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SUMMARY 

Increasing evidence suggests that ribonucleotides may represent one of the most common 

non-standard nucleotides found in genomic DNA.  Therefore, it is important to understand the 

extent to which ribonucleotides alter genomic integrity and the cellular mechanisms that are 

responsible for removing them.  We developed oligonucleotide-driven gene correction assays in 

the yeast Saccharomyces cerevisiae to show that, if not removed, mispaired and paired 

ribonucleotides embedded in genomic DNA serve as templates for DNA synthesis and could 

cause genetic change.  We found that RNase H type 2 targets single paired and mispaired 

ribonucleotides, as well as a stretch of two or three ribonucleotides embedded in DNA, and the 

nucleotide excision repair system can target single paired ribonucleotides as damage. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The presence of ribonucleotides in genomic DNA poses a threat to the genomic integrity 

of cells, frequently resulting in deleterious mutations and even cell death.  Numerous studies 

suggest that ribonucleotides may represent one of the most abundant non-standard nucleotides 

found in genomic DNA.  During DNA replication and repair, DNA polymerases1-7 and DNA 

primases8,9 often incorporate ribonucleotides into DNA.  In addition, oxidative damage of DNA 

can convert a deoxyribonucleotide into a ribonucleotide10.  Yeast replicative DNA polymerases 

incorporate ribonucleotides into genomic DNA at frequencies of approximately two per kilobase 

pair, making ribonucleotides the most abundant form of potential DNA damage in the cell11.  In 

comparison to deoxyribonucleotides, ribonucleotides have a reactive 2’ hydroxyl on the sugar 

group that renders the DNA backbone more susceptible to strand cleavage11.  This can distort the 

double helix DNA backbone12, resulting in genome instability13, defective replication14 or 

transcription13, and mutagenesis13.  To maintain genomic integrity, yeast Saccharomyces 

cerevisiae (S. cerevisiae) cells utilize several DNA repair mechanisms, including the 

ribonuclease (RNase) H class of enzymes14, such as RNase H type 2 (RNase H2), and the 

nucleotide excision repair (NER) system15.  Defects in RNase H type 2 are associated with the 

neuroinflammatory disorder, Aicardi Goutiéres Syndrome16, and defects in the NER system are 

associated with the rare genetic disorders, xeroderma pigmentosum, trichothiodystrophy, and 

Cockayne syndrome17. 

Storici et al. (2007) showed that RNA can serve as a template for DNA repair during 

double-strand break (DSB) repair and directly transfer genetic information to genomic DNA in 
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yeast18.  Utilizing the method demonstrated by Storici et al. (2007), we developed 

oligonucleotide-driven gene correction assays in S. cerevisiae to demonstrate that, if not removed, 

mispaired and paired ribonucleotides embedded in genomic DNA serve as templates for DNA 

synthesis during DSB repair and could cause a genetic change.  In vitro, RNase H2 has been 

shown to specifically target and cleave isolated ribonucleotides embedded in genomic DNA even 

when mispaired19,20.  However, until now, a detailed study of the in vivo substrate specificity of 

RNase H2 has been missing.  The NER system has been found to remove a variety of bulky 

DNA lesions that distort the double helix DNA backbone15; however, until now, no studies have 

analyzed whether the NER system also targets ribonucleotides embedded in genomic DNA as 

damage. 

 

1.2 Specific Aims 

The specific aims of this study were to analyze the in vivo substrate specificity of RNase 

H2 and to determine whether the NER system can target ribonucleotides as damage. 

 

1.3 Hypothesis 

RNase H2 targets paired and mispaired ribonucleotides embedded in the genomic DNA 

of S. cerevisiae during DSB repair, and the NER system targets ribonucleotides embedded in the 

genomic DNA of S. cerevisiae as damage during DSB repair. 
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1.4 Literature Review 

 In 2012, Reijns et al. discovered that RNase H2 is required for the proper embryonic 

growth and development of mice16.  In the absence of RNase H2, mice embryos accumulate 

more than one million ribonucleotides per cell embedded in their genomic DNA, which results in 

genome instability and a p53-dependent DNA damage response16.  Wahba et al. (2011) showed 

that yeast DNA and RNA hybrids often form naturally due to transcriptional errors, but they are 

typically removed by RNase H1 and RNase H221.  Cells that were defective in transcriptional 

repression, RNA degradation, and RNA export showed increased formation of RNA:DNA 

hybrids21.  Lazzaro et al. (2012) demonstrated that the accumulation of ribonucleotide 

monophosphates into the genome causes replication stress and leads to toxic consequences, 

particularly in the absence of RNase H1 and RNase H222. 

 In S. cerevisiae, two DNA repair mechanisms, the mismatch repair system and RNase H2, 

compete to remove single mispaired ribonucleotides embedded in genomic DNA13.  Shen et al. 

(2011) observed that, in the absence of mismatch repair and RNases H, ribonucleotide-driven 

gene modification increased by a factor of 47 in yeast13.  Furthermore, Shen et al. discovered that 

RNase H2 specifically targets mispaired ribonucleotides in S. cerevisiae13.  However, it is still 

unclear whether the NER system targets ribonucleotides embedded in genomic DNA as damage. 
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CHAPTER 2 

MATERIALS AND METHODS 

We utilized four strains of S. cerevisiae, including the wild type (WT) (genotype: alf Δho 

MATα-inc Δmata::hisG Δhml::ADE1 Δhmr::ADE1 ade1 leu2-3,112 lys5 trp1::hisG ura3-52 

ade3::GAL-HO leu2::HOcs), rnh201-Δ, rad14-Δ, and rnh201-Δrad14-Δ.  Since Rnh201 is the 

catalytic subunit of RNase H219, and Rad14 is a damage recognition protein in the NER system23, 

the rnh201-Δ mutant cells were deficient in RNase H2 function, rad14-Δ mutant cells were 

deficient in the NER system, and the rnh201-Δrad14-Δ double mutant cells were deficient in 

both DNA repair pathways.   

First, we transformed Leucine auxotrophic (Leu-) S. cerevisiae cells to Leucine 

prototrophic (Leu+) cells using one DNA-only oligonucleotide and four RNA-containing 

oligonucleotides.  In our WT strain, the LEU2 gene was disrupted with an HO endonuclease 

recognition site, thus generating Leu− cells.  Next, we created a double-strand break at the HO 

site using the galactose-inducible HO endonuclease.  We then transformed these cells using 

oligonucleotides as templates for DNA repair synthesis of the leu2 locus, thus removing the HO 

site, restoring a functional LEU2 gene and generating Leu+ cells (Figure 1).  The DSB repairing 

oligonucleotides contained a site with a single, two, or three ribonucleotides, and also contained 

a silent point mutation (A  G transition) in the vicinity of the ribonucleotide site that, if 

transferred to chromosomal DNA, resulted in the creation of the StuI restriction enzyme site, 

which served as marker for DSB repair by the oligonucleotides (Figure 1).  Second, we amplified 

the leu2 locus by polymerase chain reaction (PCR) using primers upstream and downstream 

from the DSB site and external to the sequence of the repairing template oligonucleotides.  Third, 

we digested the resultant PCR products with the StuI restriction enzyme.  If the PCR products 
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were cut by the StuI restriction enzyme, then the oligonucleotides were used as templates for 

repair of the leu2 locus, and the ribonucleotides were not removed by another DNA repair 

mechanism.  Lastly, we calculated the percentages of StuI site cut and performed the Mann-

Whitney U Test between the four strains of S. cerevisiae and the WT for each oligonucleotide. 

 

Figure 1. Scheme of chromosomal DSB repair by RNA-containing oligonucleotides.  Schematic 

representation of the DSB repair at the leu2 locus with the four RNA-containing oligonucleotides 

in which rG either forms a single mispair with genomic DNA (LEU2.R1m), a single pair with 

the genomic DNA (LEU2.D1mR1p), a pair in a stretch of rGrU with the genomic DNA 

(LEU2.D1mR2p), or a pair in a stretch of rUrGrU with the genomic DNA (LEU2.D1mR3p). 
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CHAPTER 3 

RESULTS 

We found statistically significant differences between the percentage of StuI cut Leu+ 

transformants of the WT and the rnh201-Δ mutant strain as well as the rnh201-Δrad14-Δ double 

mutant strain for the LEU2.R1m oligonucleotide.  We also discovered statistically significant 

differences between the percentage of StuI cut Leu+ transformants of the WT and the rnh201-Δ 

mutant strain, the rad14-Δ mutant strain, and the rnh201-Δrad14-Δ double mutant strain for the 

LEU2.D1mR1p oligonucleotide.  In addition, we determined statistically significant differences 

between the percentage of StuI cut Leu+ transformants of the WT and rnh201-Δ mutant strain as 

well as the rnh201-Δrad14-Δ double mutant strain for the LEU2.D1mR2p oligonucleotide.  

Furthermore, we found statistically significant differences between the percentage of StuI cut 

Leu+ transformants of the WT and rnh201-Δ mutant strain as well as the rnh201-Δrad14-Δ 

double mutant strain for the LEU2.D1mR3p oligonucleotide. 
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Figure 2. Percentage of StuI cut Leu+ transformants.  P-values were calculated by performing the 

Mann-Whitney U Test against the WT.  P-values shown in red were statistically significant 

according to a 95% confidence interval. 

 

Table 1.	  Percentage of StuI cut Leu+ transformants. Median percentages of StuI cut Leu+ clones 

from 80–120 independent clones deriving from 2-4 independent transformations are shown with 

the ranges.  P-values were calculated by performing the Mann-Whitney U Test against the WT.  

P-values shown in red were statistically significant according to a 95% confidence interval.  

LEU2.D1m was the DNA-only control.  Transformation with no oligonucleotide yielded no Leu+ 

colonies. 
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CHAPTER 4 

DISCUSSION 

Since the results indicated a statistically significant difference between the percentage of 

StuI cut Leu+ transformants of the WT and the rnh201-Δ mutant for each RNA-containing 

oligonucleotide, we conclude that RNase H2 targets single mispaired ribonucleotides (rG/T), 

single paired ribonucleotides (rG/C), as well as a stretch of two or three ribonucleotides 

(rGrU/CA and rUrGrU/ACA) embedded in the genomic DNA of S. cerevisiae during DSB repair.  

In addition, since the results indicated a statistically significant difference between the WT and 

the rad14-Δ mutant for the LEU2.D1mR1p oligonucleotide, we conclude that the NER system 

targets single paired ribonucleotides embedded in the genomic DNA of S. cerevisiae (rG/C) 

during DSB repair.  In summary, the results of this study support the hypothesis that RNase H2 

targets paired and mispaired ribonucleotides embedded in the genomic DNA of S. cerevisiae 

during DSB repair, and the NER system targets isolated ribonucleotides embedded in the 

genomic DNA of S. cerevisiae as damage during DSB repair.  This study is the first to show that 

RNase H2 targets rG/C pairs in vivo.  This study is also the first to demonstrate that the NER 

system can recognize ribonucleotide-induced distortion of the DNA double helix backbone as 

damage.  Since distortions of the DNA double helix backbone differ depending on the sequence 

context, it would be interesting to study the substrate specificity of the NER system for 

ribonucleotides.  
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