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ABSTRACT 

 Hypothesis generation is the process by which individuals formulate explanations for 

data found in their environment and evaluating the accuracy of each hypothesis generated is 

known as a probability judgement. Previous research in decision making has linked hypothesis 

generation to working memory. This experiment aimed to measure the neural correlates 

underlying working memory during hypothesis generation in a decision making task. EEG 

technology was used to measure neural activity and the signals of interest were P300 and CDA. 

Participants were trained to learn a number of cause-effect relationships between stimuli. Later, 

participants were asked to make judgements about which causes may have been responsible for 

an observed effect by remembering the locations of relevant causes in a briefly displayed visual 

array. The results demonstrate that probability judgements were negatively correlated to the 

number of relevant hypothesis. The results also show that the peak P300 amplitude did not reveal 

any significant differences between the ‘Effect’ cues, and the peak P300 amplitude was greatest 

for Cue 4 which had a total of three relevant hypotheses associated with it. This work can be 

used to better understand how working memory underlies our everyday decision making.  
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INTRODUCTION 

Decision making is a higher-order cognitive process that allows individuals to make 

choices, conduct judgements from a set of alternative possibilities, and arrive at conclusions in 

order to guide behavior (Turner, 2003). This process is vital to everyday problem solving, and 

significant research has been performed in the fields of psychology, medicine, and business in 

order to better understand how it occurs. Individuals make decisions based on a multitude of 

factors, some of which include using heuristics, logic, or intuition to come to a resolution 

(Kahneman, 2011). The process can be influenced by both internal and external factors such as 

an individual’s knowledge in a specific area or situational elements like time pressure or high-

stakes situations (Scott and Bruce, 1995).  Finding solutions to everyday problems relies on a 

specific aspect of decision making, known as hypothesis generation.  

 Hypothesis generation is a process necessary for everyday problem-solving as it allows 

individuals to make sense of patterns in data. Evaluating the accuracy of each hypothesis you 

develop is known as a probability judgement. For example, imagine you’re a doctor and a patient 

enters your office complaining about chest pain. As the patient is describing their symptoms, you 

run through various possible diseases in your head until you finally settle on the potential cause 

of the chest pain, and you conduct a probability judgment on each hypothesis you develop to 

determine if it is correct. As demonstrated by the example above, hypothesis generation is a daily 

occurrence because we are constantly generating explanations from environmental data.  

 The theorized framework for hypothesis generation assumes that three primary processes 

are involved: retrieving memories from storage (retrieval), sustaining retrieved hypotheses in 

consciousness (maintenance), and lastly making decisions (judgement) (Thomas, Doughtery, and 

Buttaccio, 2014). During the judgement phase, a probability judgement is rendered for the 

likelihood that the hypothesis generated is the correct one. If the initial hypothesis is judged to be 
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incorrect, that information is fed back into working memory (WM), and a new hypothesis can be 

generated (Thomas, Doughtery, and Buttaccio, 2014).  Both hypothesis generation and 

probability judgment can be constrained by cognitive load, timing pressures, primacy bias, and 

individual differences in working memory (Dougherty and Hunter, 2003). These limitations can 

result in either choosing incorrect hypotheses or evaluating correct hypotheses as incorrect.   

With the advancement of non-invasive brain imaging technologies, researchers have 

recently begun to investigate the link between neurophysiological characteristics and decision 

making. The main methodologies for conducting these correlational studies are functional 

magnetic resonance imaging (fMRI), electroencephalography (EEG), and 

magnetoencephalography (MEG) (Heekeren, Marrett, and Ungerleider, 2008). These 

technologies allow researchers to outline a neurobiological model of decision making that 

connects multiple regions of the brain for a system-wide view (Heekeren, Marrett, and 

Ungerleider, 2008). However, there has currently been little work done to link hypothesis 

generation, a specific facet of decision making, to neurophysiological processes.  

 Currently, one way of understanding this cognitive process is through computational 

models such as HyGene (Thomas et al., 2008). HyGene integrates theoretical frameworks from 

long-term memory, working memory (WM), and judgement and decision making (Thomas et al., 

2008). It operates on three key principles: 1) environmental data serves as a retrieval cue to 

prompt hypothesis generation from long-term memory, 2) the number of hypotheses that can be 

actively maintained in WM is constrained by cognitive limitations and task features, and 3) 

hypotheses maintained in WM are used as inputs in the comparison process to derive probability 

judgements (Thomas et al., 2008). However, in order to better understand the overall model of 

hypothesis generation, it is important to correlate the process with neurobiological data. 
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EEG technology would make it possible to gain a better understanding of the exact 

timing of hypothesis generation to see if it matches the HyGene computational model of decision 

making. We plan to use EEG because the temporal resolution is in the millisecond range which 

makes it useful for studying decision making which occurs very quickly. This work has potential 

applications of providing researchers with information on how working memory and decision-

making work together to allow us to make decisions in our daily lives.  

EEG studies use event related potentials (ERPs) which are waveforms that occur in a 

specific range at a specific time. The ERPs of interest for this study are P300 and contralateral 

delay activity (CDA). The P300 ERP is evoked when a stimulus representation is updated in 

working memory (Polich, 2007). The P300 is characterized by a positive going peak in the 250-

500 ms range and consists of two components, P3a and P3b (Polich, 2007). The P3b component 

is of particular interest for this study as it has been linked to memory processes, and it has been 

suggested that it’s evoked with updates to working memory (Beydagi et al., 2000). Previous 

research on CDA has found that the amplitude increases according to the number of items 

maintained in visual working memory (VWM) (Luria et al., (2016). The CDA asymptotes at 

about 3-4 items which is a common estimate of VWM capacity and is correlated to individual 

working memory capacity (Luck and Vogel, 2013). Researchers can use previously defined 

ERPs to help determine the underlying neural activity during specific task-based studies. 

Combining these methods will help us fill the gaps in decision making research by correlating 

neurophysiological activity with hypothesis generation and help us understand the role of 

working memory in this process.  

Therefore, the overall purpose of this project is to determine the underlying neural 

correlates of hypothesis generation and working memory. We plan to study this by correlating 
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P300 and CDA with working memory activation as a result of a hypothesis generation task. Our 

main hypothesis is that probability judgements from the hypothesis generation task will be 

negatively correlated to the P300 peak amplitude such that as the probability judgments decrease, 

the P300 amplitude increases. We also predict that the P300 amplitude will be greatest for the 

task cue that has the largest number of relevant hypotheses associated with it as this cue will 

have the most updates to working memory. We also predict that if a target subset in the working 

memory task is determined by the relevant hypotheses generated, the CDA amplitude will 

increase as the number of hypotheses generated increases. Finally, we predict that the probability 

judgements will decrease as the number of relevant hypotheses increases.  
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LITERATURE REVIEW  

 Hypothesis generation is a process necessary for everyday decision making because it 

allows individuals to make sense of patterns of data in the environment. Previously, one of our 

only reliable methods of understanding this cognitive process was through computational 

models. However, recent advancements in non-invasive neuroimaging technologies have 

allowed researchers to investigate the link between decision making and neurophysiology 

(Heekeren, Marrett, and Ungerleider, 2008). Yet, little work has been done to correlate 

hypothesis generation, a key process in decision making, to neurobiological data. In order to 

alleviate this gap, we aim to conduct an event related potential (ERP) study of the neural 

correlates of working memory in hypothesis generation via a causal learning task.  

When the brain is making decisions, cortical areas are spatiotemporally linked to create 

long-range global networks. The discovery of the association between cortical areas has led to 

studies focusing less on investigating an individual part of the brain and increasingly taking a 

systems-wide approach to understanding complex cognitive tasks (Jin, et al., 2006; Anokhin, et 

al., 1999; Razoumnikova, 2000) such as hypothesis generation. One method by which 

researchers focus on gaining a system-wide understanding of the brain is through 

electroencephalography (EEG).  

Consistent oscillations in varying frequency bands in the EEG data are a way of 

understanding the functional integration of various brain areas. For example, a recent study 

looked at the mechanism of voluntary focused attention and how it correlated to theta and 

gamma bands in EEG (Anokhin, et al., 1999). Another study by Razoumnikova studied alpha, 

beta, and theta bands during experimental convergent and divergent thinking (2000). Convergent 

thinking occurs when mental operations converge on only one task solution. Divergent thinking 
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occurs when many new ideas are generated in response to a mental task, implying more than one 

correct solution. Both of these studies found that most of their significant correlations between 

cognitive processes and EEG coherence were observed in the theta band. In other words, the 

theta frequency band was present when there was synchrony between brain regions which 

demonstrates spatiotemporal linkage between cortical areas. However, these studies are limited 

in that the frequency bands tell us nothing about the specific timing of activation of the cognitive 

processes studied. Individual stages of information processing cannot be parsed out. Rather, they 

just provide a global view of the magnitude of activation in response to a specific task. 

Therefore, while these studies have been important in determining that EEG is a viable method 

by which to study higher order cognitive processes, they leave gaps in our understanding of the 

timing of neural correlates. A different methodology must be employed to gain an understanding 

of the spatiotemporal organization of the brain during a hypothesis generation or decision-

making task.  

One of the first experiments in the literature to attempt to correlate neural data with 

hypothesis generation was a study conducted by Jin et al. (2006). This study used EEG to 

investigate whether different brain activities can be correlated during hypothesis generation via 

averaged cross-mutational information (A-CMI) values. A-CMI allows researchers to investigate 

linear and non-linear properties of functional connectivity between electrode pairs. However, this 

method does not directly estimate spatiotemporal communication. Rather, the A-CMI value 

quantifies transmission of information statistically, a method that can introduce error. These 

errors can occur because the A-CMI values are an indirect measure of neural activity. Another 

interesting point to note is that this study made no previous predictions as to which brain areas 

would be coupled, making it much more of an exploratory study rather than one with set 
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predictions of an outcome. Our study will focus on using ERPs rather than the A-CMI method 

and will have a predisposed hypothesis planned out. This is important because we will know 

exactly what signals to look for to determine the underlying neural correlates that are present 

during hypothesis generation.  

A better method of understanding neural correlates underlying hypothesis generation than 

the neural oscillations and A-CMI values described above is to look at ERP signals. These ERPs 

have millisecond temporal resolution which is important for precise quantification of the timing 

of cognitive processes such as hypothesis generation (Friedman and Johnson, 2000). The ERP 

waveform can be used to measure three unique features: 1) amplitude for information about 

neural activation, 2) component latency to understand the timing of activation, and 3) scalp 

distribution which gives information about the overall pattern of activated brain areas (Friedman 

and Johnson, 2000). Neural oscillations are unable to provide us with information about the 

precise timing of activation which is important when looking at fast occurring cognitive 

processes such as decision making, and A-CMI values cannot directly measure spatiotemporal 

communication. Therefore, when combined with large electrode arrays, ERPs make for a 

powerful tool that can be used to give researchers a better understanding of cortical activity. 

ERPs allow researchers to determine the cortical activity underlying complex cognitive 

tasks. Previous studies have used ERP signals from EEG studies of decision making and working 

memory to better understand the cortical spatiotemporal organization of the brain (Gevins, et al., 

A., 1997; Gevins, et al., 1998; Rohrbaugh, et al., 1974). For example, in a seminal paper in the 

literature, Rohrbaugh et al. used EEG and the P300 ERP component to look at working memory 

in decision making (1974). Similarly, in later research, high-resolution EEG was used to study 

ERP signals in response to cognitive load, task difficulty, and types of processing (Gevins, et al., 
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A., 1997; Gevins, et al., 1998). This technique allows researchers to elucidate more complex 

information from an experimental paradigm than other neuroimaging techniques. However, these 

studies are not without their limitations. One of the drawbacks of ERP research is the number of 

trials and participants needed to gain meaningful data from continuous EEG recordings (Beres, 

2017). Research has found that a minimum of 40 trials per condition may be needed to gain a 

comprehensive understanding of the ERPs being studied which can lead to further issues by 

increasing the overall length of the study (Kaan, 2007). Long experiments can cause tired 

participants leading to poor concentration and paying less attention to the task at hand. 

Limitations such as participation numbers, long studies, and variations in EEG preprocessing 

techniques can lead to gaps in the literature that must be addressed.   

Our current study plans to use a visual working memory (VWM) task to understand the 

underlying neural correlates of hypothesis generation. ERP studies can be used to better 

understand processes that involve the use of more than one cortical area, and VWM tasks that 

look to understand the relationship between the frontal cortex and the visual cortex are 

commonly used in decision making research (Gao, et al., 2011;  Downing, 2000; Woodman, 

Vogel, and Luck, 2001). The interactions between VWM and decision making can be studied 

using the contralateral delay activity (CDA) signal. CDA is a measure of cognitive load that is 

found by subtracting the ipsilateral brain wave activity from the contralateral activity. In these 

studies, researchers correlate the amplitude of the contralateral delay to the number of objects 

that are held in VWM (Gao, et al., 2011; Woodman, Vogel, and Luck, 2001). Researchers have 

determined that the amplitude of the CDA should increase as the number of hypotheses held in 

WM increases (2011). However, there are still inconsistencies in the literature on how CDA 

amplitude is affected by items held in WM (Woodman, Vogel, and Luck, 2001). These 
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inconsistencies are an issue that must be resolved in order to properly understand the neural 

correlates underlying hypothesis generation and decision making. Our work aims to understand 

how CDA amplitude is related to the number of objects in WM by having participants undergo a 

decision-making memory activation capture procedure. As participants hold a number of relevant 

hypotheses per the task cue in WM, the CDA amplitude will be measured.   

Previous work in our lab has focused on developing a computational model of hypothesis 

generation known as HyGene (Thomas et al., 2008). This model integrates theoretical 

frameworks from long-term memory, working memory, judgement, and decision making. A 

novel measure of working memory called the memory activation capture (MAC) procedure 

(Lange et al., 2014) was integrated with HyGene to better study the dynamics of hypothesis 

generation. The MAC procedure uses a Cause and Effect learning task where certain colored 

disks represented environmental data, or Effects, and other disks represented hypotheses, or 

Causes. A correlational study that combines this experimental task with EEG would allow us to 

better our understanding of the neural mechanisms of hypothesis generation and better 

understand how working memory plays a role in decision making.  

The current study will address these gaps in the literature by conducting an ERP study via 

EEG with a modified version of the MAC causal learning procedure. The P300 and CDA signals 

will be used to look at working memory activation and the number of items being held in 

working memory respectively in order to help us gain a better understanding of the neural 

mechanisms underlying hypothesis generation and decision-making. 
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Experimental Design 

Participants were responsible for completing a decision-making task on the computer 

while EEG was recorded in order to determine the underlying neural correlates of hypothesis 

generation.  

This experiment was a modification of the MAC procedure (Lange et al., 2014) and 

utilized P300 and CDA to provide an indirect measurement of working memory content. The 

experiment manipulated the number of relevant hypotheses held in visual working memory. The 

study consisted of two primary stages. The first stage of the study was a training phase in which 

participants learned the causal relationships between ‘Cause’ and ‘Effect’ stimuli. Stimuli were 

represented as colored disks on the screen. Each ‘Effect’ disk had specific ‘Cause’ disks 

associated with it. The ‘Cause’ disks represented hypotheses that would be generated in response 

to an ‘Effect’ disk. Each Effect could have up to three hypotheses associated with it. The second 

stage of the study was an elicitation phase in which the participants had to make judgements 

about potential ‘Causes’ for a given ‘Effect’, and the EEG was recorded.  

The training phase involved two distinct types of training blocks: a passive training block 

and an active training block. The training phase of the experiment consisted of three total 

training blocks wherein a passive training block was always followed by an active training block. 

The elicitation phase began after the end of the final training block.  
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Figure 1: A sample cause/effect cue from the passive training block. The blue disk 
represents the cause and the magenta disk represents the effect. 
 

 
The passive training block consisted of an “unblocked” and a “blocked” learning phase. 

During the “unblocked” passive training block, a single cause cue and a single effect cue 

appeared on the screen with an arrow pointing from the cause to the effect (Figure 1). The cue 

remained on the screen for 2,000 ms before being replaced by a fixation cross for 500 ms which 

was then replaced by another cause/effect cue. Each cause appeared 16 times and each effect 

appeared 12 times in a random order. In the “blocked” learning phase, all possible cause/effect 

pairs were displayed in order of the “Effect” cue. Each participant had a training block with at 

least one unblocked learning phase and one blocked learning phase. The cause/effect cue 

frequencies per training block are displayed in Table 1.  
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 Effect 1 Effect 2 Effect 3 Effect 4 

Cause 1 12 0 0 4 

Cause 2 0 6 6 4 

Cause 3 0 6 6 4 

Table 1: Cause/effect pair frequencies per training block. 

 

 
Figure 2A: A sample cause/effect cue from the active training phase. The blank disk 
represents a potential cause and the magenta disk is the effect. Possible causes are 
displayed at the bottom of the screen. 
Figure 2B: The correct disk is displayed with the word CORRECT at the top of the 
screen.   

 

 In the active training block, a blank ‘Cause’ disk was displayed with an arrow pointing 

to an ‘Effect’ disk, and three potential ‘Causes’ were displayed on the bottom of the screen 

(Figure 2A). The participant had to indicate with a keyboard click which ‘Cause’ disk they 

thought was correct for the ‘Effect’ disk displayed. In this training block, each cause appeared 16 

times and each effect appeared 12 times. During the first active training block, participants had 

5,000 ms to respond. In subsequent active training blocks, the time limit was reduced to 1,500 

ms. After a response was submitted, the blank disk was replaced by the correct cause and 

participants were told if their selection was correct (Figure 2B). Participants had to complete 
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three rounds of passive and active training blocks before moving on to the elicitation phase of the 

experiment.  

 

 
  Figure 3: A sample cause/effect conditionalization cue from the elicitation phase.  
 

The elicitation phase tested participants ability to generate hypotheses. During this phase, 

a blank ‘Cause’ disk was displayed with an ‘Effect’ disk (Figure 3). The conditionalization cue 

appeared on the screen for 1000 ms and was then replaced by a fixation point for 400 ms. After 

the interstimulus interval was displayed, an array with 12 colored disks representing possible 

causes appeared on the screen for 400 ms. All the potential ‘Causes’ for the ‘Effect’ displayed 

were located on the same side of the screen. This colored disk array was followed by a retention 

period of 1000 ms. The retention period is responsible for the maintenance and recall of stored 

information in working memory. After the retention period, a blank visual array appeared on the 

screen (Figure 4). This second array consisted of blank disks located in the same positions as the 

colored array seen previously. Participants were required to select all the blank disks that were 

hypothesized to correspond to the possible ‘Causes’ of the ‘Effect’ displayed. At the end of the 

trial, participants had to make a probability judgement on the accuracy of one of their selected 

hypotheses. The probability judgment ranged from 0-100. The elicitation phase occurred in 
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blocks of 48 trials, with 12 trials for each possible effect. There were three blocks for a total of 

144 trials.   

 

 
Figure 4: Outline of the elicitation phase from cue onset to hypothesis generation. 
Participants must select the blank cues corresponding to the colored disk that they 
predict to match the effect cue. 
 

EEG Acquisition and Analysis 

 EEG was recorded using an EGI 400 series Geodesic EEG System. Stimulus presentation 

and data recording were controlled by PsychoPy software (Peirce, 2007). EEG data was 

continuously recorded at 1000 Hz. Offline analysis of EEG data was conducted in MATLAB 

2019a with the EEGLAB (Delorme and Makeig, 2004) toolbox. Offline data analysis was 

conducted on nine data sets that had low impedances.  

Continuous EEG data were down sampled from 1000 Hz to 256 Hz and re-referenced 

offline to the average of the left and right mastoid electrodes. Data was bandpass filtered 

between 1 – 40 Hz. Channel locations were assigned to the electrodes. Artifact rejection was 

conducted to filter out noise from the data and remove eye movements. The data were epoched 

between -100 ms before cue onset to +1000 ms after cue onset. Each epoch was baseline 

corrected to the average of the whole. Then, an independent component analysis (ICA) was run 
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on all head electrodes to examine for any additional sources of noise in the data and conduct trial 

rejections.   

 ERPs were analyzed to determine the underlying neural correlates. In particular, the P300 

signal was of interest due to its correlation with working memory activation. Electrical activity 

was averaged across all trials for each subject and the P3b was measured at the Pz electrode 

(Polich, 2007) starting with onset of the conditionalization cue. The CDA amplitude was also of 

interest as it is correlated with cognitive load which is based on the number of items held in 

visual working memory. CDA was measured during the retention period in the elicitation stage 

starting from +200 ms after the “Effect” cue. CDA was calculated by subtracting the ipsilateral 

from contralateral activity at the CP5, CP6, P3, P4, P7, and P8 electrodes.  

 

Statistical Analysis 

 Behavioral data from participants’ responses during the experimental paradigm were 

analyzed using a log-linear regression model, a repeated measures ANOVA, and two-factor 

analysis. The log-linear regression model was used to determine the significance of the total 

number of hypotheses selected based on the ‘Effect’ cue. A repeated measures ANOVA was 

conducted to determine the significance of the probability judgments based on the ‘Effect’ cue 

and to analyze the significance of probability judgments by total hypotheses selected.  A two-

factor analysis was run for an analysis of probability judgements by ‘Effect’ and by hypotheses 

selected. The interaction of the ‘Effect’ cue and hypotheses selected was also analyzed.  

 EEG data was analyzed using a repeated measures ANOVA to determine the significance 

of the peak P300 amplitude between cues.  
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RESULTS 
 

Behavioral Results  

 A log-linear regression model was used to examine the relation between the number of 

hypotheses selected and the ‘Effect’ cue. The relationship between these variables was 

significant (G2(3) = 149.76, p < 0.001). Figure 5 illustrates the number of hypotheses selected 

per cue. This demonstrates that as the number of relevant hypotheses increased, the number of 

actual hypotheses selected by the participant also increased. The relationship between the 

number of relevant hypotheses per cue and the actual number of hypotheses selected by the 

participant is demonstrated in Figure 6. Participants were more likely to select a greater number 

of hypotheses when more hypotheses were relevant to the presented Cue.  

 

Figure 5: Hypotheses selected by Effect cue. Cue 1 correlates to one hypothesis, Cue 2 
and Cue 3 correlate to two hypotheses, and Cue 4 correlates to 3 hypotheses.  
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Figure 6: Relationship between the average number of hypotheses selected by the 
participant and the number of relevant hypotheses actually present.    

 

A repeated measures ANOVA analysis of probability judgment by ‘Effect’ cue 

demonstrated significant results (F(3, 57) = 46.520, p < 0.001). Post-hoc comparison of the 

‘Effect’ cues using the Holm-Bonferroni method demonstrated significant differences between 

Cue 1 (M = 84.632, SE = 3.51) and Cue 2 (M = 47.14, SE = 3.06). Cue 1 also significantly 

differed from Cue 3 (M = 50.46, SE = 4.07) and from Cue 4 (M = 43.96, SE= 3.85). The average 

probability judgement for the ‘Effect’ cue presented is demonstrated in Figure 7. Participants 

were more likely to have a higher probability judgement for Cue 1 which was associated with a 

fewer number of hypotheses. As the number of relevant hypotheses increased with the ‘Effect’ 

cue, the probability judgements decreased. The one-way analysis of probability judgement by the 

total hypotheses selected also demonstrated a significant main effect (F(7, 42) = 154.44, p < 

0.0001). The average probability judgment based on the hypotheses generated is demonstrated in 

Figure 8. Probability judgements shrank in size as the number of relevant hypotheses increased.    
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Figure 7: Average probability judgement given based on the ‘Effect’ cue. Probability 
judgements were given at the end of each trial on a sliding scale. Cue 1 correlates to one 
hypothesis, Cue 2 and Cue 3 correlate to two hypotheses, and Cue 4 correlates to three 
hypotheses.  
 

 

 

Figure 8: Probability judgement given by total number of hypotheses generated. 
Participants generated up to seven hypotheses per trial. However, there was only a 
maximum of three possible hypotheses per trial. Probability judgements were given at the 
end of each trial on a sliding scale. 
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A factorial ANOVA of probability judgment by the ‘Effect’ cue demonstrated a 

significant main effect (F(3, 57) = 3.11, p = 0.0334), and the analysis of the probability 

judgements by the hypotheses selected was also significant (F(7, 42) = 66.54, p < 0.0001). This 

demonstrates that probability judgements decreased for cues associated with a greater number of 

relevant hypotheses, and probability judgements were greater when there were fewer hypotheses 

generated. The interaction between the ‘Effect’ cue and the number of hypotheses selected was 

also significant (F(17, 47) = 4.29, p < 0.0001). This illustrates that participants selected the 

relevant hypotheses associated with the cue presented.  

 

EEG Results 

 The grand averages of the target P3b ERP for each cue at the Pz electrode are 

demonstrated in Figure 9. The P3b signal duration occurs from 300 ms to 600 ms. Neural data 

was averaged from nine subjects with low impedances in order to generate the figure. A repeated 

measures ANOVA was run for a between cues analysis using the peak amplitude data from nine 

subjects. There were no significant effects between Cue 1, Cue 2 and Cue 3, or Cue 4 (F(2, 16) = 

0.78, p = 0.48).  

 Analysis of the CDA signal is currently ongoing in the lab.   
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Figure 9: Averaged EEG neural activity for nine subjects at the Pz electrode. The target 
P3b signal occurs from 300 ms to 600 ms. 
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DISCUSSION 
 

The purpose of this study was to determine the underlying neural correlates of hypothesis 

generation. EEG data was collected while participants completed a modified MAC procedure on 

the computer. One of the hypotheses of interest was that probability judgements will decrease as 

the number of relevant hypotheses increases. We also predicted that probability judgements from 

the hypothesis generation task would be negatively correlated to the P300 peak amplitude such 

that as the probability judgments decrease, the P300 amplitude increases. Another hypothesis of 

interest was that the P300 amplitude will be greatest for the task cue that has the largest number 

of relevant hypotheses associated with it as this cue will have the most updates to working 

memory. Finally, we predicted that if a target subset in the working memory task is determined 

by the relevant hypotheses generated, the CDA amplitude will increase as the number of 

hypotheses generated increases. 

Overall the results demonstrate that the first hypothesis was supported because the 

probability judgments were negatively correlated to the number of relevant hypotheses per 

‘Effect’ cue. The second hypothesis was not supported as the peak P300 amplitude did not reveal 

any significant differences between the ‘Effect’ cues. The third hypothesis was supported 

because the peak P300 amplitude was greatest for Cue 4 which had a total of three relevant 

hypotheses associated with it. Work is currently in progress in the lab to study CDA amplitude 

further.  

 

Hypothesis Generation and Probability Judgement Behavior 

The results demonstrate that probability judgments decrease as the number of relevant 

hypotheses for a particular ‘Effect’ cue increase (Figure 7) therefore, hypothesis one was 
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supported. Participants were less likely to judge generated hypotheses as correct for ‘Effect’ Cue 

4, which had three hypotheses associated with it. This effect was likely observed because as the 

cognitive load placed on working memory increases, the likelihood of judging any single ‘Cause’ 

cue as correct decreases. Furthermore, Cue 1 had the highest probability judgements with only 

one relevant hypothesis which demonstrates that when fewer items are held in VWM, the ability 

to accurately judge hypotheses as correct increases.  

This finding supports the idea that individual differences in working memory capacity are 

fundamental to hypothesis generation and probability judgement. These findings also 

demonstrate that the probability judgement of a single hypothesis is negatively correlated to both 

the number of alternative hypothesis generated and the span of working memory (Dougherty and 

Hunter, 2003). This research also provides support to the HyGene cognitive model in which 

individuals with a low working memory capacity are unable to maintain as many alternative 

hypotheses for inclusion as those individuals with a higher working memory capacity eventually 

leading to fewer hypotheses generated (Thomas, Dougherty, and Buttaccio, 2014). Thus, a 

participant’s capacity to accurately judge generated hypotheses as correct is related to their 

underlying memory constraints which can result in cognitive biases.   

 

Probability Judgements and Peak EEG P300 Amplitude 

Hypothesis two predicted that a greater P300 signal would be expected from the ‘Effect’ 

cues associated with an increased number of hypotheses. This is because lower probability 

judgements are associated with an increased number of relevant hypotheses, thus more items 

would be updated in working memory leading to a greater P300 signal amplitude. However, this 

prediction was not supported as the data was not significant.  
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This likely occurred because only nine subjects’ peak P300 amplitude waveform data was 

used for the analysis (Figure 9). A one-way ANOVA test can be sensitive to statistical outliers 

and thus a large sample size is usually recommended. The current sample size was restricted due 

to high impedances present in the other eleven subjects. High impedances are a technical 

restriction in EEG studies and indicate a greater resistance to current flow (Teplan, 2002). Thus, 

a dataset with high impedances will result in a smaller amplitude for an EEG signal and is not 

recommended to be used.  

 

Hypothesis Generation and Peak P300 Amplitude  

The P300 ERP signal is made of two components— P3a and P3b. The current study was 

particularly interested in the P3b component as it is associated with working memory processes. 

Research suggests that the P3b component is evoked when expectations of environmental events 

are updated in working memory (Beydagi, et al., 2000). In other words, as working memory is 

updated, the P3b component should increase in amplitude.  

The results demonstrate that the peak P300 amplitude was greatest for Cue 4 which was 

associated with three hypotheses. Cue 4 had the greatest number of working memory updates 

since participants had to generate more relevant hypotheses for this ‘Effect’ cue than for any 

other cue. The results demonstrate that increased working memory updates were correlated to an 

increased P3b amplitude for Cue 4 which supports the third hypothesis. These results are also 

consistent with previous literature that has found that the P300 amplitude changes in an orderly 

manner as the number of items that must be remembered, and therefore held in working memory, 

increases (Beydagi, et al., 2000). 
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CONCLUSION 

Overall, these results demonstrate that the underlying neural correlates of hypothesis 

generation are affected by updates to working memory. Probability judgements are negatively 

correlated to the number of relevant hypotheses associated with each ‘Effect’ cue, and the P300 

amplitude is highest for Cue 4 which is associated with the greatest number of hypotheses. 

However, it is unclear the magnitude of difference among the peak amplitudes of ‘Effect’ cues as 

the data was not significant. This work can be used to better understand how working memory 

underlies our everyday decision making. In conclusion, although this research has made strides 

towards understanding the relationship between hypothesis generation, working memory, and 

neural activity, further work is needed to fully understand these concepts.  

 

Future Directions 

Research is still ongoing in the lab to understand the relationship between the CDA signal 

amplitude change as the number of generated hypotheses increases.  

Future studies should look to repeat this modified MAC procedure with a larger sample 

size (N > 30) so that EEG traces are not be limited by artifacts. The two main artifacts present in 

EEG data are subject artifacts which can include body movements, eye movements, heart rate, 

etc., and technical artifacts such as impedance fluctuation, cable movements, and broken 

electrode contacts (Teplan, 2002). A large sample size would allow for more in-depth statistical 

analysis. . Making these changes will ideally demonstrate that updating working memory 

through generating more hypotheses is correlated to a greater P300 signal amplitude.  
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Another improvement would be to conduct a similar study in which participants must 

make probability judgments after every hypothesis generated for ‘Effect’ cues that are associated 

with more than one relevant hypothesis. This will differ from the present study as participants 

were only asked to make their probability judgements at the end of every trial.  
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