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ABSTRACT 

This paper presents the analysis and modification of 
near optimum trajectories for robotic manipulators 
moving along pre-defined paths. Modifications of 
trajectories are done such that the vibrations due to 
flexibil ity of arms and other components of the 
manipulator are minimized. Ultimately, the 
productivity of robotic manipulators depends on the 
speed of the task execution. 'Higher productivity 
requires higher speed of operation and in turn better 
control and trajectory generation algorithms. Today 
trajectory generation algorithms do not consider the 
dynamic characteristics of the manipulators. In order 
to utilize the available capability in the optimum 
manner the trajectory generation algorithms need to 
consider the dynamics of the manipulator, actuator 
constraints, nature of the task, and flexibil ity of 
arms and compliance of the joint connections. 

In the search for an opti~al trajectory that will meet 
all of the above requirements while optimizing some 
criterion, some simpl ifying assumptions have to be 
made and/or some of the requirements have to be kept 
out of the formulation so that the defined problem can 
be solved or some feasible solutions obtained. Once 
the simplified problem is solved, one may consider 
modifying the original solution in such a way that the 
excluded requirements are also satisfied to some 
extent. 

In this paper the minimum time control solution of 
a two link flexible arm with actuator constraints 
is presented. We solved the minimum time 
problem with no constraints on the flexible modes and 
show the time improvement due to the use of light­
weight arms. The objective is to modify the 
trajectory, such that flexible vibrations are bounded 
while changing the solution from the previous one as 
1 ittle as possible. Practical ways of trajectory 
modifications for flexible arms are discussed. 

I. INTRODUCTI ON 

Today, most trajectory planning algorithms do not 
consider the dynamics of the manipulators, rather 
constant and/or piece wise constant, accelerations for 
the overall task are used and an overall maximum 
allowable speed is set [5,6,7J. However, robotic 
manipulators are highly nonlinear dynamic systems, so 
it is expected that affordable accelerations and 
maximu~ speeds will vary as a function of states. For 
the traditional schemes to work, the trajectory must 
be planned for the worst possible case. The 
caoabil ities of the system will be used only a small 
pa~t of the time. Bobrow et.al. [1J first reported 
t~at for every point on any path, there is an 
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associated maximum allowable speed and maximum 
affordable acceleration and deceleration for every 
speed in the affordable range, and these values can 
drastically vary from one state to anoth .. ·. 
Incorporating the manipulator dynamics into tne 
trajectory planning level they found the minimum time 
t~ajec~o:ies for differ~nt manipulator models [1,2J 
w1th llm1ted actuator capabilities moving along pre­
defined paths. Shin and McKay [3J solved the same 
problem independently. 

Light-weight manipulators with the same actuator 
capabilities will be faster. The main problem 

. associated with the 1 ight-weight structures is the 
flexible vibrations. Fig. 1 conceptually shows the 
performance improvement in terms of increased speed 
and faster task executions. 

In this paper we show the performance improvements due 
to: 

1. use of 1 ight-weight arms 

2. incorporating the manipulator dynamics into 
the trajectory planning level 

3. discuss flexible vibrations during a near 
minimum time trajectory execution and 
considerations of path modifications such that 
flexible vibrations will be bounded. This 
problem is similar in nature to the one raised by 
Hollerbach [8J and Kiriazov et. al [9J. 

I!. FLEXIBLE MANIPULATOR DYNAM IC MODEL IN JOINT AND 
PATH VARIABLES 

A general dynamic modelling technique for flexible 
robotic manipulators was developed by Book using a 
recursive Lagrangian-assumed modes method. 
Homogeneous transformation matrices are used for 
kinematic relations of the system [4J. A two link 
flexi~le rob?tic manipulator is modelled using that 
~echn1que .(F1g. 2). In the model no actuator dynamics 
1~ co~sldered! rather the net torque input to the 
llnks 1S cons1dered as the input variable. No 
friction at joints nor in the structural vibrations 
are explicitly considered. Flexibility of each link 
is approximated with one assumed mode for each 
1 ink. The dynamic model of the manipulator may be 
expressed in general terms as : 

[J] 4x4 q=f(q,q) + Q (2-1) 
where - - - -

T [ e r "J Joint angles and flexible 
q: °1,2,Ul,o? ~ mode time variables 

gT: [Tl ,T2,0,0] Net input torques 

_.J 



Generalized Inertia 
Matrix symmetric, pos. 
definite. 

Nonl inear dynamic terms 
including centrifugal, 
gravitational ,effective 
spring and Coriolis 
forces. 

The problem is to find the minimum time trajectories 
fe,· a oiven manipul ator with 1 imited actuator 
caDabil hies moving along a fixed path, with state 
constra ints (bounded flexible vibration cqnstraints). 
Once the path to be moved along is specified as a 
combination of Cartesian variables (x and y for the 2 
d.o.f. case), distance along the path S can be 
specified as 

S=S(x,y) . (2-2) 

From the inverse kinematic formulation, the 
correspondi~g joint angles for a rigid arm of the same 
dimensions can be found as 

~=~ (s) (2-3) 

Similarly, once the speed 5(S) along the path is known 

e=e (s,s) 

and 

(2-4) 

e=e (s,s,s) 
(2-5) 

Knowing the relations (2-3)-(2-5) in analytical or 
numerical form,' the manipulator dynamics in part can 
be expressed in path variables under the assumption 
tha~ somehow the joint relationships specified in (2-
3)-(2-5) will be maintained. These joint variables 
specify the torques and flexible states as follows 

[

Cll(S'§)] .. [Tl] [C2l(S'~'6'5,e~ ~ P)] S = - - - ", n, .a) 

C12(s,~) 2xl T2 C22(S'~'§'§'~t,en,p) 

-1 

where 
f.=f.(s,S,Q,6) (2-7) 

1 1 - -

J .. =J .. (S,6) (2-8) 
lJ. lJ -

g.=g.(s,~,et;n p) (2-9) 
1 1 " 

- Un it tangent and normal vectors along 
et , en: the path. 

P : Curvature of the path at a point. 

Note that once the path to be followed has been 
de:'ined, the degrees of freed'om of the rigid 
manipulator reduces to one, no matter how many joints 
it nas. Then the manipulator dynamics can be 
expressed as a second order non-l inear ord inary 
differential equation. If the flexibl itiy of 1 inks are 
included in the model but not in the definition of the 

path, as is the case here, there will be additional 
flexible dynamics coupled with each other and the 
rigid dynamics. 

III. FORMULATION OF THE NEAR MINIMUM TIME TRAJECTORY 
PROBLEM FOR FLEXIBLE MANIPULATORS 

Recall that 

i.:..:.." ~.~ = s L = z L 
dt ds dt ds ds 

where S is the speed along the path can be varied as a 
function of S. That suggests that every variable can 
be expressed as function of ind~pendent variable S, 
distance along the path'. Let S(S)=Z(S) in all the 
following. Initial and final states along the path 
would normally be given, Zo(S) and Zf(Sf): The 
optimum trajectory problem may <J)e stated, uSlng the 
path variable S as the independent variable rather 
than time, as follows: 

Optimality criterion: 

Hi'imh' J. If dt " 

o 

(3-1) 

Subject to initial and final states of the path 
variables: 

System dynamics, expressed in path variables: 

C
1

.(S,ii).Z.Z' = Ti(s,Z)- C .(s,Z,o) i=1,2 
1 _ 21 _ 

lf 1(S,Z,5) .J 

f 2(s,Z,6) 

2[~; 1 ' [~J -1 Z 7 ~ I_J 
~~ + _. L. ;: - 2x2 (3-2) 

Actuator constraints: 

T ... (s,Z)~T.<T (s,z) 
1 m 1 n . 1 - i ma x. (3-3 ) 

Dynamic inequality constraints on flexible modes: 

i=1,2 (3-4) 

The constraints (3-4) naturall y ari se in fl ex ibl e 
structures. If such a constraint is not imposed there 
is no guarantee on the accuracy of the end point 
along the path. Following the rationale expressed in 
the introduction, one would solve the problem without 
the constraint (3-4). The problem reduces to the one 
sol ved in [1], [2], [3] . 

The solution method we use closely follows Bobrow 
et.al.'s method with some modifications for flexible 
manipulators. The solution of the above stated 
optimization problem follows: for any path .S(x,y,z) 
with given Z(So) ,Z(Sf) to minimize J, Z should be 
as large as possible while satisfying the system 
dynamics and actuator constraints. In order to do 
so at any state on the path one should use maximum 
acceleration or deceleration. Then, the problem is 
reduced to finding the maximum accelerations and 
decelerations associated with each state of interest. 
It can be seen from equation (2-6a) that for each 
(Si ,Z i) 



r 1 
Sa = mi n L Sa i r 

(3-5) 

.. r·· 1. 
Sd = max 1. Sdi J 

There ~ay be some range of speeds associated with 
every point on the path that system can no longer 
sa~isfy all conditions (the l range that above 
ine~uality is violated). The collection of these 
ra~ges defines the forbidden region on (S,l ) plane. 
The boundary between allowed and forbidden regions 
is constant for a given rigid manipulator for a given 
tas~ .. In the case of flexible manipulators, due to 
the coupling between equations (2-6a) and (2-6b) this 
boundary is also a function of flexible modes, not 
only (S, l). So, depending on the time history of the 
flexible modes and unpredictable disturbances the 
boundary will vary. This is not true in the rigid 
case where the true extreme can be found. At thi s 
point the problem is to find when to use maximum 
ac~elerations and when maximum decelerations (i.e. to 
find the switching point(s)).See Fig. 3a-3b. 

Finding switching points for near optimal performance 
of flexible manipulators then proceeds as follows: 

1. Integrate S=S(x,y) from the final state backward 
in ~ime until it crosses forbidden region or initial 
position, using maximum deceleration. 

2. Integrate ·S(x,y) forward in time from initial 
conditions (So,lo) with maximum acceleration until 
the boundary is reached ~r the two curves cross each 
other. If the two curves cross each other before they 
enter forbidden region, then find that point. This 
is the last switching point and terminates the 
search. If not, then 

3. Backup on the last forward integrated curve and 
integrate forward with maximum deceleration until the 
trajectory intersects: 

a. the boundary of the forbidden region. If the 
intersection is not tangent within some 
tolerance, repeat 3. 

b. or the line l = O. In this case the 
di stance backed up in 3 was too great. Reduce 
the amount of backup and repeat 3. 

4. Then using the tangent point as new starting 
poi~t go to step two. 

Notite that the last switching point is not the exact 
switching point, because the flexible modes will not 
match at this point. That will cause one to miss the 
final state somewhat. Also, when searching for the 
switching points one has to move in a continuous 
manner in order to keep track of the fl ex ibl e mode 
histories accurately. In that sense, the algorithm 
given in [1] has been modified for flexible robotic 
manipu'ators. 

IV. TRAJECTORY MODIFICATION AND FLEXIBLE MODES 

Once the near optimal trajectory l(S) of the previous 
proble" is found, one may consider modifying the 
trajectory in such a way that the constraints on the 
flexible modes are satisfied too. For any modified 
Z(S) which is affordable by actuators the equation (3-

2b) can be integrated forward using the initial 
conditions of flexible modes at the beginning of the 
task. 

lS(s )= -00 - a (4-1) 

In fact regardl ess of the affordabil ity of any 
trajectory in (S,l) plane, the flexible mode history 
along the path can be found by an integration along 
that trajectory. 

A number of practical trajectory modifications using 
the cubic spline functions have been tried by the 
authors. Trajectories are modified in a smoothing 
fashion so that abrupt changes of torques at the 
switching points are avoided, expecting that the 
modified trajectory will result in less excited 
flexible modes. To some extent that is true, but 
since the dynamics of the flexible modes are highly 
complicated and nonlinear, not only the torques but 
al so the coupl ing between states are important, 
particularly in the case of a minimum time problem. 
The initial trajectory modifications have not resulted 
in a favorable dynamic behavior and may not be 
generalized for all paths, because the shape of the 
path is also part of the dynamics and this is not 
expl icitly mapped in to (S,l) plane. Some simulation 
results are shown in Fig. 8 - 10. 

The trajectory modification problem is currently being 
formulated as an optimum control problem with dynamic 
constraints. A generalized quasilinearization 
algorithm is applied iteratively starting with the 
unconstrained solution and iteratively approaching to 
the solution of the problem with dynamic constraints 
[10] ,[11] ,[12]. 

V. SIMULATION RESULTS AND DISCUSSION 

The two-link flexible manipulator model for task one 
(shown in Fig. 4a) was simulated for the two 
different cases in order to show the performance 
improvement achieved due to a light-weight system. In 
both cases actuators have the same capabilities. It 
is found that weight reduction by a factor of 2 
results in approximately 60 % time reduction (Fig. 5a 
and 6a). This improvement, of course, varies 
depending on the task. Joint actuator histories are 
shown in Fig. 5b-6c and flexible mode responses are 
shown in Fig. 5c-6d. 

Task 2 (Shown in Fig. 4b) was simulated for 1 ight­
weight manipulator and results are shown Fig 7 a-d. 
The final trajectory is shown in Fig. 7b. One 
interesting point in this simulation is the fact that 
as soon as the manipulator end point enters the 
curvature the system must accelerate along the path 
in order to obey the constraints. In Fig. 7a the 
curve ab shows that immediately before the curvature 
the system is able to decelerate (aa' curve), but as 
end point enters the curvature the sudden appearance 
of a normal acceleration term in the dynamics of the 
system appears and end of the manipulator has to 
accelerate in order to stay on the path. This 
indicates how sensitive a trajectory modification 
would be in this part of the trajectory. The other 
point in the case of flexible arms is that at the 
last switching point flexible modes are not same, 
since they have different histories. This will cause 
error in the final state reached. See Fig. 6a, 7a. The 
last switching point needs to be varied from the 
original result of the above algorithm. 



V:. CO~~LUSION AND FURTHER WORK 

Jr, this paper we showed ways'to improve performance 
a~~ productivity of Robotic manipulators with 
flexible arms. One way was to use light-weight 
st"uctureS and the other was to incorporate the 
d:'lam!cs of manipulators, in to trajectory 
pl~~nlng level and make optlmum utilization of 
;.;en manipulator. Some practical trajectory 
"'.:'~ !ficat!ons al"e presented: The sensitivity of the 
trd]ectOl'les on (S,Z) plane 1S very high. Any small 
cndnge in the slope may end up with quite different 
f1:xiole mode history depending on the path and the 
s[':ed along the path. The slope of the trajectory at 
~~= beginning ~f th~ tas~ should be carefully modified 
,- the executlon tlme 1S of any interest for small 
S',Jpes where. spee~ is small will take long execution 
tl!:l~. Appllcat10.n of the method requires the 
rnnlpulator dynam1~s? g.eometri~ path in work space, 
a~J actuator capab111tles. ObV10usly as trajectory 
£lets c,lo,se,r to the f~rbidden region boundary system 
c~Dabllltles are be1~g used to the limits and any 
~15tur~anc~ or unce;ta1nty can easily put the system 
1n to Torbldden reg10n'and end of the manipulator will 
leave the desired path. This situation is more clear 
in the case of flexible robotic manipulators. While 
tr.is analysis is nice in terms of knowing the maximum 
C~D~bil ities,. in prac,tice there will be some safety 
fo::cor, that w,1ll requ1,re to keep the trajectory away 
from tne forb1dden reg10n boundary certain amount. 
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