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SUMMARY

Elements of continuous variation such as tremolo, vibrato and portamento enable

dimensions of their own in expressive melodic music in styles such as in Indian Classical

Music. There is published work on parametrically modeling some of these elements indi-

vidually, and to apply the modeled parameters to automatically generated musical notes in

the context of machine musicianship, using simple rule-based mappings. There have also

been many systems developed for generative musical accompaniment using multi-order

probabilistic models of discrete musical elements such as MIDI notes and durations, many

of them inspired by computational research in linguistics. There however hasn’t been a

combined approach of parametrically modeling expressive elements in a multi-order prob-

abilistic framework. A real-time computational framework is accordingly presented here,

which uses a multi-attribute trie / n-gram structure to model parameters like frequency,

depth and/or lag of the expressive variations such as vibrato and portamento, along with

conventionally modeled elements such as musical notes, their durations and metric posi-

tions in melodic audio input. This work proposes storing the parameters of expressive

elements as metadata in the individual nodes of the traditional trie structure, along with the

distribution of their probabilities of occurrence. During automatic generation of music, the

expressive parameters as learned in the above training phase are applied to the associated

re-synthesized musical notes. This modeling scheme is aimed at being used to provide

automatic melodic accompaniment in a performance scenario. The parametric modeling

of the continuous expressive elements in this form is hypothesized to be able to capture

deeper temporal relationships among musical elements and thereby is expected to bring

about a more expressive and more musical outcome in such a performance than what has

been possible using other works of machine musicianship using only static mappings or

x



randomized choice. A system was developed on Max/MSP software platform implement-

ing this framework, which takes in a pitched audio input such as human singing voice,

and produces a pitch track which may be applied to synthesized sound of a continuous

timbre. A rule-based and highly user-customizable sub-system that seamlessly integrates

the processes of segmentation of notes and extraction of their parameters using a real-time

state-machine based approach was also developed. The system was trained and tested with

several vocal recordings of North Indian Classical Music, and a subjective evaluation of

the resulting audio was made using an anonymous online survey. The results of the survey

show the output tracks generated from the system to be as musical and expressive, if not

more, than the case where the pitch track generated from the original audio was directly

rendered as output, and also show the output with expressive elements to be perceivably

more expressive than the version of the output without expressive parameters. The results

further suggest that more experimentation may be required to establish the efficacy of the

framework employed against using randomly selected parameter values for the expressive

elements. This thesis presents the scope, context, implementation details and results of the

work, suggesting future improvements.

xi



CHAPTER I

INTRODUCTION

Elements of continuous variation, such as tremolo, vibrato and portamento, enable dimen-

sions of their own in expressive melodic music. Vibrato refers to the microtonal oscillation

of the pitch of a voice about the mean pitch level of a musical note, and tremolo refers

to a similar oscillation of the energy level or loudness of the voice. Portamento refers to

the continuous gliding shift of the pitch of a voice from the vicinity of one musical note

to that of another, used instead of a sudden jump between the two levels. Glissando, an-

other such expressive variation, refers to a shift of pitch from one note to another, similar

to a portamento, but with discrete steps of pitches in between instead of a continuous glide

– practiced with instruments with discrete note levels such as a piano. These expressive

variations, mainly the tremolo, vibrato and portamento, are produced as a natural affect of

physical characteristics of the singing voice or the instrument, or are voluntarily imparted

by the singer or the player of the instrument. These are extensively used in many styles

of music such as the Indian Classical Music (ICM), as tools of improvisation [49][34][19]

and thus to aid in imparting the psychoacoustic and emotional effects of music [12].

With the advent of digital computers, there have been many systems developed over

the past few decades to make machines understand music, improvise in various styles and

interact musically with fellow humans [45][46]. An example of such a system, with a

computational design similar to that described in this thesis is the Continuator [40]. Such

systems typically involve generative musical accompaniment using computational models

of discrete musical elements such as MIDI notes and durations. These models typically use

probabilistic data structures such as Markov chains [2], which can mathematically predict

the occurrence of a certain discrete musical event with an associated measure of likelihood,
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given the history of a number of events until a point of time, thereby being able to model

deep temporal dependencies between the events.

To develop or extend such a system to styles of music like Indian Classical Music in-

volving extensive use of continuous expressive elements, the continuous elements need

to be modeled parametrically, i.e., quantitative parameters that succinctly describe the el-

ements, such as the frequency of vibrato or the functional coefficients of a portamento

curve, need to be determined in the same way the discrete elements are modeled as men-

tioned above. There have been works of research to parametrically model some of these

continuous elements individually; for example, there is published work in modeling of vi-

brato/glissandi [30] and their removal from audio [43] in the context of audio analysis.

There have also been works using the models limitedly in rule-based generative accompa-

niment [48], where the parameters are extracted from audio recordings in an offline manner

and are later applied to machine-generated musical notes in a rule-based fashion, involving

only a set of simple static dependencies between the parameters and the discrete elements

such as note numbers and durations. There however hasn’t been a system with a com-

bined approach – trying to integrate the modeling of parameters of continuous expressive

elements into a framework of probabilistic modeling of discrete musical elements such as

notes and durations, thereby allowing the parameters to be modeled in a close context of

the deep temporal dependencies among the discrete musical events.

A candidate for such a combined approach is presented by this thesis – a system

with a real-time computational framework that extracts and seamlessly embeds parameters

(like frequency, depth, duration and/or shape) of vibrato and portamento inside an n-gram

Markov-based model of musical notes, their durations and metric positions, alternatively

termed a multi-attribute prediction suffix tree framework, or a multi-attribute trie frame-

work. The system can in turn generate musical audio output that is stylistically similar to

the source audio used to generate the model, aimed at being used to enable a computer

to provide automatic melodic accompaniment in a performance scenario. This method of
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parametric modeling of the continuous expressive elements is intended to bring about a

more compelling and expressive musical outcome in such a performance than what has

been possible using other works of machine musicianship. The system takes in a pitched

audio input such as human singing voice, and analyzes it in real-time to determine the

parameters of vibrato and portamento as well as the discrete notes and durations. It then

integrates this information into the model, so that the model can further be used to generate

notes and expressions in the same style.

Audio recordings of North Indian Classical Music (NICM) performances are taken as

the source material for training, development and evaluation of the system as ICM demon-

strates a good use of vibrato and portamento [34][49][19] and thus would serve as a suitable

example of a style of music that would be reasonably modeled using the approach. How-

ever, the same framework can be applied to model and generate music in other styles of

music that use continuous expressive variations such as vibrato and portamento. While

vibrato and portamento have been treated as the principal expressive elements for the pur-

poses of developing the system, the modeling scheme developed for vibrato in the musical

pitch domain can equivalently be applied to the sound velocity domain to model tremolo.

The end goal of this work is split in two ways. Within the context of this document

and the work done in it, the goal is to present and evaluate a new approach to model ex-

pressive music in the field of Music Information Retrieval (MIR). In a longer term and a

broader context, the goal is to design an interactive music system for live performance that

incorporates expressive elements of music and improves upon previous such systems.

This document presents the context of the research, the design and development of the

system, and the initial experiments with the system including its evaluation. Chapter 1

(this chapter) has provided an introduction to the context and motivation for the develop-

ment of the system. Going ahead, Chapter 2 briefs on some of the related work that the

development of the system was based on. Chapter 3 gives an overview of the system archi-

tecture. Chapter 4 presents the techniques used in tracking the pitch of an incoming audio

3



stream and in segmenting it into various stable notes and other regions, along with an in-

troduction to the parameters defined in the system and explaining how they were extracted.

Chapter 5 explains the n-gram modeling structure used in the system and how the above

parameters were embedded in it. Chapter 6 makes brief notes about how the audio was syn-

thesized and what interface was given to the user in the developmental stage of the system.

Chapter 7 briefs over some of the initial evaluation experiments conducted with the system

and discusses their results, and Chapter 8 presents some of the improvements that may be

considered for the system in the future, before Chapter 9 concludes. The system developed

in the work described in this thesis is named ‘PortaVibra’, and is referred henceforth in the

document as the ‘current system’ or as the system in the ‘current work’.
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CHAPTER II

RELATED WORK

The system described in this thesis draws inspiration and techniques from two streams of

related work: one dealing with the ways to parametrically model continuous elements of

expressive variations such as vibrato and portamento, and the other dealing with ways to

probabilistically model discrete elements of music such as notes and durations.

2.1 Parametric modeling of expressive musical elements

There have been many works on parametric modeling of expressive musical elements, most

of them predominantly dealing with vibratos.

Schoonderwaldt et al. developed a generative, rule-based model for expressive violin

vibrato [48]. Arguing that a mere regular periodic modulation of pitch generally yields un-

satisfactory results sounding both unnatural and mechanical, and that an appropriate control

of vibrato rate and vibrato extent is a major requirement of a successful vibrato model, they

used measurements of vibrato as performed by professional violinists to generate vibrato

rate and extent envelopes consisting of a limited number of linear parts (Figure 1), which

were in turn used to control a sampled violin synthesizer. They found that the note-by-note

values of vibrato extent and sound level were positively correlated for long notes in the

analyzed performances, and that sound level tended to increase until vibrato started on the

within-note level, and included these observations in their model. This work served as an

initial guide for the current work, by introducing a system that involved parameter extrac-

tion and applied those parameters to a synthesis engine. This system however extracts the

parameters using offline analysis of performances, while in contrast the current system was

developed to extract the parameters in real-time as the audio input is fed into the system.

Further, the above work applies the parameters to machine-generated notes in a rule-based
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Figure 1: This figure illustrates the pitch envelopes derived and used by Erwin Schoonder-
waldt (Reproduced from Schoonderwaldt [48])

fashion, involving only a set of simple static dependencies between the parameters and

the discrete elements such as note numbers, while the current system was developed to

model dynamic and deeper temporal dependencies between the parameters and the discrete

elements such as the notes, their durations and their positions in the metric grid.

Desain and Honing worked on systematically modeling continuous aspects of music

performance, specifically vibrato and portamento, using methods of machine learning such

as simulated annealing for pattern recognition while deriving the parameters of continuous

aspects [17]. Simulated annealing is a field-proven technique often used in pattern recog-

nition tasks where an attempt is made to find out the parameters of a pattern function that

matches well with the observed data, by initially starting with a pseudo-random search for

the optimal values in the parameter space and then slowly converging on to an optimal point

by adjusting a control variable for ‘randomness’. While simulated annealing and similar

methods can work as good techniques for pattern recognition in an offline scenario such

6



Figure 2: This figure shows the breakdown of a pitch track proposed and used by Desain
in an early work. (Reproduced from Desain [16])

as in the above work, being able to find good matches for the parameters of vibrato and

portamento curves, it can be computationally expensive and thus inefficient in a real-time

scenario. Hence, several state-machine based heuristics that are more straightforward – and

thereby faster in performance – were adopted in the current work for segmenting the pitch

track into note regions and to extract the values of the parameters.

Desain and Honing further presented some of the classical hypotheses on the question

of how vibrato is adapted to global tempo [17]. Some of the hypotheses are that vibrato is

not adapted at all – that it just continues on across note boundaries without being adjusted

in any way, or that it is only in the note onset that vibrato is controlled and restarted at

a specific phase. Some other hypotheses are that the duration of the notes are adapted to

the vibrato rate through delaying of the offset such that a whole number of vibrato cycles

fit in the note duration, or that it happens the other way around – with the vibrato rate

being adapted to the note duration such that a whole number of cycles fits in. Yet another

hypothesis is that the adaptation is only done towards the end of the note.
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Following up on the above, Desain et al. investigated the rhythmic aspects of vibrato

across different musicians and tempi [18]. In their attempt to answer the question whether

vibrato rate is adapted to tempo, they established a confirmed relation between tempo and

vibrato rate for instruments with a low vibrato rate, and found an increasing vibrato rate

towards the end of notes except in case of a very high vibrato rate. They found meter to be

target of synchronization for the instruments that showed some scaling of vibrato rate with

tempo. They concluded the temporal aspects of vibrato to be important aspects of vibrato,

and to be under considerable control of the performer, being important in their relation to

tempo and to the length of notes of the music, but being insignificant in their relation to

meter. Some of the above conclusions were taken into consideration while designing the

current system. The system stores parameters of vibrato and portamento as a metadata

packet along with each note in a manner that establishes a direct relation between the

parameters and duration of each note. Further, several parameters related to portamento in

the current system are expressed in terms of beat durations, thereby allowing them to scale

with tempo, similar to the scaling of vibrato rate with tempo as suggested above. Scaling

of vibrato rate with tempo in the current system was also considered, but was not used in

the initial implementation as that particular aspect required a separate line of analysis of

the exact relation between tempo and vibrato rate, which was left for future improvements.

Also, in the current system, even though the rate of vibrato for each note is quantized and

stored in the model with a value very close to that extracted from the source audio, during

generation of output notes the vibrato rate is adjusted to the nearest convenient value such

that the appropriate number of cycles of vibrato fit within the duration allocated for vibrato,

with an appropriate phase and direction in line with the adjacent events in the output audio.

This was done following up on one of the above hypotheses, while variation of vibrato rate

towards the end of each note was left as a future improvement.

Further, Timmers and Desain describe a series of experiments dealing with the key

questions about vibrato in performance of different instruments and present the qualitative
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opinions from musicians about their performance of vibrato as well as quantitative scien-

tific measurements about the same, while discussing the relation between them [52]. The

musicians were reported to suggest variations in vibrato in relation to their explicit expres-

sive intentions, such as phrasing, contrasting first and second half, accentuating of certain

notes, and tension and relaxation of the music. Analysis of vibrato in the performances

was reported to have shown a general, considerably strong effect of musical structure on

amplitude, vibrato rate and extent, a general consistency of vibrato characteristics over rep-

etitions implied by the strong effect, and a limited relatedness between amplitude, vibrato

rate and extent. Further, a significant relation between metrical stress and vibrato rate, and

that between phrase position and amplitude was reported. Inspired by the above observa-

tions, in the current system, the vibrato rate and depth were modeled independent of each

other, while the system easily supports modeling them together in case such a modeling is

desired. The system was also designed such that the metadata containing all the parameters

are stored in the model in direct relation to the position of the notes in the metrical grid,

similar to the relation between phrase position and amplitude reported above.

Elsewhere, Herrera and Bonada describe their method for vibrato extraction and param-

eterization in the Spectral Modeling Synthesis framework [43], which is another notable

related work.

The above works involving parametric modeling of vibrato try to address some of the

key questions about the physical attributes of vibrato and its practice: Is there a specific

vibrato before and/or after a note transition? Does global tempo influence vibrato rate?

How does vibrato develop during a note? Is the vibrato rate adapted to the meter of the

music (coordinated with tempo and note timing)? The answers and conclusions presented

in the above works establish vibrato as an important expressive element in music in several

contexts of western music performance – defined by the type of instrument, style of impro-

visation and the choices of the composer and the performer. The experiments have found

9



that the physical attributes of vibrato vary by player, instrument, style/genre, tempo, com-

position, and other parameters, and that the vibrato waveforms have various shapes. The

experiments have also found that there is a confirmed relation between tempo and vibrato

rate for instruments with a low vibrato rate, that the vibrato rate increases towards the end

of notes, and that the temporal aspects are important in their relation to tempo and to the

length of notes of the music, but insignificant in their relation to meter. Some of these re-

sults are used to make practical working assumptions in the system described in this thesis,

as briefed in individual paragraphs above.

While the related works described above were primarily conducted in the context of

western music and while the above hypotheses and observations may not hold good in the

context of Indian Classical Music, owing to the absence of similar research and experiments

in ICM, the observations and hypotheses mentioned above were taken as the starting point

in the implementation of the current system, and it is hoped that they would get refined and

adjusted appropriately for ICM in future experiments.

2.2 Probabilistic modeling of musical melody

While the systems described above dealt with parameterization of expressive elements, on

the other hand, there have been many systems developed for computational melodic mod-

eling and for interacting with fellow humans through automatic generative music[45][46].

A good example with a computational design similar to the system described in the thesis

is the Continuator [40] built by François Pachet, a system enabling musical Interaction be-

tween machine and a human with the ability to model the musical style of the human player.

The system would break down a melodic sequence into short phrases, learn the temporal

relations between the notes by calculating probabilities of occurrence of specific sequences

of notes and storing them in a tree-like structure, and try to continue a test sequence using

the structure built. The system used discrete raw MIDI symbols – but did not use derived

types or more abstract relations such as transpositions; the learning was limited to short
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sequences of notes – such as phrases of 8 notes; further, the system did not have a way of

generically learning the structure of metrical timing in the phrases.

Inspired by systems such as the Continuator and by related mathematical methods such

as the Markov chains, a simple initial implementation of the system described in this thesis

was made [56] at Georgia Tech Center for Music Technology (GTCMT) in order to be used

with Shimon – the marimba-player robot of Georgia Tech designed to be perceptual, impro-

visational and socially interactive[58]. The system enabled the robot to analyze incoming

MIDI notes from a human performer playing a piano, and to respond with stylistically sim-

ilar melodic improvisations in real-time[55]. This implementation used a 2nd order Markov

chain – in which a table of probabilities of occurrence of the notes was developed based

on the observed occurrences of those notes in the input stream – in relation to two previ-

ous notes, and this table of probabilities was used to generate the notes statistically during

improvisation. This implementation however was not able to model note relationships that

spanned over more than two previous notes, and thus a framework that supported larger and

variable order was desired. Further, even though this initial implementation could imitate

the note durations and timings of the human performer and scale them with tempo, it did

not have a statistical scheme for modeling the note timings, and needed a framework that

can effective model them along with their relation to the note values themselves.

Several systems that expand upon the concept of Markov models and prove to be useful

in contexts similar to the above have been proposed. Pearce describes the construction and

evaluation of several statistical models of melodic structure in music perception and com-

position [42], discussing the variable length n-gram modeling approach to music as well

as entropy-based evaluation of a model’s performance. He establishes a high correlation

between such a model and human judgements of melodic continuation – particularly deal-

ing with western melodies. Rodriguez and Buenos describe a tree-like modeling structure

called Multi-Attribute Predictive Suffix Graph (MPSG) as an extended form of Probabilis-

tic Suffix Tree (PST), wherein each node is labeled with a tuple consisting of multiple
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symbols or indices for different musical attribute [53].

The current system tries to expand upon the techniques in the above works, by adopting

a similar framework of variable-length n-gram modeling with multiple attributes, to also

train on continuous elements. This results in a modeling data structure shaped like a tree,

with discrete elements stored as symbols in each node of the tree along with their probabil-

ities and also their count of observations – essentially a prefix tree – also termed a ‘trie’ as

derived from the word ‘retrieval’ due to the data retrieval properties of the structure, while

the parameters of continuous elements are stored in each node as attributes – alternatively

called metadata. Thus the structure can be aptly described as being a multi-attribute trie

framework. The parameters in the metadata packet in each node of the trie were further

designed to be modeled as a 1st order Markov chain – enabling the distribution of the prob-

ability of their occurrence to be effectively captured. In the context of a larger project, parts

of the framework developed were also used at GTCMT to analyze and model North Indian

tabla compositions [11].

Conklin and Witten describe certain multiple viewpoint systems for music prediction

[14], in which predictions resulting from different viewpoints consisting of models built

for different semantic representations of musical elements (such as discrete pitch classes

versus melodic intervals) are compared, combined and weighted against each other to make

the final prediction. By relying on multiple viewpoints, such systems have been shown to

result in better predictions than those possible with individual viewpoints in several musical

contexts [14][11]. An example for a multiple viewpoints system in the context of musical

melody is one using two viewpoints to model musical notes: one expressing notes in terms

of discrete pitch classes and another in terms of melodic intervals in comparison to the

previous notes. Such a multiple-viewpoint system was also integrated into the current

framework. However, this part of the system incorporating multiple viewpoints is not used

for the initial experiments with the system, and is hence not described in detail in this thesis.

Elsewhere, Dubnov et al. describe Audio Oracle: a new algorithm for fast learning of
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audio structures [20], building upon the concept of suffix trees and suffix links that are ex-

tensively used in language modeling, with a focus on fast retrieval of melodic associations

and fast recombination of the melodic elements in a real-time performance scenario. In the

initial experimentation of the current work, an exhaustive variable-length n-gram model-

ing approach with a ‘lossless’ representation of melodic associations was adopted, while

leaving the focus on fast retrieval and recombination such as with Audio Oracle to future

work.

Thus, in essence, this thesis proposes and describes a system of modeling parameters

of continuous expressive elements of music such as vibrato and portamento along with the

discrete elements such as notes and their durations and positions, as applied to, developed

with, and tested in the particular context of Indian Classical Music. While various parts of

the system are derived from earlier implementations as referenced above, the novelty of the

system lies in the way the parameters of continuous expressive elements are embedded in

the trie, encapsulated as a packet of metadata in each node of the trie, with each parameter

in turn provisioned to be modeled probabilistically. The forthcoming chapters describe the

architecture, design and functionality of the system.
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CHAPTER III

SYSTEM ARCHITECTURE

The system developed in the work is designed to take in a pitched audio input such as hu-

man singing voice, and to produce a synthesized continuous pitch track that can be mapped

to the sound of a continuous-timbre instrument such as violin/saxophone. It can be broadly

divided into 3 parts as below; each is described in detail in the upcoming chapters. Figure 3

shows a block diagram of the functional units in the system, along with the user-settable

variables and the flow of variables among the units. A functional description and the pur-

pose of most of the units and variables can be derived from the forthcoming chapters. Other

units and variables are presented in the illustration to assist in understanding and using the

Max/MSP objects that are put up at the project website [35].

3.1 Pitch tracking, note segmentation and feature extraction

On the input side, incoming audio is processed to extract the instantaneous pitch level,

using audio signal processing objects and several steps of pre-processing. This pitch track

is then segmented into stable, transient and rest regions, which denote the regions of stable

notes, transitions from one note to another, and rests, respectively. This information, along

with the shape of the pitch track is further used to extract the key expressive parameters,

such as the frequency and amplitude of vibrato, the duration of a transient/portamento, etc.

3.2 Multi-Attribute Trie Modeling

The result of pitch track analysis is used to build a variable-length n-gram model of the

input audio. The notes of the stable regions, their durations and locations are used as the

core symbols for the nodes in the n-gram trie model, while the parameters of expressive

variations are added as independent metadata at each node of the trie. Each parameter
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is further stored as an array of quantized values along with the corresponding probability

distribution. In the preliminary implementation of the system, the system can continuously

receive the incoming audio, generate the pitch track from it, analyze the pitch track and

train the computational model with parameters for every new note detected.

3.3 Sound Synthesis, interaction and interface

This involves using the n-gram model built above to make predictions of a continuing se-

quence of melodic notes along with parameters for expressive variations, which are in turn

fed into a real-time sound synthesizer that produces voiced audio output. In the preliminary

implementation of the system, the user indicates – through a soft switch on the interface

– when the system may continue the sequence using the model developed so far, and the

system then generates stylistically similar musical output using the voice chosen in the syn-

thesizer. This output can potentially be used to make the computer system accompany a

human musician in other modes of improvisation, involving directly imitating the human,

embellishing upon what the human performs, harmonizing or improvising differently – all

in the style perceived using the n-gram modeling. These improvisations may be done in

many temporal modes of interaction: either in synchrony with the human, or with a delay,

or in call-and-response manner, or as a solo playing. Adopting the system for a perfor-

mance involving such improvisations and temporal modes of interaction is left for future

work.

15



Interface

M
ul

ti-
A

tt
rib

ut
e 

Tr
ie

 M
od

el
in

g
Pi

tc
h 

Tr
ac

ki
ng

Pi
tc

h 
Es

tim
at

io
n 

&
 P

re
-P

ro
ce

ss
in

ganalyzer~

Voiced/Unvoiced Detection

Smoothing

Harmonic Pitch Error Reduction

Pitch Tracking,
Note Segmentation &

Feature Extraction

State Machine

Precision Timer

Updater

Input Stream

Predictor

Prediction Stream

Trie Model

Synthesizer

D
is

pl
ay

G
lo

ba
l T

im
er

Precision Timer

Noisiness Threshold

Loudness Threshold

Brightness Threshold

Signal Processing Parameters

Stability Threshold

Noise Threshold

Outer Bound

Inner Bound

Nearness Bound

Learning Toggle

Maximum Order

Prediction Toggle

Waveform Type

Volume

Pitch Jump Threshold

Median Bu�er Count Threshold

Portamento Lag Range / Resol’n

Tata Per Beat

Vibrato Depth Range / Resol’n

Vibrato Rate Range / Resol’n

Velocity Range

Beats Per Minute

Beats Per Bar

Audio Input

Audio Output

M
ID

I P
itc

h

Lo
ud

ne
ss

N
oi

si
ne

ss

Br
ig

ht
ne

ss

MIDI Pitch

MIDI Pitch

MIDI Pitch
M

ID
I N

ot
e

M
et

er
 C

ou
nt

Pa
ra

m
et

er
s 

Fo
r

Pa
ra

m
et

er
s 

Fo
r

Pr
ev

io
us

 N
ot

e

Cu
rr

en
t N

ot
e

M
ID

I N
ot

e

Pi
tc

h 
Be

nd

Ve
lo

ci
ty

Ch
an

ne
l

Bar
Tick

Tick
Beat

Figure 3: A block diagram illustrating the system architecture; red dashed blocks represent
the high-level functional units; blue rounded elements represent user-settable variables;
black solid blocks represent low-level functional units; black arrows with corresponding
text represent signals and variables flowing across functional units
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CHAPTER IV

PITCH TRACKING, SEGMENTATION AND FEATURE

EXTRACTION

This chapter introduces the techniques used to extract the pitch from input audio and to

determine the stable and transitional regions inside the pitch track. It further introduces the

parameters of expressive variation that were chosen for the system, and discusses how they

were extracted from the pitch track.

4.1 Preliminary work on MATLAB

As the first step, a preliminary non-real-time analysis was conducted on the MATLAB

software platform to make a visual observation of the pitch tracks and to determine the

feasibility of parametric modeling of expressive parameters. Several recordings of perfor-

mance by a few vocalists of North Indian Classical Music were analyzed and pitch tracks

were extracted in non-real-time. SWIPE′, an algorithm developed by Arturo Camacho [7]

was used for pitch estimation. SWIPE′, expanded as Sawtooth Waveform Inspired Pitch

Estimator, is an algorithm that tries to compare the frequency spectrum of the incoming au-

dio to that of a sawtooth waveform in order to estimate its pitch level. Since the frequency

spectrum of a human voice – especially when producing vowel sounds – is shaped simi-

lar to that of a sawtooth waveform, this algorithm is expected to yield good results when

analyzing voices such as the human voice, as in the case of current work. The SWIPE′ al-

gorithm additionally uses several other techniques of Digital Signal Processing (DSP) and

digital arithmetic, including decomposition of the spectrum into Mel-Frequency Cepstral

Coefficients (MFCCs) which have the affect of making the analysis similar to that done

by human auditory system [38][15][39]. The pitch tracks were segregated into regions of
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Figure 4: Pitch track of a full input audio track – from the preliminary MATLAB simula-
tion

various stable notes and transitions, and parameters for a small number of expressive pa-

rameters including vibrato were extracted, using the techniques outlined in the following

sections. The tracks were re-synthesized using simple waveforms such as a sinusoid and

sawtooth as base. Expressive parameters were added to the synthesis, such as a sinusoidal

wave for vibrato at the stable notes, using the vibrato depth and rate as determined earlier.

An example of the original and synthesized pitch tracks of an audio track is shown with

varying levels of zoom in Figure 4, Figure 5 and Figure 6; bluish lines are the original pitch

tracks as output by SWIPE′, while the lines with black dots represent the synthesized pitch

track. Example audio tracks are included in the project media [35]. The resulting synthe-

sized audio tracks were found to be convincing representations of the original recording,

as per the opinions of several colleagues at the Georgia Tech Center for Music Technol-

ogy, and inspired the building of the real-time system for modeling expressive elements in

melody and open evaluation of the system.

It may also be noted that the above pitch tracks contain a number of very high or very
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Figure 5: A zoomed-in region of the pitch track in Figure 4 – from the preliminary MAT-
LAB simulation
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Figure 6: A closer zoomed-in view of a region of the pitch track in Figure 4 – from the
preliminary MATLAB simulation
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low impulsive notes – which occur due to errors in the pitch tracking process such as

boundary errors or octave errors. Octave errors and similar pitch errors are where the pitch

tracking algorithm outputs a pitch that is harmonically related as an integral multiple or

submultiple, but not the same as the intended original pitch. Boundary errors are erroneous

pitches that result due to the algorithm processing partial frames along the boundaries be-

tween different notes and those in between a note and an adjacent rest. To work around

these errors, a heuristic was adopted in the current system, wherein each incoming pitch

value is approved to be valid or rejected as an erroneous note based on how it compares

to the median of a recent history of pitch values. A certain user-definable number of pitch

values from the most recent past is kept in a running buffer, and its median is calculated.

If a new incoming pitch differs from this median by more than a user-settable pitch limit

(such as 9 or 12 semitones), the pitch is rejected as an erroneous one and not considered for

further processing, nevertheless being put into the above queue of recent pitch values. This

technique was found to avoid a majority of incoming erroneous pitches in the current sys-

tem, if the above limits were tuned appropriately to each scenario depending on the quality

of incoming audio, processing power or frame rate, and the quality parameters set in the

pitch tracking algorithm.

4.2 Pitch Tracking

While the SWIPE′ algorithm used in the preliminary offline processing yielded generally

good results, no real-time implementation of the algorithm was found during the develop-

ment of current work. Since such an implementation of a pitch tracker was not the primary

focus of the current work, in the real-time system on the Max/MSP platform, a Max/MSP

object made by Tristan Jehan [29] was used alternatively on the input side. This object

determined the pitch of incoming audio, along with several other attributes such as loud-

ness, noisiness and brightness. The object, named analyzer~, based on an earlier MaxMSP

object fiddle~ made by Miller Puckette [44], analyzes the frequency spectrum of frames of
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Figure 7: Plots and histograms of timbral quality outputs of analyzer~ Max/MSP object:
Loudness, Noisiness and Brightness.

incoming audio to estimate the fundamental harmonic, or pitch, of the particular frame of

audio, and outputs the pitch as a MIDI note number whenever successive frames result in

a relatively stable pitch. Among a number of other parameters, the object allows the user

to set the period (in milliseconds) over which the raw pitch may not deviate more than a

specifiable interval in half-tones from the average pitch, to report the pitch as a new entry at

its outlet; these parameters are fine-tuned in the current system to suit the precision of pitch

and vibrato detection required from the input audio stream. The object also outputs quanti-

tative measures of loudness, noisiness and brightness, normalized to a value between 0 and

1. Figure 7 shows a running graph of these measures for a section of recorded vocal audio

track input, along with their normalized histograms. A video of the same is included in the

project media [35]. These measures of timbral qualities are used in our system to determine

if a region of audio is voiced or unvoiced, by setting practical thresholds to these measures.

The pitch values from the voiced regions of audio were further fed to a custom-written Max

external for the next stages of analysis.

Most of the source audio recordings used in development of the system exhibited a just

intonation scale, in which pitch levels of different notes in the raag or scale form simple

integral ratios such as 8/5, 5/3 etc. with one another, owing to such a practice in Indian
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Classical Music and to the fact that the recordings were of oral vocal performance. How-

ever, equal temperament scale was chosen for implementation in the system, due to its

scalability and ease of technical implementation, owing to the property that adjacent notes

in this tuning always maintain a constant ratio of 21/12. This choice could potentially affect

the output of the system – in cases such as that involving a very deep vibrato wherein the

difference in mean pitch position between the source note and perceived note could induce

errors in pitch tracking. However, this effect can be countered in most practical cases by set-

ting the bound limits around a note (a user-settable variable introduced later in Section 4.3)

to sufficiently large values such that both equal temperament and just intonation levels are

included deep within the bounds. Pitch lines in Figure 6 portray the differences between

the two tunings for some of the notes.

4.3 Note Segmentation

The pitch track is segmented next automatically into various regions belonging to one of

the three types: stable note region, transition region, and rest region. While the user is

given an option through the interface (Figure 19) to select the notes in the scale or raag

being used in the performance or interaction, the system was developed to detect and seg-

ment the individual notes from the input audio automatically, thus paving way for real-time

interaction in a performance scenario. While there are methods developed and systems de-

signed elsewhere to segment input audio or pitch tracks [41][23][5], and those to provide

a feedback on the detected notes to the user through real-time interface [24], the current

framework required a note segmentation system that is closely associated with the rest of

the framework at programming level and that would support real-time feedback, while also

recovering a custom-defined set of parameters of expressive elements (as will be described

in Section 4.4) simultaneously. Hence, such a system was freshly developed for the current

framework, with custom-written C++ code in the Max/MSP platform.
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In this system, the process of segmentation of pitch tracks into notes and that of extrac-

tion of parameters happen in parallel to each other and in a dependent manner, with the

detected boundaries of note segments in time affecting the metrics used to determine the

values of the parameters – such as the number of waves of vibrato, and the Portamento Lag

(explained in Section 4.4). The system was designed keeping fast/real-time execution in an

embedded hardware environment such as a mobile environment in view, in lieu of future

implementation plans and the recent trend of many interactive musical applications being

developed on such platforms [50][54][57]; it employs a state machine that is quickly and

completely updated at the arrival of each pitch value from the input audio – or equivalently

– from the pitch track generated from the audio, and that supports immediate output of

detected notes and parameters, instead of a buffer-based approach in which the pitch values

are accumulated in a buffer with delayed analysis, calculations and output. The methods

employed leverage on simple graphical points of interest in the input pitch track such as

local maxima and minima, points of zero-crossing and points of inflection, as described

further in this section as well as in Section 4.4.

The method of note segmentation employed in the framework, by itself, is not claimed

to be a novel contribution in the current work and is developed just as a tool towards sup-

porting the extraction of parameters of expressive elements. However, when combined with

the methods employed in extracting the parameters, it forms a novel rule-based and highly

user-customizable part of the overall framework that seamlessly integrates the processes

of extraction of the parameters and segmentation of the notes, thereby trying to result in

a faster, more efficient and more accurate outcome than that of the alternative, typical,

buffer-based approach. Further, this segmentation and parameter extraction framework is

an integral and essential part of the overall system framework leading to the modeling of

the parameters in a novel multi-attribute trie fashion. A detailed quantitative evaluation of

the performance of the segmentation and parameter extraction methods is left for future

work.
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Figure 8 shows illustration of a hypothetical pitch track with several of the regions de-

fined above. The horizontal gray dashed lines are the levels of discrete equal temperament

notes, the dark gray ones being the notes in the current scale while the light gray ones

are the ones outside the scale. The reddish line shows the hypothetical pure notes without

vibrato and portamento, while the bluish line is the actual pitch track with the expressive

variations. The reddish circular markers indicate the start of pure notes, while the reddish

arrowheads show the location on the pure track that corresponds to the time instance when

the actual expressive track is deemed by the algorithm to have attained stability for the cur-

rent note, equivalently the end of portamento leading into the note. The sequence of notes

illustrated is B-C#-C#-C-B-C#.

The segment between t1 and t2, that between t3 and s1 and that between s4 and t4 are

examples of transition regions – where the pitch gradually transitions from one note level

to another. The segment between t2 and t3 and that between s1 and s4 are examples of

stable note regions – where the pitch level relatively stays close to a note level. The region

around t4 is an example of a momentary jump to a pitch level.

To determine the pure base notes corresponding to each of these regions, and to simul-

taneously divide the pitch track into regions as mentioned above, the algorithm uses a state

machine. It keeps track of various states of the pitch track, such as the direction in which

the pitch track is proceeding in the current instance (PTS tate), whether the algorithm is

currently looking to find a crest (local peak – or a point of maximum value in the vicin-

ity) or a trough (local valley – a point of minimum value in the vicinity) in the pitch track

(PT Phase), and whether the pitch track is already stable or about to be stable around a note

or if it is in transition from a note to note (PTS tabilityS tate). To determine these states

in turn, various measurements, points and variables are defined and tracked along the pitch

track.

Algorithm (1), Algorithm (2) and Algorithm (3) show reduced versions of pseudo-codes

depicting major state variables as above and their transitions in the pitch tracking process

25



Algorithm 1 A reduced version of pseudo-code depicting the state variable
PTS tabilityS tate and its transitions in the pitch tracking process

if PTS tabilityS tate = RES ET then
{The following is the ‘usual transient region check’}
if Pitch is within InnerBound of a note then

S tableNote← nearest note in scale
PTS tabilityS tate← BECOMING

else
PTS tabilityS tate← TRANS IENT

end if
else if PTS tabilityS tate = BECOMING then

if Pitch is within OuterBound of S tableNote then
if it has been so more than a set number of times then

Stable note detected!
ReturnVariables← S tableNote, appropriate meter count, & parameters
PTS tabilityS tate← S T ABLE

end if
else

Usual transient region check as above
end if

else if PTS tabilityS tate = S T ABLE then
if Pitch is not within OuterBound of S tableNote then

Going out of stable state
Usual transient region check as above

end if
else if PTS tabilityS tate = TRANS IENT then

Usual transient region check as above
end if
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– particularly dealing with note segmentation. It should be noted that these do not show

many of the intermediate steps and states, and some of the noise threshold considerations.

It should also be noted that these do not show comparisons with previous note to avoid

re-triggering of the same note – especially in presence of vibrato, and they do not show

the determination of meter count values and of parameters of expressive variations. Names

of variables and states in these pseudo-codes are self-explanatory in the context of note

segmentation and pitch tracking as presented in this chapter. As mentioned before, these

algorithms by themselves are not novel in the current work, and are simple heuristics as-

sisting towards extraction of parameters of expressive elements. The following paragraphs

portray some of the example cases and how the various states are used to determine regions

in those cases.

Algorithm 2 A reduced version of pseudo-code depicting the state variable PT Phase and
its transitions in the pitch tracking process

if PT Phase = RES ET then
if S tartingPitch − Pitch > NoiseThreshold then

PT Phase← FINDING_TROUGH
TroughPitch← S tartingPitch

else if Pitch − S tartingPitch > NoiseThreshold then
PT Phase← FINDING_CRES T
CrestPitch← S tartingPitch

end if
S tartingPitch← Pitch

else if PT Phase = FINDING_CRES T then
if CrestPitch − Pitch > NoiseThreshold then

Crest and new note detected! (in absence of vibrato)
ReturnVariables← note & meter count nearest to CrestPitch, & parameters
PT Phase← FINDING_TROUGH

end if
else if PT Phase = FINDING_TROUGH then

if Pitch − TroughPitch > NoiseThreshold then
Trough and new note detected! (in absence of vibrato)
ReturnVariables← note & meter count nearest to TroughPitch, & parameters
PT Phase← FINDING_CRES T

end if
end if

To determine closeness of the pitch level to a note level, two bound regions limited by
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Algorithm 3 A reduced version of pseudo-code depicting the state variable PTS tate and
its transitions in the pitch tracking process

if Pitch > PreviousPitch then
if PTS tate = GOING_DOWN then

if PT Phase ∈ {FINDING_TROUGH,RES ET } then
if PreviousPitch < TroughPitch then

TroughPitch← PreviousPitch
end if

end if
end if
PTS tate← GOING_UP

else if Pitch < PreviousPitch then
if PTS tate = GOING_UP then

if PT Phase ∈ {FINDING_CRES T,RES ET } then
if PreviousPitch > CrestPitch then

CrestPitch← PreviousPitch
end if

end if
end if
PTS tate← GOING_DOWN

else
if PTS tate = RES ET then

PTS tate← GOING_FLAT
end if

end if
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user-settable bound values are defined around each note – the inner bound region (colored

darker yellow) inside the inner bound (IB), and the outer bound region (colored lighter

yellow) inside the outer bound (OB). When the pitch track enters the inner bound around

a note (point t2 as an example around the note C#), it is deemed to be locked to that note

(C#), and is deemed to stay locked until it gets beyond the outer bound (point o1). This

method of using two thresholds instead of one to determine stability is employed in order

to avoid continuous re-triggering of the same stable note in case of vibrato or noise around

the bound (as in case of the vibrato seen between points t2 and o1) – quite similar to the

concept of Hysteresis [4] in Physics or Schmitt Trigger [47] in Electronics. Further, when

the pitch track goes out of the outer region around the note C# at the point o1 and re-enters

the inner region at o4, the note C# is deemed to have been re-triggered.

In most of the cases, decisions about stability of notes and divisions into regions are

taken at the points where the pitch track changes its direction – i.e., at the crests and

troughs, as these points are critical points of change on the pitch track and are easier to

detect algorithmically. However, a user-settable minimum duration of time called Stability

Threshold (ST) is also defined. If the pitch track enters the inner bound around a note and

stays inside the outer bound around the same note for this duration ST, the pitch is im-

mediately deemed to be stable around that note, without waiting for a subsequent crest or

trough. Accordingly, in Figure 8, the pitch track is deemed to have attained stability at note

C at the point s2, after entering the region around the note at s1 and staying in the same

region for the duration ST, even though the trough occurs later at s3.

In case of the momentary jump to note B from s4 to t4, the trough is lying outside the

outer bound around note B; the jump exhibits a valid transition – as the span of the jump

is beyond the noise threshold (NT) and also also as the pitch goes beyond the outer bound

(OB) around the previous note (C). For such cases, a region of nearness (colored blue) is

defined around the note within the nearness bound (NB), typically within half a semitone

below and above the note. The note nearest to the crest or trough is taken as the base note
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at such points. Thus, since the trough at t4 is closer to note B than to note A#, note B is

taken as the base note.

Further, if the pitch track enters the bounds around a note but neither stays within

bounds for a period greater than ST nor shows a crest or trough, such as the segment

between t5 and t6, the segment is deemed to be part of a transition region.

For all the cases, a noise threshold (NT) is defined to avoid the effects of noisy low-level

variations in the pitch track (such as that between n3 and o1) that may induce spurious crests

and troughs that may lead to wrong decisions by the algorithm. Any change in the direction

of pitch within the noise threshold above or below a trough or crest is ignored. Thus, the

pitch level difference between a recorded pair of neighboring trough and crest in the pitch

track is ensured to be at least NT. In the example, the pair of crest and trough at the points

n1 and n2 would thus be ignored and note C is not deemed to be the base note at the points,

thus making the transition from t1 to t2 a seamless one. Similarly, the pair between points

n3 and o1 would be ignored in making decisions about the vibrato around note C#.

Also for all the cases, the user is given an option to specify the notes of the scale being

used in the current performance through the Max interface. This is done to ensure that

the system doesn’t erroneously detect a note outside the scale, either due to the nature of

incoming audio or due to limitations of the pitch estimation process, and to give the user

a way to achieve selective modeling of melody. Thus, in the example, if the point t4 had

been closer to the note A# than to note B, note B would still be deemed to be the base note

as A# is colored light gray and thus shown not to be in the scale being used.

Figure 9 is a screenshot of the development interface of the system showing how the

system segments a manually simulated pitch track. The input pitch track is smoother and

slower in its variations in this case, and is thus clearer visually. Figure 10 is a similar

screenshot for a real audio track of the performance of a North Indian Classical Music

vocalist. The input pitch track is rougher and faster in its variations in this case. In both the

screenshots, it can be seen visually that the system is following the notes, segmenting the

30



Figure 9: A screenshot of the waveform display in the development interface of the system
showing how it segments a manually simulated pitch track; the input pitch track is smoother
and slower in its variations in this case; the track also shows portamento lags as determined
by the system for each of the notes determined; bluish line = pitch track going from note
A to note B; greenish vertical lines = metric grid; reddish lines = pure note without vibrato
and portamento; reddish circular markers = start of a new note as determined by the system;
reddish arrowheads = end of portamento for the corresponding notes as determined by the
system
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Figure 10: A screenshot of the waveform display in the development interface of the sys-
tem showing how it segments a pitch track derived from an actual audio input; the input
pitch track is rougher and faster in its variations in this case; the track also shows porta-
mento lags as determined by the system for each of the notes determined; bluish line = pitch
track going from note A to note B; greenish vertical lines = metric grid; reddish lines =

pure note without vibrato and portamento; reddish circular markers = start of a new note as
determined by the system; reddish arrowheads = end of portamento for the corresponding
notes as determined by the system

pitch track into discrete notes, and marking the end of portamento for each note in the way

it was designed to do.

4.4 Feature Extraction

In parallel to the segmentation of the pitch track as detailed in Section 4.3, various mea-

surements are made through the process to extract the parameters for features such as por-

tamento and vibrato. Figure 11 illustrates some of the key parameters involved, and the

elements measured for the same. The illustration shows a pitch track (colored blue) tra-

verse the note sequence A-B-A. The track shows a period of portamento at each transition,

as well as oscillations of vibrato – particularly about note B.
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Figure 11: An illustration of a part of a pitch track showing salient measurements used
to extract vibrato and portamento parameters; bluish line = pitch track going from note A
to note B; greenish vertical lines = metric grid; reddish lines = pure note without vibrato
and portamento; PL = Portamento Lag; PL′1 = Overshoot prep lag (for PL1); PL′′1 =

Overshoot recoil lag (for PL1); OS = Overshoot amount; US = Undershoot amount; pinkish
vertical lines a/b/c/d = amplitude values used to determine vibrato depth.
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Table 1: Parameters of expressive variations contained in a typical metadata packet

Parameter Description
1 PortamentoLag Time between the start of a note and the point where it

reaches the target, in terms of a beat duration
2 PortamentoShape Shape of the portamento curve, as defined by 4 elements:

split ratio in time axis (SplitX), split ratio in pitch axis
(SplitY), first curve index (Curve1) and second curve index
(Curve2)

3 TremoloDepth Half the amplitude of the tremolo, in terms of a semitone
4 TremoloRate Frequency of tremolo, in cycles per second
5 VibratoDepth Half the amplitude of the vibrato, in terms of a semitone
6 VibratoRate Frequency of vibrato, in cycles per second
7 ShootDepth Vertical distance of overshoot or undershoot beyond the tar-

get note level, in terms of a semitone
8 ShootLag Time taken for recoil after overshoot or undershoot, in terms

of a beat period
9 PrepDepth Vertical distance of preparatory overshoot or undershoot be-

yond the source note level, in terms of a semitone
10 PrepLag Time taken before reaching the extreme point of a prepara-

tory overshoot or undershoot, in terms of a beat period

4.4.1 Coarse Portamento Features

Several coarse parameters are considered for each portamento - dealing with the larger scale

span of the portamento in the time and pitch axes: the direction, the lag, overshoot/under-

shoot amount, and the recoil/shoot lag, as in Table 1.

The direction of portamento refers to whether the transition is upward or if it is down-

ward. This can indirectly be derived from the direction of change between the previous

note and the current note; hence, the direction of portamento was chosen not to be included

in the metadata packet in the trie model.

The Portamento Lag (PL) refers to the time measured between the last trough of the

previous note to the first crest of the target note in case of an upward transition (PL1 for

example), or that between the last crest of the previous note to the first trough of the target

note in case of a downward transition (PL2 for example). As mentioned in Section 4.3,
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the local extreme positions of the pitch track are thus taken as salient reference points for

measurement in most cases. However, in other special cases such as that when the pitch

track starts afresh at a note without a necessary transition, or when a stable note is detected

due to Stability Threshold (ST as in Figure 8) rather than an extreme position, correspond-

ing alternate points are used to determine the Portamento Lag. In the implementation,

Portamento Lags are represented as fractions of a beat duration, so that they would scale

appropriately with changing tempo. Representation in terms of milliseconds of absolute

time and that in terms of fraction of the note period were also considered, but were not

used since they would not scale well with changing tempo in case of the model being used

to generate music.

Further, during the experiments with MATLAB simulation, it was noticed that many of

the transitions also had overshoots and undershoots at the beginning and the end. Though

an analysis of the cause and the affect of these is outside the scope of this work and there

is more detailed discussion elsewhere in literature on this and other such aspects in the

context of systems using voice input and melodic transcription on it for sound synthesis

and transformation [27], it was speculated that these overshoots and undershoots may be

attributed to the mechanical inertia involved in generation of voice as well as to the effort

on part of the singer to heighten the effect of the transitions, and thus were deemed to be

important aspects of the pitch track. The corresponding parameters were thus recorded as

well: the amount of overshoot (OS) or undershoot (US) – corresponding to the difference

between the target pitch level and the extreme level to which the pitch track shot beyond

the target level, and also the Recoil Lag (PL′′) – corresponding to the time taken for the

pitch track to return to the target pitch after the undershoot/overshoot. The region similar

to the Recoil Lag just before the Portamento Lag region is termed the Prep Lag (PL′) –

corresponding to the time taken for a preparatory deviation from the previous note level in

a direction opposite to that of the portamento.
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4.4.2 Coarse Vibrato Parameters

Similarly, two parameters were recorded for vibrato: the depth and the rate. To determine

the Vibrato Depth, amplitudes of individual oscillations of vibrato (except the first and the

last ones corresponding to the shoots and the preps, wherever applicable) were measured

separately as the difference between the extreme levels (distances a, b, c and d in the exam-

ple), and then averaged over the entire note duration. To determine the vibrato rate, a count

was taken of the oscillations between the end of Recoil Lag and the end of the note, and

divided by the corresponding time period. The end of the note here would be the extreme

point (trough or peak) corresponding to the beginning of the portamento towards the next

note.

Some of the finer or more detailed parameters of vibrato, dealing with the variation of

vibrato depth and that of vibrato rate along the length of a note were left for future work.

4.4.3 Fine Portamento Parameters – Portamento Curves

During the preliminary simulations with MATLAB, it was also seen that some of the rising

portamentos had a shape that looked similar to a quick exponential rise, and that most of

the falling portamentos had a shape that looked similar to a quick exponential fall, while

others had a waveform similar to an sigmoid curve. Accordingly, to determine the sample

values of the portamento region during the generation of audio by the system and to be able

to generate a reasonably wide array of portamento shapes, two simple sets of wavetables

with waveforms as illustrated in Figure 12 were used: one set for the rising waveforms –

generated using the polynomial fraction in Eq. (1), and another one for the falling wave-

forms, generated using Eq. (2). While generating the wavetables, the parameter A was kept

at a value of 1.0, while the parameter B was taken from the set {-127/128 -63/64 -31/32

-15/16 -7/8 -3/4 -1/2 0 1 3 7 15 31 63 127}. While a mathematical treatment of this choice

of values for the parameter B is out of the scope of this document, it may be observed

that the set of curves is symmetric about both of the diagonals in each case in Figure 12.
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Figure 12: An illustration showing a set of superimposed curves used for modeling por-
tamentos. These are generated using the functions in Eq. (1) and Eq. (2), with parameter
A=1.0 and with parameter B taken from the set {-127/128 -63/64 -31/32 -15/16 -7/8 -3/4
-1/2 0 1 3 7 15 31 63 127}. These elementary curves are combined, scaled and offset
appropriately to approximate the portamento segments of the pitch curve.

The above wavetables were scaled and offset in both pitch and time axes and in various

forms during audio generation to get a waveform that was continuous and matching with

the immediately neighboring points, as illustrated around a portamento region in Figure 16.

pr(x) = A ×
x + xB
1 + xB

(1)

p f (x) =
A(1 − x)
1 + xB

(2)

The above technique, being simple and fast, worked for the purpose through most of

the development of the system. However, it may be noted that the resulting synthesized

pitch track may not be smooth at all points. This may be seen at the joining point between

segments p3 and p4, and at that between segments p1 and p2 in the black dashed line in

Figure 15 – which is an example of a synthesized pitch curve. To overcome this limitation,

a technique involving a 3rd degree polynomial and associated parameters that can be used

to alter the shape of the polynomial, can be considered to achieve a representation that is

closer to the original portamento. 3rd degree polynomials are extensively used to generate
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the spline curves used in a variety of modern graphics softwares and systems, due to their

mathematical properties such as being able to be differentiated twice and hence the ability

to maintain a smooth shape at the points of inflection or at the end points [3]. A few

experiments were done in this direction with spline curves during development, and their

incorporation into the framework was left as a future work.

4.4.4 Fine Portamento Parameters – Interpolation and Inflection

To fit the above portamento curves into the region of portamento defined by the Portamento

Lag in the pitch track input, the region is divided into two parts separated at the inflection

point – if any is present – in the region, and different curves applied to each of the two parts,

as illustrated by segments p2 and p3 in Figure 12. For this, the pitch track in the region is

interpolated at a number of evenly spaced points inside the region, as shown with the red

markers in the left part of Figure 13. The figure shows interpolation with 8 divisions for

illustrative purpose, while typically 20 divisions were used in implementation.

The interpolated pitch track is further analyzed to determine the inflection point – which

is mathematically the point at which the second derivative or the curvature of a function

changes direction – or in simpler non-mathematical terms, where the curve becomes convex

to concave. This is a point that can serve as the anchoring point or a joining point for lower-

order parts used to model a higher-order curve, and is used with a similar purpose with

splines [3] in 2-dimensional computer graphics. Many methods to determine the inflection

point from the above interpolated pitch curve were considered during development of the

framework. Determination of the inflection point is trivial in most of the simple cases

where there is no noise, where the amount of noise involved is low or when the number

of divisions is low enough to counter the effect of noise. In such cases, the slope of the

interpolated track in each division would be calculated and the difference between the slope

values of adjacent divisions (a simple heuristic for second derivative) would be examined

to find out the point at which this difference would change the sign, and that point taken
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as the inflection point. With this method, the point y in the right part of Figure 13 would

be deemed the inflection point for the example curve in the illustration, which also agrees

with visual observation.

While many methods more rigorous and efficient than the above heuristic have been

proposed and used [8][1] for cases of noiseless signals and curves similar to the above

scenario, more complex cases involving noise require other approaches like Kalman filter-

ing [31][32] or other heuristics. A heuristic was accordingly developed and used in the

framework to find the inflection point in a generic noisy case of pitch track, using simple

calculations of the area under the curve facilitated by the trapezoidal rule in mathematics

[6]. In this method, each point along the divisions is hypothesized to be the inflection

point, and the area between the curve and a straight line joining the point to an end point

of the curve is calculated, The area values on either side of the point are added with op-

posite signs, and the absolute value of this sum is defined as the ‘area differential’ at that

point. The point with the highest area differential is further deemed the inflection point. In

Figure 13, three such differential areas are illustrated – the area with a pattern of circles,

the one with a pattern of lines and the one with a pattern of dots. In the example, point z

would be deemed the inflection point. While this heuristic may not fetch the optimal in-

flection point (y in the example) in all cases, it yields a solution close to the optimal one in

many cases, and has the advantage in presence of noise. Heuristics even better than this and

which can fetch the optimal inflection point in presence of noise exist and were considered

in the implementation of the framework; they are left to be discussed in future publications.

After the inflection point is determined as described above along with the offset and

scaling extent for the curves, one of the curves from the set in Figure 12 is selected to

represent the actual portamento curve, using a simple heuristic that selects the curve that is

closest to the actual portamento curve. This process is illustrated in Figure 14. The period

of the portamento curve pqrs is computationally cut into a number of equal divisions,

the number being 3 in the illustration as well as in most of the initial experiments with
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Figure 13: An illustration of uniform interpolation of a normalized portamento region in
a sample pitch track (left) and determination of the inflection point from the interpolated
pitch track (right); black curve ≡ original smooth pitch locus; blue dots ≡ samples received
in the input pitch track; red dots ≡ interpolated pitch points; green lines ≡ demarcations of
regions considered in determining the inflection point

the framework. Then, the points of intersection between the candidate as well as original

portamento curves and the division boundaries are calculated. The distances between the

intersection points along the original portamento curve and those along each candidate

portamento curve are further taken, per division, and added up to obtain a heuristic measure

of the distance between the particular candidate curve and the original curve. The candidate

curve with the least distance measure is finally selected as the closest curve to represent the

original curve. In the illustration, three of the closer curves have been shown as dashed

black lines, with their points of intersection with the pinkish vertical division lines along

the portamento period. The distance of the candidate curve pabs from the original curve

pqrs is deemed by the heuristic to be aq + br. Similarly, cq + dr and eq + f r are deemed to

be the distances of the other two close curves. Since cq+dr is the lowest value among these

distances, the candidate curve pcds is finally deemed to be the closest curve to represent

pqrs.
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Figure 14: An illustration of selection of the closest parametric curve to represent an
actual portamento curve, from a scaled and transposed group of curves; blue solid line ≡
a portamento segment of the original pitch track; gray solid lines ≡ candidate parametric
portamento curves from Figure 12; black dashed lines ≡ some of the parametric curves
closer to the original pitch track (curve pcds being deemed to be the closest one); pinkish
vertical lines ≡ borders of sub-divisions of the portamento segment period; dots ≡ points
of connection and intersection
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4.4.5 Chapter Epilogue

Figure 15 shows the parametric curves corresponding to the parameters determined by the

above algorithm for the sample pitch track shown earlier in Figure 11. The black dashed

line represents the parametric curve, while the blue continuous line is the original pitch

curve. The segments named ‘p’ are the portamento curves, selected from among those in

Figure 12 and adjusted through scaling and offsetting. The other segments named ‘s’ are

the sinusoidal vibrato curves. The reddish colored block on the pure note track represents

the inflection point for the portamento, as also seen in some of the demonstration videos

on the project media webpage [35], while the reddish circle and the arrowhead represent

the beginning and end of portamento respectively, as mentioned before. Figure 16 shows

the same curves as above, overlaid upon a few sets of scaled and offset versions of the

parametric curves in Figure 12 (solid and colored gray) over a portamento region and its

surrounding segments, to illustrate the selection of a suitable curve for each segment.

After the note segmentation and parameter extraction is done as above, the parameters

and discrete elements are embedded in a trie as detailed in the following chapter.
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Figure 15: An illustration of parametric curves corresponding to the parameters deter-
mined by the system for the sample pitch track in Figure 11; black dashed line ≡ parametric
curve; blue solid line ≡ original pitch track; black dots ≡ points of connection
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Figure 16: An illustration of scaling, offsetting and selection of curves from those in
Figure 12 for a few portamento segments shown in Figure 15; gray solid lines ≡ candi-
date parametric portamento curves from Figure 12 for each segment; black dashed line
≡ parametric curve (selected ones for portamento); blue solid line ≡ original pitch track;
black dots ≡ points of connection
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CHAPTER V

MULTI-ATTRIBUTE TRIE MODELING

This chapter presents the techniques used in the work to construct a systematic multi-state

model of the discrete notes, durations and continuous parameters derived from the musical

input as previously detailed, and the ways in which the model is in turn used to drive

machine improvisation. The modeling and evaluation framework, like most of the rest

of the system, was implemented in C++ as an external object in Max/MSP along with

supporting patches.

5.1 N-gram Modeling

N-gram modeling is a commonly used technique to probabilistically model sequences of

elements such as phonemes in speech, letters in a word or musical notes in a phrase [37].

N-grams can be efficiently stored in a tree-shaped data structure commonly referred to as

a ‘trie’ or prefix tree. Figure 17 shows the trie for the sequence ABAB+C. In such a trie,

branches represent succession of certain symbols after others; and a node at a certain level

of the trie holds a symbol from the sequence, along with information about the symbol such

as the number of times (‘count’) it was seen in the sequence following the symbols above

it, and the corresponding probability of occurrence. In Figure 17, the subscript below a

symbol represents the symbol’s probability given the context defined by the path through

the trie to that node, while the superscript above it represents the ‘count’ value. Thus, in

the topmost level, the probabilities represent the priors for the symbols.

During construction of the trie, symbols are fed sequentially into the system one-by-

one. For the above example, after the sequence ABAB, the trie looks like the trie Trie1 in

Figure 17. When a new symbol ‘C’ follows, corresponding nodes are created at all levels

of the trie: 5-gram node using ‘ABABC’, 4-gram node using ‘BABC’, trigram node using
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Figure 17: Illustration of tries built for the sequence ‘ABAB’ followed by the symbol ‘C’;
superscripts represent ‘count’ values; subscripts represent ‘probability’ values; rounded
boxes represent sibling set; italicized number at the left of a rounded box represents the
total ‘count’ among the siblings – used in turn to calculate the ’probability’ values; the last
trie is after adding the ‘escape’ values

‘ABC’, bigram node using ‘BC’ and a 1-gram/prior entry for ‘C’ at the topmost level.

The corresponding probabilities are also updated resulting in Trie 2 in Figure 17. For

this updating of the probabilities, we keep track of the total ‘count’ (italicized number at

the left of each rounded box) for each set of children from a parent node – i.e., for each set

of ‘siblings’ (rounded box in Figure 17). In each update step at a certain level of the trie,

the updated probability of a symbol is then found – in its simplest form – by dividing the

updated ‘count’ value by the updated ‘total count’ value for the symbol’s ‘siblings’ set.

After the trie has been built in this manner it can be used to predict the next symbol

given a test sequence. This is done by following the nodes of the trie downwards from its

top, in the order of the symbols in the test sequence, until the last symbol in the sequence

(and the corresponding node in the trie) is reached. At that point, the probabilities associ-

ated with the children nodes represent the predictive distribution over the symbol set, given

the observed context.
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To allow for new symbols that may appear in the test sequence and to subsequently

allow for a better matching of test sequences with missing or extra symbols compared to

training sequences, we incorporate the concept of escape probabilities into our trie struc-

ture, as described by Witten and Bell [59]. The above example trie would then look like

Trie3 in Figure 17. The use of escape probabilities is described in Section 5.2.

For long training sequences, the depth of the trie can become large and is often limited

to a maximum order to limit memory usage and to speed up the prediction process given a

test sequence.

5.2 Escape Probabilities

Whenever the system encounters a new symbol in the test sequence, the problem of zero

frequency occurs; because, in the high-order models, this and most other n-grams would

never have been observed [13]. Using a simple counting the model would assume zero

probability for these unseen events, thereby returning infinite entropy (a measure for the

amount of perplexity at a stage - commonly used to evaluate statistical systems), should

they occur in the test sequence. The solution is to reserve a small amount of probability

mass to events that haven’t occurred yet. This is done by reserving an escape probability

for each level of the trie. Whenever an event encounters zero probability, the trie uses or

returns the escape probability instead.

There are many ways to assign the value of escape probability, as a function of sev-

eral attributes of the particular node of the trie, such as the total count of instances of the

symbols seen so far, the number of unique symbols seen so far, and the number of unique

symbols with exactly a certain count of instances. Bell and Witten have evaluated several of

these methods [59] as applied to a certain work of written English. For most of the initial

experimentation and in the illustrations (Figure 17, Figure 18) in this document, a sim-

ple method where the escape probability for each level n is assigned by Eq. (3) was used
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(method referred to as ‘A’ by Bell and Witten), where N is the total number of tokens/sym-

bols seen by the model so far. Further, Bell and Witten have shown that an approximation

of the Poisson distribution method (termed ‘X’ by them) proves to perform the best among

the set of common methods they considered, by being able to result in escape probability

values that are closer to the real probability value for unseen events, when applied to n-

grams. The same method was further adopted in the current framework as the current work

also employs n-grams. In this method, the escape probability for each level n is assigned

by Eq. (4), where T1 is the number of tokens that have occurred exactly once.

e(n) =
1

N(n) + 1
, (3)

e(n) =
T1(n)
N(n)

, (4)

5.3 N-gram Smoothing

Smoothing addresses the trade-off between the specificity of higher-order models (if a

match can be found) and the reliability of the n-gram counts for lower-order models. Since

higher order models are much sparser, many n-grams will be assigned zero probability, and

counts for n-grams that have been observed will tend to vary greatly based on the particular

training database. This variance can be reduced by incorporating information form lower

order models.

There are are two basic types of smoothing algorithms: back-off models and interpola-

tion models. Given a test sequence, a back-off model searches for the entire sequence; if no

match is found in the trie, the process continues recursively after dropping the first element

of the sequence – in effect, searching for a matching node in the lower order models - higher

up in the trie structure (envisioned with the root or the prior-based model at the top). The

process stops once a positive match is found and the count for that n-gram node is greater

than a set threshold. In the example of the trie shown in Figure 17, if a search sequence of
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‘AAB’ is input, the prediction system first searches for the entire sequence ‘AAB’ from the

root of the trie. Since the sequence is not found in the trie, the subsequence ‘AB’ is tried for

next. This sequence is found, and ‘A’ or ‘C’ is seen as subsequent symbol at the third level.

One of these symbols is output as the prediction according to their relative probability dis-

tribution. Interpolated smoothing by contrast always incorporates lower order information

even if the n-gram count in question is non-zero – i.e., even if a longer sequence is found in

the trie, the prediction routine will continue to to search for the shorter subsequences, and

the probability distributions from various levels are subsequently combined to produce the

final prediction.

In our earlier study on modeling of tabla sequences [11], we compared two smoothing

methods: Kneser-Ney (KN) and an averaging method we termed 1/N. These were also

compared to a simple backoff procedure. KN was adopted because earlier work had shown

it to be a superior smoothing method in the context of natural language processing [9]. We

showed that Both 1/N and Kneser-Ney smoothing significantly outperformed the simple

back-off method in the case of tabla sequence modeling, and that 1/N is the clear winner

for strokes, durations, and joint prediction. In the initial version of the current work, 1/N

was chosen to be used as the smoothing method, while leaving a systematic study of the

smoothing methods to future work.

5.4 Types

Types are the fundamental elements of information stored as discrete variables in the nodes

of the trie.

Three kinds of types are commonly recognized in literature [14]: the basic types, the

derived types and the cross/product types. Basic types are those that are directly extracted

from a musical piece and are independent of one another, such as notes and their durations.

Cross types are formed when two or more basic types are combined and tracked simulta-

neously. A cross type formed using notes and durations would consist of all symbols for
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notes in combination with all symbols used for quantized durations. Each element of this

crossed type is represented as a tuple, {Note, Duration}, instead of a single value. The

number of all possible elements in a cross type is equal to the product of the number of

elements in each basic type. A derived type depends on information extracted from a ba-

sic type. A simple example of this is melodic intervals, which are extracted from pitches.

Derived types can further lead to the formation of cross types. Selection of appropriate

representations is domain-dependent and often uses prior knowledge of the music.

In their work on multiple-viewpoint systems for music prediction in the context of

Bach’s chorale melodies [14], Conklin and Witten used 6 basic types: Pitch, Key Signature,

Time Signature, Fermata, Start Time and Duration. These in turn gave rise to around

22 derived types used in their work. In the earlier work with tabla modeling done with

colleagues at GTCMT [11] using the same framework as employed in the current work,

two basic types were used: tabla strokes and durations. These were in turn used in two

crossed types: Stroke ⊗ Duration, and Stroke ⊗ Postition-In-Bar (PIB), where PIB referred

to the onset position of a stroke as a fraction of the bar. The tabla strokes also gave rise to

three derived types. It was further shown that the cross types lead to small improvements

in the model outcome in the context of solo tabla compositions.

Keeping the above choices for types as references, in the initial implementation of the

current system, two basic types are used: (1) Note and (2) PositionInBar/PIB as a pair

of Beat and Tatum value. PositionInBar in turn acts to define the duration of the notes

indirectly in case of continuous voice input. These basic types are in turn combined into the

cross type: Notes ⊗ PIB. This cross type is the fundamental symbol stored in the nodes of

most of the tries built in the system. Over the course of several experiments with different

types including the straight representations of Inter-Onset-Intervals (IOIs) and durations,

this type proved to be suitable for representing both the melodic as well as the rhythmic

information of the audio input in relation to the metric grid.

Two derived types are also introduced into the model: constructed by mapping the
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MIDI note number into a reduced representation: (1) an integer specifying if the note falls

in the same, lower or higher octave compared to that of the previous note (TriOctave), and

(2) Pitch Class. These two are in turn combined into a cross type: TriOctave ⊗ PitchClass.

Thus, the MIDI note set was reduced to a set of 3 octaves × 12 pitch classes = 36 symbols.

This type would provide a good compression of the melodic space so that the resulting trie

would be less sparse and more maturely built, and was thus found to be useful in cases

where the melody would span several octaves of pitch more than the human voice - such

as when the audio input is coming from a musical instrument like a keyboard synthesizer.

However, in case of human voice input where the source spans less number of octaves, the

compression offered by this derived type was not found to be of much advantage in front of

the crossed type of Notes ⊗ PIB where exact note information could be preserved. Further

experiments with other basic, derived and cross types is left for future improvements.

5.5 Storing parameters of expressive variations

While the structure described above is used to hold the details about the discrete notes

as well as the durations between them or their positions in the time grid, the parameters

for the expressive variations determined in Section 4.4 are not stored in the same manner.

Instead, the parameters corresponding to each node in the above trie is stored as a packet of

metadata along with the node. This serves to position the parameters as an optional entity

in the trie, available for use upon the discretion of the user and the generation logic, without

disturbing the control flow in the tree structure.

Each parameter in the metadata packet, in turn, is modeled as a zeroth-order Markov

chain, i.e., as a collection of alternate values with an associated prior probability distribu-

tion. Thus, when the node is encountered as a part of the search through the trie when the

system is generating audio output, one of these values is chosen according to their relative

probability distribution, and used to generate the note with expressive variations. Figure 18

shows an illustration of one such metadata packet.
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Figure 18: Illustration of a metadata packet showing zeroth-order Markov models of Porta-
mentoLag, VibratoDepth and VibratoRate; superscripts represent ‘count’ values; subscripts
represent ‘probability’ values; a rounded box represents a sibling set; italicized number at
the left of a rounded box represents the total ‘count’ among the siblings - used in turn to
calculate the ‘probability’ values
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However, unlike in the case of discrete notes or discrete PIB values, the parameter

values for expressive variations are continuous - which would mean that if all of their values

are accepted, they would very soon consume a disproportionate amount of memory, leading

to performance and resource bottlenecks. Moreover, the technique of using a zeroth-order

Markov chain modeling the relative probability distribution among the parameter values

would seldom work in this case as it would be very rare to get the exact same value of

the parameter in its continuous domain. To counter this issue, each of the parameters was

quantized with a reasonable resolution. For example, for Portamento Lag, 1/10th of a tatum

(a tatum being the smallest division of a beat set as the resolution for note events for the

current model) is set as the standard resolution. For Vibrato Depth, 1 cent of pitch is

set as the standard resolution. For Vibrato rate, 0.25 Hz is set as the standard resolution

in current implementation, while a logarithmic scale might be adapted in the future for a

better representation.

Various other ways of storing the parameters of expressive variations were considered

before the above method of using metadata packets with zeroth-order Markov chains was

adopted in the platform. The trivial method of using a common value or a common range

of values for each of the parameters is hypothesized to result in less expressive and musical

output than the original human performance, and improving upon this trivial method is in

fact one of the goals of the framework. Another method considered was to include the

parameters as parts of the fundamental symbol vector used for each node in the trie. This

would however make the symbol space disproportionally large and the trie branches would

get sparse – rendering the trie unable to model closer relationships between the discrete

elements that would otherwise get modeled in an obvious sense. On the other hand, the

method of modeling the parameters for expressions completely separate from the discrete

elements was considered, where a separate trie or multiple separate tries would be built

for the parameters. This method can enable modeling of temporal relationships between

values of parameters. However, it fails to enable modeling of dependencies between the
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parameters and the discrete elements, while such relationships were reported to be exist-

ing by several related works of research as mentioned in Chapter 2. Thus, the method of

storing the parameters in metadata packets in the nodes of a trie with discrete elements was

adopted with the expectation that it would strike a middle ground in the above consider-

ations, being able to model relationships between parameters of continuous elements and

discrete elements without making the trie get disproportionately sparse.

It is a further observational fact that the context of discrete elements in a certain node

of the trie doesn’t always exhibit the same values of parameters of continuous elements

in the input stream; for example, the portamento may be well-exhibited for a certain note

in an instance of a phrase, while there may only be a short hint of it in another repetition

of the phrase, and the portamento may be completely absent in yet another repetition of

the phrase, thus giving rise to three different values of Portamento Lag. The zeroth-order

Markov chain was adopted to enable more efficient modeling of such scenarios by allow-

ing multiple values of a parameter to be stored along with a corresponding probability of

occurrence in the context of a trie node, instead of storing just one value that would have

been either the most recent one or the one that is relatively more frequent.
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CHAPTER VI

SOUND SYNTHESIS, INTERACTION AND INTERFACE

In the generation phase, the system traverses through the multi-attribute trie-based com-

putational model built as described in the previous chapter, to predict the next note to be

played and its corresponding attributes and placement. This is done as a part of the process

to continue the sequence of notes registered till the current point of time – either as derived

from the input or as generated by the system to be the output, depending on the interaction

set-up. Once the predictions are derived from the model and the output is determined, in

the form of a MIDI note number along with the pitch bend values, these are fed into a

software sound synthesizer to render the voice in real-time. For the purposes of develop-

ment and evaluation, a simple software waveform generator was used that generated anti-

aliased sound output using simple waveforms such as sine, triangle, square and sawtooth on

Max/MSP. The same MIDI note numbers along with the pitch bend values can potentially

be fed into a hardware or software synthesizer for a more realistic instrument voice. For a

performance scenario, the software instruments in a performance software such as Ableton

Live would be a good example. Alternatively, these output values can potentially be used to

drive a synthesis engine that programmatically generates waveforms using a mathematical

model, such as one using the Karplus-Strong physical model [33][26], in which case the

synthesis engine can be more tightly coupled to the current analysis and multi-attribute-

trie-based modeling system, and can potentially render the expressive variations in a more

realistic way.

In the preliminary implementation of the system, the system can continuously receive

the incoming audio, generate the pitch track from it, analyze the pitch track and train the

computational model with parameters for every new note detected, and when indicated by
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the user, can continue the sequence using the model developed so far and generate stylis-

tically similar musical output using the voice chosen in the synthesizer. The system can

potentially be used in other forms of interaction such as call-and-response and accompani-

ment with the human performer, and adopting the system for a performance involving such

interactions is left for future work.

To enable the user to make such interactions with the system as well as to modify the

various parameters involved in learning and generation phases of the system, the user is

given an interface such as the one in Figure 19. Using the interface, the user can specify if

the system should generate music or if it should just learn from his input, and can enable

or disable various expressive elements such as vibrato and portamento. The user can also

specify the notes used in the melodic scale through an on-screen musical keyboard, as well

as the meter of the performance through the time signature, tempo and time resolution. Fur-

ther, the user can set the various bounds and thresholds used in the pitch tracking process,

and see the tracking and generation process in action through real-time updates of the in-

put or output pitch track in multiple colors, similar to the illustrations used in Figure 8 and

Figure 11. The horizontal lines in the track display in Figure 19 represent the distinct MIDI

note levels - the ones colored darker gray corresponding to the black keys and the ones col-

ored lighter gray corresponding to the white keys on a standard musical keyboard (unlike

in the illustrations in Figure 8 and Figure 11, where the darker gray color represented the

notes belonging to the scale selected).

The Max/MSP objects demonstrating the functionality of the modeling framework may

be downloaded from the thesis web page [35].
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Figure 19: A snapshot of the preliminary interface with controls to adjust various parame-
ters
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CHAPTER VII

SYSTEM EVALUATION

An anonymous survey was conducted over the internet [36] to determine the aggregate

subjective opinion of a pool of uncontrolled adult participants involving both musically

trained and untrained subjects, about several audio tracks generated by the system. The

survey aimed at determining if the subjects perceived the output of the system to be musi-

cal and expressive in general, and if they perceived the version of the output with modeled

expressive elements to be more musical and expressive compared to that without the ex-

pressive elements, as well as to that with randomly generated expressive elements, thereby

establishing the success of the system and the method of modeling employed.

7.1 Design of the survey

Four different monophonic audio recordings of vocal performances by masters in North

Indian Classical Music were chosen to be the source materials – involving two pieces each

from two vocalists. The pieces were all in different raags: gaud malhAr, tODi/shubha-

pantuvarAli, asAvEri/natabhairavi and dEsh, selected such that they span a wide array of

pitches, have fairly different note selections and varied tempi - although, since the emphasis

in the work was on expressive modulations, the pieces selected exhibited a working tempo

limited to a range between 90 and 120 BPM. From each piece, four different audio tracks

were generated for the survey: the first one as a re-rendering of the pitch track from the

original recording, the second one generated by the system using the model but without

expressive elements, the third one generated by the system using the model but with ran-

domly assigned parameters to the expressive elements with a standard sigmoid curve for

each portamento, and the fourth one generated by the system using the model with true
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Figure 20: A screenshot of the waveform display in the development interface of the sys-
tem showing an example generative pitch track generated using pseudo-random values for
the parameters of vibrato and portamento, with a standard sigmoid curve for all the por-
tamento regions; bluish line ≡ generated pitch track; greenish vertical lines ≡ metric grid;
reddish lines ≡ pure note of the generated pitch track without vibrato and portamento; red-
dish circular markers ≡ start of a new note

expressive elements as modeled parametrically, including parametrically modeled porta-

mento. Figure 20 shows an example generation pitch track for the third case, with the

characteristic sigmoid curves. Thus, the subjects were presented with four sets of tracks

containing four tracks each. In this chapter and elsewhere in the document, the 4 original

recordings of the performances in different raags are referred to as ’sources’ or ’pieces’,

while the 4 versions derived out of each of them are referred to as ’tracks’.

To make sure that the subjects are not biased due to differing timbres, all the tracks

– including the ones representing the original pitch track without using the model – were

rendered using the same waveform in the synthesizer. The generated tracks however did

not necessarily have the same line of melody as that in the original pitch track or even

between one another, as the model in the system was allowed to run free for each of the

generated tracks, after one common round of training. Also, to counter any biasing effect

of the temporal order in which the tracks were presented, the order of the sets of tracks as
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well as that of the tracks in each set was scrambled independently for each participant in

the survey.

The subjects were asked to rate the tracks for their musicality and expressiveness on a

7-point scale. Demographic information about the subjects such as their age, degree of mu-

sical experience and that of exposure to Indian Classical Music was also collected - to aid

checking for any correlations that might exist between the responses and the demographics

of the subjects, and to aid in future reviews of the survey results.

7.2 Transcription of the survey response plots

The figures derived from the survey responses and included in this chapter show box plots

of the responses, along with the statistical multiple-comparison of the responses following

a one-sided analysis of variance (ANOVA) with a 95% confidence interval. These are

standard techniques followed in statistics [22] to analyze aggregate and pairwise trends

among grouped data such as the responses received in the survey conducted in this work.

The responses are presented here in their unweighted form – considering responses of all

participants equally, as well as in a weighted form. The weighting was done with two

schemes: one according to the rating the participants gave for their own musical abilities in

the demographic section of the survey, and the other one according to the ratings they gave

to their exposure to and skills in Indian Classical Music. Since the number of participants

in the survey who explicitly specified their level of expertise in ICM was relatively low

compared to the total number of participants, the results of weighting by that scheme are

not presented here, and is planned to be considered for future analysis.

There are three types of figures presented here:

• The figures with 4 box plots such as Figure 28 separately show the trends for each

of the 4 source audio recordings that were used to generate the audio tracks used for

the survey, with each box plot showing the response statistics for each of the 4 track

versions
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• The figures with 2 box plots and 2 multi-comparison plots combined together such

as Figure 21 show the aggregate trends for each version of the tracks - obtained by

combining the responses received for all source recordings together

• The figures with 2 multi-comparison plots such as Figure 24 show the relative trends

among all of the 16 audio tracks used in the survey

The graphical elements numbered 1 to 4 in the sub-plots – for example, those in the

box-plot at the bottom-left of Figure 28 – correspond to the 4 versions of audio tracks

generated from each source recording as previously mentioned:

1. A direct rendering of the pitch track generated from the original source recording

without using the model

2. Output of the system with modeled discrete elements but without using any expres-

sive elements

3. Output of the system with modeled discrete elements and using randomly generated

parameters for the expressive elements – along with a sigmoid curve for portamentos

4. Full-fledged output of the system with modeled discrete elements and modeled ex-

pressive elements

It should be noted that in all of the multi-comparison plots, the indices of track numbers

(1 to 4 or 1 to 16) are inverted with respect to the order mentioned above – or in other words,

are placed from top to bottom in the above order. Thus, the elements numbered 4 in the

multi-comp plots of Figure 21 are the versions with direct rendering of the pitch track.

In case of the graphs showing multiple comparison of all 16 of the audio tracks at once

– such as in Figure 24, sets of 4 consecutive tracks refer to those derived from a single

source, with an individual order as above. Thus, for example, tracks numbered 1 to 4 in

the plot are from the 4th source, those numbered 9 to 12 are from the 2nd source, while the

track numbered 15 is the non-expressive version derived from the 1st source.
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Figure 21: Box plots (left) and multiple comparison plots (right) of aggregate unweighted
survey responses for expressiveness (top) and musicality (bottom) of the tracks

The musicality and expressiveness axes are represented in a scale between 0 and 100

– 0 being the minimum and 100 being the maximum value possible for each quality, also

considering the weighting factor, if applied.

7.3 Results of the survey

Around 39 responses were obtained in total, from a population with a mean age of around

30 years, with around 1/6th of the participants being females. About half of the participants

mentioned themselves to be musicians, and about half of the total number of participants

were familiar with Indian Classical Music to various degrees.

In most of the cases, the participants rated the track with a rendering of the original pitch

track to be lower in musicality and expressiveness compared to the other three synthesized

tracks. This can be seen in Figure 21 showing the aggregate statistics of unweighted re-

sponses, as well as in Figure 22 showing the same aggregate statistics with the responses

weighted by the musicianship of the participants. This result, considering the aggregate
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Figure 22: Box plots (left) and multiple comparison plots (right) of aggregate survey re-
sponses for expressiveness (top) and musicality (bottom) of the tracks weighted by the
musicianship of the participants

responses, can be seen to be significant at the 95% confidence interval for all synthesized

cases with respect to musicality, while being not equally significant in some synthesized

cases for their expressiveness. Nevertheless, this proves that the tracks generated by the

system – with or without expressive parameters – were perceived to be more musical and

equally expressive – if not more expressive, than the tracks that had a reproduction of the

original pitch track. This is possibly aided by the clearer and more stable track generated

by the system – compared to the original pitch track which is prone to pitch tracking errors

and uneven fluctuations of source voice. This result can also be considered a testament to

the performance of the part of the system modeling the discrete elements of notes and their

durations and positions – being able to produce musical results. Another factor that might

have helped render the original pitch tracks to be less musical and expressive is the fact that

many of the notes in the original source recordings were sung in just intonation scale, while
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Figure 23: Multiple comparison plot of survey responses for expressiveness (left) and
musicality (right) of the tracks weighted by the musicianship of the participants

the system produced output in equal temperament scale – owing to technical reasons as ex-

plained earlier in Section 4.3; this might have rendered sections of the original pitch track

relatively out-of-tune in comparison to the generated tracks, especially to participants who

are more exposed to the equal temperament tuning in popular music. This result however is

limited to the pitch track generated from the source recording, and does not imply anything

about the stand-off between the generated tracks and the original source recording itself, as

the source recordings were not included in the survey. Further experiments are required to

evaluate any such relations.

The multi-comparison plots comparing the 16 tracks in both the weighted (Figure 23)

and unweighted (Figure 24) cases show that in case of 3 out of the 4 source recordings

(the 3rd piece in asAvEri/natabhairavi raag being the exception), the participants on an

average rated the tracks using expressive parameters (either random or modeled) to be

more expressive than the one generated with plain notes without vibrato and portamento.

This shows that the generation of expressive parameters by the system is indeed causing a
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Figure 24: Multiple comparison plot of unweighted survey responses for expressiveness
(left) and musicality (right) of the tracks

perceivable difference and improvement in the expressivity of the tracks. However, these

differences are not statistically significant with the 95% confidence interval, and thus call

for more experimentation to draw strong conclusions about the relative stand-off between

the versions with and without expressive elements. The participants’ individual views about

expressivity and about excessive use of expressivity may be attributed to have played a role

in this case, as well as the negative predisposition induced by a few impulsive glitches in

the generated expressive tracks due to octave errors in pitch detection along with some

occasional discontinuities found in the tracks. The result nevertheless serves as a positive

basis and inspiration for future improvements.

Regarding the stand-off between the two versions of expressive tracks generated, the

graphs with both weighted (Figure 23) and unweighted (Figure 24) responses show that in

case of two of the sources, the version with modeled parameters is perceived to be better
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Table 2: Numerical mean values of unweighted survey responses

Piece 1 Piece 2 Piece 3 Piece 4

Expressiveness

Original 47.43 46.71 48.86 50.86
No Expressions 54.43 49.43 60.43 47.57
Random Expressions 55.57 52.86 56.71 54.71
Modeled Expressions 55.57 51.29 59.00 50.43

Musicality

Original 46.00 43.29 45.43 48.00
No Expressions 57.86 51.71 66.00 51.57
Random Expressions 52.14 53.71 56.43 54.43
Modeled Expressions 55.14 52.14 61.14 53.14

Table 3: Numerical mean values of survey responses weighted by the musicality of the
participants

Piece 1 Piece 2 Piece 3 Piece 4

Expressiveness

Original 17.43 19.14 21.14 20.29
No Expressions 15.29 16.43 17.43 17.29
Random Expressions 15.57 19.57 18.86 19.14
Modeled Expressions 17.43 15.57 20.29 17.14

Musicality

Original 15.43 21.29 18.43 21.57
No Expressions 13.00 16.14 18.29 17.00
Random Expressions 14.43 22.00 20.00 21.14
Modeled Expressions 16.71 17.71 20.86 17.29
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musically compared to the version with random parameters and sigmoid curve. However,

the result is reversed in case of the other two sources. Hence, and also owing to the fact

that this result is again not shown to be statistically significant, it may be concluded that

more experimentation is needed to establish the stand-off between the versions with mod-

eled and random parameters. One aspect to consider here is the fact that in case of the

track generated using random values for parameters, while the vibrato rate, depth and por-

tamento lag were randomly assigned values from within a predefined range, the curve for

portamento was kept constant as a sigmoid curve. Many portamento regions in the source

tracks were observed to indeed have a sigmoid shape, thus resulting in the version with

random parameters being closer to that with modeled parameters. This may be considered

a possible reason as to why the survey results did not show a strong stand-off between

the two versions. A better test would be one in which all of the parameters, including the

portamento shape, are randomly generated. It may also be noted that the ranges set for

random values assigned for the above parameters were chosen to be optimal ranges within

which most of the actual values of parameters as observed in the original source recordings

lied, determined by the author through manual hearing of the source tracks. For example,

the range for random vibrato depth was set to be between 0.01 and 0.45 times a semitone,

that for vibrato rate was set to be between 2 and 10 Hz. This also can be expected to have

rendered the two versions closer together. These considerations will be made during future

evaluations.

The box plots of the various distributions of survey responses are given in Figure 25,

Figure 26, Figure 27 and Figure 28, along with numerical mean values in Table 2 and

Table 3 for further reference and comparison.
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Figure 25: Box plot of unweighted survey responses for expressiveness of the tracks
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Figure 26: Box plot of unweighted survey responses for musicality of the tracks
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Figure 27: Box plot of survey responses for expressiveness of the tracks weighted by the
musicianship of the participants
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Figure 28: Box plot of survey responses for musicality of the tracks weighted by the
musicianship of the participants
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CHAPTER VIII

FUTURE WORK

While there are many ways in which the system can be improved to model musical input

in a better way and to be better adopted for live performance, the following are the key

improvements being considered.

8.1 An improved pitch tracking

While the pitch estimator in the analyzer~ object [29] currently used works well enough to

derive a pitch track from certain input types, several algorithms have been proposed over

the recent years that may be better in specific ways. Among them, SWIPE′ [7] seems to be

a good algorithm for musical input – being inspired by sawtooth waveform, it has resulted

in better tracking of pitch in our preliminary simulation on MATLAB, and it provides the

convenience of being able to specify limits on the pitch to be estimated – which may be

of great help in the current system as such a limit is already being set on the notes in

the training stage. Elsewhere, wavelet-based pitch estimators have been used to detect

pitches in speech [28][21] – showing by nature a good resolution in time, along with that

in frequency – which may be an important factor in the current system. An approach

combining the spectral performance of SWIPE′ with the time resolution of wavelets might

work best for the system.

8.2 Implementation of various non-intrusive interaction modes

The user currently needs to explicitly specify if the system needs to generate notes or if

it has to just listen and learn, and he also needs to adjust various parameters and musical

performance settings manually. The system also doesn’t have the interaction modes neces-

sary for a live performance – such as call-and-response and coherent accompaniment [58].
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Implementation of these modes with a reasonable amount of automation is thus desirable.

8.3 Adoption of Hidden Markov Models

The current implementation of the modeling only has a modified trie structure with varying

orders – essentially a Markov model, but does not contain any hidden layers as in case of a

Hidden Markov Model (HMM). HMMs have been widely used in computational modeling

of music [25][10] and language [51] elsewhere, and especially are applicable where the

observable output needs to be modeled as a result of an intermediate abstraction. In case

of the current system, such a HMM structure may prove to be useful for segmentation of

the pitch track, as well as for representation of the interaction among various elements of

melodic and rhythmic data.

8.4 Adoption of spline curves

In the current implementation, sample values while generating the portamento section of

a note are obtained by scaling, interpolating and offsetting a predetermined and saved

wavetable of simple and appropriately shaped polynomial fraction curves. The current

method of applying these curves may however introduce undesirable discontinuities or

roughness in the output pitch waveform, as no smoothness consideration is being made at

the joining points between these curves. Instead of this static approach, a dynamic and

full-fledged spline-based approach may be taken for better smoothness and precision in the

output waveform. Splines are parametric piece-wise polynomial curves extensively used

in computer graphics – especially to draw smooth 2-dimensional curves [3]. A couple of

preliminary experiments have been done with the system in this regard.

8.5 Working with a larger database

The current system has been developed, tried and tested with a small subset of only 25

audio track recordings of vocal performances of North Indian Classical Music, involving

only 2 artists and 14 raags, and the formal evaluation has been done with a still smaller
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sub-set. Trial with a larger database of audio tracks, in different styles, scales, instruments

and by different artists is desirable to make the system more robust and generic.

8.6 Building up a long-term model

The current implementation always functions within the context of a single piece of audio

input, requiring to re-learn the parametric model every time a different input is given –

essentially working as a Short Term Model (STM). A Long Term Model (LTM) may be

desired in such a case, involving building of a library of models to be stored in the memory

and retrieved to supplement the STM. This has been shown earlier to be especially helpful

at the beginnings of a performance or audio input [11] – where the STM has not adequately

developed yet.
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CHAPTER IX

CONCLUSION

The thesis thus has presented a computational system that was developed to parametrically

model the expressive continuous variations such as vibrato and portamento from real-time

musical audio input, in a multi-attribute multi-order trie-based framework. A rule-based

and highly user-customizable sub-system that seamlessly integrated the processes of seg-

mentation of notes and extraction of their parameters using a real-time state-machine based

approach was developed and presented. While the musical notes and their positions were

modeled as a modification of the traditional suffix trie, the parameters of the expressive vari-

ations were stored as metadata associated with each node of the trie. Each parameter stored

in the metadata was further modeled as a zeroth-order Markov chain – equivalently with a

prior probability distribution. This scheme of storing the parameters of expressive musical

elements inside the trie framework being the novel aspect, the model was further used to

generate musical output stylistically similar to the audio input. Several vocal recordings of

North Indian Classical Music were used for development as well as to evaluate the system.

A survey was conducted with both musically trained and untrained participants over the in-

ternet to obtain their subjective opinions about the musicality and expressiveness of audio

tracks generated by the system. The results of the survey show the output tracks generated

from the system to be as musical and expressive, if not more, than the case where the pitch

track generated from the original audio was directly rendered as output. They also show

the output with expressive elements to be perceivably more expressive than the version of

the output without expressive parameters. The results further suggest that more experimen-

tation may be required to conclude the efficacy of the framework employed in relation to
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using randomly selected parameter values for the expressive elements. The document fur-

ther presented some of the important improvements that may be considered for the system

and the framework in the future.
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