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SUMMARY 

This dissertation is concerned with the estimation of a 

process signal over a finite two-dimensional plane from data 

sampled at discrete points along a prescribed scan path in the 

plane. One coordinate of the plane is referred to as the spatial 

coordinate, while the other coordinate is referred to as the tem­

poral coordinate. The scan path is such that the spatial coordi­

nate is a single-valued function of the temporal coordinate. The 

process under consideration belongs to a class of nonstationary 

processes in which the signal is the sum of a Gaussian stationary 

component of unknown statistics and a nonrandom component that is 

a function of the spatial coordinate only. The estimates are 

linear combinations of the measured signals with the weighting 

factors being chosen to minimize the expected value of the square 

of the estimation error. 

Efficient two-dimensional estimation techniques require a 

knowledge of the autocorrelation function of the process, which 

is not assumed to be known a priori in this case. Due to the 

nature of the scan path, the autocorrelation function can be esti­

mated only in a restricted sector of the two-dimensional plane. 

Since this restriction poses a difficult problem in two-dimensional 

estimation, simplex one-dimensional estimation techniques have 

been popular in the past. A major contribution of this work lies 

in solving this problem. The extrapolation and refinement of the 
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autocorrelation function is achieved by fitting an appropriate 

form of the autocorrelation function to the estimated autocorre­

lation function in the restricted sector. In some cases the form 

is known for a particular class of stochastic processes. In other 

cases the form hjas to be approximated by an exponential-cosine 

form. 

The approach used is to first estimate the autocorrelation 

function in the restricted sector from the scan path data. To 

the estimated autocorrelation function is fitted the appropriate 

form by the weighted least-squares technique. The fitted auto­

correlation function is then used in the estimation of the signal. 

A comparison of the resulting expected value of the square of the 

estimation error is made with the one obtained by using the real 

autocorrelation function. Also, a comparison is made with other 

existing methods. A sensitivity analysis is performed to deter­

mine the allowable flexibility in the parameters of the functional 

form. 

The results are demonstrated by using two simulated processes 

and a real sheet paper process. The two-dimensional stochastic 

processes having an exponential-cosine autocorrelation function 

are simulated by passing discrete white noise through a synthesiz­

ing filter. The advantage of working with simulated processes is 

that the real autocorrelation function is known a priori. The 

developed method is also applied to the scan data from a sheet 

paper process and the results are used in comparing the developed 

method with existing ones. 
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CHAPTER I 

INTRODUCTION 

The research reported in this thesis began as an attempt 

to improve the on-line estimation of the basis weight of Kraft 

paper. The author and his advisor visited the Westvaco paper 

mill operation in Charleston, South Carolina, as guests of Dr. 

D. B. Brewster, then Director of Process Control. In a confer­

ence, Dr. D. B. Brewster indicated the poor control of the basis 

weight obtained by using estimation techniques in the temporal 

coordinate of the sheet paper and suggested the existence of cor­

relation in the temporal and spatial coordinates of the sheet. 

After reviewing existing literature in multidimensional 

estimation, algorithms for basis weight estimation and identifi­

cation of random process statistics, it was decided that a signif­

icant contribution to the state of the art could be made through 

examination of this problem. A general mathematical problem, appli­

cable to most sheet processes, was thus formulated from the basis 

weight problem. 

Statement of the Problem 

Consider a class of two-dimensional nonstationary random 

processes q(x, t) in which the signal is the sum of a Gaussian 

stationary component: s(x, t) and a nonrandom component p(x). The 

statistics of the stationary part and the form of the nonrandom 

component are not given a priori. Prom the data sampled at regular 

\ 
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in t erva l s in the past up to time t along a prescribed scan path, 

i t i s desired to determine a d i screte point est imate q(x + 0 , tp+ r\) 

such that the expected value of the squared error 

e = E{(q - q)2} (1.1) 

is minimized. The upper and lower bounds on (x + P) and 

(tp + r\) a r e such as to allow for smoothing and prediction in a 

reasonable subset of the total space. In addition, the random 

process s(x, t) is ergodic, and the limiting conditions given in 

Table 1 hold. The form of the scan path is 

x = F(t) (1.2) 

where x is a real, single-valued function of t and the sampling 

period on the scan path is chosen so as to eliminate aliasing. 

Since the nonrandom component can be recovered by exponential 

smoothing in the t coordinate, the problem essentially reduces 

to estimation of the stationary part. Optimal linear estimators 

require the knowledge of the autocorrelation function of the ran­

dom process. In the process described above, only an estimate 

of the autocorrelation function is available in the restricted 

regions related to the scan path. Hence, the major portion of this 

work is devoted to extrapolation and refinement of the estimated 

autocorrelation function. 

Review of Literature 

Past attempts to estimate the basis weight of sheet paper 
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Table 1. Limiting Conditions on the Autocovariance 

Ax At Autocovariance 
Css(Ax, At) 

0 0 62 

CO 0 0 0 

0 oo 0 

oo 0 0 

Ax • o Css(Ax) 

Ax 0 0 0 

0 At Css(At) 

0 0 At 0 

Css*00) = ° a n d css(°) = * 

have largely ignored optimal two-dimensional estimation theory 

and the existence of correlation between the spatial and temporal 

coordinates. Examples of such attempts can be found in the works 

of Brewster (1), Ast rom (2), Oahlin and Brewster (3)y and Wingrove, 

Madeley and Shabi (4). In reference (1) the spatial component of 

the signal is arrived at by exponential smoothing in the temporal 

coordinate, while the temporal component is estimated by filter­

ing out the high frequencies in the temporal direction. The 

algorithm of reference (1) is presented in Chapter V. A logical 

Numbers in parentheses not following "Equation" refer to 
items in the Bibliography. 
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improvement of this algorithm, assuming no correlation in the 

spatial and temporal coordinates, is the estimation of the 

temporal coordinate using one-dimensional linear optimum estima­

tion theory. References (2) and (3) are in this line of think­

ing, excepting they tend to be more oriented towards fitting a 

state model to the process in the temporal coordinate. Tuning 

the parameters in the state model requires input-output informa­

tion. Unfortunately, only very few inputs contributing to the 

output signal can be monitored and, hence, the remaining inputs 

go undetected. These undetected inputs can cause considerable 

deviation of the actual output signal from the state model pre­

dicted output signal. Reference (2) is primarily concerned with 

the assessment of the spatial basis weight profile and this asses-

ment is used for the purpose of deciding whether or not the paper 

will run satisfactorily during operations on or subsequent to the 

paper machine (coating and reeling). It has very little to con­

tribute to the problem being considered in this thesis since the 

method is empirical and no definite design criterion is used. The 

method is mentioned here only to illustrate the variety of work 

done in the field. 

All the methods discussed so far do not consider the exis­

tence of correlation between the spatial and temporal coordinates. 

Dr. D. B. Brewster's experience indicated that correlation does 

exist. The same conclusion can be drawn by considering the sheet 

paper as a two-dimensional random process. Even though the exis­

tence of this correlation was known to the investigators in the 
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past, the way to extract the correlation over the whole two-

dimensional plane from the scan path data was not known. This 

presents an obstacle in the use of optimal multidimensional esti­

mation theory. 

Optimal multidimensional estimation theory requires the 

multidimensional autocorrelation function to be given a priori. 

References on this topic are Peterson and Middleton (5), Blum (6) 

and Repjar (7). Reference (5) deals with optimal estimation of 

multidimensional stationary random processes, whose autocorrela­

tion function is given a priori. With a slight modification 

described in Chapter IV, their method can be made to handle the 

nonstationarity under consideration in this thesis. Reference 

(6) is concerned with a class of one-dimensional nonstationary 

processes similar to the one described in the problem statement. 

With appropriate modifications, it can be extended to handle the 

two-dimensional case as shown in Chapter IV. It also requires prior 

knowledge of the autocorrelation function. However, not all multi­

dimensional estimation methods require the autocorrelation func­

tion, as shown by Reference (7). It deals with two-dimensional 

estimation which is not optimal and at the same time does not 

require any knowledge of the autocorrelation function. Its appli­

cation is restricted to pattern recognition since it requires 

sampled data on the whole two-dimensional plane and cannot be Used 

with data on a restricted sampling lattice. 

The problem of obtaining the two-dimensional autocorrelation 

function from a restricted sampling lattice has hot ben treated 
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in literature. The commonly known works in the estimation of 

the one-dimensional autocorrelation function are by Parzen (8), 

Blackman and Tukey (9), Balchen and Blandhol (10), and Uskov and 

Orlov (11). References (10) and (11) are primarily concerned 

with the error involved in the estimation of the autocorrelation 

function and designing the experimental parameters so as to 

reduce this error. References (8) and (9) develop many differ­

ent ways for smoothing an estimate of the autocorrelation function 

by passing it through various lag windows. The single most import 

ant clue to the extrapolation and refinement of the estimated 

autocorrelation function came from Bendat (12), who is his book 

showed a number of one-dimensional physical processes that obey 

the exponential-cosine form of the autocorrelation function. He 

suggests it as a means of refining the estimated autocorrelation 

function. This concept has been developed in the thesis and used 

not only in the refinement but also in the extrapolation of the 

estimated autocorrelation function. 

Two methods very relevant to the above concept and used as 

solution tools in this thesis are the Blackman and Tukeyfs power 

spectrum analyzer and Fletcher and Powellfs function minimization 

technique. Blackman and Tukey (9) describes an indirect technique 

of obtaining the power spectrum from finite length discrete-time 

data. The term "indirect" refers to computing the power spectrum 

from the autocorrelation function instead of directly from the 

discrete-time data as considered by Welch (13). The significant 

advantage of this method is its computational ease. The autocor-
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relation function is first obtained from the discrete-time data. 

Then employing the standard definition of power spectrum as the 

Fourier transform of the autocorrelation function, the raw power 

spectrum is obtained at discrete points in the frequency plane. 

This estimate of the power spectrum is then refined by convolving 

the raw estimates with different sets of weights to obtain either 

the Hamming or Hanning power spectrum. The power spectrum analyzer 

has been used in this thesis to identify the frequencies present 

in the autocorrelation function. 

In Fletcher and Powell's paper (14) a powerful iterative 

descent method for finding a local minimum of a function of sev­

eral variables is described. A number of theorems are proved to 

show that the method always converges and that it converges rapidly. 

The authors mention in their paper that the method has been used 

successfully to solve a system of one hundred non-linear simul­

taneous equations. The method falls under the classification of 

conjugate gradient techniques and requires the analytical form of 

the gradients. This class of techniques has the property of quad­

ratic convergence in that the minimum of the quadratic objective 

function is found within some finite number of iterations. The 

set of directions chosen to ensure that the optimum of the quad­

ratic function is found in a finite number of iterations are known 

as conjugate directions. Fletcher and Powell have shown a way of 

choosing these conjugate directions and the distances to move in 

these directions. 

They assume that the function obeys the standard quadratic 
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form in n-dimensions. The analytical solution of the minimum is 

given by the Newton Raphson method, if the Hessian matrix is avail­

able. In their method the inverse of the Hessian matrix is 

approximated initially by a unit matrix so that the first direc­

tion is down the line of steepest descent. This approximation is 

subsequently improved until at the minimum, it converges to the 

true inverse of the Hessian matrix. The improvement is achieved 

by noting that the current gradient vector is orthogonal to the 

past incremental vector. For obtaining the minimum along a line 

they suggest a procedure which uses cubic interpolation and is 

based on that given by Davidon (15). 

The computer subroutine for function minimization using the 

Fletcher and Powell algorithm is available from IBM Corporation. 

Dr. D. E. Fyffe of Georgia Tech's Industrial Engineering Department, 

made this subroutine available to the author for use in this thesis 

and it is included in the Appendix. 

Properties of a Two-dimensional Stochastic Process 

A stationary process of order two is defined as a stochastic 

process s(x,t) whose first and second order density functions are 

not affected by a shift in the x and t origins, i.e. the first 

order density function 

f(s;x,t) = f(s;x + %, t + X) (1.3) 

and the second order density function 

f(s1,s2;x1,x2,t1,t2) = f(s1,s2;x1+ C,x2 + ? ,tL+X, t2 + X) (1.4) 
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This, in turn, means that 

f ( s ; x , t ) = Constant (1-5) 

and 

f ( s 1 , s 2 ; x 1 , x 2 , t 1 , t 2 ) = f ( s l f s 2 J Ax, At) (1 .6) 

where 

Ax = x. - x 2 and At = t . - t 2 

In terms of the statistics of the process, the mean is a con­

stant and the autocorrelation function 

R s s ( x l ' x 2 » t l » t 2 ) = E { s ( x 1 , t 1 ) s ( x 2 , t 2 ) j (1 .7) 

oo oo 
s J J s 1 s 2 f ( s 1 , s 2 ; x 1 , x 2 , t 1 , t 2 ) d s 1 d s 2 

= J J s 1 s 2 f ( s 1 , s 2 ; Ax, At)ds1ds2 

= E / s ( x , t ) s ( x + Ax, t + At)) 

= R (Ax, At) ss 

A process s ( x , t ) i s wide-sense stat ionary i f i t s expected value 

i s a constant and i t s autocorrelat ion function obeys Equation 

( 1 . 7 ) . I t does not , however, imply s ta t ionar i ty of order two. 

I f Ax and At are assumed p o s i t i v e in Equation ( 1 . 7 ) , then from 

the def in i t ion of autocorrelation function i t fol lows that 
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R c c ( ^ , At) = R p c ( .Ax , -A t ) ( 1 . 8 ) 
t>ii S S 

and equivalently 

Rss(-£x, At) = Rss(^x, -At) (1.9) 

In special cases where 

Rss(Ax, At) = %s(~**, At) (1.10) 

a smaller sampling lattice will suffice to make a crude estimate 

of the autocorrelation function. Therefore, it is always recom­

mended that a real process be tested to see if this feature exists. 

The power spectrum S (ux»
 U J is the double Fourier trans­

form of the autocorrelation function, i.e., 

r » r°° -jw Ax-ju At 
S (w , u ) = R (Ax, At)e x dAxdAt (1.11) 
ssv x' t'

 J^o J.oc ss 

When Equation (1.10) holds, the power ispectrum S (u , u>. ) is real, j 
SS JC t W4' 

The reason being that the autocorrelation function is even about (•• 

d-
3$ 

t 

Ax and At, and this causes the odd terms, which includes all the % 
;; • J 

imaginary terms, to vanish upon integration from -co to + ». This J;; 

power spectrum has the property of always being positive. The *f|"v 

:.;: I; %|; 

indirect proof of this statement is given in reference (16) forjf 
•;' . ~$ 

a one-dimensional process. It can be extended to the two-dimen- cf 

A 
sional case by simply replacing the one-dimensional quantities by their two-dimensional counterparts. When Equation (1. it))1 cloes 

n.oti hold/th.3 power spectrum becomes a complex value (real1 and 

v - * < »• ^ » 
imaginary part's).', ' i ' -- (, » j % ,5? 

% A. 
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Power spectrum is very useful when performing a linear filter 

synthesis. This is because it does not involve the difficult to 

solve convolution formulas associated with using autocorrelation 

functions in the synthesis. The important result to remember is 

S M(u x, ut) = Sss(u»x, ut)|G(jUx, jut)|
2 (1.12) 

where S (u„, w ) and S (u , UK) are the power spectrum of the zzv x7 t ss x' t' 

output and input signals and G(ju, jw ) is the transfer func-
X X 

tion of the linear filter. 

A normal process s(x, t) is one in which the random variables 

s(xx, t x), s(x2, t ), s(x3, t ),...-, s(xn, tn) 

are jointly normal for any n and the n -order density function 

is completely determined in terms of its expected value and auto­

correlation function (16). Now if the process is normal, wide-

sense stationary and has zero mean, the first order density func­

tion becomes 

f(s;x,t) = , * e-s2/2R(°'°) (1.13) 
V2*R(0,0) 

= f(s;x + K, t + X) 

a n d 2 2 
R(0,0)S]L-2R(Ax, At)+R(C\0)s2 

1 2[R2(0,0)-R2(Ax,At)1 

f(s1,s2;x1,x2,t1,t2)= e ; 

2* /R 2(0,0)-R 2(AX, At) 

(1414) 

= f(s1, s2; Ax, At) 

These two equations ̂ re equivalent to Inuations (1.3) and (i.6), 
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and, therefore, the process is stationary of order two. The same 

results hold when the process mean is not zero. However from 

the above definition of a normal process, the statistics are 

uniquely determined in terms of the expected value and autocor­

relation. Hence the process is stationary of order n where n 

tends to infinity, or strictly stationary. 

The normal property is useful since it ensures that a linear 

estimator is the best estimator (16). It can however be relaxed 

in a practical situation with the penalty that the linear estima­

tor is not necessarily the best estimator. 

Ergodicity is perhaps one of the most desirable properties 

in any stationary random process. It enables the determination 

of the mean and autocorrelation function without having to calcu­

late the ensemble averages* Ergodic theory states (16) that'<s(t) 

is ergodic in the most general form if (with probability one) all 

its statistics can be determined from a single function s(t, C) 

of the process." According to Grenander and Rosenblatt (17) "If 

s(t) is a normal process one can show that a necessary and suf­

ficient condition for it to be ergodic is that the spectrum be 

continuous." Since many real processes are approximately normal 

and have a continuous power spectrum, they are ergodic. Hence 

the mean and autocorrelation function can be estimated from 

E { S ) = Lim -L J J s(x,t) tibcdt (1.15) 

n-*ec o 0 

m-+- <» 

and 
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vm . n 
R s s 

n-*oo w0 v 0 
m •+• oo 

(Ax, At) = Lim - j ^ J J s (x , t )s (x+4x , t+At ) dxdt (1 .16) 

If only d i scre te values of the s ignal are avai lable at spacings 

of X and T in the x and t d i r e c t i o n s , then the mean and auto­

corre lat ion function are est imated by 

m n 

E{s} = Lim JL V Y S ( 1 X ' j T ) ( 1 > 1 7 ) 

ii -*-oo Li Li 
«. _».~ J = o i = o 

and 

m n 
R s s ( k X , rT) = Lim Ju. V V s ( i X , j T ) s ( i X + k X , JT+ rx) (1.18) 

m-*oo J 

In filter synthesis, a process known as white noise is fre­

quently used. Two types of white noises have been considered in 

this thesis; namely, discrete Gaussian white noise land dense 

Gaussian white noise. Discrete Gaussian white noise n(iX, jT) is 

defined as a process made up of a two-dimensional array of uncor­

rected random variables belonging to a Gaussian distribution. 

Its autocorrelation function is given by 

Rnn<iX» W = *2 for i = j = ° (1-19) 

0 elsewhere 

2 
where 6 is the variance of the random variables and X and T are 

the array spacings in the x and t directions. 
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Dense Gaussian white noise z ( x , t ) i s defined as a process 

made up of Gaussian uncorrelated random variables densely packed 

over the two-dimensional plane. I t s autocorrelat ion function i s 

given by 

R 2 2 (Ax ,A t ) = o 2 6 ( A x , At) (1 .20) 

Consequently, the power spectrum is flat with a value of a . 

Approach to the Problem 

A major portion of this thesis is concerned with the esti­

mation of the stationary component of the nonstationary process 

as mentioned in the Statement of the Problem. 

The stationary part was modeled as Gaussian and ergodic since 

these properties are very practical assumptions with respect to 

sheet processes. The central limit theorem (16) states that under 

fairly general conditions the sum of n independent random varia­

bles tends to the Gaussian distribution as n tends to infinity. 

The criterion to minimize the expected value of the square of the 

estimation error under the above assumptions leads to a consis­

tent and efficient estimator (18). This criterion was chosen as 

compared to other consistent and efficient estimators since it does 

not require the probability density function of the process and 

is mathematically easy to solve. 

For the Gaussian stationary process, the linear estimator is 

the best estimator when the above criterion is used (16). Optimal 

linear estimators require the autocorrelation function of the 
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process to be specified a priori. Since estimation of the total 

autocorrelation function is not possible from the scan path data, 

the functional form of the autocorrelation function is used to 

advantage. If this form is known a priori, then the parameters 

in the form are estimated by either the maximum likelihood or 

the least-squares method. If the form is not known, the approach 

taken is to fit an exponential-cosine form to the autocorrelation 

function estimated from the scan path data. The choice of the 

exponential-cosine form stems from the observations of one-

dimensional random processes by Bendat (12). According to his 

observations, most real random process with continuous power spec-
< '' A-,* 

trum have an.exponential-cosine autocorrelation function. The 

least-squares method will be used to estimate the parameters in 

the functional form because it is mathematically easy to use. 

The effectiveness of the proposed method is determined by 

comparing the mean square estimation error of the proposed method 

versus the error obtained by using the theoretical autocorrelation 

function. A simulated process will be used for this purpose. 

Comparison with other existing methods will also be made to see 

if significant improvements in the estimation of the signal are 

obtainable by using the proposed method. A real sheet paper 

process will be used for this purpose. 

Outline of the Thesis 

In this chapter the problem has been defined, relevant liter 

ature has been reviewed and the proposed method of attack has been 

stated. In Chapter II, two stationary random processes with known 
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autocorrelation functions will be simulated. The first process 

will be used as an analysis problem in this thesis. The second 

process will be used only in Chapter II to show that the fre­

quency decomposition technique works when more than one set of 

frequencies are present in the spatial and temporal coordinates. 

In Chapter III, a technique to estimate, refine and extrapolate 

the autocorrelation function from the scan path data will be 

devised. In Chapter IV, optimal estimation will be performed 

using the fitted autocorrelation function, the theoretical auto­

correlation function and the one-dimensional autocorrelation func­

tion. Also a sensitivity analysis will be performed for the param 

eters introduced in Chapter III. In Chapter V, the techniques 

developed in the previous chapters will be applied to a paper mill 

process and the advantages of the developed scheme highlighted. 

Chapter VI will present the conclusions and recommendations of 

this thesis. 
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CHAPTER II 

FILTER SYNTHESIS FOR GENERATING A TWO-DIMENSIONAL 

RANDOM PROCESS FROM DISCRETE WHITE NOISE 

In this chapter a technique for synthesizing two-dimensional 

filters is devised. It is desired to design a filter which when 

excited by discrete Gaussian white noise, generates a random 

process with the chosen exponential-cosine autocorrelation func­

tion. The approach used is analogous to synthesizing a continuous 

one-dimensional filter with several modifications. These modifi­

cations are necessary because the two-dimensional continuous 

approach requires dense white noise as input to the filter. To 

use discrete white noise instead of dense white noise, the convo­

lution integral in the continuous case is separated into smaller 

integrals. It is difficult to proceed beyond this point without 

approximating the filter impulse response as constants in the small 

intervals of integration. After making this approximation and 

moving the constants outside the integration signs, the remaining 

integrals are shown to be discrete Gaussian white noise. Also, 

in the two-dimensional case the filter synthesis procedure is ham­

pered by the nonseparable property of the power spectrum. This 

problem is resolved by introducing a multiplicity of independent 

discrete white noise passed through separate filters and summed. 
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Background Information 

In the generation of one-dimensional random processes, 

dense white noise is passed through an appropriate filter yield­

ing a process with the desired autocorrelation function. The 

resulting power spectrum is given by 

Sgs((j) = |G(ju)|
2 x 1 (2.1) 

where sss(w) is the power spectrum of the desired process and 

G(jw) is the transfer function of the filter. It is known, how­

ever, that if S (u) is given, then G(ju) is not uniquely deter-

mined, but is given by 

G(J(J) = ysss(u) e3q>(w) (2.2) 

where <p(u) is arbitrary (19). The inverse of G(ju) is causal, 

if the Sss(w) satisfies the Paley-Wiener condition (19). In the 

generation of a two-dimensional random process, the problems are 

further compounded by the complicated form of the desired power 

spectrum. 

Before proceeding to the synthesis problem, a fundamental 

concept is reviewed. Consider the process shown in Figure 1. 

Independently generated dense white noises z,, z2, ..., zn are 

passed through separate filters. If the output signal s(t) is 

given by 

s(t) = sx(t) + s2(t) + s3(t) ... sn(t) (2.3) 



z , 
G (v>~) s, 

^ i 

G (v>~) 

^ i 
** 

^ i G ru>i 
2 

s, G ru>i 
2 

Figure 1. Scheme for Generating a Random Process 
vO 



20 

then it follows that the output autocorrelation function R (At) 

is given by 

Ree(At) = R (At) + R (At) + R (At) ... + R (At) 
SS slsl S2S2 S3S3 snsn 

(2.4) 

and the output spectrum S (u) is given by 
ss 

S («) = S («) + S (U) + S (W)...+S (o) 
SS S1S1 S2S2 S3S3 snsn 

(2.5) 

Synthesis Procedure 

Consider a class of processes described by the autocorrela­

tion function 

r -A | Ax | - B . | A t | 
R _ ( A x , A t ) = ) D_.e x cos (j .Ax cos u At (2.6) 

s s x
 LJ I x i t i 

I t i s desired to simulate t h i s process rather than the more common 

-> /A iAx2+ B j [At2 

R (Ax, A t ) = ) D,e cos u .Ax cos u At (2.7) 
ssx L i x i t i 

because of the d i f f i c u l t y in handling i n t e g r a l s of the type 

- / A . A x 2 + B . A t 2 - j u A x - j y At 
dAx dAt 

These forms will be discussed in the next chapter, but for the 

present note that A,, B., and D, are constants, and u . and u 
* i i i xi +i ti 
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represent frequencies in the x and t directions. Its power spec­

trum is given by 

S»miu*'ut) - l 4 D i A i B i 

2 2 2 
w + u . + A 

x x i i 
. 2 2 2 2 
(A, +CJ . - u ) + 4A.*U 
V 1 X I x '• "• ' 

2 2 
.w 
1 X 

u 2 + u2 . + B 2 

t t i i  
, 2 2 2 2 2 2 
(B. + U K , - u ) + 4B. UK x l t i t ' l t J 

(2 .8 ) 

which can be r e w r i t t e n a s 

S (<J ,u ) = V 4D.A.B. 
s s v x ' t *-» i i i 

2 2 / 2 2 
(1u) + /A. + w . ) ( -1u + /A. + CJ .) V J x v l x i ; v J x J i x i ; 

[(A- + j u x ) 2 + u . ] [(A - j o ) 2 + u 2 . ] 
x x XI 1 X XI 

( 2 . 9 ) 

uut+jil+^i-iut+K+At)' 
[ ( B j + j i ^ ) 2 * w ^ i ] [ ( B 1 - j u t ) 2 + u 2 . ] 

S (w , u + ) i n E q u a t i o n ( 2 . 9 ) i s n o t s e p a r a b l e i n t h e form s s x t 

G(jw t jw ) G ( - j w _ , , - j u + ) b e c a u s e of t h e summation s i g n . However, 
x t * t . 

if each term under the summation sign is the result of a separate 

filter excited by independent white noise and then summed, the 

nonseparable problem of Equation (2.9) does not arise. The power 

spectrum can be written as 

SssK> ut> " I Gi(Jux> J<VG i (-*V-J u t> ( 2 . 1 0 ) 
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in which the various G. (ju> , ju ) represent the transfer func-
i x x 

tions of the different filters excited by independent white noise. 

Hence, the transfer function of a particular filter is given by 

GiUv jU t ) = ySixB: 
122 [ 2 2 

(JCJ + /A + u . ) ( j u + / B . + < J . ) 
x >/ i x i 7 t J i t i 

r(A,+ju )2+u2.][(B.+ju )2+u2.] 
i x7 xi i t ti 

(2.11) 

and the causal impulse response is given by 

W(Ax, At) = y4A iB iD i 

-A. Ax W \ + ^ x i " A i ) 
e cos D , Ax + 

X I W . 
X I 

(2 .12) 

-A. Ax 
e x s i n u , Ax x i 

-B . At 
e cos u . At + 

t i 

<K^7. -
w l t i u. . 

t l 

B.) -B .A t 
_ l _ l . A . 

—— e s i n u At 
t i 

-j 

Independent dense whi te no i ses a r e convolved with the d i f f e r ­

en t impulse responses and then summed to gene ra te the d e s i r e d 

random p r o c e s s . The convolut ion equat ion from l i n e a r continuous 

f i l t e r i n g theory i s given by 

00 00 

s ( x , t ) = [ f W ( X , T ) 2 ( x - x , t - x ) d X d ' (2 .13) 

where z(x,t) is the dense Gaussian white noise and W(x,t) is the 

impulse response of the continuous filter given by Equation (2.12). 

Equation (2.13) can be separated in the form 
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T X 2T X 
s ( x , t ) = f f W ( X , T ) Z ( X - X , t -T)dXd-r + f P ( ) d X d x ( 2 . 1 4 ) 

J 0 J 0 J T J 0 

T 2X 2T 2X 
+ I | ( )dXdT +| I ( )dXdx + . . . 

J 0 J x J T J x 

S i n c e the computer g e n e r a t e d w h i t e n o i s e i s d i s c r e t e , Equation 

( 2 . 1 4 ) cannot be used wi thout m o d i f i c a t i o n s . The impulse re sponses 

under t h e i n t e g r a l s i g n s i n Equation ( 2 . 1 4 ) are approximated by 

c o n s t a n t s as shown i n Figure 2 . The va lue of t h e c o n s t a n t i s 

chosen to be the va lue o f the impulse response a t the c o o r d i n a t e s 

s p e c i f i e d by the c e n t r o i d o f t h e area bounded by the l i m i t s o f 

the i n t e g r a l . 

Hence, Equation ( 2 . 1 4 ) r e s u l t s i n 

T X PX v 
s ( x , t ) = W( | , | ) J J 2 ( x - X , t - T ) d x d T + W ( | f—)J J • ( 2 . 1 5 ) 

0 0 T O 

2 ( x - X , t -T)dXdT 

+ w<ir > !> 1 I ^(x-x,t-T)dxdT+ W ( ^ , %fj f • 
0 X T X 

z ( x - X , t - T ) d X d T + . . . 

The double integrals in Equation (2.15) are uncorrelated random 

variables and are denoted by n +(i,j). Since the white noise 

z(x,t) is Gaussian, its integral which represents a summation of 

Gaussian distributed random variables, is also Gaussian. The 

expected value of n (i,j) is 
x, t 

, f U+1JT (i+l)X ) 
E |nx^t(i,j)J = E J J 2(x-X,t-T)dXdT\ (2.16) 

= XTE / z | 



W(t) 

Impulse Response of the Filter 

Figure 2. Digitalization of the Analog Filter 

ro 
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and the variance is 

°n = Ef[JJ Z(X'X» t-TjdXdxfj (2.17) 

Since z(x,t) is white noise, therefore, Equation (2.17) becomes 

2 .(j+lJT (i+l)X 
<5 = <t dXdx (2.18) 
" JjT JiX 

= X T *z 

If z(x,t) has zero mean and unit variance as selected for the two 

simulations in this chapter, then from Equations (2.17) and (2.18) 

E|n t(i»j)} becomes zero and <J becomes XT. 

In both the simulated processes, X and T are unity and hence, 

2 
<?n becomes unity. The discrete white noise sequence generated 

on the computer with mean zero and unit variance can now be.used 

in place of the double integrals in Equation (2.15) which becomes 

oo oo 

«<*,t) * .£ £ W(i + i , •i+'5)nx>t(i.J) . ,(2.19) 
j=0 i=0 

If once the random sequence n (i>j) is chosen for a particular 
x, t 

x and t, then the random sequence for other x and t is correlated 

to the first sequence. However, moving x and t by unity from the 

x and t that established the first random sequence, one is able 

to reuse the same sequence. In order to express this mathe-

matically, define 
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„ ( j + l ) T , ( i + l ) X 
n * ( i , j ) = J z ( x , t ) d x d t (2 .20) 

j T i X 

t hen E q u a t i o n ( 2 . 1 9 ) r e d u c e s t o 

eo oo 

s ( x * , t * ) = ][ £ W ( i + ^ , i + ^ ) n * ( x * - i . t * - j ) ( 2 . 2 1 ) 

j=0 i=0 

where x and t represent discrete integer values of x and t, and 

i and j are integers. 

Two types of errors can arise when using this technique of 

digitalization. The first error is the approximation of 

,0+lpi+l J l ^ J. 

W(x, j J W(x,t)dxdt 
3 i 

by a constant W(i + ~, j + ~) which does not even represent the 

mean value of the weighting function in the interval. The reason 

for choosing W(i + ̂ , j + -z) is to avoid the excessive computation 

which arises if the mean value is to be found for each interval. 

The second source of error is the truncation of the summation of 

Equation (2.21). In most practical cases, truncation is essential 

due to limited computer memory and computer time. The effect of 

the two types of errors on the variance of the output signal will 

be studied in the next paragraph. 

2 2 i 
Let d. and a represent the variances of the output and 

s n 

input signals. Express Equation (2.21) by 

s(x*,t*) = £ Y, aij"(xi»t
j) (2.22) 
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Taking the expected value of the s ignal squared, r e s u l t s in 

B < s 2 ( x * , t * ) = E I y 
) a. .n (x . , t j 
L I J v i» j ' 

( 2 . 2 3 ) 

= I L ^ v ^ ' V ) 
i 3 

= I F a 2 - 2 =* 2 I £ a 2 . u LJ i j n n t - j ^ i j 
i J i J 

since n(x,t) is white noise. Now if o = 1 then from Equation 
n ^ 

(2.23) it follows that 

Z r 

L aij 
i 3 

2 ~*2 

s 
(2.24) 

The truncation error causes 

I I ai j < d (2.25) 

i J 

and the approximation of the analog filter of Equation (2.12) by 

a histogram form causes 

t_j Z_J i-j > <r (2.26) 

i J 

Equation (2.26) is a result of the shape of the weighting function 

of Equation (2.12) 
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Results 

Two random processes are simulated. The first one employs 

a shaper with the impulse response 

W(AX, At) = .212(e"-
075Axcos.3Ax + - ^ ^ e~'075Ax sin-3Ax) (2.27) 

. -j 

-.075At . A. , .235 -.075At . _._ 
(e cos*3 At + y e sm»3At) 

which when excited by discrete Gaussian white noise over a rec­

tangular lattice, shown in Figure 3, yields a process with the 

autocorrelation function 

R (Ax, At) = 2 C--
0 7 5 l*x|-.075 I * lcos. 3 A x c o s . 3 i t (2.28) 

This process is used in the extrapolation of the autocorrelation 

function, signal estimation, comparison of the expected value of 

the squared error with the theoretical value, sensitivity analysis 

of the parameters, and comparison of estimation errors of the 

developed method with the other existing methods. The second ran­

dom process employs two shapers with the impulse responses 

Wx(Ax, At) = .15!(e"
,075Ax COS.165AX (2.29) 

+ ,J£6 e-.075Axs.n.16 

.165 

( e - ' 0 7 5 ^ c o s - 1 6 5 A t ^ ^ | | e - - 0 7 5 M s i n . l 6 5 A t ) 

and 
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Y -f""^ 

L ^ K _ 
r T T - T T ^ / 

m ( 
Figure 3 . Rectangular Latt ice , 
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- .075Ax .235 - 075A* . 
W2(Ax, At) = .212(e cos '3Ax + —5- e , u / 3 sin-3Ax) 

( e - - 0 7 5 A t cos -3 At + ^ 3 5 e - . 0 7 5 A t , l n . 3 A t ) 

. 3 

( 2 . 3 0 ) 

which when e x c i t e d by two independent d i s c r e t e white n o i s e s , y i e l d 

a p rocess with the a u t o c o r r e l a t i o n funct ion 

R 
ss 

(Ax, At) = e-.0?5|Ax|-.075|At| [cos-165Ax cos•165At (2.31) 

+ 2 cos*3Ax cos»3At] 

The second process is used chiefly to demonstrate the ability of 

the power spectrum analysis to handle cases in which more than one 

pair of frequencies are present. It is used only in Chapter III. 

The process lattice in both cases extends over 40 points in 

the x direction and 1200 points in the t direction. The white 

noise lattice extends over 79 points in the x direction and 1,240 

points in the t direction. Since a 40 by 40 causal weighting 

matrix is used, the additional points help the filter operate in 

the steady state region. The two-dimensional random processes are 

generated on 30 scans having 40 points in each straight line scan. 

These scans have alternately +45° and -45° angles. The gap between 

each scan constitutes one unit in the t direction. The computer 

program used in the generation of the process is devised so as to 

remain in the 60K memory limit of UNIVAC 1108. Tt stores 97,960 

values of the normal white noise sequence (zero mean and unit var­

iance) on a tape, calls for only 3,160 random numbers at a time, 

and generates the random process on one scan at a time. At any 

time it only has 6,241 values of the random numbers in its memory. 

The program is included in the Appendix. 
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The results of the first simulation are shown in Figure 4. 

The ordinate represents the value of the generated process, and 

the abscissa represents 80 points on two consecutive scans. 

The results of the second simulation are shown in Figures 5 and 

6. The ordinate represents the values of the generated process, 

and the abscissa represents 1,200 points on thirty consecutive 

scans. Although the computer generated plots look continuous, 

in reality they represent discrete values of the process on 

1,200 abscissa points. 

Discussion of the Results and Conclusions 

The results of the simulation appear to be good. In 

Chapter III 99.76 percent confidence bounds will be set around 

the estimated autocorrelation function obtained by using this 

data, and it will be shown that the desired autocorrelation func­

tion falls well within these bounds. The effect of truncation 

and digitalization errors appear to be negligible since for the 

first process equation (2.24) becomes 

40 40 

I I aij " 2*028 (2.32) 
i=l j=l 

as compared to the theoretical summation 

OO oo 
r-i r-» 

L L a?.. = 2.000 (2.33) 

i=l j=l 

In this chapter two random processes have been generated 

which are Gaussian, stationary and possess the exponential-cosine 
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autocorrelation function. The simulation on the scan path 

constitutes the values of the signal sampled at regular inter­

vals on the scan path as described in the "Statement of the 

Problem." This scan path data will be employed in Chapter III 

for extrapolation and refinement of the autocorrelation func­

tion. 



4-0 

Point Number 

Figure 4. Two Consecutive Scan Display of Process 1. 
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Poin t Number * 10 

100.00 

1 

J 20.00 140.00 

Figure 5 . Th i r ty Consecutive Scan Display of Process 2 
Using Shaper Given by Equation ( 2 . 2 9 ) . 
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1 

Figure 6. Thi r ty Consecutive Scan Msplay of Process 2 
Using Shaper Given by Equation ( 2 . 3 0 ) . 
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CHAPTER III 

FITTING AN EXPONENTIAL-COSINE FORM TO 

THE AUTOCORRELATION FUNCTION 

To use the finite memory estimation procedure of D. P. 

Peterson and D. Middleton (5), an accurate estimate of the auto­

correlation function is needed. As mentioned in the problem 

statement, signal information is only available on the scan 

path. This permits the estimation of the autocorrelation func­

tion in a limited sector of the (Ax, At) plane. Due to the 

finite nature of the sampling lattice, these estimates are 

quite crude and will be referred henceforth as the crude auto­

correlation function. The procedure developed in this chapter 

permits the extrapolation and refinement of the crude autocor­

relation function by fitting it into a closed functional form. 

There are situations in which the form is known a priori, but 

in most practical cases the form is not known. Hence, the 

first step is to determine the nature of the closed functional 

form that is applicable to most two dimensional random processes. 

Once this form is established, it is fitted to the crude aurto-

correlation function by a weighted least-squares (technique.! The 

fitting procedure is not straightforward because of the possi­

bility of obtaining the local minimum of the cost function 

instead of the global minimum. The scheme shown in Figure 7 is 

devised to make the fitting procedure converge to its global 

file:///mimu/mikmk
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Figure 7. Scheme for Extrapolation and Refinement of 
the Crude Autocorrelation Function. 
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minimum by e s t i m a t i n g the i n i t i a l va lues of the c r i t i c a l param­

e t e r s by another t echn ique . The frequency terms in the c losed 

form a re c r i t i c a l parameters and t h e i r e s t i m a t e s a r e obta ined 

by a frequency decomposition t echn ique . A 99.76 p e r c e n t con­

f idence bound i s s e t around the crude a u t o c o r r e l a t i o n func­

t i on and i s used as a check on the f i t t e d a u t o c o r r e l a t i o n func­

t i o n . 

Closed Funct ional Form 

Consider a process with a cont inuous r e a l power spectrum, 

Assume t h i s power spectrum i s expressed in the form 

I S i s ^ u x " u x i ' wt " " t i 5 

as shown in Figure 8. 

;(i) If the inverse transform of Sl '(u , u ) is given by 
S S -X X 

R ^ f A x , A t ) , then ss 

sss<"x. « t>" r. s" ) ( u* - uxi' \ - uti> ( 3 a> 
i 

- l r" r"R<i><Ax, A t ) .-j («x-j«,«i)A*-j(U j-U t i)« 
• —oo -oo 

dAxdAt 

or oo 

' I 
-<r - 0 0 

"Y 
or oo 

' I 
-<r - 0 0 

L 
i 

W,... ^ > * i + J U t * 
- j u Ax-jw At 

e x 

dAxdAt 

Hence the inverse transform of S (u i u ) is given by 
ssv x t 



^ S s ^ ^ t ) 

cco/ 
^ s ^ x ^ H ^ J 

(a) 

^k-^^-H^ 

•* + 

( 3 ) 

S (u -w ,co-o ) 
SS *. =e3» t tV 

Figure 8. S p l i t t i n g of the Power Spectrum. 
UJ 
vO 
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[R^^Ax, At)e 

which is the autocorrelation function of the process. Sepa­

rating the real part from the imaginary part and cancelling out 

odd terms due to symmetry in the four quadrants, one has 

R__(Ax, At) = V R^^Ax, At)cos u . Ax cos w.. At (3.2) 
is is t_' SS X I XI 

In many one-dimensional random processes (20), R̂  (At) 

obeys an equation of the form 

R(1)(At) = D.e-A|Atl (3.3) 
SS 1 x ' 

I t i s assumed t h a t two-dimensional random processes obey a 

s i m i l a r equat ion of the form 

/ 2 2 
, - y A . A x + B. At 

R ^ ) ( A x , A t ) = D.e X 1 ( 3 . 4 ) 
ss I ' 

which represents exponential decay with elliptical contours. 

Hence, the closed form becomes 

2 2 
- / A . Ax + B . A t Z - / n.. ax T 13. ax 

D i e
 X X cos u .Ax cos u t i At (3.5) 

l 

It is emphasized again, that the form of Equation (3.5) should 
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only be used when no priori knowledge is available for the true 

form. 

Weighted Least-Squares Fitting 

The next step in the procedure is to fit the form to the 

crude autocorrelation function. A number of techniques exist 

in parameter estimation, the most notable being the maximum 

likelihood method and the weighted least-squares method. It has 

been shown in (18) that in cases of linear models both the 

methods yield the same solution subject to Gaussian probability 

distribution of the dependent variable. The maximum likelihood 

method is not chosen, since dealing with likelihood functions 

and their maximization can become difficult for nonlinear models. 

The weighted least-squares method is chosen for its ease of 

handling. 

Let R, represent the crude autocorrelation function at 

point k. Then, by the method of weighted least-squares, the cost 

function 

r ^ r -JA-Ax2 + BiAtk 
F = / •••Yi>(Kir - ) D . e k cos u .Ax cos u .At ) 

U -' k k U x | xi k t i k' 
k=0'% \ 

M i ' ( 3 ' 6 ) 

is minimized with respect to the parameters A. , B. , D:1, <j . , 
*- f 1 ' 1 ' 1 * W X 1 ' 

and ut.. The choice of the weighting terras y, depend on the 
A 

accuracy with which FL can be estimated. In case of the first 
A 

simulated process, where R. is estimated only on the straight 

line scan path, the choice of y was 



42 

(1 - -) for k < N 

Y k = (3.7) 

0 for k > N 

where increasing values of k represent increasing values of 

Ax and At . Minimizing the cost function of Equation (3.6) 

with analytical or numerical function minimization techniques 

normally leads to a local minimum instead of a global minimum. 

Some computer plots of this cost function are shown in Figures 

9 and 10. Invariably, it is the frequency variables that prevent 

convergence to the global minimum. To minimize this problem, a 

technique described in the next section was devised to obtain 

an estimate of the frequencies present and these estimates were 

used as initial values of the frequency parameters in the func­

tion minimization methods. 

Beveridge and Schechter (20) and Fletcher (21) give an 

excellent evaluation of both analytical and numerical tech­

niques to be used in function minimization. Fletcher and 

Powell's algorithm (14) is used in this thesis since it is rec­

ommended by Fletcher (21) in cases where the first derivatives 

of F are available in the analytic form and the problem is 

medium sized and unconstrained. The convergence of this algo­

rithm is superior to most other algorithms and the rate of con­

vergence is also good. The algorithm is described briefly in 

the section entitled "Review of Literature." 

Power Spectrum Analysis on the Scan Path 

A spectrum analysis operation indicated in Figure 7 serves 
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the function of furnishing the initial estimates of the frequen­

cies to and u present in the process. If these frequencies 

xi ti 

are extracted to great accuracy, it may not even be necessary 

to include them in the functional fitting block as parameters, 

which would simplify the functional fitting procedure consider­

ably. 

Frequency Decomposition Technique 

For the general case, consider the scan pattern to be 

periodic as shown in Figure 11 and described by the equation 

x = f(t) (3.8) 

Let (x , t ) , the s t a r t i n g p o i n t of each pe r iod in the x and 
o oi 

t d i r e c t i o n s be r ep re sen t ed by the vector y . . Then, about any 

re fe rence y. in time r i 

Ax | = F ( A t | ) ( 3 . 9 ) 
y±

 ly± 

where 

. -1 At | = t - f " X ( y . ) (3 .10) 
y i * 

The s u p e r s c r i p t -1 s tands for the inve r se of a func t ion . Now 

i f the exponen t i a l decaying terms of the a u t o c o r r e l a t i o n func­

t ion a r e neg lec ted for convenience 

R(Ax, At) = ) D. cos Li .Ax cos u j At (3.11) 
1 x i t i 
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r-. D i 
= ) — [ cos{ ( j .Ax + u ^ . A t \ + c o s f u .Ax - t o^ .A t } ] 

L) 2 L x i t i -J *- x i t i J 

= • J - i [ eoa{u x i F(At | ) + w .At} + co i (y H « l ) - ^ 4 t ) ] 
XI -y. 

r> D. 
= L " ^ [ ° o s " | { u x l Q ( A t | l + ̂ y + c o s " | {MjilQ.(At| J- 'w^}] 

where 

F(At) = AtQ(At) (3.12) 

By conducting an indirect power spectrum analysis over all At| 

on the scan path, one is able to determine the frequencies w 

yi 

s i 

on which t he power peaks a r e concen t r a t ed . This power spectrum 

a n a l y s i s can be performed by g a t h e r i n g the a u t o c o r r e l a t i o n func­

t i o n s for a l l d i s c r e t e At| and then tak ing i t s Fourier Trans-
i 

form according to the procedure desc r ibed by Blackman and Tukey 

( 9 ) . Since At | i s r e l a t e d to wg by 
^ i 

At | = 2*. 
yi "s 

( 3 . 1 3 ) 

the equations 

X 1 w s i l t i s i l 
(3 .14) 

a n d 

" x i ^ C - ^ " U t i 
S l < i 

= u s i 2 (3.15) 

fll'l 
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can be solved for u • and u.. . Grouping of the correct u g ^ 

and u_ • 0 may present a problem, which will be discussed fur-
SI ̂  

ther in the following simplified case. 

Consider a simplified version of the general form where 

the scan path is a straight line scan as shown in Figure 12. 

In this case 

Ax = f(At) = KAt (3.16) 

where K is constant. Therefore Equation (3.11) becomes 

Z D. 
-h [cos(A|cos 9) (KU .+U .)+ COS(A£COS9)(KU - u \ ] 

2 ' c xi tiJ L xi t i J 

i 
(3.17) 

where 

At = A£ COS 6 (3.18) 

Conducting a spectrum analysis along just one straight line 

will obtain the values of u . Again, solving the equations 

Kuxi + u>ti = u>sil/cos 9 (3.19) 

and 

Ky . - u = u . Vcos 9 (3.20) 
xi ti si 2 ' 

one is able to obtain the values of w and u . 
xi ti 

The pairing of u '._ and u . ̂  can be done easily if the K sil si2 

power spectrum intensities can be distinguished readily as 
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shown in Figure 13. This identification follows from Equation 

(3.17) which indicates that the power over any paired frequen­

cies must be the same. If these intensities are not distin­

guishable then it is best to obtain the values of y . and u . 
xi ti 

by allowing all possible combinations and using these initial 

values in the functional fitting process of Fletcher and Powell. 

The correct combination must yield the lowest cost function. 

Also, if one suspects that wave lengths larger than half the 

scan wave length are present in the process, then it is neces­

sary to extend this simplified version to the more general ver­

sion described previously. 

Confidence Bounds Around the Crude 
Autocorrelation Function 

This section shows a practical way of placing 99.76 per­

cent or (3d) confidence bounds around the experimentally obtained 

autocorrelation function. The method uses Fisher's Z, a varia­

tion of which is asymptotically normally distributed with zero 

mean and unit variance. This method has an advantage over other 

methods since its asymptotic distribution function tends toward 

normality faster. 

Past attempts to place confidence bounds around autocorre­

lation functions have been centered around assuming the distri­

bution of the autocorrelation function R(T) (for particular T) 

as Gaussian. Examples of this can be found in (10) and (22). 

In both references, the authors state that it is very difficult 

to obtain the real distribution of the autocorrelation function 

and in cases in which the number of samples are large, a Gaussian 
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approximation is valid. Under these circumstances, if the var­

iance (T of R(T) and sample size n are known, then for 99.76 

percent confidence the following probability statement is used: 

Pr |_3 < W T ) - R ( T ) ) ^ < + 3 j = 9976 (32l) 

which results in 

Pr{R(T)- 3 -2- < R(T) < R(T) +3 ~ \ = .9976 (3.22) 
Jn JnJ 

A 

where R(T) is the experimentally obtained estimate of R(T). 

Dr. J. J. Goode of Georgia Institute of Technology recommends 

the use of the so-called Fisher's Z, which has the important 

property of approaching normality faster than any other statis­

tic of R(T). In addition to this important property, the method 

has the advantage of not requiring any prior knowledge about d . 

Anderson in his book (23) has a section on "The Asymptotic 

Distribution of a Sample Correlation Coefficient and Fisher's Z. 

His approach uses the correlation coefficient r, which in the 

present case is 

r = R(T)/R(0) (3.23) 

The so-called Fisher's Z is 

- I loge i-LJS. 
2 S 1 - 1 

Z = i loge
 1 r I (3.24) 

If r and Z are the estimates of r and Z, then according to 

Anderson, the statistic JIT (Z - Z) is asymptotically normally 
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distributed with zero mean and unit variance for n > 24. This 

results in the probability statement 

Pr (-3.< y(n-2) (Z-Z) < +3}= .9976 (3.25) 

the details of which are explained in (23). Thus, the confi­

dence region for n > 24 is 

tanh(Z - 3/Jr^2) < ||^- < tanh(Z+ 3/TiTT) (3.26) 

For n < 24, David's tables are used as given in the handbook 

by Beyer (24) under the title "Confidence Limits for the Popula­

tion Correlation Coefficient." This case is treated in (23) and 

will not be considered further due to the large confidence bounds 

for small n. 

Results 

The scan path data for the first simulated process is ana­

lyzed by a computer program, and the values of the crude auto­

correlation function are obtained as shown in Table 2. Also, a 

computer plot of the crude autocorrelation function on the scan 

path is shown in Figure 14. A subroutine of the same program 

places 99.76 percent confidence bounds around this crude auto­

correlation function and the results are shown in Table 3 and 

Figure 15. The purpose of this confidence band is to bound the 

deviation of the fitted autocorrelation function from the crude 

autocorrelation function. Figure 16 shows the three dimensional 

plot of the desired autocorrelation function of the simulated 
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Table 3 . Confidence Bounds of 99.76 Percent Around 
the Crude Autocorrelation Function. 

56 

Crude 
Lower Autocorrelation Upper Sample Total 
Bound Function Bound Size Bound 

1.46505018 1.53193997 1.58995549 1131, 00000000 .12490532 
• 932066m 1.05890194 1.17371573 1102, 00000000 24164931 
.43673472 .59978456 .75378090 1073. 00000000 31704618 
.08693592 .26376214 .43614284 1044. 00000000 34920692 

-.09203517 .08881197 .26809359 1015, 00000000 36012876 
-.09554544 .08794269 .26983513 986, 00000000 .36538057 
.01642429 .20206959 .38397152 957, 00000000 .36754723 
.19748273 .38230004 .56002388 928. 00000000 36254116 
.31400017 .49756379 .67186905 899, 00000000 35786889 
.35429088 .53903892 .71355214 870. 00000000 35926126 
.34734263 .53550146 .71313174 841, 00000000 36578912 
.24867198 .44427593 .63059891 812, 00000000 i .38192693 
.10263906 .30621686 .50296713 783, •00000000 .40032808 

-.07529238 .13450144 .34111679 754, 00000000 < .41640917 
-.24169482 -.02875719 .18489037 725, 00000000 i •42658519 
-.33490502 -.11955545 .09885662 696, 00000000 .43376164 
-.31407802 -.09348002 .12961979 667, 00000000 , 44369781 
-.26161317 -.03483954 .19291061 638, 00000000 .45452377 
-.22142622 .01138372 .24385934 609, 00000000 .46528555 
-.17078850 .06832306 .30533139 580, 00000000 .47611989 
-.11592789 .12957329 .37089099 551, oooooooo ,48681888 
-.09338210 .15878248 .40555001 522, 00000000 •49893212 
-.08271195 .17669000 .42974603 493, ,00000000 .51245797 
-.07725686 .19006595 .45014897 464, •oooooooo .52740583 
-.12060931 .15570685 .42567993 435, .00000000 .54628924 
-.16887551 .11712237 .39799714 406, ,ooqoj)ooo .56687265 
-.23746530 .05875015 .35219262 377, .oooSiooo .58965792 
-.33276956 -.02649046 .28114299 348, ,00000000 .61391255 
-.40627377 -.08891622 .23338583 319, ,00000000 .63965961 
-.44452581 -.11317883 .22507371 290 .00000000 .66959952 
-.43124995 -.08075983 .27520611 261, ,00000000 .70645606 
-.39190006 -.01766524 .35791673 232 .00000000 .74981679 
-.28807804 .11588328 .50980415 203 .00000000 .79788219 
-.25071397 .18646841 .60496660 174 ,00000000 .85568058 
-.23140337 .24776986 .69748729 145, ,00000000 .92889065 
-.26364613 .27232229 .76821920 116 .00000000 1 .03186531 
-.33624469 .28295992 .84732979 87 ,00000000 1< .18357447 
-.46588112 .29209390 .96707698 58, ,00000000 It .43295810 
-.74265748 .32206067 1.21572350 29 .00000000 1« .95838097 
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Figure 15. Confidence Bounds of 99.76 Percent Around the Crude Autocorrelation 
Function along with the Fitted Autocorrelation Function and the 
Desired Autocorrelation Function. 
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process, while Table 4 and Figure 17 show the same autocorre­

lation function but on the scan path only. 

The indirect power spectrum analysis is then performed 

on the crude autocorrelation function using appropriate lag 

filters such as Bartlett, Hamming and Hanning windows (9) and 

the results obtained are shown in Tables 5 and 6 and Figures 

18 and 19. The two predominant peaks occur at to = .0 and 
si 

L>S2 = .39. Applying the analysis described in an earlier sec­

tion 

Liv1 + u ., = .39/cos 45 xi "ti 

and 

<*>xl - wtl = .0/cos 45 

which yields u , = .28 and uf = .28. These compare well with 
xl tl 

the original y = .3 and <J = .3, especially since the least 
xl tl 

count of the angular frequency is 0.05552 in Table 5. The value 

of the least count is fixed from the expression for the raw power 

spectrum (9) 

n-1 
S s s ^ ) s A - * W 0 > + 2 I Rss(rAT)cos(^) +Rss(mAT)cos(jic)] 

r AT=1 
for j= 0,1,2,. .. ,ro (3.27) 

where m is equal to the number of autocorrelation function values 

available and AT is the spacing interval in time. In the present 

case xn = 40 and At = >f2~ and, therefore, the least count is .05552 
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Tab le 5 . Raw Power Spec t rum and Power Spectrum 
Using B a r t l e t t Window 

B a r t l e t t P l o t Angu la r 
Raw Smoothed Abs- F r e -

Spec t rum Spec t rum c i s s a F requency quency 

27.3013 19 .1250 1 •00000 .00000 
11.1386 15 .6751 2 .00881 .05552 
13.5791 10 .9201 3 .01768 .11103 
1.8372 7 .1121 1 .02652 .16655 
6.1526 5 .2129 5 .03536 .22207 
1.1038 1 .1618 6 .01120 .27758 
8.2260 7 .6669 7 .05301 .33310 
11.5298 10 .1950 8 .06188 .38861 
7.0010 7 .9861 9 .07072 .11113 
7.0611 5 .6755 10 .07956 .19965 
2.1331 3 .3852 11 •08810 .55516 
2.1179 2 .2308 12 .09721 •61068 
1.9550 2 .1009 13 .10608 •66620 
1.6928 1 .6099 11 .11192 .72171 
.7125 1 .1019 15 .12376 .77723 
.6786 .7208 16 .13260 .83271 
.1190 .5931 17 .11111 •B8826 
• 8998 .7607 18 .15028 .91378 
.7096 .8095 19 .15912 .99929 
.7108 .7105 20 .16796 1.05181 
.1132 .5351 21 .17680 1.11033 
.2910 .1761 22 .18561 1.16581 
.6305 .1819 23 .19118 1.22136 
.1823 .1551 21 .20332 1.27687 
.6593 .3561 25 .21216 1.33239 

-.3350 .2232 26 •22100 1.38791 
.7005 .3115 27 .22981 1.11312 

-.0256 .3991 28 •23868 1.19891 
• 8052 .3627 29 .21752 1.55116 

-.2221 .3192 30 .25636 1.60997 
• 9210 .3310 31 •26521 1.66519 

-•1070 .2861 32 .27105 1.72100 
• 9185 .2169 33 .28289 1.77652 

-.6031 .2296 31 .29173 li83201 
1.0773 .2507 35 .30057 l.;88755 
-.7121 .2122 36 .30911 1191307 
1.1708 .2928 37 .31825 1199859 
-.5801 .2932 38 .32709 2.05110 
1.0885 .2892 39 .33593 2.10962 
-.5318 .2863 10 .31177 2.16513 
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Table 6. Hamming and Hanning Smoothed 
Power Spectra 

Hamming Hamming 
Plot Smoothed Smoothed Raw 

Abscissa Spectrum Spectrum Spectrum 

2 17,28947 17.03740 14.13860 
3 11.53364 11.69730 13.57939 
4 7,42658 7.21943 4.83717 
5 4.78654 4.91982 6.45260 
6 4.37153 4.13411 1.40376 
7 8.09638 8.10675 8.22595 
8 11.07241 11.34901 14.52985 
9 8.90057 8.74884 7.00400 

10 5.81656 5.91639 7.06443 
11 3.36228 3.26397 2.13338 
12 2.08107 2.08402 2.11793 
13 1.93020 1.93219 1.95503 
14 1.52080 1.53456 1.69281 
15 .96413 .94640 .74253 
lb .56220 .57151 .67863 
17 .46911 .44350 .14900 
18 .66454 .68336 .89980 
19 .76492 .76049 .70956 
20 .65857 .66515 .74077 
21 .48028 .47731 .44320 
22 .41540 .40568 .29396 
23 .43431 .45000 .63047 
24 .41361 .39511 .18235 
25 .29149 .32091 .65929 
26 .17246 .13187 -.33497 
27 .26011 .29534 .70050 
28 .36364 .33250 -.02558 
29 .34062 .37779 .80521 
30 .32037 .27695 -.22237 
31 .30316 .35259 .92099 
32 .25639 .20332 -.40697 
33 .20667 .26361 .91850 
34 .19726 .13321 -.60336 
35 •20216 .27219 1.07725 
3b .19080 .11614 -.74241 
37 .25468 .32797 1.17077 
38 . .27461 .20621 -.58040 
39 .26543 .33128 1.08848 
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Figure 18. Raw Power Spectrum from Scan Path 
Data of Process 1. 
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for the angular frequency. 

These frequencies are used as initial values in the func­

tional fitting program of Fletcher and Powell along with several 

arbitrary initial values for the other parameters. The minimum 

cost of .444 is obtained in 25 iterations yielding the final 

parameter values as A, = .054, B, = .054, D, = 1.87, CJ ' = .277 
^ 1 ' 1 1 xl 

and w t l = .277. The values of the fitted autocorrelation func­

tion fall well within the 99.76 percent confidence band limits 

of the crude autocorrelation function. 

The power spectrum analysis of the second simulated process 

is performed in the same manner as the first, and the result 

is illustrated in Figures 20 and 21. Three distinct peaks are 

identified at u equal to .0555, .2775 and .444, one of which 

is approximately double the size of the other two. This sug­

gests that u equal to .0555 is contained in both the frequency 

s 

pairs. Setting 

u + ui. = .2775/cos 45 

uxl " utl = - A 5 5 5 / 0 0 5 4 5 

and 

u x 2 + u t 2 = .444/cos 45 

ux2 " ut2 = ' O 5 5 5 / 0 0 5 4 5 

yields u , = .235, u , = .157, u = .35 and u = .275. The 
XJ. «4-- • x^ t2 

frequencies contained in the simulated process were u = .165, 
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u., = .165, u 0 = .3 and u = .3. The results obtained are 
X J. X<5 T*» 

sufficiently close to enable the fitting process to converge 

to its global minimum. Note that if CJ . _ and u were 0.00, 

instead of .0555, then u = .196, u = .196, u _ = .315 and 

ct2 = .315. 

Discussion of the Results and Conclusions 

In Chapter II two random processes were generated; however, 

at that stage no tools were available to check whether the 

processes had the desired autocorrelation function. In this 

chapter it has been shown with the help of Figure 15 that the 

desired autocorrelation function falls within the 99.76 percent 

confidence bounds of the crude autocorrelation function. This 

result offers experimental backing to the filter synthesizing 

theory of Chapter II. However, this does not mean that there is 

no room for improvements. The approximation 

r i*1 r iHi' i i 
J J W(x,t)dxdt = W(i + j, j + |) (3.28) 

3 i 

is made in Equation (2.15) to avoid the excessive computations 

which arise if the mean value of each interval is to be founds 

Perhaps there are better assumptions than the one made above. 

Also, in Figure 15, the fluctuations of the crude autocorrela­

tion function around the desired autocorrelation function in­

crease as A( increases. This was expected since the number of 

samples available to make an estimate decrease as b>l increases. 

The frequency decomposition technique performed remarkably 
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well, especially since it extracted the frequencies present in 

process 1 within 7.0 percent of the original values. Also, the 

identification of the frequency pairs was relatively easy, as 

shown in Figures 20 and 21 for process 2. 

The results show that the fitted autocorrelation function 

has parameter values that do not exactly match the original 

values. This is to be expected since the fitting process is 

being performed on the crude autocorrelation function and not 

the real autocorrelation function. One of the two criteria use 

in judging the merits of the fitting process is that the fitted 

autocorrelation must fall within the 99.76 percent confidence 

band around the crude autocorrelation function. This is satis­

fied as shown in Figure 15. The other criterion is its effec­

tiveness in estimation, which will be discussed in the next 

chapter. 
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CHAPTER IV 

TWO-DIMENSIONAL ESTIMATION AND AN EVALUATION OF 

THE EXPECTED VALUE OF THE SQUARED ERROR 

In the last chapter a method to determine the closed 

functional form of the autocorrelation function has been des­

cribed. This autocorrelation function is to be used in the 

estimation of the signal. Fortunately, signal estimation given 

the statistics of the process has been investigated by many 

researchers since the time of Wiener (25) and the methods suited 

for use in this thesis have already been developed. Peterson 

and Middleton (5) have investigated the case of stationary multi­

dimensional estimation, while M. Blum (6) has obtained the opti­

mum linear estimator for a one-dimensional nonstationary random 

process, the nonstationarity being similar to the one under con­

sideration in this thesis. With a slight modification, both of 

these methods could be adapted to the estimation of the two-

dimensional non-stationary signal. This chapter is primarily 

designed to show these modifications and to develop a way of 

checking the effectiveness of the extrapolation arid smoothing 
•i 
1 

technique of Chapter III. 

Modification to the Peterson and 
Middleton Estimator 

The Peterson and Middleton estimator is of the form 
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M 

\V) = I s(Yk)w(Y - Y ) (4.1) 

k=l 

where the weighting term w(Y - Y ) must satisfy 
K 

M 

R (Y- Y ) = Y R (Y - Y )w(Y- Y ) r=l,2,...,M (4.2) v x L ssv r k k ss 
k=l 

Equations (4.1) and (4.2) are subject to the condition 

M < N (4.3) 

where N r e p r e s e n t s a l l the p o i n t s in the sampling l a t t i c e . 

The vector Y i s desc r ibed by 

Y = [ x , t ] ( 4 . 4 ) 

To use linear algebra computation techniques for solving simul­

taneous equations, Equation (4.2) is transformed to its matrix 

form 

W = V"1 U (4.5) 

(Mxl) (MxM) (Mxl) 

where W i s a column vector with elements w(Y-Y ), V is a square 
K 

ma trix with elements R (Y -Y, ) and U is a column vector with 
s sx r k ; 

elements R (Y-Y ). Normally Equation (4.1) would be solved 

on-line, whereas Equation (4.5) would be solved off-line. For 

cases in which M and N are the same, the estimation of K points 

on any cross-section in the x direction requires 



73 

K(M) on-line multiplications 
K(M) on-line additions 
K(M^)L off-line multiplications 
K(M2)L off-line additions 
K(L) off-line inversions of a 

(MxM) matrix 

where L denotes the total number of points scanned on the for­

ward and reverse stroke of the scanning gauge. The on-line 

storage requirement is for M+(MLK) values. 

As can be seen from the above numbers, the choice of M 

can result in a considerable savings in computation time. The 

criterion for the choice of M is a term known as the Figure of 

Merit, which determines the change in £ obtained by removing the 

rtn point in the sampling lattice. The Figure of Merit is 

described by 

(N-1) (N) _ [«(Y-YJ]2|V| 
en,-ir, ~ 6 • = R/ 1 (4«6) 

min m m I v. i * / rr 

where the r*" point is the one being tested for possible elimi­

nation, |v| is the determinant of the N by N matrix of V and 

Iv I is the determinant of the N-1 by N-1 matrix of V after the 
1 r r ' 

removal of the r t h row and column. I f the f i g u r e of mer i t i s 

below a c e r t a i n t h r e sho ld va lue , the r p o i n t i s d i sca rded . 

In t h i s way the M p o i n t s to be r e t a i n e d a r e determine^. 
To tiajndle the n o n s t a t i o n a r i t y of t h i s problem/ cons ider 

I a i ^ 

i |jfi ,.-

the scheme shown in Figure 22. The nonrandom par^ p(x) is esti­

mated by performing exponential smoothing on the data for discrete 

values of x in the machine direction t. Mathematically, this 

is represented by |:: 
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pn(xk) = apn-1(xk) + (l-a)q(xk, t„) (4.7) 

where Pn(
x
w) is the estimate of p(x) using the last estimate 

p ,(x, ) and the new incoming data q(x , t ), and a is the smooth­

ing coefficient. The coefficient a determines the time constant 

of the filter and its choice is dependent upon the characteris­

tics of the process under consideration. A discussion of this 

topic can be found in the book by Brown (26). The estimated 

value of p(x) is subtracted from the signal to give the sta­

tionary part s(x,t). Peterson and Middleton's estimator is used 

to give the best estimate of the stationary part, which is com­

bined with the nonrandom estimate to give a suboptimal estimate 

of the signal. 

Note that although the off-line computation remains nearly 

the same as in the stationary case, the on-line computations 

have increased by two multiplications and K+l additions, and 

the storage space has increased by K values. 

Modification to the Blum's Estimator 

Blum (6) has developed a way of finding the general lin­

ear operator of a one-dimensional signal such that the mean 

square error of prediction is a minimum. The output of his 

filter is 

M 

q(t) = j[ q(tk)w(t-tk) (4.8) 

k=l 
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His s i g n a l q ( t ) i s made up of a s t a t i o n a r y p a r t s ( t ) and a non-

random p a r t 

D 

PW = I.akPk
(t) ( 4 . 9 ) 

k= l 

where p (t) are known a priori, but the parameters a need not 

be known. He achieves his objective by setting the expected 

value of the estimation error equal to zero which yields a set 

of restraint equations. The expected value of the squared error 

is then minimized subject to these restraint equations and the 

resulting weighting matrix is of the form 

W = \r
1u + v"1pT(p\r1pT)"1Q-^v"1pT(p\r1pT)"1pv"1u (4.10) 

where W, V and U retain the same definitions as in the Peterson 

and Middleton method, 

Q = 

P x ( t ) 

P 2 ( t ) 

P D ( t ) 

and 

P = 

P l < V p l ( t m-l> • ' • ' P l ( t l > 

P 2 < V P2<tm-1> ' • • P 2 < V 

P ( t ) p „ ( t , ) . . . p ^ ( t _ ) FDV xn' *DV m - l ' *DV l ' 

( 4 . 1 1 ) 

( 4 . 1 2 ) 
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Equation (4 .10) holds for a l l non-s ingu la r (PV P ) and V 

1 T m a t r i c e s . For (PV P ) to be non-s ingu la r ( i . e . , determinant 

1 T 

(PV" P ) ̂  0), the value of D must be less than or equal to M. 

The same relations hold true in the two-dimensional case 

where, instead of the signal just being a function of t, it 

becomes a function of a vector Y consisting of x and t. The 

form of p(x) can be modeled by a truncated Fourier series 
D-l 
2 

p(x) = Y (a- cos ̂ Lix + b. sin ̂ ^ x) + a (4.13) 
' L i x i x ' o 

i = l 

where X is the total width of the sheet, (D-l) is the total 

number of points sampled in the x direction and a constitutes 
o 

the s teady p a r t of the s i g n a l . The h ighes t angular frequency 

i s chosen as (D-1)/2X s ince the f requencies higher than t h i s 

w i l l not be i d e n t i f i e d a t the f ixed sampling r a t e of D p o i n t s 

pe r scan . The lowest angular frequency i s 1/X, which accounts 

for the p e r i o d i c wave leng th X used i n a Four ier s e r i e s expan­

s i o n . 

Because of the tremendous computation and s t o r a g e needed 

in t h i s method, i t s p r a c t i c a l a p p l i c a t i o n i s l i m i t e d . I t r e q u i r e s 

twelve a d d i t i o n a l s t eps beyond the Peterson and Middleton a l g o ­

r i t hm. These inc lude one funct ion g e n e r a t i o n , one Q mat r ix gen-
f̂ti4l̂ 5i4ii3!i!iiyel̂ l|fll|!ii|i i 

e r a t i o n , one matr ix t r ans fo rmat ion , s i x matr ix m u l t i p l i ca t i ons , 

one matr ix i nve r se and two matr ix a d d i t i o n s . In terms of a 40 

by 40 matr ix or l a r g e r , t h i s r e s u l t s in an excess ive amount of 

computer t ime. 
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Effectiveness of the Method Proposed 
in Chapter III 

The effectiveness of the method proposed in Chapter III 

can be judged by the performance of the estimator which uses 

the results of the proposed method. It is possible to do this 

testing with the stationary simulated process since its real 

autocorrelation function is known. 

The criterion for effectiveness testing is the expected 

value of the squared error e. If the linear estimator is denoted 

by 

M 

s(Y) = £ s(Yk)w(Y,Yk) (4.14) 

k=l 

then the expected value of the squared error is given by 

e = E { [ s ( Y ) - s ( Y ) ] 2 } ( 4 . 1 5 ) 

= E ( f s ( ^ ) ] 2 } - 2 -£ w ( Y , Y k ) E { s ( Y ) s ( Y )} 

k= l 

M M 
+ 

i = l k= l 

£ £ w ( Y , Y k ) w ( Y , Y i ) E { s ( Y k ) s ( Y i ) } 

M 

= Rss<°> - 2 I " < Y > V R
S S < Y > V 

k = l 

M M 
+ I I WY, Y-MY,Y i )Rss(Yk, Y.) 

i = l k=l 
" ' • » ! 

ti 

In the theoretical case, according to Peterson and Middleton, 



79 

the weighting terms w(Y, Y ) are obtained from the equations 
k 

M 

R <Y- V = I Rss<V V < Y ' V <4-16) 
s s 

k=l 

for r = 1,2,...,M. However, in a practical case the weighting 

terms are obtained from 

M 
A A 

R 
SS 

(Y, Y ) = ) R (Y , Y )w(Y, Y ) (4.17) 
r £-> ssv r k k 

k=l 

for r = 1,2,...,M, where R (Y, Y ) represents the fitted autocor­

relation function instead of the real autocorrelation function 

R (Y, Y ). Hence the theoretical e is given by 

M M M 

Wo = R
s s

( 0 ) " 2 I W < Y ' V R
S S < Y ' V + I I « ( Y , Y k ) . (4 .18) 

k=l i = l k=l 

W<Y> V W V V 
whereas the e obtained by using the f i t t e d autocorrelat ion function 

i s given by 

^ | j M M M 

Actua l = R s s ( ° > H 2 I ™' Y ' Y
k ) R

s s < Y ' Y
k ) + Z I ™<Y'Y

k> * <4-1 9> 
;<; k=l i=l k=l 

"(Y.Y.IR^CY^Y.) 

Results 

For the first simulated process the theoretical and 

actual c are determined for three prediction points. Their 

position is shown in Figure 23. A comparison is made with the 

scheme using a one-dimensional autocorrelation:, function in the 

t direction even though the stationary process is two dimen­

sional. This comparison is interesting because, in most sheet 
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p r o c e s s e s , one-dimensional e s t ima t ion i s s t i l l very popu la r . 

The r e s u l t s a r e shown in Table 7 and the advantages of using 

two-dimensional e s t ima t ion a re h i g h l i g h t e d . I t i s i n t e r e s t i n g 

to note t h a t the maximum e for the t h e o r e t i c a l case i s 2 . 

Table 7. Comparison of e for the Three 
P r e d i c t i o n Po in t s 

Est imat ion Technique e a t Poin ts  
Using 1 2 3 

Real Rss(Ax, At) 1.2992 .6735 1.7089 

Fitted Rss(Ax, At) 1.527 .698 1.94 

1-Dimensional R (Ax, At) ssx ' 5.0200 .7800 2.4080 

Mean as the Best Estimate 2.0000 2 .0000 2.0000 

General Form of Equation (2.7 ) 2.53 .722 2.56 

Discussion of the Results and Conclusions 

From the r e s u l t s of Table 7 two conclus ions can be drawn. 

The f i r s t conclus ion i s t h a t the two-dimensional e s t i m a t o r i s 

supe r io r to the one-dimensional e s t ima to r when the process, i s 

two-dimensional . The percentage dev ia t ions of e from t h e ' t h e o ­

r e t i c a l b e s t values a r e 17 .5 , 3 .7 , and 12.4 p e r c e n t s for the 

two-dimensional f i t t e d a u t o c o r r e l a t i o n as compared to 286.0 , 

16 .5 , and 41.0 p e r c e n t s for the one-dimensional a u t o c o r r e l a t i o n 

func t ion . This r e s u l t was a n t i c i p a t e d from the beginning of 

t h i s r e sea rch . Even the choice of the mean as the bes t e s t ima te 

gives b e t t e r r e s u l t s than the one-dimensional case for two of 
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the three points. The second conclusion is that the method 

devised in Chapter III to extrapolate and refine the autocor­

relation function works more efficiently for estimating points 

closer to the sampling lattice than distant ones. The reason 

for the second conclusion is that the weighted least-squares 

method of Chapter III lays more weight on the crude R (Ax, At) 

when Ax and At are small and, hence, the autocorrelation func­

tion fit is poor in regions where Ax and At are large. This 

fact can be evidenced in Figure 15 where the fitted autocorre­

lation function follows the crude autocorrelation function 

closely in regions of small A-t and exhibits poor fit for large 

Al. Also note that for A£ between 8 and 16 the fitted autocor­

relation function deviates considerably from the desired auto­

correlation function, thus, causing the percentage deviation of 

e from the theoretical value to increase. 

In the simulated processes, points whose Ax and At sepa­

rations are greater than 40 units are not correlated because 

the weighting matrix was truncated. If estimation is attempted 

for points whose separation from the sampling lattice is such 

as to cause most sampling lattice points to fall outside the 40 

by 40 range, the results obtained by using the fitted autocor­

relation function will be in large error. In these situations 

it is best to use the mean as the best estimate. A criterion 

for judging the range of the estimator is that c for a particu­

lar point must not exceed the variance of the stationary process. 
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Empirical Sensitivity of the Parameters 
in the Functional Form 

In this section the effect of variation in the parameters 

of the closed functional form (of the autocorrelation function) 

on the expected value of the squared error will be studied. 

This study is important because from time to time the process 

characteristics change, e.g., drift in frequency or change in 

the decay constant of the autocorrelation function, and it is 

essential to know how the estimator will perform under these 

new circumstances. 

For this investigation the correct autocorrelation func­

tion form as given by Equation (2.6) for process 1 is considered. 

The values of the parameters in Equation (2.6) are A = .075, 

B = .075, D = 2, u =0.3 and u = 0.3. The sensitivity of 

the parameters is performed empirically about point 1 of Figure 

23. One parameter is varied at a time keeping the remaining 

parameters constant at their true value, and its effect on e is 

noted. The results are shown in Table 8. One hundred fifty 

percent variation in each direction around the true value; of 

u and u. is the maximum permissible limit, since at that limit 

e is greater than the variance of the process. In the cases of 

A and B, 33.3 percent variation in the negative direction and 

300 percent variation in the positive direction is the maximum 

permissible limit. As expected, variation in D did not produce 

any change in e. When empirical sensitivity analysis is per­

formed about point 2 in Figure 23, the percentage maximum per­

missible limits substantially increase. This fact is illustrated 
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Table 8. Sensitivity of e on the Parameters 

Parameter Being 
Varied About Point 1 

.1 1.870 

.2 1.429 

Sc .3 1.299 
.4 1.409 
.5 1.671 

1.0 2.167 

.01 7.624 
A .03 5.600 

.06 1.376 
and .075 1.299 

.1 1.340 
B .15 1.478 

.25 1.729 

.5 1.299 
2.0 1.299 
6.0 1.299 

Results for u are the same as u 
t x 

Fixed values are kept at y = .3, < j = . 3 , D = 2 , A = .075 
and B = .075 x 

in Figure 24, and suggests that further the separation of the 

prediction point and the sampling lattice, less flexibility is 

available in the parameters. 

Sensitivity of the functional form itself is analyzed by 

fitting the form of Equation (2.7) to the first simulated process 

having the form of Equation (2.6). The results are shown in 
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Table 7 for the same three prediction points of Figure 23, 

Although the percentage variation in e from the correct form 

varies for each point, its performance is still acceptable for 

points close to the sampling lattice. This suggests that in 

cases where the correct functional form of the autocorrelation 

function is not known, a good approximation is the form of Equa­

tion (3.5). 
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CHAPTER V 

APPLICATION OF THE METHOD TO A PAPER MILL PROCESS 

AND A COMPARISON WITH SOME EXISTING METHODS 

A schematic view of the paper making process is shown 

in Figure 25. The homogeneous mixture of cellulose fiber and 

water is forced out of the headbox slot and is carried by a 

bronze screen to a complex of presses, dryers and calendars, 

the output of which is wound on a reel. A traversing Beta 

Gauge senses the instantaneous basis weight (essentially mass 

per unit area) of the paper in the region between the calendars 

and the winder. A typical paper sheet is 20 feet wide and 

travels at the rate of 2000 feet per minute. Relative to this 

high speed, the Beta Gauge moves at a slow pace of 20 feet per 

minute which generates an angle of about 40 minutes between the 

gauge path and edge of paper. The instantaneous output signal 

from the Beta Gauge is the basis weight signal, the undesired 

sensor noise being substantially removed by a built-in filter. 

The randomness of the basis weight is due to the slot profile, 

pulsating flow caused by pumps, vibration of the machine members 

and fluctuation of the fiber to water ratio in the headbox among 

other things. 

Field data was collected by a Southeastern paper mill. 

Since the machine is a production unit, the author had very 

little control over the type of data that was collected. The 



I!„, repr, «.,«•„„„ *m», the j , , , , , , , , , . , ! steps ,„ ,j,< - u U w of paper Ha ,>„*,.» lwglI15 ,„ the tore* 
tsterf »<«1 *<• t,„K , JW m i u i u l ; , c u l . i m i *;,,,„.,, ,„ d ( e ,„,,, l h t r < ; u ^ U r ) > t ,d U ( a n c < j a n d ^ 
cat «Ho awdl ihipv U.emnals art added to c W <h.ps „ , hogc pressure m , l , n » h m the cellulose iibus 
, « ^.pan.trf f ™ other e l e c t s „ | , t « TO„j l h c w a,er% , v ( u d l m U „ C ( , , m W J J M ^ ^ 
screened. Wenched, cleans and refined, At this point the, are mixed and blended with vinous additives, 
«<h as dees and p l a n t s , « A « and m « Ware tb>, are rcetd* to move onto the m*t maelum. 
T * " K a" i'uiP ' ' ' «« a « fetmed into a wet sheet on jm endless brona: screen vheie water begins to drun 
off. Tf», »u »ck of paper the., b carried though press rolls and over steam heated cylindrical dtwrs 
>» -".tiplete Ac drying Wh,]c berng dried it n w be given a tanct; of different treatments w adapt u 

™d f*- W , ' s ' v"!«>a'» Mill, recove, ptdpm,. chermcals tor a use m the process, senile 
irnu of the- wood ale rtcm«<-d to sent as u » materials for manutactured chemical produus 

asm* Se*4»T f4 , 
ms($fctn-jfc 

Figure 25. Panorama of Papermaking Today 
oo 
oo 



89 

data received is only good for prediction on the scan path since 

no verification means are available for points outside the scan. 

The data was collected as the scanning gauge was traversing 

from the front to the back of the machine. The first observa-

tionowas collected at the same start position and each observa­

tion thereafter, for a total of 79, was collected on a one second 

interval. The data was punched into cards with 10 successive 

cards constituting one set or one scan. The first value in card 

one was the time at which the first observation for the scan 

was obtained. Machine direction data was also collected on a 

one second interval with the scanner in a stationary position 

towards the middle of the web. The speed of the paper machine 

was 2201 feet per minute and the sensor speed was 2.25 inches 

per second. The average basis weight was 38 lbs. and moisture 

was in the range of 4.5 - 5 percent. 

The persistent cross-directional profile is first sepa­

rated from the data and the remainder is verified for wide 

sense stationarity. The crude autocorrelation function is then 

extracted and 95 percent confidence bounds placed around it. 

This crude autocorrelation function as shown in Figure 26 is 

passed through a Bartlett lag window to yield the refined 

autocorrelation function. Extrapolation of the autocorrelation 

function is not performed since verification of the results is 

not possible outside the scan path. The refined autocorrelation 

function is then used in one point ahead estimation of four 

points on the scan path and the signal is reconstructed by adding 

the persistent cross-directional component. One point ahead 
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estimation means predicting one unit in the future on the scan 

path. Variance of the reconstructed signal is also determined 

over eighteen scans. This variance is shown in Table 9, in which 

a comparison is made with the variances for the same points 

obtained by using three other methods, some of which are being 

used in the paper mills. 

The three other methods are: Brewster's method, one-

dimensional estimator with Bartlett filter and two-dimensional 

estimator without Bartlett filter. Their algorithms are pre­

sented below along with the algorithm for the variance about 

zero mean. 

Brewster's Method (1) 

Consider q.. as representing the signal on the j t h scan 

and i t n point on that scan, then 

Table 9. Comparison of Experimental £ for Various 
Methods used in Basis Weight Estimation 

Methods 

One Point Ahead Prediction 
Variance at Points 

25 50 79 

Brewster's Method 

1-Dimensional^ with 
Bartlett Filter 

2-Dimensional: without 
Bartlett Filter 

2-Dimensional with 
Bartlett Filter 

Variance about Zero Mean 

5.339 .874 3.119 3.416 

3.559 2.776 1.888 1.629 

3.823 1.484 10.167 2.039 

2.797 .905 .8875 1.772 

3.842 3.574 2.528 3.510 
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, = i 7 q., (5.1) 
i = l 

Cij = G(qij * V " ( 1 " Q ) c i , j - 1 ( 5 ' 2 ) 

/s A 

m. . = q. . - c ( 5 . 3 ) 
i j M i j i , j - l 

* 
m . . = C » i j + ( l - C ) V l ( . ( 5 . 4 ) 

q. , . = m. . + c . , . ( 5 . 5 ) 
Mi+l,j ij i + l,j v ' 

A /N 

where c. . represents the cross-directional profile, m. . rep-

resents the machine-direction deviation, m. . represents the 

filtered m. , to be used in control and q. , . represents the 
ij i+l,J 

one point ahead prediction. The value of a is chosen as .3 and 

the value of C as .95. 

One-Dimensional Estimator with Bartlett Filter 

The machine-direction data is used to obtain the crude 

one-dimensional autocorrelation function. This crude autocor­

relation function is passed through a Bartlett lag window (9) 

to give the refined one-dimensional autocorrelation function. 

The refined autocorrelation function is used along with the 

scan path data for estimation. The rest of the algorithm is 

the same as in Chapters III and IV. 

Two-Dimensional Estimator without Bartlett Filter ,v '•, 

In this method, instead of using the refined two-dimen­

sional autocorrelation function, the crude one is used. 



93 

Variance about Zero Mean 

In this method, the mean of the process or the persistent 

cross-direction profile is considered as the best estimate of 

the signal. The algorithm consists of 

N 

. . 1 y 
li N A" qij 

(5.6) 

s. . = q. . - q. (5.7) 
lj lj l 

A? = (s. . - q.) 2 (5.8) 
l v i j n i ' v ' 

+•1^ ^ l -

where q. . is the signal on the i point of the i scan and 
IJ 

p + v> 

6 is the variance for the i strip. 

Discussion of the Results and Conclusions 

In this chapter the approach developed in this thesis is 

applied to a real sheet paper process. Extrapolation was not 

performed because the available data could not be used for veri­

fication of the extrapolation results. Instead, only the refined 

autocorrelation function was used in one point ahead prediction 

on the scan path. The modified Peterson and Middleton's esti­

mation technique of Chapter IV, is used because of its compu­

tational advantage over Blum's technique. It is evident from 

Table 9 that the proposed method is superior to the other methods. 

The reason for the percentage differences not remaining constant 

is because only eighteen values were used in obtaining the vari­

ance and the variance did not have a chance to reach a steady 
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value. The choice of the number eighteen was governed abso­

lutely by the data base furnished in which only eighteen scans 

were consecutive. A comparison with the variance of the process 

shows that the other methods are quite marginal and that in many 

cases it would have been better to choose the mean as the best 

estimate. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

In this thesis a solution is obtained for the difficult 

problem of two-dimensional estimation from a restricted sampling 

lattice. Attention is restricted to a class of two-dimensional 

stochastic processes which is a sum of a Gaussian stationary 

process and a nonrandom process that is a function of the spatial 

coordinate only. The concept of using the functional form of 

the autocorrelation function for attacking the problem of opti­

mal estimation from a restricted sampling lattice is a signifi­

cant contribution to the state of the art. When the functional 

form is not known a priori, the exponential - cosine form proves 

to be a good approximation. The estimates obtained with the 

proposed approach have smaller mean square estimation errors 

than the ones obtained by using existing methods, and in this 

respect, the proposed approach has a distinct advantage over 

existing schemes. 

In Chapter I the problem is stated and the approach to be 

followed is discussed. The properties of two-dimensional sta­

tionary processes are presented from a practical view point. 

All the techniques developed in this thesis make use of these 

properties and this in itself, should suggest the importance of 

these properties. 
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In Chapter II the stationary part of the process described 

in the "Statement of the Problem" is generated on a straight line 

scan path. A technique to simulate Gaussian stationary processes 

\vith the desired exponential-cosine autocorrelation function 

from discrete white noise has been developed. The results of 

the simulation appear to be good. The desired autocorrelation 

function lies within the 99.76 percent confidence bounds of the 

crude autocorrelation function. Also, the truncation and digi-

talization errors appear to be negligible. The method is not 

limited to exponential-cosine forms but will synthesize any 

process where the synthesizing filter impulse response is known. 

In Chapter III the crude autocorrelation function is 

successfully extrapolated and refined by taking advantage of 

the functional form of the autocorrelation function. The results 

of the first simulated process show that the fitted autocorre­

lation function lies well within the 99.76 percent confidence 

bounds of the crude autocorrelation function. Also, the power 

spectrum analysis is able to extract the initial values of the 

frequencies present within 7.0 percent of the original vaiues. 

The real test of the procedure of Chapter III is presented 

in Chapter IV where the estimation error, or the expected value 

of the squared error using the fitted autocorrelation function, 

is compared with the one using the real autocorrelation func­

tion. For the three estimation points chosen the percentage 

differences of the expected values of Ithe squared errors were 

17.5, 3.7, and 12.4 percents, the larger percentages arising as 

file:///vith
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one goes further from the sampling lattice. However, all of 

them are well within the maximum permissible limit, beyond 

which the variance of the process is exceeded. The compari­

son in Table 7 shows the superiority of the proposed method 

over existing methods. In the same chapter, the empirical 

sensitivity of the parameters in the functional form of the 

autocorrelation function is studied. From the results it is 

clear that a certain margin is available in which the expected 

value of the squared error is still below the permissible limit, 

for drift in the parameter values. This margin is a function 

of the distance of the estimation point from the sampling lat­

tice and the parameter itself. Also, a very limited empirical 

sensitivity analysis of the form of the autocorrelation func­

tion is performed and the results show that the exponential-

cosine form is indeed very promising in cases where the form is 

not given a priori, 

In Chapter V the approach developed in this thesis is 

applied to a real sheet paper process. Extrapolation was not 

performed because the available data could not be used for veri­

fication of the extrapolation results. Instead, only the refined 

autocorrelation function was used in one point ahead prediction 

on the scan path. It is evident from the results shown in 

Table 9, that the estimation error is least for the proposed 

method and, hence, the proposed method is superior to the exist­

ing methods. 
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Recommendations 

The author is of the opinion that the work reported in 

this thesis is only the beginning of many works to appear in the 

field of estimation from restricted sampling lattices. More and 

more scientists and engineers sense the need for techniques which 

will enable them to take advantage of the sophisticated optimal 

estimation theories. These techniques will act as an interface 

between the data available in practice and the requirements of 

optimal estimation theory. In this thesis, the process was 

Gaussian and stationary. There will be situations when either 

one or both these conditions need to be relaxed. When the 

Gaussian condition is released, nonlinear estimation theory 

will be used. When stationarity is relaxed, optimal estimation 

will be performed using the process dynamics. The point being 

emphasized is that the requirements of optimal estimation change 

for different class of stochastic processes and, hence, new 

interface tools have to be devised. 

Certain topics discussed below, have not been given suf­

ficient consideration in this thesis due to lack of time and 

could be developed in the future. The sensitivity of the scan 

path form on the extrapolation and refinement of the autocorre­

lation function would be an interesting study to undertake. This 

topic is of special interest to paper manufacturers since their 

scan angle is only 0° - 41 and the author is of the opinion that 

this angle is very poor for extrapolation purposes. The reason 

is that the contribution of u . in Equations (3.19) and (3.20) 
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becomes negligible and, hence, the difference between u> and 
sil 

u .„ becomes very small. The indirect power spectrum technique 

is not able to distinguish between u ., and w .' . 
sil si2 

In the fitting process of Chapter III, the weighting term 

y. was given the form of Equation (3.7). This form of Y 

resembles the Bartlett lag window for recovery of the process 

statistics. The author is aware of the Hamming, Hanning and half 

a dozen more lag windows which can be used. It is conceivable 

that there exists an optimal lag window for a particular class 

of stochastic processes. An understanding of optimal lag 

windows and their performance in estimation of a signal would 

be a valuable contribution to the state of the art. 

Another topic that needs further study is the exponential-

cosine form of Equation (3.5). In this thesis the choice of 

Equation (3.5) stems from Bendat's observations that most one-

dimensional random processes in practice have the exponential-

cosine form for the autocorrelation function. It would be desir­

able to study a whole class of two-dimensional random processes 

to verify Equation (3.5). 
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APPENDIX 

COMPUTER PROGRAMS 

The useful computer programs and subroutines which have 

been used in this thesis, are included here. 

Generation of 2-D Random Process from White Noise 

This program uses discrete Gaussian white noise to gener­

ate a two-dimensional random process with an exponential-cosine 

autocorrelation function. This program calls for subroutine 

Shaper which is also included. 

Subroutine SPECT 

This subroutine is used for generating the raw, Hamming 

and Hanning power spectra by the indirect technique of Blackman 

and Tukey (9). 

Subroutine BAND 

This subroutine is used to place 99.76 percent confidence 

bounds around the crude autocorrelation function by using the 

Fisher's Z statistic (23). 

Subroutine DIPLOT 

This subroutine plots YARRAY versus XARRAY, where XARRAY 

and YARRAY could be any two variables. 

Subroutine PLOT3D 

This subroutine plots the function FCN2D (I, J) on a IMAX 

by JMAX array. XSIZE and YSIZE represent the maximum horizontal 
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and vertical length of the base on which FCN2D(I, J) is plotted. 

HEIGHT represents a scaling factor which is multiplied with 

FCN2D(I, J). The result of multiplication with the largest 

value of FCN2D(I, J) must not exceed (10" - YSIZE), where ten 

inches represents the width of the plotting paper. This pro­

gram calls for subroutine PLTT which is also included. 

Subroutine FMFP 

This subroutine is used to find the local minimum of a 

function of several variables by the method of Fletcher and 

Powell (14). 
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-C-

c 
--C-

c 
c 

-_C-
c 
c 
c 

_C-

.6ENERAII0N. 0F_2!-O..RAND0M_PRaCESS._FilOM-WHLTE_NOlSE^ 
INPUT - NS=N0 OF SCANS, N=N0 OF POINTS IN T DIRECTIONtM= NO OF 
POINTS I N X DIRECTION, NN= NO OF POINTS- IN T DIRECTION PLUS 
WEIGHTING MATRIX ARRAY IN T DIRECTION, MM=NO OF POINTS IN X D IR . 

-CUJS-IKEIGiiTIi»G MATRIX-ARRAY JW-XGIJ^CTIi^#—MW=WElGHTlNG-MATRIX 
GRID IN T D I R . , MW=WEIGHTING MATRIX GRID IN X DIR.# NNN=WHITE 

-NO!SE -ARRAY. 0UTpUi ,^_TAPE-LABEL£O -DATA,PLOT-HE — 
DATA ON SCAN. I N P U T . . . I N P U T 1 (SPE LlVfcfLED N o i s e f \MD 
INPUT TAPE LABELED WHITE, NBLO=BLOCK LENGTH ON TAPE WHITE AND N.0IS£..... 
CONSISTING.OF 31 B L O C K S , N N N = N B L 0 * 2 . 

-tlSEJ=U0-OF—FREQUENCY SETS 
PARAMETER NSET=2 

—PARAMETER MM=79-
PARAMLTER NN=79 

-PARAMETER M=«*Q..._ 
PARAMETER N=HO 

-EARAMETER NW=HQ.. 
PARAMETER M.W=40 
-PARAMETER NS=30 .. 
PARAMETER NBLO=3160 

PARAMETER NNN=6320 
—DIMENSION _WtMW,NWXxSiWM«-NOU-
1CLOCM1202) 

-•OIMEtlSI ON SUHi NSJ~M4 

JA NNN 1,Y<NS+M UP-Ll 12U24-L 

JER=1 
16 CONTINUE 

K=l 
_IER=^ 
DO 30 1=1,2 
Ll=NBLO"Mi~l^U-i-
L2=L1-MNBL0-1) 
I F luER^EQ.HREAD <3) ( Z ( J ) , J = L l » L 2 ) 

30 IF (JLR.EQ.2 ) R E A 0 U H Z ( J) »J=Ll»L2) 
DQ_i-4J=l#MM-
DO 2 J=1#NN 
S(I»J)=Z.tJC)-

2 K=K*1 
1 CONTINUE 
CALL SHAPER(WrNW,MW) 
Jt=l 
10=1 

T=l. 
9 IX=X 

IT=T 
JLl IOi IXiJSQ*. 
DO 3 1=1,MW 

no u J=I.MW 
«• Y(IOtIX)=YtIOr lX)+S(IX-H-lilT*J-l)*W(If J) 
3 CONTINUE 
SUM(IO,IX)=SUMlIO.IX»+Y(IO»lX) 
PL(KJ=Y(IOiJXJ 
CLOCK(K)=K 
_H=K*± 

6 IF(IER)7r7r8 
7 X=X+1 

T=T+1 
_lF_lX-MJiLt9xlOi 

10 IER=+1 
X=M 
T = l . 
GO TO 21 

8 X=X-1 
_ I = J * 1 _ 

I F ( X ) 1 1 » 1 1 , 9 
LB=--1 

X = l . 
T = l . 

21 NAS=N-1 
I F ( I 0 . E Q . N S ) 6 0 T 0 . 5 
10=1041 
DO 22 1=1»MM 
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DO 23 J=1.NAS 
..21-SI IJ*JJ =S ll« J+Ni — 
22 CONTINUE 

IF U E R . E Q . D R E A D 13) IZIJ). J51.NBL0).. 
IF (JER.EQ.2) READ<<H(Z(J).J=i»NBLO) 
KK=1 
DQ-1B -I-l.MM 
DO 19 J=N.NN 
SII.J)=Z(KK) - . .. -

19 KK=KK+1 
1R CONTINUE 

GO TO 9 
5-.CALL -D1PL0T (CLOCK.PL. 1202) 

WRITE 16,31) 
--3i FORMAT (2X.-»2-0- RANDOM PROCESS'! -

WRITE (6,20) U Y U . U ) tU=l.M), 1=1 »NS) 
JER=JE4»*-1-
IF(JER-NSET)16,16.17 

-17- WRITE (2) USUMU*JUJ=l,M)-»-I=l'NS4~ 
20 FORMAT (7F10.S) 

-END- - • 
SUBROUTINE SHAPER(W,NW,MW) 
INPUT....VALUES OF PARAMETERS TO BE USED IN THE FUNCTIONAL FORM. 
OIM£NSION__WJMW, mi. 
SUM=0. 

. REAJK5/20 i.ENQ=7_QJ Ai.Di.WX.JlO'tU.l ,X>Z 
C , 0 7 5 . 1 5 . 1 6 5 . 165 
C . 0 7 5 . 2 1 2 . 3 . * 

.642 

. 785 
. 6 4 2 
.7fi5 

WRITEC6.30) 
SO FORMAT O X . ' W F I f i H T I N l i M A T R ^ ' ] 

DO 1 IX=1,MW 
no ? I T = I . M W 

F = l . 
T = I T - J 

X=IX-1 
X=Xt,5_ 
T=T+.5 
EX=EXPlr-A*X) 
ET=EXPC-A*T> 
GX=£X*COS(WX»Xl 
5X=D1*EX*SIN(WX*X) 
CI=EI»£OS-(W.T«T4 
ST=D2*ET*SINIWT*TI 

W(IX,IT)=D*(CX+SX)*(CT+ST)*F 
_SUM=SUM*WlIXtIT1**2 

2 CONTINUE 
W1NUE-

WRITEI6.20)((W(I,J),J=1,NW),I=1.MW) 
WRITE (b.20)SUM 

20 FORMAT (7F10.5) 
RETURN 

70 STOP 
END 

Subroutine SPECT 

SUBROUTINE SPECT(C.DT»KG) 
£̂ JtfIP.CPJ<ARlAiLCE_.V£.C.TO.S OF DIMENSION KG,OT=LENSTH OF SMALLEST 

C ELEMENT. KG=DIMENS"lbN OF C VECTOR-

-C Q£IAJJ^P^£B^P^LTJiy_M_i=D_ 
DIMENSION C(1000)»V(10O0).HM<1000)»HN(1000).U(1000).OMEGA(1000) 
J3iMENSJQN-_rjlO.OJJii.a.(.10_o.OJ _ 
WRITE (6»3oY 

_3Ji_F0RMAT (2X.'SPECTRUM.TRIANGULAR LAG SPECTt POINTS. FREQ. 0NE6A*) 
K=KG 

• Z=K 
TRIANGULAR LAG WINDOW 
-DP_4_J.=l.»k 
T=I 

».T(ll:C(II»ll.-»/?l 
00 2 1=1.K 
SUM=0.0  SUP=0. 

M=K-1 
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DO 1 J=2»M 
B = l - 1 
A=J-1 
SUP=SUP+T(J)*C0S<A*B*3.1<*/Z) _ 

1 S U M = S U M + C < J > * C 0 S < A * B * 3 . 1 M . / Z ) 
V( I>=DT* (C (1>+2 . *SUM+C(K) *C0S<B*3.1«»>> 
0 ( I ) = D T * ( T ( 1 ) + 2 . * S U P + T ( K ) *C0S<B*3.1*») J 

VREQ^B7TZ7*Z *DTT 
_ 0 M E 6 A < I ) = 2 . * 3 . l 4 * F R E Q __ __ 
2 WRITE<6»21)V<I>»Q(I)»I»FREQ»OMEGA(i) 

21 FORMAT <F10.<*»F:L0.<*»Iln»F10.5»F10.5) 
20 FORMAT <3F10.«t> 
22 FORMAT ( U0»F10.5> F10.5*F10.5)  
23 FORMAT (I10#F10.btFi0.5) 
_M0=KG+2 
CALL D1PL0T<0MEGA.V»M0) 

C HAMMING AND HANNlNS ESTIMATES 
-RITE (6»31) """ "• ~ 

3} FORMAT (gX*«POIMTtHANNING* HAMMING»RAW SPECTRUM') 
M=K-1 
DO 3 I=2rM _ _. _ 
HNU)=.25*V<I-1)+.5*V(I) + .25«<V<I + 1) 
HM (1) =. 23*V (I-1) •. 54*V (I) ts.23*V (1+1) 

3 WRITE <6#22) I»HN<I)»HM(I)»V(I) 
M0=KS+2-2 
CALL OlPLOT(OMEGAiHMiMO) 

C HIGHER ORDER SMOOTHING 
M2=K-2 

_DP__5 I=3_#M2 
UI ( I ) = . ib*m ( I - 1 ) + . _8*H~N < I ) + . 16*HN ( I +1) 

5 WRITE ( 6 * 2 3 ) I » U < D > I / U )  
END 

Subroutine BAND 

SUBROUTINE BAND(CfKKfSAMPtCZERO) _ _ -
C SUBROUTINE FOR PLACING99.7PERCENT CONFIDENCE BOUNDS 
C INPUT _ C = AUT0C0VARIANCE»«=DIMENSI0N OF C»SAMP=SAMPLE SIZE 
C M 2 = U < * 2 - 2 ) + 2 , C Z E f t O = V A R I A N C E 

PAJRA^EI£R_ M2=B0 : ;  
DIMENSION CL0CK(M2)#r(M2) 
DIMENSION C (JU l j_SMP(5000.) _ . ______ 
(.RITE (6»30 ) 

30 FORMAT___<2X»_!J,Q WER_L AUTOCORRELATIQN. UPPERr SAMPLE S I Z E * P I F F ' ) 
DO H K=2»KK 
___2CJLL_:1L_(_-L 
CL0CK(KK+K-2)=K-1 
R=C(K. /CZERQ__ 
Z = ( A L 0 G ( ( l . + R ) / ( I . - R ) ) ) / 2 . 
COrfER=CZERO»TANH(Z-3.O0/SQRJ1SAMPJ K ) - 2 * ) ) , 
UPP_R=CZERb*TANH(Z+3.00/S_RT(SAMP(K)-2. ) ) 
_JA=i_=UE£-5 
Y(<K+K-2)=C0«ER 
DIFF = A B SJLU PP ER-CO tf ERJ , 
-R ITE U ) D I F F 

«» KRITE (6*_201COrfERi C(K) .UPPER.SAMP(K).DIFF  
CALL DlPLbT(CL0CK»Y»M2) 

20 FORMAT ( 5 F m . 8 )  
END 

Subroutine BAND 

SUBROUTINE DlPL0T.XARRAY»JfARRAY.MO> 
C INPUT - M0=Nb+2=NUMBER OF DATA POINTS PLJS _2." PLOT TAPE~TS~AL**f!> 
C LABELED PLOT AND IS NUMBERED 9) " . 
C OUTPUT - PLOT WILL APPEAR OVER A 10*10 INCH GRID. 

DIMENSION IBUF(IOOO) 
DIMENSION XARRAY<M0>*YARRAY(MO.""'. 
N0=M0-2 
CALL PLOTS(IBUF»1000»9) "" "'" 
CALL PLOT (.0#-.5»3) 
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CALL SCALE"(XARRAYt 10.VNOVIT 
CALL SCALE (YARRAYtlO.tNOtl) 
K0=N0+1 ~"' " "~ ""' 
CALL AXIS (O.t O.t lOHX-ABSCISSAt-lOf 10.t.0»XARRAYUO)»XARRAY(MOn 
CALL AXIS <0.fO.tlOHY-ABSCISSAtl0tl0.#90.fYARRAY<KO)»YARRAY<MO)r 
CALL LINE (XARRAYtYARRAYtNOt1tOtINTEB)  
CALL PLOT Cl2.t~0.f-3l 
C A L^ PL9I_J»9" 0^999) 

END" " " " "" 

Subroutine PL0T3D 

SUBROUTINE PL0T3D(XSIZE,YSIZE»HEIGHT#FCN20»IMAX»JMAX) 
DIMENSION FCN2D(lMAXtJMAX) 
DIMENSION HID(bOO) 
COMMON IBUF(IOOOO) 
REAL LASTXfLASTYtLASTH»LASTHM 
XPAGE=0.0 
YPAGE=0.0 
LASTHM=0.0 
NIJ=IMAX+JMAX 
RI=IMAX-1.0 
RJ=JMAX-i,0 
CALL PLTU0,0#«12.5f-3> 
CALL PLTTC0.0t2.0t-3) 
DO 1 I=1#NIJ 

1 HID(I)=-0.5 
DO 7 J=1»JMAX 
AJsJ.1.0 
DO 7 I=1»IMAX 
AI=I-1.0 
LASTX=XPAGE 
XPAGE=UJ-t-AI)*XSl2F/tRl-t-RJ> 
LASTY=YPAGE 
Y P A G E = ( A J * R I / R . J - A I * R J / R I + R J ) * Y S I Z E / < R J + R I ) + H E I G H T * F C N 2 D C I , J ) 
LASTH=LASTHM 
LASTHM=H1D(I+J) 
I F ( Y P A G E - H I D ( I + J ) ) 5 t 5 # 2 

2 I F U . N E . l ) GO TO 3 
CALL PLTT(XPAGE#YPAGE,3) " '"" 
IPENz2 
GO TO <* 

3 CALL PLTT(XPAGE#YPAGE,IPEN) 
IPEN=2 

H HID(I+J)=YPAGE 
GO TO 7 """ 

5 IF(I,EQ,1) IPEN=3 
IF(IPEN,fcQ.3) GO TO 6 
X1N=LASTX*HI0(1+J)„LASTH*XPAGE-LASTX*YPAGE+XPAGE*LASTY 
X1D=HID(i*J)-LASTH-YPAGE*LASTY 
X1=X1N/X1D 
Y1={X1*(HID(I+J)-LASTH)»LASTH*XPA5E-LASTX*HI0(I4.J))/IXPAGE-LA$TX) 
CALL PLTT(X1»Y1#2) ' ^ i 

IPEN=3 * ' "" r-"zr-
6 CALL PLTT(XPAGE»YPASE,IPEN) 
7 CONTINUE " " ""• 
DO 8 I=1»NIJ 

8 HID(I)=-0.5 
DO 16 l=IMAXtl#-i 
AI=I-1,6 """••"" 
DO 16 J=1»JMAX 
AJ=J-1 T 
LASTX=XPAGE 
XPAGE=tAJ+AI)*XSIZE/<Rl*""J) " 
LASTY=YPAGE 
y P A G E = U J * R I / R J ™ A l * R J / R I * R J ) * Y S I Z E / ( R J + R l ) * H E I G H T * F C N 2 D U ; j r T 
LASTH=LASTHM 
LASTHM=H4D(I+J) 
I F ( Y P A G E - H I D ( I + J ) ) 13 , l< t»9 

9 I F ( J . N L . l ) GO TO i n " " ~ 
CALL PLTT(XPAGE»YPAGE,3) 
IPEN=2 
00 TO 12 

10 IFUPEN.EQ.2) GO TO U 
XlN=LASTX*YPAGL-LASTY*XpAGE-LASTX*HlD(I+J)*XPAGE*HlDtI*J- l ) 

Cl2.t~0.f-3l
PLTTC0.0t2.0t-3
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X1D=YPAGE-LASTY-HI0U+J>+HID(I+J-1> 

Yl=Ul*nPAGE-LASTY)*LA5TY*XPAGE-LASTX*YHA6E)/UPA6E-LASTX) 
CALL PLTT(XtiYlt3) 
IHENr2 

11 CALL PLTT(XPAGE,YPAGE,IPEN) 
12 H1D(I*J)=YPAGE 

GO TO 16 
13 IPEN=3 

GO TO 15 
1H IF(J.EU.l) IPtN=3 
15 CALL PLTTCXPAGL»YPAGE,IPEN) 
16 CONTINUE 

CALL PLTT(XSI2E+<l,0»-1.0»-3) 
RETURN 
ENO 
SUBROUTINE PLTT(X»Y»IPEN) 
COMMON IbUF(10000) 
XLAST=XN 
YLAST=YN 
ILAST=IN 
XN=X 
YN=Y 
IN=IPEN 
IHIPEN.LQ.2.AND.ILAST.EQ.2) CALL PLOT(X»Y.IPEN) 
IF(IPEN.EQ.2.AND.ILAST.EQ.3) CALL PLOT(XLAST»YLAST»ILAST) 
IK(IPEN.EQ.2.AND,ILAST.EQ.3) CALL PLOT(X»Y»IHEN) 
IF(IPEN,NE,2.AND,IPEN,NE.3) CALL PLOT(X»Y.IPfcN) 
RETURN 
END 

Subroutine FMFP 

JC _£U QROAlT I JiE_F.MFP_ 
C 
_C PURPQSE-
C TO FIND A LOCAL MINIMUM OF A FUNCTION OF SEVERAL VARIABLES 
X BY-IHE-ME-IBOP OJi_ELEjCH£B_A»ID_P.O:w.ELL 
C 

X USAGE 
C CALL FMFP(FUNCT»N»X»F»G»EST»EPS»LIMIT»IER,H) 
X-C DESCRIPTION OF PARAMETERS 
X EiM31-j£JUS.EjtTMRIlTEN..J5UJBP»im^ TO 
C BE MINIMIZED. XT'MOST BE OF THE FORM 
C SUBROUTINE. ..F.UNCT.i.W*ARG.».VALt.GBAP..l_-
C AND MUST SERVE THE FOLLOWING PURPOSE 
JC_ FOR EACH N-DIMENSIQNAL ARGUMENT. VECTOR . APG, '•_ 
C FUNCTION VALUE AND GRADIENT VECTOR MUST BF. COMPUTED 
JC AND«_0.N_RETURNt-.SI0BED_I.M.VAL ANP—6RAD RESPECTlVEJiy._ 
C N NUMBER oF VARIABLES 
_C X - VECTOR OF DIMENSIQN_N CONTAINING THE INITIAL 
C ARGUMENT WHERE THE ITERATION STARTS. ON RETURN* i 
C X HOLDS THE ARGUMENT CORRESPONDING TO THE 

X C0MPUIE0_MIN1MUM_FJJNC1IOKT _y_ALUE_ C F SINGLE VARIABLE CONTAINING THE MINIMUM FUNCTION 
J: VAUjF ON REUJRNt I.F. F=F1X1^ 
C 6 VECTOR OF DIMENSION N CONTAINING THE GRADIENT 

X — VECTOR-CORRESPONDING T-Q-JHE-JMINIHUM ON-RETURN*. 
C I.E. G?6(X). 
_C EST __-_.IS. AN_ESTIMATE^F__TH£_MINIMUM_ FUNCTION VALUE-C EPS - TESTVALUE REPRESENTING THE EXPECTED ABSOLUTE ERROR, 
X A RFASONARLF CHOICF IS l.Q»,*J>6) f I.E^ 
C SOMEWHAT GREATER THAN 10««.(-D)» WHERE D I«! THE 
C NUMBER oF SIGNLFICANT_DIGITS IHJUQATING _P0IWT.__ 
C REPRESENTATION. 
J: LIMIT—-. MAXIMUM NUMBER -0F_ITERATI0N£, 
C IER - ERROR PARAMETER ^ . . ^ r 
f IER = 0 MFAMS C0NVER6ENCE_JLAS OBTAINED-C IER = 1 MEANS NO CONVERGENCE:IN LIMIT ITEPATIONS 
C IER =-1 MEANS ERRORS IN GRAOIENT CALCULATION 
C IER s 2 MEANS LINEAR SEARCH TECHNIQUE INDICATES 
C - -.— _.. - -IT IS LIKELY THAT THERE EXISTS NO MINIMUM, _ 
C H WORKING STOPAGE OF DIMENSION N*(N+7)/2. 
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REMARKS 
I) THE SUBROUTINE NAME REPLACING THE DUMMY AR6UMEMT FUNCT 

MUST BE DECLARED AS FXTFRNAL IN THE CALLING PROGRAM. 
---.- I D IER IS SET To 2 IF . STEPPING IN ONE OF THE COMPUTED 

DIRECTIONS* THE FUNCTION WILL NEVER INCRFASE WITHIN 
JC A T O L F R A B L F RA M G F QE_ ARGUMENT, 

X-

C IER = 2 MAY OCCUR ALSO IF THE INTERVAL WHERE F 
JC INCREASES.. IS..SMALL. AMD..THE-INITIAL.. .AR6UMEMT WAS 
C RELATIVELY FAR AWAY FROM THE MINIMUM SUCH THAT THE 

X MINIMUM WAS OVERLEAPFO. THIS IS DUE TO THE SEARCH._ 
C TECHNIQUE WHICH DOUBLES THE STEPSIZE UNTIL A POINT 

X IS FOIJNP WHERE THE-EUMCTION INCREASES, C 
-C SU»R0UIXNES_ANP .EUNCTIDN _SUBEfi.Q6RAMS_Re9.UIRED_ 
C FUNCT 

X-
C METHOD 

X i—THF MFTH0D_IS-DJlSCBJBEa..JN-TJj£JF^U>WII4g^RTJLCLE, C P. FLETCHER AND M.J.D. POWELL. A RAPID DESCENT METHOD FOR 
_C liI*II.MIZATIO.N| _. ; 
C COMPUTER JOURNAL VOL.6*ISS. 2# 1963. PP.163-168, 

X . : . 

SUBROUTINE F M F P ( F U N C T » N # X » F , G » E S T . E P S > L I M I T » I E R . H ) 

C DIMENSIONED DU^MY VARIABLES 
DlWENSlDJsLHUlli)X)liX(lDOaUiitlDQtLL 

C 
X COMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAl ARGUMENT 

CALL FUNCT(N»X»F»G) 
-C-C RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX 

IER3U 
KOUNT=0 
N2=N+N 
N3=N2+ti_ 
N3l=N3+l 

•l_K=a31 
DO «l J=1#N 
_H(K) = l. 
NJ=N-J 

AElMlitSiZ. 
2 DO 3 L=1#NJ 
KL=K+L 

3 H(KL)=0, 
JL.K=KL+1 

C 
_C SIMT_II£RATJiJN_^QQp_ 

5 K0UNT=K0UNT +1 
X-C SAVE FUNCTION VALUE. ARGUMENT VECTOR AND GRADIENT VECTOR 

-jQLD£=E. 
DO 9 J=1»N 

JteH±4 
H(K)=G(J) 
K?Ki.N 

X-
H(K)=X(J) 

C DETERMINE DIRECTION VECTOR H 
JtrJtN.3 
T=0. 
DO 8 Lsi.N T=T-G(L)oH(K) 
-l£ilgJ.16r7»7 

6 K=K+N-L 
GO_ICLA-_ 

7 K=K+1 
6 CONTINUE 

_C_ 
9 H(J)=T 

C CHECK WHETHER FUNCTION WILL DECREASE STEPPING AL0N6 H, 
DY=0. ; 
HNRM=0. 
GNRH=P. 

C 
C__ _ CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR DIRECTION 
C VECTOR H AND GRADIENT VECTOR G. 

DO iO J=1»N 
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HMRM=HNRM+ABS(H{JM 
GiJRM=GfR?i+ARSlGi.vm 

10 DY=DY+H(J)*G(d) 
_C... - -
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTIONAL 

_C DERIVATIVE APPEARS TO BE POSITIVE OR ZERO, 
XF(DY)ll»51»5l 

_ c ; . 
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTION 

_C VECTOR H IS SMALL COMPAREDJOGRADIENT. VECTOR. 6. 
11 IF(HNKK/GNRM-EPS>5l»51il2 

~C "" SEARCH MINIMUM ALONG DIRECTION H _ 

C SEARCH ALONG H FOR POSITIVE DIRECTIONAL DERIVATIVE _ _ 
12 FY=F 

ALEA=a.»(EST*-F)^HY 
AMBDAsi, 

C USY^ESlT(iWTC^"olR~^EPSllK^~NLY IF ff~XS~POSXTXVE AND LESsTTHAN 
X 11. OTKERWISE...-TAKE_L....Ai.S.TEPS.17E: 

IF(ALFA)15,15,13 
13 IF(ALFA-AMBpA)jlk^5flS : _____ 
1H AMBDA=ALFA 
ISLALEAsjU ; 

c 
X SA^E._EUNCI10M_AJJID.J)ERIMAI1VE ____LM_!t___Q.__ OL0_ARGliMENT_ 

16 FX=FY 
[______ 

C 
X _ STEE_AReilMEnr..ALDNG_iJ 

DO 17 1=1,N 
17_X(I1=X1I1+AMBDA*HU1 

c 
X COMPUTE FUNCTION VALUE AND 6FA.PIENT FQR NEW ARSUMENT 

CALL FUNCT(N»XiF»G) 
F_Y=F_ . . 

C 
C CJDMPUTJL-DJR£CJl0MAL DERIVAJIVE DY^FOR MEW ARGUMENT, TERMlNATE_ 
C SEARCH, IF DY IS POSITIVE. IF ny IS ZERO THE MINIMUM IS FOUND 

PY=n. 
DO 18 IrlrN 

IB PY_aDy,t6,CX)___il.Ij 
IF(DY)19»36,22 

C fERMINATE-SE~A^CH~AXsb IF Y H T RJNCTlON VALUE~7NDICATES"THAT" 
X A MINIMUM HAS BEEN PASSED 

19 IF(FY-FX)20,22,22 
X _ , 
C REPEAT SEARCH AND DOUBLE STEPSIZE FOR FURTHER SEARCHES 

2__A^BDA=_A MBDA+ALFA . 
ALFA=Ar-BDA 

X END OF SFARrH Lppp ;  
C 

X IE.RM.INAJE IF T.H___CHj__(_E._It__AB6JJl_ENT GETS VEJ___J_A___E 
IF(HNRM»AMBDA-l.ElQ)16,16,21 

X — 
C LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EXISTS 

21 IER=2 ; ; i : 
RETURN 

r. ; . ; 
C INTERPOLATE CUBlCALLY IN THE INTERVAL DEFINED BY THE SEARCH 
X ABOVE AND COMPUTE THF ARGUMENT X FOR WHICH THE INTERPOLATION 
C POLYNOMIAL IS MINIMIZED 

gg T=O. : 
23 IF(AMBDA)2U,36,2<* 
£<L2s3«_L(F.X*Eyi/AMBQA+PxtDy -

ALFA=AMAXL(ABS(Z)»ABS(DX),ABS(DY)) 
DALFA=Z/ALFJL . 
DALFA=DALFA*DALFA»DX/ALFA*DY/ALFA 

IFU)ALFA)5l(25f25~ ~" 
2SJ-SALF.A*SQRUDALFA.)._ _ 

ALFA=(DY+W-Z)*AMBDA/(0Y+2.*W-DX) 
DO P6 1=1.M 

26 X(I)=X(I) + (T-ALFAUH(I) 
. C ._ _ .• -

C TERMINATE* IF THE VALUE OF THE ACTUAL FUNCTION AT X IS LESS 
C_ THAN THE FUNCTION VALUES AT THE INTERVAL ENDS, OTHERWISE RFDUCE 
C THE INTERVAL BY CHOOSING ONE END-POINT EQUAL TO X AND REPEAT 
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JLHtLINTERPOLATION* J/HICH END-POINT IS CHQQSEN DEPEND*; ON THE 
C VALUE OF THE FUNCTION AND ITS GRADIENT AT X 
C_ 

CALL FUNCT(N»X»F»G) 
IF(F-FX)27»27#28 

27 IF(F-FY)36»36t2fl 
2fl DALFA=0. DO 29 I=1»N 
29l_DALFA=DALFA+G CI) *H . i l l , 

IF(DALFA)30.33»33 
30 . IF.CF-F.X.) 3213i , 33 
31 IF(DX-DALFA)32»36'32 

a? EXSE DX=DALFA 
-IsALFA 
AMBDA=ALFA 
GO T0..23_„ 

33 IF(FY-F)35»3^.35 
3U IF(DY-PALFA)35,36>35 
35 Ff=F 

DY=DALFA 
AMBDA=AMBDA-ALFA 
_G0_.I0_._22  

C 
C COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRADIENT FROM 
C TWO CONSECUTIVE ITERATIONS 

a6..D5_37.J=lLN . _ 
K=N+J 
H (K) =GlJlrt) 1KJ ___ K=N+K 

31 H(K)=X(J)-H(KL, 
C 

_C TEBM1NATE * I F_F.UNC.Il0r.-HAS J-!Q_T._QECM ASFQ j j y j INSLLASULTERAlIfiML. 
IF(0LDF-F+EPS)51»38,38 

TEST LENGTH OF ARGUMENT DIFFERENCE VECTOR AND DIRECTION VECTOR 
.-LEAST N iTERATXOtJS-iiAyj: BEEN EXECUTEDi TERMIMA.TR> l£ 

BOTH ARE LESS THAN EPS 
J_1____R=0. _._. .___ .__ ; 

IF(K0UNT-N)tt2»39»39 
_a?_T=o. z=o. 

DO HO Jsl .N K=N+J 
JV=H(K)_ 
K=K+N 
T=T+AB&(t)LKll. 

UP 2=Z+W*('(K) 
~TF (HNK^EPS) *t 1» «41 •<*2 

_JU._IF(T-EP.S) 56>-56 tM2 

_C TERMINATE* TF NUMBER OF ITERATIONS WOULILJiyCEED LIMIT 
H2 lF(KOUNT-LIMim3'50»50 

PREPARE UPDATING OF MATRIX H 

DO «t7 J=1»N 
K=.ltN3 
W=0. 
PO ^^_L=lfN 
KL=N+L 
Jtf=tt±H(KL)*K(KJ-
lFlL-J)Hk$H5tH5 

«H K=K+N-L 
GO TO 46 

JHLJ<=K+1 
H6 CONTINUE 

K=N*vJ 
ALFA=ALFA+W*H(K) 

H7 H(J)=W 
C 

_C _R£P£AI_SEARCK J N J)lRECTI0N-JiF__SI£EEE5l_DESCEIiT__lF_RESULTS. 
C ARE NOT SATISFACTORY 

_£(_*ALF_AJAB..U4_ 
C 
_£ UPPATF MATRIX H 

H8 K=N31 
DO 4.9 L=1»N 
KL=N2+L 
DO 4.9. J=LrN 

_G0_.I0_._22
F_F.UNC.Il0r
TERMIMA.TR


I l l 

NJ=N2+J 
H !_1=H (K) +H (KL^ •HiNJlZz«HlL) »H UJ / ALFA 

49 K=K+1 
60 TO 5 . _ . . . ' . . . . 

C END OF ITERATION LOOP 

C N6~C0NVERGENCE AFTER LIMI f~IfERATIONS 
SQ IER=1 

RETURN 

C RESTORITOTD VALuES"o>~FU^^ 
51 DO 52 J=1»N ...._ __..'. . . _ 

K=N2+J 
5? X(Jl=H(K) 

CALL FUNCT<N»X»F»G) 

C " ^ E P E A I T E A R C H IN DIRECTION OF^S 
_C FAILS. TO BE SUFFICIENTLY. SMALL 

IF(GNRM-EPS)55#55«53 

C TEST FOR REPEATED FAILURE OF ITERATION 
S3-IE.M£8JL56.t5Jti!.5JL — 
5H XERs-1 

G0_JQ_4 
55 IER=0 
56 RETURN 

END 
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