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SUMMARY .

This dissertation is concerned with the estimation of a
process signal over a finite two-dimensional plane from data
sampled at discrete points along a prescribed scan path in the
Plane. One coordinate of the plane is referred to as the spatial
coordinate, while the other coordinate is referred to as the tem-
poral coordinate. The scan path is such that the spatial coordi-
nate is a single-valued function of.the temporal coordinate. The
process under consideration belongs to a class of nonstationary
processés in which the signal is the sum of a Gaussian stationary
component of unknown statistics and a nonrandom component that is
a function of the spatial coordinate only, The estimates are
linear combinations of the measured signals witﬁ the weighting
factors being chosen to minimize the expected value of the QQQare
of the estimation error. -

Efficient two-dimensional estimation techniques require a
knowledge of the autocorrelation fUnctio; of the process, which
is not assumed to be known a priori in this case. Due to the
nature.of the scan path, the autocorrelation function can be esti-
mated only in a restricted sector of the two-dimensional plane.
Since this restriction poses a difficult problem in two-dimensional
estimation, simpler one-dimensional estimation techniques have
been popular in the past. A major contribution of this work lies

in solving this problem. The extrapolation and refinement of the

:
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autocorrelation function is achieved by fitting an appropriate
form of the autocorrelation function to the estimated autocorre-
lation function in the restricted sector. In some cases the form
is known for a particular class of stochastic processes. In other

cases the form has to be approximated by an exponential-cosine

B i

form.

The approach used is to first estimate the autocorrelatioh
function in the restricted sector from the scan path data. To
the estimated éutocorrelation function is fitted the appropriate
form by the weighted least-squares fechnique. The fitted_autoﬂ
correlation function is then used in the estimation of the sigﬁal.
A comparison of the resulting expected value of the square of the
estimation error is made with the one obtained by using the real
autocorrelation function. Also, a comparison is made with other
existing methods. Afsensi?ivity analysis is performed to deter-
mine the'allowable flexibility in the parameters of the funcfional
form.

The results are demonstrated by u;ing two simulated processes
and a real sheet paper process. The two-dimensional stochastic
processes having an exponential-cosine autocorrelation function
are simulated by passing discrete white noise through a synthesiz-
ing filter. The advantage of working with simulated proceéses is
that the real autocorrelation function is known a priori. The
developed method is also applied to the scan data from a sheet
paper process and the results are used in comparing the developed

method with existing ones.
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CHAPTER 1
INTRODUCTION

The research reported in this thesis began as an attempt
to improve the on-line estimation of the basis weight of Kraft
paper. The author and hié'advisor visited the Westvaco paper
will operation in Charleston, South Carolina, as guests of Dr.

D. B. Brewster, then Director of Process Control. 1In a confer-
ence, Dr. D. B. Breﬁstgr indicated the poor control of the basis -
weight obtaiped by using estimation techniques in the temporal
coordinate of the sheet paper and suggested the existe;ce of cor-
relation in the temporal and spatial coordinates of the sheet.

After reviewing existing literature in multidimensioﬁal
estimation, algorithms for basis weight estimation and identiri-
cation of random process statistics, it was decided that a signif-
icant contribution to the state of the art could he madg through
exapmipation of this problem. A general mathematical problem, appli-
cable to most sheet processes, was thus formulated from the basis

weight problem.

Statement of the Prohlgg

i

Consider a class Qf%two-dimensidnal nonstationary random
processes q(x, t) in whichlthe signal is the sum of a Gaussian
stationary component s(x, t) and a nonrandom component p{x). The
statistics of the stationmary part and the form of the nohrandOm

component are not given a priori. From the data sampled at regular -




intervals in the past up to time t albng a prescribed scam path,

P
it is desired to determine a discrete point estinmate ﬁ(xp-* 8, tp+ 1)

1

such that the expected value of the squared error
2
e = E{(& - q) } | (1.1)

is minimized. The upper and lower bounds on (xp +p) and

(1:p + 1n) are such as to allow for smoothing and prediction in a
reasonable subset of the total space. 1In addition, the random
process s(x, t) is ergbdic, and the limiting conditions given in

Table 1 hold, The form of the scan path is
x = F(t) (1.2)

where x is a real, single-valued function of t and the sampling

period on the scan path is chosen so as to eliminate aliasing.
Since the nonrandom component can be recovered by expopential

smoothing in the t coordinate, the problem essentially reducés.

to esiination of the stationmary part. Optimal linear estimators

require the knowledge of the autocorrelation function df the ran-

dom process. In- the process described above, only an estimate

of the autocorrelation function is aﬁailable in the restrictea. 

regions related to the scan path. Hence, the major portion of this

work is devoted to extrapolation and refinement of the estimated

autocorrelation function,

Review of Literature

Past attempts to estimate the basis weight of sheet paper
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Table 1, Limiting Conditions on the Autocovariancg {

ax At Autocovariance i3
Coq(tx, A1) i

a 0 9 : I
o o 0 !Is !
o 0 0

ax 0 Coglax)

&x o 0

o ot Ces{at)

@ | 4t 0

Cesles) = O and Ceg(0) = 02

have largely ignored optimal two-dimensional estimation thedry

and the existence of correlation between the spatial and temporai
coordinates. Bxamples of such attempts can be found in the works
of Brewster (1),” Astrom (2), Dahlin ;nd Brews ter (35, and Wingrove,
Madeley and Shabi (4). In reference (1) the spatial component of
the signal is arrived at by exponential smoothing in the temporal
coordinate, while the temporal Eomponent is estimated by filter-

ing out the high fgequencies in the temporal Q?;gctipp. Thé

algorithm of reference (1) is presented in Cha%ter V. A logical

A

_ *Numbers in parentheses not followihg "Eqﬁation" refer to
items in the Bibliography.
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improvement of this algorithm, assuming no correlation in the
spatial and temporal coordinates, is the estimation of the
temporal coordinate using one-dimensional linear optimum estima-
tion theory. References (2) and (3) arxe in this line of think-
ing, excepting they tend to be more oriented towards fitting a
state model to the process in the temporal coordinate. Tuning
the parameters in the state model requires input-putput informa-
tion. Unfortunately, only very few inputs contributing to the
output signal can be monitored and, hence, the remaininé inputs
go undetected. These undetected inputs can cause considerable
deviation of the actual output signal from the statelmodel pre-
dicted output signal. Reference (2) is primarily concerned with
the assessment of the spatial basis wéight profile and this asses-

ment is used for the purpose of deciding whether or not the paper

‘will run satisfactorily during operations on or subsequent to the

paper machine (coating and reeling). It has very little to con-
tribute £o the_problem being considered'iﬁ this thesis since the
method is empirical and no definite design criterion is used. The
method is mentioned here only to illustrate the variety of work
done in the field.

All the methods discussed 35 far do not consider the exis-
tence of correlation between the spatial and temporal coordinates.
Dr. D. B. Brewster's experience indicated that correlation does
exist. The same conclusion can be drawn by considering the sheet
paper as a two-dimensional random proéess. Even though the exiga

tence of this correlation was known to the investigators in the



past, the way to extract the correlation over the whole two-
dimensional plane from the scan path data was not known. This
presents an obstacle in the use of optimal-multidimeﬁsional esti-
mation theory.

Optimal multidimensional estimation theory requires the
multidimensional autocorrelation function to be given a priori.'
References on this topic are Peterson and Middleton (5), Blum (6)
and Repjar (7). Reference (5) deals with optimal estimation of
multidimensional statidnary random processes, whose autocorrela-
tion function is given a priori. 'Wifh'a slight modification
described in Chapter IV, their method can be made to handle the
nonstationarity under consideration in this thesis. Reference
{(6) is concerned with a class of one-dimensional nonstationary
proceéses similar to the one described in the problem statement.
With appropriate modifications, it can be extended to handle the
two-dimensional case as shown in Chapter IV. It also requirés prior
knowledge of the autocorrelation function. However, mot all multi-
dimensional estim;tion methods require the autocorrelation func-
tion, as shown by Reference (7). It deals with two-dimensional
estimation which is not optimal and at the same time does not
require any knowledge of the autocorrelation function. TIts appli-
cation is restricted to pattern recognition since it requires
sampled data on the whole two-dimensional plane and cannot be used
with data on a restrictqg sampling lattice.

The problem.of obtaining the two-dimensional autocorrelation

function from a restricted sampling lattice has ot bexy treated
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in literature. The commonly known works in the estimation of

the cone-dimensional autocorrelation function are by Parzen (8),
Blackman and Tukey (9), Balchen and Blandhol (10), and Uskov and
Orlov (11). References (10) and (1ll1l) are primarily concerned
with the error involved in the estimation of the autocorrelation
function and designing the experimental parameters so as to

reduce this error. References (8) and (9) develop many differ-
ent ways for smoothing an estimate of the autocorrelation function
by passing it through various lag windows, The single most import-
ant clue to the éxtrapolation and refinement of the estimated
autocorrelation function came from Bendat (12), who is his book
showed a number of one-dimensional physical processes that obey
the exponential-cosine form of the autocorrelation function. He
suggests it as a means of refining the estimated autocorrelation
function. This concept has been developed in the thesis and used
not only in the refinement but also in the extrapolation of the
estimated autocorrelation function.

Two methods very relevant to the above concept and used as
solution tools in this thesis are the Blackman and iukey's power
spectrum analyzer and Fletcher and Powell's function minimization
technique. Blackman and Tukey (9) describes an indirect technique
of obtaining the power spectrum from finite length discrete-time
data, The term "indirect" refers to computing fhe power spectrum
from the autocorrelation function instead of directly from the
discrete-time data as considered by Weleh (13). The significant

advantage of this method is its computational ease. The autocor-
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relation function is first obtained from the discrete-time data.
Then employing the standard definition of power spectrum as the
Fourier transform of the autocorrelation function, the raw power
spectrum is obtained at discrete points in the frequency plane.
This estimate of the power spectrum is then refined by convolving
the raw estimates with different sets of weights to obtain either
the Hamming or Hanning power spectrum, The pPower spectrunm aﬁalyzef
has been used in this thesis to identify the frequencies present

in the autocorrelation function.

In Fletcher and Powell's paper (14) a powerful iterative
descent method for finding a local minipum of a function of sev-
eral variables is described. A number of theorems are proved to
show that the method.always converges and that it converges rapidly.
The authors mention in their paper that the method has been used
successfully to solve a system of one hundred non-linear simul-
taneous equations. The method falls under the classification of
conjugate gradient techniques and requires the analytical form of
the grédients. This class of techniqunes has the property of quad-
ratic convergence in that the minimum of the quadratic objective
function is found within some finite number of iterations. The
set of directions chosen to ensure that the optimum of the quad-
ratic function is found in a finite number of iterations are known
as c;;guﬁate directions. Fletcher and Powell have shown a way of
choosing these conjugate directions and the distances to.move in
these directions.

They assume that the function obeys the standard quadratic
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form in n-dimensions. The analytical solution of the minimum is
given by the Newton Raphson method, if the Hessian matrix is avail-
able., 1In their method the inverse of the Hessian matrix is
approkimated initially by a unit matrix so that the first direc-
tion is down the line of steepest descent. This approximation is
;ubsequently improved until at the minimum, it converges to the
true inverse of the Hessian matrix. The improvement is achieved
by noting that the current gradient vector {s orthogonal to the
past incremental vector. For obtaining the minimum along a line
they suggest a procedure whiéh uses cubic interpolation and is
based on that given by Davidon (15). |

The computer subroutine for function minimization-using the
Fletcher and Powell algorithm is available from IBM Corporation.
Dr. D. B. Fyffe of Georgia Tech's Industrial Engineering Department,
made this subroutine available to the author for use in this thesis

and it is included in the Appendix.

Properties of a Two-dimensional Stochastic Process

A stationary process”of order two is defined as a stochastic
process s(x,t) whose first and second order density functions are
not affected by a shift in the x and t origins, i.e. the first

order density fﬁnption

f(s;x,;) = f(s;x +E, t+)) - Qf (1.3)

and the second order density function -

f(sl,szgxl,xz,tl,tz) = £(8y,855%; + E, X+, +h, t,+)N)  (1.4)

e e I b oatas -me. L. dw i
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This, in turn, means that
f(s;x,t) = Constant (1.5)
and
£(s),855%),%5,%),t,) = £(8],s5,} &%, A4t) (1.6)
where

-t

dx = X, - X3 and 4t = t1 2

In terms of the statistics of the process, the mean is a con-

stant and the autocorrelation function
Rss(xl,xz,tl,tz) = B{s(xl,tl)s(xz,tz)} (1.7}
- - 0
= .f f slszf(sl,sz; xl,xz,tl,tz)dsldsz
-l -t

£ ¥l-g

J' I s19,f(8),8,; 8%, Ot)ds,ds,
-l O

E(s(x,t)s(x + Ax, t + At)}

= Rss(ax, At)

A process s{x,t) is wiéé-sense stationary if its expected value
is a constant and its autocorrelation function obeys Bquation.
(1.7). Tt does not, however, imply stationarityigf'ordgr two.
If Ax and At are assumed positive in Equation (1.7), then from

the definition of autocorrelation function it follows that




10
= - - At .
R (8%, &) = R__(-&x, -4t) (1.8)
and equivalently
Rss(-ﬁ-.x, At) = Rss(ﬂx, - &) (1.9}
In special cases where
Rgs(ax, Ot) = R _(~0% 4t) (1.10)

a smaller sampling lattice will.suffice to make a crude estimate

of the autocorrelation function. 'Therefore, it is always recom-

mended that a real process be tested to see if this feature exists.
The power spectrum Sss(ux"ut) is the double Fourier trans-

form of the autocorrelation function, i.e.,

~ijnx-jw At

t

. oo ooy
S (w0 0,) = f_m_fmnss(mc, At)e dbxd bt (1.11)

When Equation (1.10) holds, the power spectrum sss(”x’ wt) is real. }

The reason being that the autocorrelation function is even about
Ax and At, and this causes the odd terms, which includes all the
imaginary terms, to génish vpon integrat%dn from - to +o, This
powef_spectrum has tﬁé property of alway% being positive. The _;;

indirect proof of this statement is giueﬁ in reference (16) for:

a ope-dimensional process. It can be extended to the two-dinm

iﬁ% sional case by simply replacing the one-dimensional quantiti%%
] A
il by their two~dimensional counterparts. When Equation (I.Eb%ﬁﬁﬁes
Ve £, o |
;imgxghold’{gge power spectrum becomes a complex value (reaﬁ%adﬂ
NN, UL 4, ’ A
imaginary pargs).. L7 o L Hﬁaaéﬁ ¥ g .

¥
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Power spectrum is very useful when performing a linear filter
synthesis. This is because it does not involve the difficult to ; .

solve convolution formulas associated with using autocorrelation

functions in the synthesis, The important result to remember is
S (w,w. }Y=8 (w., w)6(ju, ju ),2 (1.12)
zz "%’ Tt ss' x’ 't x’ 7t

where Szz(”x’ mt) and Sss(mx, wt) are the power spectrum of the
output and input signals and G(ju,, jmt) is the transfer func-
tion of the linear filter.

A normal process s(x, t) is one in which the random variables

s(xl, tl}, s(xz, t2), s(xs, t3),..,, s(xn, tn)

are jointly normal for any n and the nth

-order density function
is completely determined in terms of its expected value and auto-
correlation function (16). Now if the process is normal, wide-
sense stationary and has zero mean, the first order denmsity func-

tion becones

.
f(six,t) 1 e-s /2R(0,0) (1.13)

J27R(0,0) 2

fls;x + E, t + 1))

H

and 2
R(0,0)s]-2R(4x, SL)HREC,0) 5

1 . 2[R%(0,0)-R?(4ax, at) !

£{815853%,X5st),1,) =
2x [R%(0,0)-R%(2x, &t)
- (1514)

= f(sl, $p3 ox, At)

These two equations. zre ezquivalent to Tonations (1.3) and (L.6),
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and, therefore, the process is stationary of order two. The same
results hold when the process mean is not zero. However from
the above definition of a normal process, the statistics are
uniquely.determined in terms of the expected value and autocor-
relation. Hence the process is stationary of order n where n
tends to infinity, or strictly stationary.

The normal property is useful since it ensures that a linear
estimatbr is the best estimator (16). It can however be relaxed
in a practical situation with the penalty that the linear estima-
tor is not necessarily the best estimator.

Ergodicity is perhaps one of the most desirable properties
in any stationary random process. It enables the determination
of the mean and autocorrelatioh function without having to calcu-
laie the ensemble averages. Ergodic theory states.(16) that's(t)
is ergodic in the most general form if (with proEability one) all
its statistics can be determined from a single function s(t, {)
of the process." According to Grenander and Rosenblatt (17) “If
s{t) is a norﬁal_process ope can show that a necessary and suf-
ficient condition for it to be ergodic is that the spectrum be
continuous.” Since many real processes are approximately normal
and have a continuous power spectrum, they are ergodic. Hence

the mean and autocorrelation funetion c¢an be estimated from

(1.15)

and
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m,n
Rgg(4x, 4t) = Lin %F'I ‘r s(x,t)s(x+ix, t+At) dxdt (1.16)
n+w 00 :

m
If only discrete values of the signal are available at spacings

of X and T in the x and t directions, then the mean and auto-

correlation function are estimated by

m n
Efs} = Lim %n.. _ Z s(ix, iT) (1.17)
n “+ow .
m +oo jso i=o
and
m n

Rge(kX, IT) = Lim L ): Z s(iX, JT)s(iX +kX, jT+ rT) (L.18)

Nao

nrw %0 1=

In filter synthgsis, a process known as whife noise is fre-
quently used. Two types of white noises have been ?onsidered in
this thesis; namely, discrete Gaussian white noise ;nd dense
Gaussian white noise. Discrete Gaussiﬁn whi te nois%:n(ix, JT) is
defined as a process made up of a two-dimensional a}rﬁy of uncor-
related random variables belonging to a Gaussian distfibution.

Its autocorrelation function is given by

Ryg(iX, JT) = o° fori =3 =0 (1.19)

0 elsewhere

where 62 is'thefvariance of the randoﬁ variables and X and T are

the array spacings in the x and t directions.
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Dense Gaussian white noise z(x,t) is defined as a process
made up of Gaussian uncorrelated random variables densely packed
over the two-dimensional plane. Its autocorrelation function is

given by
R, (6%,5t) = o b(4x, at) (1.20)

Consequently, the power spectrum is flat with a value of a2.

Approach to_the Problem

A major portion of this thesis is concerned with the esti-
mation of the stationary component of the nonstationary.p£0cess
as mentioned in the Statement of the Problem.

The stationary part was modeled as Gaussian and ergodic since
these properties are very practical assumptions with respect to
sheet processes, The central limit theorem (16)'states that under
fairly general_conditions the sum of n_indepehdent random varia-
bles tends to the Gaussian distribution as n tends to infinity.

The criterion to minimize the expected value of the square of the
estimafion error under thg above assumptions leads to a consis-
tent and efficient;estimator (18)., This criterion was chosen as
cowpared to other consistent and efficient estimators since it does
-not require the prébability density function of the process and |
is mathemafically éasy to solve.

For the Gaussian stationary process, the linear estimator is
the best estimator when the above criterion is used (16). Optimal

linear estimators require the autocorrelation function of the
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process to be specified a priori. Since estimation of the total
autocorrelation function is not possible from the scan path data,
the functional form of the autocorrelation function is used to
advantage. If this form is known a priori, then the parameters
in the form are estimated by either the maximum likelihood or

the least-squares method. If the form is not knpwn, the approach
taken is to fit an exponential-cosine form to the autocorrelation
function estimated from the scan path data. The choice of the
exponéntial-cosine form stems from the observations of one-
dimensionél random processes hy Bendat {(12). According to his

observations, most real random process with continuous power spec-
T A

,:}'.4;.&: [

trum have aqﬂexponential-cosiné antocorrelation function. The
least-squares method will be used to estimate the parameters in
the functional form because it is mathematically easy to use.

The effectiveness of the proposed method is determined by
comparing the mean square estimation error of the proposed méthod
versus the error obtained by using the theoretical autocorrelation
function. A simulated process will be used for this purpose.
Comparison with other existiﬁg methods will also be made to see
if significant improvements in the estimation of the signal are
obtainable by using the proposed method. A real sheet paper

process will be used for this purpose. .

Outline of the Thesis

In this chapter the problem has been defined, relevant liter-
ature has been reviewed and the proposed method of attack has been

stated.  In Chapter II, two stationary random processes with known

TR RS A T ST e AT SR el LT TR pt

SRty ¥ gt
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autocorrelation functions will be simulated. The first process
will be used as an analysis problem in this thesis. The second
process will be used only in Chapter II to show that the fre-
quenc§ decomposition technique works when more than one set of
frequencies are present in the spatial and temporal coordinates.
In Chapter III, a technique to estimate, refime and extrapolate
the autocorrelation function from the scan path data will be
devised. 1In Chapter IV, optimal estimation will be performed

using the fitted autocorrelation function, the theoretical auto-

correlation function and the one-dimensional auntocorrelation func-

tion. Also a sensitivity analysis will be performed for the param-

eters introduced in Chapter III. 1In Chapter V, the techniques

developed in the previous chapters will be applied to a paper mill

process and the advantages of the developed schepe highlighted.
Chapter VI will present the conclusions and recommendations of

this thesis.

et
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CHAPTER II

FILTER SYNTHESIS FOR GENERATING A TWO-DIMENSIONAL

RANDOM PROCESS FROM DISCRETE WHITE NOISE

In this chapter a technique for synthesizing two-dimensional
filters is devised. It is desired to design a filter which when
excited by discrete Gaussian white noise, generates a random
process with the chosen exponential-cosine autocbrrelation.func-
fion. The approach used is analogous to synthesizing a continuous
one-d&mensionSI filter with §evera1 modifications. These modifi-
cations are necessary because the two-dimensional continuous

approach requires dense white noise as input to the filter. To

use discrete white noise instead of dense white noise, the convo-

lution integral in the continuous case is separated into smaller
integ;als. It is difficult to proceed beyond this point without
approximating the filter impulse response as constants iﬁ the small
intervals of integration. After making this approximation and
moving the constants outside the integration signs, the remaining
integrals are shown to be discrete Gaussian whi te noise. Also,

in the two-dimeﬁsional case the filter synthesis procedure is ham-
pered by the nonseparab;e'property of the power spectrum. This
problem is resolved by introducing a multiplicity of independent

discrete white noise passed through separate filters and summed.
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Backgrodnd Information

In the generation of one-dimensional random processes,
dense white noise is passed through an appropriate filter yield-
ing a process with the desired autocorrelation function. The

resulting power spectrum is given by
2
Ses(w) = 16(Ju) |7 x 1 (2.1)

where S . {w) is the power spectrum of the desired process and
G(jw) is the transfer function of the filter. It is known, how-
ever, that if SSS(u) is given, then G{jw) is not uniquely deter-

mined, but is given by

6(Ju) = [B o (@) ALY (2.2)

where p(w) is arbitrary (19). The inverse of G(jw) is causal,
if the S .(w) satisfies the Paley-Wiener condition (19). 1In the
generation of a two-dimensional random process, the problems are
further compounded by the complicated form of the desired poﬁer
spéctrum. - |
Before proceeding to the synthesis problem, a fundamental
concept is reviewed. Consider the process shown in Figure 1.
Independently gqu:ated deﬁse whi te noises Zys Z5y 0oy 2y arxe
passed through separafe filters. If the output signal s{t) is

given by

s(t) = sl(t) + sz(t) * sB(t) - sn(t) (2.3)




z, | N Gl ()
S G (w)
Zw . GN(m)

61

Figure 1. Scheme for Generating a Random Process.
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then it follows that the output autocorrelation function Rss(ﬁt)
is given by |

(4t) + R (4at) + R (4t) ... + R (4t)
151 S2%2 - S3s3 Snn

R, (4t) = Rs_
(2.4)
and the output spectrum Sss(”) is given by

Sgqluw) = Sg

5,9 F 8 (9 s, (eS| (u)

%1 2%2 SaSg LI

(2.5)

'Synthesi s Procedure

Consider a class of processes described by the autocorrela-

tion function

-A, |{ax| -B,jat]
.Rss(m’ﬁt) = Z l“’:l'e : .

cos w_.AX cos w 4t (2.6)
X1 t1
i~ '

It is desired to simulate this process rather than the more common

..j;inxz-l- Bidtz '
Rss(ﬂx, At) = zDie : cos uxiﬁx cos wti&t- (2.7
i _

because of t;:e difficulty in handling integrals of the type

t

. _faimzaeaimz ~Ju 8% - Ju Bt
II e e dix dat

These forms will be discussed im the next chapter, but for the

present note that Ai’ Bi’ and D, are constants, and wos and ut

i

k]

i
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represent frequencies in the x and t directions. Its power spec- 2
trum is given by
: W 2 + W 2 + A 2
S_(uw w)=Z4DAB "‘3—"5 i . (2.8)
ss' x' Mt 17171 2 2.2 2 ‘
i (A *uyg=vy ) e 4A:i.2ux
2, .2 2
w W i Bi
B 2 2
( twey -w,) +4Bw
~which can be rewritten as
(jl.] +/A -l-ui)(ju-l- fA +u
Sealuprs,) = | 4D,AB — RTT - ] (2.9)
i (A4 :lwx) wxi i-:lux) - uxi

(jw +/B -l-ui]( ju +/B +w

[(B+3uy)®+ o2, 10 (8;-3u )" + uti]

Lol ¢

W ,wt) in Equation (2.9) is not separable in the form
G(-ju ’ jwt)G(-jux,-jut) because .of the summation .sign. However,
if each term under the summation sign is the result of a séparate
filter excited by independent white noise and then summed, the
nonseparable problem of Bquation (2.9) does not arise. The power

spectrum can be written as

Sggligs wg) = ) 6 (Juns 30,)8 (~Jui-Juy) (2.10)
i
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in which the various Gi(jux, jwt) represent the transfer func-
tions of the different filters excited by independent white noise.

Hence, the transfer function of a particular filter is given by

2
_ (:iu + A*‘u )(iu o . )
G, (Ju., ju.) = /GA.B.D, t (2.11)
i i
o o [(“1*5”:)2*“’5:1][(31””9 !

and the causal impulse response is given by

- [2_ 2
-4, bx (A gy = &)

W(ax, at) = f4A B;D;|e i cos L., Lx+ 0 . ‘ (2.12)
_ xi
-A Ax
e i sin w dx
xi
2 2
-B, 4t (fB] *+ vl - B.) -B.at
e cos “’ti&t + ”ti e. sin “ti At

Independent dense white noises are convolved with the differ-
ent impulse responses and then summed to generate the desired

random process. The convolution equation from linear continuous

filtering theory is given by

s(x,t) = j'mj'ww(x',':) z (x-x, t-1)dxdn {2.13)
(VY]

where z(x,t) is the dense Gaussian white noise and W(x,t) is the

impulse response of the continuous filter given by Equation (2.12).

Equation (2.13) can be separated in the form

e
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T X - 2T, X
s(x,t) =f f W(xX,T)2(%- X, t-1)d¥ dt. +f [ ¢ yaxer (2.14)
0v0 _ T o _

e TFC haxar of I Gaxane

Since the computer generated white noise is discrete, Equation
{2.14) cannot be used without modifications. The impulse responses
under the integral signs in Equation (2.14) are approximated by
cons tants as shown in Figure 2. The valug of the constant is
chosen to be the value 6f the impulse response at the coordinateé
specifiea by the centroid of the area bounded by the limits of
the integral. |

'Hence, Equation {2.14) results in

s(x,t) = W(§ ' g-) I:onz(x-)f, t-1t)dydxt + W("é(‘ ,%E)Iirfox © (2.15)
| z(x-X, t-t)dX dx
+ w(% ,Ig) f:f:xz(x-x,t-'f)dxdt + W(% ’ %I:Tf:x .
z(x-X,t-v)dxdt+ ...

The double integrals in Equation (2.1%) are uncorrelated random

| variables and are denoted by n, t(i’j)' Since the white noise
’

z(x,t) is Gaussian, its integral which represents a summation of

Gaussian distributed random variables, is also Gaussian. The

‘expected value of nx 1_’(:i.,;i) is
L

(J+1)T ,(i+1)X
B(r f z({x=-X , t-T)dXdT} {2.16)

B {n, 4(1,9)) e
| xte {2}

fl
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Impulse Response of the Filter
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and the variance is
5: = E{[II z(x-%, t-’t)d){dﬂz} (2.17)
Since z(x,t) is white noise, therefore, Equation (2.17) becomes

(jmrj (1+)x

dnz =I o7 dxdt (2.18)
T ix - -
_ 2
= XT g,

- If z(x,t) has zero mean and unit variance as selected for the two

simulations in this chapter, then fromlﬁquations (2.17) and (2.18)

n

2
- E{p (i,j)} becomes zero and o, becomes XT.
X, t _

In both the simulated processes, X and T are unity and'hence,

2

n becomes unity. The discrete white noise sequence generated

o
on the computer with mean zero and unit variance can now be. used

in place of the double integrals in Equation (2.15) which becomes

sle,t) = ) ) WE+E, 3n (4,3 (2.19)
j=0 i=0 '

If once the random sequence n_ t(i,j) is chosen for a particular
’

~x and t, then the random sequence for other x and t is correlated

to the first sequence. However, moving x and t by unity from the
x and t that established the first random sequence, one is able
to reuse the same sequence. In order to express this mathe-

matically, define

S T Tl R g L e
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S (GH)T (341X
n*(i, 3) = | ] z{x,t)dxdt (2.20)
T ixX

then Equation (2.19) reduces to

o an
s{x*,t*) = Z z w(i-i-é,i-l-—;-)n*(x*-i,t*-j) (2.21)
j=0 i=0

where x" and t* represent discrete integer values of x and t, and
i and j are integers.
Two types of errors can arise when using this technique of

digitalization. The first error is the approximation of

nj""l i+l
J f W{x, t)dxdt
J i

by a constant w(i*-%; j*-%) which does not even_represen% the
mean value of the weighting function in the interval. Tﬁe reason
for choosing w(i*-%, j*-%) is to avoid the excessive comﬁutation
which arises if the mean value is to be found for each interxrval.
-Ihe_secdnd source of error is the truncation of the summation of
Equation (2.21). In most ﬁractical cases, truncation is essential
due to limited computer memory and computer tiﬁe. The e%fect of
the two types of errors on the variance of the output siénal wiil
be studied in the next paragraph.

2

Let d_ and o: represent the variances of the output and

input signals. Express Equation (2.21) by

o(x* %) = z f a34n0%;,t) (2.22)
j i
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Taking the expected value of.the signal squared, results in
_ »
2 %
s<s (x*’t*)} - E{[L Zaijn(xi,tj)] } (2.23)
i :
= z z Eé? nz(x t )>
ij A |
i 3
™ 2 Ll
= Z 24 a?j d: = On z L a?j
i J i 3

since n(x,t) is white noise. Now if o= 1 then from Bquation

- (2.23) it follows that
—r 2 - 2
Z ), 315 =9 (2.24)
i 3 '
The truncation error causes
2 2
z Zaij <6, (2.25)
i 3

and the approximation.of the analog filter of Equation (2.,12) by

a histogram form causes
2 2
z z ai:j > o (2.26)
i 3

Equation (2.26) is a result of the shape of the weighting function

of Equation {(2.12)

)
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Results
Two random processes are simulated. The first one employs

a shaper with the impulse response

.235 -.0754%
—

22 sin-34%) (2.27)

w(dx, at) = ,212(e”*0758% che.3ax +

-. 0754t ;235 e-.O?SAt

e cos+34t + - sin.34¢t)

which when excited by discrete Gaussian white noise over a rec-
tangular lattice, shown in Figure 3, yields a process with the

autocorrelation function

-.075 |&x|-.075 | &t

Rss(&x, it) = 2e cos-34x cos-34t (2.28)

This process is usédlin the extrapolation of the autocorrelation
function, signai estimation, comparison of the expecfed value of
the squared error with the theoretical-vélue, sensitivity analysis
of the parameters, and comp#rison of estimation errors of the
developed method wit?_the other existing methods. The second ran-

dom process employs &wo shapers with the impulse responses

W (ax, at) = .15&(e“°75“" cos+165 &x © (2.29)

.165
. ' . -.196 -.0754t
(e 10758t og 16540t + 02 e sin-1654¢t)

163

and
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-, 0754 .235 _ . )
Wg(ﬁx, At) = .212(e cos 34x + T3 e -0758x sin34x) | :
: (2.30) ‘

which when excited by two independent discrete white noises, yield

a process with the autocorrelation function

Rgg (0%, &t) = e~+07518x[-.075[8¢ 1 . 165a% cos-165 At (2.31)

+ 2 cos*34x% cos-S&t]

The second process is used chiefly to demonstrate the ability of
the power'spectrum analysis to handle cases in which more than one
pair of freqﬁencies are present., It is used only in Chapter III.
The process lattice in both cases extends over 40 points in
the x direction and 1200 points in the t direction. The white
noise lattice extends over 79 points in the x direction and 1,240
points in the t direction. Since a 40 by 40 causal weighting
matrix is_uséd, the additional points help the filter operate in
the steady staté region. The two-dimensional random proéesses are
Qenerated on 30 scans having 40 points in each stréight line scan.

These scans have alternately +45° and -45° angles. The gap between

. each scan constitutes one unit in_thé t direction. The computer
program used in the generation of the process is devised so as to
remain in the 60K memory limit of.UNIVAC 1108, It stores 97,960
values of the normal white noise sequence (zero mean and unit var-
jance) on a tape, calls for only 3,160 random numbers at a time,
and generates the random process on one scan at a time., At any

time it only has 6,241 values of the random numbers in its memory.

The program is included in the Appendix.




31 h

The results of the first simulation are shown in Figure 4.

P T s

The ordinate represents the value of the generated process, and

the abscissa represents 80 points on two consecutive scans.

—re

The results of the second simulation are shown in Figures 5 and

6. The ordinate represents the values of the generated process,

and the abscissa represents 1,200 points on thirty consecutive _ Ef

scans. Although the computer generated plots look continuous,

in réality they represent discrete Oalues_of the process on
1,200 abscissa points.

' Discussion of the Results and Conclusions

The results of the simulation appear to be good. 1In

Chapter III 99.76 percent confidence bounds will be set around
the estimated autocorrelation function obtained by using this

data, and it wili be shown that the desired autocorrelation func-

tion falls well within these bounds. The effect of truncation
and digitalization errors appear to be negligible since for the
first process equation (2.24) becomes

40 40
2

z Z ajj = 2.028 (2.32)
i=1 j=1

as compared to the theoretical summation

~38

-

' 2

L aZy = 2.000 (2.33)
i=1 j=1 |

In this chapter two random processes have been generated

which are Gaussian, stationary and possess the exponential-cosine

e e et e = mse - = e e e e — e a
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autocorrelation function. The simulation on the scan path

constitutes the values of the signal sampled at regular inter-
vals on the scan path as described in the "Statement of the
Problem." This scan path data will be employed in Chapter III

for extrapolation and refinement of the autocorrelation func-

tion.

1
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A, = .075

Figure 6.
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Thirty Consecutive

Scan -Display of Process 2
Using Shaper Given by Equation (2.30).
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CHAPTER III

FITTING AN EXPONENTIAL-COSINE FORM TO

THE AUTOCORRELATION FUNCTION

To use the finite memory estimatign procedure of D. P,
Peterson and D. Middleton (5), an accurate estimate of the auto-
correlation function is needed. As mentioned in the problem

_statemeht, signal information is only available on the secan
path. This permifs the estimation of the autocorrelation func-
tion in a limited sector of the (4x, At) plane. Due to the
finite nature of the sampling lattice, these eétimates are
Quite crude and will be referred henceforth as the crude auto-
correlation function. The procedure developed in this chapter
permits the extrapoiation and refinement of the crude autocor-
relation function by fitting it into a closed fuﬁétional form,
There are situations in which the form.is known a priori, but
in most practical cases the form is not kpown. Hence, the

first step iszio' ctermine the nature of the c@q;gd-fundt onal,.

i\
HLA

A .o ) JE:i
‘able to most two dimensional random procdesses.
i

?tablished, it is fitted to the crude d&?o-

form that is é?

Once this form'ia

o § 1 ‘
n by a weighted least-squares %echnique;; The

. not straightforward because éf the possi-

instead of the global minimum. The scheme shown in Eigu:e 7 is

devised to make the fitting procedure converge to its global
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minimum by estimating the initial values of the critical paraﬁ-
eters by another technique. The frequency terms in tﬁe ciosed
form are critical parameters and their estimates are obtained
by a frequency decomposition téchnique. A 99.76 percent con-
fidence bound is set around the crude autocorrelatio? func-
tion and is used as a check on the fitted autocorrelation func-

tion.

Closed Functional Form

Consider a process with a continuous real power spectrum.

Assume this power spectrum is expressed in the form
T (i) |
L Ses (uy = wyys vy = Qti)

as shown in Figure 8.

If the inverse transform of Sii)(ux, wt) is given by

Rgi)(ax, 4t), then

H

W, - W {3.1)

ZS“’ - u t

Sss(ux’ Ut) wit

ti)

= ZJ' J' R(l)(ﬂx At)e :i(wx -'jh'xl)ﬁx".‘l(uj-uu)dt

dbxd&t

A i FuoitJu, ) ~Ju Bx%-Fu, bt
J f [ZRLS)(ax, At)e x1 t%e. X t .

- =00

i dbxddt

Hence the inverse transform of Sss(”x’ wt) is given by




i 4
i @
Sss (w::'mxi. aut" Utg)
) cn(
, .. W, 0w, )
: | + 5 +
=3
“= {..): wx

Figure 8, Splitting of the Power Spectrum.
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. Jwg g * gy
}:Ri:)(nx, atye” ™ w

i

which is the autocorrelation function of the process. Sepa-
rating the real part from the imaginary part and cancelling out

odd terms due to symmetry in the four .quadrants', one has

R o (&x, At) = z RL;?(ﬂx, At)cos w i Ax cos .. At (3.2)
1 .

In many one-dimensional random processes (20), Rii)(at)

obeys an equation of the form

(1) < -Alat|
Rss (at) = E&e

(3.3)
It is assumed that two-dimensional random processes obey a
similar equation of the form
: 2 2
(i - -inax + B, At
7 Rs;)(ax, At) = De (3.4)

which represents exponential decay with elliptical contours.

Hence, the closed form becomes

2 2
-inAx +Biﬁt
Rg (0%, At) = z Die_

cOs uxiﬁx cos wgj &t (3.5)
i

It is emphasized again, that the form of EBquation (3.5) should
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only be used when no priori knowledge is available for the true

form.

Weighted Least-Squares Fitting

The next step in the procedure is to fit the form to the
crude autocorrelation function. A number of techniques exist
in parameter eétimation, the most notable being the maximum
likelihood method and the weighted least-squares method. It has

been shown in (18) that in cases of linear models both the

methods yield the same solution subject to Gaussian probability

distribution of the dependent variable. The maximum likelihood

method is not chosen, since dealing with likelihood functions

and their maximization can become difficult for nonlinear models.

The weighted least-squares method is chosen for its ease of

handling.

o)
Let Rk represent the crude autocorrelation function at

point k. Then, by the method of weighted least-squares, the cost

function

o . ‘j"‘i“"i +B, At} 2
ee Top @ - To | -
' Yk( k ie c?s ux:l. xkcos Utj_ A'tk)
=0- i
o - (3.6)
is minimized ﬁith respect to the parameters Ai’ Bi;“ 1r Wyyo

and Wy - The choice of the wéighting tég S Y depend on the
- : R
accuracy with which Rk can be estimated. , In case of the first
A b
simulated process, where Rk is estimated only on the straight

line scan path, the choice of-yk was
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(1 -_Bﬁ) for kK< N
Y = (3.7)
Q for k> N

where increasinglvalues of k represent increasing values of
Axk and Atk. Minimiziﬁg the cost function of Equation (3.6)
with amalytical or numerical function minimization'techniques
.normally leads to a local minimuﬁ instead of a global mipimum.
Some computer plots of this coét function are shown in Figures.
9 and 10, Invariably, it is the frequency variables fhat prevent
-convergénce to the global minimum. To minimize this problem, a
technique described in the next section was devised fo'oﬁtain
an estimate of the frequencies'présent and these estimates were
used as initial value# of the frequency parameters in the func-
tion minimization methods.

Beveridge and Schechter {(20) and Fletcher (21) give an
excellent evaluationlof both analytical and numerical tech-
niques to be used in function minimization., Fletcher and
Powéll's algorithm (14) is used in this thesis since it is rec-
ommended by Fletcher (21) in cases where the first derivatlves

R ) ‘w—-r.;vga ;-L&_-' S
of F are available 1nvthe analytic form and the problem is

medium sized and uncdnstrained. The convergence of this algo-~
rithm is superlor to: most other algorithms and the rate of con-
vergence is also good The algeorithm is described briefly in

the section entitled "Review of Literature."

Power Spectrum Analysis on the Scan Path

A spectrum analysis operation indicated in Figure 7 serves
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the function of furnishing the initial estimates of the freduen-
cies Uxi and h%i preéent in the process. If these frequencieé
are extracted to great accuracy, it may not even be necessary

to incliude them in the functional fittirg block as parameters,
which would simplify the functional fitting procedure consider-
ably.

Frequency Decomposition Technique

For the general case, consider the scan pattern to be

periodi¢c as shown in Figure 11 and described by the equation
x = £(t) ~ (3.8)

Let (xo, toi)’ the starting point of each period in the x and
t directions be represented by the vector yi. Then, about any

reference Vs in time

aAx = F{at 3.9
lVi ( IVi) (3.9)

where
atf, =t - e ly ) - (3.10)

i 1

The superscript -1 stands for the inverse of a function. Now
if the exponential decaying terms of the 'autocorrelation func-
tion are neglected for convenience

'
|
3

o s
R{Ax, At) = %JDi cos w_.Ax cos Héiat : (3.11)
i 't

e .n._..:,-::_...‘.-.ii....,..-.:l...,._.‘_,l.___.:..l .
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= z —51'- [cos{uxidx + utic}.t}_-l- cos [uxiAx - mtiﬂt} ]

o

i R .
> [ cos{mxiF(ﬁt|yi)-bwtiAt} + cos{wxiF(Atlyi)-u%i&t}]

L]
» [~

o

= : :
— i -
= L = [cos Atlvi{wxiQ(MIviH”ti} + cos At|yi{uxiQ_(At]yi) ”ti}]
1

where
F(at) = AtQ{at) : ' C (3.12)

By conducting an indirect power spectrum analysi§ over all At ly‘
on the scan path, one is able fo determine the frequencies Wy :
on which the power peaks are concentrated. This power spectrum
ana ljrsié can be pe.rformed by gathering the autocorrelation func-
tions for all discrete At|y. and then taking its Fourier Trans-
form.according to the proce;ure described by Blackman and Tukey

(9). Since At |y is related to w_ by
i

At[yi = %’i | (3.9
the equations
w Q(-z—’-‘—) tw T {3.14)
x4 Ysil ti ;fil
and
xiQ(agE—) - Wy T Wgip (3.15)
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can be solved for Wy; and wy.. Grouping of the correct w..,
and wg;, may present a problem, which will be discussed fur-
ther in the following simplified case.

Consider a simplified Qersion of the general form where
the scan path is a straight line scan as shown in Figure 12.

In this case
Ax = f(4t) = KAt (3.16)
where K is constant. Thgrefore Equation (3.11) becomes
D
R{ &x, At) = Z 'g" [cos(ad cos @) {Kuxi'!-uti}"' 905(‘3& Cwe){KUxi'“tiS]

i
(3.17)

where
o = M cos 8 (3.18)

Conducting a spectrum analysis along just one straight line

will obtain the values of w Again, solving the equations

Ky +tw, = w_j/cos © (3.19)

A

and L
Ko g - wo, usizfcos ] (3.20)

one is able to obtain the values of w i and ﬁ%‘.
X i

The pairing Of_usil and usiz can be done easily if the

power spectrum intensities can be distinguished readily as
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shown in Figure 13. This identification folloss from Equation
t3.17) which indicates that the power over any paired frequen-
cies must be the same. If these intensities are not distin-
guishable then it is best to obtain the valﬁes of mxi_and h%i
by allowing all posSible combinations and using these initial
values in the functional fitting process of Fletcher and Powell.
The corfect combination must yield the lowest cost function.
Also, if one suspects that wave lengths lafger than half the

scan wave length are present in the process, then it is neces-

.sary to extend this simplified version to the more general ver-

sion described previously.

Confidence Bounds Around the Crude
Autocorrelation Function

This section shows a practical way of placing 99.76 per-

cent or (30) confidence bounds around the experimentally obtained

autocorrelation function. The method uses Fisher's Z, a varia-
tion of which is asymptotically normally distributed with zero
mean and unit variance. This method has an advantage over other
methods since its asymptotic distribution function tends toward
normality faster.

Past attempts to place confidence %gﬁﬂds around autocorre-
1atioﬁ functions hase been centered around assuming the distri-
bution of the autocorrelation function R(T) (for particular %)
as Gaussian. Examples of this can be found in (10) and (22).

In both references, the authors state that it is very difficult
to obtain the real distribution of the autocorrelation function

and in cases in which the number of samples are large, a Gaussian

2 i BT b s |
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approximation is valid. Under these circumstances, if the var-

iance & of R(T) and sample size n are known, then for 99.76

percent confidence the following probability statement is used:

Pr{_3 < (R(-c}-datc))-ﬁ < +3}= 9976 (3.21)

which results in

Fr{ﬁ(-:)- 3 -j% < R(x) < ﬁ(‘r) +3 E—Jﬁ_}= 9976 (3.22)

' A )
where R(«) is the experimentally obtained estimate of R(t).

Dr. J. J. Goode of Georgia Imstitute of Technology recommends
the use of the so-called Fisher's Z, which has the important

property of approaching normality faster than any other statis-

tie of R(7t). 1In addition to this important property, the method

has the advantage of not requiring any prior knowledge about o2,

Anderson in his book (23) has: a section on "The Asymptotic

Distribution of a Sample Correlation Coefficient and Fisher's Z."

His approach uses the correlation coefficient T, which in the

present case is

£ = R(7)/R(0) (3.23)

The so-called Fisher's 2 is

H>

.1+
1 -

= .;. log, (3.24)

">

If 7 and Z are the estimates of r and Z, then according to

Anderson, the statistic /W (Z- f) is asymptotically normally

ST R L R
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distributed with zero mean and unit variance for n > 24, This

results in the probability statement
Py
pr {-3< /Tn-3) (z-£)< +3} = .9976  (3.25)

the details of which are explained in (23). Thus, the confi-

dence region for n > 24 is

o)

tanh(ﬁ -3//n-2)< EE%;— < tanh(2+'3/.}n-2). (3.26)

For n € 24, David's tables are used as given in the handbook .

'by Beyer (24) under the title "Confidence Limits for.the Popula-
tion Correlétion Coefficient,” This case is treated in.(23) and
will pnot be considered further due to the large confidence bounds

for small n.

Results

The séan path data for the first simulated process is ana-
lyzed by ; computer program, and the values of the cruae auto-
corfelation function are obtained as shown in Table 2. Also, a
computer plot of fhe crude autocorreiation function on the scan
path is shown in Figure 14. A subroutine of the same program
places 99.76 percent confidence bounds around this crude auto-
correlation function and the results are shown in Table 3 and
Figure 15. The purpose of this confidence band is to bound the
deviation of the fitted autocorrelatioh'fihétion.from the crude

autocorrelation function. Figure 16 shohg the three dimensional

plot of the desired autocorrelation function of the simulated




Table 2. Crude Autocorrelation Function
on Scan Path
Crude
bLx At R, (8%, 4t)
+0000 + 0000 1.9201
1.0000 1.0000 1.5319
2.0000 2.0000 1.0589
3.0000 3.0000 ¢« 5998
4.,0000 4.0000 « 2638
5.,0000 5.0000 «0B88A8
6.0000 6.000G0 +0879
7.0000 7.0000 «2021
8.0000 8.0000 + 3823
39,0000 2.0000 +4976
10.0000 10,0000 + 53910
11.0000 11.0000 +« 5355
12.0000 12,0000 4443
13.0000 13,0000 + 3062
14,0000 14,0000 + 1345
HW.OOCC HW.OQQD I-QNmm
16,0000 l6.0000 =¢1196
17.0000 17.0000 -+0935
HQQDOOG FW.DOOO IQQUFG
19,0000 19,0000 «0114
20,0000 20.0000 «0683
21.0000 21.0000 e1296
22.0000 22,0000 «1588
23.0000 23.0000 + 1767
24.0000 24.0000 +1901
25.0000 25.0000 «1557
26,0000 26.,0000 1171
27.0000 27.0000 + 0588
28.0000 28.0000 -,0265
29,0000 29.0000 =-,0B889
30.0000 30.0000 -.1132
31.0000 UP.ODQG I.chm
320000 32.0000 -« 0177
33.0000 33.0000 «1159
34,0000 34.0000 +1865
35.0000 35.0000 2478
36,0000 36.0000 2723
ﬁ.«UN.ODDO 37.0000 +2830
w_mum.ooco 3a.0000 2921
- 39,0000 39.0000 3221
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Table 3. Confidence Bounds of 99.76 Percent Around
the Crude Autocorrelation Function.
Crude
Lower Autocorrelation Upper Sample Total
Bound Function Bound Size Bound

l.46505018 1.53193997 1.58995549 1131.00000000 «12490532

+ 93206641 1.05890194 1.17371573 1102,00000000 « 24164931

43673472 +5997845H « 75378090 1073.00000000 ~+31704618

08693592 263760214 43614284 10U4,00000000 .« 34920692
-,09203517 +08881197 + 26809359 1015,00000000 - «36012876
=,09554544 «0B794259 +2H6983513 986.00000000 + 36538057

01642429 + 20206959 + 38397152 957.00000000 « 36754723

«19748273 « 38230004 «56002388 928,00000000 + 36254116

«31400017 49756379 +67186905 899,00000000 . +35786889

« 35429088 « 53903892 + 71355214 870.00000000 . +35928126

e 34734263 « 53550146 «7T1313174 B41.00000000 ¢+ 36578912

24867198 +HBY27593 «63059891 812.00000000 « 38152693

»10263906 +30621686 .50296713 783,00000000  «40032808
- (7529238 « 13450144 «34111679 754,00000000 141640917
~,24169482 =-,02875719 « 18489037 725,00000000 42658519
=+33490502 =+11955545% « 09885662 696.,00000000 43376164
-, 31407802 =-,09348002 +12961979 a67.00000000 «4 369781
-,26161317 -.03483954 »19291061. 638,00000000 o 45452377
= 22142622 01138372 «24385934 609.00000000 «4b52B8555
=-,17078850 +06832306 «30533139 580,00000000 47611989
=-.11592789 «12957329 « 37089099 551.,00000000 48681888
=~+09338210 + 15878248 +4055500% 522,00000000 249893212
-.08271195 +«17669000 42974603 493,00000000 +51245797
-.07725686 «19006595 «45014897 464,00000000 «52740583
~.12060931 «15570685 42567993 435,00000000 +S462A924
~, 16887551 +11712237 « 39799714 406.00000000 | +56687265
-, 23746530 «05875015 « 352109282 377.000&5000 ' +58965792
~: 33276956 =, 02649046 28114299 348,00000000 «61391255
-, 40627377 -.08891622 «23338583 319,00000000 +63965961
-, 44452581 =-.11317883 22507371 290.00000000 «66959952
-, 43124995 =-,08075983 27520611 261,00000000 « 70645606
=+391900086 =-.01766524 35791673 232.00000000 +T49B1679
-, 28807804 «11588328 « 50980415 203.00000000 « 79788219
=-e25071397 186456841 «H0496660 174.00000000 +B85568058
=-,23140337 224770986 + 69748729 145,00000000 +92889065
-.26364613 27232229 « 76821920 116.00000000 1.03186531
= 33624469 + 28295992 «84732979 87.00000000 118357447
-,46588112 +29209390 + 96707698 58.00000000 1.43295810
-, 74265748 29,00000000

1.95838097

R T
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process, while Table 4 and Figure 17 show the same autocorre-
lation function but on the scan path only.

The indirect power spectrum analysis is then performed

on the crude autocorrelation function using appropriate lag
filters such as Bartlett, Hamming and Hanning windows (9) and
the results obtained are shown in Tables 5 and & and Figures
18 and 19, The two predominant peaks occur at usl = .0 and
Wgp = .39. Applying the analysis described in an earlier sec-
tion

Wey t Wy T .39/cos 45

and

Wy = W1 = .0/cos 45

which yields Wy ,28 and @ = .28. These compare well with

tl

%1 .3 and Wy, = .3, especially since the least

count of the angular frequency is 0.05552 in Table 5., The value

the original u

of the least count is fixed from the expression for the raw power

spectrum {9)

n-1
See () = AR (0) +2 | R (rameos(E) +r  (mat)cos(in)]
r Av=1

for j=0,1,2,...,m (3.27)

where m is equal to the number of autocorrelation function values
avajlable and At is the spacing interval in time. In the present

case m = 40 and &t = /2 and, therefore, the least count is .05552




Desired Autocorrelation Function

L I

Table 4.
on Scan Path
Desired
Bx At R (ax, At)
S5
<0000 «0D000 2.00000
1.,0000 1.0000 1.57108
2.0000 2.0000 1.00926
30000 3.0000 49276
4.0000 4,0000 o14y12
540000 5.,0000 00473
- b+0000 6.0000 oNB197
7.0000 . 7.0000 «17838
80000 B.0000 « 32755
940000 9,0000 142378
1U+000C  10.0000 43737
11.0060 11,0000 ¢ 37454
12+0000 12,0000 26586
15,0000 13,0000 + 14995
14,0000 14,0000 « 05887
15,0000 15,0000 00937
16.0000 18,0000 « 00139
17.0060 @ 17.0000 + 02231
18.0000 18,0000 + 05415
19.0000 19,0000 « 08061
20.0000 20,0000 »09180
21.0000 21,0000 « 08568
22,0000 22,0000 v 06661
23.0000 23,0000 « 04225
Y 0. 24,0000 «02022
25.0000 25,0000 + 00565
26.0000 26,0000 + 00012
27.0000 27,0000 + 00207
28,0000 « 00809
29.0000 « 01447
30,0000 201844
31,0000 « 01883
32,0000 201596
33,0000 «01120
34,0000 00622
35,0000 e 00237
e S 85009 + QU034
3700 37.0000 +00008
38,0000 38,6000 00104
39.0000 39,0000 + 00242

60




Table 5., Raw Power Spectrum and Power Spectrum

Using Bartlett Window

6l

o

Angular

2.16513

Bartlett Plot
Raw Smoothed Abs- Fre-
Spectrum Spectrum cissa Frequency quency
27,3013 19,1250 1 « 00000 «00000
14.1386 15.6754 2 « 00884 « 05582
135794 10,3201 3 +01768 «11103
H.B372 7.4121 4 « 02652 +16655
" bsu4bheb Secl29 5 «03536 «22207
1.4038 4,4618 6 04420 «+27758
B.2260 7.6669 7 +05304 33310
14,5298 10.4950 8 «06188 + 3RB61
T«D040D - 7.,9804% 9 07072 JHULLS
T+0644 5.6755 10 «07956 +« #9965
241334 3.3852 11 « 08840 +55516
241179 2.2308 12 09724 +61068
1.9550 2.1009 13 «10608 +56620
1.6928 1,6099 14 «11492 72171
e TUZ2S 1.1019 15 12376 «77723
6786 + 7208 16 « 13260 +B32704
« 1490 «5924 17 10144 +888286
» 8998 « 7607 18 +»15028 «94378
« 7096 «B095 19 «15912 + 99929
+ 7408 « 7105 20 «16796 1.05481
4432 + 5354 21 17680 1.11033
+ 2940 HTDY 22 +18564 1.16584
5305 + 3843 23 +134048 1.22136
«1823 +4554 24 220332 127687
+ 56593 « 3561 25 21216 133239
=+3350 e22de 26 +22100 1.38791
«7005 « 3145 27 22984  1.44342
«B8052 « 3627 29 24752 1.55446
=-.2224 « 3492 30 « 25636 1.60997
9210 « 3340 31 «26521 1.66549
=+4070 +« 2884 32 « 27405 1.72100
+9185 2469 33 »28289 i 7765
= 6034 +2296 34 229173
1.0773 «2507 35 + 30057 _
=y 7424 e2l2e 36 + 30941 'Es&'
1.1708 «2928 37 + 31825 I”]_.'i."-39859
-.5804 «2932 - 3B « 32709 2.05410
1.0885 + 2832 39 + 33593 2+10962 .
~.5348 +2B863 40 e 34477
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Table 6. Hamming and Hanning Smoothed
Power Spectra
. Hamming Hamming
Plot Smoothed Smoothed - Raw
Abscissa Spectrum Spectrum Spectrum
2 17.,28947 17.03740 14.13860
3 11.53364 11.69730 13.57939
4 7.42658 7.21943 4.83717
5 4.7865% 4.91982 bu5260
6 4,37153 4.13411 1.40378
7 8.09638 B.,10675 8.22595
B 11.07241 11.34901 14.52985
9 8.30057 B.74884 T.00400
10 5.81656 5.915639 T.06443
11 3.36228 326397 2.13338
12 2.08107 2.08402 211793
13 1.93020 1.83219 1.95503
14 1.52080 1.53456 1.69281
15 96413 « 94540 + 74253
le «56220 +«57151 «67863
17 46911 +44350 « 14900
la 66454 «68336 + 89980
19 + 76892 « 76049 _« 70856
20 « 65857 +66515 «TUHOT?
2l 48028 47731 468320
22 « 41540 240568 +29396
23 s 43431 45000 «63047
24 41361 439511 +18235
25 « 29149 32091 «65929
26 217245 +13187 -,33497
27 «26011 29534 70050
i 28 « 36364 «33250 -.02558
i - 29 «3UDB2 « 37779 +80521
’ 30 + 32037 « 27698 -.22237
31 « 30316 35259 «92099
i 32 +25639 «20332 = 40697
: 33 + 20667 « 26361 «91850
%j 34 +19726 +13321 =,60336
i 35 «20218 « 27219 1.07725
5 36 + 19080 211614  =.74241
i 37 +25468 +32797 1.17077
' 38 e27461 »20621 ~+58040
39 T e 2B543 «33128 1.08848
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for the angular frequency.

These frequencies are used as initial values in the func-
tional fitting program of Fletcher and Powell along with several
arbitrary initial values for the other parameters. Thé minimum
cost of .444 is obtained in 25 iterations vielding the final

= 1,87, w . = .277

parameter values'as AL = ,054, B x1

1 1 1
and Wey = .277. The values of the fitted autocorrelation func-

= ,054, D

tion fall well within the 99.76 percent confidence band limits
of the crude autocorrelation function,

The power spectrum analysis of.the second simulated process
1s performed in the same manner as the first, and the result
is illustrated in Figures 20 and 21. Three distinct peaks are
identified at W equal to .0555, .2775 and .444, one of which
is approximately double the size of the other two. This sug-
gests that W, equal to .0555 is contained in both the frequencv

pairs. Setting

= .2775/cos 45

U1 T Y

Wyp = Wep = .0555/cos 45
and

Wyp * tign = .444/cos 45

Wx2 - Wen = .0555/cos 45

yields W1 = .235, ”tl'z .157, wxz = .35 gnd wtz = ,275. The

frequencies contained in the simulated process were W = .165,

vh
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WP BT
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Wi 1 = ,165, Weo = .3 and utz = .3. The results obtained are

sufficiently close to enable the fitting process to. converge
to its global mipnimum., Note that_1f¢3511 and Ule were (0,00,

instead of .0555, then u , = .196, w , = .196, w , = .315 and

mt2 = ,315.

Discussion of the Results and Conclusions

In Chapter II two random processes were generated; however,
at that stage no tools were available to check whether the

processes had the desired autocorrelation functiom. In this

"chapter it has been shown with the help of Figure 15 that the

desired autocorrelation function falls within the 99.76 percent
confidence hounds of the c¢crude autocorrelation fumction. This
result offers expefimental backing to the filter synthesizing
theory of Chapter IX. However, this does not mean that there is

no room for improvements. The approximation
F+1 ,i4d _ 1 1
_j I W{x,t)dxdt = Wi + =, j + 5) (3.28)
) i ' :

is made in Equation (2.15) to avoid the excessive computations
which arise if the mean value of each interval is to be found.’

'Perhaps there are better assumptions than the one made abovq.

Also, in Figure 15, the fluctuations of the crude autocorrela- 0

tion function around the desired autocorrelation function in-
crease as Al increases. This was expected since the_hﬁmber of
samples available to make an estimate decregse as & increases.

The frequency decqﬁposition technique;berformed remarkably

e ey e tnn e ey o . i -
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well, especially since it extracted the frequencies present in
process 1 within 7.0 percent of the original values. Also, the
identification of the frequency pairs was relatively easy, as
shown in Figures 20 and 21 for process 2.

The results show that the fitted autocorrelation function
has parameter values that do not exactly match the original
values, This is to be expected since the fitting process is
being performed on the crude autocorrelation function and not
the real autocorrelation function. One of the two criteria used
in judging the merits of the fitting process is that the fitted
autocorrelation must fall within the 99.76 percent cﬁnfidence
band around the crude autocorrelationIfunction.' This is satis-

fied as shown in Figure 15, The other criterion is its effec-

tiveness in estimation, which will be discussed in the next ' ]

chapter.
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CHAPTIER 1V

TWO-DIMENSIONAL ESTIMATION AND AN EVALUATION OF

THE EXPECTED VALUE OF THE SQUARED ERROR

In the last chapter a method to determine the closed
functional form of the autocorrelation function has been'dés-
cribed. This autocorrelation function is to be used in the
_estimation of the signal, Fortunately, signal estimation given
the statistics of the process has been invéstigated by mény
researchers since the time of Wiener (25) and the methods suited
for use in this thesis have already been developed. Peterson
and Middleton (5) have investigated'the case of stationary multi-
dimensiocnal estimation, while M. Blum {6) has obtained the opti=-.
mum linear estimator for a one-dimensional nonstationary random
process, the nonstationarity being similar to the one under éon-
sideration in this thesis., With a slight modification,'both of
these methods could be adapted to the estimation of the two-
dimensional non-stationary signal. This chapter is pfiégfily
designed to show these modifications and to develop a way of
checking the effectiveness of the extrapclation aéd smoothing
technique of Chapter III. |

Mdﬁification to the Peterson and B
TR, Middleton Estimator
.- it

The Peterson and Middleton estimator is of the form

g

@
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M

vy = ) s(¥w(Y - ¥ (4.1)
k=1

where the weighting term w(Y - Yk) nust satisfy

M
R (Y- ¥ ) = ) Reg(Y,= Y W(Y- Y, ) re1,2,...,M (4.2)
Nt _ |

Equations (4.1) and (4.2) are subject to the condition
M<N (4.3)

where N répresents all the points in the sampling lattice.

The vector Y is described by -

Y = [x,t] (4.4)

To use linear algebra computation techniques for solving simul-

taneous equations, Equation (4.2) is transformed to its matrix

form

w =vl oy . (4.5)

(Mx1) (MxM) (Mxl)

where W is a column vector with elements w(Y-Yk), v isga square
matrix with elements Reg(Y,~¥, ) and U is a columﬁ ve%fér with
elements RSS(Y-Yr). Normglly Bquation (4.1) would be so}ved'
on-line, whereas Equati;ﬁ {(4.5) would be solved off-line. For

cases in which M and N are the same, the estimation of K points

on any cross-section in the x direction requires

e B o e 0 e s
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[T

(MxM) matrix

K(M) on-line multiplications o
% on-lipe additions ' s
K(M JL off-line multiplications e
L K(M2)L off-1line additions e
Lol K(L) off-line inversions of a éfi

.where L denotes the total number of points séanned on the for- é.;?f
ward and reverse stiroke of the scammning gauge. The on-line
storage requirement is for M+{MLK) wvalues.

As can be seen froﬁ thé above nuﬁbers, the choiée of M
can result in a considerahle savings in computation time. The

- ecriterion for the choice of M is a term known as the Figure of
Merit, which determines thé change in € obtained by removing the
rth_point in the sampling lattice. The Figure of Merit is

‘described by

[w(y-v_))%|v|
N=-1 N T
D o )] (o.6)

where the__rth point is the one Beinq tested for possible elimi-
nation, |V| is the determinant of thelN by N matrix of V and
IVrrl is the determinant of the N-1 by N-1 matrix df v affer the
yemoval of thé r*h row and column. If the figure of merit is
beloﬁ a certain threshold value, the P peint is discarded.

In this way the M points to be retained are determzn'd

|
To h;_dle the nonstationarity of this probl

the scheme shown in Figure 22. The nonrandom pagt-p(x) is esti-

mated by performing exponential smoothingﬁon the data for discrete
values of X in the machine direction t. M%thematically! this

is represented by

LA
ks




a(x,,t) a(x,, t) alxy,t)
‘Heavy Heavy. Heavy
Smoothing Smoothing Smoothing
- p(x,) p(x,) p(x,}
- - p(x)
( * ( a(Y)
Y ' j_ s{Y + 9
) . X ) ) 1) .
T Optimm' +
aly,) - _ s(Y Filter
2 * / 2), for s(Y)
- b Stationary
Case
q( YM) +Jr_ S(YM)
Figure 22. Scheme to Handle the Nonstatiunarity_'witli' a
' Peterson and Middleton's Estimator. :
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Pa0) = ap, (%) * (1-0)alx, tp) (4.7)

where pn(xk) is the estimate of p(x) using the last estimate
pn—l(xk) apd the new incoming data q(xk, tn), and a.is_the smooth-
ing coefficient, The coefficient a determines the time constant
of the filter and its choice is depéndent upon the characteris-
tics of fhe process under consideration. A discussion of this
topic can be found in the book hy Brown (26). The estimated

value of p(x) is subtracted from the signal to give the sta-

tiomary part s(x,t). Peterson and Middleton's estimator is used

to give the best estimate of the stationary part, which is com-

- bined with the nonrandom estimate to give a suboptimal estimate

of the signal.

Note that although the off-line computation remains nearly
the same as in the stationary case, the on-line computations
have increased by two multiplications and K+l additions, and

the storage space has increased by K values,

Modification to the Blum's Estimator

Blum (6) has developed a way of finding thé general lin-

ear operator of a one-dimemsional signal such that the mean

square error of prediction is a minimum. “The output of his
filter is
M

d(t) = ) alt)w(t-t)  (4.8)
k=1
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His signal q(t) is made up of a stationary part s(t) and a non-

random part

P(t) = ) ap (1) © (4.9)
k=1 '

where pk(t) are known a priori, but the parameters a, need not
be known. He achieves his objective by setting the_expeéted

value of the estimation error equal to zero which yields a set

of restraint equations. The expected value of the squared error

is then minimized subject to these restraint equations and the

reéulting weighting matrix is of the forn

w= vy + viIpTpv ey g v ievie ) tev iy (4.10)

where W, V and U retain the same definitions as in the Peterson

and Middleton method,

[o(0)]

Po(t)
: . (4.11)

0
"

po(t)

IERSIA" T e

and

-p]_(tm) pl(tm-l) . ' . pl(tl)
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Bquation (4.10) holds for all non-singular (PV~1PT) ana v

matrices. For (PV'lPT) to be non-singular (i.e., determinant
(Pv'lPT) # 0), the value of D must be less than or'eqnal_td M.
The same relations hold true in the two-dimensional case
where, instead of the signal just being a function of t, it
becomes a function of a vector Y comsisting of x and t. The

form of p(x) can be modeled by a truncated Fourier series

D-1
2
P(x) = Z (a, cos 2’“1:\: + b, sin ZXoyy 42 (4.13)
‘o1 1 X o
i= ' :

where X is the total width of the sheet, (D-1) is the total
number of points sampled in the x direbtion and a constitﬁtes
the steady part of the signal. The highest angular frequency
is chosen as (D-1)/2X since the frequencies higher than this
will not be identified at the fixed sampling rate of D points
per scan. The lowest angular frequency is 1/X, which accounts
for the periodic wave 1en§th X used in a Fourier series expan-

sion.

Because of the tremendous computation and storage néédéd
in this method, its practical application is limited. It requires
twelve additional steps beyond the Peterson and Middleton algo-

rithm. These include one function generation, one. Q matr1x gen-

eratlon, one matr1x ‘transformation, sﬂigmatrix7m@mtip11cations,

one matr1x inverse and two matrix addrﬁions.f In terms of a 40

by 40 matrix or larger, this results fn anlexc9551ve amount of

computer fime. | 3??5
R

Sy
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Effectiveness of the Method Proposed
in Chapter III

The effectiveness of the method proposed in Chapter III
can be judged by the performance of the estimator which uses
the results of the proposed method. It is possible to do this
testing with the stationary simulatéd process since its real
autocorrelation function is known.

The criterion fqr effectiveness testing is the expected

value of the squared error €. If the linear estimator is denoted

by

M
S(Y) = z s(V )w(Y,Y, ) : {4.14)
k=1 :

then the expected value of the squared error is given by

- Rl
3rd

A1

e {[s(0) - s(n P} | (4.15)

™
n

ndd o

5{[53€%Y) ]2} - 2#21"(Y’Yk)g7_ -(-.y).s('rk)};gg

v oM. .
+ E z 'w'(Y,Yk)w(Y,Yi)E{s(Yk)s(Yi)}

i=1 k=1
M
= R__(0) - 2 w(¥, YR (Y, ¥,)
k=1

M M
+ Z z w(Y, Yw(Y,Y;)R (Y, ¥;)
i=1 k=1 ¥

ISR
:".‘3 i+
#

In the theoreticél case, according to Peterson and Middleton,
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the weighting terms w(Y, Yk) are obtained from the equations

R (Y, ¥ ) = ZRSS(Yr, Y, )w(¥, ¥, ) (4.16)

for r = 1,2,...,M. However, in a practical case_the weighting

terms are obtained from

os(¥s Y ) = Z R Y Yk)G(Y, Y, ) (4.17)

Ea
for r = 1,2,...,M, where RSS(Y, Yr) represents the fitted autocor-
relation function instead of the real autocorrelation function

Rss(Y"Yr)' Hence the theoretical ¢ is given by
M - M =
Erheo = Reg(0) - 2 z w(Y, Y OR__(Y,Y,) +_z Zw(Y, Y) *  (4.18)
k=1 i=1 k=1

whereas the ¢ obtained by using the fitted autocorrelation function

is given by

_I
i
EActua1=R (O)fZZw(YY)R (YY)+ Z Z w(YY) (4..,19)

. i=1 k=1 .
e
Resul ts
For the f%fst simulated process the theoretical and

actual ¢ are determined for three prediction points. Their

position is shown in Figure 23. A compar1son is made. with the

i
scheme using a one-dimensional autocorrelation§¥uhction in the

i

t direction even though the stationary process is two dimen-

sional. This compariscon is interesting becadsé, in most sheet

i i S i
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processes, one-dimensional estimation is still very popular.
The results are shown in Table 7 and the advantages of using
two-dimensional estimation are highlighted. It is intereéting
to note fhat the maximum ¢ for the theoretical case is 2,

Table 7.. Comparison of € for the Three
Prediction Points

Estimation Technique € at Points
Using : 1 . 2 3
_Real Rss(Ax, At) 1.2992 L6735 1.7089
Fitted R__(4x, 4t) 1.527  .698 1,94
1-Dimensional R_ (4x, 4t) ' 5.0200 . 7800 2.4080
Mean as the Best Estimate 2,0000 2,0000 2.0000
General Form of Bquation (2.7} | 2.53 .722 2.56

Discussion of the Results and Conclusions

From fh? results of Table 7 two conclusions can be drawn.
The first éonéiﬁsion is that the two-dimensional estimator is
superior to tggﬁoneédimensional estimator when the proces% is
two-dimensionall The percentage deviations of ¢ ffom the%theo-
retical best values are 17.5, 3.7, and 12.4 percents for_%ﬁe
two-dimensional fitted autocorrelation as compared to 286.0,
16.5, and 41.0 pé;cents for the one-dimensional autocorrelation
function. This result was anticipated from the beginning of

this research. Even the choice of the mean as the best estimate

gives better results than the one-~dimensional case for two of

i i ! S
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the three points. The second conclusion is that the method
devised in Chapter IIT to extrapclate and refine the autecor-
relation function works more efficiently for estimating points
closer to the sampling lattice than distant ones. The reason
for the second conclusion is that the weighted least-squafes
method of Chapter III lays more weight on the crude Rss(dx,-&t)
when 4x and 4t are small and, hence, the autocorrelation func-
tion fit is poor in regions where Ax and 4t are large, This
fact can be evidenced in Figure 15 where the fitted autocorre-
lation function follows the crude autocorrelation function

closely in regidns of smallal and exhibits poor fit for large

al. Also note that for & between 8 and 16 the fitted autocor-

relation function deviates considerably from the desired auto-
correlation function, thué, causing the percentage deviation of
¢ from the theoretical value to increase.

In the simulated processes, points whose Ax and At sepa-
rations are éfeater than 40 units'are not correlated because
the weighting matrix was truncated. If estimation is attempted
for points whose separation from the sampling lattice is?;LCh
as to cause most sampling lattice points to fall outsidegihe 40
by 40 range, the results obtained by using the fitted autocor-
relation function will be in large error. 1In these situations
it is best to use the mean as the best estimate. é'ﬁriterion
for judging the range of the estimator is;Fhé% € fﬁr a particu-

lar point must not exceed the variance of the stationary process.
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Empiricai Sensitivity of the Parameters _
in_the Functional Form .

4 In this section the effect of varjation in the parameters
of the closed functional form (of the autocorrelation function)

on the expected value of the squared error will be studied. i

This study is important because from time to time the process
characteristics change, e.g., drift in frequency or change in

the decay constant of the autocorrelation function, and it is

essential to know how the estimator will perform under these
‘new circumstances..

For this investigation the correct autocorrelation func-
tion form as given by Equation (2.6) fo? process 1 is considered,
The values of the parameters in Equation (2.6) are A = ,075,

B = .075, D= 2, w, = 0.3 and wy = 0.3, The sensitivity of

the parameters is performed empirically about point 1 of Figure
23. One parameter is varied at a time keeping the remaining
parameters constant at their true value, and its effect on e is

noted. The results are shown in Table 8, One hundred fifty

percent variation ip each direction around the true valu@ﬁof

w, and w, is the maximum permissible limit, since at thaﬁflimit

¢ is greater than the variance of the process, In tﬁe cages of
A and B, 33.3 percent variation in the negative difé iibb and
300 percent variation in the positive direction is thélmaximum
permissible limit. As expected, variation in ﬁ aid not produce
any change in &¢. When empirical sensitivity analysis is per-

formed about point 2 in Figure 23, the percentage maximum per-

missible limits substantially increase. This fact is illustrated
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| 5
Table B, Sensitivity of € on the Parameters '
Parameter Being E
Varied ' ' : About Point 1 -
4
-1 1.870 5
.2 1.429 3
Ux .3 10299 £
-4 1.409 i
.5 1.671
1.0 2.167
.01 7.624
A .03 5.600 -
.06 1.376
and .075 1.299
.1 1.340
B ' .15 1.478
.25 1.729
.5 1.299
D 2.0 1.299
6.0 1.299
Results for w, are the same as w
. _ _ x
R
RS %
Fixed values are kept at b, = -3, w = .3, D=2, A= .075

and B = ,075

in Figure 24, and suggests that furth?r the sepﬁ?&&ion of the
prediction point and the sampling lattice, less flexibility is
available in the parameters.

"Sensitivity of the functional form itself?is analyzed by
fitting.the form of Equation (2.7) to the first simulated process

having the form of Equation {2.6). The results are shown in
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Table 7 for the same three prediction points of Figure 23,
Although the percentage variation in € from the correct form
varies for each point, its performance is still acceptable for
points close to the sampling lattice. This suggests that in
cases where the correct functional form of the autocorrelation

function is not known, a good approximation is the form of Equa-

" tion (3.5).
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CHAPTER V

APPLICATION OF THE METHOD TO A PAPER MILL PROCESS

AND A COMPARISON WITH SOME EXISTING METHODS

A schematic view of the paper making process is shown
in Figure 25. The homogeneous mixture of cellulose fiber and

water is forced out of the headbox slot and is darried by a

. bronze screen to a complex of presses, dryers and calendars,

the output of which is wound on a reel. A traversing Beta
Gauge senses the instantaneous basis weight (essentially mass
per unit-area) of the paper in the region between the calendars
and the winder. A typical papér sheet is 20 feet wide and
travels at the rate of 2000 feet per minute. Relative to this
high speed, the Beta Gauge moves at a slow pace of 20 feet per
minute which generates an angle of about 40 minutes between the
gauge path and édge of paper. The instanténeous output signal
from the Beta Gﬁuge is the basis weight signal, the undeéired
sensor noise beihg substantially removed by a built-in filter.
The randomness of the basis weight is due to the slot profile,
pulsating flow caused by pumps, vibration of the machine members
and fluctuation of the fiber to water ratio in the headbox among
other things. : : 'lf“
Field data was collected by a Southeéstern paper mill.

Since the machine is a production unit, the author had very

little control over the type of data that was collected. The

[
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data received is only good for prediction on the scan path since
no verification means are available for points cutside the scan.
The data was collected as the scanning gauge was traversing

from the front to the back of the machine, The first observa-
tion was collected at the same start position and each observa-
tion thereafter, for a total of 79, was collected on a one second
interval. The data was punched into cards with 10 successive
cards constituting one set or one scan., The first value in card

one was the time at which the first observation for the scan

- was obtained., Machine direction data was also collected on a

one second'intérval with the scanner in a stationary position
towards the middle of the web, The speed of the paper machine
was 2201 feet pef minute and the sénsor speed was 2,25 inches
per second. The average basislweight was 38 1lbs. and moisture

was in the range of 4.5 - 5 percent.

e

The persistent cross-directional profile is first sepa-
rated frdmfﬁ%é?data and the remainder is verified for wide
sense statioﬂaiity. The ¢rude autocorrelation function is then
extrécted and 95 percent confidence hounds placed around it.

This érudé 'pborrelation function as shown in Figure 26 is

passed thrqﬁgﬁ a Bartlett lag window to yield the refined
autocorrelaﬁién function. Bxtrapolation of the autocorrelation

function is not performed since verification of the results is

ot T

not possible: outside the scan path. The refined autocorrelation
function is then used in one point ahedhﬁgstimation of four
points‘on the scan path and the signal is reconstructed by adding

the persistent cross-directional component. One point ahead
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estimation means predicting one unit in the future 6n the scan
path, Variance of the reconstructed signal is also determined
over eigﬁteen scans, This variance is shown in Table 9, in which
a comparison is made with the variances for the same points
obtained by using three other methods, some of which are being
used in the paper mills. h

The three other methods are: Brewstér's_method, one~-
dimensional estimator with Barflett filter and two-dimensional
estimator without Bartlett filter. .Iheir algorithms are pre-
sented below along with the algorithm for the variénqe about
zero mean,

Brewster's Method (1)

Consider'qi as representing the signmal on the jth scan

and ith

J

point on that scan, then

Table 9. Comparison of Experimental & for Various
Methods used in Basis Weight Estimation

One Point Ahead Prediction
Variance at Points

Methods : 1 - 25 50 79

Brewster's Method 5.339 .874 3,119 3.416
l-Dimensional with ' 3.559 2.776 1.888 1.629
Bartlett Filter

2.Dimensional! wi thout 3.823 1.484 10.167 2.039
Bartlett Filter |
2-Dimensional with - : 2,797 .905 .8875 1.772
Bartlett Filter : . .
Variance about Zero Mean 3.842 3.574 2.528  3.510
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N .
- 1 : .
i=l
gij = d(qij - 63) - (1 - a)gi;j-l (5.2)
B g = qij - ci,j-l {5.3)
* S ~ .
mij =r'mij + {1 - c)mi-l,j (5.4}
-~ * ~

= + .5)

41,5 7 M3 7 Cie1,5 (3:5)
ﬁ .

~where cij represents the cross-directional profile, ﬁi. rep-

resents the machine-direction deviation, m;j represents the

filtered aij to be used in control and ﬁi represents the

+1,]
one point ahead prediction., The value of a is chosen as .3 and
the value of { as .95.

One-Dimensional Estimator with Bartlett Filter

The machine-direction data is used to obtain tﬁe cfude
one;dimensional autocorrelation function. This crude autocor-
relation function is passed through a Bartlett lag_window.(9)
to_give the refined one-dimensional autocorrelation function.
The refiﬁed autocorrelation function is qsed along with the
scan path data for estimation. The rest of the algorithm is

the same as in ChaptersIII and IV.

Two-Dimensional Estimator without Bartlett Filter:
In this'method;:instead of using the refined two-dimen-

sional autocorrelation function, the crude one is used.

: .o
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Variance about Zero Mean

In this method, the mean of the process or the persistent
cross-direction profile is considered as the best estimate of

the signal. The algorithm consists of

N

- 4, N
of = (s;5 - ;) | (5.8)

where qij is the signal on the ith point of the jth scan and

2 ;th

4“ is the variance for the strip.

Discussion of the Results and Conclusions

In this chapter the approach developed in this thesis is

applied to a real sheet paper process. 'Extrapolation was not

performed bhecause the available data could not be used for veri-

fication of the extrapolation results. Instead, only the refined

. autocorrelation function was used in one point ahead predictiqp

on the scan path; The modified Peterson and Middleton's esti-
mation technique of Chapter IV, is used because of its compu-
tational advantage over Blum's. technique. It is evident from

Table 9 that the proposed method is superior to the other methods.
The reason for the pe%séhtage differences not remaining constant
| b i

is because only eightéén values were used in obtaining the vari-

ance and the variance did not have a chance to reach a steady
S .

o,




#f value. The choice of the number eighteen was governed abso-
lutely by the data base furnished in which only eighteen scans
were consecutive. A comparison with the variance of the process
§} _ shows that the other methods are quite marginal and that in many 1%
cases it would have been better to choose thé mean as the best :ﬁ

estimate.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

In this thesis a solution is obtained for the difficult
problem of two-diménsional estimation from a restricted sampling
lattice,. Aftention is restricted to a ciass of two-dimensional
stochastic processes which is a sum of a Gaussian stationary-
process and a nonrandom process that is a function 6f tﬁe spatial

coordinate only., The concept of using the functional form of

the autocorrelation function for attacking the problem of opti-
mal estimation from a restricted sampling lattice is a signifi-

cant contribution to the state of the art. when the funcfional

form is not known a priori; the exponential - cosine.form proves
to be a good abproximation. The estimates obtained with the
proposed approach have smaller mean square estimation errors
than the ones obtained by using existing methods, and in this
respect, the proposed approach has a distinct advantage over
existing schenmes, |

In Chapter 1 fhe problem is stated and the approach to be
followed is discussed. The properties of two-dimensional sta-
tionary ﬁrocesses are presented from a practical view point.
All the techniques developed in this fﬁésis make use of these
properties and this in itsglf, should suggest the importance of

these properties.
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In Chapter II the stationary part of the process described
in the "Statement of the Problem" is generated on a straight line
scan path. A technique to simulate Gaussian stationary processes

with the desired exponential-cosine autocorrelation function

. from discrete white noise has been developed. The results of

the simulation appear to be good. The desired autocorrelation
function lies within the 99.76 percent confidence bounds of the

crude autocorrelation function. Also, the truncation and digi-

talization errors appear to be negligible. The method is not

limited to exponential-cosine forms but will synthesize any
process where the synthesizing filter impulse r93pqn§e'is known.
InIChapter IITI the crude autocorrelation function is
successfully extrapolated and refined by taking advantage of
the functional form of the autocorrelation function. The results
of the first simulated process show that the fitted‘autbcorre-
lation function lies well within the 99,76 percent confidence
bounds qf'the crude autocorrelation function. Also, the power
spectrum analysis is able to extract the initial values_gf‘;he
frequencies present within 7.0 percent of the_originai;Gdiﬂ;s.
The real test of the procedure of Chapter III is presehted
in Chapter IV where the estimation error, or the expected value
of the squared error using the fitted autocorrelation function,
is compared.with the one using the real autocorrelation func-

tion. For the three estimation points_chosen the percentage

differences of the expected values of 1 é squared errors wereu

17.5, 3.7, and 12.4 perdents, the larger percentages arising as
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one goes further from fhe sampling lattice. However, all of
them are well within the maximum permissible limit, bheyond
which the variance of the process is exceeded. The compari-
son in Table 7 shows the superiority of the proposed method
over existing methods. 1In the same chapter, the empirical
sensitivity of the parameters in the functional form of the
autocorrelation function is studied. From the results it is
clear that a certaip margin is available in which the expected
value of the squared error is still below the permissible limit,
for drift in the parameter values. This margin is a function
of the distance of the estimation point from the saﬁpling lat-
tice and the paramefer itself. Also, a very limited empirical
sensitivity analysis of the form of the autocorrelation func-
tion is performed and the results show that the exponential-
cosine form is indeed very promising in cases where the form is
not given a priori,

| In Chapter V the approach developed in this thesis is
applied to a real sheet paper process. Extrapolation was not
performed because the availabhle data could not.be used for veri-
fication of the extrapolation results. Instead, only the refined
autocorrelation function was used in one point ahead prediction
on thé scan path, It is evident from the results shown in
Table 9, that the estimation error is least for the proposed
nethod aﬁd, hence, the proposed method is superior to the exist-

ing methods.
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topic is of special interest to paper manufacturers since their

o8

Recommendations

The author is of the opinion that the work reported in

e s e T S

this thesis is only the beginning of many works to appear in the
field of estimation from restricted sampling lattices. More and

more scientists and engineers sense the need for techniques which

will enable them to take édvantage of the sophisticated optimal
estimation theories. These techniques will act as an interface
between the data available in practice and the requirements of
optimal estimation thgory.l In this thesis, the process was
Gaussian and stationary. There will be situations whén ei ther
one or both these conditions need to be relaxed. When'the
Gaussian condition is released, nonlinear estimation theory
will be used. When sfationarity is relaxed, optimal estimation
will be perforﬁed using the process dynamics. The point being
emphasized is that the requirements of optimal estiwation change
for different class of stochastic processes and, hence, new
interface tools have to be devised..

Certain topics discussed below, have not béen given suf-~
ficient consideration in this thesis due to lack of fime énd
cou1d be developed in the future. The sensitivity of the scan
path form on the extrapolation and refinement of the autocorre-

lation function would be an interesting study to undertake. This

scan angle is only 0% = 4' and the author is of the opinion that
this angle is very poor for extrapolation purposes. The reason

is that the contribution of w4 in Equations (3.19) and (3.20)
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becomes negligible and, hence, the difference between h;il And
Lgip Decomes very smali. The indirect power spectrum technique
is not able to distinguish between W1 and LEiz' _

In the'fittihg process of Chapter III, the weighting term
Yy %as given the form of Equation (3.7). This form of Yk
resembles the Bartlett lag window fof recovery of the process
statistics, The author is aware of the Hamming, Hanning and half
a dozen more lag windows which can be used. It is conceivable
that there exists an optimal lag window for a particular class
of stochastic processes. An understanding of optimal_lag
windows and theif performance in estimation-of a sigﬁai would
be a valuable contribution.to the state of the art.

Another topic that needs further study is the exponential-
cosine form of Equation {3.5). In this thesis the choice of
Bqﬁation (3.5) stems from Bendaf's observations that most one-
dimensional random processes in practicé have the exponential-
cosine form for the autocorrelation function. It would be desir-

able to study a whole class of two-dimensiomal random processes

to verify Equation (3.5).
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APPENDIX
COMPUTER PROGRAMS

The useful computer programs and subroutines which have

been used in this thesis, are included here.

Generation of 2-D Random Process from White Noise

This program uses discrete Gaussian.white noise to gener-
ate a two-dimensional random process with an exponential-cosine
autocorrelation functien. This program calls for'gubrputine
Shaper which is also included. |

Subroutine SPECT

This subroutine is used for generating the raw, Hamming

and Hanning power spectra by the indirect technique of Blackman

and Tukey (9).

Subroutine BAND

This subroutine is used to place 99.76 percent confidence
bounds around the crude autocorrelation function by using the
Fisher's Z statistic (23).

Subroutine DIPLOT

This subroutine plots YARRAY versus XARRAY, where XARRAY
and YARRAY could be any two variables.

Subroutine PLOT3D

This subroutine plots the function FCN2D (I, J) on a IMAX
by JMAX array. XSIZE and YSIZE represent the maximum horizontal
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and vertical length of the base on which FCN2D(I, J) is plotted.
HEIGHT represents a scaling factor which is multiplied with
FCN2D(X, J). The result of multiplication with the largest
value of FCN2D(I, J) must not exceed (10" - YSIZE), where ten
inches represents the width of the plotting paper. This pro-
gram calls for subroutine PLTT which is also included.

Subroutine FMFP

This subroutine is_ used to find the local minimum of a

function of several variables by the method of Fletcher and

Powell (14).
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Generation of 2-D Random Process from White Noise

-C  _ GENERATION. OF .2=D_RANDOM_PROCESS FROM WHITE _NOISE..

c INPUT =~ NSZNO OF SCANS, NzNO OF POINTS IN T DIRECTION«M= NO OF .
Lo~ POINTS IN X GIRECTION, HNy= _NO_OF POINTS_IN.T. DIRECTION.PLUS
c WEIGHTING MATRIX ARRAY IN T DIRECTION, MM=NG OF POINTS IN X DIR.
L PLUS.WEIGHTLING MATRIX ARRAY. In-X. DIRECTION . HW=WEIGHT NG MATRIX
c © BRID IMN T DIR., MWSWEIGHTING MATRIX GRID IN X OIR.r NNN=WHITE
L L MNOISE ARRAY - o OUTPUT s TAPE LABELED DATAPLOT_OF
[ DATA OH SCAN. TRPYT.,, INFVYT TAPE LABFLED NOISE AND
- B INPUT TAPE LABELED WHRITE, NBLOSBLOCK .LENGTH.DON. TAPE SHITE ANDNDISE. ... _ .
c CONSISTING. OF 31 BLOLKS,NHNZNBLOS2,

L NSET=NO OF FREQUENCY SETS

PARAMETER NSET=2
———PARARETER. MM=79

PARAMLTER WN=T79

PhRﬁFhTER HZ40

S8

PARAMETER MW=40
- _PARAMETER W5=3p

PARAMETER NBLO=3160D

PARAFETER WMNZa320

—_  _OIMENSYION WIMW e hNLaS i sl . ZANHN) Y (NSaM)sRLII2U2) s
ICLOCK L1202)
DIMEHSTION._SUMINS M)

JER=1
——3 e CONTINUE

K=1
IER=m]

DO 30 I=ie2
L1=NBLO% ( Imidsy

L2sL1+(NBLO-1}
=i dal 2

Q-1 READ 4304 2 L) o=y
30 IF (JERGE@,2) READIR) (ZIS)2J=L 2D
DO 1 1=1+HMM

DO 2 J=lelN
SITaub=Zii)

== T
1]
=
+*
it

CALL SHAPER({W:NW:MN} -
Kzl

1021
Xzl

- T21.
9 _px=X

IT=7
=l

P10 1X}
DO ¥ I=leMw

N
Y4 YOIOWIXISYUTQe I X)4SCINeI=1sITod=1)2W{I s )

SUM{IO IXI=SUMLIOR IX Y (10, 1X)
PLAKISYLIO,]X)

LLOCKIK)=K
KK+l

& IFLIER)I7¢7.8
T K=x+1

T=T+1 ’
IFtX=M39,9,10

10 1ER=¢]
—X=M

T=1.
GO T0 21

B8 X=xX=1
I=¥+1

IFLX111+11,9
31 _JER=~1
’ X=1.
I=1.

21 NASSH~l
ceee - IFUI0LEQLNSIG0 YOS -
10=10+1 _
DD 22 ISEeMM o e e D e

R R N G L



DO 23 J=1s#NAS

23 S11ed) =501 ed¥N)
22 CONTINUE

—._1F (JER.EQ.L}READ (3)(Z(J)sdmL1eNBLOY. . ... o0 o

IF (JER.EQ,2) READ(4)(Z(J)sJ=1eNBLO)

KK=1
e D0.18 IS1/MM_ . .

DO 19 J=NyNN

vmee SETeJISZIKK) - R e R e S e Tt e

19 KK=Kk+l
—— 1B CONTINUE

60 TO 9 ' :
w5 CALL .DIPLOT(CLOCK:PLs1202) - -

WRITE (6+31)

3L .FORMAT. (2X ¢! 2=0- RANDOM. PROCESS 'Y - oocmiim s

WRITE (64200 L(Y(1rJd)aus1iM)sl=1eNS)

JER=JER+1—
IF(JER-NSET) 16,1617

c—17 WRITE (2)(ASUM{Isd)su=1sM)eI=isNS)
20 FORMAT (7F10.5)

—— END
SUBROUTINE SHAPER{W, NW:MW) :
c INPUT, ¢+ VALUES OF PARAMETERS TO BE USED IN THE FUNCTIONAL FORM.
—e— DIMENSION WiMW,NW) _ —
SUM=0, )
S —_READ(5:20+END=70) A2 D1 WX WT D1 D2
c «075 + 15 . «1b5S «165 B42 +Bl42
c 075 «212 Y- | 23 LT85 LT85

WRITE (6430}
. -—-30 _FORMAT. l£Xr'HEIGHIle_MﬂTBTK'

DO 1 IX=1sMW
no.2 IT“L;NH

F=1,
I=1T=1

X=IX=-1
I 3 0. W ——

T=T+.5
—  EXSEXPl=AxX).

ET=EXPI=A%T)
—  CXSEX#COS{wWX2X)

SX=D1sEX=SINIWX%X)
e CYZET#COS(WT*T)

ST=D2*ET*SINI(WT2T)

WIIXe ITISDx(CX+SX) % {CT4+ST)»F
— SUM=SUM+WLIXeIT)#w2

2 CONTINUE
———1 CONTINUE

© WRITE(6020) (IW(Ted)pd=1sNW),I=1oMW)

20 FORMAT (7F10.5)
AL

70 STOP
END

Subroutine SPECT

SUBROUTINE SPECT(C/DTrKG)

& CSAUTPCOVARIANCE VECTOR 2__D1,§N9¥2N_£3’UT=LEN5TH OF SMALLEST

.t ELEMENT+ KG=DIMENSION OF € VECTOR
ER_SPECTRUM 1=0

POWE
DIMENSION CthDO)ov(louolnHQIlOUﬂ)tHN(lOOOiiUIlOQD)vOMEG!(lOUOI

e RIMENSION T(1000):Q(1000)

WRITE (6¢30)

20 FORMAT (2Xs'SPECTRUM TRIANGULAR LAG SPECT/POINTS: FREG: OMEGA*)

K=K6
Z2=K

c TRIANGULAR LAG WINDOW
DO & 1=1:K

Y=l

e 4 TUD)SCAI ) 2L o =Y/2)
DO 2 1=1+K
SUM=0.0

SUP0., :
M=K =1

——




 Subroutine BAND
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Ce e e s S ..
00 1 J=2¢M : _ _ . o -
Dt
Asu=~)
SUPZSUP+T{J) »COS(A®B*1,14/2)
1 SuMESUM+CIJ) 2COS(ASRRY, 14/2) :
VOLYSDTe(C(1) 92, 25UMeC{X) #COS(BeRAMIY e
QUIIZDT#(T(1)¢2.*SUP+TLK} #COS(B#3. 141}

FREQZB/(2,#7 =0T/ .
OMEGATI)=2.%3,14¢FREQ ) .
3 HRIIEG&-ZI)V(I)-D(IltluFREﬂrDMEGﬁtI} . .
.2l FORMAT (F10.%rFLlO8eTAneFI05eF10.3) . o e
20 FORMAT (3F10.4) . _ .
22 FORMAT {110:FL0.5+F10,5:F10,5)
23 FORMAT (I110+F10.5+F10.9)

. MO=KB42 et o e B} - .
CALL DIPLOT{OMEGA+ViMD} : .

€ HAMMING AND HANNING ESTIMATES — i
WRITE (6:31) . :

____AIWEQRHQlﬂlZELlEQlﬂ__ ANNINGe HAMMING,RAW spacrkuw') :
M=K~1

_ DO 3 I=2eM

HNU1)Z. 25V {I=1)+.Sevi ¥, 35y {T+1}
HMOL)Ze 234V T =10+ SusV () 4,235V (1¢1)
3 WRITE {622 I-HNlI}er(lluvtIl
_ugm5a+z-2
CALL O1PLOT{OMEGA»HY+MD)
& HIGHER ORDER $MQOTHING : R
“M2=K -2 N
_— DO 5 1z3eM2
utis= .16*HN{1-11+.68¢HN{11%.16'HN(I+1)
5 WRJTE {6e23) Tvulldevi]) ' R _
END . :

Subroutine BAND

SUIRIUTINE BANI{CsKKrSAMPeLZERO)

C SUBROUTINE FOR PLACINGS9. 7PERCENT COMFIJENCE HOUNDE ™ - _
£ INPUT _ CZAUTOCOVARIANCE¢KK=DJXENSION OF CrSAMPZSAMPLE SIZE : .
c M2=(KK*+2-2142 , CZERD= VARTANCE L

— PARAMETER wa= _60._
) DIMENSION CLOCK{lerT(ual
DIVMENSION CUKK}eSAVP{SDOD] : : ) -
WRITE (6:30)
30 FORMAT (2x»*L ONERs AUTOCORRELATIONs UPPERr SaMPLE SlZElDiFF')
00 & K=2+£K .
CLOCKAIX~1) K=
CLOCK (KK+K=2) sK=1
—_— R=CIK)/CZERD :
2z(ALOG{{L.+R) /LY. ~R)}) /2,
CONER=CZERDSTAMHIZ -3, 00/SORT (GAMPIK) «2,) )
UPPERSCZERO#TANHI{Z+3.00/SRT(SAMPIK]I=2,))
YiK=3}=UPPER
YIKK4+K=2 1 ZCOWER
DIFF=ABS{UPPER=COWER)
WRITE {4)DIFF
4 WRITE (6:2B)CONERCUIK) UPPERISAMPIK) ¢DIFF

CALL DIPLOTL{CLOCK s Yr42)
20 FORMAT (S5FlteB)

€ INPUT = MDZND+2=NUMBER OF OATA POINTS PLUS 2. Ptbf‘fiie+1§‘itil?S“““"“*““'

END

SUBRDUT!NE DlPLOF(XARRth'RlRRTr“O)

c LABELED PLOT AND IS NUMBFRED 9)
4 OUTPUT = PLOT WILL APPEAR OVER A 10#10 INCH GRID.

__ DIMENSION IBUF{1000) . e

OIMENSION XARRAY(MO}s YARRAY (uD) T T T s ST S e e
NOZMO=2 e e e s e '
CALL PLOTSIIBUF,1000,9) - bt e e
CALL PLOT  (40r=sBed} -

[



CALL SCALE

‘KO=NDHL
_ CALL AXIS
CALL AXIS

CALL LINE

CALL SCALE"

THARRAY ¢ 10 o NOVLY
(YARRAY 1QeeNOe2}

(0400, ¢ LOHX=ARSCISSAr=1Nr10s 1.0 XARRAYIND) s XARRAY (WD) )
(D-!D.tlDHT-lBSCISSlt10010.!9DcvYIQRlV(KDI!f!RRQY(MOlT
IXARRAY » YARRAY rNQ# 1 Do INTER)
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CALL PLOT
CALL PLOT

{12.¢0.¢~3Y
120r400999)

. XlN“LhST!OH!DIl+J}-LiSTHt!PQGE-LQSTXt?P&B!&!PAGEtLISTY

END

.Subroutine PLOT3D

SUBROUTINE PLOT3D(xSI1ZE, YSIZE:HEIGH?-FCNzucIHAX:Jﬂle
DIHENSION FLNZ2DIIMAX, JMAX)
DIMENSLON HID(6G0)

COMMON JBLF (10000)

REAL LRSTItLﬂSTViL£STHOL“STH"
XPAGES(,0

YPAGERQ,.O

LASTHMZ040

HIJ=IMAX+JMAX

RI=IMAX=1,0

RuiSJIMAK=1,0

CALL PLTT{D,0+s=12,5+=3)
CALL PLTTI0.00E.Go-SI

00 1 I=1rNiV

HID(II==0,5

DO 7 JSLrJMAX

Adzd=l,0

DO 7 ISteIMAX

Al=l=1.0

LASTX=XPAGE
XPAGE=(AJPATL ) #XSI1Z2F 7 (RI +RJ)
LASTY=YPAGE

YPAGE= “J*Rxfﬂd'iltﬂJ/RI+RJltYSIZEI(RJ+RI)+H£IGH1¢FCN201:,J} T

LASTH=LASTHM
LASTHM=HID{I+J)
IF{YPAGE~HIDIL+J1) 5:5¢2
IF(ILNELL) 6O TO 3

CALL PLTT{XPAGE  YPAGE , 3}
IPEN=2

G0 TO

CALL PLTTtxPAGt.fpuGE.IPEN)
IPENZ2

HID{I+J)SYPAGE

60 To 7

IF(LLEQ 1) IPENZ=3
IF{IPEN,EQ.3) 60 TO 6

X10=HID{ L +J) =LASTH~YPAGE*LASTY

CXISXIN/XLD

10

.. CALL PLYT{X1s¥L1le2)
IPENZ3

. LASTX=XPAGE

Yl'(Kl‘(HlDlI&J)-LﬁSTH)iLRSTHtXPlsE-LQSTXtHlD(l+J)]/i!PlGE

CALL PLTT(XPAGE : YPAGE, IPEN)
CONTINUE

DO 8 I=1sNIJ

HID(I)Z=D,5

DO 16 I=IMAXslr=]

AI=l=1.0

DO 16 J=leJMAX

Ad=Jde)

XPAGE-Ind&a[l&!SlZE/(RI+RJI .
LASTY=YPAGE

LASTHZLASTHM
LASTHM=HID {1 +J}
IF(YPAGESHID{I+J)) 13,14¢9
IF{J NE, 1) GO TO 1

CALL PLTTIXPAGE,YPASE,3)
IPEN=2

Go To 12

IF(IPEN.E@,2) GO TO 1f
xnu-LAsrxcYPAGL-Lasrvcxpasz-La51xontnlt+u1+zpaszcnlut1+4-11

A f

YPlGE"iJ‘RlIRJ~AI.RJ/R!*RJI‘YSIZEI(RJ%RI!OHEIGHTQFcholi;Ul"f“'"'"'""'“'“'



Cl2.t~0.f-3l
PLTTC0.0t2.0t-3

C
I

_ END e e e

_t _ SUBROUTINE FMEP
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X10=YPAGE=LASTY=HID{ 14J) +HID{I4J=1)

XL=XIN/XLD : A

V1= (X1e (YPAGE=LASTY) +LASTY#XPAGE=LASTX»THAGE )/ {XPAGE=L STX)

CALL PLTT{XLsYLe3) . : . :

IPEN=2 .
CALL PLTT{XPAGE.YPAGE, IFEN} R B T
HID{ 19 SYPAGE

60 T0 16

JPENZ3

60 To 18

IF LJ,El, 1) IPENZY

CALL PLTT{XPAGE, YPAGE , [PEN?

CONTINUE

CALL PLTT{XSEZEMG 0r=],0¢=3)

RETURN

SURBROUTINE PLTTLX,Y:IPEN}
COMMON IBUF (10000}
ALAST=XN
YLAST=YN
ILAST=IN
AN=X
YN=Y N
Nz
{FI{:EN E@.2,AND, ILAST.EQ,2) CALL PLOTLX+Y:IPEN)

F (IPEN,E@,2.AND, TLAST.EQ, 3} CALL PLOT(XLASTeYLAST, ILAST)
{Ftlsiu.ha.z.nwn ILAGT,EG,3) CALL PLOTIX»Y . IPEN} S
IF{IPEN,NE .2 AND, TPEN _NE.3) CALL PLor(xovolPtNl o e
RETURN :

END

Subroutine FMFP

P

c

—C____ _ BY THE METHOQ OF FLEYCHER AMD POWELL,

f.n

TO FIND A LOCAL WINIMUM OF A FUNCTION OF SEVERAL VARIABLES

E - P
CALL FMFP{FUNCTrNeX¢FeGeESTEPS¢LIMIT LERIH}

DESCRIPTICON OF PARAMETERS

FUNCT _= USER=WRLITTEM. SUPRO_IIIHE concrnnmmwmma
BE MINIMIZED, IT MUST BE OF YHE FORM
SHBRAUTINE FUNCT (M ARG VAL 2 GRAD]

T AND MUST SERVE YHE FOLLOWIMG PURPOSE
_FOR_EACH N-DIMEMSINNAL ARGUMENT VECTOR. ARG,

FUNCTION VALUE AND GRADTENT VECTOR MUST BF COMPUTED

_AND, ON_RETURHL_SIQBED LIN VAL AND_GRAD. HESEECIIIELY

= WUMRER oF VARIABLES
= YECTOR_OF. DIMENSION N CANTAINING THE INITIAL

o

ARGUMENT wHERE THE ITTERATION STARTS, ON RETURN: |

X HOLOS THE ARGUMENT CORRESPONDING YO THE
COMPUTED MIMIMUM FUNCTION. VALUE

F = SINGLE VARIABLE CONTAINING THE MINIMUM FUNcT:oN
VALUF. 0y RETURMN: T.E, FsFiX),

- YVECTOR OF DIMENSION N CONTAINING THE GRADIENT
VECTDR _CORRESPONDING YO YHE MINIMUM ON_RETURN:

1.E. 6%6(x},
EST =_J5. AN_ESTIMATE . DF..THE..H!N!"W FUNCTION VALUE,

EPS = TESTVYALUE REPRESENTING THE EYPECTED ABSOLUTE ERﬁOﬂ
4 BREASONaARLE € Ouel{wi)s I.Fa

HOICF 15 1
SOMEWHAT GREATER THAN 10aw(=D)}s WHERE D 15 THE -
NUMBER of SIGNIEJGCANT DIGTIYS N _FLOATING SOINT._ _

REPRESEMTATION,
LIMIT = MAXIMUM NyMBER OF IIEaﬂTIDNsl_ -
1€ER = ERROR PARAMETER . SR LI '
IER = 0 WF? CE__WAS ORTAINED _
IER = § MEANS NO COMVERGENCE: IN LIMIY ITERATIONS
e ... IER ==}l MEANS ERRORS IN GRADTENT CALCULATION . . _ . _. . . .._ .
TIEA = 2 MEANS LINFAR SEARCH YECHNIGUE INDICATES

RO Peobropobbonrobhopohn sRhaPmapoPononn

e e 21T 35 LIKELY THAT THERE EXISTS NO MINIMUM, .. .

H = WORKING STORAGE OF DIMENSION N&iN+T)72.
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¢ ﬂenanks il
S Iy THE SUBROUTIME NAME REPLACING THE DUMMY ARGUMENT FUNCT_ [
[ MUST BE DECLARED &S FXTERNAL IN THE CALLING PROAGRAM, o .
[N -SRI, _ -11) 1ER 1S SET Yo 2 IF ¢ ST-PPINS IN ONE OF THE COMPUTED . _ . ...
c OIRECTIONS, THE FUNCTION WILL NEVER INCRFASE UITHIN : .
C A JOLERARLE mahGE OF ARGUMENT,
c IER = 2 MAY OCCUR ALSO IF THE INTERVAL WHERE F
' INCREASES IS sMALL AMD THE _IMITIAL ARGUMENT WAS
¢ RELATIVELY FaR AwAY FROM THE MINIMUM SUCH THAT THE
L _MINIMUM WAS OVERLEAPFD, THIS IS DUE TOQ THE_SEARCH
C TECHMIQUE WHICH DOUBLES THE STEPSIZE UNTIL A POINT
d 15 FOUND WHERE THE FUNCYION JNCREASFS,
c
_JL___.___$UBRDUIINES_AND EUNCTION SUBFROGRAMS REQUIRED
c FUNCT
- L e — —
c METHOD
L YHE MEYHOD IS _DESERIRED IN _THE FOLLOWING _ARTICLE
[ o Fy FLETCHER AND M,J,D, POWELLs A RAPID DESCENT METHOD FOR
£ FINIMIZATION,
¢ COMPUTER JOURNAL yOL.6¢15S. 2+ 1963+ PP.lsa-ma.
o
C l!OOOllol0!uclooo'oui.o..oo.ﬁla.o.oo|-'iOolotoi00|000'!oooocooooto
L . .
SUBROUTINE FMFR(FUNCT Ny X¢F+G+ESTIEPSeLIMIT IER,H)
P -
c DIMENSICONED DUMMY VARIABLES
— —  DIMENSTON Hi1000)*X{10003:6¢1000) _
< "
. QN,XALUE_AHD_EBﬁQIEHI_!EQIQEbEﬂR_INIIIAL_ABQUEENf
CALL FUNCTI(NIXF26)
r
< RESET ITERRTION COUNTER ANO ) GEHERATE TOENTITY MATRIX
_IER=0
KOUNT=g
N2=N+N
HI=N2+t
NILEN3+]
1_K=N31
DO & J=Ii»N
_H(K)=1a .
HJz=H=J K]
i AT
2 DO 3 LSieNy
KL=K+L
3 HikL)=p,
4 K=KL+1
TARY ITERATIQN LQOP
- 5 KOUNTSKOUNT +1 -
L
¢ SAVE FUNCTION VlLUEu ARGUMENT VECTOR iND GRIOIEN? VEC?OR
OLDF=F :
0O 9 J=21,N
KZHt)
HIK)=G1J}
Kakebl
HIKIEXID
C
[ 4 DETERMIMNE DIRECTION VECTOR H
J(rdtﬂ}
T=0,
T=T=6{L}eH(K)
H AT T I
& KSK+N=L
HO_TO A
7 R=K+1
9 H{N=T
L -
c ~ CHECK WHETHER FUNCTION WILL DECREASE SYEPPING ALONG H,
pY=Qe  __ _ @ O OO O —
HNRM=0,
GHRME( .
- g_ o _CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR nmecnon

VECTOR H AND GR&DIENT VECTOR G,
..DO 30 J=heN
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HURMSHNRMEABS (H{JY )
— e _GHRMZGIRM+ARS (5] )
10 DY=DY+H{JIwG (..l} .

"REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF olaectxoﬂnL“”

c
G DERIVATIVE, APPEnRS J0_RE POSITIVE OR_ZFRO,
IF(DY)11+51,51
. .
< REPFEAT SEARCH IN DIRECTION OF STEEPEST DEGCENT IF DIRECTION

L NECTOR H _IS SMALL CoMPAREDR _TO SRARDIENT VECTOR G.
31 IF (HNHE/GNRM=EPS$S51¢51,12

T S e vt = e m — .
c . szarcn NINIMUM aLONs DIRECTIDM H
:__Iz_bf“gE“RCH"LQ"G H_FOR_PpSITIVE DIRECYIONAL DERIVATIVE
FAS2, 8 (ESTwF1/0Y
AHaDA=1,
[ . e .
c USE ESTIMATE FOn SYepsl2E OMLY IF 1T IS POSITIVE AND LESS THAN
Ay OTHERWISE TAKE I, AS STEPSIZE. —
TF(ALFAI 1B 15,13 :
ALFA=AMBDA)1Up 1515
14 ABEDAZALFA
15 _ALFARG,
[
__c__z__F;_g:ME EUNCTION ANQ.D:RI!ATIME !hLUES_EDH_OLD_nRGUHENT
. [ =
Dx=DpY
c .
£ _ STEP ARGUMENT ALONG M
DO 17 I=1N
1T X(1)EX (I} +AMBDARHS 1)
c

ADTENT FOR NEW ARGUMENT

CALL FUNCTINsXsF1 &)
FY=sF

g COMPUTE DIRECTIONAL DERIVATIVE DY FOR WEW ARGUMENT, TERMINATE
SEARCH: IF DY 1S POSITIVE, IF Ny IS ZERG THE MIMIMUM IS FOUND

RYSQe
DO 18 Iz=ieN
e d B DYSRY+G (1)KL}
IF(DY)(9s 36422 .
c .
¢ TERMINATE SEARCH ALSO IF THE FUNCTION VALUE INDICATES THAT
NIMUM HAS BEEN PASSED . .
19 IF(FY=FX)120¢22,22
c
¢ REPEAT SEARCH AND DOUBLE STEPSTZE FOR FUPTHER SEARCHES
— 20 AYADA=AMBDA+ALFA ;
ALFARAMBDA . : . i

£ END OF SEARCH LOOP

< s e i
EJH&IE_iE_IEE_Eﬂnﬂﬁﬁhlﬁ_ﬁﬁQUHENI_EEIS;Iﬁﬁl_LABﬁE
. IF (HNRMeAMBOA=1,E10)16¢16¢21

.
c LINEAR SEARCH Tecun:euz INDICATES THAT NO MINTHUM EXTSTS

21 IER=2

RETURN

c -
¢ INTERPOLATE CUBTCALLY IN THE INTERVAL DEFIMED BY THE SEARCH

_JL___ﬁ___A YE AMD COMPUTE ThE ARGUMENT x FOR WHICH THE INTERPOLATION
POLYNOMIAL IS MINIMIZED
22 1=q,
23 IF LAMBDAY 24, 36, 24
24 253.%{FU=EY)/AB0A4+DX4DY
- ALFAZAMAX1(ABS(2)  ARSIDY) ,ABS (DY}
“A=2/ALEA
DALFARDALFARDALFA=DX/ALFAsDY/ALFA

IF (DALFA}51+ 25,25

25 WEALFAYSORTIDALFA)
ALFA-tDv+u-z:-aMaDn/(Dv+z.tw-DXI

26 X(I)-X(Il*(T-lLFAl.H(I}
c b o e
¢ "TEAMINATEe TF THE VALUE OF THE ACTUAL FUNCTION AT X 14 LESS

€ __ _THAH THE FUNCTION VALUES AY THE INTERVAL ENDS, GTHERWISE RFDUCE
c THE INTERVAL 57 CHOOSING ONE END=POINT EQUAL TO X AND REPEAT
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,_c_ma INTERPOLATION, _ wHICH EMD=POINT IS CHOOSEN_DEPENDS_ON THE
VALUE OF THE FUNCTION AND LTS GRADIFNT AT X

P ..c_m PV S

{¢ CALL FUNCTINIXsF15) :

il e TFAF@F Y 2T 2T e BB o e e e m e s ¢ e e

i 27 IF(F=FY}36: 36428 : . '

' ' . 28 DALEASD,

5 , 00 29 IsfiN

& . —— 29 _DALFASDALFA+G (1ot (1)

L IF{DALFA)30+33,33 '

v 30 IF{F=Fx}32,31,33 _

i , 31 IF(DX~DALFALI32, 36732 . . : N

ol : 32 Fi=F i - ok

S DX=DALFA ' : f

{ TSALFA

T . © AMBDAZALFA - _ o

: - . 60Y0 23 __ S R

[ 33 IF(FY=F)35:364,35 . : .

.. __ﬁ_i!__IEiDI“DALE_lJbLlﬁ_lﬁ. . . . .

A 35 Fy=F . : &8

. ' — DYEDALFA e ————
AMBDA=AMBDA=ALF A - . . .
69_70 22

—Ty

[+

EEEBEHQE_MECIQRS_QE._BQHEEHI_,,n_EBEDIENI_EﬂQM
[ tuo CONSECUTIV ITERAT!ONS
_ 36 DO 3T JELeN .
KSN+J
HIKI=64)) =H (K}
EH+K
____;1_u151=x141=ﬂ1x1

_JL___*ﬁ_u]ERNJHlTE: IF_FUNCTION_HAS_HQTY. DECRE*SrQ_QHBINQ_Lﬁﬁl_IIEEAIIQN_____"____.h“ i
TF (OLDF=F+EPS) 51, 38,38 .

T
c FESGT LENGTH OF ARGUMENT DIFFERENCE VECTOR AMD DIRECTION vECTOR
EBAIIDNS.H&HE_BEEN_‘!EQUIEQL.IEBH__RTF- 1€
BOT: ARE LESS THAN EPS
38 _IZR=0
IF (KOUNT=N} 42139+ 39
. 39 T=0. _
o Z=0. oo .
i : —_ 00 40 uztsN
KEN+J
A=HIK)
K=K+N
IETHADS(HEK) )
80 ZSZ4WsH (K]
IF (HNRM=EPS) 1) 41142
—] IF{T=EPS} 56,5642

E_ TERMINATE s YE MUMBER OF TTERATIONS uoul.n EXCEED LIMIT
42 IF{KOUNT=-LIMIT}43+50+50
<

o . . ' < PREPARE UPDATING OF MATRIX H
> 43 ALFAZ0.
00 47 J=1tN

\ : K= i3
3 . w=0, ’
. DO 46 LsieN
KLEN+L
i =t (KL sH (K]
) : IFIL-J:thQStHS
I| . . !9 E "’B u-

im”

60 TO 46

45 K=K+l

46 CONTINUE .
K=N+d - -
ALFASALFA+WaH(K) : :

87 Pluise

L REPEAY_SEARCH_IN_DIRECTION_ OF _SIEEBESJ_DFSCEMLJE__RI-:suuq .
ARE NOT SATISFACTORY
o JE(Z#ALFAL48) 1,48 I

UPDATE MATRIY H

&8 K=n31
e DO WY BN e
KL=H2+L .
0089 gLl L o L

L
[ 2]

il



_G0_.I0_._22
F_F.UNC.Il0r
TERMIMA.TR

i o

111
J=N2v)
_ntu'mxu:uuu._; I 2L ) 2H () ZALEA
49 K=K+i
e GO TO S e e e e e o ot e
c END OF ITERATION LOOP : : .
B e
€ mls CONVERGENCE AFTER LIMIT 1TERATIONS
RETURN
N -
¢ RESTORE OLD VALUES OF FUNCTION AND ARGUIMFNTS
— _8) DO 52 JsieN . e et e e e e .
Kanz+)
52 YLIYSHIK)
CALL FUNCTIHIX.F+6)

TREPEAT SEARCH IN DIRECTION OF STEEPESV DESCENT IF DER!V!T!UE

c
£ ___FAILS TO PE SUFFICJENTLY. SMALL. . _ . e ..
IF (GNRM=EPS5} 55,85+ 53 .
L
c TEST FOR REPEATED FAILURE OF ITERATION
B3 JFLIER) S0 5854 _
54 IER=~1
60 _T0_ 1
55 JER=D
56 RETUAN
END
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