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SUMMARY

Kühn, Osthus, and Treglown [31] and, independently, Khan [28] proved that ifH is a 3-

uniform hypergraph with n vertices, where n ∈ 3Z and large, and δ1(H) >
(
n−1

2

)
−
(

2n/3
2

)
,

then H contains a perfect matching.

We [34] show that for n ∈ 3Z sufficiently large, if F1, . . . , Fn/3 are 3-uniform hy-

pergraphs with a common vertex set and δ1(Fi) >
(
n−1

2

)
−
(

2n/3
2

)
for i ∈ [n/3], then

{F1, . . . , Fn/3} admits a rainbow matching, i.e., a matching consisting of one edge from

each Fi. This is done by converting the rainbow matching problem to a perfect matching

problem in a special class of uniform hypergraphs.

We [33] also prove that, for any integers k, l with k ≥ 3 and k/2 < l ≤ k − 1, there

exists a positive real µ such that, for all sufficiently large integers m,n satisfying

n

k
− µn ≤ m ≤ n

k
− 1−

(
1− l

k

)⌈
k − l
2l − k

⌉
,

if H is a k-uniform hypergraph on n vertices and δl(H) >
(
n−l
k−l

)
−
(

(n−l)−m
k−l

)
, then H has a

matching of size m + 1. This improves upon an earlier result of Hàn, Person, and Schacht

[22] for the range k/2 < l ≤ k−1. In many cases, our result gives tight bound on δl(H) for

near perfect matchings (e.g., when l ≥ 2k/3, n ≡ r (mod k), 0 ≤ r < k, and r + l ≥ k,

we can take m = dn/ke − 2).
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Background on Matching Problems

1.1.1 Matchings in Graphs

There is a long history on problems concerning the maximum number of disjoint edges in

graphs. We have the following terminology for this well studied problem.

Definition 1.1. A set M of disjoint edges in a graph G = (V,E) is called a matching. A

matching is called perfect if it covers all vertices in the graph.

Dating back to 1935, Hall [21] proved a necessary and sufficient condition for finding

a matching that covers at least one side of a bipartite graph. In 1947, Tutte [43] showed

a necessary and sufficient condition for the existence of a perfect matching in a general

graph. The problem of finding maximum matchings in graphs can be solved in polynomial

time (see, for example, Ford-Fulkerson algorithm [12] for bipartite graph, and Blossom

algorithm [9] for general graphs).

1.1.2 Matchings in Hypergraphs

A hypergraph H consists of a vertex set V (H) and an edge set E(H) whose members are

subsets of V (H). We write v(H) := |V (H)|, e(H) := |E(H)| and often identify E(H)

with H . For any positive integer k and any set S, let [k] := {1, . . . , k} and
(
S
k

)
:= {T ⊆

S : |T | = k}. For any positive integer k, a hypergraph H is k-uniform if E(H) ⊆
(
V (H)
k

)
,

and a k-uniform hypergraph is also called a k-graph.

Let H be a hypergraph. For S ⊆ V (H), we use H − S to denote the hypergraph

obtained from H by deleting S and all edges of H with a vertex in S, and we use H[S] to

denote the hypergraph with vertex set S and edge set {e ∈ E(H) : e ⊆ S}. For S ⊆ R ⊆
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V (H), let NH−R(S) = {T ⊆ V (H) \ R : S ∪ T ∈ E(H)}, and let NH(S) := NH−S(S).

For any positive integer n, let [n] := {1, . . . , n}.

A matching in a hypergraph H is a set of pairwise disjoint edges in H . If M is a

matching in H , we write V (M) :=
⋃
e∈M e. The size of a largest matching in H is denoted

by ν(H), known as the matching number of H . A matching in H is perfect if it covers all

vertices of H . A matching is nearly perfect in H if it covers all but a constant number of

vertices. Moreover, a matching in a k-graph is near perfect if it covers all but at most k

vertices.

The problem for finding maximum matchings in hypergraphs is NP-hard, even for 3-

graphs [25]. It is of interest to find good sufficient conditions that guarantee large match-

ings.

Erdős [11] proposed the following conjecture in 1965.

Conjecture 1.2 (Erdős [11]). For positive integers k, n, t, if H is a k-graph on n vertices

and ν(H) < t, then

e(H) ≤ max

{(
kt− 1

k

)
,

(
n

k

)
−
(
n− t+ 1

k

)}
.

This bound is tight because of the complete k-graph on kt− 1 vertices and the k-graph

on n vertices in which every edge intersects a fixed set of t− 1 vertices. In the same paper

Erdős proved this conjecture to be true for n > n0(k, s). Later in 1976, Bollobás, Daykin

and Erdős [8] proved this conjecture for n > 2k3s. For recent progress on this conjecture,

see [3, 4, 14, 15, 18, 24, 35]. In particular, Huang, Loh, and Sudakov [24] proved this

conjecture for n > 3k2s; Frankl [14] proved that if n ≥ (2t− 1)k − (t− 1) and ν(H) < t

then e(H) ≤
(
n
k

)
−
(
n−t+1
k

)
; and this result was further improved by Frankl and Kupavskii

[17]. In the case of k = 3, Frankl, Rödl, and Ruciński [19] proved this conjecture for

n ≥ 4s; Łuczak and Mieczkowska [35] proved this conjecture for s > s0; and Frankl [15]

proved this conjecture to be true for any 3-graph.
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1.2 Degree Conditions

There has been extensive study on degree conditions for large matchings in uniform hyper-

graphs. Let H be a hypergraph and T ⊆ V (H). The degree of T in H , denoted by dH(T ),

is the number of edges inH containing T . For any integer l ≥ 0, let δl(H) := min{dH(T ) :

T ∈
(
V (H)
l

)
} denote the minimum l-degree of H . Note that δ0(H) is the number of edges

in H , and δ1(H) is often called the minimum vertex degree of H . When H is a k-graph for

some positive integer k, δk−1(H) is known as the minimum codegree of H .

For u ∈ V (H), let NH(u) := {e : e ⊆ V (H) \ {u} and e∪ {u} ∈ E(H)}. When there

is no confusion, we also view NH(u) as a hypergraph with vertex set V (H) \ {u} and edge

set NH(u).

For integers n, k, d satisfying 0 ≤ d ≤ k − 1 and n ∈ kZ, let md(k, n) denote the

minimum integer m such that every k-graph H on n vertices with δ(H) ≥ m has a perfect

matching.

Bollobás, Daykin, and Erdős [8] considered minimum vertex degree conditions for

matchings in k-graphs. They proved that if H is a k-graph of order n ≥ 2k2(m + 2) and

δ1(H) >
(
n−1
k−1

)
−
(
n−m
k−1

)
, then ν(H) ≥ m.

1.2.1 Perfect Matchings

For 3-graphs, Kühn, Osthus, and Treglown [31] and, independently, Khan [28] proved the

following stronger result: There exists n0 ∈ N such that if H is a 3-graph of order n ≥ n0,

m ≤ n/3, and δ1(H) >
(
n−1

2

)
−
(
n−m

2

)
, then ν(H) ≥ m.

In [29], Kühn and Osthus proved that there exists n0 ∈ N such that if H is a k-graph

of order n ≥ n0 and δk−1(H) ≥ n/2 + 3k2
√
n log n, then H has a perfect matching.

Rödl, Ruciński, and Szemerédi [39] determined the minimum codegree threshold for the

existence of a perfect matching in a k-graph. Pikhurko [37] showed if l ≥ k/2 andH is a k-

graph whose order n is divisible by k then H has a perfect matching provided that δl(H) ≥

3



(1/2 + o(1))
(
n
k−l

)
. Treglown and Zhao [42] determined the exact l-degree threshold for

perfect matching when k/2 ≤ l ≤ k−1, where they also determined the extremal families.

Hàn, Person, and Schacht [22] considered the minimum l-degree condition for perfect

matchings in the range 1 ≤ l ≤ k/2. In particular, they showed that if H is a 3-graph and

δ1(H) > (1 + o(1))5
9

(|V (H)|
2

)
then H has a perfect matching.

1.2.2 Large Matchings

For near perfect matchings, Han [23] proved a conjecture of Rödl, Ruciński, and Szemerédi

[39] that, for n 6≡ 0 (mod k), the co-degree threshold for the existence of a near perfect

matching in a k-graph H is bn/kc. This is much smaller than the co-degree threshold

(roughly n/2) obtained by Rödl, Ruciński, and Szemerédi [39] for perfect matchings.

For nearly perfect matchings, Hàn, Person, and Schacht [22] proved the following re-

sult: For any integers k > l > 0, there exists n0 ∈ N such that for all n > n0 with n ∈ kZ

and for every n-vertex k-graph H with

δl(H) ≥ k − l
k

(
n

k − l

)
+ kk+1(lnn)1/2nk−l−1/2,

H contains a matching covering all but (l − 1)k vertices.

Our Result on Large Matchings

We [33] improve this bound for the range k/2 < l ≤ k− 1, by providing an exact l-degree

threshold for the existence of a matching covering all but at most (k − l)d(k − l)/(2l −

k)e+ k − 1 vertices.

Theorem 1.3 (Lu, Yu, and Yuan [33], 2021). For any integers k, l satisfying k ≥ 3 and

k/2 < l ≤ k − 1, there exists a positive real µ such that, for all integers m,n satisfying

n

k
− µn ≤ m ≤ n

k
− 1−

(
1− l

k

)⌈
k − l
2l − k

⌉
(1.1)
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and n sufficiently large, if H is a k-graph on n vertices and δl(H) >
(
n−l
k−l

)
−
(

(n−l)−m
k−l

)
then ν(H) ≥ m+ 1.

When l ≥ 2k/3, we have (k − l)/(2l − k) ≤ 1. Moreover, if n ≡ r (mod k),

0 ≤ r < k, and r + l ≥ k then Theorem 1.3 with m = dn/ke − 2 implies that H has a

matching covering all but at most k vertices. In general, if the interval [n/k − 2, n/k −

1− (1− l/k) d(k − l)/(2l − k)e] contains an integer, then by letting m be that integer, the

conditions of Theorem 1.3 imply that H has a near perfect matching.

The bound on δl(H) in Theorem 1.3 is best possible because of the classical space

barrier: Consider a k-graph in which edges are all the k-subsets intersecting a specific set

of size m, then this k-graph satisfies the degree condition, but its matching number is at

most m.

1.3 Rainbow Matchings

There are attempts to extend the above conjecture of Erdős to families of hypergraphs.

Let F = {F1, . . . , Ft} be a family of hypergraphs. A set of pairwise disjoint edges, one

from each Fi, is called a rainbow matching for F . (In this situation, we also say that F

or {F1, . . . , Ft} admits a rainbow matching.) Aharoni and Howard [1] made the following

conjecture, which first appeared in Huang, Loh, and Sudakov [24]:

Conjecture 1.4. Let t be a positive integer and F = {F1, . . . , Ft} such that, for i ∈ [t],

Fi ⊆
(

[n]
k

)
and e(Fi) > max

{(
kt−1
k

)
,
(
n
k

)
−
(
n−t+1
k

)}
; then F admits a rainbow matching.

Huang, Loh, and Sudakov [24] showed that this conjecture holds when n > 3k2t.

When k = 2, this conjecture is true as a direct consequence of an earlier result of Akiyama

and Frankl [2]. Recently, Keller and Lifshitz [27] showed that this conjecture holds when

n ≥ f(t)k for some large constant f(t) which only depends on t; Frankl and Kupavskii [16]

improved the bound to n ≥ 12tk log(e2t); and Lu, Wang, and Yu [32] improved the bound

5



to n ≥ 2kt and n is sufficiently large. Gao, Lu, Ma, and Yu [20] confirmed Conjecture 1.4

for k = 3 and sufficiently large n that does not depend on t.

1.3.1 Degree Version

We [34] prove a degree version of the above conjecture for rainbow matchings, which

extends the results of Kühn, Osthus, and Treglown [31] and, independently, of Khan [28]

for 3-graphs to families of 3-graphs. Here we use Z to denote the set of all integers, and

3Z is the set of integers divisible by 3.

Theorem 1.5 (Lu, Yu, and Yuan [34], 2021). Let n ∈ 3Z be positive and sufficiently large

and let F = {F1, . . . , Fn/3} be a family of n-vertex 3-graphs such that V (Fi) = V (F1) for

i ∈ [n/3]. If δ1(Fi) >
(
n−1

2

)
−
(

2n/3
2

)
for i ∈ [n/3], then F admits a rainbow matching.

The bound on δ1(Fi) in Theorem 1.5 is sharp because of a classical space obstruction,

which will be described in details in the next chapter.

1.4 Remarks

This thesis is based on joint work with Hongliang Lu and Xingxing Yu [33], [34].
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CHAPTER 2

IDEAS AND TECHNIQUES

2.1 Large Matchings

In this section, we discuss the tightness and proof ideas of Theorem 1.3.

2.1.1 Tightness

To see that the bound on δl(H) in Theorem 1.3 is best possible, we define the following

graphs, which is often call a ‘space barrier’ in the literature.

Definition 2.1. LetHk
k (U,W ) denote the k-graph such thatU,W is a partition of V (Hk

k (U,W ))

and the edges of Hk
k (U,W ) are precisely those k-subsets of V (Hk

k (U,W )) intersecting W

at least once.

For integers k, l, n with k ≥ 2 and 0 < l < k and for large n, δl(Hk
k (U,W )) =(

n−l
k−l

)
−
(

(n−l)−|W |
k−l

)
and the matching number of Hk

k (U,W ) is |W |. Thus, the bound on

δl(H) in Theorem 1.3 is best possible (by letting |W | = m).

2.1.2 Proof Ideas

To prove Theorem 1.3, we need to refine the definition of Hk
k (U,W ) to Hs

k(U,W ) for all

s ∈ [k].

Definition 2.2. For each s ∈ [k], let Hs
k(U,W ) be a k-graph, where U,W is a partition of

the vertex set, and the edges of Hs
k(U,W ) are precisely those k-subsets of V (Hs

k(U,W ))

intersecting W at least once and at most s times.

We also need the following definition describing the ‘closeness’ of two k-graphs.

7



Definition 2.3. Given two k-graphs H1, H2 and a real number ε > 0, we say that H2 is

ε-close to H1 if V (H1) = V (H2) and |E(H1)\E(H2)| ≤ ε|V (H1)|k.

Roughly speaking, most edges of H1 are also edges of H2. Our proof of Theorem 1.3

consists of two parts by considering whether or not H is “close” to Hk−l
k (U,W ), which is

similar to arguments in [39]. In the next two paragraphs, we give an outline for each case.

We first consider the case when V (H) has a partition U,W with |W | = m such that

H is close to Hk−l
k (U,W ). If every vertex of H is “good” (to be made precise later) with

respect toHk−l
k (U,W ) then we find the desired matching by a greedy argument. Otherwise,

we find the desired matching in two steps by first finding a matching M ′ such that every

vertex in H − V (M ′) is good, thereby reducing the problem to the previous case.

The other case is when H is not close to Hk−l
k (U,W ) for any partition V (H) into U,W

with |W | = m. We will see that such H does not have any sparse subset of very large size.

To deal with this case, we will use the following approach of Alon, Frankl, Huang, Rödl,

Ruciński, and Sudakov [3]:

• Find a small absorbing matching Ma in H ,

• find random subgraphs ofH−V (Ma) with perfect fractional matchings (see Chapter

7 for definition),

• use those random subgraphs and a theorem of Frankl and Rödl to find an almost

perfect matching M ′ in H − V (Ma) (see Lemma 9.4), and

• use the matching Ma to absorb the remaining vertices in V (H) \ (V (Ma)∪ V (M ′)).

To find a perfect fractional matching in certain random subgraphs of H − V (Ma) we need

to prove a stability version of a result of Frankl [14] on the Erdős matching conjecture [11],

which might be of independent interest. We also need to use the hypergraph container

result of Balogh, Morris, and Samotij [6] (proved independently by Saxton and Thomason

[41]) to bound the independence number of random subgraphs of H .
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2.2 Rainbow Matchings in 3-Graphs

In this section, we discuss the tightness and proof ideas of Theorem 1.5.

2.2.1 Tightness

The bound on δ1(Fi) in Theorem 1.5 is sharp. To see this, we consider the following

3-graph, which is a special case of Hk−l
k (U,W ) when k = 3 and l = 1.

Definition 2.4. Let m ≤ n/3 and let H(n,m) denote a 3-graph that is isomorphic to the

3-graph with vertex set [n] and edge set

{
e ∈

(
[n]

3

)
: e 6⊆ [m] and e ∩ [m] 6= ∅

}
.

Note that for n ∈ 3Z, δ1(H(n, n/3 − 1)) =
(
n−1

2

)
−
(

2n/3
2

)
and H(n, n/3 − 1) has no

perfect matching. Hence, the family of n/3 copies of H(n, n/3 − 1) admits no rainbow

matching.

2.2.2 Proof Ideas

To prove Theorem 1.5, we convert this rainbow matching problem to a perfect matching

problem for a special class of hypergraphs.

Definition 2.5. For any integer k ≥ 2, a k-graph H is (1, k − 1)-partite if there exists a

partition of V (H) into sets V1, V2 (called partition classes) such that for any e ∈ E(H),

|e ∩ V1| = 1 and |e ∩ V2| = k − 1.

Definition 2.6. A (1, k − 1)-partite k-graph with partition classes V1, V2 is balanced if

(k − 1)|V1| = |V2|

Definition 2.7. Let n ∈ 3Z, let P and Q be disjoint sets such that |P | = n and |Q| = n/3,

and let Q = {v1, . . . , vn/3}. Let F = {F1, . . . , Fn/3} be a family of 3-graphs on the same

9



vertex set P . We use H1,3(F) to represent the balanced (1, 3)-partite 4-graph with patition

classes Q,P and edge set
⋃n/3
i=1Ei, where Ei = {e ∪ {vi} : e ∈ E(Fi)} for i ∈ [n/3].

If E(Fi) = E(H(n, n/3)) and V (Fi) = V (H(n, n/3)) for all i ∈ [n/3], then we write

H1,3(n, n/3) for H1,3(F).

The following observations will be useful:

(i) E(Fi) is the neighborhood of vi in H1,3(F) for i ∈ [n/3], and F admits a rainbow

matching if, and only if, H1,3(F) has a perfect matching.

(ii) e(Fi) ≥ n
3
δ1(Fi) for all i ∈ [n/3], and dH1,3(F)(v) ≥

∑n/3
i=1 δ1(Fi) for v ∈ P .

(iii) dH1,3(F)({u, v}) ≥
(
n−1

2

)
−
(

2n/3
2

)
+ 1 for all u ∈ P and v ∈ Q, provided δ1(Fi) ≥(

n−1
2

)
−
(

2n/3
2

)
+ 1 for i ∈ [n/3].

(iv) δ1(H1,3(F)) ≥ n
3

((
n−1

2

)
−
(

2n/3
2

)
+ 1
)

, provided dH1,3(F)({u, v}) ≥
(
n−1

2

)
−
(

2n/3
2

)
+

1 for all u ∈ P and v ∈ Q.

By observations (i) and (iii), Theorem 1.5 follows from the following result.

Theorem 2.8. Let n ∈ 3Z be positive and sufficiently large, and let H be a (1, 3)-partite 4-

graph with partition classes Q,P such that |P | = n and Q = n/3. Suppose dH({u, v}) ≥(
n−1

2

)
−
(

2n/3
2

)
+ 1 for all u ∈ P and v ∈ Q. Then H has a perfect matching.

To prove Theorem 2.8, we take the usual approach by considering whether or not H is

close to some H1,3(n, n/3) on the same vertex set of H .

2.3 Organization

Given ε > 0 and two k-graphs H1, H2 with V (H1) = V (H2), we say that H2 is ε-close to

H1 if |E(H1) \ E(H2)| < ε|V (H1)|k.

In the next two chapters, we prove Theorem 1.3 for k-graphs H such that V (H) has a

partition U,W with |W | = m andH is ε-close toHk−l
k (U,W ). We also prove Theorem 2.8

10



when H is close to some H1,3(n, n/3) using the structure of H1,3(n, n/3) to find a perfect

matching in H greedily. We call this the extremal case, because the structures of H are

close to the extremal configurations.

In Chapter 5, we prove two absorbing lemmas, using s standard second moment method.

In Chapter 6, we relate the property of “close to extremal configurations” to the existence

of certain large independent sets, which allows us to consider small random induced sub-

graphs that inherit this property. In those small random induced subgraphs, we seek for

perfect fractional matchings, which will be taken care of in Chapters 7 and 8. Then we take

a second round of random sampling to find almost perfect matchings in Chapter 9.

In the last chapter, we conclude our proofs of Theorem 1.3 and Theorem 2.8, and make

some related remarks.

11



CHAPTER 3

SMALL MATCHINGS

The goal for this chapter and the next chapter is to prove that Theorem 1.3 and Theorem 2.8

hold for the case when the hypergraph H is close to the extremal construction, that is,

when V (H) has a partition U,W with |W | = m such that H is close to Hk−l
k (U,W ) in

Theorem 1.3, or when H is close to some H1,3(n, n/3) on V (H) in Theorem 2.8. In fact,

in this case, the assertion of Theorem 1.3 holds for all m ≤ n/k − 1.

In this chapter, we prove a result on rainbow matchings for a small family of hyper-

graphs, and as a direct corollary, the assertion of Theorem 1.3 holds for m ≤ n/(2k4).

These lemmas will serve as induction bases for our proofs.

3.1 Rainbow Matchings

Lemma 3.1. Let n, t, k be positive integers such that n > 2k4t. Let Fi, i ∈ [t], be n-vertex

k-graphs with a common vertex set. If δ1(Fi) >
(
n−1
k−1

)
−
(
n−t
k−1

)
for i ∈ [t] then {F1, . . . , Ft}

admits a rainbow matching.

Proof. We apply induction on t. Note that the assertion is trivial when t = 1. So assume

t > 1 and the assertion holds for t − 1. Then, since δ1(Fi) >
(
n−1
k−1

)
−
(
n−t
k−1

)
>
(
n−1
k−1

)
−(

n−(t−1)
k−1

)
, {F1, . . . , Ft−1} admits a rainbow matching, say M .

Suppose for a contradiction that {F1, . . . , Ft} does not admit a rainbow matching.

Then every edge of Ft must intersect M . So there exists v ∈ V (M) such that dFt(v) >

e(Ft)/(kt). Note that

δ1(Ft) >

(
n− 1

k − 1

)
−
(
n− t
k − 1

)
>

(
n− 1

k − 1

)(
1−

(
1− t− 1

n− 1

)k−1
)

>
t(k − 1)

2(n− 1)

(
n− 1

k − 1

)

12



since n > 2k4t. So we have

dFt(v) >
δ1(Ft)n/k

kt
>

t(k − 1)n

2(n− 1)k2t

(
n− 1

k − 1

)
>

1

2k2

(
n− 1

k − 1

)
.

Let F ′i = Fi − v for i ∈ [t− 1]. Since

δ1(F ′i ) ≥ δ1(Fi)−
(
n− 2

k − 2

)
>

(
n− 1

k − 1

)
−
(
n− t
k − 1

)
−
(
n− 2

k − 2

)
=

(
n− 2

k − 1

)
−
(
n− t
k − 1

)
,

it follows from induction hypothesis that {F ′1, . . . , F ′t−1} admits a rainbow matching, say

M ′.

Note that the number of edges in Ft containing v and intersecting M ′ is at most

k(t− 1)

(
n− 2

k − 2

)
<

1

2k2

(
n− 1

k − 1

)
< dFt(v),

as n ≥ 2k4t. Hence, v is contained in some edge of Ft − V (M ′), say e. Now M ′ ∪ {e} is

a rainbow matching for {F1, . . . , Ft}, a contradiction.

3.2 Matchings in k-Graphs

In the above lemma, if we consider the case when F1, . . . , Ft are identical graphs, then the

result converts back to a result of the original matching problem in a hypergraph. More

specifically, we have the following result.

Lemma 3.2. Let n,m, k, l be positive integers such that k ≥ 3, m ≤ n/(2k4), and l ∈ [k−

1]. Let H be a k-graph on n vertices and δl(H) >
(
n−l
k−l

)
−
(

(n−l)−m
k−l

)
. Then ν(H) ≥ m+ 1.

13



CHAPTER 4

EXTREMAL CASES

In this chapter, we use the structure of Hk−l
k (U,W ) (or H1,3(n, n/3), respectively) to con-

struct the desired matching in H when H is close to Hk−l
k (U,W ) (or H1,3(n, n/3), respec-

tively). We first deal with the case when all vertices of H are “good”, and then deal with

those “bad” vertices. The “good” vertices and “bad” vertices are defined precisely in the

following sections.

4.1 Close to Extremal Configuration at Each Vertex

In this section, we prove Theorem 1.3 for the case where, for each vertex v ∈ V (H),

only a small number of edges of Hk−l
k (U,W ) containing v do not belong to H; and we

prove Theorem 2.8 for the case when, for every vertex v, most of the edges of H1,3(n, n/3)

containing v also lie in H .

4.1.1 k-Graphs Close to Hk−l
k (U,W ) at Each Vertex

Let H be a k-graph and let U,W be a partition of V (H) and let n = |U |+ |W |.

Definition 4.1. Given real number α with 0 < α < 1, a vertex v ∈ V (H) is called α-good

with respect to Hk−l
k (U,W ), if

∣∣∣NHk−l
k (U,W )(v) \NH(v)

∣∣∣ ≤ αnk−1;

and, otherwise, v is called α-bad.

Roughly speaking, a vertex x is good if the neighborhood of x in H contains most of

the neighborhood of x in Hk−l
k (U,W ).
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This notion quantifies the closeness of H to Hk−l
k (U,W ) at a vertex. Clearly, if H

is ε-close to Hk−l
k (U,W ), then the number of α-bad vertices in H is at most kεn/α, as,

otherwise,

|E(Hk−l
k (U,W )) \ E(H)| ≥ 1

k

∑
v∈V (H)

∣∣∣NHk−l
k (U,W )(v) \NH(v)

∣∣∣
≥ 1

k
(kεn/α)(αnk−1) = εnk,

a contradiction. Note that in the statement of the lemma below we use m ≥ n/(2k5) rather

than m ≥ n/(2k4) as opposed to Lemma 3.2. The reason is for its application in the proof

of Lemma 4.6, where we use it to deal with a graph obtained by deleting all bad vertices

and some neighbors.

Lemma 4.2. Let k, l,m, n be integers and α be a positive real, such that k ≥ 3, l ∈ [k−1],

α < (8k−1k5(k−1)k!)−1, n ≥ 8k6, and n/(2k5) ≤ m ≤ n/k. Suppose that H is a k-graph

on n vertices and U,W is a partition of V (H) with |W | = m such that every vertex of H

is α-good with respect to Hk−l
k (U,W ). Then ν(H) ≥ m.

Proof. We find a matching of sizem inH using those edges that intersectW just once. Let

M be a maximum matching in H such that |e ∩W | = 1 for each e ∈ M , and let t = |M |.

We may assume t < m; or else M is the desired matching. So W \ V (M) 6= ∅. By the

maximality of M , NH(x) ∩
(
U\V (M)
k−1

)
= ∅ for all x ∈ W \ V (M).

We claim that t ≥ m/2. For, suppose t < m/2. Since m ≤ n/k, t < n/(2k); so

|V (H) \ V (M)| = n− tk > n− n/2 = n/2. Hence,

|U \ V (M)| > |V (H) \ V (M)| − |W | ≥ n/2− n/k ≥ n/6.

Thus, for any x ∈ W \ V (M),

∣∣∣NHk−l
k (U,W )(x) \NH(x)

∣∣∣ ≥ ∣∣∣∣(|U \ V (M)|
k − 1

)∣∣∣∣ > ( n/6

k − 1

)
> αnk−1,
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contradicting the assumption that every vertex in H is α-good.

Since t < m ≤ n/k and |e ∩ W | = 1 for each e ∈ M , there exists a k-set S =

{u1, . . . , uk} ⊆ V (H)\V (M) such that uk ∈ W and S\{uk} ⊆ U . Sincem ≥ n/(2k5) >

2k, we have t ≥ m/2 > k. We will consider the k-subsets of vertices in M and a fixed S,

and seek for a contradiction to the assumption that u1, . . . , uk are good.

Arbitrarily choose k − 1 pairwise distinct edges e1, . . . , ek−1 from M and write ei :=

{vi,1, vi,2, . . . , vi,k} such that vi,k ∈ W , and vi,j ∈ U for j ∈ [k − 1]. For convenience, let

vk,j := uj for j ∈ [k]. For i ∈ [k], define fi := {v1,1+i, v2,2+i, . . . , vk−1,(k−1)+i, vk,k+i},

where the addition in the subscripts is modulo k (except that we write k for 0). Then

fi 6∈ E(H) for some i ∈ [k] as, otherwise, (M \ {ei : i ∈ [k − 1]}) ∪ {fi : i ∈ [k]} is a

matching in H that contradicts the maximality of M .

Note that for different choices of e1, . . . , ek−1 ∈ M and e′1, . . . , e
′
k−1 ∈ M , the corre-

sponding sets {f1, . . . , fk} and {f ′1, . . . , f ′k} constructed in the above paragraph are disjoint,

that is, fi 6= f ′j for i 6= j and i, j ∈ [k]. Since there are
(

t
k−1

)
choices of e1, . . . , ek−1 from

M , and each provides at least one edge in Hk−l
k (U,W ) but not in H , we have

k∑
i=1

∣∣∣NHk−l
k (U,W )(ui) \NH(ui)

∣∣∣
≥

(
t

k − 1

)
>

(t− (k − 1) + 1)k−1

(k − 1)!

>
(n/(4k5)− (k − 1))k−1

(k − 1)!
(since t ≥ m/2 > n/(4k5))

>
(n/(8k5))k−1

(k − 1)!
(since n ≥ 8k6)

= (8k−1k5(k−1)k!)−1knk−1

> αknk−1 (since α < (8k−1k5(k−1)k!)−1).

16



Thus there exists uj ∈ S such that

∣∣∣NHk−l
k (U,W )(uj) \NH(uj)

∣∣∣ > αnk−1,

contradicting the assumption that every vertex in H is α-good.

4.1.2 (1, 3)-Partite 4-Graphs Close to H1,3(n, n/3) at Each Vertex

Next we prove Theorem 2.8 for the case when the (1, 3)-partite 4-graphs is close toH1,3(n, n/3)

everywhere, using a similar idea to the proof of Lemma 4.2.

Definition 4.3. Given α > 0, H1,3(n, n/3) defined in Definition 2.7, and a (1, 3)-partite

4-graph H with V (H) = V (H1,3(n, n/3)), we say that a vertex v ∈ V (H) is α-good with

respect to H1,3(n, n/3) if |NH1,3(n,n/3)(v) \ NH(v)| ≤ αn3. Otherwise we say that v is

α-bad with respect to H1,3(n, n/3).

Lemma 4.4. Let n be sufficiently large positive integer and H be a balanced (1, 3)-partite

4-graph on 4n/3 vertices, and let α be a positive constant less than 2−12. If all vertices of

H are α-good with respect to some H1,3(n, n/3) on V (H), then H has a perfect matching.

Proof. Let Q,P be the partition classes of H , and let U ∪ W be partition classes of

H(n, n/3) (as in Definition 2.4), such that

|Q| = |W | = n/3, |U | = 2n/3, and V (H(n, n/3)) = P.

Let M be a matching in H that only uses edges consisting of two vertcies from U

and one vertex from each of Q and W , and choose such M that |M | is maximum. Let

Q′ := Q \ V (M), U ′ = U \ V (M), and W ′ = W \ V (M). Then |U ′|/2 = |W ′| = |Q′|.

Note that |M | ≥ n/4. For, otherwise, |U ′|/2 = |W ′| = |Q′| = n/3 − |M | > n/12.
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Then, by the maximality of M , we have, for any u ∈ U ′,

|NH1,3(n,n/3)(u) \NH(u)| ≥ |Q′||W ′|(|U ′| − 1) > n3/123 > αn3,

a contradiction.

Now suppose M is not a perfect matching in H . Then Q′, U ′,W ′ are all non-empty.

Let v ∈ Q′, u1, u2 ∈ U ′ be distinct, and w ∈ W ′.

Let {e1, e2, e3} be an arbitrary set of three pairwise distinct edges from M . By the

maximality ofM , no matching of size 4 inH is contained in e1∪e2∪e3∪{v, w, u1, u2} and

uses only edges with two vertices from U and one vertex from each of Q and W . Hence,

there exists S ∈ E(H1,3(n, n/3)) \ E(H) such that S ⊆ e1 ∪ e2 ∪ e3 ∪ {v, w, u1, u2},

|S ∩ ei| = 1 for i ∈ [3], |S ∩ {v, w, u1, u2}| = 1, and S has two vertices from U and one

vertex from each of Q and W .

Note that there are
(
m
3

)
choices for {e1, e2, e3}, which result in distinct choices for S.

So the number of edges in E(H1,3(n, n/3)) \ E(H) containing exactly one vertex from

{v, w, u1, u2} is at least (
m

3

)
≥
(
n/4

3

)
> n3/(210).

This implies that for some u ∈ {v, w, x1, x2},

|NH1,3(n,n/3)(u) \NH(u)| > n3/(212) > αn3,

a contradiction.

4.2 (1, 3)-Partite 4-Graphs Close to H1,3(n, n/3)

Now we are ready to complete the proof of Theorem 2.8 in the case when H is close to

some H1,3(n, n/3). We use α� β to mean that α is sufficiently smaller than β.

Lemma 4.5. Let n ∈ 3Z be positive and ε > 0 be sufficiently small, and let H be a
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balanced (1, 3)-partite 4-graph with partition classes Q,P and 3|Q| = |P | = n. Suppose

H is ε-close to some H1,3(n, n/3) with P = V (H(n, n/3)). If dH({u, v}) ≥
(
n−1

2

)
−(

2n/3
2

)
+ 1 for all u ∈ P and v ∈ Q, then H has a perfect matching.

Proof. Let U,W denote the partition of P = V (H(n, n/3)) such that |W | = |U |/2 = n/3

(as in Definition 2.4 when m = n/3, W = [m] and U = V \W ). Note that |Q| = n/3. Let

B denote the set of
√
ε-bad vertices of H with respect to H1,3(n, n/3). Since H is ε-close

to H1,3(n, n/3), we have |B| ≤ 4
√
εn. Let Q∩B = {v1, . . . , vq} and Q = {v1, . . . , vn/3},

and let W ′ ⊆ W \B such that |W ′| = n/3− (q + |W ∩B|) ≥ n/3− 4
√
εn.

First, we find a matching M ′
0 in H − W ′ covering Q ∩ B. For this, let Fi be the

subgraph of NH(vi) induced by NH(vi) − W ′ for i ∈ [n/3]. Note that, for i ∈ [n/3],

δ1(NH(vi)) = min{dH({u, vi}) : u ∈ P} ≥
(
n−1

2

)
−
(

2n/3
2

)
+ 1. Hence,

δ1(Fi) ≥ δ1(NH(vi))−
((

n− 1

2

)
−
(
n− |W ′| − 1

2

))
>

(
n− |W ′| − 1

2

)
−
(

2n/3

2

)
=

(
n− |W ′| − 1

2

)
−
(
n− |W ′| − (q + |W ∩B|)

2

)
.

Since |B| ≤ 4
√
εn, q + |W ∩ B| = n/3 − |W ′| < (n − |W ′|)/(2 · 34). Hence by

Lemma 3.1, {F1, . . . , Fq+|W∩B|} admits a rainbow matching, say M0. Let M0 = {ei ∈

E(Fi) : i ∈ [q + |W ∩ B|]}, and let M ′
0 = {ei ∪ {vi} : i ∈ [q + |W ∩ B|]}. Then M ′

0 is a

matching in H and Q ∩B ⊆ V (M ′
0).

Next, we find a matching in H1 := H − V (M ′
0) covering B \ V (M ′

0), in two steps.

Since ε is very small, we can choose η such that
√
ε � η � 1. We divide B \ V (M ′

0) to

two disjoint sets B1, B2 such that, for each x ∈ B \ V (M ′
0), x ∈ B1 if, and only if, H1 has

at least ηn3 edges each of which contains x and exactly one vertex in W ′.

We greedily pick a matching M1 in H1 such that B1 ⊆ V (M1) and every edge of M1

contains at least one vertex from B1 and exactly one vertex from W ′. This can be done

since each time we pick an edge e for a vertex x ∈ B1, we have at least ηn3 choices and at
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most 4(4
√
εn)n2 (� ηn3 as

√
ε� η) of which intersect a previously chosen edge.

Now we find a matching M2 in H2 := H1 − V (M1) such that B2 ⊆ V (M2). Note that

δ1(H2) ≥ δ1(H)− 4|M ′
0 ∪M1|n2 ≥ n

3

((
n− 1

2

)
−
(

2n/3

2

)
+ 1

)
− 16
√
εn3.

Hence, for any x ∈ B2, the number of edges containing x and disjoint from W ′ is at least

δ1(H2)− ηn3 − |Q|
(
|W ′|

2

)
> ηn3,

as
√
ε� η � 1 and n/3 = |Q| ≥ |W ′|. Thus, since

√
ε� η, we greedily find a matching

M2 in H1− V (M1) such that B2 ⊆ V (M2), M2 is disjoint from W ′, and every edge of M2

contains at least one vertex from B2.

Thus, M1 ∪M2 gives the desired matching in H1 := H −V (M ′
0) covering B \V (M ′

0).

Note that |M ′
0 ∪M1 ∪M2| ≤ (q+ |W ∩B|) + |B1|+ |B2| ≤ 2|B| ≤ 8

√
εn. Also note that

each vertex ofH−V (M ′
0∪M1∪M2) is

√
ε-good inH (with respect toH1,3(n, n/3)). Thus,

for every vertex u ∈ U \V (M ′
0∪M1∪M2), the number of edges ofH−V (M ′

0∪M1∪M2)

containing u and exactly two vertices of W \ V (M ′
0 ∪M1 ∪M2) is at least

n

3

(
n/3

2

)
−
√
εn3 − 4|M ′

0 ∪M1 ∪M2|n2 > ηn3,

as
√
ε� η � 1. Hence, we may greedily find a matching M ′

2 in H − V (M ′
0 ∪M1 ∪M2)

such that |M ′
2| = |M2| and every edge of M ′

2 contains exactly two vertices of W ′.

Let M = M ′
0∪M1∪M2∪M ′

2 and m = |M |. Then m ≤ 8
√
εn. Let H3 = H−V (M).

Let H1,3(n− 3m,n/3−m) be obtained from H1,3(n, n/3) by removing V (M). Then, for

20



any x ∈ V (H3),

|NH1,3(n−3m,n/3−m)(x) \NH3(x)|

≤ |NH1,3(n,n/3)(x) \NH(x)|

≤
√
εn3

≤ 2
√
ε(n− 3m)3.

Thus, every vertex of H3 is 2
√
ε-good with respect to H1,3(n− 3m,n/3−m). By Lemma

4.4, H3 contains a perfect matching, say M3. Now M3 ∪M is a perfect matching in H .

4.3 k-Graphs Close to Hk−l
k (U,W )

In this section we prove Theorem 1.3 for the case when m > n/(2k4) and H is ε-close

to Hk−l
k (U,W ). The idea is similar to the proof of Lemma 4.5 while the argument is a bit

more complicated. We first find two matchings (in two steps and using Lemma 3.2) that

cover all
√
ε-bad vertices. We then apply Lemma 4.2 to the hypergraph obtained from H

by deleting these two matchings.

Lemma 4.6. Let k, l,m, n be integers and let 0 < ε < (8k−1k5(k−1)k!)−3, such that k ≥ 3,

l ∈ [k − 1], n ≥ 8k6/(1 − 5k2
√
ε), and n/(2k4) < m ≤ n/k − 1. Suppose H is a

k-graph on n vertices and U,W is a partition of V (H) with |W | = m, such that δl(H) >(
n−l
k−l

)
−
(
n−l−m
k−l

)
and H is ε-close to Hk−l

k (U,W ). Then ν(H) ≥ m+ 1 when m < n/k−1

or l ≤ k − 2, and ν(H) ≥ m when l = k − 1 and m = n/k − 1.

Proof. Since H is ε-close to Hk−l
k (U,W ), all but at most k

√
εn vertices of H are

√
ε-good

with respect to Hk−l
k (U,W ). Let U bad and W bad denote the set of

√
ε-bad vertices in U

and W , respectively. So |U bad| + |W bad| ≤ k
√
εn. Let c := |W bad|, V1 := U ∪W bad, and

W1 := W \W bad. Note that possibly c = 0. We deal with vertices in W1 later since at

those vertices H and Hk−l
k (U,W ) are “close”. We claim that
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(1) H[V1] has a matching M1 of size c+ 1.

To see this, let s be the maximum number of edges in H intersecting W1 and containing a

fixed l-set in V1. Then s ≤
(
n−l
k−l

)
−
(
n−l−(m−c)

k−l

)
and δl(H[V1]) ≥ δl(H)− s. Hence,

δl(H[V1]) ≥ δl(H)− s >
(

(n−m+ c)− l
k − l

)
−
(

(n−m+ c)− l − c
k − l

)
.

Since n/(2k4) < m < n/k ≤ n/3, we have n − m + c > 2m + c > n/k4 + c. Thus,

since c ≤ k
√
εn, n−m+ c > 2k4c by the choice of ε. So by Lemma 3.2, H[V1] contains

a matching of size c+ 1. This completes the proof of (1). 2

Let H1 := H − V (M1). Next, we cover U bad ∪W bad with two matchings in H1, using

edges intersecting W1 at most once. First note that, for each l-set S ⊆ V1 \ V (M1), H1 has

lots of edges containing S and intersectingW1 just once, orH1 has lots of edges containing

S and contained in V1 \ V (M1). More precisely, we show that

(2) for any real number β with 2k2
√
ε < β < (2k)−(k−l+3)/2 − k2

√
ε (which exists as

ε < (2k)−2k−11 and k ≥ 3) and for any S ∈
(
V1\V (M1)

l

)
, we have

|{T ∈ NH1(S) : |T ∩W1| = 1}| ≥ βnk−l, or

|{T ∈ NH1(S) : T ⊆ V1 \ V (M1)}| ≥ βnk−l.

To prove (2), let S ∈
(
V1\V (M1)

l

)
and assume |{T ∈ NH1(S) : |T ∩W1| = 1}| < βnk−l.

Since

|{T ∈ NH1(S) : |T ∩W1| ≥ 2}| ≤
k−l∑
i=2

(
m

i

)(
n− l −m
k − l − i

)
and

|{T ∈ NH(S) : |T ∩ V (M1)| ≥ 1}| ≤ k(c+ 1)nk−l−1 < 2k2
√
εnk−l,
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we have

|{T ∈ NH1(S) : T ⊆ V1 \ V (M1)}|

> δl(H)− |{T ∈ NH1(S) : |T ∩W1| ≥ 2}|

−|{T ∈ NH1(S) : |T ∩W1| = 1}| − 2k2
√
εnk−l

>

((
n− l
k − l

)
−
(
n− l −m
k − l

))
−

k−l∑
i=2

(
m

i

)(
n− l −m
k − l − i

)
− βnk−l − 2k2

√
εnk−l

= m

(
n− l −m
k − l − 1

)
− 2k2

√
εnk−l − βnk−l

> nk−l/(2k)k−l+3 − 2k2
√
εnk−l − βnk−l (since n/(2k4) ≤ m < n/k and n ≥ 8k6)

≥ βnk−l (by the choice of β).

This completes the proof of (2). 2

To find matchings in H1 covering (U bad∪W bad)\V (M1), we fix a set B ⊆ V1 \V (M1)

such that |B| ≡ 0 (mod l), (U bad ∪W bad) \ V (M1) ⊆ B, and |B \ (U bad ∪W bad)| < l.

For convenience, let q = |B|/l. Then

q ≤ k
√
εn.

We partition B into q disjoint l-sets B1, . . . , Bq. By (2), we may assume that, for some

q1 ∈ [q] ∪ {0}, |{T ∈ NH1(Bi) : |T ∩ W1| = 1}| ≥ βnk−l for 1 ≤ i ≤ q1 and

|{T ∈ NH1(Bj) : T ⊆ V1 \ V (M1)}| ≥ βnk−l for q1 < j ≤ q. We claim that

(3) there exist disjoint matchings M21 and M22 in H1 such that

• |M21|+ |M22| ≤ k
√
εn,

• M21 covers
⋃q1
i=1Bi and each edge in M21 intersects W1 just once, and

• M22 covers
⋃q
i=q1+1 Bi and each edge in M22 is disjoint from W1.

First, we find the matching M21 covering
⋃q1
i=1Bi (which is empty if q1 = 0). Suppose for
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some 0 ≤ h < q1 we have chosen pairwise disjoint edges e1, . . . , eh of H1 = H − V (M1)

(which is empty when h = 0), such that, for i ∈ [h], we have |ei ∩W1| = 1 and Bi ⊆ ei.

Since |{T ∈ NH1(Bh+1) : |T ∩W1| = 1}| ≥ βnk−l and h ≤ q1 − 1 ≤ k
√
εn − 1, the

number of edges of H disjoint from V (M1) ∪
(⋃h

i=1 ei

)
but containing Bh+1 and exactly

one vertex from W1 is at least

βnk−l − k|M1|nk−l−1 − (hk)nk−l−1 ≥ βnk−l − 2k2
√
εnk−l > 0.

Thus, there is an edge eh+1 of H1 such that |eh+1 ∩W1| = 1, Bh+1 ⊆ eh+1, and eh+1 ∩(⋃h
j=1 ej

)
= ∅. Since q1 ≤ q ≤ k

√
εn, we may continue this process till h = q1− 1. Now

M21 = {e1, . . . , eq1} is the desired matching that covers
⋃q1
i=1 Bi.

Next, we find the matchingM22 = {ej : q1 < j ≤ q}, such that for q1 < j ≤ q,Bj ⊆ ej

and ej ⊆ V1 \
(
V (M1) ∪

(⋃j−1
s=1 es

))
. Suppose that we have chosen e1, . . . , eq1 , . . . , es for

some s with q1 ≤ s < q (which is empty if q1 = q). Since |{T ∈ NH1(Bs+1) : T ⊆

V1 \ V (M1)}| ≥ βnk−l and s ≤ q − 1 ≤ k
√
εn − 1, the number of edges in H disjoint

from V (M1) ∪ (
⋃s
i=1 ei) ∪W1 but containing Bs+1 is at least

βnk−l − k|M1|nk−l−1 − (sk)nk−l−1 ≥ βnk−l − 2k2
√
εnk−l > 0.

So there exists an edge es+1 of H1 such that Bs+1 ⊆ es+1 and es+1 ∩ (
⋃s
i=1 ei) = ∅. Since

q ≤ k
√
εn, we may continue this process till s = q − 1. Now M22 = {eq1+1, . . . , eq} gives

the desired matching that covers
⋃q
i=q1+1Bi. This completes the proof of (3). 2

Now, every vertex in V (H) \ V (M1 ∪ M21 ∪ M22) (as a vertex of H) is
√
ε-good

with respect to Hk−l
k (U,W ). In order to apply Lemma 4.2, we find a matching M23 in

H1 − V (M21 ∪M22) such that every vertex of H2 := H1 − V (M21 ∪M22 ∪M23) is ε1/3-

good with respect to Hk−l
k (U∗,W ∗), where U∗ = U ∩ V (H2) and W ∗ = W ∩ V (H2),

|U∗| + |W ∗| ≥ 8k6, and (|U∗| + |W ∗|)/(2k4) < |W ∗| ≤ (|U∗| + |W ∗|)/k. So we need to

prove (4) and (5) below.
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(4) There exists a matching M23 in H1 − V (M21 ∪ M22) with |M23| < k
√
εn and

satisfying the following property: If we let H2 := H1 − V (M21 ∪ M22 ∪ M23),

U ′ = U ∩ V (H2), W ′ = W ∩ V (H2), then, for some r ∈ {0, 1} with r = 0 for

l ≤ k − 2, we have

• |W ′| − r = m − c − |M21| − |M22| − |M23|, |U ′| + |W ′| − r ≥ 8k6, and

(|U ′|+ |W ′| − r)/(2k5) < |W ′| − r,

• |W ′| − r ≤ (|U ′|+ |W ′| − r)/k when l ≤ k − 2 or m < n/k − 1, and

• |W ′| − r ≤ (|U ′|+ |W ′|)/k when l = k − 1 and m = n/k − 1.

We prove (4) by considering two cases. Note |M1 ∪M21 ∪M22| = (c + 1) + q ≤ 3k
√
εn

as c, q ≤ k
√
εn.

Case 1. l ≤ k − 2.

In this case, we construct the matching M23 as follows. Suppose for some 1 ≤ t ≤

q − q1, we found vertices x1, . . . , xt−1 in U \ V (M1 ∪M21 ∪M22) and edges f1, . . . , ft−1

in H1 − V (M21 ∪M22) such that, for i ∈ [t − 1], we have xi ∈ fi, |fi ∩W1| = 2, and

fi ∩
(⋃i−1

j=1 fj

)
= ∅. (When t = 1, these sequences are empty.) Let xt ∈ U \ V (M1 ∪

M21 ∪M22) \
(⋃t−1

i=1 fi
)
. Since xt is

√
ε-good with respect to Hk−l

k (U,W ), the number of

edges of H1 − V (M21 ∪M22)−
(⋃t−1

i=1 fi
)

containing xt and exactly two vertices in W1 is

at least

(
m− c− 2(t− 1)

2

)(
n−m− 1

k − 3

)
−
√
εnk−1 − (3k

√
εn)nk−2 − (kt)nk−2 > 0,

as n/(2k4) < m, c < k
√
εn, t < k

√
εn, and ε < (8k−1k5(k−1)k!)−3. So there exists an

edge ft in H1 − V (M21 ∪M22) −
(⋃t−1

i=1 fi
)

such that xt ∈ ft and |ft ∩W1| = 2. This

process works as long as t ≤ q− q1. Thus, we have a matching M23 = {fj : j ∈ [q− q1]}

such that, for j ∈ [q−q1], fj ⊆ V (H1)\
(
V (M21 ∪M22) ∪

(⋃j−1
i=1 fi

))
and |fj∩W1| = 2.

Let H2 := H1−V (M21∪M22∪M23) and let U ′ = U ∩V (H2) and W ′ = W ∩V (H2).
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Note that |M23| = |M22|, and note that

|W ′| = |W | − c− |M21| − 2|M23| = |W | − c− |M21| − |M22| − |M23|, and

|U ′| = |U | − (k(c+ 1)− c)− (k − 1)|M21| − k|M22| − (k − 2)|M23|

= |U | − (k − 1)(c+ 1 + |M21|+ |M22|+ |M23|)− 1.

Hence, we have

|U ′|+ |W ′| = |U |+ |W | − k(c+ 1)− k|M21| − k|M22| − k|M23|.

Thus, |U ′|+ |W ′| ≥ n− 5k2
√
εn ≥ 8k6 and, since m ≤ n/k − 1,

(|U ′|+ |W ′|)/k = (|U |+ |W |)/k − (c+ 1)− |M21| − |M22| − |M23|

≥ (|W |+ 1)− (c+ 1)− |M21| − |M22| − |M23|

= |W ′|.

Moreover, since |W | > n/(2k4) and |W | ≥ |W ′| ≥ |W | − 3k
√
εn, we have

(|U ′|+ |W ′|)− 2k5|W ′|

= |U |+ |W | − k(c+ 1)− k|M21| − k|M22| − k|M23| − 2k5|W ′|

< |U |+ |W | − 2k5|W ′|

< 2k4|W | − 2k5|W ′|

< 0 (since n is large and ε is small)

Case 2. l = k − 1.

Arbitrarily choose q− q1 pairwise disjoint (k− 1)-sets in V (H) \V (M1∪M21∪M22),

each containing exactly two vertices in W1. Note that this can be done, because |W1| =
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m − c ≥ n/(2k4) − k
√
εn > 2q. Since δk−1(H) > m ≥ n/(2k4) > 5k2

√
εn ≥ k((c +

1) + 3q), we can extend these q − q1 sets to q − q1 pairwise disjoint edges f1, . . . , fq−q1 in

H − V (M1 ∪M21 ∪M22).

Clearly, each fi contains either two or three vertices from W1. Thus, there exists some

integer p with 0 ≤ p ≤ q − q1 such that q − q1 + p− 1 ≤ |W1 ∩ (
⋃p
i=1 fi) | ≤ q − q1 + p.

Let M23 = {f1, . . . , fp}, H2 := H1 − V (M21 ∪M22 ∪M23), and U ′ = U ∩ V (H2) and

W ′ = W ∩ V (H2).

Note that |W1 ∩ V (M23)| = |M22|+ |M23| − r for some r ∈ {0, 1}. Hence,

|W ′| = |W | − c− |M21| − |W1 ∩ V (M23)| = |W | − c− |M21| − |M22| − |M23|+ r

and

|U ′| = |U | − (k(c+ 1)− c)− (k − 1)|M21| − k|M22| − (k|M23| − |W1 ∩ V (M23)|).

Therefore,

|U ′|+ |W ′| − r = (|U |+ |W | − r)− k(c+ 1)− k|M21| − k|M22| − k|M23|.

It is easy to see that the same calculations in Case 1 also allow us to conclude that

|U ′| + |W ′| − r ≥ 8k6 and (|U ′| + |W ′| − r) − 2k5(|W ′| − r) < 0. Moreover, if r = 0

then the same argument in Case 1 shows that |W ′| ≤ (|U ′|+ |W ′|)/k. So we may assume

r = 1.

First, suppose m < n/k − 1. Then (|U |+ |W |)/k ≥ |W |+ 1 + 1/k; so

(|U ′|+ |W ′| − 1)/k = (|U |+ |W | − 1)/k − (c+ 1)− |M21| − |M22| − |M23|

≥ (|W |+ 1 + 1/k)− 1/k − (c+ 1)− |M21| − |M22| − |M23|

= |W ′| − 1.
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Now suppose m = n/k − 1 (so n ∈ kZ). Then

(|U ′|+ |W ′|)/k = (|U |+ |W |)/k − (c+ 1)− |M21| − |M22| − |M23|

≥ (|W |+ 1)− (c+ 1)− |M21| − |M22| − |M23|

≥ |W ′| − 1.

So |W ′| − r ≤ (|U ′|+ |W ′|)/k, completing the proof of (4). 2

We now define W ∗ ⊆ W ′ and U∗ = V (H) \W ∗ as follows: If r = 0 let W ∗ = W ′. If

r = 1 and n /∈ kZ or m < n/k − 1 then choose some w ∈ W ′ and let W ∗ = W ′ \ {w}. If

r = 1, n ∈ kZ, and m = n/k − 1 then choose w1, w2 ∈ W ′ and let W ∗ = W ′ \ {w1, w2}.

(5) Every vertex of H2 := H1 − V (M21 ∪ M22 ∪ M23) is ε1/3-good with respect to

Hk−l
k (U∗,W ∗).

To prove (5), we note that k|M1∪M21∪M22∪M23|+ 2 ≤ k((c+ 1) + 3q) + 2 ≤ 5k2
√
εn.

For each x ∈ V (H2), since x is
√
ε-good with respect to Hk−l

k (U,W ), we have

|NHk−l
k (U,W )(x) \NH(x)| ≤

√
εnk−1.

Thus,

∣∣∣NHk−l
k (U∗,W ∗)(x) \NH2(x)

∣∣∣
≤

∣∣∣NHk−l
k (U,W )(x) \NH(x)

∣∣∣+ (k |M1 ∪M21 ∪M22 ∪M23|+ 2)nk−2

≤
√
εnk−1 + 5k2

√
εnk−1

< ε1/3nk−1.

This completes the proof of (5). 2

Hence, by (4) and (5), it follows from Lemma 4.2 that there is a matching M3 in H2 of

size |W ∗|. Let M := M1 ∪M21 ∪M22 ∪M23 ∪M3. Then M is a matching in H . By (4),
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|W ′| − r = m− (|M1| − 1)− |M21| − |M22| − |M23|. If l = k− 1 and m = n/k− 1, then

|W ∗| ≥ |W ′| − r − 1; so

|M | ≥ (|W ′| − r − 1) + |M1|+ |M21|+ |M22|+ |M23| = n/k − 1.

Otherwise, |W ∗| = |W ′| − r and

|M | = (|W ′| − r) + |M1|+ |M21|+ |M22|+ |M23| = m+ 1.
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CHAPTER 5

ABSORBING LEMMAS

A typical approach to finding large matchings in a dense k-graphH is to find a small match-

ing Ma in H that can be used to ‘absorb’ small sets of vertices. More precisely, we look for

a small matching Ma such that for each small subset S ⊆ V (H) \ V (Ma), H[V (Ma) ∪ S]

has a large matching. Such a matching Ma is known as an absorbing matching (or ab-

sorber), often found by applying the second moment method. This approach was initiated

by Rödl, Ruciński, and Szemerédi [40].

Let Bi(n, p) be the binomial distribution with parameters n and p. The following

lemma on Chernoff bound can be found in Alon and Spencer [5] (page 313, also see [36]).

Lemma 5.1 (Chernoff). Suppose X1, . . . , Xn are independent random variables taking

values in {0, 1}. Let X =
∑n

i=1Xi and µ = E[X]. Then, for any 0 < δ ≤ 1,

P[X ≥ (1 + δ)µ] ≤ e−δ
2µ/3 and P[X ≤ (1− δ)µ] ≤ e−δ

2µ/2.

In particular, when X ∼ Bi(n, p) and λ < 3
2
np, then

P(|X − np| ≥ λ) ≤ e−Ω(λ2/np).

In the following two sections, we prove the existence of desired absorbing matchings

to help us prove Theorem 2.8 and Theorem 1.3, respectively.

5.1 Absorbing Matchings in (1, 3)-Partite 4-Graphs

Lemma 5.2. Let n ∈ 3Z be large enough and let H be a (1, 3)-partite 4-graph with

partition classes Q,P such that 3|Q| = |P | and δ1(H) ≥ (n/3)
((

n−1
2

)
−
(

2n/3
2

)
+ 1
)

.
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Let ρ, ρ′ be constants such that 0 < ρ′ � ρ � 1. Then H has a matching M ′ such that

|M ′| ≤ ρn and, for any subset S ⊆ V (H)\V (M ′) with |S| ≤ ρ′n and 3|S∩Q| = |S∩P |,

H[S ∪ V (M ′)] has a perfect matching.

Proof. Our proof follows along the same lines as in [40].

We call a balanced 12-element setA ⊆ V (H) an absorbing set for a balanced 4-element

set T ⊆ V (H) if H[A] has a matching of size 3 and H[A ∪ T ] has a matching of size 4.

Denote by L(T ) the collection of all absorbing sets for T . Then

(1) for every balanced T ∈
(
V (H)

4

)
, |L(T )| > 10−8n12/12!.

Let T = {u0, u1, u2, u3} ∈
(
V (H)

4

)
be balanced, with u0 ∈ Q and u1, u2, u3 ∈ P . We form

an absorbing set for T by choosing four pairwise disjoint 3-sets U0, U1, U2, U3 in order.

First, we choose a 3-set U0 ⊆ P \ T such that U0 ∪ {u0} ∈ E(H). The number of

choices for U0 is at least

dH(u0)− 3

(
n− 3

2

)
> δ1(H)− 3

(
n− 1

2

)
>
n

9

(
n− 1

2

)
.

Now fix a choice of U0, and let U0 = {w1, w2, w3}. Note that, for each x ∈ P , NH(x)

is a subset of {{x0, x1, x2} : x0 ∈ Q, x1, x2 ∈ P}. Hence, |NH(ui) ∪ NH(wi)| ≤ n
3

(
n
2

)
.

Thus, for i ∈ [3],

|NH(ui) ∩NH(wi)| ≥
2n

3

((
n− 1

2

)
−
(

2n/3

2

)
+ 1

)
− n

3

(
n

2

)
≥ n

30

(
n− 1

2

)
.

For i ∈ [3], we choose 3-sets Ui from (V (H) \ T ) \
⋃i−1
j=0 Uj such that Ui ∪ {ui} and

Ui∪{wi} are both edges ofH . For each choice of Uj , 0 ≤ j ≤ i−1, the number of choices

for Ui is at least

|NH(ui) ∩NH(wi)| − 13(n/3)n ≥ n

30

(
n− 1

2

)
− 13n2/3 >

n

50

(
n− 1

2

)
.
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Let A =
⋃3
i=0 Ui. Then {Ui ∪ {wi} : i ∈ [3]} is a matching in H[A], and {Ui ∪ {ui} :

i ∈ [3]∪{0}} is a matching in H[A∪T ]. Thus A is an absorbing set for T . Since there are

more than 10−8n12 choices of (U0, U1, U2, U3), there are more than 10−8n12/12! absorbing

sets for T . 2

Now, form a family F of subsets of V (H) by selecting each of the
(
n/3
3

)(
n
9

)
possible

balanced 12-sets independently with probability

p =
ρn

2
(
n/3
3

)(
n
9

) .
Then, it follows from Lemma 5.1 that, with probability 1− o(1) (as n→∞),

(2) |F| ≤ ρn, and

(3) |L(T ) ∩ F| ≥ p|L(T )|/2 ≥ 10−10ρn for all balanced T ∈
(
V (H)

4

)
.

Furthermore, the expected number of intersecting pairs of sets in F is at most

(
n/3

3

)(
n

9

)[
3

(
n/3− 1

2

)(
n

9

)
+ 9

(
n− 1

8

)(
n/3

3

)]
p2 < ρ1.5n.

Thus, using Markov’s inequality, we derive that, with probability at least 1/2,

(4) F contains at most 2ρ1.5n intersecting pairs.

Hence, with positive probability, F satisfies (2), (3), and (4). Let F ′ be obtained from

F by removing one set from each intersecting pair and deleting all non-absorbing sets.

Then F ′ consists of pairwise disjoint absorbing sets, such that, for each T ∈
(
V (H)

4

)
,

|L(T ) ∩ F ′| ≥ 10−10ρn/2.

Since F ′ consists only of pairwise disjoint absorbing sets, H[V (F ′)] has a perfect

matching, say M ′. Then |M ′| ≤ ρn. To complete the proof, take an arbitrary S ⊆
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V (H) \ V (M ′) with |S| ≤ ρ′n and 3|S ∩Q| = |S ∩P |, where ρ′ ≤ 10−10ρ/2. Note that S

can be partitioned into t balanced 4-sets, say T1, . . . , Tt, for some t ≤ ρ′n/4 < 10−10ρn/2.

We can greedily choose distinct absorbing sets Ai ∈ F ′ in order for i = 1, . . . , t, such

that H[Ai ∪ Ti] has a perfect matching. Hence, H[S ∪ V (M ′)] has a perfect matching as

required.

5.2 Absorbing Matchings in k-Graphs

In this section, we prove the following lemma for absorbing matchings in k-graphs with

large l-degree for k/2 < l ≤ k − 1. We are able to do this partly due to the existence of

positive integers a, h satisfying h ≤ l, a ≤ k − l, and al ≥ a(k − l) + (k − h). (One can

check that a = k − l and h = l satisfies this requirement.)

We will frequently use the following fact: For integers 0 ≤ l′ < l ≤ k − 1 and any

k-graph H , if δl(H) ≥ c
(
n−l
k−l

)
for some 0 ≤ c ≤ 1, then δl′(H) ≥ c

(
n−l′
l−l′
)(
n−l
k−l

)
/
(
k−l′
l−l′
)
≥

c
(
n−l′
k−l′
)
, which can be proved by a standard double-counting.

Lemma 5.3. Let k, l be integers with k ≥ 3 and k/2 < l ≤ k − 1, and let c > 0 be a

constant with c < 1/k!. Then there exist ρ > 0 and c′ > 0 with 0 < ρ� c′ � c, such that

the following holds for all sufficiently large integers n:

Let a, h be positive integers satisfying h ≤ l, a ≤ k − l, and al ≥ a(k − l) + (k − h).

Let H be a k-graph on n vertices with δl(H) ≥ c
(
n−l
k−l

)
. Then there exists a matching M in

H such that

• |M | ≤ 2kρn and

• for any subset S ⊆ V (H) with |S| ≤ c′ρn, H[V (M) ∪ S] has a matching covering

all but at most al + h− 1 vertices.

Proof. For R ∈
(
V (H)
al+h

)
and Q ∈

(
V (H)
ak

)
, we say that Q is R-absorbing if ν(H[Q ∪ R]) ≥

a + 1 and Q is the vertex set of a matching in H . (In particular, this requires al + h ≥ k,
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which is guaranteed by assumption.) Let L(R) denote the collection of all R-absorbing

sets in H . We claim that

(1) there exists c′ = c′(c, k) > 0 such that |L(R)| ≥ c′nak for every R ∈
(
V (H)
al+h

)
.

To prove (1), let R ∈
(
V (H)
al+h

)
. We wish to extend R to a matching of size a + 1 by adding

a set of size (a + 1)k − (al + h) = a(k − l) + (k − h). Partition R into a + 1 pairwise

disjoint subsets R1, . . . , Ra+1, with |Ra+1| = h and |Ri| = l for i ∈ [a]. Next we choose

(k − l)-sets Ts for s ∈ [a] and a (k − h)-set Ta+1 such that {Rs ∪ Ts : s ∈ [a+ 1]} form a

matching in H .

For j ∈ [a], since dH(Rj) ≥ δl(H) ≥ c
(
n−l
k−l

)
, we have, for large n,

∣∣∣N(H−R)−
⋃j−1

s=1 Ts
(Rj+1)

∣∣∣ ≥ c

(
n− l
k − l

)
− ((al+h) + (k− l)j)

(
(n− l)− 1

(k − l)− 1

)
>
c

2

(
n− l
k − l

)
;

thus, we have more than c
2

(
n−l
k−l

)
choices for each Tj with j ∈ [a]. Similarly, since dH(Ra+1) ≥

c
(
n−h
k−h

)
as h ≤ l, we have

∣∣N(H−R)−
⋃a

s=1 Ts
(Ra+1)

∣∣ ≥ c

(
n− h
k − h

)
−((al+h)+(k−l)a)

(
(n− h)− 1

(k − h)− 1

)
>
c

2

(
n− h
k − h

)
;

hence, we have more than c
2

(
n−h
k−h

)
choices for Ta+1.

Fix an arbitrary choice of Ti ∈ N(H−R)−
⋃i−1

s=1 Ts
(Ri), i ∈ [a + 1], such that {Rs ∪ Ts :

s ∈ [a+ 1]} form a matching in H . Let T =
⋃a+1
i=1 Ti. Next, we form an R-absorbing set Q

by extending the set T to a matching of size a. We partition T into subsets T ′1, . . . , T
′
a such

that 1 ≤ |T ′i | ≤ l for i ∈ [a]. Such a partition exists since |T | = a(k − l) + (k − h) ≤ al.

Similar to the arguments in the previous paragraph, we can show that there exist Pi ∈

N(H−(R∪T ))−
⋃i−1

s=1 Ps
(T ′i ) for i ∈ [a], such that

∣∣∣N(H−(R∪T ))−
⋃i−1

s=1 Ps
(T ′i )

∣∣∣ > c

2

(
n− |T ′i |
k − |T ′i |

)
.

This means that there are more than c
2

(
n−|T ′i |
k−|T ′i |

)
choices for each Pi with i ∈ [a]. Let Q =
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T ∪ (
⋃a
i=1 Pi). Then Q is the vertex set of a matching of size a in H . Hence Q is an

R-absorbing set.

Note that each such ak-setQ can be produced at most (ak)! times by the above process,

and recall that
∑a

i=1 |T ′i | = a(k − l) + (k − h). Hence, for large n (compared with k), we

have

|L(R)| > ((ak)!)−1

(
c

2

(
n− l
k − l

))a(
c

2

(
n− h
k − h

)) a∏
i=1

(
c

2

(
n− |T ′i |
k − |T ′i |

))
> (2(ak)!)−1

( c
2

)2a+1
(

na(k−l)

((k − l)!)a

)(
nk−h

(k − h)!

)(
nak−(a(k−l)+(k−h))

(ak − (a(k − l) + (k − h)))!

)
> c′nak,

by choosing c′ < (2(ak)!)−1 (c/2)2a+1 (((k − l)!)a(k − h)!(al + h− k)!)−1. This com-

pletes the proof of (1). 2

Choose ρ < c′/(2a2k2). We form a family F ⊆
(
V (H)
ak

)
by choosing each member of(

V (H)
ak

)
independently at random with probability

p =
ρn(
n
ak

) .
Then

(2) with probability 1/2− o(1), all of the following hold:

(2a) |F| ≤ 2ρn,

(2b) |L(R) ∩ F| ≥ 2c′ρn for all (al + h)-sets R, and

(2c) F contains less than c′ρn intersecting pairs.

Clearly, E(|F|) = ρn and, by (1), E(|L(R) ∩ F|) > c′nakp > 4c′ρn (as a ≥ 1 and k ≥ 3).

So by Lemma 5.1, with probability 1− o(1),

|F| ≤ 2ρn,
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and, for each fixed (al + h)-set R, with probability at least 1− e−Ω(ρn), F satisfies

|L(R) ∩ F| ≥ 2c′ρn.

Hence given n sufficiently large, it follows from union bound that, with probability 1−o(1),

(2a) and (2b) hold.

Furthermore, the expected number of intersecting pairs in F is at most

(
n

ak

)(
ak

1

)(
n− 1

ak − 1

)
p2 = a2k2ρ2n < c′ρn/2.

Thus, using Markov’s inequality, we derive that with probability at least 1/2, F contains

less than c′ρn intersecting pairs of ak-sets. Hence, by union bound, (2a), (2b), (2c) hold

with probability 1/2− o(1), completing the proof of (2). 2

LetF ′ denote the family obtained fromF by deleting one ak-set from each intersecting

pair of sets in F and removing all ak-sets that are not the vertex set of a matching in H .

(Note that the latter are not in L(R) for any (al + h)-set R.) Then F ′ consists of pairwise

disjoint vertex sets of matchings of size a in H . Moreover, for all (al + h)-sets R,

|L(R) ∩ F ′| ≥ 2c′ρn− c′ρn ≥ c′ρn.

For each F ∈ F ′, letMF be a matching inH with V (MF ) = F . ThenM =
⋃
F∈F ′MF

is a perfect matching in H[V (F ′)], and |M | ≤ a|F| ≤ k|F| ≤ 2kρn. It remains to show

that M absorbes small sets.

Let S be an arbitrary subset of V (H) \ V (M) with |S| ≤ c′ρn. We use M to absorb

(al+h)-sets iteratively, starting with an arbitrary (al+h)-subset of S. Let S0 := S and let

R0 ⊆ S0 with |R0| = al + h. Since |L(R0) ∩ F ′| ≥ c′ρn, we can find Q0 ∈ F ′ such that

H[R0 ∪Q0] has a matching M0 with |M0| = a+ 1. Let t ≥ 0 be the maximal integer such

that there exist
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• sets S0, . . . , St with |Si| ≥ al + h for i ∈ [t] ∪ {0},

• (al + h)-sets R0, . . . , Rt with Ri ⊆ Si for i ∈ [t] ∪ {0},

• pairwise disjoint sets Q0, . . . , Qt ∈ F ′ with Qi being Ri-absorbing for i ∈ [t] ∪ {0},

• pairwise disjoint (a + 1)-matchings M0, . . . ,Mt, with Mi in H[Ri ∪ Qi] for i ∈

[t] ∪ {0},

satisfying the property that Si = (Si−1 ∪Qi−1) \ V (Mi−1) for i ∈ [t]

Then |Si| = |Si−1| − k for i ∈ [t]. Let St+1 = (St ∪ Qt) \ V (Mt). If |St+1| < al + h

then M is the desired matching. So assume |St+1| ≥ al + h and let Rt+1 be an (al + h)-

subset of St+1. Since |L(Rt+1) ∩ F ′| ≥ c′ρn and t + 1 ≤ |S|/k + 1 ≤ c′ρn − 1, there

exists Qt+1 ∈ F ′ \ {Q0, . . . , Qt} such that H[Rt+1 ∪ Qt+1] has a matching Mt+1 with

|Mt+1| = a+ 1. This contradicts the maximality of t.
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CHAPTER 6

NON EXTREMAL CASES AND INDEPENDENT SETS

In this section we point out the relationship between ‘close to extremal constructions’ and

‘having certain independent sets’ in locally dense uniform hypergraphs, and use that to

prove properties from ‘non-closeness’ for certain induced subgraphs, which is an important

step in our solution to the non extremal case.

Definition 6.1. Any subset I ⊆ V (H) that contains no edge of H is called an independent

set. We use α(H) to denote the size of a largest independent set in the hypergraph H .

When H is not close to the extremal constructions, we will show that the random in-

duced subgraphs obtained by independently sampling each vertex not in the absorber with

a certain probability do not have independent sets larger than a certain size (see Lemma 6.6

and Lemma 6.8) with high probability. Then we use this property of a random induced

subgraph H ′, as well as some degree conditions inherited from H , to show that H ′ has a

perfect fractional matching (see Lemma 8.3 and Lemma 7.4).

To obtain this property, we use the hypergraph container method developed by Balogh,

Morris, and Samotij [6] and, independently, by Saxton and Thomason [41].

Definition 6.2. A family F of subsets of a set V is said to be increasing if, for any A ∈ F

and B ⊆ V , A ⊆ B implies B ∈ F .

We use ∆l(H) to denote the maximum l-degree ofH , and I(H) to denote the collection

of all independent sets in H .

Definition 6.3. Let ε > 0 and let F be a family of subsets of V (H). We say that H

is (F , ε)-dense if e(H[A]) ≥ εe(H) for every A ∈ F . We use F to denote the family

consisting of subsets of V (H) not in F .
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We will use the following container result from [6].

Theorem 6.4 (Balogh, Morris, and Samotij, 2015). For every k ∈ N and all positive c and

ε, there exists a positive constant C such that the following holds. Let H be a k-graph and

let F be an increasing family of subsets of V (H) such that |A| ≥ εv(H) for all A ∈ F .

Suppose that H is (F , ε)-dense and p ∈ (0, 1) is such that, for every l ∈ [k],

∆l(H) ≤ cpl−1 e(H)

v(H)
.

Then there exist a family S ⊆
(

V (H)
≤Cpv(H)

)
and functions f : S → F and g : I(H)→ S such

that, for every I ∈ I(H),

g(I) ⊆ I and I \ g(I) ⊆ f(g(I)).

In each of the following two sections, we first prove the hypergraph H in question has

a family of sets with the desired density, and then show H has no large independent sets.

6.1 Independent Sets in (1, 3)-Partite 4-Graphs

In order to apply Theorem 6.4 we need a family F of subsets of V (H) so that H is (F , ε)-

dense, which is possible when H is not close to any H1,3(n, n/3).

Lemma 6.5. Let ρ, ε be reals such that 0 < ρ ≤ ε/4 � 1, let n ∈ 3Z be large, and

let H be a (1, 3)-partite 4-graph with partition classes Q,P such that 3|Q| = |P | = n

and dH({u, v}) ≥
(
n−1

2

)
−
(

2n/3
2

)
− ρn2 for any v ∈ Q and u ∈ P . If H is not ε-close

to any H1,3(n, n/3) with V (H1,3(n, n/3)) = P ∪ Q, then H is (F , ε/6)-dense, where

F = {A ⊆ V (H) : |A ∩Q| ≥ (1/3− ε/8)n and |A ∩ P | ≥ (2/3− ε/8)n}.

Proof. Suppose to the contrary that there exists A ⊆ V (H) such that |A ∩ Q| ≥ (1/3 −

ε/8)n, |A∩P | ≥ (2/3−ε/8)n, and e(H[A]) ≤ εe(H)/6. Choose suchA that |P\A| ≥ n/3

and let W ⊆ P \ A such that |W | = n/3. Let A1 = A ∩ P and A2 = A ∩ Q, and let
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B1 = (P \W )\A1, B2 = Q\A2, and B = B1∪B2. Then |A1| ≤ 2n/3 and, by the choice

of A, |B1| ≤ εn/8 and |B2| ≤ εn/8.

Let U = P \W = A1 ∪ B1 and let H0 denote the H1,3(n, n/3) with partition classes

Q,U,W . We derive a contradiction by showing that |E(H0) \ E(H)| < εn4. By the

definition of H(n, n/3), each f ∈ E(H0) \ E(H) intersects U . So

|E(H0) \ E(H)| ≤ |{f ∈ E(H0) : f ∩B1 6= ∅}|+ |{f ∈ E(H0) \ E(H) : f ∩ A1 6= ∅}|.

Since |B1| ≤ εn/8, we have |{f ∈ E(H0) : f ∩B1 6= ∅}| ≤ |B1||Q||P |2/2 ≤ εn4/48.

To bound |{f ∈ E(H0) \ E(H) : f ∩ A1 6= ∅}|, we note that, for each fixed u ∈ A1,

|{f ∈ E(H) : u ∈ f, f ∩B 6= ∅}| ≤ |B1||P ||Q|+ |B2||P |2/2 < εn3/8,

and that, for each f ∈ E(H) with u ∈ f , we have f ∩B 6= ∅, or f ⊆ A, or f ∈ E(H0). So

for any u ∈ A1,

|{f ∈ E(H) : u ∈ f, f ∈ E(H0)|

≥dH(u)− |{f ∈ E(H) : u ∈ f, f ∩B 6= ∅}| − |{f ∈ E(H) : u ∈ f, f ⊆ A}|

≥dH(u)− εn3/8− dH[A](u).

Hence,

|{f ∈ E(H0) \ E(H) : f ∩ A1 6= ∅}|

≤
∑
u∈A1

|{f ∈ E(H0) \ E(H) : u ∈ f}|

≤
∑
u∈A1

(dH0(u)− |{f ∈ E(H) : u ∈ f, f ∈ E(H0)|)

≤
∑
u∈A1

(
dH0(u)− dH(u) + εn3/8 + dH[A](u)

)
.
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Since for u ∈ A1, dH0(u) = n
3

((
n−1

2

)
−
(

2n/3−1
2

))
and dH(u) =

∑
v∈Q dH({u, v}) ≥

n
3

((
n−1

2

)
−
(

2n/3
2

)
− ρn2

)
, we have dH0(u)− dH(u) ≤ ρn3/3 (for large n). Hence,

|E(H0) \ E(H)| ≤ εn4/48 + |A1| (ρ/3 + 3ε/8)n3 +
∑
u∈A1

dH[A](u)

≤ (ε/48 + 4ρ/9 + ε/4)n4 + 3e(H[A]) ( since |A1| ≤ 2n/3)

≤ (1/48 + 1/9 + 1/4) εn4 + 3εn4/6 ( since e(H[A]) ≤ εe(H)/6)

< εn4,

a contradiction.

We now use Theorem 6.4 to control the independence number of a random subgraph.

Lemma 6.6. Let c, ε′, α1, α2 be positive reals, let γ > 0 with γ � min{α1, α2}, let k, n be

positive integers with n ∈ 3Z, and let H be a (1, 3)-partite 4-graph with partition classes

Q,P such that 3|Q| = |P | = n, e(H) ≥ cn4, and e(H[F ]) ≥ ε′e(H) for all F ⊆ V (H)

with |F ∩ P | ≥ α1n and |F ∩ Q| ≥ α2n. Let R ⊆ V (H) be obtained by taking each

vertex of H uniformly at random with probability n−0.9. Then, with probability at least

1−nO(1)e−Ω(n0.1), every independent set J in H[R] satisfies |J ∩P | ≤ (α1 + γ+ o(1))n0.1

or |J ∩Q| ≤ (α2 + γ + o(1))n0.1.

Proof. Define F := {A ⊆ V (H) : e(H[A]) ≥ ε′e(H) and |A| ≥ ε′n}. Then F is an in-

creasing family, and H is (F , ε′)-dense. Let p = n−1 and v(H) = 4n/3. Then, for l ∈ [4],

∆l(H) ≤
(

4n/3

4− l

)
≤ (4n/3)4−l ≤ (4/3)4−lc−1n−le(H) = (4/3)4−l+1c−1pl−1 e(H)

v(H)
.

Thus by Lemma 6.4, there exist constant C, family S ⊆
(
V (H)
≤C

)
, and function f : S → F ,

such that every independent set inH is contained in some T ∈ T := {F ∪ S : F ∈ f(S), S ∈ S}.
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Since S ⊆
(
V (H)
≤C

)
, |S| ≤ C(4n/3)C and, hence,

|T | = |S||f(S)| ≤ |S|2 ≤ C2(4n/3)2C .

Since for T ∈ T it is possible that |T ∩P | < α1n+C or |T ∩Q| < α2n+C, we need

to make the sets in T slightly larger in order to apply Lemma 5.1. For each T ∈ T , let T ′

be a set obtained from T by adding vertices such that |T ′∩P | = max{|T ∩P |, dα1n+Ce}

and |T ′ ∩ Q| = max{|T ∩ Q|, dα2n + Ce}. (We choose one such T ′ for each T .) Let

T ′ := {T ′ : T ∈ T }. Then

|T ′| ≤ |T | ≤ C2(4n/3)2C .

Note that for each fixed T ′ ∈ T ′, we have |R ∩ T ′ ∩ P | ∼ Bi (|T ′ ∩ P |, n−0.9) and

|R ∩ T ′ ∩ Q| ∼ Bi (|T ′ ∩Q|, n−0.9). Hence, E(|R ∩ T ′ ∩ P |) = n−0.9|T ′ ∩ P | and

E(|R ∩ T ′ ∩Q|) = n−0.9|T ′ ∩Q|. Applying Lemma 5.1 to |R ∩ T ′ ∩ P | and |R ∩ T ′ ∩Q|

by taking λ = γn0.1, we have,

P
(∣∣|R ∩ T ′ ∩ P | − n−0.9|T ′ ∩ P |

∣∣ ≥ λ
)
≤ e−Ω(λ2/(n−0.9|T ′∩P |) ≤ e−Ω(n0.1), and

P
(∣∣|R ∩ T ′ ∩Q| − n−0.9|T ′ ∩Q|

∣∣ ≥ λ
)
≤ e−Ω(λ2/(n−0.9|T ′∩Q|) ≤ e−Ω(n0.1).

So with probability at most 2e−Ω(n0.1), |R∩T ′∩P | ≥ n−0.9|T ′∩P |+λ ≥ (α1+γ+C/n)n0.1

and |R ∩ T ′ ∩Q| ≥ n−0.9|T ′ ∩Q|+ λ ≥ (α2 + γ + C/n)n0.1.

Therefore, with probability at most 2C2n2Ce−Ω(n0.1), there exists some T ′ ∈ T ′ such

that |R ∩ T ′ ∩ P | ≥ (α1 + γ +C/n)n0.1 and |R ∩ T ′ ∩Q| ≥ (α2 + γ +C/n)n0.1. Hence,

with probability at least 1 − 2C2n2Ce−Ω(n0.1), |R ∩ T ′ ∩ P | < (α1 + γ + C/n)n0.1 or

|R ∩ T ′ ∩Q| < (α2 + γ + C/n)n0.1 for all T ′ ∈ T ′.

Now let J be an independent set in H[R]. Then J is also an independent set in H;

so there exist T ∈ T and T ′ ∈ T ′ such that J ⊆ T ⊆ T ′. Thus J ⊆ R ∩ T ′; so
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|J ∩ P | ≤ |R ∩ T ′ ∩ P | and |J ∩ Q| ≤ |R ∩ T ′ ∩ Q|. Hence, with probability at least

1− 2C2n2Ce−Ω(n0.1), for all independent set J in H[R], |J ∩ P | ≤ (α1 + γ + C/n)n0.1 or

|J ∩Q| ≤ (α2 + γ + C/n)n0.1.

6.2 Independent Sets in k-Graphs

In this section we prepare ourselves to deal with hypergraphs not close to Hk−l
k (U,W ).

The following lemma says that, if an n-vertex k-graph H is not ε-close to Hk−l
k (U,W )

and δl(H) ≥
(
n−l
k−l

)
−
(
n−l−m
k−l

)
− ρ′nk−l then H is (F , ε′)-dense.

Lemma 6.7. Let k, l be integers with k ≥ 2 and l ∈ [k − 1]. Let 0 < ε � 1, ρ′ ≤ ε/8,

and 0 < µ ≤ ε/40. Let m,n be sufficiently large integers such that n/k−µn ≤ m ≤ n/k.

Suppose H is a k-graph with order n such that δl(H) >
(
n−l
k−l

)
−
(
n−l−m
k−l

)
− ρ′nk−l, and H

is not ε-close to Hk−l
k (U,W ) for any partition of V (H) into U,W with |W | = m. Then H

is (F , ε/(2k!))-dense, where F = {A ⊆ V (H) : |A| ≥ (1− 1/k − ε/4)n}.

Proof. Suppose to the contrary that there exists A ⊆ V (H) such that |A| ≥ (1 − 1/k −

ε/4)n and e(H[A]) ≤ εe(H)/(2k!). By removing vertices if necessary, we may choose A

such that |V (H) \ A| ≥ m (as m ≤ n/k). Let W ⊆ V (H) \ A such that |W | = m. For

convenience, let B = V (H) \ (W ∪ A). Then

|B| ≤ n−m− (1− 1/k − ε/4)n ≤ εn/4 + n/k − (1/k − µ)n ≤ 11εn/40.

Let U = V (H) \W and H0 = Hk−l
k (U,W ). We derive a contradiction by showing that

|E(H0) \ E(H)| < εnk.

Note that, for each f ∈ E(H0) \E(H), we have 1 ≤ |f ∩W | ≤ k− l (by definition of

H0); so |f ∩B| > 0 or |f ∩ A| ≥ l. Thus

|E(H0) \E(H)| ≤ |{f ∈ E(H0) : |f ∩B| > 0}|+ |{f ∈ E(H0) \E(H) : |f ∩A| ≥ l}|.
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It is easy to see that

|{f ∈ E(H0) : |f ∩B| > 0}| ≤ |B||W |nk−2 ≤ (11εn/40)(n/k)nk−2 =
11ε

40k
nk.

Next, we bound |{f ∈ E(H0) \ E(H) : |f ∩ A| ≥ l}|. Fix an arbitrary l-set S ⊆ A.

Note that

|{f ∈ E(H) : S ⊆ f and f ∩B 6= ∅}| ≤ |B|nk−l−1 ≤ 11ε

40
nk−l.

For any f ∈ E(H) and S ⊆ f , we have f ∩B 6= ∅, or f ⊆ A, or f ∈ E(H0). So

|{f ∈ E(H) : S ⊆ f and f ∈ E(H0)|

≥ dH(S)− |{f ∈ E(H) : S ⊆ f and f ∩B 6= ∅}| − |{f ∈ E(H) : S ⊆ f and f ⊆ A}|

≥ dH(S)− 11ε

40
nk−l − dH[A](S).

Hence,

|{f ∈ E(H0) \ E(H) : |f ∩ A| ≥ l}|

≤
∑
S∈(A

l )

|{f ∈ E(H0) \ E(H) : S ⊆ f}|

≤
∑
S∈(A

l )

(dH0(S)− |{f ∈ E(H) : f ∈ E(H0) and S ⊆ f}|)

≤
∑
S∈(A

l )

(
dH0(S)− dH(S) +

11ε

40
nk−l + dH[A](S)

)
.

Note that for S ∈
(
A
l

)
, dH0(S) =

(
n−l
k−l

)
−
(
n−l−m
k−l

)
; so dH0(S) − dH(S) < ρ′nk−l by the
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assumption on δl(H). Hence,

|E(H0) \ E(H)| < 11ε

40k
nk +

(
|A|
l

)(
ρ′ +

11ε

40

)
nk−l +

∑
S∈(A

l )

dH[A](S)

≤
(

11ε

40k
+ ρ′ +

11ε

40

)
nk +

(
k

l

)
e(H[A])

≤
(

11

120
+

1

8
+

11

40

)
εnk +

(
k

l

)
εnk

2k!
(since k ≥ 3 and ρ′ ≤ ε/8)

< εnk,

a contradiction.

We now use Lemma 6.4 to show that one can control, with high probability, the inde-

pendence number of a subgraph of a k-graph induced by a random subset of vertices.

Lemma 6.8. Let c, ε′, α be positive reals and let k, n be positive integers. Let H be an n-

vertex k-graph such that e(H) ≥ cnk and e(H[S]) ≥ ε′e(H) for all S ⊆ V (H) with |S| ≥

αn. Let R ⊆ V (H) be obtained by taking each vertex of H independently and uniformly

at random with probability n−0.9. Then, for any positive γ � α, the independence number

of H[R] is at most (α + γ + o(1))n0.1, with probability at least 1− nO(1)e−Ω(n0.1).

Proof. Define F := {A ⊆ V (H) : e(H[A]) ≥ ε′e(H) and |A| ≥ ε′n}. Then F is an in-

creasing family, and H is (F , ε′)-dense. Let p = n−1 and v(H) = n. Then

∆l(H) ≤
(

n

k − l

)
≤ nk−l ≤ c−1n−le(H) = c−1pl−1 e(H)

v(H)
.

Thus by Lemma 6.4, there exist a constant C (depending only on ε′ and c), a family S ⊆(
V (H)
≤C

)
, a function f : S → F , and a family T := {F ∪ S : F ∈ f(S), S ∈ S}, such that

every independent set in H is contained in some T ∈ T . Since S ⊆
(
V (H)
≤C

)
, |S| ≤ CnC

and, hence,

|T | = |S||f(S)| ≤ |S|2 ≤ C2n2C .

45



We claim that |T | < αn + C for all T ∈ T . To see this, let T = F ∪ S for some

F ∈ f(S) and S ∈ S. By definition, F ∈ F and hence, e(H[F ]) < ε′e(H). Since

e(H[S]) ≥ ε′e(H) for any S ⊆ V (H) with |S| ≥ αn, we have |F | < αn. Therefore,

|T | ≤ |F |+ |S| < αn+ C.

We wish to apply Lemma 5.1 and, hence, we need to make sets in T slightly larger.

Take an arbitrary map h : T →
(
V (H)
bαn+Cc

)
such that T ⊆ h(T ) for all T ∈ T , and let

T ′ = h(T ). Then

|T ′| ≤ |T | ≤ |S|2 ≤ C2n2C .

Note that for each fixed T ′ ∈ T ′, we have |R ∩ T ′| ∼ Bi (|T ′|, n−0.9) and E(|R ∩ T ′|) =

n−0.9|T ′| = bαn + Ccn−0.9. We apply Lemma 5.1 to |R ∩ T ′| by taking λ = γn0.1, where

γ is fixed and γ � α. Then

P
(∣∣|R ∩ T ′| − n−0.9|T ′|

∣∣ ≥ λ
)
≤ e−Ω(λ2/(n−0.9|T ′|)) = e−Ω(n0.1).

So with probability at most e−Ω(n0.1), we have |R∩T ′| ≥ n−0.9|T ′|+λ. Hence, |R∩T ′| ≥

(α + γ + C/n)n0.1 with probability at most e−Ω(n0.1).

Therefore, with probability at most C2n2Ce−Ω(n0.1) (from union bound), there exists

some T ′ ∈ T ′ such that |R ∩ T ′| ≥ (α + γ + C/n)n0.1. Hence, with probability at least

1− C2n2Ce−Ω(n0.1), |R ∩ T ′| < (α + γ + C/n)n0.1 for all T ′ ∈ T ′.

It remains to show that, conditioning on |R∩ T ′| < (α+ γ +C/n)n0.1 for all T ′ ∈ T ′,

|J | ≤ (α + γ + C/n)n0.1 for every independent set J in H[R]. Since such J is also an

independent set in H , there exist T ∈ T and T ′ ∈ T ′ such that J ⊆ T ⊆ T ′. Thus

J ⊆ R ∩ T ′ and |J | ≤ |R ∩ T ′| < (α + γ + C/n)n0.1.

Hence, α(H[R]) ≤ (α + γ + C/n)n0.1, with probability at least 1− C2n2Ce−Ω(n0.1).

46



CHAPTER 7

PERFECT FRACTIONAL MATCHINGS IN K-GRAPHS

Definition 7.1. A fractional matching in a k-graphH is a function w : E(H)→ [0, 1] such

that for any v ∈ V (H),
∑
{e∈E(H):v∈e}w(e) ≤ 1. A fractional matching is called perfect if∑

e∈E(H) w(e) = |V (H)|/k.

In this chapter, we show that for any reals 0 < ρ � ε, if an n-vertex k-graph H has

α(H) ≤ (1− 1/k− ε/5)n and δl(H) >
(
n−l
k−l

)
−
(
n−l−m
k−l

)
− ρnk−l, then H admits a perfect

fractional matching. Note that the term −ρnk−l is from removing an absorbing matching

in the original graph, and the deviation from random sampling.

7.1 Shadows and Stable Families

We need to consider matchings in the “link” graph of an l-set in a k-graph, which is a

(k − l)-graph. This is related to the following well known conjecture of Erdős [11] on

matchings in uniform hypegraphs: If F is a k-graph on n vertices and ν(F ) = s, then

e(F ) ≤ max
{(

n
k

)
−
(
n−s
k

)
,
(
ks+1
k

)}
. Frankl [14] proved that if n ≥ (2s + 1)k − s then

e(F ) ≤
(
n
k

)
−
(
n−s
k

)
, with Hk

k (U,W ) (where |W | = s and |U | = n − s) as extremal

graphs. Very recently, Frankl and Kupavskii [17] further improved the lower bound to

n ≥ (5k/3− 2/3)s for large s.

Ellis, Keller, and Lifshitz [10] recently proved the following stability version of Frankl’s

result, which we state as follows using our notation: For any s ∈ N, η > 0, and ε > 0, there

exists δ = δ(s, η, ε) > 0 such that the following holds. Let n, k ∈ N with k ≤ ( 1
2s+1
− η)n.

Suppose H ⊆
(

[n]
k

)
with ν(H) ≤ s and e(H) ≥

(
n
k

)
−
(
n−s
k

)
− δ
(
n−s
k−1

)
. Then there exists

W ∈
(

[n]
s

)
such that |E(H) \ E(Hk

k (U,W ))| < ε
(
n−s
k

)
.

The lower bound on e(H) in the above result of Ellis, Keller, and Lifshitz is too large
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for our purpose. Using LP duality we only need to consider “stable” hypergraphs and for

such hypergraphs we can improve the bound on e(H) to
(
n
k

)
−
(
n−s
k

)
− ξnk.

For subsets e = {u1, . . . , uk}, f = {v1, . . . , vk} ⊆ [n] with ui < ui+1 and vi < vi+1

for i ∈ [k − 1], we write e ≤ f if ui ≤ vi for all i ∈ [k]. A hypergraph H ⊆
(

[n]
k

)
is said

to be stable if, for e, f ∈
(

[n]
k

)
with e ≤ f , f ∈ E(H) implies e ∈ E(H). Our proof of a

stability version of Frankl’s theorem for stable hypergraphs uses the same ideas as in [14].

The following result from [14] is an extension of Katona’s Intersection Shadow Theorem

[26].

Lemma 7.2. Let F ⊆
(

[n]
k

)
with ν(F) = s. Then s|∂F| ≥ |F|, where ∂F is the shadow of

F , defined by

∂F :=

{
G ∈

(
[n]

k − 1

)
: G ⊆ F for some F ∈ F

}
.

We can now state and prove the following stability version of Frankl’s result on match-

ings for stable hypergraphs. Note that we allow k = 1.

Lemma 7.3. Let k be a positive integer, and let c and ξ be constants such that 0 < c <

1/(2k) and 0 < ξ ≤ (1 + 18(k − 1)!/c)−2. Let n,m be positive integers such that n is

sufficiently large and cn ≤ m ≤ n/(2k). Let H be a k-graph with vertex set [n] such

that H is stable and ν(H) ≤ m. If e(H) >
(
n
k

)
−
(
n−m
k

)
− ξnk, then H is

√
ξ-close to

Hk
k ([n] \ [m], [m]).

Proof. Suppose e(H) >
(
n
k

)
−
(
n−m
k

)
− ξnk. When k = 1, each edge of H consists of a

single vertex. In this case, since e(H) > m− ξn ≥ m−
√
ξn and because H is stable and

e(H) = ν(H) ≤ m, we have that H is
√
ξ-close to H1

1 ([n] \ [m], [m]).

Thus, we may assume k ≥ 2. To show that H is close to Hk
k ([n] \ [m], [m]), we bound

e(H − [m]) (as edges in H − [m] are not in Hk
k ([n] \ [m], [m])). Since H is stable, the

vertex m+ 1 has the maximum degree in H − [m]. So

e(H − [m]) ≤ (n−m)

k
|{e ∈ E(H − [m]) : m+ 1 ∈ e}|.
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Hence, our objective is to bound the size ofF({m+1}) := {e ∈ E(H−[m]) : m+1 ∈ e}.

Let

σ =
2ξ(k − 1)!

c
.

First, we may assume that

(1) |F({m+ 1})| ≥ 9kσnk−1.

For, suppose |F({m+ 1})| < 9kσnk−1. Then

e(H − [m]) ≤ (n−m)

k
|F({m+ 1})| < 9σnk.

Thus

∣∣E(Hk
k ([n] \ [m], [m])

)
\ E(H)

∣∣
= e
(
Hk
k ([n] \ [m], [m])

)
−
(
e(H)− e(H − [m])

)
<

((
n

k

)
−
(
n−m
k

))
−
((

n

k

)
−
(
n−m
k

)
− ξnk − 9σnk

)
= ξnk + 9 · 2ξ(k − 1)!

c
nk

≤
√
ξnk,

as ξ ≤ (1+18(k−1)!/c)−2. That is, H is
√
ξ-close to Hk

k ([n]\ [m], [m]), and the assertion

of the lemma holds. So we may assume that (1) holds. 2

To proceed further, we extend the notation F({m+ 1}) to all Q ⊆ [m+ 1], by letting

F(Q) = {e ∈ E(H) : e ∩ [m+ 1] = Q}.

Note that |F(Q)| ≤
(
n−(m+1)
k−|Q|

)
=
(
n−m−1
k−|Q|

)
. Also note that, since H is stable, |F({m +
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1})| ≥ |∂F(∅)|. So Lemma 7.2 gives

m|F({m+ 1})| ≥ m|∂F(∅)| ≥ |F(∅)|.

We claim that

(2)
(∑m+1

i=1 |F({i})|
)

+m|F({m+ 1})| > m
(
n−m
k−1

)
(1− σ).

To prove (2), it suffices to show |F(∅)|+
∑m+1

i=1 |F({i})| > m
(
n−m
k−1

)
(1− σ). Note that

∑
Q⊆[m+1],|Q|≥2

|F(Q)| ≤
k∑
i=2

(
m+ 1

i

)(
n− (m+ 1)

k − i

)

and

(
n

k

)
=

(
n− (m+ 1)

k

)
+ (m+ 1)

(
n− (m+ 1)

k − 1

)
+

k∑
i=2

(
m+ 1

i

)(
n− (m+ 1)

k − i

)

=

(
n−m
k

)
+m

(
n− (m+ 1)

k − 1

)
+

k∑
i=2

(
m+ 1

i

)(
n− (m+ 1)

k − i

)
.

Thus,

|F(∅)|+
m+1∑
i=1

|F({i})|

= e(H)−
∑

Q⊆[m+1],|Q|≥2

|F(Q)|

>

(
n

k

)
−
(
n−m
k

)
− ξnk −

k∑
i=2

(
m+ 1

i

)(
n− (m+ 1)

k − i

)
= m

(
n− (m+ 1)

k − 1

)
− ξnk

> m

(
n−m
k − 1

)
(1− σ) (since cn ≤ m ≤ n/(2k) and n large).

This proves (2). 2
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Let t = d(2 + 1/k)me. Since n ≥ 2km and m ≥ cn (where n is sufficiently large),

n− (m+ 1) ≥ 2km− (m+ 1) = (2 + 1/(k − 1))m(k − 1)− 1 > t(k − 1).

LetM = {f1, . . . , ft} be t pairwise disjoint (k−1)-subsets of [n]\[m+1] chosen uniformly

at random. LetFi := {e\{i} : e ∈ F({i})} for i ∈ [m+1]. ThenFm+1 ⊆ Fm ⊆ . . . ⊆ F1

(since H is stable) and, for each fixed pair i, j,

P(fj ∈ Fi) =
|Fi|(

n−(m+1)
k−1

) .
Let

xi =


1, fi ∈ Fm+1,

0, fi 6∈ Fm+1,

and let p = P(xi = 1) (which is the same for all i ∈ [t]). Now |Fm+1| = p
(
n−(m+1)
k−1

)
. So

by (1), we have

(3) p > 9kσ.

We claim that

(4) for 1 ≤ i < j ≤ t, P(xixj = 1) ≤
(
1 + 1

4k

)
p2.

This is because

P(xixj = 1) = P(xj = 1|xi = 1)P(xi = 1)

≤ |Fm+1|(
n−(m+1)−(k−1)

k−1

) |Fm+1|(
n−(m+1)
k−1

)
=

(
n−(m+1)
k−1

)(
n−(m+1)−(k−1)

k−1

) · p2

≤
(

1 +
1

4k

)
p2,
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as n− (m+ 1) ≥ (1− 1/(2k))n− 1 and n is large. This completes the proof of (4). 2

Define a bipartite graph G with partition setsM and {F1, . . . ,Fm+1}, where fj ∈ M

is adjacent to Fi if, and only if, fj ∈ Fi. Note that a matching of size m + 1 in G gives

rise to a matching of size m+ 1 in H . Thus, ν(G) ≤ m. So by a theorem of König, G has

a vertex cover of size m, say T . Let x = |T ∩M|; then |T ∩ {F1, . . . ,Fm+1}| = m − x.

Since Fm+1 ⊆ Fm ⊆ · · · ⊆ F1, dG(fj) = m + 1 for fj ∈ Fm+1; so fj ∈ T for

all fj ∈ Fm+1. Hence 0 ≤ b ≤ x ≤ m, where b := |M ∩ Fm+1| =
∑t

i=1 xi. So

pt = E(b) ≤ m ≤ t/(2 + 1/k). This implies

(5) p ≤ 1/(2 + 1/k) < 1/2.

Moreover,

m+1∑
i=1

|M ∩ Fi| = e(G) ≤ t(m− x) + x((m+ 1)− (m− x)) = x2 − (t− 1)x+mt.

Thus, letting h(x, b) := x2 − (t− 1)x+mt+mb, we have

E(h(x, b)) ≥ E

(
m|M ∩ Fm+1|+

m+1∑
i=1

|M ∩ Fi|

)

= mt
|Fm+1|(
n−(m+1)
k−1

) +
m+1∑
i=1

t
|Fi|(

n−(m+1)
k−1

)
=

t(
n−(m+1)
k−1

) (m|F({m+ 1})|+
m+1∑
i=1

|F({i})|

)

> mt(1− σ) (by (2)).

Next we obtain an upper bound on E(h(x, b)). Using the convexity of h(x, b) (as a

function of x over the interval [b,m]) and the fact that h(b, b) − h(m, b) = (t − 1 −m −

b)(m− b) ≥ 0, we have

h(x, b) ≤ max{h(b, b), h(m, b)} = h(b, b) = b2 − (t− 1)b+mt+mb.
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Thus,

E(h(x, b)) ≤ E(b2 − (t− 1)b+mt+mb)

= E

( t∑
i=1

xi

)2

− (t− 1−m)

(
t∑
i=1

xi

)
+mt


≤
(

1 +
1

4k

)
p2(t2 − t) + pt− (t− 1−m)pt+mt (by (4)).

Hence, combining the above bounds on E(h(x, b)), we have

(
1 +

1

4k

)
p2(t2 − t) + pt− (t− 1−m)pt+mt > mt(1− σ).

Thus,

σmt > pt

(
t−m−

(
1 +

1

4k

)
pt− 2 +

(
1 +

1

4k

)
p

)
> pt

((
1−

(
1 +

1

4k

)
p

)
t−m− 2

)
≥ pt

(((
1− 1

2

(
1 +

1

4k

))(
2 +

1

k

)
− 1

)
m− 2

)
(by (5) and the definition of t)

= pt

(
2k − 1

8k2
m− 2

)
> ptm/(9k) (since m ≥ cn and n is large).

Therefore, p < 9kσ, contradicting (3). Hence H must be
√
ξ-close to Hk

k ([n] \ [m], [m]).

Remark. In the proof of Lemma 7.3 we require m ≤ n/(2k) (e.g., when we define t and

M before (3)). We will see in the next chapter that we can replace it with n/2 − 1 when

k = 3 and l = 1.
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7.2 Perfect Fractional Matchings

For a hypergraph H , let

ν∗(H) = max

 ∑
e∈E(H)

w(e) : w is a fractional matching in H

 .

A fractional vertex cover of H is a function w : V (H) → [0, 1] such that, for each e ∈ E,∑
v∈ew(v) ≥ 1 . Let

τ ∗(H) = min

 ∑
v∈V (H)

w(v) : w is a fractional vertex cover of H

 .

Then the strong duality theorem of linear programming gives

ν∗(H) = τ ∗(H).

We are now ready to prove the existence of a perfect fractional matching in a uniform

hypergraph whose independence number is not too large.

Lemma 7.4. Let k, l be integers with k ≥ 3 and k/2 ≤ l < k, and let ε, ξ be positive reals

with ξ < (ε/5)2(3k)−4(k−l). Let n be a positive integer such that n is sufficiently large and

n ∈ kZ. Let H be a k-graph of order n such that δl(H) >
(
n−l
k−l

)
−
(
n−l−n/k
k−l

)
− ξnk−l and

α(H) ≤ (1− 1/k − ε/5)n. Then H contains a perfect fractional matching.

Proof. For convenience, let V (H) = [n]. Let ω be a minimum fractional vertex cover of

H and we may assume that ω(1) ≥ ω(2) ≥ . . . ≥ ω(n). Let E ′ = {e ∈
(

[n]
k

)
: e /∈

E(H) and
∑

i∈e ω(i) ≥ 1} and let H ′ be obtained from H by adding the edges in E ′.

Then H ′ is stable and τ ∗(H ′) = τ ∗(H). Thus ν∗(H) = ν∗(H ′) ≥ ν(H ′), and it suffices to

show that ν(H ′) = n/k, i.e., H ′ contains a perfect matching.

Let S = [n]\[n−l], and letG be the hypergraph with V (G) = [n] andE(G) = NH′(S),
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which is a (k − l)-graph on [n]. Since H ′ is stable, G is also stable. We may assume that

(1) ν(G) ≤ n/k − 1.

For, otherwise, let f1, . . . , fn/k be a matching in G. Now [n] \
(⋃n/k

i=1 fi

)
is a set of size

(n/k)l and, hence, can be partitioned into l-sets, say S1, . . . , Sn/k. Since H ′ is stable

and S ∪ fi ∈ E(H ′) for i ∈ [n/k], we have Si ∪ fi ∈ E(H ′) for i ∈ [n/k]. Hence,

{Si ∪ fi : i ∈ [n/k]} is a perfect matching in H ′. Hence, we may assume (1). 2

We may also assume that

(2) l ≤ k − 2.

For, suppose l = k − 1. Then G is a 1-graph. Since H ′ is stable and e(G) ≥ δk−1(H) ≥

n/k − dξne, the first n/k − dξne vertices of G are edges of G.

Note thatH ′−[n/k−dξne] has n−n/k+dξne vertices. Since α(H) ≤ (1−1/k−ε/5)n,

H ′ − [n/k − dξne] has an edge. In fact, since ξ < (ε/5)2(3k)−4(k−l), we can greedily find

pairwise disjoint edges f1, . . . , fdξne in H ′ − [n/k − dξne]. Since

n− (n/k − dξne)− dξnek = (k − 1)(n/k − dξne),

we can partition [n] \
(

[n/k − dξne] ∪
⋃dξne
i=1 fi

)
into (k − 1)-sets S1, . . . , Sn/k−dξne. Now

Si ∪ {i}, i ∈ [n/k − dξne], form a matching in H ′. These edges and {f1, . . . , fdξne} form

a perfect matching in H ′. So we may assume (2). 2

Let η = ε/(5k) and let t = n/k − bηnc. For i ∈ [n], we use dG(i) to denote the degree

of i in G. We claim that

(3) dG(t) >
(
n−1
k−l−1

)
−
(
n/(2k)
k−l−1

)
.

For suppose dG(t) ≤
(
n−1
k−l−1

)
−
(
n/(2k)
k−l−1

)
. Since H ′ is stable, dG(i) ≤

(
n−1
k−l−1

)
−
(
n/(2k)
k−l−1

)
for

55



t ≤ i ≤ n/k. Note that the degree of t in Hk−l
k−l ([n] \ [n/k], [n/k]) is

(
n−1
k−l−1

)
. Thus,

∣∣E (Hk−l
k−l ([n] \ [n/k], [n/k])

)
\ E(G)

∣∣
≥ 1

k − l

 n/k∑
i=t

(
dHk−l

k−l ([n]\[n/k],[n/k])(i)− dG(i)
)

≥ 1

k − l
(n/k − t+ 1)

(
n/(2k)

k − l − 1

)
>

1

k − l
ηn(3k)−(k−l−1)

(
n

k − l − 1

)
>

√
ξnk−l,

as ξ < (ε/5)2(3k)−4(k−l).

Hence G is not
√
ξ-close to Hk−l

k−l ([n] \ [n/k], [n/k]). However, since G is stable and

n/k ≤ n/(2(k − l)) (as l ≥ k/2), we may apply Lemma 7.3 with n/k, k − l, ξ as m, k, ξ,

respectively. So ν(G) ≥ n/k, contradicting (1) and completing the proof of (3). 2

Note that H ′ − [t] has n − n/k + bηnc vertices. Since α(H) ≤ (1 − 1/k − ε/5)n,

H ′ − [t] has an edge. In fact, since εn = 5kηn, H ′ − [t] has bηnc pairwise disjoint edges,

say f1, . . . fbηnc. Let T =
⋃bηnc
i=1 fi.

Next we find disjoint edges e1, . . . , et of G such that |ei∩ [t]| = 1 and ei∩T = ∅ for all

i ∈ [t]. Suppose for some s ∈ [t− 1] we have found pairwise disjoint edges e1, . . . , es of G

such that, for i ∈ [s], ei ∩ [t] = {i} and ei ∩ T = ∅. The number of edges of G containing

s+1 and intersecting T∪([t]\{s+1})∪(
⋃s
i=1 ei) is at most

(
n−1
k−l−1

)
−
(
n−|T |−t−(k−l)s

k−l−1

)
. Note

that n− |T | − t− (k− l)s ≥ n/(2k), as l ≥ k/2. Hence, by (3), there exists es+1 ∈ E(G)

such that es+1 ∩ [t] = {s+ 1}, es+1 ∩ T = ∅, and es+1 is disjoint from
⋃s
i=1 ei.

Since t = n/k − bηnc, (H ′ − T )−
⋃t
i=1 ei has exactly tl vertices (as |ei ∩ [t]| = 1 for

i ∈ [t]). Partition the vertices in (H − T ) −
⋃t
i=1 ei to pairwise disjoint l-sets S1, . . . , St.

Then, since H ′ is stable, Si ∪ ei ∈ E(H ′) for i ∈ [t]. Hence, {fi : i ∈ [bηnc]} ∪ {Sj ∪ ej :

j ∈ [t]} is a perfect matching in H ′.
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Remark. When we apply Lemma 7.3 in the end of the proof of (3), we require l ≥ k/2

so that n/k ≤ n(2(k − l)) (which amounts to m ≤ n/(2k) in Lemma 7.3). This is not

necessary when k = 3 and l = 1, as we can use Lemma 8.2 (see the next chapter) which is

the same as Lemma 7.3 except with m ≤ n/(2k) = n/4 replaced by m ≤ n/2− 1.
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CHAPTER 8

PERFECT FRACTIONAL MATCHINGS IN (1, 3)-PARTITE 4-GRAPHS

In this chapter, we will prove the corresponding perfect fractional matching results in (1, 3)-

partite 4-graphs. We first show a lemma for stable graphs.

8.1 Stable Graphs

We need a result of Berge [7] on maximum matchings. For a graph G, we use co(G) to

denote the number of odd components in G.

Lemma 8.1 (Berge, 1958). Let G be a graph on n vertices. Then

ν(G) = min {(n− co(G−W ) + |W |) /2 : W ⊆ V (G)} .

We prove the following result for stable graphs as an analog of Lemma 7.3.

Lemma 8.2. Let c, ρ be constant with 0 < ρ � 1 and 0 < c < 1/2, and let m,n be

positive integers with n sufficiently large and cn ≤ m ≤ n/2− 1. Let G be a 2-graph with

V (G) = [n] such that ν(G) ≤ m and G is stable with respect to the natural order on [n].

If e(G) >
(
n
2

)
−
(
n−m

2

)
− ρn2, then G is 2

√
ρ-close to H2

2 ([n] \ [m], [m]).

Proof. Since G is stable, we have

(1) NG(i) \ {j} ⊆ NG(j) \ {i} for any i, j ∈ [n] with i > j.

By Lemma 8.1, there exists W ⊆ V (G) such that

ν(G) = (n− co(G−W ) + |W |) /2.

We choose maximal suchW , and letC1, . . . , Cq denote the components ofG−W . Without

loss of generality, assume |V (C1)| ≥ · · · ≥ |V (Cq)|, and let ci := |V (Ci)| for i ∈ [q]. Then
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(2) q = co(G−W ), i.e., ci is odd for all i ∈ [q].

For, otherwise, suppose that ci is even for some i ∈ [q]. Let x ∈ V (Ci) and W ′ :=

W ∪{x}. Then co(G−W ′) ≥ co(G−W ) + 1. This forces (n− co(G−W ) + |W |) /2 =

(n− co(G−W ′) + |W ′|) /2, as ν(G) = (n− co(G−W ) + |W |) /2. But then, W ′ con-

tradicts the choice of W , completing the proof of (2). 2

Next, we claim that

(3) ci = 1 for i = 2, . . . , q.

For, suppose c2 ≥ 2. Then c1 ≥ c2 ≥ 2; so there exist a1b1 ∈ E(C1) and a2b2 ∈ E(C2).

If a1 > a2 then a1b2 ∈ E(G) by (1), and if a1 < a2 then b1a2 ∈ E(G) by (1). So there is

edge between C1 and C2, contradicting the fact that C1 and C2 are different components of

G−W . This completes the proof of (3). 2

By (3), we have

m ≥ ν(G) = (n− (co(G−W )− |W |)) /2

= ((c1 + |W |+ q − 1)− (q − |W |)) /2

= (c1 − 1)/2 + |W |.

Thus, |W | ≤ m− (c1 − 1)/2. Hence,

e(G) ≤
(
n

2

)
−
(
n− |W |

2

)
+

(
c1

2

)
≤
(
n

2

)
−
(
n−m+ (c1 − 1)/2

2

)
+

(
c1

2

)
.

Since e(G) >
(
n
2

)
−
(
n−m

2

)
− ρn2, we have

(
n−m

2

)
+ ρn2 >

(
n−m+ (c1 − 1)/2

2

)
−
(
c1

2

)
=

(
n−m

2

)
+

1

8
(c1 − 1)2 +

1

4
(c1 − 1)(2n− 2m− 1)−

(
c1

2

)
,
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which gives

−3

8
(c1 − 1)2 +

1

4
(c1 − 1)(2n− 2m− 3) < ρn2.

Hence, c1 <
√
ρn, since ρ� 1 and m ≤ n/2− 1.

Note that every edge of G intersects W ∪ V (C1). So by (1), every edge of G intersects

[|W |+ c1] ⊆ [m+ (c1 + 1)/2] ⊆ [m+
√
ρn/2]. Since e(G) >

(
n
2

)
−
(
n−m

2

)
−ρn2, we have

|E(H2
2 ([n] \ [m], [m]))\E(G)| ≤ 2

√
ρn2.

This completes the proof of the lemma.

8.2 Perfect Fractional Matchings

Now we show the main result of this chapter.

Lemma 8.3. Let ρ, ε be constants with 0 < ε � 1 and 0 < ρ < ε12, and let H be

a (1, 3)-partite 4-graph with partition classes Q,P such that 3|Q| = |P | = n. Suppose

dH({u, v}) >
(
n−1

2

)
−
(

2n/3
2

)
−ρn2 for any v ∈ Q and u ∈ P . IfH contains no independent

set S with |S ∩ Q| ≥ n/3 − ε2n and |S ∩ P | ≥ 2n/3 − ε2n, then H contains a perfect

fractional matching.

Proof. Let ω : V (H) → R+ ∪ {0} be a minimum fractional vertex cover of H , i.e.,∑
x∈e ω(x) ≥ 1 for e ∈ E(H) and, subject to this,

∑
x∈V (H) ω(x) is minimum. Let P =

{u1, . . . , un} and Q = {v1, . . . , vn/3}, such that ω(v1) ≥ · · · ≥ ω(vn/3) and ω(u1) ≥ · · · ≥

ω(un). LetH ′ be the (1, 3)-partite 4-graph with vertex set V (H) and edge set E(H ′) = E ′,

where

E ′ =

{
e ∈

(
V (H)

4

)
: |e ∩Q| = 1 and

∑
x∈e

ω(x) ≥ 1

}
.

We claim that ω us a minimum fractional vertex cover of H ′. Since ω is fractional

vertex cover of H , e ∈ E(H) implies that e ∈ E(H ′); so E(H) ⊆ E(H ′) and ω is also
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a fractional vertex cover of H ′. Let ω′ be a minimum fractional vertex cover of H ′. Then

ω(H) ≥ ω′(H ′), where ω(H) :=
∑

v∈V (H) ω(v) and ω′(H ′) :=
∑

v∈V (H′) ω
′(v). On the

other hand, ω′ is also a vertex cover of H; so ω′(H ′) ≥ ω(H). Hence, ω(H) = ω′(H ′),

i.e., ω is a minimum fractional vertex cover of H ′

Let νf (H) and νf (H ′) denote the maximum fractional matching numbers of H and H ′,

respectively; then by the Strong Duality Theorem of linear programming, νf (H) = ω(H)

and νf (H ′) = ω(H ′). Thus νf (H) = νf (H
′) and, hence, it suffices to show that H ′ has a

perfect matching.

Next, we observe that the edges of H ′ form a stable family with respect to the above

ordering of vertices in P andQ: for any e1 = {vi1 , ui2 , ui3 , ui4} and e2 = {vj1 , uj2 , uj3 , uj4}

with il ≥ jl for 1 ≤ l ≤ 4, e2 ∈ E(H ′) implies e1 ∈ E(H ′). To see this, note that, since

il ≥ jl for 1 ≤ l ≤ 4, we have ω(vi1) ≥ ω(vj1) and ω(uil) ≥ ω(ujl) for 2 ≤ l ≤ 4. If

e2 ∈ E(H ′) then
∑

x∈e2 ω(x) ≥ 1; so
∑

x∈e1 ω(x) ≥ 1 and, hence, e1 ∈ E(H ′).

Let G denote the graph with vertex set P and edge set formed by NH′({vn/3, un}).

Then G is stable with respect to u1, . . . , un. Note that e(G) >
(
n−1

2

)
−
(

2n/3
2

)
− ρn2 (by

assumption). Since the edges of H ′ form a stable family, {u, v} ∪ e ∈ E(H ′) for all

u ∈ P, v ∈ Q, and e ∈ E(G). Thus, if G contains a matching M := {e1, . . . , en/3} then

let x1, . . . , xn/3 ∈ P \ V (M); we see that {{vi, xi} ∪ ei ∈ E(H ′) : i ∈ [n/3]} is a perfect

matching in H ′.

Thus, we may assume ν(G) < n/3. Recall that e(G) >
(
n−1

2

)
−
(

2n/3
2

)
− ρn2 and G is

a stable 2-graph. Hence, by Lemma 8.2, G is 2
√
ρ-close to the graph with vertex V (G) and

edge set {e ∈
(
V (G)

2

)
: e ∩ {ui : i ∈ [n/3 − 1]}} 6= ∅. Therefore, G has at most

√
2
√
ρn

vertices in {uj : j ∈ [n/3−1]} of degree less than n−1−
√

2
√
ρn. Since G is stable with

respect to u1, . . . , un, we have dG(u
n/3−
√

2
√
ρn

) ≥ n− 1−
√

2
√
ρn.

Since ρ < ε12 and H contains no independent set S such that |S ∩Q| ≥ n/3− ε2n and

|S∩P | ≥ 2n/3−ε2n, we may form a matching M0 of size
√

2
√
ρn in H−{u1, . . . , un/3}

by greedily choosing edges.
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Since dG(u
n/3−
√

2
√
ρn

) ≥ n − 1 −
√

2
√
ρn, G − V (M0) has a matching M of size

n/3−
√

2
√
ρn which can be found by greedily choosing distinct neighbors of ui, 1 ≤ i ≤

n/3−
√

2
√
ρn, in V (G)\V (M0). Since {u, v}∪e ∈ E(H ′) for u ∈ P, v ∈ Q, and e ∈M ,

we may extend M to a matching M ′ of size |M | in H ′−M0. Then M ′∪M0 gives a perfect

matching in H ′.
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CHAPTER 9

ALMOST PERFECT MATCHINGS

In this chapter we prove the existence of an almost perfect matching in the hypergraph

obtained from the k-graph (or (1, 3)-partite 4-graph, respectively) H after deleting the ab-

sorbing matching, in the cases when the H is not close to Hk−l
k (U,W ) (or H1,3(n, n/3),

respectively) for any partition of V (H) into U,W with |W | = m.

9.1 Almost Perfect Matchings in k-Graphs

To find such almost perfect matching, we will find an almost regular spanning subgraph

of the hypergraph (obtained from H after deleting the absorbing matching) with bounded

maximum 2-degree, so that the following result of Frankl and Rödl [13] can be applied.

Lemma 9.1 (Frankl and Rödl, 1985). For every integer k ≥ 2 and any real ε > 0, there

exist τ = τ(k, ε) and d0 = d0(k, ε) such that, for every n ≥ D ≥ d0 the following holds:

Every k-graph on n vertices with (1 − τ)D < dH(v) < (1 + τ)D and ∆2(H) < τD

contains a matching covering all but at most εn vertices.

In order to find a subgraph in a k-graph satisfying conditions in Lemma 9.1, we use the

two-round randomization technique in [3]. Note that the only difference in the first round

is that we also need to bound the independence number of the subgraph, as discussed in

Chapter 6.

The following result is the outcome of the first round of the two-round randomization

procedure in [3]. We summarize this round as a lemma (see the proof of Claim 4.1 in [3])

and outline a proof, since we need to make some small adjustments. Here we adopt the

notation in [3].
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Lemma 9.2. Let k > d > 0 be integers with k ≥ 3 and let H be a k-graph on n vertices.

Let R be chosen from V (H) by taking each vertex uniformly at random with probability

n−0.9 and then arbitrarily deleting less than k vertices so that |R| ∈ kZ. Take n1.1 indepen-

dent copies of R and denote them by Ri, 1 ≤ i ≤ n1.1. For each S ⊆ V (H) with |S| ≤ k,

let YS := |{i : S ⊆ Ri}| and DEGi
S := |NH(S) ∩

(
Ri

k−|S|

)
|. Then with probability at least

1− o(1), all of the following statements hold:

(i) for every v ∈ V (H), Y{v} = (1 + o(1))n0.2

(ii) Y{u,v} ≤ 2 for every pair {u, v} ⊆ V (H),

(iii) Ye ≤ 1 for every edge e ∈ E(H),

(iv) for all i = 1, . . . , n1.1, we have |Ri| = (1 + o(1))n0.1, and

(v) if µ, ρ′ are constants with 0 < µ � ρ′, n/k − µn ≤ m ≤ n/k, and δd(H) ≥(
n−d
k−d

)
−
(
n−d−m
k−d

)
− ρ′nk−l, then for all i = 1, . . . , n1.1 and all D ∈

(
V (H)
d

)
and for

any positive real ξ ≥ 2ρ′, we have

DEGi
D >

(
|Ri| − d
k − d

)
−
(
|Ri| − d− |Ri|/k

k − d

)
− ξ|Ri|k−d.

Proof. Note that the removal of less than k vertices from each Ri does not affect (i) – (iv).

Also note that |YS| ∼ Bi(n1.1, n−0.9|S|) for S ⊆ V (H).

Thus, E(|Y{v}|) = n0.2 for v ∈ V (H), and it follows from Lemma 5.1 that

P
(∣∣Y{v} − n0.2

∣∣ > n0.15
)
≤ e−Ω(n0.1)

Hence (i) holds with probability at least 1− e−Ω(n0.1).

To prove (ii), let

Z2 =

∣∣∣∣ {{u, v} ∈ (V (H)

2

)
: Y{u,v} ≥ 3

} ∣∣∣∣,
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and for k ≥ 3, let

Zk =

∣∣∣∣ {S ∈ (V (H)

k

)
: YS ≥ 2

} ∣∣∣∣.
Then E(Z2) < n2(n1.1)3(n−0.9)6 = n−0.1 and E(Zk) < nk(n1.1)2(n−0.9)2k = n2.2−0.8k ≤

n−0.2 (for k ≥ 3). By Markov’s inequality,

P(Z2 = 0) > 1− n−0.1 and, for k ≥ 3, P(Zk = 0) > 1− n−0.2.

Thus (ii) and (iii) hold with probability at least 1− n−0.1 and 1− n−0.2, respectively.

By Lemma 5.1 (with λ = n0.095), we have

P
(∣∣|Ri| − n0.1

∣∣ ≥ n0.095
)
≤ e−Ω(n0.09)

for each i. Thus by union bound, (iv) holds with probability at least 1− n1.1e−Ω(n0.09).

Next, we prove (v). Conditioning on
∣∣|Ri| − n0.1

∣∣ < n0.095 for all i and using the

assumption that, 0 < µ� ρ′, n/k − µn ≤ m ≤ n/k, and n is large, we have

((
n− d
k − d

)
−
(
n− d−m
k − d

)
− ρ′nk−d

)
(n−0.9)k−d

≥
(
|Ri| − d
k − d

)
−
(
|Ri| − d− |Ri|/k

k − d

)
− 1.5ρ′|Ri|k−d.

So for each D ∈
(
V (H)
d

)
and each fixed Ri,

E(DEGi
D) = (1− o(1))dH(D)(n−0.9)k−d

≥ (1− o(1))

((
n− d
k − d

)
−
(
n− d−m
k − d

)
− ρ′nk−d

)
(n−0.9)k−d

≥ (1− o(1))

((
|Ri| − d
k − d

)
−
(
|Ri| − d− |Ri|/k

k − d

)
− 1.5ρ′|Ri|k−d

)
≥
(
|Ri| − d
k − d

)
−
(
|Ri| − d− |Ri|/k

k − d

)
− 1.8ρ′|Ri|k−d.
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In particular,

E(DEGi
D) = Ω(n0.1(k−d)).

We apply Janson’s Inequality (Theorem 8.7.2 in [5]) to bound the deviation of DEGi
D.

Write DEGi
D =

∑
e∈NH(D) Xe, where Xe = 1 if e ⊆ Ri and Xe = 0 otherwise. Then

∆ =
∑
e∩f 6=∅

P(Xe = Xf = 1) ≤
k−d−1∑
l=1

p2(k−d)−l
(
n− d
k − d

)(
k − d
l

)(
n− k

k − d− l

)

and, thus, ∆ = O(n0.1(2(k−d)−1)). By Janson’s inequality, for any γ > 0,

P(DEGi
D ≤ (1− γ)E(DEGi

D)) ≤ e−γ
2E(DEGi

D)/(2+∆/E(DEGi
D)) = e−Ω(n0.1).

Since ξ ≥ 2ρ′, by taking γ small, the union bound shows that, with probability at least

1− nd+1.1e−Ω(n0.1),

DEGi
D ≥

(
|Ri| − d
k − d

)
−
(
|Ri| − d− |Ri|/k

k − d

)
− ξ|Ri|k−d.

Thus, (v) holds with probability at least

(1− n1.1e−Ω(n0.09))(1− nd+1.1e−Ω(n0.1)) > 1− n1.1e−Ω(n0.09) − nd+1.1e−Ω(n0.1).

Hence, it follows from union bound that, with probability at least

1− e−Ω(n0.1)− n−0.1− n−0.2− n1.1e−Ω(n0.09)− n1.1e−Ω(n0.09)− nd+1.1e−Ω(n0.1) = 1− o(1),

(i)-(v) hold.

We summarize the second round randomization in [3] as the following lemma (again,

see the proof of Claim 4.1 in [3]).
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Lemma 9.3. Assume Ri, i = 1, . . . , n1.1, satisfy (i)-(v) in Lemma 9.2, and that each Ri

has a perfect fractional matching wi. Then there exists a spanning subgraph H ′′ of H such

that dH′′(v) = (1 + o(1))n0.2 for each v ∈ V , and ∆2(H ′′) ≤ n0.1.

We are now ready to show that for any H satisfying the conditions of Theorem 1.3 and

not ε-close to Hk−l
k (U,W ), H − V (Ma) has an almost perfect matching, where Ma is an

absorbing matching from Lemma 5.3.

Lemma 9.4. Let k, l be integers with k ≥ 3 and k/2 ≤ l ≤ k − 1. Let ρ′, ε, σ, µ be

positive reals with ρ′ < ε2(3k)−4(k−l)/100 and µ ≤ ε/40. Let n,m be sufficiently large

integers such that n/k − µn ≤ m ≤ n/k. Suppose H is a k-graph on n vertices such that

δl(H) ≥
(
n−l
k−l

)
−
(
n−l−m
k−l

)
− ρ′nk−l, and H is not ε-close to Hk−l

k (U,W ) for any partition

of V (H) into U,W with |W | = m. Then H contains a matching covering all but at most

σn vertices.

Proof. By Lemma 6.7, e(H[S]) ≥ (ε/(2k!))e(H) for all S ⊆ V (H) with |S| ≥ αn, where

α = 1− 1/k − ε/4. Note that

e(H) = δ0(H) ≥
(
n

l

)
δl(H)/

(
k

l

)
≥ cnk,

where c > 0 is a constant and c� 1/
(
k
l

)
.

Let R,Ri be given as in Lemma 9.2. Then it follows from Lemma 6.8 that, with proba-

bility 1−o(1), we have α(H[Ri]) ≤ (α+γ+o(1))n0.1 for all i, where γ � α. Additionally,

by (v) of Lemma 9.2, δd(H[Ri]) >
(|Ri|−d
k−d

)
−
(|Ri|−d−|Ri|/k

k−d

)
− ξ|Ri|(k−d) for any ξ ≥ 2ρ′.

Thus by Lemma 7.4, with probability 1 − o(1), for each i, H[Ri] has a perfect fractional

matching.

Hence by Lemma 9.3,H has a spanning subgraphH ′′ such that dH′′(v) = (1+o(1))n0.2

for each v ∈ V , and ∆2(H ′′) ≤ n0.1. Thus we may apply Lemma 9.1 to find a matching

covering all but at most σn vertices in H ′′, for sufficiently large n.
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9.2 Balancing in (1, 3)-Partite 4-Graphs

Our idea to find an almost perfect matching in a (1, 3)-partite 4-graph H not close to any

isomorphic copy of H1,3(n, n/3) is quite similar to the idea in the previous section. That

is, we need to find a sequence of random subgraphs in the remaining (1, 3)-partite 4-graph

after deleting the absorber and use them to find a spanning subgraph on which a “Rödl

nibble” type result can be applied.

Since we are in fact looking for perfect matchings in some supergraphs of balanced

(1, 3)-partite 4-graphs in Lemma 8.3, we need to make sure each random subgraph taken

is also balanced. So we slightly modify the randomization process in Lemma 9.2. We first

fix an arbitrary small set S ⊆ V (H). Each time we obtain a random copy R, we delete

some vertices in R ∩ S so that the resulting graph is balanced. We can do so in a way

that, with high probability, all properties in Lemma 9.2 remain (approximately) true. More

specifically, we need the following two lemmas.

Lemma 9.5. Let n be a sufficiently large positive integer, and let H be a (1, 3)-partite 4-

graph with partition classes Q,P such that 3|Q| = |P | = n. Let S ⊆ V (H) be a set of

vertices such that |S ∩Q| = n0.99/3 and |S ∩ P | = n0.99. Take n1.1 independent copies of

R+ and denote them by Ri
+, 1 ≤ i ≤ n1.1, where R+ is chosen from V (H) by taking each

vertex uniformly at random with probability n−0.9. Define Ri
− = Ri

+ \ S for 1 ≤ i ≤ n1.1.

Then, with probability 1 − o(1), for any sequence Ri, 1 ≤ i ≤ n1.1, satisfying Ri
− ⊆

Ri ⊆ Ri
+, all of the following hold:

(i) |Ri| = (4/3 + o(1))n0.1 for all i = 1, . . . , n1.1.

(ii) For each X ⊆ V (H), let YX := |{i : X ⊆ Ri}|, then,

(iia) Y{v} ≤ (1 + o(1))n0.2 for v ∈ V (H),

(iib) Y{v} = (1 + o(1))n0.2 for v ∈ V (H) \ S,

(iic) Y{u,v} ≤ 2 for distinct u, v ∈ V (H), and

(iid) Ye ≤ 1 for e ∈ E(H).
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(iii) For each X ∈
(
V (H)

2

)
, let DEGi

X = |NH(X) ∩
(
Ri

2

)
|. If ρ > 0 is a constant and

dH({u, v}) ≥
(
n−1

2

)
−
(

2n/3
2

)
− ρn2 for all v ∈ Q and u ∈ P , then for any constant

ξ ≥ 5ρ, we have

DEGi
{u,v} >

(
|Ri ∩ P | − 1

2

)
−
(

2|Ri ∩ P |/3
2

)
− ξ|Ri ∩ P |2.

for all i = 1, . . . , n1.1, v ∈ Q, and u ∈ P .

Proof. Note that E(|Ri
+|) = (4n/3) · n−0.9 = 4n0.1/3, and

E(|Ri
−|) = (4n/3− 4n0.99/3) · n−0.9 = 4n0.1/3− 4n0.09/3.

By Lemma 5.1,

P(|Ri
+| − 4n0.1/3 ≥ n0.095) ≤ e−Ω(n0.09)

and

P(|Ri
−| − (4n0.1/3− 4n0.09/3) ≤ −n0.095) ≤ e−Ω(n0.09).

In particular, (i) holds with probability at least 1− e−Ω(n0.09).

Let Y +
X := |{i : X ⊆ Ri

+}| for X ⊆ V (H). Then Y +
X ∼ Bi(n1.1, n−0.9|X|) and

YX ≤ Y +
X for all X ⊆ V (H), and YX = Y +

X for all X ⊆ V (H) \ S. Then by Lemma 9.2,

(iic) and (iid) hold with probability 1− o(1).

For each v ∈ V (H), E(Y +
{v}) = n0.2, thus by Lemma 5.1,

P
(∣∣∣Y +

{v} − n
0.2
∣∣∣ ≥ n0.15

)
≤ e−Ω(n0.1).

Thus (iia) and (iib) hold with probability at least 1− e−Ω(n0.1).

Let degiX =
∣∣∣NH(X) ∩

(
Ri
−
2

)∣∣∣. To prove (iii), since n is sufficiently large, it suffices to
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show that for all v ∈ Q and u ∈ P ,

degi{u,v} >

(
n0.1 − 1

2

)
−
(

2n0.1/3

2

)
− ξn0.2/2.

Conditioning on |Ri
+| < 4n0.1/3− n0.095 and |Ri

−| > (4n0.1/3− 4n0.01/3)− n0.095 for all

i, we have, for all v ∈ Q and u ∈ P ,

E(degi{u,v}) = dH−S({u, v})(n−0.9)2

≥ (1− o(1))

((
n− 1

2

)
−
(

2n/3

2

)
− ρn2

)
(n−0.9)2

≥
(
n0.1 − 1

2

)
−
(

2n0.1/3

2

)
− 2ρn0.2,

where the first inequality holds because |S| = 4n0.99/3 (and, hence, dH−S({u, v}) =

(1 − o(1))dH({u, v})). In particular, E
(
degi{u,v}

)
= Ω(n0.2). Next, we apply Janson’s

Inequality (Theorem 8.7.2 in [5]) to bound the deviation of degi{u,v}. Write degi{u,v} =∑
e∈NH({u,v}) Xe, where Xe = 1 if e ⊆ Ri

− and Xe = 0 otherwise. Then

∆ :=
∑
e∩f 6=∅

P(Xe = Xf = 1) ≤
(
n− 1

2

)(
2

1

)(
n− 3

1

)
(n−0.9)3

and, thus, ∆ = O(n0.3). By Janson’s inequality, for any constant γ > 0,

P
(
degi{u,v} ≤ (1− γ)E(degi{u,v})

)
≤ e−γ

2E(degi
{u,v})/(2+∆/E(degi

{u,v})) = e−Ω(n0.1).

Since ξ ≥ 5ρ (and taking γ sufficiently small), the union bound implies that, with proba-

bility at least 1− n2+1.1e−Ω(n0.1), for all v ∈ Q and u ∈ P and for all i ∈ [n1.1],

degi{u,v} >

(
n0.1 − 1

2

)
−
(

2n0.1/3

2

)
− ξn0.2/2.
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Thus, (iii) holds with probability at least

(1− n1.1e−Ω(n0.09))(1− n2+1.1e−Ω(n0.1)) > 1− n4e−Ω(n0.09).

Hence, it follows from union bound that, with probability at least 1− o(1), (i)-(iii) hold

for any sequence Ri, 1 ≤ i ≤ n1.1, satisfying Ri
− ⊆ Ri ⊆ Ri

+.

Lemma 9.6. Let n,H, P,Q, S and Ri
+, R

i
−, i ∈ [n1.1], be given as in Lemma 9.5. Then,

with probability 1 − o(1), for every i ∈ [n1.1], there exist subgraphs Ri such that Ri
− ⊆

Ri ⊆ Ri
+ and Ri is balanced.

Proof. Recall that |P | = n, |Q| = n/3, |S ∩ P | = n0.99, and |S ∩ Q| = n0.99/3, and

that Ri
+ is formed by taking each vertex of H independently and uniformly at random with

probability n−0.9. So for i ∈ [n1.1],

E(|Ri
+ ∩ P |) = n0.1,

E(|Ri
+ ∩ P ∩ S|) = n0.09,

E(|Ri
+ ∩Q|) = n0.1/3, and

E(|Ri
+ ∩ P ∩ S|) = n0.09/3.

By Lemma 5.1,

P
(
||Ri

+ ∩ P | − n0.1| ≥ n0.08
)
≤ e−Ω(n0.06),

P
(
||Ri

+ ∩ P ∩ S| − n0.09| ≥ n0.08
)
≤ e−Ω(n0.07),

P
(
||Ri

+ ∩Q| − n0.1/3| ≥ n0.08
)
≤ e−Ω(n0.06), and

P
(
||Ri

+ ∩Q ∩ S| − n0.09/3| ≥ n0.08
)
≤ e−Ω(n0.07).
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Thus, with probability 1− o(1), for all i ∈ [n1.1],

|Ri
+ ∩ P | ∈ [n0.1 − n0.08, n0.1 + n0.08],

|Ri
+ ∩ P ∩ S| = (1 + o(1))n0.09,

|Ri
+ ∩Q| ∈ [n0.1/3− n0.08, n0.1/3 + n0.08], and

|Ri
+ ∩Q ∩ S| = (1 + o(1))n0.09.

Therefore,

∣∣|Ri
+ ∩ P | − 3|Ri

+ ∩Q|
∣∣ ≤ 4n0.08 < min{|Ri

+ ∩ P ∩ S|, |Ri
+ ∩Q ∩ S|}.

Hence, with probability 1− o(1), Ri can be taken to be balanced for all i ∈ [n1.1].

9.3 Second Round of Sampling in (1, 3)-Partite 4-Graphs

Another small difference between here and [3] is that condition (ii) in Lemma 9.5 is slightly

weaker than the corresponding condition in [3]. In [3] all vertices have almost the same

degree, but here a small portion of the vertices could have smaller degree. The following

lemma reflects a slightly weaker conclusion due to this difference, and the proof mainly

follows that of Claim 4.1 in [3].

Lemma 9.7. Let n, H,S, Ri, i = 1, . . . , n1.1 be given as in Lemma 9.6 such that each

H[Ri] is a balanced (1, 3)-partite 4-graph and has a perfect fractional matching wi. Then

there exists a spanning subgraph H ′′ of H ′ :=
⋃n1.1

i=1 H[Ri] such that

(i) dH′′(u) ≤ (1 + o(1))n0.2 for u ∈ S,

(ii) dH′′(v) = (1 + o(1))n0.2 for v ∈ V (H) \ S, and

(iii) ∆2(H ′′) ≤ n0.1.
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Proof. Let H ′ =
⋃n1.1

i=1 H[Ri]. By (iid) of Lemma 9.5, each edge of H is contained in at

most one Ri. Let ie denote the index i such that e ⊆ Ri (if exists); and let wie(e) = 0 when

ie is not defined. LetH ′′ be a spanning subgraph ofH ′ obtained by independently selecting

each edge e at random with probability wie(e).

For v ∈ V (H ′′), let Iv = {i : v ∈ Ri}, Ev = {e ∈ H ′ : v ∈ e}, and Ei
v = Ev ∩H[Ri].

Then Ei
v, i ∈ Iv, form a partition of Ev. Hence, for v ∈ V (H ′′),

dH′′(v) =
∑
e∈Ev

1 =
∑
i∈Iv

∑
e∈Ei

v

Xe,

where Xe ∼ Be(wie(e)) is the Bernoulli random variable with Xe = 1 if e ∈ E(H ′′) and

Xe = 0 otherwise. Thus, since
∑

e∈Ei
v
wi(e) = 1 (as wi is a perfect fractional matching in

H[Ri]),

E(dH′′(v)) =
∑
i∈Iv

∑
e∈Ei

v

wi(e) =
∑
i∈Iv

1.

Hence, E(dH′′(v)) = (1 + o(1))n0.2 for v ∈ V (H) \ S (by (iib) of Lemma 9.5), and

E(dH′′(v)) ≤ (1 + o(1))n0.2 for v ∈ S (by (iia) of Lemma 9.5). Now by Lemma 5.1, for

v ∈ V (H) \ S,

P(|dH′′(v)− n0.2| ≥ n0.15) ≤ e−Ω(n0.1),

and for v ∈ S,

P(dH′′(v)− n0.2 ≥ n0.15) ≤ e−Ω(n0.1).

Thus by taking union bound over all v ∈ V (H), we have that, with probability 1−o(1),

dH′′(v) = (1 + o(1))n0.2 for all v ∈ V (H) \ S and dH′′(v) ≤ (1 + o(1))n0.2 for all v ∈ S.

Next, note that for distinct u, v ∈ V (H),

dH′′({u, v}) =
∑

e∈Eu∩Ev∩E(H′′)

1 =
∑

i∈Iu∩Iv

∑
e∈Ei

u∩Ei
v

Xe

and E(dH′′({u, v})) =
∑

i∈Iu∩Iv
∑

e∈Ei
u∩Ei

v
wi(e). By (iic) in Lemma 9.5, |Iu ∩ Iv| ≤ 2.
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So E(dH′′({u, v})) ≤ |Iu ∩ Iv| ≤ 2. Thus by Lemma 5.1,

P(dH′′({u, v}) ≥ n0.1) ≤ e−Ω(n0.2).

Hence by a union bound ∆2(H ′′) ≤ n0.1 with probability 1− o(1).

Therefore, with probability 1− o(1), H ′′ satisfies (i), (ii), and (iii).

We also need the following result attributed to Pippenger [38], stated as Theorem 4.7.1

in [5]. A cover in a hypergraph H is a set of edges whose union is V (H).

Lemma 9.8 (Pippenger and Spencer, 1989). For every integer k ≥ 2 and reals r ≥ 1 and

a > 0, there are γ = γ(k, r, a) > 0 and d0 = d0(k, r, a) such that for every n and D ≥ d0

the following holds: Every k-uniform hypergraph H = (V,E) on a set V of n vertices in

which all vertices have positive degrees and which satisfies the following conditions:

(1) For all vertices x ∈ V but at most γn of them, d(x) = (1± γ)D;

(2) For all x ∈ V , d(x) < rD;

(3) For any two distinct x, y ∈ V , d(x, y) < γD;

contains a cover of at most (1 + a)(n/k) edges.

Note that H contains a cover of at most (1 + a)(n/k) edges implies that H contains a

matching of size at least (1− (k−1)a)(n/k) (see, for example, [38]). Now we are ready to

state and prove the main result of this section, which will be used to find an almost perfect

matching after deleting an absorber.

Lemma 9.9. Let σ > 0 and 0 < ρ ≤ ε/4� 1, let n be a sufficiently large positive integer,

and let H be a (1, 3)-partite 4-graph with partition classes Q,P such that 3|Q| = |P | = n.

Suppose H is not ε-close to any H1,3(n, n/3) with V (H1,3(n, n/3)) and dH({u, v}) ≥(
n−1

2

)
−
(

2n/3
2

)
− ρn2 for all v ∈ Q and u ∈ P . Then H contains a matching covering all

but at most σn vertices.
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Proof. By Lemmas 9.5 and 9.6, we have the random subgraphs Ri, i ∈ [n1.1], such that,

with probability 1−o(1), allRi satisfies the properties in Lemmas 9.5 and 9.6. In particular,

H[Ri] is balanced with respect to the partition classes Q,P .

Next, by Lemma 6.5, H is (F , ε/6))-dense, where

F = {A ⊆ V (H) : |A ∩Q| ≥ (1/3− ε/8)n and |A ∩ P | ≥ (2/3− ε/8)n}.

Note that

e(H) =
∑
v∈Q

∑
u∈P

dH({u, v})/3 ≥ (n/3)(n/3)

((
n− 1

2

)
−
(

2n/3

2

)
− ρn2

)
≥ n4/100.

Hence by Lemma 6.6 (and choosing suitable α1, α2, γ), we see that, with probability 1 −

o(1), for all i ∈ [n1.1] and for all independent sets J in H[Ri], |J ∩ P | ≤ (α1 + γ +

o(1))n0.1 < n/3− ε2n or |J ∩Q| ≤ (α2 + γ + o(1))n0.1 < 2n/3− ε2n

Moreover, by (iii) of Lemma 9.5, with probability 1−o(1), dH[Ri]({u, v}) >
(|Ri∩P |−1

2

)
−(

2|Ri∩P |/3
2

)
− ξ|Ri ∩ P |2 for all u ∈ P and v ∈ Q. Hence, by Lemma 8.3, H[Ri] contains a

perfect fractional matching for all i ∈ [n1.1].

Thus by Lemma 9.7, there exists a spanning subgraph H ′′ of
⋃n1.1

i=1 H[Ri] such that

dH′′(u) ≤ (1 + o(1))n0.2 for each u ∈ S, dH′′(v) = (1 + o(1))n0.2 for each v ∈ V (H) \ S,

and ∆2(H ′′) ≤ n0.1. Hence, by Lemma 9.8 (by setting D = n0.2), H ′′ contains a cover of

at most (1 + a)(n/3) edges, where a is a constant satisfying 0 < a < σ/3.

Now by greedily deleting intersecting edges, we obtain a matching of size at least

(1 − 3a)(n/3). Hence H contains a matching covering all but at most σn, provided n

is sufficiently large.
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CHAPTER 10

CONCLUSIONS AND REMARKS

In this chapter, we complete the proof of Theorem 1.3 and Theorem 2.8, and make some

concluding remarks.

10.1 Proof of Theorem 1.3

Proof. By Lemmas 3.2 and 4.6, we may assume that for any 0 < ε < (8k−1k5(k−1)k!)−3,

H is not ε-close to Hk−l
k (U,W ) for any partition of V (H) into U,W with |W | = m.

By Lemma 5.3, there exist constants c′ = c′(k, l) and ρ = ρ(c′, k, l, ε) small enough,

satisfying the following property: For positive integers a, h satisfying h ≤ l, a ≤ k − l,

and al ≥ a(k − l) + (k − h), there exists a matching Ma such that |Ma| ≤ 2kρn and, for

any subset S ⊆ V (H) with |S| ≤ c′ρn, H[V (Ma) ∪ S] has a matching covering all but at

most al + h− 1 vertices.

Now consider H1 = H − V (Ma). Then δl(H1) ≥ δl(H) − (2k2ρn)nk−l−1. Let ρ1 =

4k2ρ and n1 = n− k|Ma|. Then, since n is large enough and ρ� ε,

δl(H1) ≥
(
n1 − l
k − l

)
−
(
n1 − l −m
k − l

)
− ρ1n

k−l
1

and H1 is not (ε/2)-close to Hk−l
k (U,W ) for any partition of V (H1) into U,W with |W | =

m.

By Lemma 9.4, H1 has a matching M1 such that |V (H1) \ V (M1)| < c′ρn1 ≤ c′ρn.

Then there exists a matching M2 in H2 := H[V (Ma) ∪ (V (H1) \ V (M1))] such that

|V (H2)\V (M2)| ≤ al + h− 1.

Now M1 ∪M2 is a matching in H covering all but at most al+h− 1 vertices of H . By

taking a = d(k− l)/(2l− k)e and h = k− a(2l− k), which minimizes al+ h− 1, we see
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that M1 ∪M2 is a matching in H of size n/k − 1− (1− l/k)d(k − l)/(2l − k)e.

10.2 Proof of Theorem 2.8

Proof. By Lemma 4.5, we may assume H is not ε-close to any H1,3(n, n/3), where ε �

1. By Lemma 5.2, H1,3(F) has a matching M ′ such that, for some 0 < ρ′ � ρ � ε,

|M ′| ≤ ρn/4 and, for any S ⊆ V (H1,3(F)) with |S| ≤ ρ′n and 3|S ∩ Q| = |S ∩ P |,

H1,3(F)[S ∪ V (M ′)] has a perfect matching.

Let H1 = H − V (M ′). Then dH1({u, v}) ≥
(
n′−1

2

)
−
(

2n′/3
2

)
− ρ(n′)2 for all v ∈

Q ∩ V (H1) and u ∈ P ∩ V (H1), and H1 is not (2ε)-close to H1,3(n′, n′/3), where n′ =

(1− o(1))n.

By Lemma 9.9, H1 contains a matching M1 covering all but at most σn vertices, where

we choose σ so that 0 < σ < ρ′. NowH[(V (H1)\V (M1))∪V (M)] has a perfect matching

M2. Clearly, M1 ∪M2 forms a perfect matching in H .

10.3 Remarks

There are two places in the proof of Theorem 1.3 where we require l > k/2: Lemma 5.3

for absorbing matching and Lemma 7.4 for perfect fractional matchings. We do not know

how to derive such results for l ≤ k/2.

However, for k = 3 and l = 1, the absorbing part can be taken care of by the following

result of Hán, Person, and Schacht [22].

Lemma 10.1 (Hàn, Person, and Schacht, 2009). Given any γ > 0, there exists an integer

n0 = n0(γ) such that the following holds. Suppose that H is a 3-graph on n ≥ n0 vertices

such that δ1(H) ≥ (1/2 + 2γ)
(
n
2

)
. Then there is a matching M in H of size |M | ≤ γ3n/3

such that for every subset V ′ ⊆ V (H) \ V (M) with |V ′| ∈ 3Z and |V ′| ≤ γ6n, there is a

matching in H covering precisely the vertices in V ′ ∪ V (M).

Using Lemma 8.2 instead of Lemma 7.3 in the end of the proof of (3) for Lemma 7.4,
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we see that Lemma 7.4 holds in the case when k = 3 and l = 1. Thus, our approach (using

Lemma 10.1 instead of Lemma 5.3) gives an alternative proof of the following result of

Kühn, Osthus, and Townsend [31] (and independently by Khan[28]) on perfect matchings

in 3-graphs.

Theorem 10.2 (Kühn, Osthus, and Townsend, 2014; Khan, 2013). There exists n0 ∈ N

such that if H is a 3-graph of order n ≥ n0, m ≤ n/3, and δ1(H) >
(
n−1

2

)
−
(
n−m

2

)
, then

ν(H) ≥ m.

For the general case, Hàn, Person, and Schacht [22] and, independently, Kühn, Os-

thus, and Townsend [30] conjectured that the asymptotic l-degree threshold for a perfect

matching in a k-graph with n vertices is

(
max

{
1

2
, 1−

(
1− 1

k

)k−l}
+ o(1)

)(
n− l
k − l

)
.

The first term (1/2 + o(1))
(
n−l
k−l

)
comes from a parity construction: Take disjoint nonempty

sets A and B with ||A|− |B|| ≤ 2, form a hypergraph H by taking all k-subsets f of A∪B

with |f ∩ A| 6≡ |A| (mod 2). The second term is given by the hypergraph obtained from

Kk
n (the complete k-graph on n vertices) by deleting all edges from a subgraph Kk

n−n/k+1.
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