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Abstract

Due to the diverse communication requirements of today’s distributed applications, our work
has led us in the direction of dynamically configurable protocol systems. This paper motivates the
design of a framework for such systems. We discuss the initial study that drove the design of our
framework, and describe the framework and the associated interfaces. Finally, we present the results
from an experiment involving an adaptable application using a variable reliability protocol.

1 Introduction

The recent past has seen a tremendous increase in networking capabilities, in both available bandwidth
and decreased latency. Despite these improvements, applications continually stay one step ahead
of the networks. The more resources that are available, the more resources that applications need.
This is especially true for multimedia applications, which require high bandwidth and low latency
communication. These applications not only have stringent requirements, they also have many different
types of data to transfer, each of which may have different service requirements. The problems created
by these requirements become even more apparent when the service requirements of the applications
in question may vary over time.

In order to make a case for the need for dynamically configurable communication protocols used in
conjunction with adaptable applications, we will show that the functionality gained by using config-
urable protocols matches that which is needed by adaptable applications. Specifically, our goal is to
show that this functionality provides certain classes of applications with the ability to improve their
performance in a simple straightforward way.

Our specific work is focused on showing the importance of being able to dynamically configure proto-
cols during the lifetime of the communication. Our experimental evidence demonstrates that actual
applications can benefit from dynamic protocol configurations beyond what is available from the cur-
rent state of the art. To this end, this paper develops concepts, provides implementation and evaluates
functionality that enhances the current state of dynamically configurable protocol systems.

The rest of this paper is organized into the following sections. Section 2 provides some of the background
and motivation for using dynamic communication protocols and for having adaptable applications. Sec-



tion 3 describes the initial study we performed to motivate this work and to develop our framework and
interfaces. Section 4 describes the dynamic communication framework that we have designed and built.
Section 5 outlines the interfaces and functionality of the application, framework and protocol functions.
Section 6 describes a variable reliability protocol that we designed and an adaptable application that
makes use of it. Section 7 highlights some issues and directions for future work.

2 Background and Motivation

Distributed multimedia applications are straining the resources of today’s networks. The ability to
better adapt to available resources may provide applications with the ability to continue working in
situations where non-adaptable applications would fail or perform very poorly. Current technology pro-
vides applications with very limited communication control. Applications are given the choice between
specific protocol stacks, and must work around the fact that they cannot easily change communica-
tion parameters. This leaves the burden of maintaining flexible communication to the application.
Configurable protocol systems solve this problem by supplying applications with a simple model for
communication. Applications no longer need to concern themselves with the details of the communi-
cation. The configurable protocol systems manage the communication resources in an independent,
modular manner which is easily accessible by any application. The remainder of this section contains
the motivation and related work for both configurable protocol systems and adaptable applications.

2.1 Configurable Protocol Systems

A commonly used abstraction for the protocol processing associated with a communication channel is
the protocol stack. A protocol stack defines what protocol processing is executed during communication
and in what order it is executed. In general, a single protocol stack provides a specific service. Con-
figurable protocol systems provide applications with the ability to chose communication functionality
from a set of available protocol modules. These protocol modules can be combined in any correct man-
ner into a protocol stack that can provide the application with the appropriate service. Applications
can simultaneously use multiple protocol stacks. The problem of providing the correct services for an
application is now only limited by providing the correct building blocks. New applications with service
requirements that have not previously been considered can still make use of a configurable protocol
system by enhancing its set of protocol modules.

For this discussion, these systems are broken up into two groups on the basis of when configuration is
performed.

Connection Time Configuration : The first level of configurability allows the application to config-
ure its communication at connection time. Connection time configuration allows the application
to have different communication channels with different service requirements, by providing mul-
tiple static protocol stacks. The limitation here is that once a communication channel has been
configured, it can not be changed during its lifetime. Even if the channel only handles one type
of data, the service requirements for that data may change over time. With connection time
configuration, the channel must be torn down and reestablished for configuration changes to be
made. Connection time configuration also limits a channel to handling one type of data correctly,



since one type of service must be chosen for the lifetime of the communication.

Dynamic Configuration : The second level provides applications with the ability to dynamically
configure communication channels at run time. Dynamic configuration solves the problem of
handling multiple data types over one single channel as well as the problem of changing service
requirements over time. Dynamic configuration solves these problems by allowing the communi-
cation channel to change over time without tearing down the channel. Our framework implements
this functionality.

Some examples of connection time configuration include the following. HOPS (Horizontally Oriented
Protocol Structure) [Haa91] provides applications with a single, higher-layer protocol that successfully
provides communication over diverse networks. In the az-kernel [HP91] [OP92], protocols are divided
into modules, and these modules are connected in a protocol graph. Connections can choose a protocol
path for their communications, again on a per-session basis. Bhatti and Schlicting [BS95] suggested an
enhancement to the z-kernel that provides applications with more flexibility, but is still restricted to
the original design of the 2-kernel. Both HOPS and the z-kernel provide some of the functionality that
we were looking for, specifically in the functionality of the protocol selection in HOPS and the protocol
stack determination in the a-kernel. Our framework includes this functionality, but expands it to provide
applications with a less restrictive model. Our belief is that restricting the application to connection
time configuration is an unnecessary requirement that may lead to poor application performance.
Some experimental results in the area of parallel protocols with connection time configuration were
presented by Lindgren, Krupczak, Ammar and Schwan [LKAS93]. The current implementation of
our framework provides sequential protocol processing, but the design allows for both sequential and
parallel processing.

A number of proposals have been made for providing dynamic communications through configurable
protocol systems. The goal of ADAPTIVE A Dynamically Assembled Protocol Transformation, Integra-
tion, and e Valuation Environment [SBS93] is to provide automated support for composing lightweight
and adaptive protocols. Their approach employs a collection of reusable “building block” protocol
mechanisms that may be composed together automatically at runtime. This work emphasized the need
for dynamically configurable protocols, but was limited to experimental results. Da CaPo (Dynamic
Configuration of Protocols) [PPVW93] is another approach to modular configurable protocols. In Da
Capo, configuration is done with respect to application requirements, properties of the offered network
services and available resources in the end systems. This work differs from ours in that the connec-
tion manager, configuration manager and resource manager are built into the framework. Although
these are important components of a dynamically configurable protocol systems, our implementation
separates them out from the main functionality of providing configurable communication. In [ZST93],
Zitterbart, Stiller and Tantawy also describe a communication subsystem that allows applications to
request individually tailored services. We provide results that demonstrate the necessity for this type
of refinement.

2.2 Adaptable Applications

Multimedia applications have stringent Quality of Service (QoS) requirements. Data must arrive by
a specific time, or it can no longer be used. Due to the fact that there is no widely available way to
ensure QoS with today’s communication networks, specifically when using the Internet, there are two



suggested ways of dealing with the problem of working with the available bandwidth and information
available from the network. The first solution is to use resource reservation throughout the network.
The second solution is to provide applications with information regarding the state of the network and
allow the applications to adapt to the available resources.

RSVP [ZDE93] and the work done in the Tenet group [FV90] are approaches to reserving network
resources. ATM is intended to provide some level of QoS management, but many current implemen-
tations do not support this functionality, and it is not clear when they will. One problem with these
solutions is that they require changes throughout the network. The require that each node understand
the idea of reserving resources. Another problem is that some resource reservation schemes that do not
allow for resource renegotiation. The cost involved in reconfiguration of the communications channel
may make it prohibitive for the application to make changes to its reservation when its requirements
change.

When applications are provided with information regarding the state of the network, they can take this
state information and information about the current requirements of the user and adapt to the available
resources. This solution puts more of a burden on the application, but since the application knows
best about the QoS that it will need, this seems to be the best place to put the control. This solution
also makes fewer demands on the individual nodes of the network. QoS is monitored and adjustments
are made end-to-end. An example using the INRIA Videoconferencing System (IVS) showed that it is
possible for applications to adapt and still receive the QoS that they require [Dio95]. Gopalakrishnan
and Parulkar [GP94] define some issues involved in determining what knowledge the application or
endsystem may have that can help in providing the QoS requirements.

Since it is likely that some sort of resource reservations systems will be available in the future, as
well as other improvements that will be provided by the network itself, we do not want to lose the
use of these resources. Allowing the application to adapt to available resources does not rule out the
use of networks which provide resource reservation or other enhancements internal to the network.
Such networks are worked into a larger picture and used by the application alongside more standard
networks. Our definition of an adaptable application includes the idea that if resource reservation were
available, the application could decide to make use of it. But if it is not available, the application can
adapt to what is available. By providing the control on an end-to-end basis, the application is given
the most information available and can decide what resources are best fit for its uses.

3 Initial Study

Dynamic applications often have changing protocol processing needs. As an example, we built an
application that demonstrates some of this functionality. The following section describes a multimedia
slideshow application that can dynamically change its protocol processing needs on a message by
message basis. This functionality in an application enabled us to determine a working interface for our
protocol framework. By using an application that has a wide variety of protocol needs, we built up a
set of protocol functions for future use.



3.1 Multimedia Slideshow

In general, most multimedia applications are rate and frame based applications. In these applications,
individual frames may have differing requirements. This puts a high demand on the communications
system, or requires that the application supply the desired functionality itself. By providing the
applications with a simple interface, our framework can supply the necessary functionality.

The first application we developed is a multimedia talk session and slideshow. The application connects
users and provides the ability to transmit continuous voice, sound files, image files and text. The
motivation behind creating this application was to provide a working environment for testing and
developing dynamically configurable communication protocols. Having different types of data gives us
a broad range of protocol processing configurations.

The goal of this application is to show that a dynamic application that transmitted multiple data types
could be simplified by using our framework with its generic interface (see figure 1). The dynamic part
of the application is that it has the ability to request different protocol stacks on a message by message
basis. For example, the application may start out sending text unencrypted, but at some point during
the run decide to increase security. The application simply informs the framework to make use of a
new configuration for text with some type of security protocol. The application has the knowledge of
what type of service it requires and the framework provides the functionality to provide that service.
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Figure 1: Multimedia Slideshow

3.2 Protocol Suite

Different applications will require varying protocol functionality. By supplying applications with a
rich protocol suite, we are able to support a number of different dynamic protocol stacks for each
application. Supporting as many protocols as possible, allows the application to find a protocol stack
that best fits its communication needs. Our protocol suite provides many standard protocol functions,
but can simply be enhanced to include any current or future protocol.

The protocol suite is made up from the following groups of protocol functions.

e Security - DES and IDEA encryption.

e Compression - GSM and ADPCM compression for voice; JPEG compression for images; “Berkeley
compress” for text.

e Data Size - determination of the maximum data size for a message.

e Rate Control - leaky bucket flow control.



e Transmission Monitoring - count of the number of dropped messages; count of the amount of
data transfered.
e Reliability - TCP for reliable data transfer; UDP for unreliable data transfer.

As a step toward providing applications with network feedback, applications have available to them a
simple set of transmission monitoring protocol functions. These protocol functions do not touch the
data, they simply collect some statistics that can later be checked by the application in order for it to
best determine what protocol processing it needs. Future work will provide the applications with more
extensive network feedback.

3.3 Application Feedback for Dynamic Protocol Inclusion

One of the benefits of dynamically configurable protocol systems is the ability to handle feedback about
the state of the communication. In order to demonstrate this functionality, we modified our original
application to include dynamic inclusion and exclusion of a protocol transparent to the application. In
the original application, the application itself determines when changes to the protocol stack need to
be made. With this modification, there is an intermediate control module that monitors some specific
information (see figure 2). The control module makes decisions about protocol processing based on
this information. Our example focuses on bursty audio communication.
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Figure 2: Intermediate Control Module

The dynamic configuration in this example is performed in response to feedback from the receiving
control module. The experiment takes advantage of the SGI Indy’s ability to query the audio buffer.
If the receiving control module notices that its audio buffer is getting overloaded, it sends a control
message to the sending control module informing it to turn on its leaky bucket flow control algorithm.
As the audio buffer empties out, it sends a control message informing the sending side to turn the flow
control off.

The ability to switch on and off the leaky buck flow control is most useful in the situation where the
application is sending many short bursts of audio. In these cases, the sending application need not
keep track of previous audio bursts, in order to determine if this burst would overflow the receiver’s
audio buffers. The success of this experiment was determined by sending pieces of a song, since music
is more sensitive to loss than voice. As a qualitative measure, the quality of the songs were not lessened
by using this dynamic inclusion/exclusion of the leaky bucket algorithm. Quantitative measurements
are still under way.



4 Design of a Dynamic Protocol Configuration Framework

The basic idea of a dynamic protocol configuration framework is to be able to allow applications
the flexibility they may need. The result of this flexibility includes allowing the ability to change
communication configurations on the fly. We may want to be able to turn protocols on and off during
communication as well as change protocol parameters during the lifetime of the communication.

Tau [CKK96, Cal93] is a framework for composing end-to-end protocol functions. The framework we
have built implements a subset of the functionality designed into Tau.

The dynamic configurability in our framework is realized through the use of a few very simple ab-
stractions. Our framework is designed to provide some very specific functionality. The main goal is to
provide the ability to configure communications on a message by message basis. To this end, each piece
of our framework lends its specific capabilities. In order to be able to communicate with the framework,
the application is provided with an abstraction called a configuration. A configuration represents a
protocol stack that the application wants to use at some point in the life time of its communication.

The framework itself is broken up into three parts:

e The protocol infrastructure provides the ability to maintain state information for protocol
configurations being built on the fly.

e The metaheader protocol provides the information necessary to correctly process each message.

e The protocol functions and the standard protocol interface provide the ability to “plug
in” any protocol at the appropriate place.

The following section will describe the implementation of our dynamic protocol configuration framework
that we have built. Evaluation of this framework was performed through the use of complex protocol
functions on top of TCP/IP and UDP/IP. This decision was made for simplicity of use and ease of
expansion. Although most of these techniques expand to the transport layer, we decided to experiment
with our framework in user space. This assumption was made to ease development and allow for simple
changes needed for any type of enhancement to our framework.

4.1 Configurations

In order for an application to be able to make use of our framework, we provide an abstraction called a
configuration. A configuration is a group of protocol modules that have been specifically put together
for some specific purpose. In essence, a configuration represents a virtual protocol stack that the
application has decided to use for some instance of communication. It is up to the application to decide
what combination of protocols is useful for it. To allow for the desired flexibility of communication,
an application may define multiple configurations for each communication channel. Through the use
of each specific configuration, the application can specify exactly which protocols should be used.

Two levels of configuration changes are defined. The first affects messages that are processed similarly.
These messages are considered to use the same configuration. Changes to the processing of these
messages is done at the protocol level, and will affect all messages that use this configuration. These
types of changes generally involve modifying protocol parameters, but not changing which protocols
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are being used. For example, consider a configuration that includes JPEG and DES. JPEG provides a
few parameters that affect the compression processing. If we want to keep using JPEG, but want to
change from fast JPEG to slow JPEG, we would keep the same configuration, and make changes at
the JPEG protocol level.

The second level of configuration changes is used when messages need to be processed with a different
set of protocols. These changes involve using a new configuration for the messages in question. If we
consider our JPEG and DES example again, we may decide to change from DES encryption to IDEA
encryption. In this case, we would create a configuration that contained JPEG and IDEA and switch
to use this new configuration. Another example might be that we had some control information that
needed to be processed with some control protocol and a different encryption key. In this case we would
leave the original configuration alone and again create a new one that included the control protocol
and DES. For this example, the image processing and the control processing could continue in parallel,
each using its own configuration.

4.2 Protocol Infrastructure

The primary design objective of the protocol infrastructure is to provide two mechanisms: protocol
function composition and multiplexing. This functionality is provided in a manner that supports
various performance-enhancing techniques, while preserving modularity in some form. The idea is that
these mechanisms should work with an extensible set of policies, in order to support a wide variety of
applications, including those whose requirements are not yet fully understood. Our goal is a generic
model of protocol processing, in which the protocol functions are separated from the details of the
“glue” that binds them together.

Because protocol functions are not layered in the protocol infrastructure, they do not attach their
headers directly to outgoing data units, nor extract them from incoming data units; instead, this is
handled by the protocol infrastructure. The generic protocol model defines the interface between the
protocol infrastructure and each protocol function. The requirement that this interface be specified
represents an opportunity to reduce the costs of porting protocol implementations by isolating, as far
as possible, the specification of a protocol’s function from the “glue” used to combine it with other
protocols. This is a key design motivation of the protocol infrastructure.

A logical block diagram of an implementation is shown in Figure 3. Each protocol function module is
viewed as a (passive) transducer, which is given inputs (state information, control parameters, incoming
header, and possibly data) and produces outputs (updated state information, control parameters,
outgoing header, and processed data). The architectural “glue” is provided by the demux-and-dispatch
function. It selects and coordinates between the protocol functions, providing them with inputs based
upon external events, and collecting and passing on to the external environment (i.e. the user, the
network, auxiliary functions such as timeout and buffer management) their outputs.

4.3 Metaheader Protocol

The metaheader protocol provides the necessary information for determining what protocols are in-
volved in each instance of communication. The metaheader protocol implements the multiplexing
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Figure 3: Architecture of Protocol Framework

and composition mechanisms. A metaheader is an extended message header that provides enough
information for that message to be handled and processed correctly at the receiving end.

The metaheader is built from three building blocks: message header information, protocol header
descriptors and individual protocol headers. The message header information provides the information
necessary to understand how the rest of the metaheader was built. It includes header length, number
of protocol headers, sender and receiver application identifiers, and sender and receiver configuration
identifiers. The protocol header descriptors and the individual protocol headers come in pairs. The
header descriptor determines which protocol is next and defines the length of the specific protocol
header. The individual protocol headers are defined by the specific protocol. Combined, these three
building blocks provide the receiving side with a map of how the message was processed at the sending
side, and how it now needs to be processed at the receiving side. Figure 4 shows an example message
with metaheader and header descriptors.

\ \ \
‘ Metaheader \ Descriptor Length
| Header Descriptors Sender Config Id Receiver Config Id Demux Handle
’ Header 0 ‘ Sender Id Receiver Id and . .
\ : ; # of Protocol Functions Message Type Configuration Information
Header N Protocol ID ‘ Length
User Data | i | Header Descriptors (optional)
‘ Protocol ID ‘ Length ‘

Figure 4: Example Message using Metaheader Protocol

4.4 Protocol Functions

Each protocol function defines a specific function that can be processed independent of other protocol
functions. This functionality can vary in complexity from simple checksumming to the entire TCP
protocol. The protocol functions together provide the “menu” from which an application can choose
the services it desires. We envision communication services implemented by composing atomic single-
function protocols from a “menu of functionality”, as have others [OP92, ZST93, Haa91, PPVW93,
SBS93]. For example, a service for a reliable, secure image application could be implemented with



JPEG, DES, a sequence numbering function, and two different reliability functions (one for request
retransmission and one for response error detection and retransmission).

5 Interfaces

The design of our framework leaves a clean distinction between three interfaces (see figure 5). The
application has a set of functions that it uses to communicate with the framework. These include all
the entry points necessary for configuration creation and for sending and receiving data. In addition,
the application can retrieve information about a specific protocol in a specific configuration. In order
to access this information, the processing passes transparently through the framework. This design
allows for the application to access the protocol directly, but without having any knowledge of the
design of the framework. The final set of functions provides a generic interface between the framework
and the protocol functions. Each protocol provides a set of standard entry points that are accessible
by the framework. Our current implementation does not have an interface defined for communicating
with the network. The next stage of our design will include this specification.

Figure 5 depicts the control functionality to be a separate entity from the application. In our initial
experiments, this control functionality was part of the application. Our design allows for the control
functionality to be either place.

Application
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Figure 5: Three Interfaces between Application, Protocol Infrastructure and Protocol Functions

5.1 Application to Protocol Infrastructure Interface

In order to create a configuration, an application follows these steps:

1. Create the configuration : Configld createConfiguration()
This function returns a handle to a new, empty configuration. This handle is used by the
application to specify this configuration in the future.

2. Add protocols to the configuration: addProtocol(ConfigId, Protocolld, ProtocolState *)

This function adds a protocol to the configuration, allocates memory for the protocol’s state and
header information, and initializes the protocol. This generic interface allows the Communication
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Layer the ability to set up any necessary information for a protocol without having to know the
specifics of that protocol.

3. Add a transport protocol: addTransportProtocol(ConfigId, Protocolld, ProtocolState
*)
This function sets the transport protocol (i.e TCP or UDP) for this configuration. This particular

distinction is necessary in our current implementation. A similar distinction may need to be made
in the future depending on what platform the framework is built on.

The key idea behind protocol configurability is that the application should be allowed to choose what
protocols it needs for a specific communication channel, stream, or even message. Once an application
has set up the appropriate configurations, it can now use a specific configuration handle to tell the
communication layer which configuration is to be used for the current message. The order of processing
of the protocols is determined by the order in which they are added to the configuration. Outgoing
messages are processed in order; incoming messages are processed in reverse order.

Messages are sent using the function sendData (Data #, Length, ConfigId, Label *). This simple
call allows the application the freedom to choose a specific configuration on a message by message basis.
The function of the label is to provide the application with the ability to send control information out-
of-band. The framework takes this label and includes it in the message similarly to a protocol header.
Providing this label allows the application to support the concepts of application level framing (ALF)
[CT90]. ALF suggests that since the application has the most knowledge about the data that it needs
to send, the communication system should respect application specified data boundaries. To this
end, sufficient information should be included in each (application) data unit to enable the receiving
application to deal with it, regardless of its order with respect to other data units. Our distinctions
between label and data allows the framework to correctly combine processing the data with placing
the data in its final location.

When an application wants to receive a message, it makes the call recvData (ConfigId *, Data *,
Length *, Label *). Since the application does not have foreknowledge of what type of message it
might be receiving, or with what configuration id might be used, the framework provides this infor-
mation. As new configurations are used on the sending side, new configurations are dynamically built
on the receiving side. In general, the application may or may not need to know what configuration
was used to process an incoming message. By providing the Configld, the application has access to
application specific state information about this message if necessary.

5.2 Application to Protocol Function Interface

A set of special purpose functions are provided to allow the application the ability to communicate
directly with the protocols. These functions allow the application to set and retrieve application specific
parameters.

e Setup the appropriate parameters: resetProtocol (ConfigId, Protocolld, ProtocolState
*)
This function allows the application the ability to inform the protocol that certain application
specific parameters need to be changed. The protocol takes this information and makes any
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changes it deems necessary.

e Check protocol parameters: getProtocolState (ConfigId, Protocolld, ProtocolState)

This function allows the application the ability to check certain application specific protocol
parameters during the run of the application.

These functions are used when the application needs to inform a protocol of parameter changes, or the
application needs information about the state of a protocol. If we consider the example of changing
the JPEG compression parameter described in section 4.1, the application would use the function
resetProtocol. In a situation where a flow control protocol is being used, the application may want
to query the flow control protocol to see if the current message can be transmitted. In this case, the
application would use the function getProtocolState.

5.3 Protocol Infrastructure to Protocol Function Interface

This interface is defined in terms of a set of entry points corresponding to various events. Currently,
each protocol must provide the following entry points:

e Initialization

e Send Processing

e Receive Processing

e Acknowledgment Processing

e Timeout Processing

e Reseting or Changing of Protocol Parameters

When control is passed to a protocol function, it receives a set of parameters which may include some
or all of the following;:

e local control information (e.g., data size, user parameters, destination application identifiers)
e remote control information (the header associated with an incoming message)

e user data

L J

persistent state information relevant to the connection or endpoint.

6 Experience

We have observed that there can be a high degree of variability in run time protocol behavior for complex
distributed application. In an effort to take advantage of this variability through the use of configurable
protocols, we built an adaptable application that makes use of our framework and protocol suite. This
experiment was built to demonstrate the uses and benefits of configurable protocols. The goal is to
show that by using this dynamic protocol framework, our application can improve its performance.

Our efforts have moved beyond simple examples and standard benchmarks to show the effects of the
use of configurable protocol systems on cost and performance. In order to understand the demands
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on high performance protocols, we built an applications with characteristics representative of today’s
high performance distributed applications.

The following sections also describe a new protocol we implemented. This protocol provides the appli-
cation with the ability to specify the importance of different pieces of data. The application described
represents functionality from real world applications and use of our variable reliability protocol.

6.1 Variable Reliability

During the development of our applications, it became clear that the two types of reliability provided
by TCP and UDP were not sufficient for our applications. There were other situations where the
applications could withstand some threshold of loss that was chosen by the application. This led us
to provide a mechanism that can be used to create a variable reliability protocol, in which the specific
policy for determining what reliability means can be determined by the application that is using it.
Our protocol is built upon a very simple abstraction which can be expanded depending on the desired
policy. This abstraction is based on a concept called reliability classes. A reliability class groups
together application data that has similar reliability requirements. Reliability classes are defined by
the application. The determination of which data belongs in which reliability class is also defined by
the application.

The mechanism used for providing variable reliability is a simple counter for each specified class. The
sender passes data to the protocol and specifies which class it should be sent in. The protocol maintains
state that keeps track of the counters for each class. As a new message is transmitted, the sending
protocol includes the counters for all classes in a protocol specific header. When the message is received
at the other side, the receiving protocol can compare all of the counters and determine if any messages
were lost.

For applications which only send data sporadically, a “heartbeat” message can be included. This
heartbeat would include the counters for all classes. When data is being sent fast enough, no heartbeat
is necessary, which removes the problem of the heartbeat causing congestion or delays.

When the receiving protocol notices a lost message in a class, it calls a function that implements the
policy for that reliability class. This policy is determined by the receiving application, and can be
transparent to the sending application. In other words, the sending application determines what class
a specific piece of data is sent in, but the receiver determines its policy for that class. This allows for
different receivers to implement different policies for the same reliability class. On the sending side, the
application must inform the protocol what policy should be used for each reliability class when data
has been lost.

Studies have shown that for some applications, packet loss can often be tolerated. Dempsey, Liebherr
and Weaver [DLW94] provide some insight into the usefulness of allowing the application to determine
when retransmission is a viable option. Recent work by Marasli, Amer and Conrad [MAC96] shows
some analytical studies for retransmission-based reliability.
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6.2 Distributed Robot Simulation

The class of complex distributed interactive systems combines a mix of human, simulated and mechan-
ical control. These different parts have differing requirements for latency, reliability, consistency, and
bandwidth. Some elements of these types of future systems are examined in this paper. The specific
application we implemented is a distributed robot simulation. This application involves the sharing
of a world view between distributed robots. The goal for this application is the use of the variable
reliability protocol by a complex dynamic application.

The world view in this application is processed as an image and passed back and forth between the
robots as it is being updated. The consistency and updates are handled similarly to a distributed
shared memory (DSM) model. The world is broken up into blocks, where each block has an owner
which is responsible for coordinating reads and writes as well as sending updates to the other robots.
Each robot moves through the world, changes the data in the world as it moves and receives updates
about other changes.

Two degrees of configurability were explored in this experiment. The first is the dynamic determination
of what data is important to each robot. The second is to introduce the concept of the variable reliability
protocol.

The amount of network traffic and processing resources can be reduced through the use of simple
window abstraction, while still providing acceptable accuracy of the world for the robot. The most
important pieces of the world view for each robot are those surrounding that particular robot. The
robot needs the most recent information about any updates to these pieces. If each robot always
receives updates about any changes, it actually may be receiving information that it is not interested
in. Through the use of the window abstraction, we allow each robot to register itself for updates about
data that it is interested in. The robot now only receives updates about the data inside that window
(see figure 6). The window is always centered on the robot, and, as the robot moves, the window will
move with it.
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Figure 6: Snapshot of Distributed Robot Simulation with Window

We also experimented with the use of the variable reliability protocol. This protocol lends itself well
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to be used in a configurable protocol system, due to the fact that each piece of data potentially has a
different reliability class. In this application, the detection of a lost message is passed on to the sending
application. This puts the burden of buffering the data on the side of the application, not the protocol.
The protocol needs only to keep some label for each data that is sent. When data is lost, the protocol
passes the label to the application, and the application can then decide what to do. This can be very
efficient in the case of data that is constantly being updated. If the protocol were to buffer the data
and then retransmit it, it may be retransmitting old data. By allowing the application to decide what
to do upon data loss, the application can make use of the very explicit information that it has about
its own data.

The reliability class of an update is determined by the update’s proximity to the robot receiving the
update. As we move further away from the robot, the importance of those updates lessens. The sections
that are out of the robot’s view may only require periodic, unreliable updates, or no updates at all.
The application can dynamically set the degree of reliability that it wants for a specific reliability class.
The application can dynamically change the assignment of data to a specific reliability class. This
allows the application to chose what data is most important to it, and pay the overhead of reliability
for that data.

For this application, we combine the idea of the window view with the variable reliability protocol.
The window is divided into concentric “rings” around the location of the robot (see figure 7). Each
of these rings corresponds to a reliability class. The loss tolerance in the distant rings is higher than
that of the closer rings. In other words, as the updates come from further away, the reliability of the
update is relaxed.
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Figure 7: Snapshot of Distributed Robot Simulation with Window and Reliability Classes

6.3 Experiment Setup

The experiment was run with the following variables:

e |mage Size = 512 x 512 pixels
e Block Size = 32 x 32 pixels (= 1024 byte data size)
e Image had 16 x 16 blocks
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e Simulated Loss Rate = 1 in 100 messages
e JPEG compression of image data

The loss rate was chosen to be relatively high in order to produce the necessity for retransmitting data.
JPEG compression was used to incur some processing overhead for each data message.

During a run, each robot takes 5000 steps and then calculates its statistics. Since the time of the run
is also dependent on how much each robot must process incoming messages from the other robots (i.e.
how much time the other robots read and write to the blocks this robot owns), the times vary for each
robot.

Three sets of experiments were run. The results are averages from 4 runs of each type.

e Total View: Each client is registered for all blocks. A retransmission is asked for any lost
message.

e Simple Window: Each client has a dynamic window for which it is registered. The window size
is 8 blocks in each direction. Within this window, a retransmission is asked for any lost message.

e Window with Classes: Each client has a dynamic window for which it is registered. The
window size is 8 blocks in each direction. Within this window there are four reliability classes.
Retransmission is determined by the class in which the loss was perceived.

6.4 Results
6.4.1 Simple Window

As would be expected, we could see a sharp reduction in the number of updates processed by the robots
when the window size was smaller than the entire world (see table 1). There is a certain amount of
trade off in this system. In order to keep track of the window for each robot, control messages were
sent each time the robot window changed (see table 2). In our observations, the cost of processing the
control messages still made it beneficial to use the window, in that processing the control messages was
still less costly than sending all updates (see table 3).

6.4.2 Window with Reliability Classes

Although, through the use of the variable reliability protocol, we did see a drop in the number of
retransmissions requested(see table 4), the penalty for retransmission was too insignificant to show a
significant improvement in performance (see table 3). We are currently looking into the use of the
variable reliability protocol for applications which have a much higher penalty for retransmission, but
can still handle some degree of loss.

7 Conclusions and Future Work

Our goal in this research is to highlight the connection between configurable protocols and adaptable
applications. Our experience is consistent with the theory that given the ability to configure application
protocols during runtime, applications can simplify their design and improve their performance.
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| || Robot 0 | Robot 1 | Robot 2 | Robot 3 |
| Total View | 17739 | 15662 | 14177 | 12732 |
| Simple Window || 12555 | 10285 | 9493 | 7463 |
| Window with Classes || 12326 | 10345 | 10433 | 7413 |

Table 1: Number of Updates Received

| || Robot 0 | Robot 1 | Robot 2 | Robot 3 |

| Total View || 1 | 1 | 1 | 1 |
| Simple Window || 144 | 126 | 132 | 152 |
| Window with Classes || 144 | 126 | 132 | 152 |

Table 2: Number of Registration Messages Sent

| || Robot 0 | Robot 1 | Robot 2 | Robot 3 |

| Total View I 228 | 234 | 233 | 233 |
| Simple Window || 210 | 199 | 194 | 197 |
| Window with Classes || 204 | 197 | 190 | 191 |

Table 3: Total Running Time (in seconds)

| || Robot 0 | Robot 1 | Robot 2 | Robot 3 |
| Total View | 8075 ] 14050 | 171.75 | 221.75 |
| Simple Window || 57.25 | 90.50 | 111.25 | 162.25 |
| Window with Classes || 20.75 | 33.50 | 47.50 | 76.75 |

Table 4: Number of Messages Retransmitted
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Beyond these experiments, we are considering how to provide applications with feedback from the
network. This information could include any statistics that can be gathered from the protocol functions,
or it might be be information provided from an external monitoring source. Network feedback will
enable the application to be able to make better conclusions about what type of configuration it
requires.

We are also looking into the design of our intermediary communication control monitor (CCM). The
purpose of this CCM would be to monitor control information from various sources and use that
information to modify protocol parameters. The CCM could get control information from various
sources, including the network and the application itself. Network information could include throughput
levels, number of messages lost, or congestion levels. Information from the application could include
future transmission rate requirements or reliability requirements.
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