system could be involved in the regulation of the 

pathway as well [191]. 

 The goal is thus to assess and compare the functionality of all given combinations 

of topological configurations and crosstalk patterns, each of which we call a design. To 

obtain insights that are independent of parameter choices, we constructed for each design 

a library of 100,000 loosely constrained dynamic models and tested each of them against 

the observed ratios of S to G lignin in four lignin-modified Medicago lines. The resulting 

analysis of hundreds of designs and millions of models led to the intriguing hypothesis 

that either a single activation mechanism or a dual-inhibition mechanism lies at the core 

of all experimentally supported designs. The former mechanism was not supported by an 

in vitro enzyme assay, while the latter is consistent with several lines of evidence from 

Medicago and other species. As an added insight, the analysis suggested that 

functionality of the G lignin channel is more important than that of the S lignin channel. 
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Overall, these findings not only enrich our current understanding of how lignin 

biosynthesis is regulated, but they also demonstrate the possible application of the 

proposed approach in entirely different biological scenarios where the task is to identify 

true regulatory circuit among many theoretically feasible designs that depend on the 

functionality and localization of interacting molecules. 

 

 
 

Figure 5.2: Scaffold of topological configurations.  
The relevant metabolites and enzymatic reactions (arrows) for the biosynthesis of 

guaiacyl (G), 5-hydroxyguaiacyl (5HG), and syringyl (S) lignin monomers are shown in 

black, if they are included in all topological configurations, or gray, if they are included 

in only some specific configurations. Notice that 5-hydroxyconiferyl alcohol is allowed 

to be incorporated into lignin polymer as 5HG subunit because this actually occurs when 

COMT is down-regulated [103]. Enzymes and lignin monomers are highlighted in bold 

and italics. 
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Figure 5.3: Lists of topological configurations and regulatory mechanisms.  

Panel A: The topological configurations differ in their numbers of edges. Panel B: The 

orange arrows represent activation processes, whereas the blocked lines (aqua) represent 

inhibition processes. Arrows colored in gray are reactions included in only some specific 

topological configurations. Metabolite names:  caffeoyl CoA; , caffeyl aldehyde;  

feruloyl CoA;  coniferyl aldehyde;  coniferyl alcohol;  5-hydroxyconiferyl 

aldehyde. 
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5.2 Results 

5.2.1 Enumeration of Circuit Designs 

 The base scaffold on which the different topological variants were built is shown 

in Figure 5.2. It consists of all relevant steps in the lignin biosynthetic pathway that 

possibly affect the relative amounts of G and S lignin. The G and S lignin channels are 

represented as directed edges linking feruloyl CoA and coniferyl alcohol, or linking 

caffeyl aldehyde and 5-hydroxyconiferyl aldehyde, respectively. The experimentally 

validated channeling hypothesis [150] permits 19 different topological configurations 

(Figure 5.3A) that satisfy the following constraints. First, at least one edge must be 

leaving caffeyl aldehyde and feruloyl CoA, and at least one edge must be entering 

coniferyl alcohol and 5-hydroxyconiferyl aldehyde; otherwise mass would unduly 

accumulate in intermediate pools. Second, if coniferyl aldehyde can be produced by a 

free CCR1 and/or caffeic acid O-methyltransferase (COMT), it must also be consumed 

by a free enzyme, thereby decreasing the metabolic burden that would otherwise be 

imposed on the cell. For reasons that will be explained below, we also consider for each 

topological configuration various crosstalk patterns between the CCR2/COMT and 

CCoAOMT/CCR1 pathways. Each pattern is composed of documented or postulated 

mechanisms of metabolic regulation (activation or inhibition) (Figure 5.3B). The specific 

combinations of topological configurations and crosstalk patterns lead to hundreds of 

different designs, which were analyzed and compared. 

 For each design, we first constructed 100,000 Generalized Mass Action (GMA) 

models (see Chapter 1 for definition) by randomly sampling loosely-constrained 

parameter combinations from a parameter space that was deemed biologically realistic. A 

notable feature of this approach was that the parameter space was not only constrained at 

the level of individual parameters (e.g., kinetic orders), but also at the level of steady-
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state fluxes. For instance, the ratio of fluxes leading to S and G lignin was fixed at a value 

observed in the wild-type Medicago species (see Sections 5.4 and C.1 for details). Once 

all parameters for a given GMA model instantiation were specified, we determined 

steady-state fluxes under conditions that mimic CCoAOMT and COMT down-regulated 

alfalfa lines as well as ccr1 and ccr2 M. truncatula mutant lines and computed the S/G 

ratios for which we had experimental data. We declared a model as valid if it yielded 

quantitatively and qualitatively correct results for both transgenic alfalfa and M. 

truncatula plants (see Materials and Methods). To assess the robustness of a design to 

parametric perturbations, we defined Q as the total number of valid model instantiations. 

 

5.2.2 Channels Are Necessary but Not Sufficient 

 As a reasonable baseline, we first assumed the absence of crosstalk between the 

CCR2/COMT and CCoAOMT/CCR1 pathways (Figure 5.4). Of all possible topological 

configurations lacking crosstalk, only six had at least one parameter combination that 

yielded quantitatively correct predictions of S/G ratios for CCoAOMT and COMT down-

regulated alfalfa plants. Supporting our previous findings [150], all six configurations 

include either one or both channels, suggesting that the channels are necessary. In other 

words, the pathway models are consistent with the observed changes in the S/G ratios of 

CCoAOMT and COMT down-regulated alfalfa plants only if at least one channel is 

present. 

 To assess these initially feasible parameter combinations further, we used the 

models with these parameter values to predict the S/G ratios for ccr1 and ccr2 knockout 

mutants. The M. truncatula lines harboring transposon insertions in CCR1 and CCR2 

show a corresponding reduction in CCR1 and CCR2 activity, and their S/G ratio is 

decreased or increased, respectively, compared to the wild-type level [59]. Moreover, the 

activities of CCR1 and CCoAOMT, as well as their mRNA transcripts and proteins, are 
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increased in the ccr2 knockout mutant, indicating that part of their activation might be 

processed through a hierarchical control of gene expression [192]. 

 Figure 5.4 shows simulation results for those topological configurations where at 

least one out of 100,000 randomly parameterized models yielded quantitatively correct 

predictions of S/G ratios for both CCoAOMT and COMT down-regulated alfalfa plants. 

In these plots, a model is valid only if its predicted S/G ratios for ccr1 and ccr2 knockout 

mutants fall within the northwest quadrant. 

 

 
 

Figure 5.4: Simulation results for pathway designs without crosstalk.  
Each of the 6 panels corresponds to one topological configuration with at least one 

randomly parameterized S-system model that yields quantitatively correct predictions of 

S/G ratios for both CCoAOMT and COMT down-regulated alfalfa plants. Each open 

circle refers to the S/G ratio of CCR1 and CCR2 in a M. truncatula knockout mutant, as 

predicted by one randomly parameterized S-system model; its color indicates the type of 

regulation. The gray strips denote regions within 5% of the wild-type level; model 

predictions within these strips are considered essentially the same as wild-type. 

Qualitatively correct predictions should fall into the northwest quadrant. It is evident that 

not a single model instantiation is admissible. The total number of randomly 

parameterized model instantiations per panel was 10
5
. 
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 In the case of no hierarchical regulation, i.e., the ccr2 mutant exhibits only 

reduced CCR2 activity, some model instantiations from configuration A showed a 

decreased S/G ratio for the ccr1 knockout mutant, but not a single case exhibited an 

increased S/G ratio for the ccr2 knockout mutant. This outcome did not improve much 

when hierarchical regulation was considered: not one of the 1.9 million model 

instantiations from the 19 possible configurations yielded qualitatively acceptable 

predictions for both ccr1 and ccr2 knockout mutants. These findings indicate that the S 

and G channels alone are not sufficient to explain all available transgenic data, and that 

some type of crosstalk is highly likely to occur between the CCR2/COMT and 

CCoAOMT/CCR1 pathways. 

 

5.2.3 Crosstalk between the CCR2/COMT and CCoAOMT/CCR1 Pathways 

 One potential source of crosstalk between the CCR2/COMT and 

CCoAOMT/CCR1 pathways is substrate competition. CCR1/2 converts 

hydroxycinnamoyl CoA esters to their corresponding cinnamyl aldehydes, whereas 

CCoAOMT and COMT together complete the methylation of the aromatic C3 and C5 

positions of the aldehydes and alcohols (Figure 5.1). All these enzymes are known to be 

multi-functional, acting upon multiple substrates with distinct catalytic efficiency. 

Because of their promiscuous nature, different substrates compete with each other if the 

supply of enzyme is limited. As a consequence, the enzymatic conversion of one 

substrate is effectively subjected to competitive inhibition by another substrate, and vice 

versa. This type of cross-inhibition is not necessarily equally strong in both directions 

because a promiscuous enzyme often displays preference for some substrates over others. 

 In the case of lignin biosynthesis, two regulatory mechanisms could arise from 

substrate competition. First, recombinant Medicago CCR2 exhibits similar kcat/KM values 

for caffeoyl CoA (0.49 M
-1∙min

-1
) and feruloyl CoA (0.40 M

-1∙min
-1

) [59], suggesting 
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that the CCR2-mediated conversion of caffeoyl CoA to caffeyl aldehyde in Medicago 

might be competitively inhibited by feruloyl CoA (Figure 5.3B; Mechanism 1). 

Furthermore, CCR2 is inhibited by feruloyl CoA at a concentration above 20 M [59]. 

Conversely, it is highly unlikely that the CCR1-mediated conversion of feruloyl CoA to 

coniferyl aldehyde is significantly affected by caffeoyl CoA, because CCR1 has a kcat/KM 

value for caffeoyl CoA (0.019 M
-1∙min

-1
) that is 60 times lower than that for feruloyl 

CoA (1.14 M
-1∙min

-1
) [59]. 

 Second, the methylation of caffeoyl CoA by the combined activity of COMT and 

CCoAOMT may be subject to weak competitive inhibition by caffeyl aldehyde (Figure 

5.3B; Mechanism 2). This assumption is based on the following observation. Although 

the combined O-methyltransferase (OMT) activity against caffeoyl CoA in extracts from 

internodes 6 to 8 of CCoAOMT-down-regulated alfalfa was reduced by 4.2-fold 

compared with the empty vector control line, about ~25% of OMT activity remained 

[60]. This activity is presumably associated with COMT, for which caffeyl aldehyde is 

the preferred substrate. Notably, both mechanisms are independent of each other and may 

work individually or collaboratively to establish crosstalk between the two channels, 

thereby leading to three different crosstalk patterns and 57 different designs. 

 In the case where only Mechanism 1 (Figure 5.3B) was incorporated in the 

design, we observed a substantial increase in the number of model instantiations showing 

a decreased S/G ratio for the ccr1 knockout mutant (Figure C.1). Yet, even when we 

accounted for the effect of hierarchical regulation, none of the models was capable of 

delivering a qualitatively correct change in the S/G ratio for the ccr2 knockout mutant. 

This finding indicates that the experimentally inferred inhibition evidently exists but is 

not sufficient. Similarly, we found no valid models when Mechanism 2, either by itself or 

coupled with Mechanism 1, was employed (Figures C.2 and C.3). An explanation may be 

that, with caffeyl aldehyde inhibiting the 3-O-methylation of caffeoyl CoA, knocking 
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down CCR2 activity will consistently lead to a deregulation of CCoAOMT by caffeyl 

aldehyde, thereby increasing the flux to G lignin and reducing the S/G ratio. 

 

5.2.4 Is Caffeyl Aldehyde an Activator of CCoAOMT? 

 One could surmise that the 3-O-methylation of caffeoyl CoA, for which 

CCoAOMT is the primary enzyme, is actually activated by caffeyl aldehyde. This 

conjecture is based on the following argument. When the production of S lignin is 

compromised due to a knockout of ccr2, the only way of raising the S/G ratio beyond its 

wild-type level appears to be a further reduction of the flux through the 

CCoAOMT/CCR1 pathway, which can be accomplished if CCoAOMT is activated by 

caffeyl aldehyde. The simulation results using this type of postulated mechanism, either 

by itself (Figure 5.5) or coupled with the documented inhibition of CCR2 by feruloyl 

CoA (Figure 5.6), are very intriguing: For each crosstalk pattern where millions of 

randomly parameterized models were generated, we found thousands of valid 

instantiations that yielded quantitatively and qualitatively correct predictions for both 

transgenic alfalfa and M. truncatula plants. Perhaps more surprisingly, only six 

topological configurations (A, B, E, F, I, O) had at least one valid model (Q > 0; see 

Section 5.4). To ensure that this result was not due to the use of overly restrictive 

thresholds, we relaxed the criteria and found more parameter combinations that qualified. 

Nevertheless, the same six topological configurations always passed the screening test by 

a wide margin (Table C.1). Collectively, these findings suggested that this activation 

mechanism, acting alone or with the inhibition of CCR2 by feruloyl CoA, is necessary for 

consistency with the ccr1 and ccr2 knockout data. This conclusion immediately 

translated into a targeted hypothesis that was independent of specific parameter choices 

and readily testable by experiment. 
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Figure 5.5: Simulation results for pathway designs using only Mechanism 3.  
See Figure 5.3B for the structure of this mechanism and the legend of Figure 5.4 for more 

information on details shown. In contrast to the results in Figure 5.4, the pathway designs 

analyzed here permit numerous admissible model instantiations (topologies A, B, E, F, I, 

and O), which fall into the northwest quadrant. The total number of randomly parameter 

zed model instantiations per panel was 10
5
. 
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Figure 5.6: Simulation results for pathway designs that contain Mechanisms 1 and 3 

simultaneously.  
See Figure 5.3B for the structure of these mechanisms and the legend of Figure 5.4 for 

more information on details shown. Similar to the results in Figure 5.5, the pathway 

designs analyzed here permit numerous admissible model instantiations (topologies A, B, 

E, F, I, and O), which fall into the northwest quadrant. The total number of randomly 

parameterized model instantiations per panel was 10
5
. 
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5.2.5 The Hypothesized Activation Is Not Supported by Experimental Data 

 To examine whether caffeyl aldehyde indeed activates CCoAOMT, our 

collaborators expressed alfalfa CCoAOMT in Escherichia coli and assayed the purified 

recombinant enzyme with caffeoyl CoA as substrate and caffeyl aldehyde as the putative 

activator. As shown in Figure 5.7, the CCoAOMT activity increased by 16% at 2 M of 

caffeyl aldehyde and 20 M of caffeoyl CoA; at higher substrate concentrations (i.e., 30 

and 40 M of caffeoyl CoA), the increase in mean CCoAOMT activity became less. 

Assays using lower concentrations of the substrate caffeoyl CoA (2, 4, 5 and 10 M) and 

the putative activator caffeyl aldehyde (0.5, 1, 2 and 4 M) showed no increase in 

CCoAOMT activity compared to the reaction without caffeyl aldehyde (data no shown). 

The maximal activation achieved in vitro was only 16 %, which was statistically 

significant but may not be biologically significant. 

 

 

Figure 5.7: 2 µM caffeyl aldehyde activates CCoAOMT-mediated methylation of 

caffeoyl CoA in vitro.  

Error bars, mean  s.d.; ***p < 0.001, *p < 0.05 by Student’s t-test; n =3. 
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5.2.6 Analysis of Caffeyl Aldehyde as a Dual Inhibitor of Two 3-O-Methylation 

Reactions 

 Since a direct activation of CCoAOMT by caffeyl aldehyde was not observed  in 

experiments with recombinant enzymes, we tested other regulatory mechanisms by 

themselves and in combination with known mechanisms. According to one possible 

mechanism, based again on the concept of substrate competition, caffeoyl CoA could be 

a competitive inhibitor for the 3-O-methylation of caffeyl aldehyde (Figure 5.3B; 

Mechanism 4). This proposal agrees with the fact that CCoAOMT may contribute up to 

~10% of the methylation reaction in alfalfa [60]. In addition, evidence in ryegrass 

(Lolium perenne) points to the possibility of COMT being inhibited by different 

substrates, such as caffeyl aldehyde and 5-hydroxyconiferyl aldehyde [193]. 

Interestingly, substrate inhibition by caffeyl alcohol and 5-hydroxyconiferyl alcohol has 

also been observed in Selagniella moellendorffii COMT [189]. Thus, we hypothesized 

that COMT might be inhibited by caffeyl aldehyde (Figure 5.3B; Mechanism 5) in 

Medicago as well; direct evidence supporting this hypothesis in Medicago remains to be 

determined. 

 In total, there are 2
4
 = 16 different crosstalk patterns that can result from the 

combination of four independent regulatory mechanisms (Figure 5.3B; Mechanisms 1, 2, 

4 and 5). However, only four of them, when combined with the same six topological 

configurations (A, B, E, F, I and O) that were identified previously (cf. Figures 5.5 and 

5.6), gave rise to designs with at least one valid model instantiation (Figure 5.8). 

Interestingly, all these crosstalk patterns require that caffeyl aldehyde is an inhibitor of 

the 3-O-methylation of both caffeoyl CoA and itself (Figure 5.3B; Mechanisms 2 and 5), 

providing computational evidence that this synergy between the two seemingly unrelated 

mechanisms is necessary for consistency with the ccr1 and ccr2 knockout data. Indeed, 

with respect to the ccr2 knockout, such a combination of two inhibition mechanisms 
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appears to have a similar ultimate effect as a single activation mechanism (see Section 

5.3). 

 Inspecting the crosstalk patterns giving rise to at least one design with valid 

model instantiations (rows colored in red in Figure 5.8), one might surmise that caffeyl 

aldehyde would accumulate to an unduly high level, because Mechanism 5, which is 

employed in all these patterns, reflects substrate inhibition of COMT by caffeyl aldehyde. 

To examine the validity of this inference, we checked, for all designs with valid model 

instantiations, the predicted changes in caffeyl aldehyde under conditions that mimic the 

down-regulation of four lignin biosynthetic enzymes. As shown in Figure 5.9, it appears 

that down-regulation of CCoAOMT or COMT is consistently associated with a lower 

caffeyl aldehyde level compared with wild type, regardless of the crosstalk pattern being 

considered. Similarly, knocking out ccr2 consistently raises the caffeyl aldehyde level in 

all crosstalk patterns examined. However, in the case of the ccr1 knockout mutant, the 

results are mixed in a sense that some crosstalk patterns are associated with significantly 

higher caffeyl aldehyde levels, whereas others are associated with only modest changes. 

Interestingly, both crosstalk patterns suffering from an undue accumulation of caffeyl 

aldehyde contain Mechanism 1. By contrast, this mechanism is absent from other 

patterns, which maintain a relatively stable caffeyl aldehyde level. This finding suggests 

that the control pattern in Mechanism 1 may disrupt the metabolic homeostasis via 

accumulation of caffeyl aldehyde when CCR1 drops below its normal level. As any 

cellular system is constantly afflicted by a variety of intrinsic and extrinsic noises, this 

type of fluctuation must be expected to occur frequently and spontaneously, suggesting 

that Mechanism 1 is disadvantageous. 
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Figure 5.8: Summary of simulation results from 304 designs.  
Each row corresponds to one crosstalk pattern, whereas each column in the table to the 

right of dashed line corresponds to one topological configuration. A design is represented 

by a filled circle if at least one of the 10
5
 randomly parameterized model instantiations is 

valid. Empty circles thus refer to designs that are incongruent with observations. Rows 

highlighted in red contain at least one topological configuration with valid model 

instantiations. 
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Figure 5.9: Relative levels of caffeyl aldehyde (compared to wild-type values) in 

simulations of four down-regulated lines.  
Each panel is shaded to highlight the results from four different crosstalk patterns. These 

patterns, when combined with specific topological configurations, give rise to designs 

with valid model instantiations (cf. rows with red circles in Figure 5.8). In contrast to the 

other three perturbation schemes, where all four crosstalk patterns (and their 

corresponding designs) exhibit similar responses regarding the caffeyl aldehyde level, 

knocking out ccr1 is associated with a higher caffeyl aldehyde level only for the two 

crosstalk patterns including Mechanism 1. The circles, colored according to topological 

configuration, are the medians, and the error bars represent interquartile ranges. The 

dashed line in each panel, if present, denotes the wild-type level of caffeyl aldehyde. 
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5.2.7 Robust Designs Are Evolutionarily Connected 

 Investigation of the six robust topological configurations, which contain at least 

one valid model instantiation, revealed interesting structural features of the pathway. In 

particular, the G lignin channel is common to all robust designs and thus may be 

considered critical for the proper functioning of the pathway, at least for the cases 

studied. The evolutionary conservation of such a feature, one may argue further, is not 

due to the fact that it cannot possibly be altered, but that this particular design can sustain 

maximally tolerable changes and variability in other features [194]. These arguments lead 

to an interesting follow-up question, namely: Are the robust topological configurations 

related in an evolutionary sense?  

 To address this question, we constructed a “topology graph” where each node 

corresponds to a topological configuration. Two nodes are connected if the corresponding 

topological configurations differ only by one edge. For instance, configurations A and B 

are directly linked to each other because the only difference between them is whether 

caffeyl aldehyde can be converted, via free COMT, to coniferyl aldehyde. In other words, 

moving from a node to its neighbor may be considered a singular evolutionary event 

where an enzyme’s preferred mode of action is changed. 

 Two outcomes are possible for the structure of such a topology graph. First, the 

graph may be disconnected, that is, there exist pairs of topological configurations such 

that no evolutionary path (defined as a series of evolutionary events) connects one to the 

other. In the most extreme case, the graph would consist exclusively of isolated nodes. 

Second, the graph is fully connected, so that any pair of topological configurations is 

connected by at least one evolutionary path. As shown in Figure 5.10, the actual topology 

graph of the six robust configurations of lignin biosynthesis is indeed connected, and so 

is the graph of all configurations, except for design S. This interconnectedness can be 

interpreted as facilitating the evolvability of the system [194], because the gain or loss of 
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specific features that are needed to produce phenotypically novel traits will be tolerated 

and survive during evolution if robustness is preserved. Of course, this evolutionary 

aspect, which was derived purely with computational means, will require additional 

analysis. 

 

 
 

Figure 5.10: Robust configurations are evolutionarily connected.  
Each node represents a specific topological configuration (see Figure 5.3); two nodes are 

connected if the corresponding configurations differ only by one edge. The subgraph of 

all the robust configurations, colored in red, is connected, thereby indicating the potential 

of direct evolvability. 
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5.3 Discussion 

 The spatial organization of cooperating enzymes, known as metabolic channeling, 

has long been recognized as an effective means of regulation in primary and secondary 

plant metabolism [12,24,195]. This channeling phenomenon involves the organization of 

enzymes into complexes and/or the co-localization of enzymes at the plasma membrane 

or on the surfaces of organelles, as was demonstrated for the two initial enzymes, L-

phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H), in the 

phenylpropanoid pathway [11,196]. Interestingly, some complexes or interactions are 

persistent, while others are temporary. In fact, many of the component enzymes such as 

PAL may be operationally soluble and are therefore only facultatively channeled. Such 

short-lived or dynamic complexes, while being readily responsive to the metabolic status 

of the cell, are inherently difficult to study with existing or emerging experimental 

models. 

 Using the lignin biosynthetic pathway as a model system, we propose here a novel 

strategy for studying metabolic channeling in unprecedented detail. Specifically, we 

consider all possible modes of action for both the G lignin and S lignin channels, and 

these can be mapped into 19 different topological configurations (Figure 5.3A). 

Metabolic channeling is clearly not the only process that affects the functionality of this 

system, and it is therefore necessary to study control processes affecting a channeled 

system. In the present case, this control is potentially exerted by individual or combined 

mechanisms of crosstalk between the CCR2/COMT and CCoAOMT/CCR1 pathways 

(Figure 5.3B). Some of these were documented in the literature, while others were 

hypothesized. Taken together, a topological configuration and a specific crosstalk pattern 

constitute a design. We evaluated each design with or without consideration of non-

allosteric or hierarchical regulation which could involve transcription, as well as a variety 

of non-transcriptional processes such as phosphorylation, methylation, and targeted 

degradation of proteins and mRNA. 
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 Ideally, the comparative assessment of design features would be entirely symbolic 

and independent of specific parameter values. However, systems of a realistic size are 

rarely analyzable in such fashion. As a reasonable alternative, we analyzed the possible 

design space comprehensively with widely varying parameter values, which resulted in a 

computational analysis of millions of models from hundreds of designs. This analysis 

yielded several interesting findings.  

 Importantly, it predicted that CCoAOMT is directly or indirectly activated by 

caffeyl aldehyde. This piece of information by itself is essentially unbiased, but 

insufficient to explain the exact mechanism of regulation. Nevertheless, it offered a 

specifically targeted hypothesis and was therefore experimentally testable. However, the 

hypothesis of a direct activation was refuted by subsequent experiments using the 

recombinant Medicago CCoAOMT, which failed to provide evidence confirming the 

putative role of caffeyl aldehyde as an allosteric activator. It might still be possible that 

activation exists in vivo, but it seems more likely that the activation is indirect rather than 

direct.  

 As a possible mechanism, the design analysis suggested that caffeyl aldehyde 

inhibits the 3-O-methylation of both caffeoyl CoA and itself. Several lines of evidence, 

although not exclusively from Medicago, support this computational prediction. Most 

importantly, the same six topological configurations were identified in the indirect design 

analysis and in the initial analysis of a putative activation mechanism. However, the two 

most parsimonious mechanisms differ in their proposed control strategies. The original 

analysis suggested just one activation mechanism, while the second analysis proposed 

two inhibition mechanisms. To some degree, these two mechanisms have the same 

ultimate effect. If ccr2 is knocked out, the flux entering the CCR2/COMT pathway and 

the subsequent synthesis of S lignin decline. The only possibility to increase the S/G ratio 

is to reduce the flux entering the CCoAOMT/CCR1 pathway. This task can be 

accomplished either through a diminished activation, as suggested for the single 
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activation mechanism, or through an enhanced inhibition, as suggested for the dual-

inhibition mechanism. The latter mechanism seems sufficient to restore consistency with 

the data, but it is of course possible that more complicated control patterns are present. 

 The computational analysis suggests that the G lignin channel is necessary for the 

system to respond correctly and robustly to certain genetic perturbations. By contrast, the 

S lignin channel appears to be dispensable. This theoretical deduction is indirectly in line 

with the fact that S lignin has arisen much later in the evolution of higher plants than G 

lignin [15]. It is also consistent with the observation that its formation, which in many 

plant species is dictated by ferulate 5-hydroxylase (F5H) expression [197,198,199], is 

directly regulated by a secondary cell wall master switch NST1/SND1 and not by 

MYB58, a SND1-regulated transcription factor that can activate other lignin biosynthetic 

genes [200]. It could also be possible that S lignin, which is specifically involved in the 

pathogen defense of some plants [201], was relatively recently recruited for lignin 

biosynthesis and thus may not be essential for plant growth. Evidence supporting this 

postulate includes an Arabidopsis NST1/SND1 double knockout mutant that shows a 

complete suppression of secondary cell wall thickening in woody tissues, including 

interfascicular fibers and secondary xylem, but otherwise grows quite well as compared 

to the wild-type plants [202]. 

 Within an evolutionary context, the multiplicity of robust solutions can be 

represented with a graph representation that connects any two (robust) topological 

configurations differing by a single edge. This graph is reminiscent of the “neutral 

network” concept that was initially proposed in genotype-phenotype models for RNA 

secondary structures [203] and protein folds [204], but also more recently extended to 

Boolean models for gene regulatory networks [205]. In the case of proteins, neutral 

networks are defined as sets of amino acid sequences that are connected by single-

mutation neighbors and that map into the same tertiary structure. Such degeneracy of the 

mapping from genotype to phenotype allows a neutral drift in genotypic space, which is 
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critical for accessing adjacent neutral networks with novel phenotypes that may confer 

higher fitness to the cells. As of yet, it is unclear whether individual plants within a 

Medicago population use the same or different designs, or whether the response to 

selected perturbations is an adequate phenotypic feature. Further investigation of the 

protein-protein interactions between lignin biosynthetic enzymes is thus necessary to 

confirm that a G lignin channel is indeed necessary for optimal functioning. 

 The work in this Chapter describes a novel computational approach that shows 

promise in deciphering the principles of channel assembly in a biosynthetic pathway 

when relevant information is limited. It also provides a clear direction in which to 

proceed with more targeted experiments. Beyond the application described here, the 

proposed strategy might be beneficial in entirely different biological contexts, such as 

gene regulatory and signaling networks, where the task is to analyze how information 

flow is controlled by the spatial organization of molecules in the cell. 

 

5.4 Materials and Methods 

5.4.1 Model Equations in GMA Format 

 Since the two metabolic channels of interest are assumed to affect only the 

relative amounts of G and S lignin, the analysis is restricted to those critical steps within 

the lignin biosynthetic pathway system that govern the flow of material either toward G 

or S (Figure 5.2). For each possible design, we first formulate the corresponding 

generalized mass action (GMA) model [43,44] in a symbolic format (Eq. (1.3)). The 

model contains either six or seven dependent variables, depending on whether coniferyl 

aldehyde is explicitly included, and 10 to 16 distinct power-law terms, depending on the 

topology in a specific design. Also, there are six independent variables, each of them 

representing the extractable activity of an enzyme.  
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 As a typical example, the differential equation for caffeoyl CoA, defined as X1, 

takes the following form: 

 

2,1 2,3 3,1 3,21
1 2 1 3 1 3 1 2 2.

f f f f

n n

dX
X X X X X X

dt
       

In addition to X1 itself, two other dependent variables are included in the equation; they 

are X2 and X3 and refer to caffeyl aldehyde and feruloyl CoA, respectively. They are 

included because they are candidates of modulating the consumption of X1. Applying the 

rules for kinetic orders described in Chapter 1, we can immediately impose bounds on the 

values of f2,3 and f3,2 for different regulatory mechanisms (Figure 5.3B). For instance, 

modeling Mechanism 1 requires the following constraints, 

 2,3 3,20 &  0,f f   

because X3 is considered an inhibitor, so that f2,3 < 0, while X2 has no influence on the 

degradation of X1 through reaction 3 in this design, so that  f3,2 = 0, which in effect 

eliminates the factor 3,2

3

f
X from the term on the far right. The two independent variables 

Xn+1 and Xn+2 represent CCoAOMT and CCR2, respectively, where n is the number of 

dependent variables. By convention, all independent variables have a kinetic order of 1. 

 

5.4.2 Sampling of Steady-State Fluxes 

 Determination of all parameters in a GMA model, including kinetic orders and 

rate constants, is required prior to most simulation tasks. For the lignin pathway in 

Medicago, very little information is available on exact concentrations of intermediates or 

fluxes through the pathway; in fact, many metabolites in vivo are below detection level 

with standard HPLC [26]. To address this issue of insufficient data, we sample parameter 

values from relatively wide, biologically realistic ranges. The procedure involves the 

following steps. First, we sample uniformly from a set P of steady-state reaction rates in 

m-dimensional space, where m equals the number of reactions and P is bounded by many 

(5.1) 

(5.2) 
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linear equality or inequality constraints with physiological meaning, such as the reaction 

stoichiometry, the ratio of S to G lignin in a wild-type Medicago species, and the degree 

of reversibility of individual reactions (Section C.1). For all designs studied, the resulting 

set P is a bounded polyhedron (or polytope) and therefore has a concise parametric 

description 

 1 1

 ,  ,  0,  1 ,
k k

m

i i i i i i

i i

P u u   
 

 
     
 
 R R  

where the vectors ui can be identified using first principles [206]; in a different context, 

the vectors ui have been called “extreme pathways” [30]. 

      

5.4.3 Steady-State Equations in S-System Format 

 Once a set of steady-state reaction rates is randomly generated, we sample kinetic 

orders (fi,j) from their respective ranges (Table C.2), which are chosen based on the 

unique role of each kinetic order. Even with this information, the lack of concentration 

data from a wild-type Medicago species remains an issue that needs to be solved. To this 

end, we perform two transformations. First, we define a normalization of variables by 

replacing Xi with Yi ≡ Xi/XiS, where XiS are the unknown steady-state levels of Xi in wild 

type. As an example, the differential equation for caffeoyl CoA assumes the form 

 
 2,1 2,3 3,1 3,21

1 2 1 3 1 3 1 2 2

1

1
,

f f f f

S S n S n

S

dY
V V Y Y Y V Y Y Y

dt X
      

where ViS are the steady-state reaction rates sampled from a set P that is representative of 

a wild-type Medicago species. This representation is well suited for the current analysis 

because the exact values of XiS become irrelevant once all the equations are set to zero, 

that is, at a wild-type or perturbed steady state. Second, after all parameters for a given 

GMA model instantiation are specified, we derive the corresponding S-system equations 

with straightforward mathematical manipulations that do not require any additional 

(5.3) 

(5.4) 
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biological information ([44]: Chapter 3). At the steady state, GMA and S-system models 

are equivalent, but they offer different advantages for further analyses. In particular, S-

system differential equations, despite being intrinsically nonlinear, become linear at the 

steady state after a logarithmic transformation, thereby facilitating the computation of 

secondary steady-state features and bypassing the time-consuming numerical integration 

that is otherwise required for assessing nonlinear models. Given this convenient feature, 

we are able to obtain, in a very efficient manner, estimates of steady-state fluxes under 

conditions that mimic the two transgenic alfalfa lines and two M. truncatula mutant lines; 

we can also easily compute the S/G ratios for which we had experimental data. 

 

5.4.4 Simulation of Knock-Down Experiments 

 Down-regulation of specific lignin biosynthetic enzymes is simulated by setting 

the corresponding Yi to values between 0 and 1 that represent the degree of down-

regulation, and solving the steady-state equations. In cases where knocking down the 

activity of one enzyme (e.g., CCR2) somehow increases the activities of other enzymes 

(e.g., CCR1 and CCoAOMT), all affected Yi are given values that mirror the specific 

changes in activities. The Parallel Computing ToolboxTM in MATLAB (version R2009b, 

The MathWorks, Natick, MA) was used to divide the simulation job among multiple 

cores for speedup. 

 Not all models behaved properly during simulation, and some ill-behaved models 

were excluded from further analysis. These were defined, arbitrarily, as models that 

showed a more than 1000-fold increase or decrease in any dependent variable during any 

simulation. Further, a properly behaved parameter set was deemed valid if the following 

criteria were met: 
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1. Quantitative correctness for simulations of CCoAOMT and COMT down-regulation, 

which was defined as a mean squared difference between the predicted and observed 

S/G ratios of less than 0.01 in these two cases. 

2. Qualitative correctness for the simulations of ccr1 and ccr2 knockout mutants. 

Specifically, the predicted S/G ratio must show a decrease of more than 5% for ccr1 

(or an increase of more than 5% for ccr2), compared to the wild-type value. 

 

5.4.5 Expression of Alfalfa CCoAOMT in E.coli
7
 

 The cloning of the alfalfa CCoAOMT cDNA into the expression vector pET15b 

was as described previously [60]. E. coli Rosetta strains containing the constructed 

plasmid were cultured at 37 ºC until OD600 reached 0.6-0.7, and protein expression was 

then induced by adding isopropyl 1-thio β-galactopyranoside (IPTG) at a final 

concentration of 0.5 mM, followed by 3 h incubation at the same temperature. Cell 

pellets from 25 ml induced medium were harvested and frozen at -80ºC for further use. 

Induced cell pellets were thawed at room temperature, resuspended in 1.2 ml of 

extraction-washing buffer (10 mM imidazole, 50 mM Tris-HCl pH 8.0, 500 mM NaCl, 

10% glycerol and 10 mM β-mercaptoethanol), and sonicated three times for 20 s. 

Supernatants were recovered after centrifugation (16,000 x g), and incubated at 4 ºC for 

30 min with equilibrated Ni-NTA beads (Qiagen, Germantown, MD) under constant 

inversion to allow the His-tag protein to bind to the beads. The beads were washed three 

times with 1 ml of extraction-washing buffer, and the target protein was eluted with 250 

µl of elution solution (250 mM imidazole, 50 mM Tris-HCl buffer pH 8.0, 500 mM 

NaCl, 10% glycerol and 10 mM β-mercaptoethanol). The concentration of the eluted 

                                                 

 

 
7
 This part was done by our collaborators at the Noble Foundation. 
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target protein was determined using the BioRad protein assay (BioRad, Hercules, CA) 

and its purity was verified by SDS-PAGE. 

 

5.4.6 Materials and Enzyme Activity Assays 

 Caffeoyl CoA for the enzyme assays, and feruloyl CoA for the calibration curve, 

were synthesized as described previously [207]. Caffeyl aldehyde was synthesized as 

described by Chen et al. [208]. Pure recombinant CCoAOMT enzyme (100 ng) was 

incubated at 30 ºC for 20 min with 60 mM sodium phosphate buffer pH 7.5, 200 µM S-

adenosyl methionine, 600 µM MgCl2 and 2 mM dithiothreitol. The substrate (caffeoyl 

CoA) concentration was 20, 30 or 40 M and the putative activator (caffeyl aldehyde) 

concentration was 0, 2, 5 or 10 M. Since caffeyl aldehyde was in dimethyl sulfoxide 

solution, the final concentration of dimethyl sulfoxide in the reaction was 4% and the 

final volume of the reaction was 50 µl. The reactions were stopped by adding 10 µl of 24 

% w/v trichloroacetic acid. Reaction products were analyzed by reverse-phase HPLC on 

a C18 column (Spherisorb 5 ODS2, Waters, Milford, MA) in a step gradient using 1% 

phosphoric acid in water as solvent A and acetonitrile as solvent B. Calibration curves 

were constructed with authentic standard of the product feruloyl CoA. Activity assays 

using lower concentrations of the substrate caffeoyl CoA (2, 4, 5 and 10 M) and the 

putative activator caffeyl aldehyde (0.5, 1, 2 and 4 M) were performed using a sensitive 

radioactive assay method as described previously [60]. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

 The contributions of this dissertation are two-fold. First, novel methods were 

proposed to: (i) integrate kinetic models with fluxes predicted by static, constraint-based 

models; (ii) simultaneously investigate various wild-type and transgenic lines and their 

different developmental stages; and (iii) assess all experimentally supported pathway 

designs via computational enumeration. Second, mechanistic insights that were derived 

from model predictions and later confirmed experimentally have advanced our 

knowledge of how lignin biosynthesis is regulated in bioenergy crops. These 

contributions were made in three projects, corresponding to stated Specific Aims, which 

will be discussed in detail. 

 As proof of concept, the goal of Aim 1 was to develop a dynamic model of 

monolignol biosynthetic pathway in Populus xylem. The target genus Populus includes 

poplar, the first tree and potential bioenergy crop to have its genome sequenced [17], and 

aspen. Both species have been well-characterized with many in vitro assays of individual 

pathway enzymes as well as with transgenic variants modified in monolignol 

biosynthesis. As revealed by these biochemical and phenotypic data, the pathway is 

controlled by various levels of metabolic regulation. To address such complexity, we 

developed a novel modeling approach that combines the strengths of both static, 

constraint-based and dynamic, kinetic-based models. As demonstrated in Chapter 2, the 

resulting dynamic model not only allowed the prediction of S/G ratio in response to 

genetic perturbations in the pathway, but also assisted in the design of gene modification 

strategies towards the maximum release of sugars from Populus plants. Given its intuitive 
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structure, the model offers a solid foundation and starting point for future analytical 

efforts when new information becomes available.  

 A severe limitation to the model developed in Aim 1 is that the composition of 

lignin, which is an important feature of its structure, varies among taxa, cell types, and 

individual cell wall layers and is influenced by developmental and environmental cues. 

For this reason, Aim 2 of this dissertation was devoted to analyzing a compilation of 

wild-type and transgenic alfalfa lines where measurements of lignin content and 

composition are available for eight stem internodes. To analyze several internodes 

simultaneously, we developed a FBA or MOMA model for each internode in a wild-type 

or transgenic plant and integrated the data in a semi-dynamic fashion (Figure 3.3). By 

evaluating the transgenic data in such a systematic way across different stages of growth, 

we were able to elucidate regulatory mechanisms that may have remained elusive in 

traditional approaches where only one internode or one transgenic line is studied at a 

time. 

 The result of this comprehensive analysis was formulated into six postulates, and 

two of them are especially intriguing. The first suggests that certain pathway enzymes 

may assemble into functionally independent channels towards the synthesis of different 

monolignols, while the second proposes a novel feedforward regulation by an unknown 

cinnamic acid-derivative.  Interestingly, this latter postulate was verified in a post hoc 

experiment where salicylic acid, a notable endogenous signaling molecule known to be 

derived from cinnamic acid, was identified as a candidate for carrying out the postulated 

regulation. Together, these model-based findings not only direct new, targeted 

experiments towards a better understanding of monolignol biosynthesis, but also 

highlight the importance of context when it comes to analyzing this pathway. 

 While the results presented in Chapter 3 have greatly improved our knowledge of 

how monolignol biosynthesis is regulated, they seem to provoke more questions than 

they have answered. For example, why do we observe a specific developmental pattern of 
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fluxes but not other alternatives that may seem equally valid? And by which criteria, if 

any, is it chosen? To address these questions, we presented in Chapter 4 two methods for 

characterizing alternative operating strategies for metabolic pathways. Specifically, we 

studied the frequently required transition of a biological system from its normal steady 

state to a new target steady state. This situation is quite common and includes the heat 

stress response in yeast as well as developmental reprogramming of lignin biosynthesis. 

In a very generic fashion, the two methods yield distinct yet complementary insights 

about the set of solutions that are a priori equally valid: One defines the entire space of 

admissible solutions, whereas the other identifies an optimal solution based on given 

criteria of functional effectiveness. Although we do not yet have answers to the original 

questions, the work presented in Chapter 4 suggests tools for comparing different 

solutions with objectivity and for selecting the fittest among different alternatives once 

criteria are established. 

  Another type of questions that could arise from inspecting the results in Chapter 

3, especially regarding the channeling postulate, includes the following: What is the 

biological function of the postulated channels and how do they operate in vivo? Are they 

constitutively or conditionally active? Is there crosstalk between them, and if so, how is it 

organized? Indeed, answers to these questions are critical for dissecting the regulatory 

role of metabolic channeling in monolignol biosynthesis, but they are difficult, if not 

impossible, to obtain exclusively with experimental means. Therefore, we proposed in 

Chapter 5 a novel computational approach that permits an expedient and exhaustive 

assessment of hundreds of scenarios (here called designs) that could occur in vivo. 

Interestingly, this comparative analysis not only helped distinguish two most 

parsimonious mechanisms of crosstalk between the two channels by formulating a 

targeted and readily testable hypothesis, but also suggested that the G lignin-specific 

channel is more important for proper functioning than the S lignin-specific channel. 

Although the strategy of analysis presented in Chapter 5 is tightly focused on monolignol 



 144 

biosynthesis, it is likely to be of similar utility in extracting unbiased information in a 

variety of situations, where the spatial organization of molecular components is critical 

for coordinating the flow of cellular information, and where initially different variant 

designs seem equally valid. 

 

6.2 Future Work 

 The following directions are proposed for future research: 

 In Aim 1 of this dissertation, we developed a dynamic model of lignin 

biosynthesis in Populus xylem and demonstrated its predictive power. With the 

genus-specific findings from Aims 2 and 3, it seems to be a natural next step to 

convert the currently static model of lignin biosynthesis in Medicago into an 

integrated, dynamic model. Once this step is accomplished, such a model will 

become an invaluable tool for: (i) guiding the rational design of engineered crops 

with reduced recalcitrance, based on model optimization; and (ii) investigating the 

operating principles that govern the developmental re-programming of lignin 

biosynthesis. 

 In Chapter 5 of this dissertation, we found dozens of designs with at least one 

valid model instantiation but did not seek to figure out which design might be 

overall the best. One reason is that the criteria for the best design are not 

necessarily known a priori. Typical performance criteria for functionally effective 

systems include stability, robustness and responsiveness [209], and it seems that 

most, if not all candidate designs in Chapter 5 indeed satisfy these criteria. 

However, one could explore a metric such as the Bayes factor [210], which offers 

an objective tool for evaluating the evidence given by the data in favor of one 

design as opposed to another. It would be interesting to assign such a design score 

to each of the aforementioned criterion and test whether the collective results can 



 145 

be explained by a Pareto front, as it was shown in recent studies of evolutionary 

trade-offs [35,211]. 

 The models developed in this dissertation are limited in scope due to the fact that 

they only consider lignin biosynthesis. There are many other pathways implicated 

in cell wall synthesis, including the biosynthesis of cellulose, hemicellulose, and 

pectin. Future work in this area could include the development of a specific model 

for each individual pathway and later integrate all pathway models into a 

comprehensive cell wall model. A complex issue is that these cell wall 

components are synthesized at different cellular locations: cellulose at the plasma 

membrane, monolignols in cytosol, and most other hemicellulosic 

polysaccharides in the Golgi apparatus [212]. If one cannot validly argue that the 

spatial effects can be ignored, then other modeling frameworks, capable of 

incorporating spatial information, will need to be developed. The typical 

approaches for such tasks are partial differential equation (PDE) models or, more 

likely, methods of agent-based modeling (ABM) [213]. 

 An interesting expansion of the models presented in this dissertation could 

involve a detailed characterization of molecular species that are also utilized in a 

variety of other cellular processes that are or are not associated with cell wall 

synthesis. One such species is shikimate, which is not only a co-substrate of HCT 

in monolignol biosynthesis but also a precursor for the three aromatic amino acids 

phenylalanine, tyrosine, and tryptophan [214]. More intriguingly, it has been 

shown that salicylic acid, the candidate molecule for carrying out the postulated 

feedforward regulation (Chapter 3), can be synthesized from isochorismate via the 

shikimate pathway (cf. Figure 3.10; [111]), suggesting that there might be 

extensive crosstalk between the biosynthesis of aromatic amino acids and cell 

wall components. 
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 The methods developed here reach beyond the lignin pathway. In fact, neither the 

spatial organization of molecules into complexes nor the proposed substrate 

competition is unique to monolignol biosynthesis. In signal transduction 

pathways, mixtures of kinases, phosphatases, and other signaling proteins may 

form transient, nanoclusters on the plasma membrane that operate as temporary 

signaling platforms or reaction chambers [215]. Additionally, it was recently 

found in Drosophila embryo that substrate competition plays an important role in 

mitogen-activated protein kinase (MAPK) signaling [216]. As these mechanisms 

are often studied independently but most likely operate concurrently, the 

computational approaches developed in Chapter 5 may be readily applicable to 

signaling systems and help us understand how distinct control mechanisms are 

coordinated to carry out specific biological functions in the cell. 
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APPENDIX A 

SUPPLEMENARY MATERIALS FOR CHAPTER 2 

 

A.1 Supplementary Methods 

A.1.1 Determination of pathway structure 

 As a first step, we start with a detailed description of the monolignol biosynthetic 

pathway as shown in Figure A.1. Some of the constituent reactions/processes, however, 

require further consideration because the corresponding genetic or biochemical evidence 

has only been found in genera other than Populus, and thus may be affected by species-

to-species variations. In this regard, the next paragraphs will discuss three simplifying 

assumptions; the resulting pathway structure (or metabolic map) of monolignol 

biosynthesis is shown in Figure 2.1. 

 First, the conversion of p-coumaroyl CoA (X3) to caffeoyl CoA (X6) in effect 

represents the collective effort of p-coumaroyl shikimate 3-hydroxylase (C3H) and two 

acyltransferases, namely hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl 

transferase (HCT) and hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase 

(HQT). The major reason for this simplification is that no reports have truly quantified 

the accumulation of intermediate products [105], so that the entire conversion process can 

only be regarded as a single step. 
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Figure A.1: Generic metabolic map of the monolignol biosynthetic pathway.  

Metabolites in bold are represented by dependent variables Xi, 1,...,12i  , whereas 

enzymes are shown in italics. Solid black arrows represent material flow, whereas dashed 

red arrows represent regulatory signals, with negative signs indicating inhibition. As a 

reference, blue dotted arrows refer to putative enzymatic reactions that have been 

validated in other species but not yet in Populus. Transport processes of monolignols into 

the cell wall are shown as open arrows. For the definition of abbreviations, please refer to 

the legend of Figure 2.1. 

 

  Second, previous studies have shown that the hydroxylation of the aromatic ring 

at the C5 position and the subsequent phenolic O-methylation could occur at the alcohol 

level [14]. We decided not to include the putative pathway from coniferyl alcohol to 

sinapyl alcohol through 5-hydroxyconiferyl alcohol for the following reason. Although 

there is evidence for the conversion between these alcohols (or monolignols) in 
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sweetgum [72] and Arabidopsis [10], the findings in [71] clearly demonstrate that the 

recombinant caffeic acid O-methyltransferase (COMT)—the principal enzyme 

responsible for O-methylation in the pathway—as well as protein extracts from aspen 

xylem tissues show little activity towards 5-hydroxyconiferyl alcohol. Further 

experimental data will be needed to assess the validity of this simplification with greater 

rigor. 

 Third, while 4-coumarate:CoA ligase (4CL) had been shown to mediate the in 

vitro CoA ligation of 5-hydroxyferulic acid with minor efficiency [217], this activity was 

later found to be severely compromised by the presence of other substrates such as p-

coumaric acid, caffeic acid and ferulic acid [68]. In their presence, 5-hydroxyferuloyl 

CoA is present in insignificant amounts, which is consistent with its scarcity in vivo 

(Wout Boerjan, personal communication).  Hence, we exclude both 5-hydroxyferuloyl-

CoA and its downstream derivative, sinapoyl CoA, from our considerations until new 

evidence demonstrates their importance. 

 

A.1.2 Derivation of parameter values 

 For any biochemical reaction assuming a Michaelis-Menten rate law, we need the 

following information to characterize its corresponding power-law representation: kinetic 

features of the enzyme (e.g., Vmax and KM) and the substrate concentration at the chosen 

operating point, which often corresponds to the metabolite concentration at the system’s 

nominal steady state. The kinetic order g for such a rate law with steady-state substrate 

concentration S is given as  

 

M

M

K
g

K S



. 

By equating the power-law representation and the original rate law at the chosen 

operating point, we can solve for the rate constant  : 

(A.1) 
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max g

M

V S
S

K S
 


  at the operating point. 

If an appropriate rate law is not available for a specific biochemical reaction, other types 

of information are required for the derivation of parameter values; Table 2.2 shows some 

examples. A detailed description of estimation techniques for kinetic orders and rate 

constants from different rate laws can be found in Chapter 5 of [44]. 

 One issue regarding the use of experimental data collected from different cells, 

tissues, or even organisms is that the unit of a given quantity (e.g., concentration, Vmax, 

catalytic activity, etc.) often appears in many distinct variants. In our case, the unit of 

concentration such as pmol/mg DW is not directly comparable with that of a KM 

documented in µM, which implies that further efforts are needed, including the search for 

pertinent biological information that permits the conversion. As an example, consider the 

unit for the concentration of ferulic acid (FA). Fisher [218] published the density of air-

dry Populus as approximately 0.45 g/ml. Since the air-dry wood still contains about 15 

percent of its weight in water [218], we can compute the density of the supposedly 

desiccated Populus as 0.38 g/ml. Next, we need to compute the percentage of water in 

fresh Populus by volume. Assuming that the volumes taken up by dry matter and water 

are V1 and V2, respectively, and that water constitutes 90% of fresh plant material by 

weight, we can determine the percentage of water in fresh Populus by volume W  as 

follows: 

 
.77.0

,42.338.09

21

2

112








VV

V

VVV

W
 

With these two quantities, the concentration of FA in µM can be approximated as 

 .26.37
77.0

/38.0/5.75
M

mlgmgpmol



 

(A.2) 

(A.3) 

(A.4) 
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Although it seems reasonable to perform the conversion of units for all metabolite 

concentrations in the same fashion, this is not always easy. For instance, we are still in 

need of new concentration measurements, especially for the CoA esters, to confirm the 

accuracy of their estimated concentration values. As for those metabolites known to be 

lowly abundant in vivo or below the detection limit, we can presently only use a small 

number, such as 0.1 µM, as the nominal value. The steady-state concentration of 

cinnamic acid, on the other hand, is set to a larger value (1 µM) as implied by 

experimental findings in Pinus taeda cells [219].   

 As shown in Table A.2, we do not possess a complete kinetic description—KM, 

KI, and Vmax—for every reaction within the pathway. In fact, some of the measurements 

that are available to date can only be found in organisms other than aspen or poplar. 

However, since the only type of parameter that needs to be defined within the current 

context is the kinetic order, we might be able to estimate a small number of parameters 

with our a priori knowledge of KM and the steady-state substrate concentrations. For 

example, given that all CoA esters are known to be lowly abundant in vivo (Table A.1), 

we may assume from the first equation that a kinetic order with any of the CoA esters as 

substrate is close to (or equal to) 1. Similarly, the high KM values as observed in reactions 

catalyzed by p-coumarate 3-hydroxylase (C3H) or coniferyl aldehyde 5-hydroxylase 

(CAld5H) with ferulic acid (FA) as substrate (Table A.2) would have the same effect on 

the corresponding kinetic orders. As for the parameters lacking any useful information, 

we accept the widely used default hypothesis that substrate concentrations are similar to 

the values of KM  in vivo, and use 0.5 as an initial guess for the corresponding kinetic 

order [44]. 
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Table A.1: Metabolite concentrations. 

Dependent 

variable (Xi) 
Metabolite 

Concentration
a
 

(pmol/mg DW) 

Concentration 

(µM) 

1 cinnamic acid N/A 

2 p-coumaric acid < 0.5 < 0.25 

3 p-coumaroyl CoA Low
 b

 

4 p-coumaryl aldehyde 0.5 0.25 

5 caffeic acid < 0.5 < 0.25 

6 caffeoyl CoA Low
 b

 

7 ferulic acid 75.5 ± 16 37.26 

8 feruloyl CoA Low
 b

 

9 coniferyl aldehyde 28.4 ± 4 14.02 

10 5-hydroxyferulic acid < 0.5 < 0.25 

11 
5-hydroxyconiferyl 

aldehyde 
< 0.5 < 0.25 

12 sinapyl aldehyde 89.5 ± 14  44.17 

a
The in vivo concentrations of these hydroxycinnamic acids and hydroxycinnamyl aldehydes are from [62]. 

We later discovered that the concentration of ferulic acid (FA) is apparently lower than measured in 

another study [61], which used exactly the same analysis. Consequently, we decided to replace the previous 

value (147 ± 70) with a new measurement (75.5 ± 16) for the concentration of FA. DW = dry weight. 
b
Wout Boerjan, personal communication 
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Table A.2: Enzyme kinetic constants. 

Enzyme (EC number) Gene (GenBank 

ID) 

Substrate Vmax
a
 KM 

(µM) 

Organism Reference 

Phenylalanine ammonia-lyase 

(EC 4.3.1.24) 

AtPAL2
b 

(AY303129) 
Phenylalanine 

10.5 

pmol/s/µg 
64 

Arabidopsis 

thaliana 
[220], Table 2 

Cinnamate 4-hydroxylase 

(EC 1.14.13.11) 
 CinnA  0.7 A. thaliana [221], Table 1 

4-coumarate:CoA ligase (4CL) 

(EC 6.2.1.12) 

Pt4CL1
c
 

(AF041049) 

CoumA 
27.41 

µM/min/µg 
55.64

d 

Aspen [68], Table I CaffA 
17.49 

µM/min/µg 
34.68 

FA 
15.8 

µM/min/µg 
112.05 

Cinnamoyl CoA reductase 

(EC 1.2.1.44) 

 CoumCoA 1.3 nmol/s/mg 4.27 Aspen [106], Table 5 

PtCCR 

(AF217958) 
FCoA 158.6 µM/min 13.7 Poplar [70], Table 1 

Cinnamyl alcohol dehydrogenase 

(EC 1.1.1.195) 

PtCAD
e
 

(AF217957) 

CoumALD  6.2 
Aspen [222], Table 1 

ConifALD  2.3 
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Table A.2 continued. 

  

5-OH-

ConifALD 
 17.5 

  

SALD  9.1 

p-coumarate 3-hydroxylase (N/A) 
CYP98A3 

(NM_180006) 
CoumA  High A. thaliana [223], p.39-40 

Caffeic acid O-methyltransferase 

(EC 2.1.1.68) 
 

CaffA 1.85 µM/min 75.1 

Aspen [71], Table I 
5-OH-FA 2.2 µM/min 15 

5-OH-

ConifALD 
2 µM/min 2.6 

Caffeoyl-CoA O-methyltransferase 

(EC 2.1.1.104) 
 CaffCoA  27.5 Tobacco 

[116], 

p.36836 

Coniferyl aldehyde 5-hydroxylase 

(N/A) 
 

FA 46.5 nM/min 286.05 
Sweetgum [72], Table 2 

ConifALD 64.58 nM/min 2.77 

a
Units other than µM/min or nM/min are not valid because the corresponding enzyme concentrations are missing/lacking. 

b
The PAL family is known to constitute four isoforms in Arabidopsis, but only AtPAL2 is listed here because its gene product is the most catalytically effective, 

as is indicated by the highest Vmax/KM among the isoforms. 
c
Previous findings [20,217] suggested that the gene product of Pt4CL1, but not the other isoform Pt4CL2, dominates in the developing xylem tissue of aspen. 

d
Values in bold are used in the model 

e
A homolog to CAD, sinapyl alcohol dehydrogenase (SAD), has been identified in aspen [222]. Nevertheless, the implication of SAD being the enzyme 

responsible for the conversion of sinapyl aldehyde to S monolignol was later proved to be inconsequential in poplar [224] and is thus not listed. 
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A.1.3 Co-linearity between two kinetic orders 

 The distributions of parameter values within the ensemble of models indicate that 

the parameters 
  
f

CAD,ConifALD
 and 

  
f
CAld5H ,ConifALD

are linearly dependent with a slope close to 

1. If we denote by vCAD  and vCAld5H  the fluxes catalyzed by enzymes CAD and CAld5H, 

with coniferyl aldehyde (ConifALD) as a common substrate, the ratio between these two 

fluxes in power-law representation can be characterized as 

 

, 5 ,

5 5

[ ] CAD ConifALD CAld H ConifALDf fCAD CAD

CAld H CAld H

v
ConifALD

v






 . 

Assuming that ,CAD ConifALDf  and 
  
f
CAld5H ,ConifALD

 are exactly identical in value, we can reduce 

the equation to 

 

vCAD

vCAld5H


 CAD
 CAld5H


vCAD
0

vCAld5H
0

, 

where vCAD
0

 and vCAld5H
0

 are the corresponding steady-state values estimated by FBA. 

Consequently, the ratio between these two fluxes is equal to the ratio between their 

respective rate constants, which in turn corresponds to the ratio of these two fluxes at 

steady state. 

 

A.1.4 Local stability analysis 

 For each randomly sampled generalized mass action (GMA) model, we must 

ensure that the system behavior is robust to small fluctuations in metabolite 

concentrations. In other words, the system has to return to its original FBA-based steady 

state when confronted with minor perturbations in the dependent variables. To determine 

local stability, we computed the eigenvalues of the Jacobian matrix derived from the 

GMA model and evaluated it at the steady state. The necessary condition for local 

stability demands that the largest real part of all eigenvalues must be less than zero. For a 

(A.5) 

(A.6) 
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GMA model with a stoichiometric matrix N, we can use elementary calculus and specify 

every entry ijJ  of the corresponding Jacobian matrix as 

 

0

0
1

Z
k

ij ik kj

k j

v
J N f

X

 , 

where Z is the total number of fluxes within the pathway and kjf  is the kinetic order of 

metabolite jX  with respect to metabolic flux kv ; the superscript 0 indicates that these are 

steady-state values. Clearly, different parameter profiles will lead to different Jacobian 

matrices, and probably different dynamics in the vicinity of the steady state. Although the 

computational efforts for carrying out the local stability analysis are considerable as the 

number of dependent variable grows, it is nonetheless a significant test to prove the 

system’s ability to maintain its homeostatic behavior in the face of spurious 

perturbations. 

 

A.1.5 Mutual information and its numerical estimation 

 By definition, the mutual information ( ; )I X Y  between two discrete random 

variables X  and Y  with joint distribution ( , )p x y  and marginal distributions ( )p x  and 

( )p y  can be written as 

 

( , )
( ; ) ( , ) log

( ) ( )x y

p x y
I X Y p x y

p x p y
 . 

It is noteworthy that ( ; )I X Y  becomes zero if and only if two variables are statistically 

independent, i.e., ( , ) ( ) ( )p x y p x p y . In order to estimate the required probability 

distributions from a population of stable GMA models, we first replaced all numerical 

values—whether they refer to a kinetic order or the S/G ratio of one transgenic 

experiment—by their respective rank order, and then divided them into M discrete bins, 

as if there were M different states. Next, we computed the mutual information between 

(A.7) 

(A.8) 
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any two variables using the naïve algorithm [225] as a function of M. While the choice of 

M has been shown to affect the absolute value of the estimated mutual information [225], 

we are in fact more concerned with whether the two variables are significantly correlated. 

Consequently, we generated another 99 datasets { , }i iX Y , 1,...,99i  , through a random 

permutation of the original data { , }X Y . By assuming that iX  and iY  are independent 

for all i, we may claim with a (100 1)%  level of significance that X  and Y  are truly 

correlated if ( ; )I X Y  is distinct from ( ; )i iI X Y  [226]. Given that the identification of 

significant parameters seems invariant to our choice of M, we simply choose M = 10 for 

all cases. 

 

A.1.6 Indirect Optimization Method 

 Following the original proponents of the Indirect Optimization Method (IOM) 

[85], the first step involves the reformulation of the original GMA model as an S-system 

model. The GMA and S-system variants within BST, while both using products of 

power-law functions in a similar fashion, differ in one key aspect: while each flux in a 

GMA model is represented as an individual power-law term, S-system models aggregate 

all production fluxes of a (metabolite) pool into one power-law term and all degradation 

fluxes into a second power-law term. Previous studies have shown that in many cases the 

differences between these two representations are negligible [47,227,228,229,230], and 

that sometimes the accuracy of modeling biochemical reactions with known kinetics is 

improved in the S-system representation [230]. While both formats have their own 

advantages and disadvantages, the clear winner for optimization tasks is the S-system 

format, because the optimization problem becomes strictly linear (in logarithmic space), 

which permits application of the well-developed theory of linear programming and access 

to many readily available software packages. Like the core equations of the optimization 
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task, the objective function and relevant constraints on variables and fluxes also become 

linear when the S-system format is used, so that the entire constrained optimization task 

becomes linear. 

 A complete definition of a linear optimization problem demands more details than 

can be explained here, specifically with respect to constraints on variables and fluxes, and 

the interested reader is referred to [128]. Variables representing metabolites and enzymes 

are allowed to vary within a certain range determined from professional experience, 

technological capacity, or just educated guesses. Here, we allow the enzyme activities to 

change between 5% and 5 times the basal levels, which is in line with past expert 

experience. Furthermore, we assume that metabolite concentrations may vary by a factor 

of 10, without being physiologically detrimental. Obviously, it is easy to reset these 

numerical values if it is deemed appropriate. Constraints on fluxes are determined by the 

steady-state definition of the system and, in particular, insights from the prior flux 

balance analysis. Finally, the objective function is given as the ratio between two fluxes 

representing the production of S and G. This function can again be represented by a 

single linear equation in logarithmic coordinates. 

 The optimization with an ensemble of models, which were fitted to data with a 

simulated annealing algorithm (see the following section), is executed with the function 

linprog in MATLAB (Mathworks Inc.). For an assessment of the approximation errors in 

the IOM approach, we apply the optimized enzyme profile obtained from the 

intermediate S-system model as an input to the original GMA models and solve for the 

steady state. 

 

A.1.7 Model-fitting algorithm 

 We used a simulated annealing algorithm [231] to find the values of the 

significant parameters that minimize the sum of squared errors (SSE) between the 
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measured and the predicted S/G ratios of the five transgenic experiments used as the 

training data (see Table 2.2). Applying this algorithm to the search of “global” solutions, 

but at the expense of computational efforts, we executed 20 runs to obtain an ensemble of 

GMA models, using the simulannealbnd function in MATLAB (Mathworks Inc.). In 

brief, the SA algorithm begins with a randomly selected point in the parameter space that 

defines a locally stable GMA model. In each of the following iterations, we generate a 

new point by perturbing the old one in a randomly chosen coordinate (or parameter) with 

a scale proportional to the variable T, which is called the system temperature. One 

interesting feature of the SA algorithm is that it allows the SSE to temporarily increase in 

each iteration (which potentially avoids abundant local optima), but only with a 

probability controlled by T. In general, the probability takes the form 
/1/ (1 )E Te , where 

E  is the difference in the SSE between the current and the previous iteration. As the 

algorithm proceeds, the temperature decreases on a certain “cooling” schedule, which 

terminates with T = 0, and so does the probability to take an adventurous path that raises 

the SSE. 
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APPENDIX B 

SUPPLEMENARY MATERIALS FOR CHAPTER 3 

 

B.1 Overview 

 This Appendix includes two main sections. In Section B.2, we present the model 

formulation, and identify equivalent pathways that underlie the occurrence of alternate 

flux balance analysis (FBA) solutions. In Section B.3, we present a kinetic model for the 

analysis of pathway operation at the critical branch point of coniferyl aldehyde. 

 

B.2 Use of Flux Balance Analysis (FBA) and Minimization of Metabolic Adjustment 

(MOMA) for Modeling Monolignol Biosynthesis 

B.2.1 Model formulation 

 We constructed steady-state flux-based models for wild-type and transgenic 

plants based on the revised pathway structure (Fig. 3.1). The model comprises 24 flux 

variables; Table B.1 shows the corresponding metabolic reaction or transport process for 

each flux. If a reaction is associated with a specific isozyme, as in the case of CCR1 and 

CCR2, the encoding Medicago gene (represented by its tentative consensus TC number) 

is also listed. 
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Table B.1: List of flux variables and their corresponding metabolic reaction. 

Flux Enzyme (TC#) Reaction 

v1 PAL L-phenylalanine → cinnamic acid + NH3 

v2 C4H cinnamic acid + NADPH + O2 → p-coumaric acid + NADP
+
 + H2O 

v3 4CL p-coumaric acid + CoA + ATP → p-coumaroyl CoA + Pi + AMP 

v4 CCR2 (TC100678) p-coumaroyl CoA + NADPH → p-coumaryl aldehyde + NADP
+
 + CoA 

v5 CAD p-coumaryl aldehyde + NADPH → p-coumaryl alcohol + NADP
+
 

v6 Tr* p-coumaryl alcohol → Ø   

v7 HCT p-coumaroyl CoA + shikimate → p-coumaroyl shikimate + CoA 

v8 C3H p-coumaroyl shikimate + NADPH + O2 → caffeoyl shikimate + NADP
+
 + H2O 

v9 HCT caffeoyl shikimate + CoA → caffeoyl CoA + shikimate  

v10 CCR2 (TC100678) caffeoyl CoA + NADPH → caffeoyl aldehyde + NADP
+
 + CoA 

v11 CCoAOMT caffeoyl CoA + S-adenosyl L-methionine → feruloyl-CoA + S-adenosyl homocysteine 

v12 COMT caffeoyl aldehyde + S-adenosyl L-methionine → coniferyl aldehyde + S-adenosyl homocysteine 

v13 CCR1 (TC106830) feruloyl CoA + NADPH → coniferyl aldehyde + NADP
+
 + CoA 

v14 CAD coniferyl aldehyde + NADPH → coniferyl alcohol + NADP
+
 

v15 Tr coniferyl alcohol → Ø   

v16 F5H coniferyl aldehyde + NADPH + O2 → 5-hydroxyconiferyl aldehyde + NADP
+
 + H2O 

v17 COMT 
5-hydroxyconiferyl aldehyde + S-adenosyl L-methionine → sinapyl aldehyde + S-adenosyl 

homocysteine 

v18 CAD sinapyl aldehyde + NADPH → sinapyl alcohol + NADP
+
 

v19 Tr sinapyl alcohol → Ø   

v20 F5H coniferyl alcohol + NADPH + O2 → 5-hydroxyconiferyl alcohol + NADP
+
 + H2O 
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Table B.1 continued. 

v21 COMT 5-hydroxyconiferyl alcohol + NADPH → sinapyl alcohol + NADP
+
 

v22 N/A
†
 cinnamic acid →→ salicylic acid 

v23 N/A
†
 p-coumaroyl-CoA →→ anthocyanin, flavonoid, isoflavonoid,… 

v24 Tr 5-hydroxyconiferyl alcohol → Ø   

*Tr represents collectively all biochemical events during the transport of alcohol precursors into the cell wall, i.e., outside the cytoplasm (Ø). 
†
v22 and v23 refer to the sequence of reactions that leads to the synthesis of salicylic acid and flavonoid derivatives, respectively. Thus, they are not associated with 

a single enzyme. 
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 Typically, two classes of constraints are employed for steady-state flux balance 

models. The first is conservation of mass, which can be characterized mathematically by 

Eq. (3.1). Instead of presenting the constraint as the product of a stoichiometric matrix 

and a column vector of fluxes, we list the mass balance equation for each of the 16 

intermediate metabolites in Table B.2. Details of the second class of constraints, which 

concerns the reversibility and maximal reaction rates of individual fluxes, have been 

discussed in Chapter 3 and will not be repeated here. 

 

Table B.2: Mass balance equations. 

Metabolite Balance Equation of Influxes and Effluxes 

cinnamic acid v1 – v2 – v22* = 0 

p-coumaric acid v2 – v3 = 0 

p-coumaroyl-CoA v3 – v4 – v7 – v23 = 0 

p-coumaryl aldehyde v4 – v5 = 0 

p-coumaryl alcohol v5 – v6 = 0 

p-coumaroyl-shikimate v7 – v8 = 0 

caffeoyl-shikimate v8 – v9 = 0 

caffeoyl-CoA v9 – v10 – v11 = 0 

caffeoyl aldehyde v10 – v12 = 0 

feruloyl-CoA v11 – v13 = 0 

coniferyl aldehyde v12 + v13 – v14 – v16 = 0 

coniferyl alcohol v14 – v15 – v20 = 0 

5-hydroxyconiferyl aldehyde v16 – v17 = 0 

sinapyl aldehyde v17 – v18 = 0 

5-hydroxyconiferyl alcohol v20 – v21 – v24 = 0 

sinapyl alcohol v18 + v21 – v19 = 0 

*Variables in red indicate “overflow” fluxes (cf. red arrows in Figure 3.1). 
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 Constraints on lignin composition along with numerical values are presented in 

Table B.3. It is straightforward to translate them into a set of equality constraints in the 

form of Eq. (3.3). To implement MOMA, we further define δi (see definition in Chapter 

3) in the following way: find the flux vi whose catalyzing enzyme is modified, identify 

the percentage of the residual enzyme activity related to its wild-type level, and set δi to 

this number; unaffected fluxes have δi = 1.  

 We used linprog and quadprog routines in MATLAB to solve the linear and 

quadratic programming problems in FBA and MOMA, respectively. 

B.2.2 Identification of equivalent pathways 

 Given the constraints in Eqs. (3.1)-(3.3), we first perform an FBA for wild-type 

plants and then use this FBA-optimum as a reference in MOMA to infer the flux 

distribution for transgenic plants. A key issue that may arise from this approach is the 

existence of alternate optimal FBA solutions that give the same objective function value 

but with different flux distributions [120,121]. To address this issue, we define an 

(16+2+1)  24 matrix A and a (16+2+1)-dimensional vector b such that 

 Av b  

collectively represents Eqs. (3.1) and (3.3), as well as the normalization constraint v1 = 1. 

By this definition, we know that v
wt

 is a solution for the following problem: 

 

* Tz 



 

c v

Av b

l v u

 

where * T wtz  c v  is the optimal objective function value, and l  and u  are vectors of the 

lower and upper bounds on individual fluxes, respectively. 

 

(B.2) 

(B.1) 
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Internode

Lignin content 

and monomer 

composition

Control
PAL

(55%)*

C4H

(46%)

HCT

(24%)

C3H

(16%)

CCoAOM

T (3%)

F5H

(N/A)

COMT 

(3%)

1-2

H/T† 7.06% 8.71% 6.50% 50.17% 11.40% 11.19% 5.84% 5.63%

G/T 85.52% 79.97% 85.86% 45.46% 81.19% 82.32% 90.33% 90.80%

S/T 7.42% 11.32% 7.63% 4.37% 7.41% 6.49% 3.83% 3.58%

AcBr Lignin (mg) 93.13 71.63 82.09 62.4 58.8 83.49 72.56 80.03

3

H/T 6.13% 4.85% 5.08% 51.12% 15.91% 9.20% 4.38% 5.42%

G/T 88.90% 72.51% 88.78% 33.11% 76.06% 82.92% 92.38% 91.63%

S/T 4.97% 22.64% 6.14% 15.77% 8.04% 7.88% 3.24% 2.95%

AcBr Lignin (mg) 80.86 80.75 70.8 64.95 52.73 71.92 79.48 76.15

4

H/T 3.39% 3.29% 3.31% 51.29% 19.18% 6.53% 3.71% 4.43%

G/T 70.33% 60.36% 74.37% 29.34% 59.95% 59.73% 80.88% 87.52%

S/T 26.28% 36.35% 22.32% 19.37% 20.87% 33.74% 15.41% 8.05%

AcBr Lignin (mg) 130.2 106.7 76.92 77.42 82.09 99.45 214.9 117.2

5

H/T 2.97% 3.01% 3.11% 55.93% 20.77% 5.48% 2.48% 4.21%

G/T 67.07% 55.81% 68.80% 24.17% 55.80% 53.04% 82.59% 86.60%

S/T 29.97% 41.18% 28.09% 19.90% 23.43% 41.48% 14.93% 9.19%

AcBr Lignin (mg) 190.6 109 150.3 78.07 113.4 138.2 235.2 149.2

6

H/T 2.40% 2.38% 2.40% 64.51% 22.88% 4.09% 3.06% 3.13%

G/T 61.74% 52.30% 71.32% 18.10% 50.22% 53.59% 86.54% 88.60%

S/T 35.86% 45.32% 26.28% 17.40% 26.91% 42.32% 10.41% 8.28%

AcBr Lignin (mg) 225.7 124 172.1 81.22 128.9 169.8 239.8 182

7

H/T 2.04% 2.07% 1.96% 68.52% 24.96% 3.36% 1.79% 2.90%

G/T 61.14% 50.30% 68.98% 15.31% 46.86% 51.61% 76.01% 90.38%

S/T 36.81% 47.63% 29.06% 16.17% 28.18% 45.03% 22.20% 6.72%

AcBr Lignin (mg) 248.8 119 182.2 78.23 131.4 172.3 246.4 189.4

8

H/T 1.67% 1.97% 1.79% 66.56% 25.63% 2.75% 1.56% 2.53%

G/T 59.96% 48.16% 68.65% 16.61% 45.80% 49.69% 75.49% 89.14%

S/T 38.38% 49.87% 29.56% 16.83% 28.57% 47.56% 22.95% 8.33%

AcBr Lignin (mg) 251 126.9 182.6 89.33 130 186.8 260.4 199.3

Table B.3: Lignin content and monomer composition in wild-type and transgenic plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

*Percentages within the parentheses are the residual enzyme activity related to the wild-type level. 
†
T = H+G+S 
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 Apparently, alternate optima occur if there are solutions for Eq. (B.2) other than 

v
wt

. If this is the case, the difference between an alternate solution and v
wt

, defined as w, 

must also be a solution for the following sub-problem: 

 

0T

wt





  

c w

Aw 0

l v w u

 

because 

 
T( ) * * 0T T wt z z     c w c v w c v  

and 

 ( )wt wt     Aw A v w Av b b 0 . 

If we define an (16+4)  24 matrix 
T 

  
 

c
B

A
, then it is clear that w  lies in the null space 

of B , i.e., Bw 0 . Identification of the equivalent pathways, in this respect, is thus 

related to finding a meaningful basis of the null space of B . By applying the Gauss-

Jordan elimination to B , we identified a basis for the pathway shown in Figure 3.1; the 

vectors that constitute the basis are listed in Table B.4 and also illustrated in Figure B.1. 

 

Table B.4: Basis vectors (BV) for the pathway shown in Figure 3.1. 

 BV1 BV2 BV3 BV4 

v1 0 0 0 0 

v2 0 0 1 1 

v3 0 0 1 1 

v4 0 0 0 0 

v5 0 0 0 0 

v6 0 0 0 0 

v7 0 0 0 1 

v8 0 0 0 1 

v9 0 0 0 1 

v10 -1 0 0 1 

v11 1 0 0 0 

v12 -1 0 0 1 

v13 1 0 0 0 

v14 0 1 0 1 

(B.3) 

(B.4) 

(B.5) 
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Table B.4 continued. 

v15 0 0 0 0 

v16 0 -1 0 0 

v17 0 -1 0 0 

v18 0 -1 0 0 

v19 0 0 0 0 

v20 0 1 0 1 

v21 0 1 0 0 

v22 0 0 -1 -1 

v23 0 0 1 0 

v24 0 0 0 1 

 

 
Figure B.1: Illustration of the four basis vectors. 

 

 Two observations are made from the identified basis. First, BV1 and BV2 

correspond to the two inner loops within the pathway. Second, both BV3 and BV4 have 

non-zero components corresponding to two overflow fluxes, with one being positive and 
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the other one negative. Since the three overflow fluxes are presumably minimized in 

wild-type plants and thus set to a small positive number in the original FBA-derived 

optimum v
wt

, any perturbation w involving a non-trivial linear combination of BV3 and 

BV4 cannot be a solution for the system described in (B.3) because adding a negative 

value to one of these overflow fluxes would make it smaller than the lower bound. Thus, 

a valid perturbation w can be represented as: 

 
1 2

1 2

                1 2 

subject to  and ,wt

BV BV 

 

 

   

w

1 v w u R
 

The two sets of equivalent pathways as specified by BV1 and BV2 are (v10 →v12, v11→v13) 

and (v14→v20→v21, v16→v17→v18). To identify a unique, physiologically relevant flux 

distribution for wild-type plants, we used the maximum activities of two Medicago CCR 

isoforms (Table B.5) to constrain the first two equivalent pathways with the following 

constraint: 10 13/ 0.35 /1.64v v  . The constraint is justified because, assuming that the two 

CCR-catalyzed reactions are described by Michaelis-Menten kinetics and that the levels 

of both CoA esters are well below the corresponding Michaelis constraints (54.5 M for 

feruloyl CoA and 23.4 M for caffeoyl CoA; [59]), the ratio between the two CoA esters 

is approximately 

 10

13

[Caffeoyl CoA] 1.64 23.4
0.43

[Feruloyl CoA] 0.35 54.5

v

v
    , 

which is consistent with the prediction in potato tubers that feruloyl CoA is more 

abundant than caffeoyl CoA [232].  

 Since the enzymes implicated in the other two equivalent pathways have not yet 

been characterized for Medicago, we instead used the maximum activities of Arabidopsis 

F5H to set up the constraint: 16 20/ 5 / 6v v  . Notice that this approximation is not an 

important issue because all the main results and postulates still hold whether or not the 

later constraint is applied (data not shown). 

 

(B.6) 

(B.7) 
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Table B.5: Documented enzyme kinetic constants for CCR and F5H. 

Enzyme Gene Substrate Vmax Reference 

Cinnamoyl CoA 

reductase 

(CCR) 

MtCCR1 Feruloyl CoA 1.64
a
 

[59] 
MtCCR2 Caffeoyl CoA 0.35

a
 

Ferulate 5-

hydroxylase 

(F5H) 

FAH1
c
 

Coniferyl aldehyde 5
b
 

[10] 
Coniferyl alcohol 6

b
 

a
Unit in μmol/min 

b
Unit in pkat/mg; kat = mol/s 

c
The gene encoding ferulate 5-hydroxulase was cloned in Arabidopsis 

 

 Interestingly, the three major monolignols (H, G, and S) are not involved in the 

basis vectors. A possible reason is the following: The three fluxes v6, v15, and v19 are 

more or less fixed by the normalization (v1 = 1) and the two “proportion” constraints in 

Eq. (3.3), if the task is to maximize their sum (or equivalently, to minimize the sum of 

three “overflow” fluxes). As a result, their values would not be influenced by the 

different weighting of equivalent pathways, whereas values of some other intermediate 

fluxes would. 

 

B.3 Kinetic Analysis of a Reduced Model 

 In order to validate the results from the flux-based analysis in some independent 

fashion, we generated an ensemble of ordinary differential equation (ODE) models for 

the core of the pathway (Figure B.2) that controls the relative proportion of G and S 

lignin. Using a standard formulation with simplified variable names and Michaelis-

Menten functions for each enzymatic step, we defined 
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where Ki’s are Michaelis constants and Vi’s are maximum rates. To ensure that the search 

was representative of the parameter space, we sampled 10,000 sets of kinetic parameters 

uniformly over logarithmic scales, using the Latin hypercube sampling method. The 

sampling ranges were Vi ~0.1-10 and Ki ~0.1-10. Furthermore, in order to account for the 

possibility of cooperative binding, we replaced / ( )i iV S S K  in Eq. (B.8) with Hill 

functions of the type / ( )n n n

i iV S S K  and sampled the Hill coefficient n from the range 

1-4. 

 

 

Figure B.2: Simplified network with one fixed input (I) and four metabolites (X1-X4), 

which was used as a reduced model for studying the roles of CCR1 and CCR2 in the 

monolignol pathway.  

Metabolic fluxes, denoted as v1-v8, are represented by arrows that connect metabolites or 

leave the system. Each kinetic parameter in Eq. (B.8) is numbered by the corresponding 

flux. Reactions 1 5, ,v v  correspond to CCR2, CCoAOMT, COMT, CCR1, and CAD, 

respectively. v6 represents transport into the cell wall, and v7 and v8 represent F5H. Pools 

I, X1, …, X4 correspond to caffeoyl-CoA, caffeoyl aldehyde, feruloyl CoA, coniferyl 

aldehyde, and conferyl alcohol, respectively. 

3 11 1

1 1 3

2 2 4 2

2 2 4

3 3 1 5 3 7 34 2

1 3 2 4 3 5 3 7

5 3 6 4 8 44

3 5 4 6 4 8

V XdX V I

dt I K X K

dX V I V X

dt I K X K

dX V X V X V XV X

dt X K X K X K X K

V X V X V XdX

dt X K X K X K

 
 

 
 

   
   

  
  

(B.8) 
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 Each sampled parameter set defines a kinetic model with which we can simulate 

different cases of genetic modifications and monitor how the S/G ratio responds. First, 

we numerically determined a steady state by solving the ODEs with all dependent 

variables in the network, as well as the input I, set to a concentration of 1. Gene 

modifications were modeled by decreasing the Vi of the targeted enzyme (e.g., V2 for 

CCoAOMT). With this adjustment, we solved the ODEs again and then computed the 

S/G ratio as 

 

7 3 8 4

7 8 3 7 4 8

6 46

4 6

S G

V X V X

v v X K X K
ratio

V Xv

X K


  

 



, 

where variables with bars indicate steady-state values. The further analysis excluded ill-

behaved models, which were defined as systems spending an unduly large amount of 

time approaching the post-modification steady state, or systems in which one or more 

metabolites were depleted during the transition. The remaining admissible models were 

evaluated for their ability to change the S/G ratio; an increase in the S/G ratio was 

deemed significant if it was greater than 50%. 

  

(B.9) 
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APPENDIX C 

SUPPLEMENARY MATERIALS FOR CHAPTER 5 

 

C.1 Supplementary Text 

C.1.1 Selection of target tissue in a wild-type Medicago species 

 The parameter values for each model instantiation were selected in such a way 

that the nominal steady state is representative of wild-type Medicago. In this study, we 

chose alfalfa (Medicago sativa L.) as the model organism because of its extensive 

depository of perturbation-response data, including the results of experiments in which 

seven lignin biosynthetic enzymes were genetically down-regulated and the lignin 

content and composition in several stem internodes of each down-regulated line were 

determined [25]. Of note, this list of down-regulated genes does not include CCR1 and 

CCR2, which have only recently been analyzed with Medicago truncatula lines harboring 

transposon insertions in CCR1 and CCR2 [59]. In order to minimize the discrepancy in 

our biological context, we thus chose the sixth internode (numbered from top to bottom) 

of stem as the target tissue because this is where the lignin content and composition were 

determined for the ccr1 and ccr2 mutants [59]. 

 

C.1.2 Physiochemical constraints on steady-state fluxes 

 Two pieces of information for this specific stem internode in a wild-type alfalfa 

plant can be exploited, along with other stoichiometric and thermodynamic constraints, to 

define a biologically realistic set of reaction rates (or fluxes) at the nominal steady state. 

First, wild-type alfalfa is known to contain principally S and G lignin, while the 

incorporation of 5-hydroxyconiferyl alcohol into lignin polymer only occurs in COMT-
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deficient plants [103,107]. Thus, it is reasonable to assume that the target tissue in a wild-

type alfalfa plant has evolved to maximize the production of G and S lignin at the 

expense of 5-hydroxyguaiacyl (5HG) lignin. Second, the S/G ratio, that is, the ratio of 

sinapyl (S) to guaiacyl (G) lignin monomers, is equal to 0.58 [25]. As in our previous 

work [150], this information can be translated into a “proportionality constraint” on the 

fluxes leading to G and S lignin. Combining this information, we can represent the set P 

of steady-state fluxes, defined as m-dimensional real vectors, in the following 

mathematical format 

 
*

1{ | ,  0,  ,  1,  ,  1,..., }.T T

i iP v f v v l i mc v b v Nv 0         

The definition for each of the five conditions is listed below: 

1. c
T 

v = f
*
: This condition states that the sum of fluxes leading to G and S lignin 

(c
T
v) should be fixed at a value f*, which is obtained by solving the following 

linear programming problem: 

 

*

1

max

subject to 0

0

1

1,...,

T

T

i i

f

v

v l

i m

c v

b v

Nv













  

2. b
T 

v = 0: This equation defines the proportionality constraint on the fluxes leading 

to G and S lignin as described above. Elements in b are determined by the specific 

value of the S/G ratio. 

3. Nv = 0: This condition describes the conservation of mass, or mass balance. N is 

an nm stoichiometric matrix for a given design with n dependent variables and m 

reactions. 

(C.1) 

(C.2) 
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4. v1 = 1: As no reaction in the model is known to be reversible, with the exception 

of HCT, setting the input flux (v1) to 1 ensures that all fluxes are less than or equal 

to one. In other words, this condition works as a means of standardization.  

5. vi  li: This condition defines the lower bounds on individual reactions. For the i
th

 

flux vi, it is bounded from below by li. Here, we assume that all the enzymatic 

reactions and transport processes are irreversible and thus have a lower bound of 

zero. The only exception is the process that represents the transport of 5-

hydroxyconiferyl alcohol into the cell wall, for which we arbitrarily choose 0.01 

as the lower bound to prevent its value from becoming too small when solving for 

f*.    

 

C.2 Supplementary Tables and Figures 

Table C.1: Number of valid model instantiations as judged by two different 

robustness measures (Q and Q’). Statistics with a non-zero value of Q or Q’ are marked 

in bold. The first number is the result of a simulation with Mechanism 3 only, whereas 

the second number stems from a simulation with both Mechanisms, 1 and 3.  

Configuration # Q Q’ 

A 96/100 218/222 

B 284/303 461/486 

C 0/0 0/0 

D 0/0 0/0 

E 307/361 489/555 

F 176/180 278/273 

G 0/0 0/0 

H 0/0 0/4 

I 431/422 626/649 

J 0/0 0/0 

K 0/0 0/0 

L 0/0 0/0 

M 0/0 0/0 

N 0/0 0/0 

O 381/447 619/662 

P 0/0 0/0 

Q 0/0 0/0 

R 0/0 0/0 

S 0/0 0/0 
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Q = # models showing a decrease of more than 5% and an increase of more than 5%, compared to the wild-

type level, in simulations of CCR1 and CCR2 down-regulation, respectively.   

Q’ = # models showing a decreased and an increased S/G ratio, compared to the wild-type level, in 

simulations of CCR1 and CCR2 down-regulation, respectively. 

 

Table C.2: Upper and lower bounds for kinetic orders. 

Kinetic order (fenzyme, substrate/regulator) Lower bound Upper bound 

fCCR2, caffeoyl CoA 0 2
a
 

fCCoAOMT, caffeoyl CoA 0 1
b
 

fCOMT, caffeyl aldehyde 0 1 

fCOMT/F5H, caffeyl aldehyde 0 1 

fCCR1, feruloyl CoA 0 1 

fCCR1/CAD, feruloyl CoA 0 1 

fCAD, coniferyl aldehyde 0 1 

fF5H, coniferyl aldehyde 0 1 

fTr, coniferyl alcohol  1
c
 1 

fF5H, coniferyl alcohol 0 1 

fCOMT, 5-hydroxy coniferyl aldehyde 0 1 

fTr, 5-hydroxy coniferyl alcohol 1
c
 1 

fCOMT, 5-hydroxy coniferyl alcohol 0 1 

all kinetic orders for activators 0 2 

all kinetic orders for inhibitors -2 0 
a
CCR2 shows positive cooperativity towards caffeoyl-CoA [59] 

b
A kinetic order of 0 corresponds to a Michaelis-Menten process where the enzyme is saturated, and a 

kinetic order of 1 describes the situation in which the substrate concentration is negligibly small compared 

to the Michaelis constant KM [44]. 
c
The transport process (Tr) is assumed to be first order 
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Figure C.1: Simulation results for CCR1 and CCR2 down-regulation using only 

Mechanism 1.  
As with Figures 5.3 and 5.4, only topological configurations with at least one model 

showing quantitatively correct predictions for both CCoAOMT and COMT down-

regulation are plotted. 

 

 
 

Figure C.2: Simulation results for CCR1 and CCR2 down-regulation using only 

Mechanism 2.  
See legend of Figure C.1 for more details. 
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Figure C.3: Simulation results for CCR1 and CCR2 down-regulation using 

Mechanisms 1 and 2.  
See legend of Figure C.1 for more details. 
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