DETERMINATION OF EQUIVALENT UNIFORM LIVE LOAD "ENVELOPES" FOR THE

SIMPLIFICATION OF METHODS USED IN THE DESIGN OF HIGHWAY

BRIDGES

121

A THESIS

Presented to

the Faculty of the Graduate Division

by

Donald Edward Schaffer

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in the School of Civil Engineering

Georgia Institute of Technology

June, 1952

246487

DETERMINATION OF EQUIVALENT UNIFORM LIVE LOAD "ENVELOPES"

20

FOR THE

...

SIMPLIFICATION OF METHODS USED IN THE DESIGN OF HIGHWAY

BRIDGES

1.5

Approved:

0

Date Approved by Chairman: $Ma\sqrt{28, 1952}$

TABLE OF CONTENTS

Doc	0.9
L OF	

LIST OF TABLES	iii
KEY TO ALL FIGURES	iv
LIST OF FIGURES	v

Chapter

	INTRODUCTION	1
I.	INVESTIGATION OF BRIDGES IN CLASS ONE	4
II.	INVESTIGATION OF BRIDGES IN CLASSES	
	TWO AND THREE	10
III.	APPLICATION OF EQUIVALENT UNIFORM LIVE	
	LOADINGS TO CONTINUOUS SPANS	32
IV.	DERIVATION OF EQUATIONS FOR EQUIVALENT	
	UNIFORM LIVE LOAD CURVES	34

APPENDIX	• •	•	• •	• •	•	•	• •	• •	•	•	•	٠	٠	٠	•	•	•	•	• •	•	•	•	•	•	•	•	•	٠	•	•	٠	37
BIBLIOGRAPHY		•	• •		•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	48

ii

LIST OF TABLES

Table		Page
I.	Design Moments and Shears for Class	
	One Bridges	5
II.	Equivalent Uniform Loads for Class	
	One Bridges	13
III.	Design Moments and Shears for Class	
	Two Bridges	18
IV.	Equivalent Uniform Loads for Class	
	Two Bridges	22
۷.	Design Moments and Shears for Class	
	Three Bridges	26
VI.	Equivalent Uniform Loads for Class	
	Three Bridges	30

iii

THE FOLLOWING KEY SHALL APPLY TO ALL FIGURES INCLUDED IN THIS PAPER.

Curve Number

I.	Four lanes; lane width, thirteen feet.
II.	Four lanes; lane width, twelve feet
III.	Four lanes; lane width, eleven feet.
IV.	Four lanes; lane width, ten feet.
۷.	Three lanes; lane width, thirteen feet.
VI.	Three lanes; lane width, twelve feet.
VII.	Three lanes; lane width, eleven feet.
VIII.	Three lanes; lane width, ten feet.
IX.	Two lanes; lane width, thirteen feet.
X.	Two lanes; lane width, twelve feet.
XI.	Two lanes; lane width, eleven feet.
XII.	Two lanes; lane width, ten feet.

iv

LIST OF FIGURES

Figure	Page
1. Design Moments, Class One Bridges	7
2. Design Shears, Class One Bridges	8
3. Equivalent Uniform Loads for Moment, Clas	IS
One Bridges	11
4. Equivalent Uniform Loads for Shear, Class	3
One Bridges	12
5. Design Moments, Class Two Bridges	16
6. Design Shears, Class Two Bridges	17
7. Equivalent Uniform Loads for Moment, Clas	S
Two Bridges	20
8. Equivalent Uniform Loads for Shear, Class	S.
Two Bridges	21
9. Design Moments, Class Three Bridges	24
10. Design Shears, Class Three Bridges	25
11. Equivalent Uniform Loads for Moment, Clas	IS
Three Bridges	29
12. Equivalent Uniform Loads for Shear, Class	ł
Three Bridges	28

V

INTRODUCTION

The purpose of this paper is twofold. One will be the advocacy of a new safe loading to be used in the design of highway bridges. The rapid evolution of highway trucks, with trailers and semitrailers attached, have made the present American Association of State Highway Officials standards, in a sense, obsolete. That the present design loadings are inconsistent with actual vehicle loads is recognized by many. (1) They serve our present heavy vehicles by virtue of the safety margin provided in the allowable stresses; but both the loads on, and the stresses in, the bridges differ materially from those contemplated in design.

The present design loadings are inadequate for several reasons:

1. There are discrepancies between the H-S trucks and the actual vehicles.

2. In the development of equivalent uniform loads, only one H-S truck, followed by much lighter vehicle loads, is used on loaded lengths to one hundred and fifty feet.

3. It is necessary to apply both a truck concentration and the lane loadings to obtain maximum stresses.

Correction of these three inadequacies would mean the development of a new loading standard. To alleviate the discrepancies between H-S trucks and actual vehicles, a new truck loading, to be known hereafter as H32-S35 (See Appendix), has been introduced. The loading represents an actual double-

1

axled trucks load as found on our highways today.(2)

To design a span for one heavy truck is impractical from the viewpoint of safety. It is not abnormal for the approaches to such municipalities as New York, Chicago, etc., to have lines of heavy trailer trucks, back to back. However, if there can be more than one vehicle or vehicle combinations on a single lane at a time, then the question arises: What is a reasonable number of maximum weight loads to assume on the span at the same time in exactly the critical position? Engineers are faced with the necessity of establishing some reasonable maximum condition as a basis for design. In developing the criteria used in this paper, three new classes of bridges have been established.(See Appendix) The loadings used on these bridges, including the type of trucks, number of trucks, and truck spacing, are based entirely on common sense.

The second purpose of this paper will be the simplification of criteria used in the design of highway bridges. At present, a uniform load plus a concentration are used, causing a multiplication of calculations. This paper advocates the use of a heavier uniform unit load to replace both the uniform lane loads and the concentrated loads used in the design of bridges today. Instead of a single uniform load, a series of live load envelopes which vary with span length, number of lanes, and lane widths, have been developed.

In developing these envelopes, which are to be used, both for simple and continuous spans, I have used twelve conditions for each class of bridges.

2

These conditions include;

 Two lane bridges; width of lanes varying, (ten, eleven, twelve, thirteen feet).

 Three lane bridges; width of lanes varying, (ten, eleven, twelve, thirteen feet).

3. Four lane bridges; width of lanes varying, (ten, eleven, twelve, thirteen feet).

For simple spans, I have developed both the figures for the maximum moments and maximum shears to be used in design, and the equivalent uniform live loads used in calculating these, aforementioned, moments and shears. By maximum design moments and shears, I refer to the actual maximum moments in the case of two lane bridges, ninety per cent in the case of three lane bridges, and seventy-five per cent of actual maximum moments in the case of four lane bridges. (3)

The tables of design moments and shears for all the classes of bridges were developed using the actual wheel concentrations placed to produce maximum conditions on the main girders.

The significance of the tables and figures for the various bridge classes will be explained in the following chapters.

CHAPTER I

The results of design calculations for maximum moments and shears for bridges in Class One, give justification to the statement that the H2O-S16 loadings are inadequate. Using the H32-S35 truck, as proposed by this paper, the maximum moments have been found to be, approximately, double those achieved by the H2O-S16 loadings (See Appendix).

Table I shows the actual design moments and shears for Class One bridges, for each of the twelve design conditions, at twenty foot intervals of span length. Figures 1 and 2 show the design moments and shear curves plotted from Table I. These curves may be used to find the design moments and shears for any simple span, without calculations.

Figure 1 indicates that the moments increase at an increasing rate. This is logical due to the fact that as the span length increases, the total load on the bridge, also increases. However, the design shears, Figure 2, show that as the span length increases the shear increases, but at a decreasing rate. This type of curve is explained by the fact that, as specified for Class One bridges, only two H32-S35 trucks are used. This explains the apparent straight line shear curve from forty to, approximately, one hundred and forty feet. From this point, additional, but lighter H20-S16 trucks are used, thereby, introducing a flattening of the shear curve.

Table II shows the equivalent uniform live load required to produce the same maximum moments and shears as the actual wheel loads.

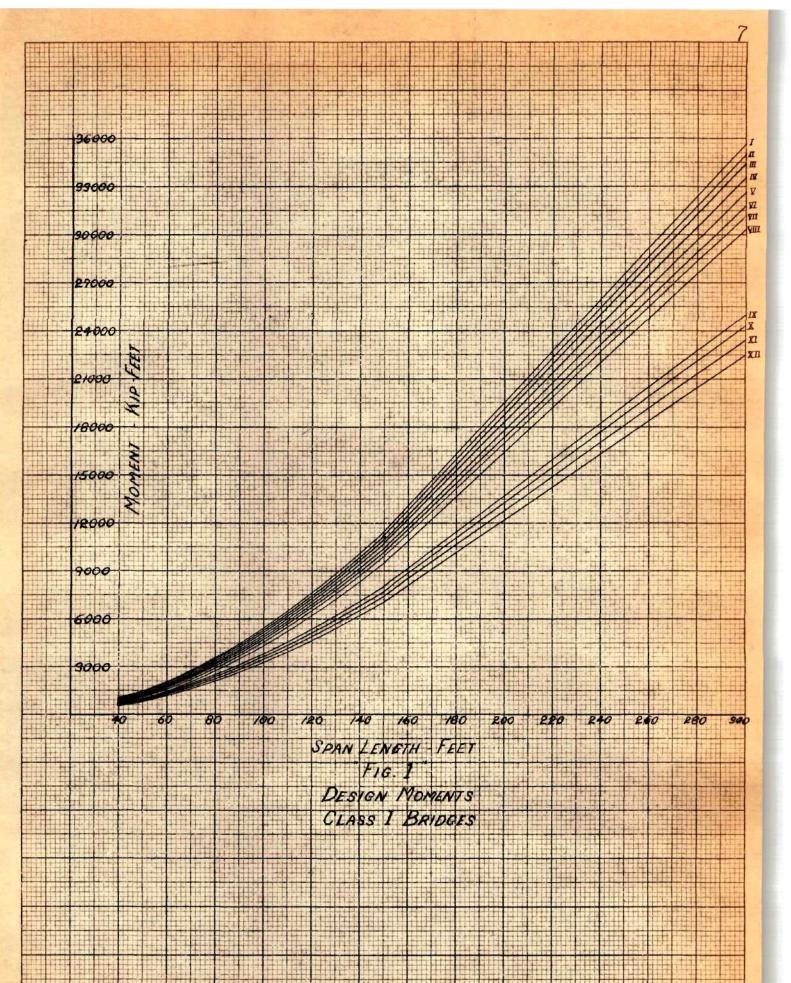
4

TABLE I.

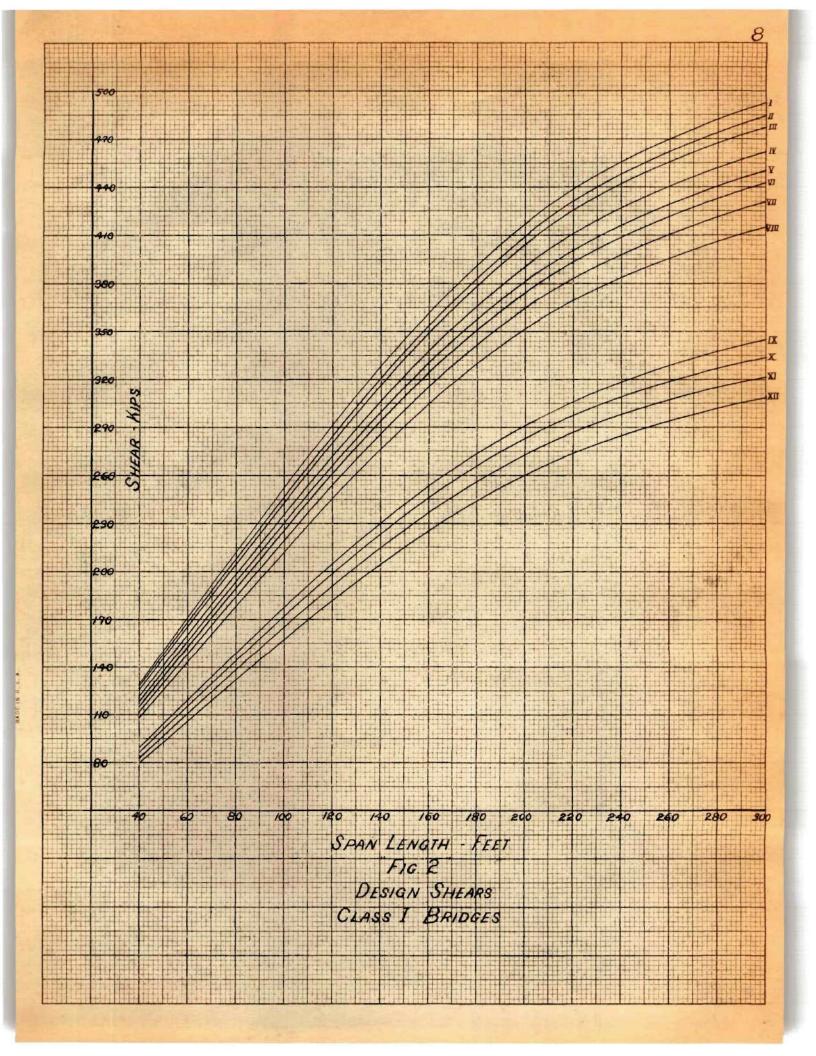
3--

DESIGN MOMENTS AND SHEARS FOR CLASS I BRIDGES

Span M Length ;	omen Sheai	t [*] ? 10Ft.		Lanes 12Ft.	. 13Ft.	10Ft.		e Land 12Ft	es • 13Ft.
40 Ft.	M V	632 80	661 84	684 87	706 90	854 108	880 112	900 115	918 117
60 Ft.	M V	1140 106	1192 111	1235 115	1274 118	1540 143	1589 147	1624 152	1658 155
80 Ft.	M V	2200 141	2300 147	2380 153	2460 158	2980 190	3060 197 4680	3130 202	3200 206
100 Ft.	M V	3360 156	3510	3640 169	3750 174	4540 210	218	4780 224	228
120 Ft.	M V	4654 174	4860 182	5030 188	5200 194	6280 234	6480 243	6630 249	254
140 Ft.	M V	5994 188	6260 196	6480 203	6690 209	8090 253	8340 262	8540 269	8700 274
160 Ft.	M V	8110 227	8490 237	8770 246	9060 253	10950 305	11300 316	11550 325	11780 331
180 Ft.	M V	10200 246	10670 257	11050 266	11400 275	13730 331	14200 343	14520 353	14800 359
200 Ft.	M V	12250 262	12800 274	13250 284	13680 292	16520 352	17050 365	17420 375	17800 382
220 Ft.	M V	14300 275	14.960 287	15500 297	16000 307	19350 370	19920 385	20400 394	20800 401
240 Ft.	M V	16400 286	17150 299	17750 310	18300 319	22150 386	22800 399	23350	23800 417
260 Ft.	M V	18500 295	19350 308	20000 319	20700	395	25750 411	423	26900 430
280 Ft.	M V	20500	21000 316	21700 328	22450 338	27100 407	27950	28600 434	29200 ليليا
300 Ft.	M V	22600 310	23600 324	24500 335	25200 346 r	30500	31500 432	32200 444	32800 452


* All moments in kip-feet units.

All shears in kip units.


TABLE I. (continued)

Span Length	Moment Shear	lOFt.		Lanes 12Ft.	13Ft.
40 Ft.	M V	949 120	971 124	990 126	1005
60 Ft.	M	1712	1752	1788	1814
	V	159	164	166	169
80 Ft.	M	3300	3380	3450	3500
	V	211	218	222	225
100 Ft.	v M	5040	5160	5260	5350
	V	234	241	245	249
120 Ft.	M	6990	7150	7280	7400
	V	260	269	273	278
140 Ft.	M	9000	9200	9390	9540
	V	281	290	295	299
160 Ft.	M	12180	12450	12700	12900
	V	339	351	356	362
180 Ft.	M	15300	15680	15950	16200
	V	368	380	387	393
200 Ft.	M	18380	18800	19180	19500
	V	392	405	411	Ц18
220 Ft.	N	21500	22000	22400	22750
	V	411	425	432	438
240 Ft.	M	24600	25200	25700	26100
	V	428	443	449	457
260 Ft.	M	27800	28400	29000	29400
	V	Lili 1	456	463	471
280 Ft.		30150 453	30850 468	31450 476	32000 484
3,00 Ft.	M	33900	314700	35400	35900
	V	463	479	486	494

DESIGN MOMENTS AND SHEARS FOR CLASS I BRIDGES

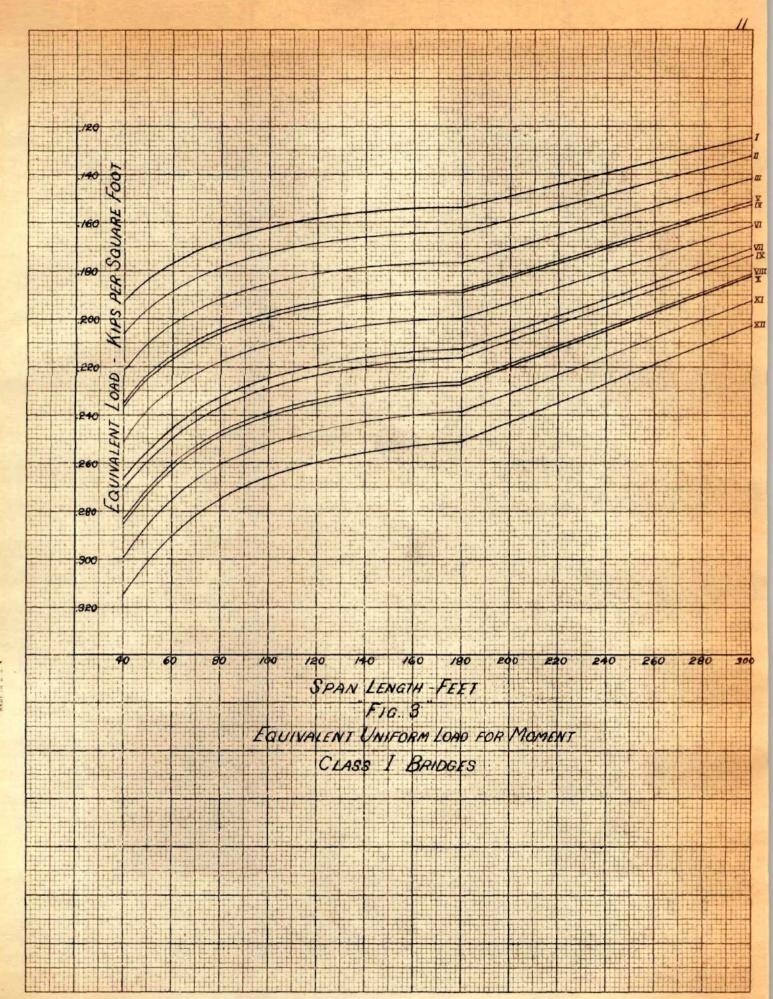
KADE IN U.

Figures 3 and 4 are the equivalent uniform live load envelopes for the bridges in Class One. Both figures show two decided peculiarities. The first is the break in the curves at a span length of one hundred and forty feet. This again is attributed to the break in continuity of load due to the addition of the lighter H2O-S16 trucks. The second peculiarity is the fact that the equivalent uniform load for a two lane (thirteen foot lane width) bridge is less than the equivalent uniform load for a three lane (ten foot lane width) bridge. This phenomenon is explained in the following way. Both conditions have approximately the same area over which to distribute their load, however, the three lane bridge has a greater load, and therefore, the greater equivalent unit load.

The results found in the development of the figures for moment and shear for bridges designed for actual vehicle loads, (loadings commonly found on bridges that fall within this category), show a decided discrepancy between the H-S trucks and actual vehicles.¹ It is therefore believed that this class of loading will serve as a corrective measure for the first inadequacy of the present system, mentioned presiously.

How large a discrepancy actually exists may be noted by investigating the design calculations found in the appendix.

9

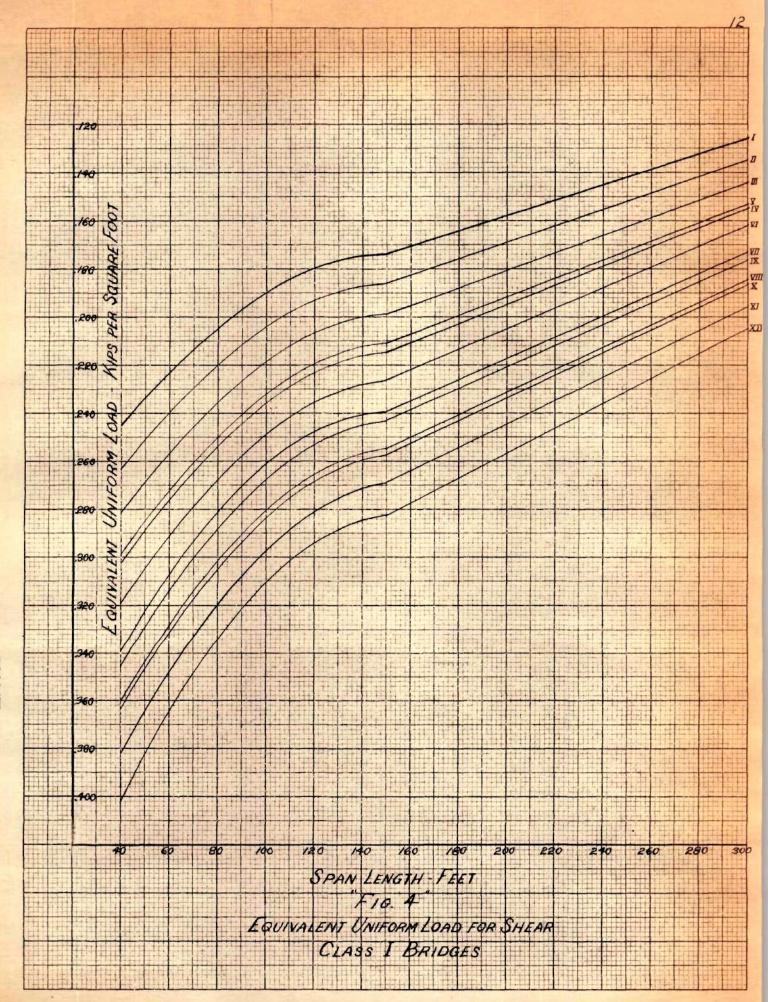

CHAPTER II

There is very little difference in the bridges that fall within Class II as proposed by this paper and the H2O-S16 class used in the design of most bridges today. The one difference, the addition of more than one H2O-S16 truck, is of vital importance. The amount of truck traffic on our interstate highways has increased to such an extent that the design of bridges for just one heavy truck and a much lighter uniform load is, indeed, inadequate.

For short spans, the design moments, calculated by using the actual wheel loads proposed in this paper, agree very closely with those obtained by using the uniform load and concentrated load recommended by the American Association of State Highway Officials. However, when additional truck loads are added for the longer span lengths, the design moments and shears of the actual wheel loads exceed those of the American Association of State Highway Officials by thirty to thirty-five per cent. (See appendix). This is a glaring example of the second discrepancy between the present loading standards and actual vehicle loads.

Table III shows the actual design moments and shears for bridges of Class II, for all twelve conditions of design. Figures 5 and 6 show the the design moments and shears for any span lengths from forty to three hundred feet.

The figures, as would be expected, have the same type of curves as those found in Class One. The explanation for the



× 10 to the ¹/₂ inch. 5th webs 1 x = *

2

accented

i nes

necented. $\frac{599 \cdot 12}{10 \times 10} \text{ to the } \frac{1}{22} \text{ inch. 5th lines}$

TABLE II.

EQUIVALENT UNIFORM LOAD IN KIPS PER SQUARE FOOT FOR CLASS I

BRIDGES

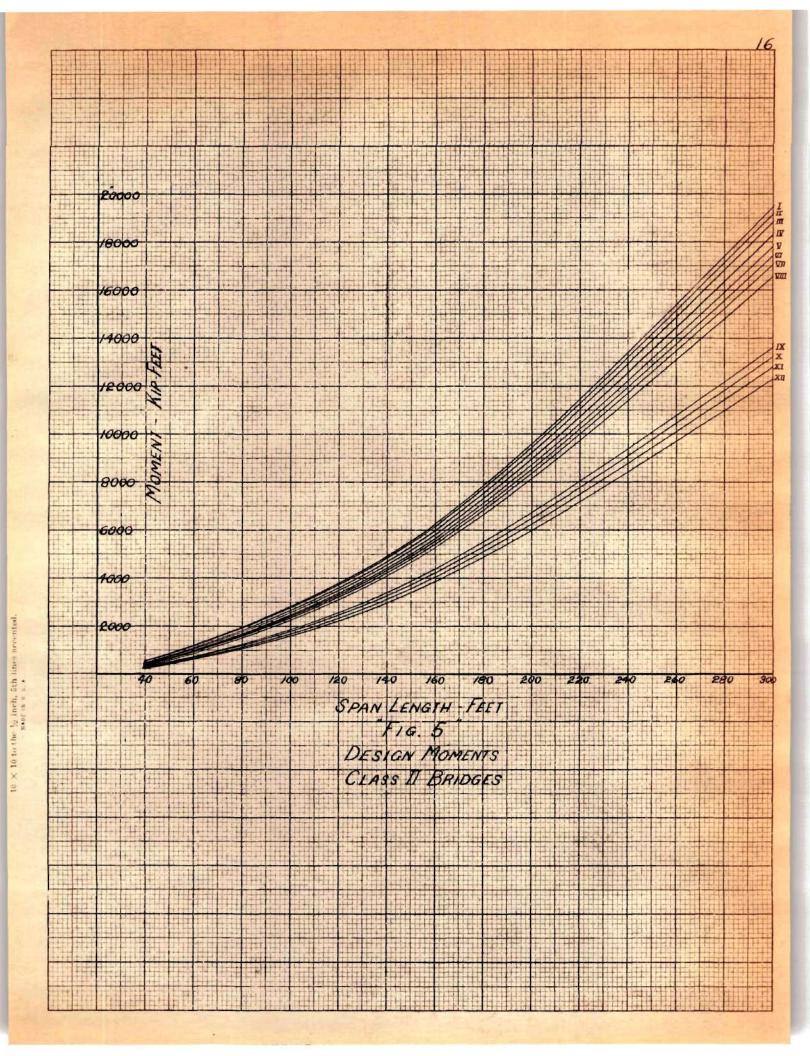
Span length	Moment Shear	lofT.		Lanes 12Ft.	13Ft.	10Ft.	Three llFt.	Lanes 12Ft.	13Ft.
40 Ft.	M V	.316 .402	• 300 • 382	•285 •363	.271 .346	.284 .362	•267 •339	•251 •319	•236 •300
60 Ft.	M V	.254 .353	·241 ·335	.229 .319	.218 .3045	.228 .318	.215 .298	.202 .280	.189
80 Ft.	M V	.275 .353	.261 .335	•248 •2295	•236 •304	.247 .318	.232 .2985	.218 .280	.205 .263
100 Ft	•	.269	.256	·242 ·282	.231 .268	.242 .281	•227 •263	.214 .248	.201
120 Ft	V	.259	·246	•233 •262	.222 .250	.233 .262	.219 .245	.206 .230	.193 .217
140 Ft	• v	.244	·232 ·255	.220 .243	•209 •232	.219 .242	.206	.194 .214	.182 .201
160 Ft	•	.251	.238	.226 .256	•215 •239	.226 .225	•212 •239	1995 225	.187
180 Ft.	• W V	.252	.239 .259	.227 .247	•2165 •235	.227 .246	.213	.200	.188 .204
200 Ft.	• V V	·245 ·262	·232	.221 .237	.210	.220 .236	.207	•195 •208	.183 .196
220 Ft.	• V	.236 .250	.224 .238	.213 .226	.202	.212	•199 •211	.187 .198	.176 .187
240 Ft	v	.228	.216	.206 .215	.195	.205 .215	.193 .201	.181 .189	.170 .178
260 Ft	• V	.219	.208	.198 .205	•188 •195	.197 .205	.185 .192	.174 .180	.164 .170
280 Ft.	V Car	.209	.198	.188 .195	.179 .186	.188 .194	.175 .182	.166 .171	.156 .161
300 Ft	• V	.201	•191 •196	.181 .186	.172 .177	.180 .1855	.170 .174	.160 .163	.150 .154

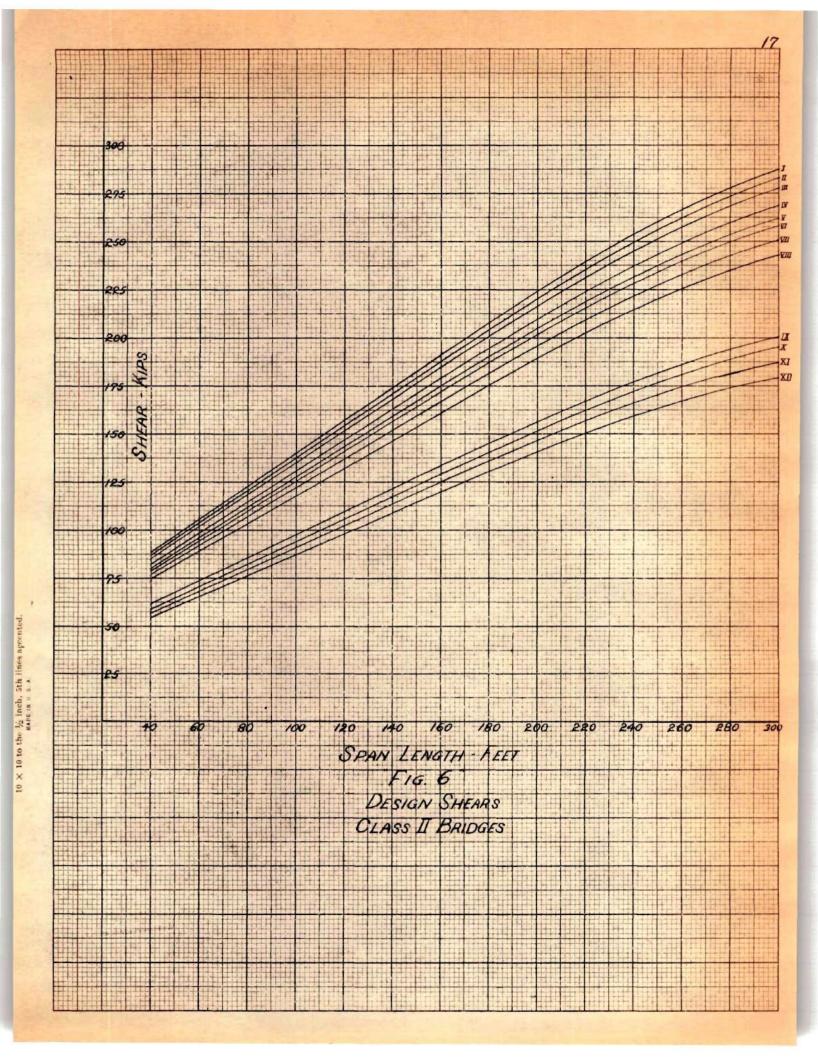
TABLE II. (continued)

EQUIVALENT UNIFORM LOAD IN KIPS PER SQUARE FOOT FOR CLASS I

BRIDGES

Span 1	Moment		Four L	ane s	
Length		10Ft.	llFt.		13Ft.
10					100000
40 Ft.	M	.237	.221	.206	•193
40 1 00	V	.302	.282	.263	• 245
60 Ft.	M	.190	.178	.166	.155
	V	.265	.248	.231	.215
80 Ft.	M	.206	.192	.179	.1685
	A	.265	.248	•231	.215
100 Ft.	M	.202	.188	.176	.164
	V	.235	.219	.204	.190
120 Ft.	M	.194	.181	.169	.158
	V	.218	.203	.190	.177
140 Ft.	M	.183	.171	.159	• 149
	V	.202	.189	.176	.164
160 Ft.	M	.188 .214	.176	.164	.153
	V	.189	.199	.186	.173
180 Ft.	M V	.205	.177	.165	.154
	Section 2	.184	.192	.179	.166 .150
200 Ft.	M V	.197	.184	.160 .171	.160
	M	.177	.165	.154	.144
220 Ft.	V	.188	.175	.164	.152
	M	.171	.159	.149	.139
240 Ft.	v	.179	.167	.156	.145
	M	:164	.153	:143	:134
260 Ft.	v	.171	.159	.149	.138
	M	.157	.146	.136	.128
280 Ft.	v	.162	.151	.ī4ī	.132
200 -	M	.151	.151 .141	.131	.123
300 Ft.	v	.155	.145	.135	.126


increasing rate of increase for the moment curves and the decreasing rate of increase of the shear curves is the same as in the Class One bridges, and therefore need not be restated.


Table IV shows the equivalent uniform load required to produce the same maximum moments and shears as the actual wheel loads used in Class Two bridges.

Figures 7 and 8 are the equivalent uniform live load envelopes for Class II bridges. The discontinuity of the envelopes again appears at approximately the one hundred and forty foot mark. The explanation of this break in the envelope is the same as in Class One bridges and therefore will not be repeated. However, it will be noted that the break in the envelopes is not as sharp in this instance. This is due to the fact that the difference between the H20-S16 trucks and the H15-S12 trucks, used in the design of bridges in Class II, is relatively small compared to the difference between the H32-S35 trucks and H20-S16 trucks used in the design of the bridges in Class I.

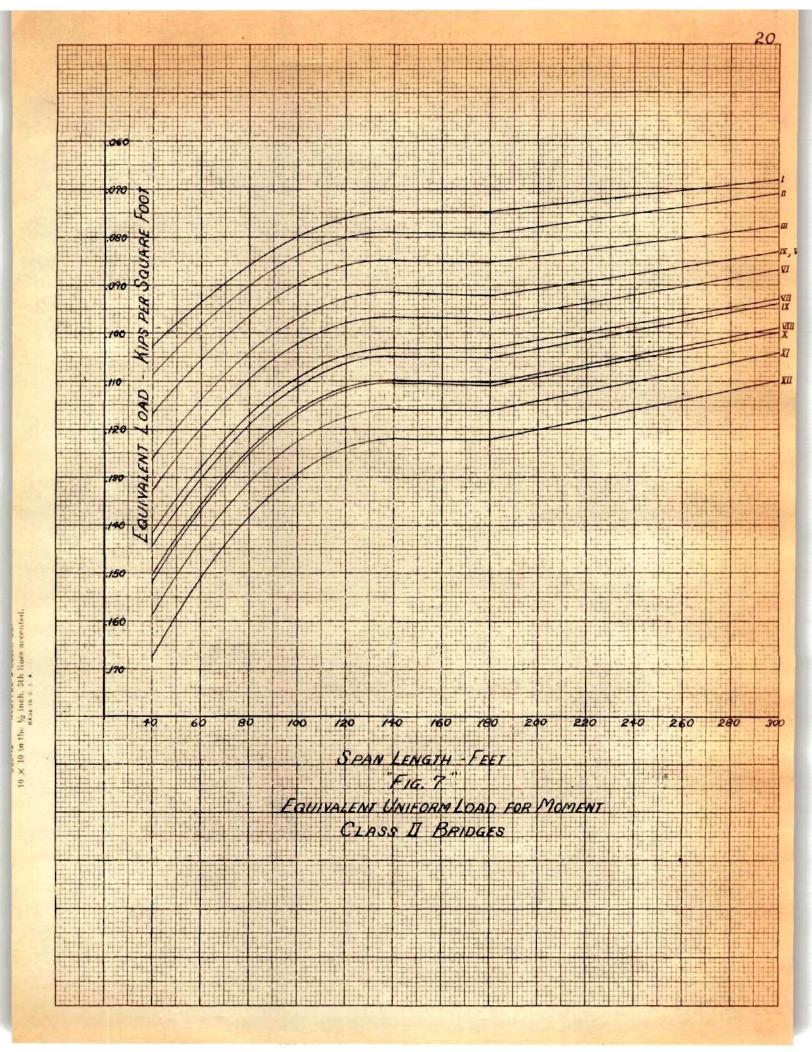
The remaining tables and figures in this chapter represent the design moments and shears, and equivalent uniform envelopes for bridges falling within Class III. They can be compared with the present H15-S12 loadings just as the design moments and shears in Class II were compared with the present H20-S16 loading results.

15

TABLE III.

DESIGN MOMENTS AND SHEARS FOR CLASS II BRIDGES

Span Length	Moment	* 10Ft.		Lanes 12Ft.	13Ft.	. 10Ft.	Three 11Ft.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
40 Ft.	M V	336 55	352 58	364	375	454 74	468 77	478 79	488 81
60 Ft.	M V	682 62	713 65	739 67	761 69	922 83	950 87	970 89	990 90
80 Ft.	M V	1165 76	1220 .79	1262 82	1300 82	1575 102	1624 106	1660 109	1692 110
100 Ft.	v	1600 89	1678 93	1735	1786 99	2169 120	2230 124	2280 127	2320 129
120 Ft.	V	2288 98	2390 102	2480 106	2550 109	3090 132	3190 137	3260 140	3320 143
140 Ft.	v	3000	3140	3250	3350	4060 140	4180	4270	4360 152
160 Ft.	V	3920 121	4110 126 5160	4250 131	4380 135 5500	5300 163 6660	5460 169 6860	5590 173	5700 176
180 Ft.	V	4928 130 5930	136	5340 141 6420	145 6610	173 8000	182 8260	7030 186 8440	7160 190 8600
200 Ft.	y	141 6630	147 6950	152 7180	157 7400	190 8960	197 9250	202 9440	206 9630
220 Ft.	V	151 8510	157 8910	163 9210	169 9500	203	211 11840	217 12100	220 12350
240 Ft.	V	159 9370	166 10200	172	177 10850	214 13120	222	228 13850	232 14120
260 Ft. 280 Ft.	V	167	174	180 11920	186	225	233 15350	240 15700	244 16000
300 Ft.	V M	173 12310	180	187 13350	193 13720	233 16600	242 17120	248 17500	252 17900
J	V	181	189	196	202	244	253	260	264


*All moments in kip-feet units.

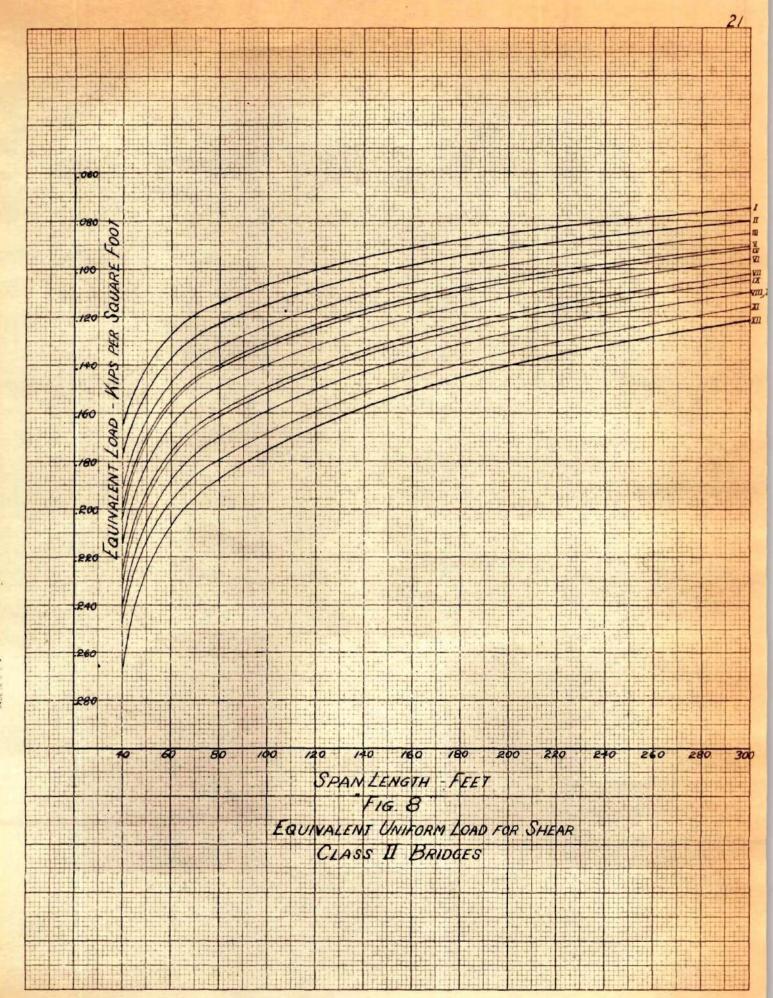

All shears in kip units.

TABLE III (continued)

DESIGN MOMENTS AND SHEARS FOR CLASS II BRIDGES

Span Length			Four 11Ft.	Lanes 12Ft.	13Ft.
40 Ft.	M	504	516	526	535
	V	83	85	87	88
60 Ft.	M	1022	1048	1069	1086
	V	93	96	97	99
80 Ft.	M	1748	1790	1822	1856
	V	113	117	119	121
100 Ft.	M	2400	2460	2505	2550
	V	133	137	139	142
120 Ft.	M	3430	3510	3580	3640
	V	147	151	154	156
140 Ft.	M V	4500 156	4610	4700 163	4780 166
160 Ft.	M	5880	6020	6140	6250
	V	181	187	190	193
180 Ft.	M V	7390 194	7560 201	7710 204	7850
200 Ft.	M	8890	9100	9270	9440
	V	211	218	221	225
220 Ft.	M	9940	10180	10380	10550
	V	226	234	237	241
240 Ft.	the second s	12750 238	13050 246	13300 250	13550 254
260 Ft.			14920 258	15200 262	15500 266
280 Ft.			16900 267	17250 272	17550 276
300 Ft.			18900 280	19250 284	19600 289

10 \times 10 to the η_2 inch, 5th lines accented. when π

TABLE IV

EQUIVALENT UNIFORM LOAD IN KIPS PER SQUARE FOOT FOR CLASS II

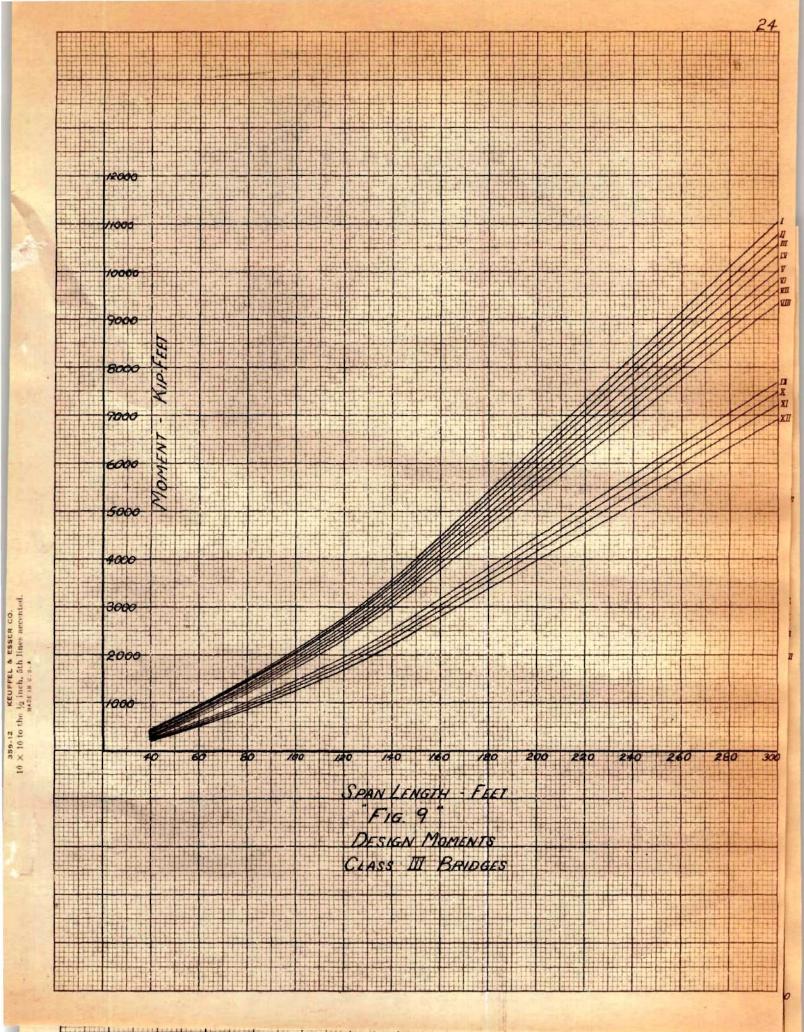
BRIDGES

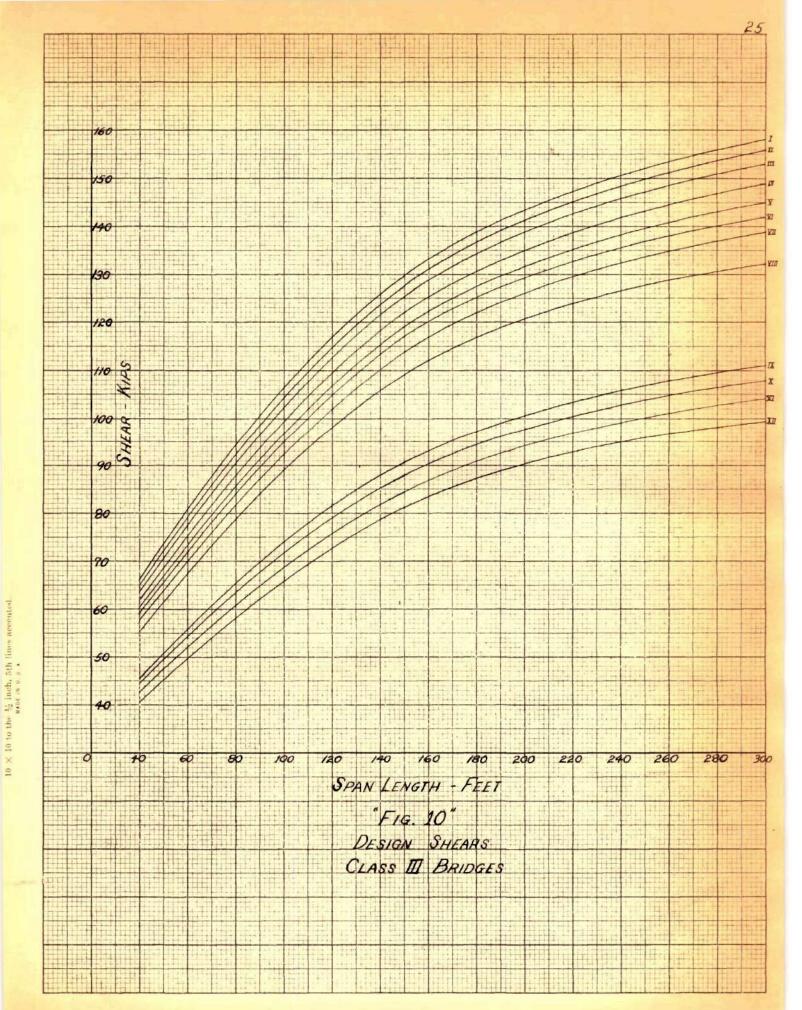
Span Length	Moment Shear	10Ft.		Lanes 12Ft.	13Ft.	10Ft.		Lanes 12Ft.	13Ft.
40 Ft.	M V	.168 .276	.159 .262	.152 .249	•144 •237	.151 .248	.142 .233	.133 .219	.126 .206
60 Ft.	M V	.151 .206	•143 •195	.136 .186	.130 .177	.136 .185	.128 .174	.119 .163	.113 .154
80 Ft.	M V	.146 .189	.138 .180	.132	.125	.131 .170	.123	.116	.109 .141
100 Ft.	M V	.128 .178	.121 .170	.116 .161	.110 .153	.115	.108 .150	.101 .141	•096 •133
120 Ft.	v	.127 .163	.120 .155		.109	.114 .147	.107 .138	.101 .129	•095 •122
140 Ft.	M V	.122 .149	.116	.110 .134	.105	.110	.103 .126	•097 •118	.092 .111
160 Ft.	M V	.122	.116 .143	.111 .136	.105 .130	.110 .136	.103	.097 .120	.092 .113
180 Ft.	v	.122 .145	.116 .138	.111 .131	.105 .125	.110 .127	.103 .119	.097 .112	.092
200 Ft.	V	.119 .141		.108 .1275	.102	.107 .127	.101 .119	.094 .112	.089 .105
220 Ft.	M V	.110 .137	.104 .130	.100 .124	.094 .118	.099 .123	.093 .116	.087 .109	.083 .102
240 Ft.	M V	.118 .133	.112 .126	.107	.101 .114	.106 .120	.100 .112	.093 .106	.089
260 Ft.	M V	.115 .128	.109	.104 .116	•099 •110	.103 .115	.097	.091 .102	.086
280 Ft.	M V	.112	.106 .118	.101 .112	.096 .107	.101 .111	•095 •105	.089 .098	.084 .093
300 Ft.	M V	.110 .121	.104 .115	.100	.094 .1045	.099 .109	.093 .102	.087 .096	•083 •090

and a second sec

TABLE IV (continued)

1.


EQUIVALENT UNIFORM LOAD IN KIPS PER SQUARE FOOT FOR CLASS II


2.5

14

BRIDGES

Span Length	Moment Shear	10Ft.	Four 11Ft.	Lanes 12Ft.	13Ft.
40 Ft.	M	.126	•117	.109	.103
	V	.207	•194	.181	.168
60 Ft.	M	.113	.105	.098	.093
	V	.154	.145	.135	.125
80 Ft.	M	.109	.102	.095	.090
	V	.142	.133	.124	.115
100 Ft.	M V	.096 .133	.089 .125	.083	.078 .108
120 Ft.	M V	.095 .122	.089 .115	.082	.078
140 Ft.	M	.092	.085	.079	.075
	V	.111	.105	.098	.091
160 Ft.	M V	.092 .113	.085	.079	.075 .092
180 Ft.	M	.092	.085	.079	.075
	V	.108	.102	.095	.088
200 Ft.	M	.089	.083	.077	.073
	V	.106	.099	.092	.086
220 Ft.	M V	.083 .103	.077	.071 .090	.068 .083
240 Ft.	M V	.089 .100	.082 .094	.077 .087	.072
260 Ft.	M V	.086 .096	.080	.075 .084	.071 .078
280 Ft.	M	.084	.078	.073	.069
	V	.093	.087	.081	.076
300 Ft.	M	.083	.078	.071	.068
	V	.091	.085	.079	.074

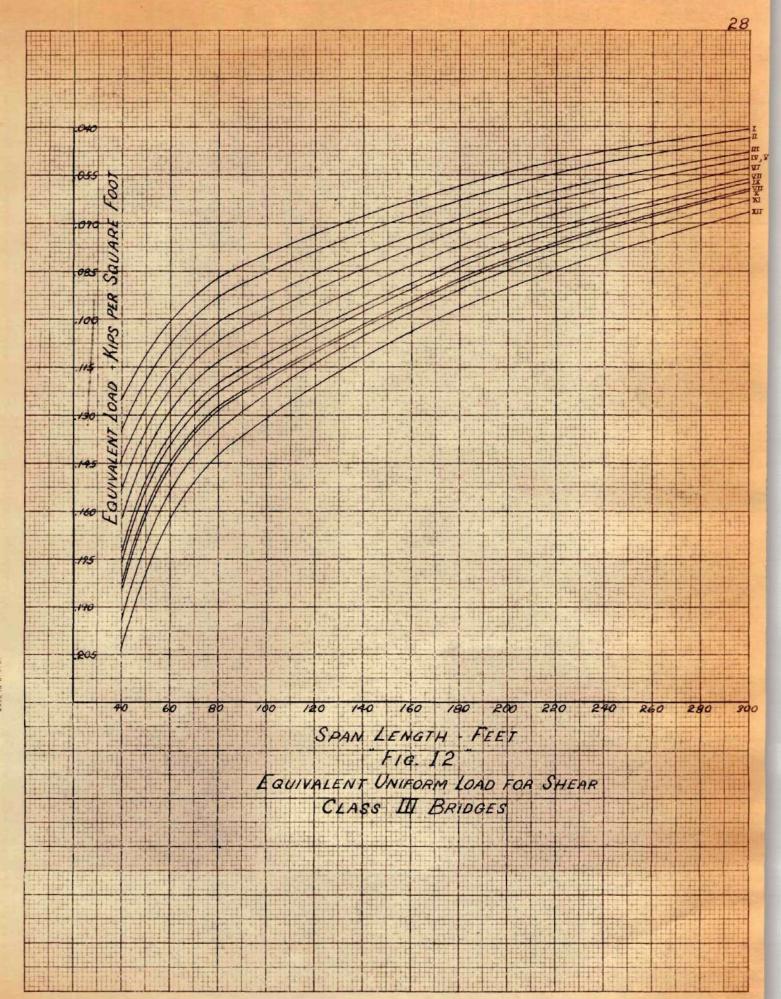
-1.

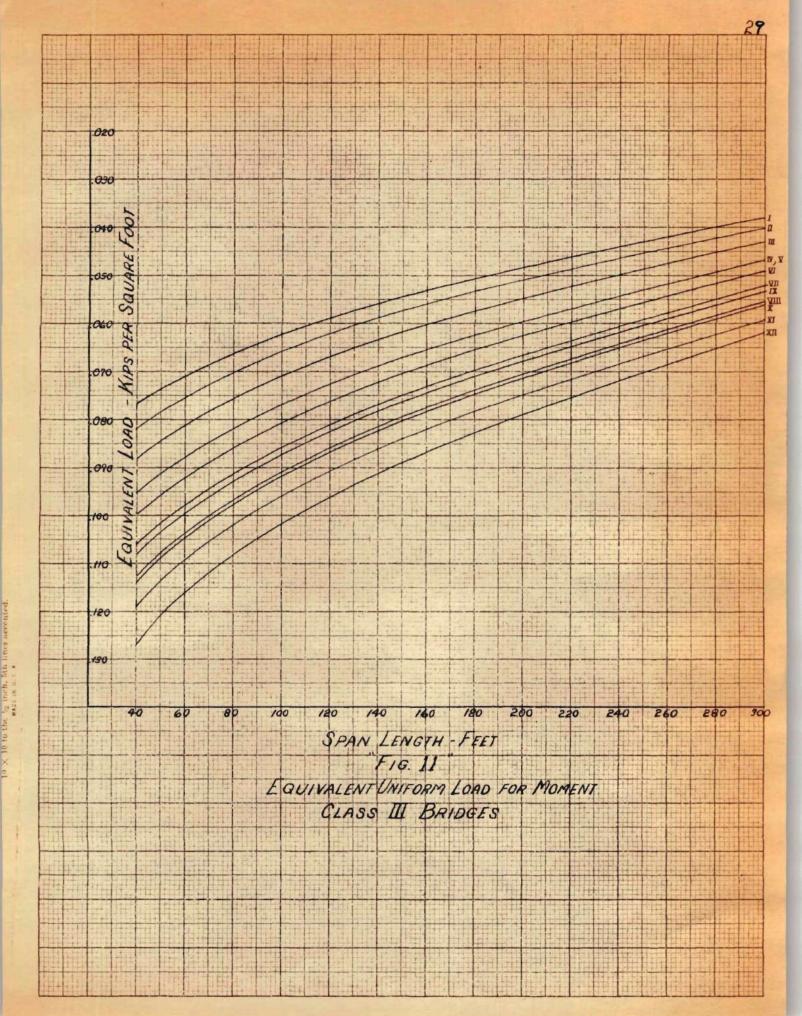
TABLE V

DESIGN MOMENTS AND SHEARS FOR CLASS III BRIDGES

Span Length	Moment Shear	⊧ 10Ft.	Two I llFt.	Lanes 12Ft.	13Ft.	10Ft.	Three 11Ft.	Lanes 12Ft.	13Ft.
40 Ft.	M V	252	264 _43	273	281 46	341	351 58	358 59	366 60 742
60 Ft.	M V	512	535 49	554	571	692 64	712	728	68
80 Ft.	M V	875 57	915 59	948 62	975 63	1180 75	1220	1245 82	1270 83
100 Ft.	M V	1200 67	1258 70	1300 72	1340 74	1620 90	1670 93	1710 .95	1728 .97
120 Ft.	M V	1718 73	1790 77	1860 80	1910 82	2320 99	2390 103	2450 105	2490 107
140 Ft.	M V	2250 78	2350 81	2440 84	2510 87	3040 105	3140 109	3200 112	3270 114
160 Ft.	M V	2780 83	2910 87	3010 .90	3100 93	3760	3870 117	3950 120	4040
180 Ft.	M V	3360 87	3520 91	3640 94	3750 97	4550 117	4680 120	4770 125	4880 127
200 Ft.	MV	3950 90	4140 94	4280 98	4400 101	5350 121	5500 126	5610 130	5740 132
220 Ft.	M V	4550 91	4770	4940 99	5070 102	6160 123	6340 128	6460 131	6610 133
240 Ft.	м	5130 95	5380 99	5560 103	5720 106	6940 127	7150 132	7280 136	7450 138
260 Ft.	M	5730 97	6000 101	6210 105	6390 108	7760 130	7990 135	8140 141	8320 142
280 Ft.	34	6330	6640 102	6850 106	7050	8560 131	8810 137	8980 140	9190 143
300 Ft.	M	6930 99	7260 104	7510 108	7740 111	9390 133	9660 139		10080

*All moments in kip-feet units.


All shears in kip units.


TABLE V (continued)

DESIGN	MOMENTS	AND	SHEARS	FOR	CLASS	III	BRIDGES
--------	---------	-----	--------	-----	-------	-----	---------

Span Length	Moment	10Ft.		Lanes 12Ft.	13Ft.
40 Ft.	M V	378 62	387 64	395 65	402
60 Ft.	M V	768 70	786 72	802 73	815 74
80 Ft.	M V	1310 85	1342 89	1370 90	1390 91
100 Ft.	v	1800 100	1845 103	1880 104	1910 107
120 Ft.	Y M	2570 110	2630 113	2690 115	2730 117
140 Ft.		3370 117	3460	3520	3580 125
160 Ft.	M V	4170 125	4270 129	4360 131	4440 133
180 Ft.	34	5040 130	5160 135	5270 137	5360 139
200 Ft.	v	5920 135	6070 140	6190 142	6300 144
220 Ft.	M V	6830 137	6990 1山1	7140 143	7250 146
240 Ft.	3.6	7690 142	7890 146	8040 149	8160 151
260 Ft.	M V	8600 145	8800 150	8980 152	9140 155
280 Ft.	M V	9480 146	9710 151	9910 153	10100 156
300 Ft.	M V	10400 149	10650 153	10880 156	11050 158

 10×10 to the ½ inch. 5th lines are nted

TABLE VI.

EQUIVALENT UNIFORM LOAD IN KIPS PER SQUARE FOOT FOR CLASS III

BRIDGES

Span Length	Moment Shear	10Ft.	Two 1 11Ft.		13Ft.	10Ft.	Three 11Ft.	Lanes 12Ft.	13Ft.
40 Ft.	M V	.126 .207	.119 .197	.114 .187	.108 .178	.113 .186	.106	.100 .164	•095 •155
60 Ft.	M V	.113 .155	.107 .146	.102 .140	.097 .133	.102	.096 .130	.089	.085
80 Ft.	M V	.109	.104 .135	.099 .128	.094 .122	.098 .127	.092	.087	.082
100 Ft.	×	.097 .134	.091 .127	.087	.083 .115	.086	.081 .113	.076	.072
120 Ft.	· M V	.096 .122	.090 .116	.086 .110	.082 .105	.086	.080 .104	.076	.071 .092
140 Ft.	M V	.092	.087 .106	.083 .101	.079	.083 .101	.077 .096	.073	.069 .083
160 Ft.	M V	.087 .104	.082	.079 .094	.075 .090	.078 .094	.073 .088	.069 .083	.066 .078
180 Ft.	M	.083	.078 .092	.075	.071 .083	.07Ó .087	.069	.066	.064
200 Ft.	M V	.079	.075	.072 .081	.068	.071 .081	.067	.063 .071	.060
220 Ft.	v	.075	.071	.068 .075	.064 .071	.067 .075	.063 .070	.060 .066	.057
240 Ft.	M V	.071 .079	.067	.064 .071	.061	.064 .071	.060	.056 .063	.054 .059
260 Ft.	M V	.068 .074	.064 .070	.062 .067	.058 .064	.061	.057 .063	·054 ·059	.051 .055
280 Ft.	M V	.065	.062	.059 .063	.056 .060	.058 .063	.055 .059	.052	.049 .052
300 Ft.	3.0	.062	.059	.056 .060	.053 .057	.056 .059	.052	.050	.047 .049

-Witte

TABLE VI (continued)

EQUIVALENT UNIFORM LOAD IN KIPS PER SQUARE FOOT FOR CLASS III

BRIDGES

Span Length		lOFt.	Four 11Ft.	Lanes 12Ft.	13Ft.
40 Ft.	M	.095	.088	.082	.077
	V	.155	.146	.136	.126
60 Ft.	M	.086	.078	.073	.070
	V	.115	.109	.101	.094
80 Ft.	M V	.082	.077 .100	.071 .093	.068
100 Ft.	M V	.072	.068 .094	.062 .088	.059 .081
120 Ft.	M	.071	.067	.062	•059
	V	.092	.086	.080	•074
140 Ft.	M	.069	.064	.059	.056
	V	.083	.079	.075	.068
160 Ft.	M	.066	.061	.057	.053
	V	.078	.074	.068	.063
180 Ft.	M V	.064	.058	.054	.051
200 Ft.	$\mathbf{V}^{\mathbb{M}}$.060	.055 .064	.051 .059	.048 .055
220 Ft.	M V	.057	.052 .059	.049 .055	.046 .051
240 Ft.	M	.054	.050	.046	.043
	V	.059	.050	.046	.043
260 Ft.	M	.051	.048	.044	.042
	V	.055	.052	.049	.045
280 Ft.	M	.049	.045	.042	.040
	V	.052	.049	.046	.043
300 Ft.	M	.047	•043	.040	.038
	V	.049	•047	.043	.040

CHAPTER III

The design moments and shears, that have been tabulated and diagramed in the preceding chapters, are for simple spans only. I have corrected the first two discrepancies between the actual vehicle loads and the present loading standard by introducing a new type of truck loading known as the H32-S35 (See appendix) and the addition of more than one truck in the determination of design moments and shears for the longer spans.

However, for the purpose of simplification of calculations required in the determination of maximum design conditions, the equivalent uniform live loadings proposed by this paper, have been established without the inclusion of concentrated loads. The majority of bridge designers will accept this loading for simple spans since it will produce the same maximum values as a partial uniform load and a center concentration.

In the case of continuous spans, however, the concentrated loads used today can be so placed as to produce maximum negative moments over the interior supports. This cannot be done with the simple equivalent uniform live loads that I have proposed.

If it could be shown that the moments determined by using the present day uniform lane loadings plus concentrated loads were insignificant compared to those moments determined by using the equivalent loadings proposed in this paper, the addition of a concentrated load or concentrated loads for continuous spans would be unnecessary.

Several sample designs were run comparing the moments and shears obtained by using the equivalent uniform loads advocated in this paper with those moments and shears determined by using lane loads and two concentrated loads. In comparing the values acquired by using the equivalent loads for Class II bridges with those found using H2O-S16 loadings, it was found that the maximum negative moments and shears were higher using the equivalent uniform live load proposed by this paper, for spans greater than one hundred feet. In comparing the loads used for Class I bridges to the H2O-S16 loadings, the values for moments and shears were higher, using the equivalent live loads for Class I bridges, for all span lengths.

These results support the writers contention that the simple equivalent live loads proposed in this paper may be used for both simple and continuous spans.

CHAPTER IV

With the introduction of new truck loadings, a reclassification of bridges, the development of design shear and moment tables and equivalent uniform live load envelopes, your writer has satisfied the purpose of this paper. However, he feels that the problem of design could be simplified to a still greater extent by the derivation of simple equations for the equivalent uniform load envelopes and moment and shear curves. In most cases the curves could be represented by one or two straight line equations which would give safe values in all cases.

To derive equations for all one hundred and twenty curves found in this paper would be a time consuming task. Unfortunately, this time is not available to your writer. He has, therefore, derived the equations for curve number I on each figure found in the paper.

These equations are as follows: Figure 1, Span lengths of 40 to 150 feet.

1) $x^2 = 1.7 y$

Span lengths of 150 to 300 feet.

2) 164 x - y - 13200 = 0

Figure 2, Span lengths of 40 to 180 feet.

3) $2.05 \times - Y + 46 = 0$

Figure 2, Span lengths of 180 to 300 feet.

4) 0.64 x - y + 294 = 0

Figure 3, Span lengths of 40 to 300 feet.

5) 0.000114 x + y - 0.155 = 0

Figure 4, Span lengths of 40 to 110 feet.

6) 0.00088 x + y - 0.275 = 0

Span lengths of 110 to 300 feet.

7) $0.000281 \times + Y = 0.210 = 0$

Figure 5, Span lengths of 140 to 300 feet.

8) 92.5 x - y + 75 - 8175 = 0

Span lengths of 40 to 140 feet.

9) $42 \times - Y - 1080 = 0$

Figure 6, Span lengths of 40 to 300 feet.

10) 0.735 x - y + 79 = 0

Figure 7, Spen lengths of 40 to 140 feet.

11) $0.00023 \times - Y - 0.102 = 0$

Span lengths of 140 to 300 feet.

12) $0.000019 \times + Y - 0.0727 = 0$

Figure 8, Span lengths of 40 to 60 feet.

13) 0.0045 x + y - 0.386 = 0

Span lengths of 60 to 300 feet.

14) 0.000168 x + y - 0.116 = 0

Figure 9, Span lengths of 40 to 140 feet.

15) $32 \times - Y - 880 = 0$

Span lengths of 140 to 300 feet.

16) $46.8 \times - Y - 3000 = 0$

Figure 10, Span lengths of 40 to 145 feet.

17) $0.67 \times - \times + 43.2 = 0$

Span lengths of 145 to 300 feet.

18) 0.13 X - Y + 121.2 = 0

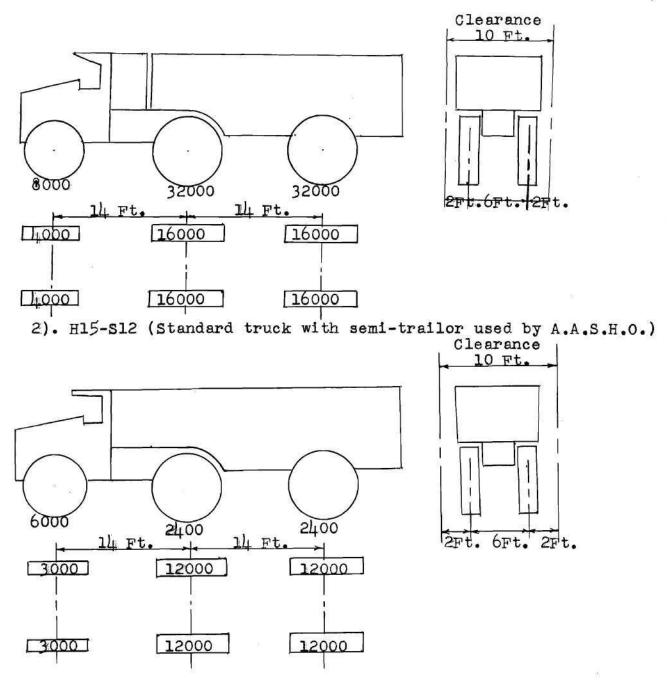
Figure 11, Span lengths of 40 to 300 feet.

19) 0.000123 X + Y - 0.072 = 0

Figure 12, Span lengths of 40 to 80 feet.

20) $0.001 \times + Y = 0.158 = 0$

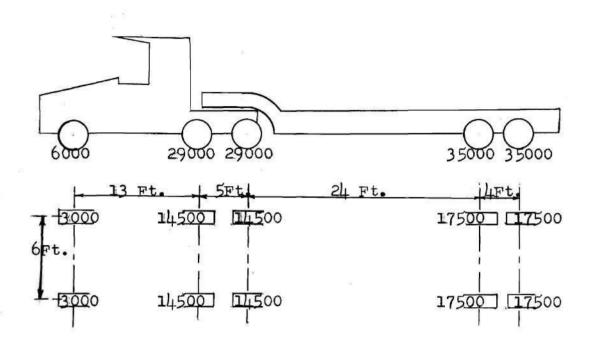
Span lengths of 80 to 300 feet.

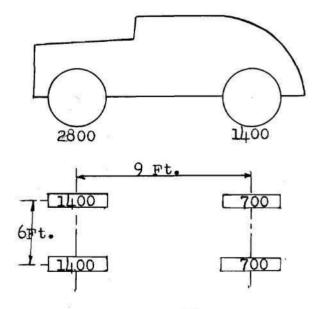

21) $0.00021 \times + Y = 0.095 = 0$

APPENDIX

.

TYPES OF VEHICLES USED IN CALCULATIONS.


1). H20-S16 (Standard truck with semi-trailor used by A.A.S.H.O.)


All wheel and axle loads are in pound units.

TYPES OF TRUCKS (continued)

3). H32-S35 (Trucks comparable to those found on highways today.)

4(. A-10 (Standard passenger vehicle).

All wheel and axle loads in pound units.

CLASSIFICATION OF BRIDGES

CLASS I. INDUSTRIAL BRIDGES

This type of bridges pertains to all spans normally carrying extremely heavy trucking loads. All municipal bridges, municipal approaches, port approaches, and spans situated near large industrial plants, dealing with the transportation of heavy machinery and finished products such as automobiles, etc.

All bridges in Class I with span lengths of less than one hundred and fifty feet shall be designed using H32-S35 trucks, exclusively.

All bridges in Class I with span lengths of one hundred and fifty to three hundred feet shall be designed using two H32-S35 trucks and two H20-S16 trucks, placed to produce maximum conditions.

Due to the possibility of tie-ups due to congestion on this type of bridge, the trucks shall be placed at five foot intervals.

CLASSIFICATION OF BRIDGES

CLASS II. ROUTE BRIDGES

This type of bridge includes a vast majority of the bridges built today including all those located on interstate highways experiencing normal interstate trucking loads.

All bridges in Class II with span lengths of less than one hundred and fifty feet shall be designed using two H20-S16 trucks, exclusively.

All bridges in Class II with span lengths of one hundred and fifty to three hundred feet shall be designed using two H2O-S16 trucks and two H15-S12 trucks , placed to produce maximum conditions.

The spacing of trucks shall be a nominal thirty foot interval for all bridges within Class II.

CLASSIFICATION OF BRIDGES

CLASS III. RURAL BRIDGES

This type of bridge pertains to lightly traveled structures which, in all likelyhood, will never experience heavy truck loads. No state or municipal bridges would be allowed to be designed under specifications developed for this class of bridge. This type would include bridges on private estates, etc.

All bridges in CLASS III with span lengths of less than one hundred and fifty feet shall be designed using two H15-S12 trucks, exclusively.

All bridges in CLASS III with span lengths of one hundred and fifty to three hundred feet shall be designed using two H15-12S trucks and two A-10 automobiles, placed to produce maximum conditions.

The spacing of vehicles shall be a nominal thirty foot interval for all bridges within CLASS III.

Determination of maximum moments and shears for one hundred foot span, two lanes, each lane thirteen feet wide, for Class I bridge; showing comparison of proposed loadings in this paper to U 1600 loadings suggested by T.Y. Lin, and A.A.S.H.O. standards.

Using figures and tables proposed in this paper.

Maximum design moment = 3750 Kip-Feet.

Maximum design shear = 174 Kips.

Using A.A.S.H.O. H20-S16 loadings.

Maximum design moment = 1784 Kip-Feet.

Maximum design shear = 80 Kips.

Using T.Y. Lin's equivalent to A.A.S.H.O. H20-S16 loadings.

Maximum design moment = 4010 Kip=Feet. Maximum design shear = 160 Kips. Determination of maximum design moments and shears for eighty foot span, two lanes, each lane twelve feet wide. Class II bridge.

> Using figures and tables proposed in this paper. Maximum design moment = 1262 Kip=Feet. Maximum design shear = 82 Kips.

Using A.A.S.H.O. H2O-S16 loadings. Maximum design moments = 1250 Kip-Feet. Maximum design shear = 71 Kips.

Using T.Y. Lin's equivalent to A.A.S.H.O. H20-S16 loading.

Maximum design moment =1388 Kip-Feet. Maximum design shear = 69 Kips. Determination of maximumdesign moments and shears for a two hundred and sixty foot span, three lanes, each lane ten feet wide. Class II bridge.

> Using figures and tables proposed by this paper. Maximum design moment = 13120 Kip-Feet. Maximum design shear = 225 Kips.

Using A.A.S.H.O. H20-S16 loadings. Maximum design moment = 11120 Kip-Feet. Maximum design shear = 167 Kips.

Using T.Y. Lin's equivalent to A.A.S.H.O. H20- S16 loadings.

Maximum design moment = 13240 Kip-Feet. Maximum design shear = 193 Kips.

APPLICATION OF PROPOSED LOADING TO CONTINUOUS

SPANS

Two span lengths, each one hundred feet; two, ten foot wide lanes. Class II bridge.

> Using equivalent uniform loads proposed in this paper. Maximum design moment = 397 Kip-Feet. Maximum design shear = 111 Kips.

Using A.A.S.H.O. H20-S16 loadings. Maximum design moment = 504 Kip-Feet. Maximum design shear = 80 Kips.

Two span lengths, each two hundred and sixty feet; two lanes, each ten feet wide.

> Using equivalent uniform loads proposed in this paper. Maximum design moment = 21,10 Kip-Feet. Maximum design shear = 208 Kips.

Using A.A.S.H.O. H20-S16 loading. Maximum design moment = 2165 Kip-Feet. Maximum design shear = 144 Kips.

APPLICATION OF PROPOSED LOADINGS TO CONTINUOUS

SPANS

Two span lengths, each sixty feet; two,ten foot wide lanes. Class I bridge.

> Using equivalent uniform loads proposed in this paper. Maximum design moment = 284 Kip-Feet. Maximum design shear = 132 Kips.

Using A.A.S.H.O. H20-S16 loading. Maximum design moment = 256 Kip-Feet. Maximum design shear = 64 Kips.

Two span lengths, each three hundred feet; two, ten foot wide lanes. Class I bridge.

Using equivalent uniform loads proposed in this paper. Maximum design moment = 5600 Kip-Feet. Maximum design shear = 386 Kips.

Using A.A.S.H.O. H20-S16 loading.

Maximum design moments = 2710 Kip-Feet. Maximum design shear = 160 Kips.

246487

BIBLIOGRAPHY

- 1. Lin, T.Y., <u>New Loading Advocated for Highway Bridges</u>, Civil Engineering, April, 1949. P.43
- 2. Mitchell, Stewart. <u>A More Logical Highway Bridge</u> Loading, Civil Engineering, May, 1945. P.206
- 3. <u>Standard Specifications for Highway Bridges</u>, American Association of State Highway Officials, 1945. (3.2.9)
- 4. Determination of Loads for Brooklyn Bridge Spanning East River, Transactions, American Society of Civil Engineers. Volume 112, P.210
- 5. Measuring the Potential Traffic of a Proposed Vehicular Crossing, Transactions, American Society of Civil Engineers. Volume 106, P.520